1
|
Nedozi OI, Sogbanmu TO, Abdulrazaq MM, Oloyo AK. Simulated occupational exposure to volatile organic compounds from industrial printing ink alter behavioral, neurological, oxidative, hepatic, and kidney indices in mice. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2025:1-14. [PMID: 40368451 DOI: 10.1080/19338244.2025.2503917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/27/2025] [Indexed: 05/16/2025]
Abstract
Industrial printing inks are major sources of occupational exposure to volatile organic compounds (VOCs) with potential adverse effects. The behavioral, neurological, oxidative, hepatic, and kidney function effects of simulated occupational exposure to VOCs emitted from an industrial printing ink were investigated in laboratory mice, Mus musculus for 4 weeks. Average TVOCs value of 0.5 mg/m3 measured at 10 printing presses was the exposure level utilized in this study. There were significant duration-dependent and sex-disaggregated differences in the behavioral responses; acetylcholinesterase (neurological biomarker) and MDA (lipid peroxidation biomarker) activities significantly increased while SOD and CAT (antioxidants) activities significantly decreased in the brain; ALT, AST, and ALP (liver) as well as bilirubin, urea, and creatinine (kidney) were significantly elevated in exposed mice correlating with histopathologies compared to control. The results showed that long term inhalation of VOCs emitted from industrial printing inks may pose multiple sub-lethal effects in occupationally exposed persons, especially females.
Collapse
Affiliation(s)
- Ogugua I Nedozi
- Ecotoxicology and Conservation Unit, Department of Zoology, Faculty of Science, University of Lagos, Lagos, Nigeria
| | - Temitope O Sogbanmu
- Ecotoxicology and Conservation Unit, Department of Zoology, Faculty of Science, University of Lagos, Lagos, Nigeria
- Evidence Use in Environmental Policymaking in Nigeria (EUEPiN), Research Management Office, University of Lagos, Lagos, Nigeria
- Environmental Evidence Synthesis and Knowledge Translation Research Cluster, TETFund Centre of Excellence in Biodiversity Conservation and Ecosystem Management (EESKT-TCEBCEM), University of Lagos, Lagos, Nigeria
| | - Muhammed M Abdulrazaq
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Ahmed K Oloyo
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| |
Collapse
|
2
|
Korkmaz F, Sims S, Sen F, Sultana F, Laurencin V, Cullen L, Pallapati A, Liu A, Chen R, Rojekar S, Pevnev G, Cheliadinova U, Vasilyeva D, Burganova G, Macdonald A, Saxena M, Goosens K, Rosen CJ, Barak O, Lizneva D, Gumerova A, Ye K, Ryu V, Yuen T, Frolinger T, Zaidi M. Gene-dose-dependent reduction of Fshr expression improves spatial memory deficits in Alzheimer's mice. Mol Psychiatry 2025; 30:2119-2126. [PMID: 39548323 PMCID: PMC12097745 DOI: 10.1038/s41380-024-02824-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 10/23/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
High post-menopausal levels of the pituitary gonadotropin follicle-stimulating hormone (FSH) are strongly associated with the onset of Alzheimer's disease (AD). We have shown recently that FSH directly activates the hippocampal FSH receptors (FSHRs) to drive AD-like pathology and memory loss in mice. To unequivocally establish a role for FSH in memory loss, we depleted the Fshr on a 3xTg background and utilized Morris Water Maze to study deficits in spatial memory. 3xTg;Fshr+/+ mice displayed impaired spatial memory at 5 months of age. The loss of memory acquisition and retrieval were both rescued in 3xTg;Fshr-/- mice and, to a lesser extent, in 3xTg;Fshr+/- mice-documenting clear gene-dose-dependent prevention of spatial memory loss. Furthermore, at 5 and 8 months, sham-operated 3xTg;Fshr-/- mice showed better memory performance during the learning and/or retrieval phases, further suggesting that Fshr deletion prevents age-related progression of memory deficits. This prevention was not seen when mice were ovariectomized, except in the 8-month-old 3xTg;Fshr-/- mice. There was also a gene-dose-dependent reduction mainly in the amyloid β40 isoform in whole brain extracts. Finally, serum FSH levels <8 ng/mL in 16-month-old APP/PS1 mice were associated with better retrieval of spatial memory. Collectively, the data provide compelling genetic evidence for a protective effect of inhibiting FSH signaling on the progression of spatial memory deficits in mice and lay a firm foundation for the use of an FSH-blocking agent for the early prevention of memory loss in post-menopausal women.
Collapse
Affiliation(s)
- Funda Korkmaz
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Steven Sims
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fazilet Sen
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Farhath Sultana
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Victoria Laurencin
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Liam Cullen
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anusha Pallapati
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Avi Liu
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ronald Chen
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Satish Rojekar
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Georgii Pevnev
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Uliana Cheliadinova
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Darya Vasilyeva
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Guzel Burganova
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anne Macdonald
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mansi Saxena
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ki Goosens
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Orly Barak
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daria Lizneva
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anisa Gumerova
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Keqiang Ye
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, University of Chinese Academy of Science, Shenzhen, Guangdong, China
| | - Vitaly Ryu
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tony Yuen
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Tal Frolinger
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Mone Zaidi
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
3
|
Zhang Y, Sun ZD, Yang YS, Fu WD. Causal association of sex hormone-related traits with Alzheimer's disease: a multivariable and network Mendelian randomization analysis. Front Neurol 2025; 16:1391182. [PMID: 39974360 PMCID: PMC11835684 DOI: 10.3389/fneur.2025.1391182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 01/20/2025] [Indexed: 02/21/2025] Open
Abstract
Background Although studies have demonstrated a correlation between sex hormone-related traits [such as sex hormone binding globulin (SHBG) and testosterone] and Alzheimer's Disease (AD), the link remains uncertain due to the intricacies of AD pathology. The study aimed to investigate the possible causal link between sex hormone-related traits and AD. Methods The authors collected data from extensive genome-wide association studies (GWASs) of European ancestry on sex hormone-related traits and AD. Univariate and multivariate Mendelian randomization (MR) analyses were conducted to explore the possible causal relationship between these traits and AD. We used inverse variance weighted (IVW) MR as the main analysis. Results The use of univariate MR-IVW revealed a possible causal relationship between SHBG [ORs (95% CI), 1.005 (1.001-1.009), p = 0.006], testosterone [ORs (95% CI), 0.994 (0.989-0.999), p = 0.013] and AD in female. There is no evidence of a causal association of SHBG [ORs (95% CI), 1.002 (0.999-1.005)), p = 0.237] and testosterone [ORs (95% CI), 1.000 (0.997-1.004), p = 0.810] with AD in males. Multivariate MR analysis revealed a possible direct causal connection between SHBG and testosterone in relation to females AD (SHBG-OR (95%CI), 1.005 (1.001-1.009, p = 0.023); testosterone-OR (95%CI), 0.995 (0.989-1.000, p = 0.049). Bidirectional MR analysis indicated that SHBG has a possible causal effect on testosterone (SHBG on testosterone-OR (95%CI), 1.064 (1.032-1.096), p = 0.0001). The results of the network MR analysis suggested that testosterone may act as a mediator in the causal pathway from SHBG to AD. Conclusion Our study using the MR methodology indicates that increase of SHBG level and decrease of testosterone level in females are positively linked to an increased risk of developing AD. Importantly, testosterone plays a mediating role in the causal pathway from SHBG to females AD.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anesthesiology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| | - Zhen-dong Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Yu-shen Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Wei-dong Fu
- Department of Anesthesiology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| |
Collapse
|
4
|
Breeze B, Connell E, Wileman T, Muller M, Vauzour D, Pontifex MG. Menopause and Alzheimer's disease susceptibility: Exploring the potential mechanisms. Brain Res 2024; 1844:149170. [PMID: 39163895 DOI: 10.1016/j.brainres.2024.149170] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
Alzheimer's Disease (AD), responsible for 62% of all dementia cases, is a progressive neurodegenerative condition that leads to cognitive dysfunction. The prevalence of AD is consistently higher in women suggesting they are disproportionately affected by this disease. Despite this, our understanding of this female AD vulnerability remains limited. Menopause has been identified as a potential contributing factor to AD in women, with earlier menopause onset associated with greater AD risk. However, the underlying mechanisms responsible for this increased risk are not fully understood. This review examines the potential role of menopause in the development of Alzheimer's Disease providing a mechanistic overview of the available literature from hormones to pathology. While literature is now emerging that indicates a role of hormonal shifts, gut dysbiosis, lipid dysregulation and inflammation, more research is needed to fully elucidate the mechanisms involved.
Collapse
Affiliation(s)
- Bernadette Breeze
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Emily Connell
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Tom Wileman
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom; Quadram Institute Biosciences, Norwich NR4 7UQ, United Kingdom
| | - Michael Muller
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - David Vauzour
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Matthew G Pontifex
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom.
| |
Collapse
|
5
|
Buckley M, Jacob WP, Bortey L, McClain ME, Ritter AL, Godfrey A, Munneke AS, Ramachandran S, Kenis S, Kolnik JC, Olofsson S, Nenadovich M, Kutoloski T, Rademacher L, Alva A, Heinecke O, Adkins R, Parkar S, Bhagat R, Lunato J, Beets I, Francis MM, Kowalski JR. Cell non-autonomous signaling through the conserved C. elegans glycoprotein hormone receptor FSHR-1 regulates cholinergic neurotransmission. PLoS Genet 2024; 20:e1011461. [PMID: 39561202 PMCID: PMC11614273 DOI: 10.1371/journal.pgen.1011461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 12/03/2024] [Accepted: 10/14/2024] [Indexed: 11/21/2024] Open
Abstract
Modulation of neurotransmission is key for organismal responses to varying physiological contexts such as during infection, injury, or other stresses, as well as in learning and memory and for sensory adaptation. Roles for cell autonomous neuromodulatory mechanisms in these processes have been well described. The importance of cell non-autonomous pathways for inter-tissue signaling, such as gut-to-brain or glia-to-neuron, has emerged more recently, but the cellular mechanisms mediating such regulation remain comparatively unexplored. Glycoproteins and their G protein-coupled receptors (GPCRs) are well-established orchestrators of multi-tissue signaling events that govern diverse physiological processes through both cell-autonomous and cell non-autonomous regulation. Here, we show that follicle stimulating hormone receptor, FSHR-1, the sole Caenorhabditis elegans ortholog of mammalian glycoprotein hormone GPCRs, is important for cell non-autonomous modulation of synaptic transmission. Inhibition of fshr-1 expression reduces muscle contraction and leads to synaptic vesicle accumulation in cholinergic motor neurons. The neuromuscular and locomotor defects in fshr-1 loss-of-function mutants are associated with an underlying accumulation of synaptic vesicles, build-up of the synaptic vesicle priming factor UNC-10/RIM, and decreased synaptic vesicle release from cholinergic motor neurons. Restoration of FSHR-1 to the intestine is sufficient to restore neuromuscular activity and synaptic vesicle localization to fshr-1-deficient animals. Intestine-specific knockdown of FSHR-1 reduces neuromuscular function, indicating FSHR-1 is both necessary and sufficient in the intestine for its neuromuscular effects. Re-expression of FSHR-1 in other sites of endogenous expression, including glial cells and neurons, also restored some neuromuscular deficits, indicating potential cross-tissue regulation from these tissues as well. Genetic interaction studies provide evidence that downstream effectors gsa-1/GαS, acy-1/adenylyl cyclase and sphk-1/sphingosine kinase and glycoprotein hormone subunit orthologs, GPLA-1/GPA2 and GPLB-1/GPB5, are important for intestinal FSHR-1 modulation of the NMJ. Together, our results demonstrate that FSHR-1 modulation directs inter-tissue signaling systems, which promote synaptic vesicle release at neuromuscular synapses.
Collapse
Affiliation(s)
- Morgan Buckley
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - William P. Jacob
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Letitia Bortey
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Makenzi E. McClain
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Alyssa L. Ritter
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Amy Godfrey
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Allyson S. Munneke
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Shankar Ramachandran
- Department of Neurobiology, University of Massachusetts Chan School of Medicine, Worcester, Massachusetts, United States of America
| | - Signe Kenis
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Julie C. Kolnik
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Sarah Olofsson
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Milica Nenadovich
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Tanner Kutoloski
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Lillian Rademacher
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Alexandra Alva
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Olivia Heinecke
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Ryan Adkins
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Shums Parkar
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Reesha Bhagat
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Jaelin Lunato
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Isabel Beets
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Michael M. Francis
- Department of Neurobiology, University of Massachusetts Chan School of Medicine, Worcester, Massachusetts, United States of America
| | - Jennifer R. Kowalski
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| |
Collapse
|
6
|
Ménoret A, Agliano F, Karginov TA, Hu X, Vella AT. IRAK4 is an immunological checkpoint in neuropsychiatric systemic lupus erythematosus. Sci Rep 2024; 14:16393. [PMID: 39014006 PMCID: PMC11252422 DOI: 10.1038/s41598-024-63567-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/30/2024] [Indexed: 07/18/2024] Open
Abstract
The search for dementia treatments, including treatments for neuropsychiatric lupus (NPSLE), has not yet uncovered useful therapeutic targets that mitigate underlying inflammation. Currently, NPSLE's limited treatment options are often accompanied by severe toxicity. Blocking toll-like receptor (TLR) and IL-1 receptor signal transduction by inhibiting interleukin-1 receptor-associated kinase 4 (IRAK4) offers a new pathway for intervention. Using a pre-clinical NPSLE model, we compare lupus-like B6.MRL-Faslpr (MRL) mice with B6.MRL-Faslpr-IRAK4 kinase-dead (MRL-IRAK4-KD) mice, which are were less prone to 'general' lupus-like symptoms. We demonstrate that lupus-prone mice with a mutation in the kinase domain of IRAK4 no longer display typical lupus hallmarks such as splenomegaly, inflammation, production of hormones, and anti-double-stranded (ds)DNA antibody. water maze behavioral testing, which measures contextual associative learning, revealed that mice without functional IRAK4 displayed a recovery in memory acquisition deficits. RNA-seq approach revealed that cytokine and hormone signaling converge on the JAK/STAT pathways in the mouse hippocampus. Ultimately, the targets identified in this work may result in broad clinical value that can fill the significant scientific and therapeutic gaps precluding development of cures for dementia.
Collapse
Affiliation(s)
- Antoine Ménoret
- Department of Immunology, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA.
| | - Federica Agliano
- Department of Immunology, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Timofey A Karginov
- Department of Immunology, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Xiangyou Hu
- Department of Neuroscience, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Anthony T Vella
- Department of Immunology, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA.
| |
Collapse
|
7
|
Mey M, Bhatta S, Suresh S, Labrador LM, Piontkivska H, Casadesus G. Therapeutic benefits of central LH receptor agonism in the APP/PS1 AD model involve trophic and immune regulation and are reproductive status dependent. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167165. [PMID: 38653355 DOI: 10.1016/j.bbadis.2024.167165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
The mechanisms that underly reproductive hormone effects on cognition, neuronal plasticity, and AD risk, particularly in relation to gonadotropin LH receptor (LHCGR) signaling, remain poorly understood. To address this gap in knowledge and clarify the impact of circulating steroid hormones on the therapeutic effects of CNS LHCGR activation, we delivered the LHCGR agonist human chorionic gonadotropin (hCG) intracerebroventricularly (ICV) and evaluated functional, structural, plasticity-related signaling cascades, Aβ pathology, and transcriptome differences in reproductively intact and ovariectomized (OVX) APP/PS1 AD female mice. Here we demonstrate that CNS hCG delivery restored function to wild-type levels only in OVX APP/PS1 mice. Spine density was increased in all hCG treated groups independently of reproductive status. Notably, increases in BDNF signaling and cognition, were selectively upregulated only in the OVX hCG-treated group. RNA sequencing analyses identified a significant increase in peripheral myeloid and pro-inflammatory genes within the hippocampi of the OVX group that were completely reversed by hCG treatment, identifying a potential mechanism underlying the selective therapeutic effect of LHCGR activation. Interestingly, in intact mice, hCG administration mimicked the effects of gonadectomy. Together, our findings indicate that CNS LHCGR agonism in the post-menopausal context is beneficial through trophic and immune mechanisms. Our findings also underscore the presence of a steroid-LHCGR mechanistic interaction that is unexplored yet potentially meaningful to fully understand "post-menopausal" brain function and CNS hormone treatment response.
Collapse
Affiliation(s)
- Megan Mey
- Kent State University, Kent, OH 44240, United States of America
| | - Sabina Bhatta
- Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Sneha Suresh
- University of Florida, Gainesville, FL 32606, United States of America
| | | | | | - Gemma Casadesus
- University of Florida, Gainesville, FL 32606, United States of America.
| |
Collapse
|
8
|
Jia Y, Du X, Wang Y, Song Q, He L. Sex differences in luteinizing hormone aggravates Aβ deposition in APP/PS1 and Aβ 1-42-induced mouse models of Alzheimer's disease. Eur J Pharmacol 2024; 970:176485. [PMID: 38492878 DOI: 10.1016/j.ejphar.2024.176485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
Alzheimer's disease (AD) exhibits a higher incidence rate among older women, and dysregulation of the hypothalamic-pituitary-gonadal (HPG) axis during aging is associated with cognitive impairments and the development of dementia. luteinizing hormone (LH) has an important role in CNS function, such as mediating neuronal pregnenolone production, and modulating neuronal plasticity and cognition. The sex differences in LH and its impact on Aβ deposition in AD individuals remain unclear, with no reported specific mechanisms. Here, we show through data mining that LH-related pathways are significantly enriched in female AD patients. Additionally, LH levels are elevated in female AD patients and exhibit a negative correlation with cognitive levels but a positive correlation with AD pathology levels, and females exhibit a greater extent of AD pathology, such as Aβ deposition. In vivo, we observed that the exogenous injection of LH exacerbated behavioral impairments induced by Aβ1-42 in mice. LH injection resulted in worsened neuronal damage and increased Aβ deposition. In SH-SY5Y cells, co-administration of LH with Aβ further exacerbated Aβ-induced neuronal damage. Furthermore, LH can dose-dependently decrease the levels of NEP and LHR proteins while increasing the expression of GFAP and IBA1 in vivo and in vitro. Taken together, these results indicate that LH can exacerbate cognitive impairment and neuronal damage in mice by increasing Aβ deposition. The potential mechanism may involve the reduction of NEP and LHR expression, along with the exacerbation of Aβ-induced inflammation.
Collapse
Affiliation(s)
- Yongming Jia
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xinzhe Du
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yanan Wang
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qinghua Song
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ling He
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
9
|
Frolinger T, Korkmaz F, Sims S, Sen F, Sultana F, Laurencin V, Cullen L, Pallapati AR, Liu A, Rojekar S, Pevnev G, Cheliadinova U, Vasilyeva D, Burganova G, Macdonald A, Saxena M, Goosens K, Rosen C, Barak O, Lizneva D, Gumerova A, Ye K, Ryu V, Yuen T, Zaidi M. Gene-Dose-Dependent Reduction Fshr Expression Improves Spatial Memory Deficits in Alzheimer's Mice. RESEARCH SQUARE 2024:rs.3.rs-3964789. [PMID: 38463956 PMCID: PMC10925392 DOI: 10.21203/rs.3.rs-3964789/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Alzheimer's disease (AD) is a major progressive neurodegenerative disorder of the aging population. High post-menopausal levels of the pituitary gonadotropin follicle-stimulating hormone (FSH) are strongly associated with the onset of AD, and we have shown recently that FSH directly activates the hippocampal Fshr to drive AD-like pathology and memory loss in mice. To establish a role for FSH in memory loss, we used female 3xTg;Fshr+/+, 3xTg;Fshr+/- and 3xTg;Fshr-/- mice that were either left unoperated or underwent sham surgery or ovariectomy at 8 weeks of age. Unoperated and sham-operated 3xTg;Fshr-/- mice were implanted with 17β-estradiol pellets to normalize estradiol levels. Morris Water Maze and Novel Object Recognition behavioral tests were performed to study deficits in spatial and recognition memory, respectively, and to examine the effects of Fshr depletion. 3xTg;Fshr+/+ mice displayed impaired spatial memory at 5 months of age; both the acquisition and retrieval of the memory were ameliorated in 3xTg;Fshr-/- mice and, to a lesser extent, in 3xTg;Fshr+/- mice- -thus documenting a clear gene-dose-dependent prevention of hippocampal-dependent spatial memory impairment. At 5 and 10 months, sham-operated 3xTg;Fshr-/- mice showed better memory performance during the acquasition and/or retrieval phases, suggesting that Fshr deletion prevented the progression of spatial memory deficits with age. However, this prevention was not seen when mice were ovariectomized, except in the 10-month-old 3xTg;Fshr-/- mice. In the Novel Object Recognition test performed at 10 months, all groups of mice, except ovariectomized 3xTg;Fshr-/- mice showed a loss of recognition memory. Consistent with the neurobehavioral data, there was a gene-dose-dependent reduction mainly in the amyloid β40 isoform in whole brain extracts. Finally, serum FSH levels < 8 ng/mL in 16-month-old APP/PS1 mice were associated with better retrieval of spatial memory. Collectively, the data provide compelling genetic evidence for a protective effect of inhibiting FSH signaling on the progression of spatial and recognition memory deficits in mice, and lay a firm foundation for the use of an FSH-blocking agent for the early prevention of cognitive decline in postmenopausal women.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Avi Liu
- Icahn School of Medicine at Mount Sinai
| | | | | | | | | | | | | | | | | | | | | | | | | | - Keqiang Ye
- Shenzhen Institute of Advanced Technology
| | | | | | | |
Collapse
|
10
|
Buckley M, Jacob WP, Bortey L, McClain M, Ritter AL, Godfrey A, Munneke AS, Ramachandran S, Kenis S, Kolnik JC, Olofsson S, Adkins R, Kutoloski T, Rademacher L, Heinecke O, Alva A, Beets I, Francis MM, Kowalski JR. Cell non-autonomous signaling through the conserved C. elegans glycopeptide hormone receptor FSHR-1 regulates cholinergic neurotransmission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.10.578699. [PMID: 38405708 PMCID: PMC10888917 DOI: 10.1101/2024.02.10.578699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Modulation of neurotransmission is key for organismal responses to varying physiological contexts such as during infection, injury, or other stresses, as well as in learning and memory and for sensory adaptation. Roles for cell autonomous neuromodulatory mechanisms in these processes have been well described. The importance of cell non-autonomous pathways for inter-tissue signaling, such as gut-to-brain or glia-to-neuron, has emerged more recently, but the cellular mechanisms mediating such regulation remain comparatively unexplored. Glycoproteins and their G protein-coupled receptors (GPCRs) are well-established orchestrators of multi-tissue signaling events that govern diverse physiological processes through both cell-autonomous and cell non-autonomous regulation. Here, we show that follicle stimulating hormone receptor, FSHR-1, the sole Caenorhabditis elegans ortholog of mammalian glycoprotein hormone GPCRs, is important for cell non-autonomous modulation of synaptic transmission. Inhibition of fshr-1 expression reduces muscle contraction and leads to synaptic vesicle accumulation in cholinergic motor neurons. The neuromuscular and locomotor defects in fshr-1 loss-of-function mutants are associated with an underlying accumulation of synaptic vesicles, build-up of the synaptic vesicle priming factor UNC-10/RIM, and decreased synaptic vesicle release from cholinergic motor neurons. Restoration of FSHR-1 to the intestine is sufficient to restore neuromuscular activity and synaptic vesicle localization to fshr-1- deficient animals. Intestine-specific knockdown of FSHR-1 reduces neuromuscular function, indicating FSHR-1 is both necessary and sufficient in the intestine for its neuromuscular effects. Re-expression of FSHR-1 in other sites of endogenous expression, including glial cells and neurons, also restored some neuromuscular deficits, indicating potential cross-tissue regulation from these tissues as well. Genetic interaction studies provide evidence that downstream effectors gsa-1 / Gα S , acy-1 /adenylyl cyclase and sphk-1/ sphingosine kinase and glycoprotein hormone subunit orthologs, GPLA-1/GPA2 and GPLB-1/GPB5, are important for FSHR-1 modulation of the NMJ. Together, our results demonstrate that FSHR-1 modulation directs inter-tissue signaling systems, which promote synaptic vesicle release at neuromuscular synapses.
Collapse
|
11
|
Butler T, Tey SR, Galvin JE, Perry G, Bowen RL, Atwood CS. Endocrine Dyscrasia in the Etiology and Therapy of Alzheimer's Disease. J Alzheimers Dis 2024; 101:705-713. [PMID: 39240636 DOI: 10.3233/jad-240334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The increase in the incidence of dementia over the last century correlates strongly with the increases in post-reproductive lifespan during this time. As post-reproductive lifespan continues to increase it is likely that the incidence of dementia will also increase unless therapies are developed to prevent, slow or cure dementia. A growing body of evidence implicates age-related endocrine dyscrasia and the length of time that the brain is subjected to this endocrine dyscrasia, as a key causal event leading to the cognitive decline associated with aging and Alzheimer's disease (AD), the major form of dementia in our society. In particular, the elevations in circulating gonadotropins, resulting from the loss of gonadal sex hormone production with menopause and andropause, appear central to the development of AD neuropathology and cognitive decline. This is supported by numerous cell biology, preclinical animal, and epidemiological studies, as well as human clinical studies where suppression of circulating luteinizing hormone and/or follicle-stimulating hormone with either gonadotropin-releasing hormone analogues, or via physiological hormone replacement therapy, has been demonstrated to halt or significantly slow cognitive decline in those with AD. This review provides an overview of past and present studies demonstrating the importance of hypothalamic-pituitary-gonadal hormone balance for normal cognitive functioning, and how targeting age-related endocrine dyscrasia with hormone rebalancing strategies provides an alternative treatment route for those with AD.
Collapse
Affiliation(s)
- Tracy Butler
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Sin-Ruow Tey
- JangoBio, LLC, Division of Cell Biology, Fitchburg, WI, USA
| | - James E Galvin
- Departments of Neurology and Psychiatry, Comprehensive Center for Brain Health, University of Miami, Miller School of Medicine, Boca Raton, FL, USA
| | - George Perry
- Department of Neuroscience, Development and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | | | - Craig S Atwood
- Geriatric Research, Education and Clinical Center, Veterans Administration Hospital and Department of Medicine, University of Wisconsin, Madison, WI, USA
- School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
12
|
Johnson CE, Duncan MJ, Murphy MP. Sex and Sleep Disruption as Contributing Factors in Alzheimer's Disease. J Alzheimers Dis 2024; 97:31-74. [PMID: 38007653 PMCID: PMC10842753 DOI: 10.3233/jad-230527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Alzheimer's disease (AD) affects more women than men, with women throughout the menopausal transition potentially being the most under researched and at-risk group. Sleep disruptions, which are an established risk factor for AD, increase in prevalence with normal aging and are exacerbated in women during menopause. Sex differences showing more disrupted sleep patterns and increased AD pathology in women and female animal models have been established in literature, with much emphasis placed on loss of circulating gonadal hormones with age. Interestingly, increases in gonadotropins such as follicle stimulating hormone are emerging to be a major contributor to AD pathogenesis and may also play a role in sleep disruption, perhaps in combination with other lesser studied hormones. Several sleep influencing regions of the brain appear to be affected early in AD progression and some may exhibit sexual dimorphisms that may contribute to increased sleep disruptions in women with age. Additionally, some of the most common sleep disorders, as well as multiple health conditions that impair sleep quality, are more prevalent and more severe in women. These conditions are often comorbid with AD and have bi-directional relationships that contribute synergistically to cognitive decline and neuropathology. The association during aging of increased sleep disruption and sleep disorders, dramatic hormonal changes during and after menopause, and increased AD pathology may be interacting and contributing factors that lead to the increased number of women living with AD.
Collapse
Affiliation(s)
- Carrie E. Johnson
- University of Kentucky, College of Medicine, Department of Molecular and Cellular Biochemistry, Lexington, KY, USA
| | - Marilyn J. Duncan
- University of Kentucky, College of Medicine, Department of Neuroscience, Lexington, KY, USA
| | - M. Paul Murphy
- University of Kentucky, College of Medicine, Department of Molecular and Cellular Biochemistry, Lexington, KY, USA
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY, USA
| |
Collapse
|
13
|
Mey M, Bhatta S, Suresh S, Montero Labrador L, Piontkivska H, Casadesus G. The LH receptor regulates hippocampal spatial memory and restores dendritic spine density in ovariectomized APP/PS1 AD mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.22.573087. [PMID: 38187770 PMCID: PMC10769359 DOI: 10.1101/2023.12.22.573087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Activation of the luteinizing hormone receptor (LHCGR) rescues spatial memory function and spine density losses associated with gonadectomy and high circulating gonadotropin levels in females. However, whether this extends to the AD brain or the mechanisms that underlie these benefits remain unknown. To address this question, we delivered the LHCGR agonist human chorionic gonadotropin (hCG) intracerebroventricularly (ICV), under reproductively intact and ovariectomized conditions to mimic the post-menopausal state in the APP/PS1mouse brain. Cognitive function was tested using the Morris water maze task, and hippocampal dendritic spine density, Aβ pathology, and signaling changes associated with these endpoints were determined to address mechanisms. Here we show that central LHCGR activation restored function in ovariectomized APP/PS1 female mice to wild-type levels without altering Aβ pathology. LHCGR activation increased hippocampal dendritic spine density regardless of reproductive status, and this was mediated by BDNF-dependent and independent signaling. We also show that ovariectomy in the APP/PS1 brain elicits an increase in peripherally derived pro-inflammatory genes which are inhibited by LHCGR activation. This may mediate reproductive status specific effects of LHCGR agonism on cognitive function and BDNF expression. Together, this work highlights the relevance of the LHCGR on cognition and its therapeutic potential in the "menopausal" AD brain.
Collapse
|
14
|
Nerattini M, Rubino F, Jett S, Andy C, Boneu C, Zarate C, Carlton C, Loeb-Zeitlin S, Havryliuk Y, Pahlajani S, Williams S, Berti V, Christos P, Fink M, Dyke JP, Brinton RD, Mosconi L. Elevated gonadotropin levels are associated with increased biomarker risk of Alzheimer's disease in midlife women. FRONTIERS IN DEMENTIA 2023; 2:1303256. [PMID: 38774256 PMCID: PMC11108587 DOI: 10.3389/frdem.2023.1303256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Introduction In preclinical studies, menopausal elevations in pituitary gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH), trigger Alzheimer's disease (AD) pathology and synaptic loss in female animals. Herein, we took a translational approach to test whether gonadotropin elevations are linked to AD pathophysiology in women. Methods We examined 191 women ages 40-65 years, carrying risk factors for late-onset AD, including 45 premenopausal, 67 perimenopausal, and 79 postmenopausal participants with clinical, laboratory, cognitive exams, and volumetric MRI scans. Half of the cohort completed 11C-Pittsburgh Compound B (PiB) amyloid-β (Aβ) PET scans. Associations between serum FSH, LH and biomarkers were examined using voxel-based analysis, overall and stratified by menopause status. Associations with region-of-interest (ROI) hippocampal volume, plasma estradiol levels, APOE-4 status, and cognition were assessed in sensitivity analyses. Results FSH levels were positively associated with Aβ load in frontal cortex (multivariable adjusted P≤0.05, corrected for family wise type error, FWE), an effect that was driven by the postmenopausal group (multivariable adjusted PFWE ≤ 0.044). LH levels were also associated with Aβ load in frontal cortex, which did not survive multivariable adjustment. FSH and LH were negatively associated with gray matter volume (GMV) in frontal cortex, overall and in each menopausal group (multivariable adjusted PFWE ≤ 0.040), and FSH was marginally associated with ROI hippocampal volume (multivariable adjusted P = 0.058). Associations were independent of age, clinical confounders, menopause type, hormone therapy status, history of depression, APOE-4 status, and regional effects of estradiol. There were no significant associations with cognitive scores. Discussion Increasing serum gonadotropin levels, especially FSH, are associated with higher Aβ load and lower GMV in some AD-vulnerable regions of midlife women at risk for AD. These findings are consistent with preclinical work and provide exploratory hormonal targets for precision medicine strategies for AD risk reduction.
Collapse
Affiliation(s)
- Matilde Nerattini
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
- Department of Experimental and Clinical Biomedical Sciences, Nuclear Medicine Unit, University of Florence, Florence, Italy
| | - Federica Rubino
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
- Department of Experimental and Clinical Biomedical Sciences, Nuclear Medicine Unit, University of Florence, Florence, Italy
| | - Steven Jett
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Caroline Andy
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, United States
| | - Camila Boneu
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Camila Zarate
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Caroline Carlton
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Susan Loeb-Zeitlin
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, United States
| | - Yelena Havryliuk
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, United States
| | - Silky Pahlajani
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Schantel Williams
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Valentina Berti
- Department of Experimental and Clinical Biomedical Sciences, Nuclear Medicine Unit, University of Florence, Florence, Italy
| | - Paul Christos
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, United States
| | - Matthew Fink
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Jonathan P. Dyke
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Roberta Diaz Brinton
- Department of Neurology and Pharmacology, University of Arizona, Tucson, AZ, United States
| | - Lisa Mosconi
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
15
|
Terstege DJ, Epp JR. Parvalbumin as a sex-specific target in Alzheimer's disease research - A mini-review. Neurosci Biobehav Rev 2023; 153:105370. [PMID: 37619647 DOI: 10.1016/j.neubiorev.2023.105370] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, and both the incidence of this disease and its associated cognitive decline disproportionally effect women. While the etiology of AD is unknown, recent work has demonstrated that the balance of excitatory and inhibitory activity across the brain may serve as a strong predictor of cognitive impairments in AD. Across the cortex, the most prominent source of inhibitory signalling is from a class of parvalbumin-expressing interneurons (PV+). In this mini-review, the impacts of sex- and age-related factors on the function of PV+ neurons are examined within the context of vulnerability to AD pathology. These primary factors of influence include changes in brain metabolism, circulating sex hormone levels, and inflammatory response. In addition to positing the increased vulnerability of PV+ neurons to dysfunction in AD, this mini-review highlights the critical importance of presenting sex stratified data in the study of AD.
Collapse
Affiliation(s)
- Dylan J Terstege
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Jonathan R Epp
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
16
|
Sims S, Barak O, Ryu V, Miyashita S, Kannangara H, Korkmaz F, Wizman S, Macdonald A, Gumerova A, Goosens K, Zaidi M, Yuen T, Lizneva D, Frolinger T. Absent LH signaling rescues the anxiety phenotype in aging female mice. Mol Psychiatry 2023; 28:3324-3331. [PMID: 37563278 DOI: 10.1038/s41380-023-02209-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023]
Abstract
Clinical studies and experimental data together support a role for pituitary gonadotropins, including luteinizing hormone (LH), otherwise considered solely as fertility hormones, in age-related cognitive decline. Furthermore, rising levels of LH in post-menopausal women have been implicated in the high prevalence of mood disorders. This study was designed to examine the effect of deficient LH signaling on both cognitive and emotional behavior in 12-month-old Lhcgr-/- mice. For this, we established and validated a battery of five tests, including Dark-Light Box (DLB), Y-Maze Spontaneous Alternation, Novel Object Recognition (NOR), and contextual and cued Fear Conditioning (FCT) tests. We found that 12-month-old female wild type mice display a prominent anxiety phenotype on DLB and FCT. This phenotype was not seen in 12-month-old female Lhcgr-/- mice, indicating full phenotypic rescue. Furthermore, there was no effect of LHCGR depletion on recognition memory or working spatial memory on NOR and Y-maze testing, respectively, in 12-month-old mice, notwithstanding the absence of a basal phenotype in wild type littermates. The latter data do not exclude an effect of LH on cognition documented in previous studies. Finally, 12-month-old male mice and 3-month-old male and female mice did not consistently display deficits on any test. The data collectively document, for the first time, that loss of LH signaling reverses age-related emotional disturbances, a prelude to future targeted therapies that block LH action.
Collapse
Affiliation(s)
- Steven Sims
- Center for Translational Medicine and Pharmacology, Departments of Pharmacological Sciences and of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Orly Barak
- Center for Translational Medicine and Pharmacology, Departments of Pharmacological Sciences and of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Vitaly Ryu
- Center for Translational Medicine and Pharmacology, Departments of Pharmacological Sciences and of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sari Miyashita
- Center for Translational Medicine and Pharmacology, Departments of Pharmacological Sciences and of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Hasni Kannangara
- Center for Translational Medicine and Pharmacology, Departments of Pharmacological Sciences and of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Funda Korkmaz
- Center for Translational Medicine and Pharmacology, Departments of Pharmacological Sciences and of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Soleil Wizman
- Center for Translational Medicine and Pharmacology, Departments of Pharmacological Sciences and of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Anne Macdonald
- Center for Translational Medicine and Pharmacology, Departments of Pharmacological Sciences and of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Anisa Gumerova
- Center for Translational Medicine and Pharmacology, Departments of Pharmacological Sciences and of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ki Goosens
- Center for Translational Medicine and Pharmacology, Departments of Pharmacological Sciences and of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Mone Zaidi
- Center for Translational Medicine and Pharmacology, Departments of Pharmacological Sciences and of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Tony Yuen
- Center for Translational Medicine and Pharmacology, Departments of Pharmacological Sciences and of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Daria Lizneva
- Center for Translational Medicine and Pharmacology, Departments of Pharmacological Sciences and of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Tal Frolinger
- Center for Translational Medicine and Pharmacology, Departments of Pharmacological Sciences and of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
17
|
Cunliffe G, Lim YT, Chae W, Jung S. Alternative Pharmacological Strategies for the Treatment of Alzheimer's Disease: Focus on Neuromodulator Function. Biomedicines 2022; 10:3064. [PMID: 36551821 PMCID: PMC9776382 DOI: 10.3390/biomedicines10123064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, comprising 70% of dementia diagnoses worldwide and affecting 1 in 9 people over the age of 65. However, the majority of its treatments, which predominantly target the cholinergic system, remain insufficient at reversing pathology and act simply to slow the inevitable progression of the disease. The most recent neurotransmitter-targeting drug for AD was approved in 2003, strongly suggesting that targeting neurotransmitter systems alone is unlikely to be sufficient, and that research into alternate treatment avenues is urgently required. Neuromodulators are substances released by neurons which influence neurotransmitter release and signal transmission across synapses. Neuromodulators including neuropeptides, hormones, neurotrophins, ATP and metal ions display altered function in AD, which underlies aberrant neuronal activity and pathology. However, research into how the manipulation of neuromodulators may be useful in the treatment of AD is relatively understudied. Combining neuromodulator targeting with more novel methods of drug delivery, such as the use of multi-targeted directed ligands, combinatorial drugs and encapsulated nanoparticle delivery systems, may help to overcome limitations of conventional treatments. These include difficulty crossing the blood-brain-barrier and the exertion of effects on a single target only. This review aims to highlight the ways in which neuromodulator functions are altered in AD and investigate how future therapies targeting such substances, which act upstream to classical neurotransmitter systems, may be of potential therapeutic benefit in the sustained search for more effective treatments.
Collapse
Affiliation(s)
- Grace Cunliffe
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Yi Tang Lim
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
- Faculty of Science, National University of Singapore, Singapore 117546, Singapore
| | - Woori Chae
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Seongnam-si 13120, Republic of Korea
| | - Sangyong Jung
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| |
Collapse
|
18
|
Ryu V, Gumerova A, Korkmaz F, Kang SS, Katsel P, Miyashita S, Kannangara H, Cullen L, Chan P, Kuo T, Padilla A, Sultana F, Wizman SA, Kramskiy N, Zaidi S, Kim SM, New MI, Rosen CJ, Goosens KA, Frolinger T, Haroutunian V, Ye K, Lizneva D, Davies TF, Yuen T, Zaidi M. Brain atlas for glycoprotein hormone receptors at single-transcript level. eLife 2022; 11:e79612. [PMID: 36052994 PMCID: PMC9473692 DOI: 10.7554/elife.79612] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/02/2022] [Indexed: 11/24/2022] Open
Abstract
There is increasing evidence that anterior pituitary hormones, traditionally thought to have unitary functions in regulating single endocrine targets, act on multiple somatic tissues, such as bone, fat, and liver. There is also emerging evidence for anterior pituitary hormone action on brain receptors in mediating central neural and peripheral somatic functions. Here, we have created the most comprehensive neuroanatomical atlas on the expression of TSHR, LHCGR, and FSHR. We have used RNAscope, a technology that allows the detection of mRNA at single-transcript level, together with protein level validation, to document Tshr expression in 173 and Fshr expression in 353 brain regions, nuclei and subnuclei identified using the Atlas for the Mouse Brain in Stereotaxic Coordinates. We also identified Lhcgr transcripts in 401 brain regions, nuclei and subnuclei. Complementarily, we used ViewRNA, another single-transcript detection technology, to establish the expression of FSHR in human brain samples, where transcripts were co-localized in MALAT1-positive neurons. In addition, we show high expression for all three receptors in the ventricular region-with yet unknown functions. Intriguingly, Tshr and Fshr expression in the ependymal layer of the third ventricle was similar to that of the thyroid follicular cells and testicular Sertoli cells, respectively. In contrast, Fshr was localized to NeuN-positive neurons in the granular layer of the dentate gyrus in murine and human brain-both are Alzheimer's disease-vulnerable regions. Our atlas thus provides a vital resource for scientists to explore the link between the stimulation or inactivation of brain glycoprotein hormone receptors on somatic function. New actionable pathways for human disease may be unmasked through further studies.
Collapse
Affiliation(s)
- Vitaly Ryu
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Anisa Gumerova
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Funda Korkmaz
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Seong Su Kang
- Department of Pathology, Emory University School of MedicineAtlantaUnited States
| | - Pavel Katsel
- Department of Psychiatry, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Sari Miyashita
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Hasni Kannangara
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Liam Cullen
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | | | - TanChun Kuo
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Ashley Padilla
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Farhath Sultana
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Soleil A Wizman
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Natan Kramskiy
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Samir Zaidi
- Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Se-Min Kim
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Maria I New
- Department of Pediatrics, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | | | - Ki A Goosens
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Psychiatry, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Tal Frolinger
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Vahram Haroutunian
- Department of Psychiatry, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Keqiang Ye
- Faculty of Life and Health Sciences, and Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced technology, Chinese Academy of SciencesShenzhenChina
| | - Daria Lizneva
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Terry F Davies
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Tony Yuen
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Mone Zaidi
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| |
Collapse
|
19
|
Antioxidant and Anticholinesterase Properties of the Aqueous Extract of Balanites aegyptiaca L. Delile Fruit Pulp on Monosodium Glutamate-Induced Excitotoxicity in Swiss Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7576132. [PMID: 35449814 PMCID: PMC9017515 DOI: 10.1155/2022/7576132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/26/2022] [Accepted: 02/18/2022] [Indexed: 11/18/2022]
Abstract
Balanites aegyptiaca L. Delile (B. aegyptiaca) is used in traditional medicine for the treatment of memory impairment. This work aims to evaluate the antioxidant and anticholinesterase potential of BA fruit pulp extract on excitotoxicity induced by monosodium glutamate (MSG). MSG was administered 30 minutes after treatment with B. aegyptiaca aqueous fruit pulp extract (50, 125, 250, and 500 mg/kg) and vitamin C (100 mg/kg) for 30 days. The negative control group received only MSG, while the control group was given distilled water daily. Behavioral tests parameters (using the novel object recognition, Y-maze, and Barnes maze tests), oxidative stress biomarkers (malondialdehyde, superoxide dismutase, and catalase), nitric oxide, and acetylcholinesterase activity and hippocampal architecture were evaluated. Results obtained revealed that different doses of B. aegyptiaca significantly reversed the deleterious effect of MSG on memory. This was displayed by a significant (
) increment in the percentage of spontaneous alternation in the Y-maze test and a significant (
) increase in discrimination index in novel object recognition observed with 500 mg/kg extract dose. Moreover, the extract (250 and 500 mg/kg doses) significantly (
) increased direct search strategy and significantly decreased (
) the time taken to find the target hole in the Barnes maze. A modulation of hyperactivity was observed after administration of all extract doses compared to the negative control group in the open arena. Furthermore, the highest dose of the extract caused a significant (
) improvement in antioxidant enzymes activity, associated with a significant (
) decrement in nitric oxide and malondialdehyde concentrations and a significant (
) decrease in acetylcholinesterase activity. Treatment with the extract also restored normal hippocampal cell architecture. B. aegyptiaca fruit pulp extract could thus confer neuroprotection through its antioxidant and anticholinesterase potential.
Collapse
|
20
|
Xiong J, Kang SS, Wang Z, Liu X, Kuo TC, Korkmaz F, Padilla A, Miyashita S, Chan P, Zhang Z, Katsel P, Burgess J, Gumerova A, Ievleva K, Sant D, Yu SP, Muradova V, Frolinger T, Lizneva D, Iqbal J, Goosens KA, Gera S, Rosen CJ, Haroutunian V, Ryu V, Yuen T, Zaidi M, Ye K. FSH blockade improves cognition in mice with Alzheimer's disease. Nature 2022; 603:470-476. [PMID: 35236988 PMCID: PMC9940301 DOI: 10.1038/s41586-022-04463-0] [Citation(s) in RCA: 183] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/25/2022] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease has a higher incidence in older women, with a spike in cognitive decline that tracks with visceral adiposity, dysregulated energy homeostasis and bone loss during the menopausal transition1,2. Inhibiting the action of follicle-stimulating hormone (FSH) reduces body fat, enhances thermogenesis, increases bone mass and lowers serum cholesterol in mice3-7. Here we show that FSH acts directly on hippocampal and cortical neurons to accelerate amyloid-β and Tau deposition and impair cognition in mice displaying features of Alzheimer's disease. Blocking FSH action in these mice abrogates the Alzheimer's disease-like phenotype by inhibiting the neuronal C/EBPβ-δ-secretase pathway. These data not only suggest a causal role for rising serum FSH levels in the exaggerated Alzheimer's disease pathophysiology during menopause, but also reveal an opportunity for treating Alzheimer's disease, obesity, osteoporosis and dyslipidaemia with a single FSH-blocking agent.
Collapse
Affiliation(s)
- Jing Xiong
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Seong Su Kang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Zhihao Wang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Xia Liu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Tan-Chun Kuo
- Center for Translational Medicine and Pharmacology and Departments of Pharmacological Sciences and Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Funda Korkmaz
- Center for Translational Medicine and Pharmacology and Departments of Pharmacological Sciences and Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ashley Padilla
- Center for Translational Medicine and Pharmacology and Departments of Pharmacological Sciences and Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sari Miyashita
- Center for Translational Medicine and Pharmacology and Departments of Pharmacological Sciences and Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Pavel Katsel
- Department of Psychiatry and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jocoll Burgess
- Center for Translational Medicine and Pharmacology and Departments of Pharmacological Sciences and Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anisa Gumerova
- Center for Translational Medicine and Pharmacology and Departments of Pharmacological Sciences and Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kseniia Ievleva
- Center for Translational Medicine and Pharmacology and Departments of Pharmacological Sciences and Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Damini Sant
- Center for Translational Medicine and Pharmacology and Departments of Pharmacological Sciences and Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shan-Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Valeriia Muradova
- Center for Translational Medicine and Pharmacology and Departments of Pharmacological Sciences and Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tal Frolinger
- Center for Translational Medicine and Pharmacology and Departments of Pharmacological Sciences and Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daria Lizneva
- Center for Translational Medicine and Pharmacology and Departments of Pharmacological Sciences and Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jameel Iqbal
- Center for Translational Medicine and Pharmacology and Departments of Pharmacological Sciences and Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ki A Goosens
- Center for Translational Medicine and Pharmacology and Departments of Pharmacological Sciences and Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sakshi Gera
- Center for Translational Medicine and Pharmacology and Departments of Pharmacological Sciences and Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Vahram Haroutunian
- Department of Psychiatry and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vitaly Ryu
- Center for Translational Medicine and Pharmacology and Departments of Pharmacological Sciences and Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tony Yuen
- Center for Translational Medicine and Pharmacology and Departments of Pharmacological Sciences and Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mone Zaidi
- Center for Translational Medicine and Pharmacology and Departments of Pharmacological Sciences and Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA.
- Faculty of Life and Health Sciences, and Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
21
|
Akefe IO, Adegoke VA, Lamidi IY, Ameh MP, Idoga ES, Ubah SA, Ajayi IE. Myrtenal mitigates streptozotocin-induced spatial memory deficit via improving oxido inflammatory, cholinergic and neurotransmitter functions in mice. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100106. [PMID: 35570857 PMCID: PMC9095925 DOI: 10.1016/j.crphar.2022.100106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
The occurrence of chronic neurodegenerative disorders is on the rise, but with no effective treatment due to the paucity of information on the pathological mechanism underlying these disorders. Thus, this study investigated the role of oral administration of myrtenal in mitigating memory deficits and neuro-biochemical alterations in streptozotocin-demented mice model. Mice (n = 35) were randomly allocated into five cohorts consisting of 7 mice each; Group I: Control mice received vehicle alone; Group II: streptozotocin; Group III: streptozotocin + 100 mg/kg myrtenal; Group IV: streptozotocin +200 mg/kg myrtenal; and Group V: streptozotocin + donepezil 0.5 mg/kg. Data from this study demonstrated that the administration of streptozotocin (STZ) impaired spatial memory and induced alterations in markers of oxido-inflammatory response, cholinergic function, cytoarchitecture, and neurotransmitter levels in mice hippocampus. Notably, administration of myrtenal enhanced spatial memory performance in STZ-demented mice by improving the activities of endogenous antioxidant enzymes to protect the brain from oxido-inflammatory stress. Treatment with myrtenal also restored cholinergic function and stabilized the homeostasis of neurotransmitters in STZ-demented mice. The authors infer that fruits rich in myrtenal may be beneficial for treating patients living with dementia associated with Alzheimer's disease. Data from the present study demonstrates that the administration of streptozotocin impairs spatial memory in mice and induces alterations in markers of oxido-inflammatory response, cholinergic function, histoarchitecture, and neurotransmitter levels in the hippocampus. The administration of myrtenal enhances spatial memory performance in streptozotocin-demented mice by improving the activities of endogenous antioxidant enzymes to protect the brain from oxido-inflammatory stress. Treatment with myrtenal restores cholinergic function and stabilizes the homeostasis of neurotransmitters in streptozotocin-demented mice.
Collapse
|
22
|
Butler T, Goldberg JD, Galvin JE, Maloney T, Ravdin L, Glodzik L, de Leon MJ, Hochman T, Bowen RL, Atwood CS. Rationale, study design and implementation of the LUCINDA Trial: Leuprolide plus Cholinesterase Inhibition to reduce Neurologic Decline in Alzheimer's. Contemp Clin Trials 2021; 107:106488. [PMID: 34166841 PMCID: PMC8550816 DOI: 10.1016/j.cct.2021.106488] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 11/20/2022]
Abstract
The LUCINDA Trial (Leuprolide plus Cholinesterase Inhibition to reduce Neurologic Decline in Alzheimer's) is a 52 week, randomized, placebo-controlled trial of leuprolide acetate (Eligard) in women with Alzheimer's disease (AD). Leuprolide acetate is a gonadotropin analogue commonly used for hormone-sensitive conditions such as prostate cancer and endometriosis. This repurposed drug demonstrated efficacy in a previous Phase II clinical trial in those women with AD who also received a stable dose of the acetylcholinesterase inhibitor donepezil (Bowen et al., 2015). Basic biological, epidemiological and clinical trial data suggest leuprolide acetate mediates improvement and stabilization of neuropathology and cognitive performance via the modulation of gonadotropin and/or gonadotropin-releasing hormone signaling. LUCINDA will enroll 150 women with mild-moderate AD who are receiving a stable dose of donepezil from three study sites in the United States. Cognition and function are the primary outcome measures as assessed by the Alzheimer's Disease Assessment Scale-Cognitive Subscale. Blood and MRI biomarkers are also measured to assess hormonal, inflammatory and AD biomarker changes. We present the protocol for LUCINDA and discuss trial innovations and challenges including changes necessitated by the covid-19 pandemic and study drug procurement issues.
Collapse
Affiliation(s)
- Tracy Butler
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10021, USA.
| | - Judith D Goldberg
- Departments of Population Health and Environmental Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - James E Galvin
- Comprehensive Center for Brain Health, Departments of Neurology and Psychiatry, University of Miami, Miller School of Medicine, Boca Raton, FL 33433, USA
| | - Thomas Maloney
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lisa Ravdin
- Department of Neurology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lidia Glodzik
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Mony J de Leon
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Tsivia Hochman
- Departments of Population Health and Environmental Medicine, New York University School of Medicine, New York, NY 10016, USA
| | | | - Craig S Atwood
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, and Geriatric Research, Education and Clinical Center, Veterans Administration Hospital, Madison, WI 53705, USA
| |
Collapse
|
23
|
Geddes RI, Kapoor A, Hayashi K, Rauh R, Wehber M, Bongers Q, Jansen AD, Anderson IM, Farquhar G, Vadakkadath‐Meethal S, Ziegler TE, Atwood CS. Hypogonadism induced by surgical stress and brain trauma is reversed by human chorionic gonadotropin in male rats: A potential therapy for surgical and TBI-induced hypogonadism? Endocrinol Diabetes Metab 2021; 4:e00239. [PMID: 34277964 PMCID: PMC8279618 DOI: 10.1002/edm2.239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/14/2020] [Accepted: 01/16/2021] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Hypogonadotropic hypogonadism (HH) is an almost universal, yet underappreciated, endocrinological complication of traumatic brain injury (TBI). The goal of this study was to determine whether the developmental hormone human chorionic gonadotropin (hCG) treatment could reverse HH induced by a TBI. METHODS Plasma samples were collected at post-surgery/post-injury (PSD/PID) days -10, 1, 11, 19 and 29 from male Sprague-Dawley rats (5- to 6-month-old) that had undergone a Sham surgery (craniectomy alone) or CCI injury (craniectomy + bilateral moderate-to-severe CCI injury) and treatment with saline or hCG (400 IU/kg; i.m.) every other day. RESULTS Both Sham and CCI injury significantly decreased circulating testosterone (T), 11-deoxycorticosterone (11-DOC) and corticosterone concentrations to a similar extent (79.1% vs. 80.0%; 46.6% vs. 48.4%; 56.2% vs. 32.5%; respectively) by PSD/PID 1. hCG treatment returned circulating T to baseline concentrations by PSD/PID 1 (8.9 ± 1.5 ng/ml and 8.3 ± 1.9 ng/ml; respectively) and was maintained through PSD/PID 29. hCG treatment significantly, but transiently, increased circulating progesterone (P4) ~3-fold (30.2 ± 10.5 ng/ml and 24.2 ± 5.8 ng/ml) above that of baseline concentrations on PSD 1 and PID 1, respectively. hCG treatment did not reverse hypoadrenalism following either procedure. CONCLUSIONS Together, these data indicate that (1) craniectomy is sufficient to induce persistent hypogonadism and hypoadrenalism, (2) hCG can reverse hypogonadism induced by a craniectomy or craniectomy +CCI injury, suggesting that (3) craniectomy and CCI injury induce a persistent hypogonadism by decreasing hypothalamic and/or pituitary function rather than testicular function in male rats. The potential role of hCG as a cheap, safe and readily available treatment for reversing surgery or TBI-induced hypogonadism is discussed.
Collapse
Affiliation(s)
- Rastafa I. Geddes
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWIUSA
| | - Amita Kapoor
- Assay Services Unit and Institute for Clinical and Translational Research Core LaboratoryNational Primate Research CenterUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Kentaro Hayashi
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWIUSA
| | - Ryan Rauh
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWIUSA
| | - Marlyse Wehber
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWIUSA
| | - Quinn Bongers
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWIUSA
| | - Alex D. Jansen
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWIUSA
| | - Icelle M. Anderson
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWIUSA
| | - Gabrielle Farquhar
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWIUSA
| | - Sivan Vadakkadath‐Meethal
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWIUSA
| | - Toni E. Ziegler
- Assay Services Unit and Institute for Clinical and Translational Research Core LaboratoryNational Primate Research CenterUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Craig S. Atwood
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWIUSA
- Geriatric Research, Education and Clinical CenterVeterans Administration HospitalMadisonWIUSA
- School of Exercise, Biomedical and Health SciencesEdith Cowan UniversityJoondalupAustralia
| |
Collapse
|
24
|
Mondaca JM, Uzair ID, Castro Guijarro AC, Flamini MI, Sanchez AM. Molecular Basis of LH Action on Breast Cancer Cell Migration and Invasion via Kinase and Scaffold Proteins. Front Cell Dev Biol 2021; 8:630147. [PMID: 33614634 PMCID: PMC7893099 DOI: 10.3389/fcell.2020.630147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/24/2020] [Indexed: 11/13/2022] Open
Abstract
Breast cancer (BC) is a major public health problem affecting women worldwide. Approximately 80% of diagnosed cases are hormone-dependent breast cancers. These hormones are known to stimulate tumor development and progression. In this setting, tentative evidence suggests that luteinizing hormone (LH) may also play a role in tumors. In BC cells that express functional LH receptors (LHR), this hormone regulates cell migration and invasion by controlling several kinases that activate actin cytoskeletal proteins. In this article, we show that LH induces phosphorylation of paxillin and its translocation toward the plasmatic membrane, where focal adhesion complexes are assembled. This process is triggered via a rapid extra-gonadal LHR signaling to Src/FAK/paxillin, which results in the phosphorylation/activation of the nucleation promoter factors cortactin and N-WASP. As a consequence, Arp2/3 complexes induce actin polymerization, essential to promote cell adhesion, migration, and invasion, thus enhancing metastatic spread of tumoral cells. Our findings provide relevant information about how gonadotrophins exert their action in BC. This information helps us understand the extragonadal effects of LH on BC metastasis. It may provide new perspectives for therapeutic treatment, especially for women with high serum levels of gonadotrophins.
Collapse
Affiliation(s)
- Joselina Magali Mondaca
- Laboratorio de Transducción de Señales y Movimiento Celular, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Ivonne Denise Uzair
- Laboratorio de Transducción de Señales y Movimiento Celular, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Ana Carla Castro Guijarro
- Laboratorio de Biología Tumoral, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Marina Inés Flamini
- Laboratorio de Biología Tumoral, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Angel Matias Sanchez
- Laboratorio de Transducción de Señales y Movimiento Celular, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
25
|
Mey M, Bhatta S, Casadesus G. Luteinizing hormone and the aging brain. VITAMINS AND HORMONES 2021; 115:89-104. [PMID: 33706966 PMCID: PMC9853463 DOI: 10.1016/bs.vh.2020.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Fluctuations in luteinizing hormone (LH) release contribute to the development and maintenance of the reproductive system and become dysregulated during aging. Of note, increasing evidence supports extra-gonadal roles for LH within the CNS, particularly as it relates to cognition and plasticity in aging and age-related degenerative diseases such as Alzheimer's disease (AD). However, despite increasing evidence that supports a link between this hormone and CNS function, the mechanisms underlying LH action within the brain and how they influence cognition and plasticity during the lifespan is poorly understood and, in fact, often in conflict. This chapter aims to provide an up-to-date review of the literature addressing the role of LH signaling in the context of CNS aging and disease and put forward a unifying hypothesis that may explain currently conflicting theories regarding the role of LHCGR signaling in CNS function and dysfunction in aging and disease.
Collapse
Affiliation(s)
- Megan Mey
- Department of Biomedical Science, Kent State University, Cunningham Hall, Kent, OH, United States
| | - Sabina Bhatta
- Department of Biomedical Science, Kent State University, Cunningham Hall, Kent, OH, United States
| | - Gemma Casadesus
- Department of Biological Science, School of Arts and Sciences, Kent State University, Cunningham Hall, Kent, OH, United States,Corresponding author: ;
| |
Collapse
|
26
|
Omogbiya AI, Ben-Azu B, Eduviere AT, Eneni AEO, Nwokoye PO, Ajayi AM, Umukoro S. Monosodium glutamate induces memory and hepatic dysfunctions in mice: ameliorative role of Jobelyn ® through the augmentation of cellular antioxidant defense machineries. Toxicol Res 2020; 37:323-335. [PMID: 34295796 DOI: 10.1007/s43188-020-00068-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/21/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
This study investigated the effect of high doses of monosodium glutamate (MSG), a known food additive on hepatic, memory and locomotor functions in mice, and the ameliorative potentials of Jobelyn® (JB), a unique dietary supplement. Twenty four male Swiss mice divided into 4 groups (n = 6) were given MSG (2, 4 and 8 g/kg) or normal saline (10 mL/kg) orally for 14 days. In the intervention study, another set of 30 male Swiss mice distributed into 5 groups (n = 6) received normal saline, MSG (8 g/kg) alone or in combination with JB (5, 10 and 20 mg/kg) orally, for 14 days. Memory and locomotor functions as well as brain oxido-nitrergic stress biomarkers were then assessed in both studies. The hepatic oxido-nitrergic stress biomarkers, liver enzymes functions and histomorphology of the liver were also assessed. MSG (2, 4 and 8 g/kg) produced memory dysfunction, hyperlocomotion, increased malondialdehyde and nitrite levels accompanied by decreased antioxidant status in the brain and hepatic tissues. MSG-treated mice had increased hepatic enzyme activities (alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase) and distorted cyto-architectural integrity of the liver. These findings further suggest that MSG compromised hepatic functioning, which might also contribute to its neurotoxicity. However, JB (5, 10 and 20 mg/kg, p.o) attenuated the memory deficit, hyperlocomotion, increased oxido-nitrergic stress responses in the brain and hepatic tissues induced by MSG (8 g/kg, p.o). JB also normalized hepatic enzymes activities and histomorphological changes in MSG-treated mice. Taken together, JB mitigated MSG-induced toxicity through mechanisms relating to enhancement of cellular antioxidant-machineries and normalization of hepatic enzymatic functions.
Collapse
Affiliation(s)
- Adrian Itivere Omogbiya
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State Nigeria
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, Delta State University, Abraka, Delta State Nigeria
| | - Benneth Ben-Azu
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State Nigeria
- Department of Pharmacology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, Rivers State Nigeria
| | - Anthony Taghogho Eduviere
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, Delta State University, Abraka, Delta State Nigeria
| | - Aya-Ebi Okubo Eneni
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State Nigeria
| | - Prisilla O Nwokoye
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, Delta State University, Abraka, Delta State Nigeria
| | - Abayomi Mayowa Ajayi
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State Nigeria
| | - Solomon Umukoro
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State Nigeria
| |
Collapse
|
27
|
Elizabeth A, Adegbuyi A, Olusegun A, Benneth BA, Anthony E, Abayomi A, Solomon U. Morin hydrate attenuates chronic stress-induced memory impairment and degeneration of hippocampal subfields in mice: The role of oxidative, nitrergic and neuroinflammatory pathways. Metab Brain Dis 2020; 35:1145-1156. [PMID: 32653975 DOI: 10.1007/s11011-020-00595-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/29/2020] [Indexed: 12/16/2022]
Abstract
Morin hydrate (MH) is the major flavonoid constituent of Morus alba acclaimed to have antioxidant, anti-inflammatory, anti-stress and neuroprotective properties. However, report on the effect of MH on memory performance and the underlying mechanism following chronic stress exposure is lacking. The current study aimed at investigating the neuroprotective effect of MH on chronic unpredictable stress (CUS)-induced memory impairment in mice using the Y maze test. Mice were subjected to unpredicted stress for 14 days, during which MH (5, 10 and 20 mg/kg i.p) or 25 mg/kg Ginseng was administered to them. On the 14th day, 1 h after treatment, learning and memory deficit was evaluated using the Y maze test and thereafter brains were harvested for the estimation of glutathione (GSH), lipid peroxidation product; malondialdehyde (MDA) and nitrite. Levels of inflammatory mediators tumor necrosis factor-alpha (TNF-α) and interleukin1-beta (IL-1β), inducible nitric oxide synthase (iNOS) and nuclear factor-kappa B (NF-кB) expressions were also determined. The hippocampus was stained with hematoxylin-eosin (H&E) to examine any morphological changes in the neurons. Mice exposed to CUS showed evidence of impaired memory and increase levels of MDA, nitrite, TNF-α and IL-1β. Furthermore, CUS reduced GSH level, increased the expressions of iNOS and NFкB immune-positive cells and produced loss of neuronal cells in the hippocampus. The MH treatment however improved memory, reduced MDA and nitrite levels, and enhanced brain GSH levels in CUS-mice. Besides, MH reduced brain levels of TNF-α and IL-1β levels, down regulated the expressions of iNOS and NF-кB and rescue neurons in the hippocampal CA3 region of mice exposed to CUS. The results of the study indicate that MH improved CUS-induced memory impairment, which may be related to its ability to boost antioxidant defense system and suppress neuroinflammatory pathways.
Collapse
Affiliation(s)
- Akinluyi Elizabeth
- Department of Pharmacology and Therapeutics, College of Medicine and Health sciences, Afe Babalola University, Ado- Ekiti, Nigeria.
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria.
| | - Aderibigbe Adegbuyi
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Adeoluwa Olusegun
- Department of Pharmacology and Therapeutics, College of Medicine and Health sciences, Afe Babalola University, Ado- Ekiti, Nigeria
| | - Ben-Azu Benneth
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
- Department of Pharmacology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port Harcourt, Rivers State, Nigeria
| | - Eduviere Anthony
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Ajayi Abayomi
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Umukoro Solomon
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
28
|
Kutzler MA. Possible Relationship between Long-Term Adverse Health Effects of Gonad-Removing Surgical Sterilization and Luteinizing Hormone in Dogs. Animals (Basel) 2020; 10:E599. [PMID: 32244716 PMCID: PMC7222805 DOI: 10.3390/ani10040599] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 01/14/2023] Open
Abstract
Spaying and neutering dogs is commonly used to prevent the birth of unwanted animals and eliminate the risk of reproductive diseases. However, removal of the gonads prevents the feedback of estrogen and testosterone on the pituitary and hypothalamus. As a result, luteinizing hormone (LH) is continuously elevated at supraphysiologic concentrations. Although the main role of LH is for reproductive function (e.g., ovulation), there are LH receptors present in several normal tissues including the thyroid and adrenal glands, gastrointestinal tract, cranial cruciate ligament and round ligament, and lymphocytes. In addition, there are LH receptors present in several neoplastic tissues (e.g., lymphoma, hemangiosarcoma, mastocytoma, transitional cell carcinoma, and osteosarcoma). The role of LH receptors in non-reproductive normal and neoplastic tissues is not known but may stimulate nitric oxide release and induce cell division. The precise etiology of the increased incidence of several non-reproductive long-term health complications following spaying and neutering is not known but may be related to LH receptor activation in these non-reproductive target tissues. How these effects may be mediated is described in this review.
Collapse
Affiliation(s)
- Michelle A Kutzler
- Department of Animal and Rangeland Sciences, Oregon State University, 112 Withycombe Hall, Corvallis, OR 97370, USA
| |
Collapse
|
29
|
Bohm-Levine N, Goldberg AR, Mariani M, Frankfurt M, Thornton J. Reducing luteinizing hormone levels after ovariectomy improves spatial memory: Possible role of brain-derived neurotrophic factor. Horm Behav 2020; 118:104590. [PMID: 31593698 DOI: 10.1016/j.yhbeh.2019.104590] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/25/2019] [Accepted: 09/13/2019] [Indexed: 01/10/2023]
Abstract
Alzheimer's disease and other forms of cognitive decline are significantly more prevalent in post-menopausal women. Decreased estrogen levels, due to menopause or ovariectomy, may contribute to memory impairments and neurodegeneration. Another result of decreased estrogen levels is elevated luteinizing hormone (LH). Elevated LH after menopause/ovariectomy has been shown to impair cognition in both human and animal studies. Lowering LH levels rescues spatial memory in ovariectomized (ovx) rodents, yet the mechanisms of these effects are still unclear. Estrogens appear to exert some of their effects on memory by increasing levels of brain-derived neurotrophic factor (BDNF) in the hippocampus. In these studies, we explored whether lowering LH may act by increasing BDNF. Ovx rats were treated with Antide, a gonadotropin releasing hormone receptor antagonist that lowers LH levels, or with estradiol. Both Antide and estradiol treatment enhanced spatial memory in ovx females. Both were found to be ineffective when a BDNF receptor antagonist was administered. Immunohistochemical analysis revealed that both Antide and estradiol increased BDNF expression in the hippocampus. Dendritic spine density on pyramidal cells in CA1 was unchanged by any treatment. These results provide evidence for a relationship between LH and BDNF in the hippocampus and demonstrate that estrogen-increasing and LH-lowering treatments may both require BDNF signaling in order to improve spatial memory.
Collapse
Affiliation(s)
- Nathaniel Bohm-Levine
- Department of Neuroscience, Oberlin College, 119 Woodland St, Oberlin, OH 44074, USA
| | - Alexander R Goldberg
- Department of Neuroscience, Oberlin College, 119 Woodland St, Oberlin, OH 44074, USA
| | - Monica Mariani
- Department of Neuroscience, Oberlin College, 119 Woodland St, Oberlin, OH 44074, USA
| | - Maya Frankfurt
- Department of Science Education, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Janice Thornton
- Department of Neuroscience, Oberlin College, 119 Woodland St, Oberlin, OH 44074, USA.
| |
Collapse
|
30
|
Ubuka T, Trudeau VL, Parhar I. Editorial: Steroids and the Brain. Front Endocrinol (Lausanne) 2020; 11:366. [PMID: 32582033 PMCID: PMC7283457 DOI: 10.3389/fendo.2020.00366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/11/2020] [Indexed: 02/03/2023] Open
Affiliation(s)
- Takayoshi Ubuka
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
- *Correspondence: Takayoshi Ubuka
| | | | - Ishwar Parhar
- Brain Research Institute, Monash University Malaysia, Subang Jaya, Malaysia
| |
Collapse
|
31
|
Butler T, Harvey P, Cardozo L, Zhu YS, Mosa A, Tanzi E, Pervez F. Epilepsy, depression, and growth hormone. Epilepsy Behav 2019; 94:297-300. [PMID: 30773449 PMCID: PMC7980784 DOI: 10.1016/j.yebeh.2019.01.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/14/2019] [Accepted: 01/19/2019] [Indexed: 11/16/2022]
Abstract
Depression affects a large proportion of patients with epilepsy, and is likely due in part to biological mechanism. Hormonal dysregulation due to the disruptive effects of seizures and interictal epileptiform discharges on the hypothalamic-pituitary-adrenal axis likely contributes to high rates of depression in epilepsy. This paper reviews the largely unexplored role of neuroendocrine factors in epilepsy-related depression, focusing on Growth Hormone (GH). While GH deficiency is traditionally considered a childhood disorder manifested by impaired skeletal growth, GH deficiency in adulthood is now recognized as a serious disorder characterized by impairments in multiple domains including mood and quality of life. Could high rates of depression in patients with epilepsy relate to subtle GH deficiency? Because GH replacement therapy has been shown to improve mood and quality of life in patients with GH deficiency, this emerging area may hold promise for patients suffering from epilepsy-related depression.
Collapse
Affiliation(s)
- Tracy Butler
- Center for Brain Health, New York University School of Medicine, Department of Psychiatry, 145 East 32nd Street, New York, NY 10016, United States of America.
| | - Patrick Harvey
- Center for Brain Health, New York University School of Medicine, Department of Psychiatry, 145 East 32nd Street, New York, NY 10016, United States of America
| | - Lila Cardozo
- Center for Brain Health, New York University School of Medicine, Department of Psychiatry, 145 East 32nd Street, New York, NY 10016, United States of America
| | - Yuan-Shan Zhu
- Clinical and Translational Science Center, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, United States of America
| | - Adam Mosa
- University of Toronto School of Medicine, Division of Plastic and Reconstructive Surgery, 149 College Street, 5th Floor, Suite 508, Toronto, Ontario M5T 1P5, Canada
| | - Emily Tanzi
- Center for Brain Health, New York University School of Medicine, Department of Psychiatry, 145 East 32nd Street, New York, NY 10016, United States of America
| | - Fahad Pervez
- Clinical and Translational Science Center, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, United States of America
| |
Collapse
|
32
|
Blair JA, Bhatta S, Casadesus G. CNS luteinizing hormone receptor activation rescues ovariectomy-related loss of spatial memory and neuronal plasticity. Neurobiol Aging 2019; 78:111-120. [PMID: 30925299 DOI: 10.1016/j.neurobiolaging.2019.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 10/27/2022]
Abstract
Ovariectomy (OVX), a menopause model, leads to cognition and neuronal plasticity deficits that are rescued by estrogen administration or downregulation of pituitary luteinizing hormone (LH). LH is present in the brain. However, whether LH levels differ across brain regions, change across reproductive stages, or whether brain-specific LHR signaling play a role in OVX-related cognitive and neuroplasticity losses is completely unknown. To address this, we measured brain LH in cycling and OVX C57Bl/6 across brain regions and determined whether OVX-related functional and plasticity deficits could be rescued by intracerebroventricular administration of the LHR agonist (hCG). Here, we show that while pituitary LH is increased in OVX, brain LH is decreased, primarily in spatial memory and navigation areas. Furthermore, intracerebroventricular hCG delivery after OVX rescued dendritic spine density and spatial memory. In vitro, we show that hCG increased neurite outgrowth in primary hippocampal neurons in a receptor-specific manner. Taken together, our data suggest that loss of brain LH signaling is involved in cognitive and plasticity losses associated with OVX and loss of ovarian hormones.
Collapse
Affiliation(s)
- Jeffrey A Blair
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Sabina Bhatta
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Gemma Casadesus
- Department of Biological Sciences, Kent State University, Kent, OH, USA.
| |
Collapse
|
33
|
Confirmation of Luteinizing Hormone (LH) in Living Human Vitreous and the Effect of LH Receptor Reduction on Murine Electroretinogram. Neuroscience 2018; 385:1-10. [PMID: 29890291 DOI: 10.1016/j.neuroscience.2018.05.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 12/24/2022]
Abstract
Luteinizing hormone (LH), produced in the anterior pituitary, has been detected in cadaver eyes and LH receptors (LHRs) have been identified in the retina, with the highest density in cone photoreceptors. Our aim was to confirm the presence of LH in the living, human eye as well as to examine the potential impact of a reduction in LHR signaling on visual processing. Vitreous samples were collected from 40 patients (23 diabetics, 17 non-diabetics) who were undergoing vitrectomies for various indications. LH concentration was quantified in each sample via an electro-chemiluminescence immunoassay and Meso Scale Discovery platform and normalized to total protein. In addition, full-field electroretinography (ERG) was performed on 11 adult LHR knockout heterozygous mice (B6;129X1-Lhcgrtm1Zmlei/J) and 11 wild types using the Celeris-Diagnosys system. The median LH values (pg/mg total protein) for non-diabetics, diabetics without proliferative diabetic retinopathy (PDR) and diabetics with PDR were 40.7, 41.9 and 167.8 respectively. LH levels were significantly higher in diabetics with PDR. In our ERG investigation, heterozygous LHRKOs were found to have significantly reduced amplitudes of a-wave and b-waves at high stimulus intensities with no significant change in a-wave or b-wave amplitudes at lower intensities; this is consistent with a selective impairment of cone-mediated responses. Our findings confirm LH is present in the adult human eye. Our findings also suggest that a reduction in LH receptor signaling negatively impacts visual processing of the cone photoreceptors. Overall, our study results support the theory that LH likely plays a physiologic role in the eye.
Collapse
|
34
|
Riordan AJ, Schaler AW, Fried J, Paine TA, Thornton JE. Estradiol and luteinizing hormone regulate recognition memory following subchronic phencyclidine: Evidence for hippocampal GABA action. Psychoneuroendocrinology 2018. [PMID: 29529524 DOI: 10.1016/j.psyneuen.2018.02.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The cognitive symptoms of schizophrenia are poorly understood and difficult to treat. Estrogens may mitigate these symptoms via unknown mechanisms. To examine these mechanisms, we tested whether increasing estradiol (E) or decreasing luteinizing hormone (LH) could mitigate short-term episodic memory loss in a phencyclidine (PCP) model of schizophrenia. We then assessed whether changes in cortical or hippocampal GABA may underlie these effects. Female rats were ovariectomized and injected subchronically with PCP. To modulate E and LH, animals received estradiol capsules or Antide injections. Short-term episodic memory was assessed using the novel object recognition task (NORT). Brain expression of GAD67 was analyzed via western blot, and parvalbumin-containing cells were counted using immunohistochemistry. Some rats received hippocampal infusions of a GABAA agonist, GABAA antagonist, or GAD inhibitor before behavioral testing. We found that PCP reduced hippocampal GAD67 and abolished recognition memory. Antide restored hippocampal GAD67 and rescued recognition memory in PCP-treated animals. Estradiol prevented PCP's amnesic effect in NORT but failed to restore hippocampal GAD67. PCP did not cause significant differences in number of parvalbumin-expressing cells or cortical expression of GAD67. Hippocampal infusions of a GABAA agonist restored recognition memory in PCP-treated rats. Blocking hippocampal GAD or GABAA receptors in ovx animals reproduced recognition memory loss similar to PCP and inhibited estradiol's protection of recognition memory in PCP-treated animals. In summary, decreasing LH or increasing E can lessen short-term episodic memory loss, as measured by novel object recognition, in a PCP model of schizophrenia. Alterations in hippocampal GABA may contribute to both PCP's effects on recognition memory and the hormones' ability to prevent or reverse them.
Collapse
Affiliation(s)
- Alexander J Riordan
- Oberlin College, Neuroscience Department, 119 Woodland St, Oberlin, OH 44074, USA.
| | - Ari W Schaler
- Oberlin College, Neuroscience Department, 119 Woodland St, Oberlin, OH 44074, USA
| | - Jenny Fried
- Oberlin College, Neuroscience Department, 119 Woodland St, Oberlin, OH 44074, USA
| | - Tracie A Paine
- Oberlin College, Neuroscience Department, 119 Woodland St, Oberlin, OH 44074, USA
| | - Janice E Thornton
- Oberlin College, Neuroscience Department, 119 Woodland St, Oberlin, OH 44074, USA
| |
Collapse
|
35
|
Bhatta S, Blair JA, Casadesus G. Luteinizing Hormone Involvement in Aging Female Cognition: Not All Is Estrogen Loss. Front Endocrinol (Lausanne) 2018; 9:544. [PMID: 30319538 PMCID: PMC6165885 DOI: 10.3389/fendo.2018.00544] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/28/2018] [Indexed: 01/29/2023] Open
Abstract
Pervasive age-related dysfunction in hypothalamic-pituitary-gonadal (HPG) axis is associated with cognitive impairments in aging as well as pathogenesis of age-related neurodegenerative diseases such as the Alzheimer's disease (AD). As a major regulator of the HPG axis, the steroid hormone estrogen has been widely studied for its role in regulation of memory. Although estrogen modulates both cognition as well as cognition associated morphological components in a healthy state, the benefits of estrogen replacement therapy on cognition and disease seem to diminish with advancing age. Emerging data suggests an important role for luteinizing hormone (LH) in CNS function, which is another component of the HPG axis that becomes dysregulated during aging, particularly in menopause. The goal of this review is to highlight the current existing literature on LH and provide new insights on possible mechanisms of its action.
Collapse
Affiliation(s)
- Sabina Bhatta
- School of Biomedical Sciences, Kent State University, Kent, OH, United States
| | - Jeffrey A. Blair
- School of Biomedical Sciences, Kent State University, Kent, OH, United States
| | - Gemma Casadesus
- School of Biomedical Sciences, Kent State University, Kent, OH, United States
- Department of Biological Sciences, Kent State University, Kent, OH, United States
- *Correspondence: Gemma Casadesus
| |
Collapse
|
36
|
Olonode ET, Aderibigbe AO, Adeoluwa OA, Eduviere AT, Ben-Azu B. Morin hydrate mitigates rapid eye movement sleep deprivation-induced neurobehavioural impairments and loss of viable neurons in the hippocampus of mice. Behav Brain Res 2017; 356:518-525. [PMID: 29284109 DOI: 10.1016/j.bbr.2017.12.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/13/2017] [Accepted: 12/21/2017] [Indexed: 12/20/2022]
Abstract
Rapid eye movement sleep deprivation distorts the body's homeostasis and results in oxidative breakdown which may be responsible for a variety of neurological disorders. Some naturally occurring compounds of plant origin with antioxidant and neuroprotective properties are known to attenuate the detrimental effects of REM sleep deprivation. Morin hydrate, a flavonoid from Mulberry has demonstrated antioxidant and neuroprotective activities but its effect in sleep disturbed mice is unknown. The study was designed to explore the neuroprotective effect of Morin hydrate on 48 h. REM sleep deprivation-induced behavioural impairments and neuronal damage in mice. Mice were allotted into six treatment groups (n = 6): groups 1 and 2 received vehicle (10 ml/kg normal saline), groups 3-5 received Morin hydrate (5, 10, 20 mg/kg i.p) while group 6 received ginseng (25 mg/kg) which served as the reference drug. Treatment was performed daily for 5 days and animals were sleep-deprived on the last 48 h. Various behavioural tests (Elevated plus maze, Y-maze, locomotor activity) followed by oxidative parameters (malondialdehyde, nitric oxide, reduced glutathione) and histolopathological changes in the Cornu ammonis 1 (CA1) region of the hippocampus were assessed. Data were analysed using ANOVA at α0.05. Morin hydrate (5, 10, 20 mg/kg) significantly enhanced memory performance, improves anxiolytic-like behaviour, reverses hyperlocomotion, restored depleted reduced glutathione, attenuated raised malondialdehyde and nitric oxide levels as compared to control animals and protects against loss of hippocampal neurons. Results of this present study suggest that Morin hydrate possess neuroprotective effects against sleep deprivation-induced behavioural impairments, oxidative stress and neuronal damage.
Collapse
Affiliation(s)
- Elizabeth T Olonode
- Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Nigeria; Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti, Nigeria.
| | - Adegbuyi O Aderibigbe
- Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olusegun A Adeoluwa
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti, Nigeria
| | - Anthony T Eduviere
- Department of Pharmacology and Therapeutics, University of Medicine Sciences, Ondo, Ondo, Nigeria
| | - Benneth Ben-Azu
- Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
37
|
McGregor C, Riordan A, Thornton J. Estrogens and the cognitive symptoms of schizophrenia: Possible neuroprotective mechanisms. Front Neuroendocrinol 2017; 47:19-33. [PMID: 28673758 DOI: 10.1016/j.yfrne.2017.06.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 06/25/2017] [Accepted: 06/27/2017] [Indexed: 02/07/2023]
Abstract
Schizophrenia is a complex neuropsychiatric illness with marked sex differences. Women have later onset and lesser symptoms, which has led to the hypothesis that estrogens are protective in schizophrenia. Cognitive dysfunction is a hallmark of the disease and the symptom most correlated with functional outcome. Here we describe a number of mechanisms by which estrogens may be therapeutic in schizophrenia, with a focus on cognitive symptoms. We review the relationship between estrogens and brain derived neurotrophic factor, neuroinflammation, NMDA receptors, GABA receptors, and luteinizing hormone. Exploring these pathways may enable novel treatments for schizophrenia and a greater understanding of this devastating disease.
Collapse
Affiliation(s)
- Claire McGregor
- Department of Neuroscience, Oberlin College, 119 Woodland St, Oberlin, OH 44074, USA.
| | - Alexander Riordan
- Department of Neuroscience, Oberlin College, 119 Woodland St, Oberlin, OH 44074, USA
| | - Janice Thornton
- Department of Neuroscience, Oberlin College, 119 Woodland St, Oberlin, OH 44074, USA
| |
Collapse
|
38
|
Arfa-Fatollahkhani P, Nahavandi A, Abtahi H, Anjidani S, Borhani S, Jameie SB, Shabani M, Mehrzadi S, Shahbazi A. The Effect of Luteinizing Hormone Reducing Agent on Anxiety and Novel Object Recognition Memory in Gonadectomized Rats. Basic Clin Neurosci 2017; 8:113-119. [PMID: 28539995 PMCID: PMC5440920 DOI: 10.18869/nirp.bcn.8.2.113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
INTRODUCTION Mood disorders such as anxiety and depression are common following menopause and andropause. Lack of sex steroid hormones is suggested as the primary cause of these disturbances. The level of luteinizing hormone (LH) would also rise 3-4 times than normal in these people. The potential effects of LH on mood and cognitive symptoms following menopause and andropause are still unknown. This study aimed to investigate the effect of increased LH on novel object discrimination (NOD) memory and anxiety like behavior in gonadectomized rats. METHODS Four-month-old male and female Wistar rats were randomly assigned into 4 groups (in each sex): control rats (Cont), gonadectomized without treatment (GnX), gonadectomized treated with triptorelin, a GnRH agonist which reduces LH release eventually, (GnX+Tr), gonadectomized treated with triptorelin plus sex steroid hormone, estradiol in female and testosterone in male rats (GnX+Tr+S/T). After 4 weeks treatment, anxiety score (elevated plus maze) and NOD were measured. Data were analyzed using One-way ANOVA, and P-values less than 0.05 were considered as significant. RESULTS Gonadectomy increased anxiety like behaviors (decrease of presence time in the open arms) in female rats (P=0.012), but not in male ones (P=0.662). Additionally, triptorelin alone reduced the increased anxiety score in gonadectomized female rats, compared to group treated with both triptorelin and estradiol. Furthermore, it was shown that gonadectomy and or treatment with triptorelin and sex steroids had no significant effect on novel object recognition memory in both female (P=0.472) and male rats (P=0.798). CONCLUSION Findings of this study revealed that increased level of LH following menopause or andropause should be considered as a possible cause for increased anxiety. Also, this study showed that LH reducing agents would reduce anxiety like behavior in gonadectomized female rats. The effect of increased LH on cognitive functions such as novel object recognition memory was not evident in this study and needs further studies.
Collapse
Affiliation(s)
- Paria Arfa-Fatollahkhani
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arezo Nahavandi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Abtahi
- Department of Biochemistry and Nutrition, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Shabnam Anjidani
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sahar Borhani
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Behnam Jameie
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Shabani
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Mehrzadi
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Shahbazi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Burnham V, Sundby C, Laman-Maharg A, Thornton J. Luteinizing hormone acts at the hippocampus to dampen spatial memory. Horm Behav 2017; 89:55-63. [PMID: 27847314 DOI: 10.1016/j.yhbeh.2016.11.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 11/07/2016] [Accepted: 11/09/2016] [Indexed: 01/06/2023]
Abstract
Luteinizing hormone (LH) rises dramatically during and after menopause, and has been correlated with an increased incidence of Alzheimer's disease and decreased memory performance in humans and animal models. To test whether LH acts directly on the dorsal hippocampus to affect memory, ovariectomized female rats were infused with either the LH-homologue human chorionic gonadotropin (hCG) or the LH receptor antagonist deglycosylated-hCG (dg-hCG). Infusion of hCG into either the lateral ventricle or the dorsal hippocampus caused significant memory impairments in ovariectomized estradiol-treated females. Consistent with this, infusion of the LH antagonist dg-hCG into the dorsal hippocampus caused an amelioration of memory deficits in ovariectomized females. Furthermore, the gonadotropin-releasing hormone antagonist Antide, failed to act in the hippocampus to affect memory. These findings demonstrate a significant role for LH action in the dorsal hippocampus in spatial memory dysfunction.
Collapse
Affiliation(s)
- Veronica Burnham
- Department of Neuroscience, Oberlin College, 119 Woodland St, Oberlin, OH 44074, USA
| | - Christopher Sundby
- Department of Neuroscience, Oberlin College, 119 Woodland St, Oberlin, OH 44074, USA
| | - Abigail Laman-Maharg
- Department of Neuroscience, Oberlin College, 119 Woodland St, Oberlin, OH 44074, USA
| | - Janice Thornton
- Department of Neuroscience, Oberlin College, 119 Woodland St, Oberlin, OH 44074, USA.
| |
Collapse
|
40
|
Koebele SV, Bimonte-Nelson HA. The endocrine-brain-aging triad where many paths meet: female reproductive hormone changes at midlife and their influence on circuits important for learning and memory. Exp Gerontol 2016; 94:14-23. [PMID: 27979770 DOI: 10.1016/j.exger.2016.12.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/09/2016] [Accepted: 12/10/2016] [Indexed: 01/15/2023]
Abstract
Female mammals undergo natural fluctuations in sex steroid hormone levels throughout life. These fluctuations span from early development, to cyclic changes associated with the menstrual or estrous cycle and pregnancy, to marked hormone flux during perimenopause, and a final decline at reproductive senescence. While the transition to reproductive senescence is not yet fully understood, the vast majority of mammals experience this spontaneous, natural phenomenon with age, which has broad implications for long-lived species. Indeed, this post-reproductive life stage, and its transition, involves significant and enduring physiological changes, including considerably altered sex steroid hormone and gonadotropin profiles that impact multiple body systems, including the brain. The endocrine-brain-aging triad is especially noteworthy, as many paths meet and interact. Many of the brain regions affected by aging are also sensitive to changes in ovarian hormone levels, and aging and reproductive senescence are both associated with changes in memory performance. This review explores how menopause is related to cognitive aging, and discusses some of the key neural systems and molecular factors altered with age and reproductive hormone level changes, with an emphasis on brain regions important for learning and memory.
Collapse
Affiliation(s)
- Stephanie V Koebele
- Department of Psychology, Arizona State University, Tempe, AZ 85287, United States; Arizona Alzheimer's Consortium, Phoenix, AZ 85006, United States
| | - Heather A Bimonte-Nelson
- Department of Psychology, Arizona State University, Tempe, AZ 85287, United States; Arizona Alzheimer's Consortium, Phoenix, AZ 85006, United States.
| |
Collapse
|
41
|
Abstract
Alzheimer disease (AD) is a slow progressive neurodegenerative disease that affects more elderly women than elderly men. It impairs memory, typically progresses into multidomain cognitive decline that destroys the quality of life, and ultimately leads to death. About 5.3 million older Americans are now living with this disease, and this number is projected to rise to 14 million by 2050. Annual health-care costs in the United States alone are projected to increase to about US$1.1 trillion by 2050. The initial theory that decreasing estrogen levels leads to AD development in postmenopausal women has been proven inconclusive. For example, Women's Health Research Initiative Memory Study and the population-based nested case-control study have failed to demonstrate that estrogen/progesterone (hormone replacement therapy [HRT]) or estrogen replacement therapy could prevent the cognitive decline or reduce the risk of AD. This led to the realization that AD development could be due to a progressive increase in luteinizing hormone (LH) levels in postmenopausal women. Accordingly, a large number of studies have demonstrated that an increase in LH levels is positively correlated with neuropathological, behavioral, and cognitive changes in AD. In addition, LH has been shown to promote amyloidogenic pathway of precursor protein metabolism and deposition of amyloid β plaques in the hippocampus, a region involved in AD. Cognate receptors that mediate LH effects are abundantly expressed in the hippocampus. Reducing the LH levels by treatment with gonadotropin-releasing hormone agonists could provide therapeutic benefits. Despite these advances, many questions remain and require further research.
Collapse
Affiliation(s)
- C V Rao
- 1 Department of Cellular Biology and Pharmacology, Reproduction and Development Program, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.,2 Department of Molecular and Human Genetics, Reproduction and Development Program, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.,3 Department of Obstetrics and Gynecology, Reproduction and Development Program, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| |
Collapse
|
42
|
Rao CV. Therapeutic Potential of Human Chorionic Gonadotropin Against Painful Bladder Syndrome/Interstitial Cystitis. Reprod Sci 2016; 23:1451-1458. [PMID: 27004802 DOI: 10.1177/1933719116639139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Painful bladder syndrome/interstitial cystitis is a debilitating chronic bladder disease that primarily affects women. The disease is due to a damage of urothelial cell lining. As a result, potassium particles and other toxic substances in urine can leak into bladder mucosa, causing the symptoms of lower abdominal/pelvic discomfort, pain, increased urination frequency, urgency, nocturia, and so on, all of which can substantially reduce the quality of daily life. There are multiple symptom reliving therapies. Among them, only pentosan polysulfate sodium, sold under the brand name of Elmiron, has been approved for oral use by US Food and Drug Administration. It provides the relief after several months of use. Based on the scientific leads presented in this article, we propose that human chorionic gonadotropin has a therapeutic potential that is worth investigating for the treatment of this disease.
Collapse
Affiliation(s)
- C V Rao
- Departments of Cellular Biology and Pharmacology, Molecular and Human Genetics and Obstetrics and Gynecology, Reproduction and Development Program, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| |
Collapse
|
43
|
Blair JA, Palm R, Chang J, McGee H, Zhu X, Wang X, Casadesus G. Luteinizing hormone downregulation but not estrogen replacement improves ovariectomy-associated cognition and spine density loss independently of treatment onset timing. Horm Behav 2016; 78:60-6. [PMID: 26497249 PMCID: PMC4718885 DOI: 10.1016/j.yhbeh.2015.10.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 10/12/2015] [Accepted: 10/20/2015] [Indexed: 12/31/2022]
Abstract
Age-related changes in reproductive hormone levels are a well-known risk factor for the development of cognitive dysfunction and dementia in women. We and others have shown an important contribution of gonadotropins in this process. Lowering serum gonadotropin levels is able to rescue cognitive function in Alzheimer's disease and menopause models, but whether this is time-dependent and the exact mechanism through which gonadotropins regulate cognitive function is unknown. We show that pharmacologically lowering serum levels of luteinizing hormone lead to cognitive improvement immediately after ovariectomy and with a 4month interval after ovariectomy, when the benefits of 17β-estradiol are known to disappear in rodents. Importantly, we show that these improvements are associated with spine density changes at both time points. These findings suggest a role of luteinizing hormone in learning and memory and neuroplasticity processes as well as provide an alternative therapeutic strategy of menopause associated cognitive loss.
Collapse
Affiliation(s)
- Jeffrey A Blair
- School of Biomedical Sciences, Kent State University, Kent, OH, United States; Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Russell Palm
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH, United States
| | - Jaewon Chang
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, United States
| | - Henry McGee
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Xinglong Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Gemma Casadesus
- Department of Biological Sciences, Kent State University, Kent, OH, United States.
| |
Collapse
|
44
|
Abstract
Overactive bladder (OAB) is a common form of urinary incontinence, resulting from spontaneous and random contractions of the urinary bladder. The affected individuals have an uncontrollable urge to urinate and experience incontinence and nocturia, which can greatly reduce the quality of daily life. There are several drugs for the treatment, and all of them have serious side effects. The following findings suggested that human chorionic gonadotropin (hCG) has a therapeutic potential that is worth investigating for the treatment of OAB. The finding are (1) human detrusor muscle contains hCG receptors, (2) detrusor muscle becomes quiescent during pregnancy, (3) hCG can inhibit detrusor muscle contractions induced by cholinergic stimulation in rats, and (4) hCG can mimic the anticholinergic drug on detrusor muscle contractions.
Collapse
Affiliation(s)
- C V Rao
- Departments of Cellular Biology and Pharmacology, Molecular and Human Genetics, and Obstetrics and Gynecology, Reproduction and Development Program, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| |
Collapse
|
45
|
Blair JA, Bhatta S, McGee H, Casadesus G. Luteinizing hormone: Evidence for direct action in the CNS. Horm Behav 2015; 76:57-62. [PMID: 26172857 PMCID: PMC4741372 DOI: 10.1016/j.yhbeh.2015.06.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 01/09/2023]
Abstract
This article is part of a Special Issue "SBN 2014". Hormonal dysfunction due to aging, especially during menopause, plays a substantial role in cognitive decline as well as the progression and development of neurodegenerative diseases. The hypothalamic-pituitary-gonadal (HPG) axis has long been implicated in changes in behavior and neuronal morphology. Most notably, estrogens have proven beneficial in the healthy brain through a host of different mechanisms. Recently, luteinizing hormone (LH) has emerged as a candidate for further investigation for its role in the CNS. The basis of this is that both LH and the LH receptor are expressed in the brain, and serum levels of LH correlate with cognitive deficits and Alzheimer's disease (AD) incidence. The study of LH in cognition and AD primarily focuses on evaluating the effects of downregulation of this peptide. This literature has shown that decreasing peripheral LH, through a variety of pharmacological interventions, reduces cognitive deficits in ovariectomy and AD models. However, few studies have researched the direct actions of LH on neurons and glial cells. Here we summarize the role of luteinizing hormone in modulating cognition, and we propose a mechanism that underlies a role for brain LH in this process.
Collapse
Affiliation(s)
- Jeffrey A Blair
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Sabina Bhatta
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Henry McGee
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Gemma Casadesus
- Department of Biological Sciences, Kent State University, Kent, OH, USA.
| |
Collapse
|
46
|
Atwood CS, Bowen RL. The endocrine dyscrasia that accompanies menopause and andropause induces aberrant cell cycle signaling that triggers re-entry of post-mitotic neurons into the cell cycle, neurodysfunction, neurodegeneration and cognitive disease. Horm Behav 2015; 76:63-80. [PMID: 26188949 PMCID: PMC4807861 DOI: 10.1016/j.yhbeh.2015.06.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 06/23/2015] [Accepted: 06/23/2015] [Indexed: 12/26/2022]
Abstract
This article is part of a Special Issue "SBN 2014". Sex hormones are physiological factors that promote neurogenesis during embryonic and fetal development. During childhood and adulthood these hormones support the maintenance of brain structure and function via neurogenesis and the formation of dendritic spines, axons and synapses required for the capture, processing and retrieval of information (memories). Not surprisingly, changes in these reproductive hormones that occur with menopause and during andropause are strongly correlated with neurodegeneration and cognitive decline. In this connection, much evidence now indicates that Alzheimer's disease (AD) involves aberrant re-entry of post-mitotic neurons into the cell cycle. Cell cycle abnormalities appear very early in the disease, prior to the appearance of plaques and tangles, and explain the biochemical, neuropathological and cognitive changes observed with disease progression. Intriguingly, a recent animal study has demonstrated that induction of adult neurogenesis results in the loss of previously encoded memories while decreasing neurogenesis after memory formation during infancy mitigated forgetting. Here we review the biochemical, epidemiological and clinical evidence that alterations in sex hormone signaling associated with menopause and andropause drive the aberrant re-entry of post-mitotic neurons into an abortive cell cycle that leads to neurite retraction, neuron dysfunction and neuron death. When the reproductive axis is in balance, gonadotropins such as luteinizing hormone (LH), and its fetal homolog, human chorionic gonadotropin (hCG), promote pluripotent human and totipotent murine embryonic stem cell and neuron proliferation. However, strong evidence supports menopausal/andropausal elevations in the LH:sex steroid ratio as driving aberrant mitotic events. These include the upregulation of tumor necrosis factor; amyloid-β precursor protein processing towards the production of mitogenic Aβ; and the activation of Cdk5, a key regulator of cell cycle progression and tau phosphorylation (a cardinal feature of both neurogenesis and neurodegeneration). Cognitive and biochemical studies confirm the negative consequences of a high LH:sex steroid ratio on dendritic spine density and human cognitive performance. Prospective epidemiological and clinical evidence in humans supports the premise that rebalancing the ratio of circulating gonadotropins:sex steroids reduces the incidence of AD. Together, these data support endocrine dyscrasia and the subsequent loss of cell cycle control as an important etiological event in the development of neurodegenerative diseases including AD, stroke and Parkinson's disease.
Collapse
Affiliation(s)
- Craig S Atwood
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA; Geriatric Research, Education and Clinical Center, Veterans Administration Hospital, Madison, WI 53705, USA; School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Joondalup, 6027 WA, Australia.
| | - Richard L Bowen
- OTB Research, 217 Calhoun St, Unit 1, Charleston, SC 29401, USA
| |
Collapse
|
47
|
Burnham VL, Thornton JE. Luteinizing hormone as a key player in the cognitive decline of Alzheimer's disease. Horm Behav 2015; 76:48-56. [PMID: 26031357 DOI: 10.1016/j.yhbeh.2015.05.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/10/2015] [Accepted: 05/25/2015] [Indexed: 12/30/2022]
Abstract
This article is part of a Special Issue "SBN 2014". Alzheimer's disease is one of the most prevalent and costly neurological diseases in the world. Although decades of research have focused on understanding Alzheimer's disease pathology and progression, there is still a great lack of clinical treatments for those who suffer from it. One of the factors most commonly associated with the onset of Alzheimer's disease is a decrease in levels of gonadal hormones, such as estrogens and androgens. Despite the correlational and experimental data which support the role of these hormones in the etiology of Alzheimer's disease, clinical trials involving their reintroduction through hormone therapy have had varied results and these gonadal hormones often have accompanying health risks. More recently, investigation has turned toward other hormones in the hypothalamic-pituitary-gonadal axis that are disrupted by age-related decreases in gonadal hormones. Specifically, luteinizing hormone, which is increased with age in both men and women (in response to removal of negative feedback), has surfaced as a potentially powerful player in the risk and onset of Alzheimer's disease. Mounting evidence in basic research and epidemiological studies supports the role of elevated luteinizing hormone in exacerbating age-related cognitive decline in both males and females. This review summarizes the recent developments involving luteinizing hormone in increasing the cognitive deficits and molecular pathology characteristic of Alzheimer's disease.
Collapse
Affiliation(s)
- Veronica L Burnham
- Department of Neuroscience, Oberlin College, 119 Woodland St, Oberlin, OH 44074, USA
| | - Janice E Thornton
- Department of Neuroscience, Oberlin College, 119 Woodland St, Oberlin, OH 44074, USA.
| |
Collapse
|
48
|
Verdile G, Asih PR, Barron AM, Wahjoepramono EJ, Ittner LM, Martins RN. The impact of luteinizing hormone and testosterone on beta amyloid (Aβ) accumulation: Animal and human clinical studies. Horm Behav 2015; 76:81-90. [PMID: 26122291 DOI: 10.1016/j.yhbeh.2015.05.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 05/20/2015] [Accepted: 05/25/2015] [Indexed: 12/31/2022]
Abstract
This article is part of a Special Issue "SBN 2014". Hormonal changes associated with ageing have been implicated in the pathogenesis of Alzheimer's disease (AD), the most common form of dementia. Reductions in serum testosterone and increases in luteinizing hormone (LH) are established AD risk factors for dementia in men and have important roles in modulating AD pathogenesis. One of the defining features of AD is the accumulation of amyloid-beta (Aβ) in the brain, which has a key role in the neurodegenerative cascade. Both testosterone and LH have been shown to modulate CNS Aβ accumulation in animal studies, and associations with cerebral amyloid load in human studies have supported this. The underlying mechanisms by which these hormones modulate Aβ accumulation and contribute to neurodegeneration are not completely understood, however they have been shown to regulate Aβ metabolism, enhance its clearance and alter the processing of its parent molecule, the amyloid precursor protein. This review will discuss underlying mechanisms by which testosterone and LH modulate Aβ and provide an update on therapeutic approaches targeting these hormones.
Collapse
Affiliation(s)
- Giuseppe Verdile
- School of Biomedical Sciences, CHIRI Biosciences, Curtin University, Bentley, Western Australia 6102, Australia; Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical Sciences, Edith Cowan University, Joondalup, Western Australia 6027, Australia; Sir James McCusker Alzheimer's disease Research Unit, School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, Western Australia 6009, Australia.
| | - Prita R Asih
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical Sciences, Edith Cowan University, Joondalup, Western Australia 6027, Australia; Dementia Research Unit, Department of Anatomy, School of Medical Sciences, Faculty of Medicine, University of NSW, Kensington, NSW 2052, Australia
| | - Anna M Barron
- National Institute of Radiological Sciences, Chiba-shi, Chiba 263-8555, Japan
| | - Eka J Wahjoepramono
- Sir James McCusker Alzheimer's disease Research Unit, School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, Western Australia 6009, Australia; Medical Faculty, Pelita Harapan University - Neuroscience Centre, Siloam Hospital, Lippo Karawaci, Tangerang, Indonesia
| | - Lars M Ittner
- Dementia Research Unit, Department of Anatomy, School of Medical Sciences, Faculty of Medicine, University of NSW, Kensington, NSW 2052, Australia; Neuroscience Research Australia, Randwick, NSW 2036, Australia
| | - Ralph N Martins
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical Sciences, Edith Cowan University, Joondalup, Western Australia 6027, Australia; Sir James McCusker Alzheimer's disease Research Unit, School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, Western Australia 6009, Australia; School of Biomedical Sciences, CHIRI Biosciences, Curtin University, Bentley, Western Australia 6102, Australia
| |
Collapse
|
49
|
Wong DW, Soga T, Parhar IS. Aging and chronic administration of serotonin-selective reuptake inhibitor citalopram upregulate Sirt4 gene expression in the preoptic area of male mice. Front Genet 2015; 6:281. [PMID: 26442099 PMCID: PMC4584971 DOI: 10.3389/fgene.2015.00281] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 08/21/2015] [Indexed: 01/10/2023] Open
Abstract
Sexual dysfunction and cognitive deficits are markers of the aging process. Mammalian sirtuins (SIRT), encoded by sirt 1-7 genes, are known as aging molecules which are sensitive to serotonin (5-hydroxytryptamine, 5-HT). Whether the 5-HT system regulates SIRT in the preoptic area (POA), which could affect reproduction and cognition has not been examined. Therefore, this study was designed to examine the effects of citalopram (CIT, 10 mg/kg for 4 weeks), a potent selective-serotonin reuptake inhibitor and aging on SIRT expression in the POA of male mice using real-time PCR and immunocytochemistry. Age-related increases of sirt1, sirt4, sirt5, and sirt7 mRNA levels were observed in the POA of 52 weeks old mice. Furthermore, 4 weeks of chronic CIT treatment started at 8 weeks of age also increased sirt2 and sirt4 mRNA expression in the POA. Moreover, the number of SIRT4 immuno-reactive neurons increased with aging in the medial septum area (12 weeks = 1.00 ± 0.15 vs. 36 weeks = 1.68 ± 0.14 vs. 52 weeks = 1.54 ± 0.11, p < 0.05). In contrast, the number of sirt4-immunopositive cells did not show a statistically significant change with CIT treatment, suggesting that the increase in sirt4 mRNA levels may occur in cells in which sirt4 is already being expressed. Taken together, these studies suggest that CIT treatment and the process of aging utilize the serotonergic system to up-regulate SIRT4 in the POA as a common pathway to deregulate social cognitive and reproductive functions.
Collapse
Affiliation(s)
- Dutt Way Wong
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia Selangor, Malaysia
| | - Tomoko Soga
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia Selangor, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia Selangor, Malaysia
| |
Collapse
|
50
|
Rao CV. Potential Therapy for Rheumatoid Arthritis and Sjögren Syndrome With Human Chorionic Gonadotropin. Reprod Sci 2015; 23:566-71. [PMID: 26239386 DOI: 10.1177/1933719115597765] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Autoimmune diseases such as rheumatoid arthritis (RA) and Sjögren syndrome (SS) ameliorate during pregnancy, through dampening (immunotolerance) of the maternal immune system which protects the fetus from rejection. A large number of studies have shown that human chorionic gonadotropin (hCG) contributes to this tolerance. Studies on animal models have reaffirmed that hCG treatment mimics the benefits of pregnancy. Based on the scientific evidence, randomized clinical trials comparing hCG with current therapies and/or placebo are recommended for RA, SS, and for other autoimmune diseases such as, type 1 diabetes and ankylosing spondylitis, which also get better during pregnancy and hCG treatment seems to help.
Collapse
Affiliation(s)
- C V Rao
- Department of Cellular Biology and Pharmacology, Molecular and Human Genetics and Obstetrics and Gynecology, Reproduction and Development Program, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| |
Collapse
|