1
|
Zhu F, Lin BR, Lin SH, Yu CH, Yang YM. Hepatic-specific vitamin D receptor downregulation alleviates aging-related metabolic dysfunction-associated steatotic liver disease. World J Gastroenterol 2025; 31:104117. [PMID: 40248374 PMCID: PMC12001193 DOI: 10.3748/wjg.v31.i14.104117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/21/2025] [Accepted: 03/21/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is defined by the abnormal lipid deposition in hepatocytes. The prevalence of MASLD is significantly increased in the elderly population, suggesting that aging may be related to the occurrence of MASLD. Emerging evidences suggest that vitamin D receptor (VDR) may be implicated in the progression of MASLD. Therefore, additional researches are warranted to elucidate whether VDR plays a role in aging-related MASLD. AIM To investigate the relationship between aging and MASLD and explore the role and related mechanisms of VDR in aging-related MASLD. METHODS Cellular senescence models were established, and the senescence phenotype of telomerase RNA component knockout mice was validated. These mice were then used as a senescence model for subsequent studies. Changes in VDR expression in the livers of aging mice were examined. VDR knockdown models, including cell knockdown models and hepatic-specific VDR knockout mice, were constructed, and MASLD was established in these models. Additionally, vitamin D (VD)-supplemented models, including senescent liver cell lines and senescent mice, were constructed. RESULTS The steatosis in senescent liver cells was more severe than in normal cells (P < 0.05). Moreover, hepatic steatosis was significantly more pronounced in senescence model mice compared to control group when the MASLD model was successfully induced (P < 0.05). Therefore, we concluded that aging aggravated hepatic steatosis. The hepatic expression of VDR increased after aging. VDR knockdown in senescent liver cells and senescent mice alleviated hepatic steatosis (P < 0.05). When senescent liver cells were stimulated with VD, cellular steatosis was aggravated (P < 0.05). However, VD supplementation had no effect on aging mice. CONCLUSION Aging can lead to increased hepatic steatosis, and the hepatic-specific knockdown of VDR alleviated aging-related MASLD. VDR could serve as a potential molecular target for aging-related MASLD.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Bing-Ru Lin
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Shi-Hua Lin
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Chao-Hui Yu
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Yun-Mei Yang
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases of Zhejiang Province, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
2
|
Cadena Sandoval M, Haeusler RA. Bile acid metabolism in type 2 diabetes mellitus. Nat Rev Endocrinol 2025; 21:203-213. [PMID: 39757322 PMCID: PMC12053743 DOI: 10.1038/s41574-024-01067-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2024] [Indexed: 01/07/2025]
Abstract
Type 2 diabetes mellitus is a complex disorder associated with insulin resistance and hyperinsulinaemia that is insufficient to maintain normal glucose metabolism. Changes in insulin signalling and insulin levels are thought to directly explain many of the metabolic abnormalities that occur in diabetes mellitus, such as impaired glucose disposal. However, molecules that are directly affected by abnormal insulin signalling might subsequently go on to cause secondary metabolic effects that contribute to the pathology of type 2 diabetes mellitus. In the past several years, evidence has linked insulin resistance with the concentration, composition and distribution of bile acids. As bile acids are known to regulate glucose metabolism, lipid metabolism and energy balance, these findings suggest that bile acids are potential mediators of metabolic distress in type 2 diabetes mellitus. In this Review, we highlight advances in our understanding of the complex regulation of bile acids during insulin resistance, as well as how bile acids contribute to metabolic control.
Collapse
Affiliation(s)
- Marti Cadena Sandoval
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY, USA
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA
- Columbia Digestive and Liver Disease Research Center, Columbia University Medical Center, New York, NY, USA
| | - Rebecca A Haeusler
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY, USA.
- Department of Medicine, Columbia University Medical Center, New York, NY, USA.
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA.
- Columbia Digestive and Liver Disease Research Center, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
3
|
King MD, Elliott JE, Williams TD, O'Brien JM, Marlatt VL, Crump D. Association of Hepatic Gene Expression with Chemical Concentrations in Wild-Collected Double-Crested Cormorant Embryos using an EcoToxChip Gene Array. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:188-198. [PMID: 39716395 DOI: 10.1021/acs.est.4c09142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Contaminant monitoring programs use wild bird eggs, but determining whether measured concentrations elicit adverse effects relies on extrapolation from toxicity studies with avian model species. Here, we directly evaluated the relationships between whole embryo contaminant concentrations and mRNA expression in liver tissue of the double-crested cormorant (Nannopterum auritum). Eggs collected from three North American sites (one from Lake Erie and two from the Salish Sea) were artificially incubated until pipping. Hepatic mRNA was analyzed with an EcoToxChip quantitative polymerase chain reaction (qPCR) array containing 354 target genes. The remaining embryo was analyzed for mercury and 95 persistent organic contaminants. Lake Erie embryos had higher concentrations of most organic contaminants than those from the Salish Sea. Sparse partial least-squares regression analysis of contaminant and gene expression data indicated that chlorinated hydrocarbons, especially polychlorinated biphenyls (PCBs), were associated with variation in gene expression. Linear correlations revealed consistent pairwise associations between chlorinated contaminants and the expression of nine genes (seven genes with PCBs and two with β-hexachlorocyclohexane). Partial least-squares discriminant analysis identified embryos from the Lake Erie site accurately. Overall, gene expression in embryos from wild-collected eggs was associated with tissue contaminant concentrations, and thus, transcriptomic measurements may serve to identify individuals or populations affected biologically by contaminants.
Collapse
Affiliation(s)
- Mason D King
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - John E Elliott
- Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, 5421 Robertson Road, Delta, BC V4K 3N2, Canada
| | - Tony D Williams
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Jason M O'Brien
- Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Vicki L Marlatt
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Doug Crump
- Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
4
|
Eliso MC, Corsi I, Spagnuolo A, Dumollard R. Nanoplastic-Induced Developmental Toxicity in Ascidians: Comparative Analysis of Chorionated and Dechorionated Phallusia mammillata Embryos. J Xenobiot 2025; 15:10. [PMID: 39846542 PMCID: PMC11755549 DOI: 10.3390/jox15010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 01/24/2025] Open
Abstract
Nanoplastics pose a growing threat to marine ecosystems, particularly affecting the early developmental stages of marine organisms. This study investigates the effects of amino-modified polystyrene nanoparticles (PS-NH2, 50 nm) on the embryonic development of Phallusia mammillata, a model ascidian species. Both chorionated and dechorionated embryos were exposed to increasing concentrations of PS-NH2 so morphological alterations could be assessed with a high-content analysis of the phenotypes and genotoxicity. PS-NH2 induced the same morphological alterations in both chorionated and dechorionated embryos, with dechorionated embryos being more sensitive (EC50 = 3.0 μg mL-1) than chorionated ones (EC50 = 6.26 μg mL-1). Interestingly, results from the morphological analysis showed two concentration-dependent mechanisms of action: (i) at concentrations near the EC50, neurodevelopmental abnormalities resembling the ones induced by exposure to known endocrine disruptors (EDs) were observed, and (ii) at higher concentrations (15 μg mL-1 and 7.5 μg mL-1 for chorionated and dechorionated embryos, respectively), a nonspecific toxicity was evident, likely due to general oxidative stress. The phenotypes resulting from the PS-NH2 treatment were not related to DNA damage, as revealed by a genotoxicity assay performed on neurula embryos. Our data suggest that PS-NH2-induced toxicity is primarily mediated through oxidative stress, probably triggered by interactions between the positive charges of the PS NPs and the negative charges on the cell membranes. The lack of a protective chorion further exacerbated these effects, highlighting its role in mitigating/protecting against NP-induced damage.
Collapse
Affiliation(s)
- Maria Concetta Eliso
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100 Siena, Italy;
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy;
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100 Siena, Italy;
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy;
| | - Rémi Dumollard
- Laboratoire de Biologie du Développement (LBDV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), 06230 Villefranche-sur-Mer, France;
| |
Collapse
|
5
|
Abdollahi S, Vahdat M, Saeedirad Z, Mahmoudi Z, Torkaman M, h Abbassi Mobarakeh K, Mirshafaei MA, Mohammadian MK, Ataei Kachooei M, Azizi-Tabesh G, Shamsi-Goushki A, Gholamalizadeh M, Khoshdooz S, Doaei S, Poorhosseini SM. Multifaceted Role of Vitamin D in Breast Cancer: A Systematic Review of Genetic and Pathway-Based Mechanisms. Asian Pac J Cancer Prev 2024; 25:3349-3361. [PMID: 39471001 PMCID: PMC11711349 DOI: 10.31557/apjcp.2024.25.10.3349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 10/18/2024] [Indexed: 11/01/2024] Open
Abstract
BACKGROUND Despite advancements in breast cancer (BC) diagnosis and treatment, it continues to be a serious health concern among women due to its high incidence rate. Thus, prevention strategies in BC are essential. Some nutrients such as vitamin D may play a preventive role against BC through different genes which have a vital role in several pathways. These pathways include autophagy, tumorigenesis, apoptosis, immunity, and genome stability. This study aimed to review the role of vitamin D in BC via the network of vitamin D-regulated pathways. METHODS This systematic review was conducted following PRISMA guidelines. PubMed, ScienceDirect, and Scopus were searched using a combination of MeSH terms and keywords related to molecular and cellular mechanisms of the effects of vitamin D on breast cancer. A total of 200 articles were initially found, from which 14 relevant studies were selected based on specific inclusion and exclusion criteria. RESULTS Experimental studies have shown possible anti-carcinogenic effects of vitamin D-related genes due to their participation in regulating autophagy, tumorigenesis, apoptosis, immunity, and genome stability in normal and malignant breast cells. Moreover, vitamin D deficiency has the potential to create a supportive environment that promotes proangiogenic processes, tumor cell dissemination, metastasis, and establishment at secondary sites. CONCLUSION Vitamin D may have systematic roles against BC in humans through various interactions with different genes, which have roles in different and important pathways as underlying mechanisms in the pathophysiology of BC. More broadly, research is also needed to determine the exact protective effect of vitamin D on BC risk.
Collapse
Affiliation(s)
- Sepideh Abdollahi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mahsa Vahdat
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Nutrition and Metabolic Disease Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Zahra Saeedirad
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zahra Mahmoudi
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Mahdie Torkaman
- Department of Chemical Engineering, Science and Research Branch , Islamic Azad University ,Tehran Iran.
| | - Khadije h Abbassi Mobarakeh
- Department of Community Nutrition, Nutrition and Food Security Research Center, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| | | | | | | | - Ghasem Azizi-Tabesh
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ali Shamsi-Goushki
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Maryam Gholamalizadeh
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | - Saeid Doaei
- Department of Community Nutrition, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Reproductive Health Research Center, Department of Obstetrics and Gynecology, School of Medicine, Al-Zahra Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| | | |
Collapse
|
6
|
Biswas B, Chattopadhyay S, Hazra S, Goswami R. Calcitriol Impairs the Secretion of IL-4 and IL-13 in Th2 Cells via Modulating the VDR-Gata3-Gfi1 Axis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:831-842. [PMID: 39082935 DOI: 10.4049/jimmunol.2400078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/16/2024] [Indexed: 09/05/2024]
Abstract
Calcitriol, the bioactive form of vitamin D, exerts its biological functions by binding to its cognate receptor, the vitamin D receptor (VDR). The indicators of the severity of allergies and asthma have been linked to low vitamin D levels. However, the role of calcitriol in regulating IL-4 and IL-13, two cytokines pivotal to allergic inflammation, remained unclear. Our study observed diminished IL-4 and IL-13 secretion in murine and human Th2 cells treated with calcitriol. In murine Th2 cells, Gata3 expression was attenuated by calcitriol. However, the expression of the transcriptional repressor Gfi1, too, was attenuated in the presence of calcitriol. Ectopic expression of either Gfi1 or VDR impaired the secretion of IL-13 in Th2 cells. In murine Th2 cells, VDR interacted with Gata3 but not Gfi1. Gfi1 significantly impaired Il13 promoter activation, which calcitriol failed to restore. Conversely, calcitriol augmented Gfi1 recruitment to the Il13 promoter. Ecr, a conserved region between these two genes, which enhanced the transactivation of Il4 and Il13 promoters, is essential for calcitriol-mediated suppression of both the genes. Calcitriol augmented the recruitment of VDR to the Il13 promoter and Ecr regions. Gata3 recruitment was significantly impaired at the Il13 and Ecr loci in the presence of calcitriol but increased at the Il4 promoter. Furthermore, the recruitment of the histone deacetylase HDAC1 was universally increased at the promoters of Il4, Il13, and Ecr when calcitriol was present. Together, our data clearly elucidate that calcitriol modulates VDR, Gata3, and Gfi1 to suppress IL-4 and IL-13 production in Th2 cells.
Collapse
Affiliation(s)
- Biswajit Biswas
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Shagnik Chattopadhyay
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Sayantee Hazra
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Ritobrata Goswami
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, India
| |
Collapse
|
7
|
Chen Y, Anderson MT, Payne N, Santori FR, Ivanova NB. Nuclear Receptors and the Hidden Language of the Metabolome. Cells 2024; 13:1284. [PMID: 39120315 PMCID: PMC11311682 DOI: 10.3390/cells13151284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Nuclear hormone receptors (NHRs) are a family of ligand-regulated transcription factors that control key aspects of development and physiology. The regulation of NHRs by ligands derived from metabolism or diet makes them excellent pharmacological targets, and the mechanistic understanding of how NHRs interact with their ligands to regulate downstream gene networks, along with the identification of ligands for orphan NHRs, could enable innovative approaches for cellular engineering, disease modeling and regenerative medicine. We review recent discoveries in the identification of physiologic ligands for NHRs. We propose new models of ligand-receptor co-evolution, the emergence of hormonal function and models of regulation of NHR specificity and activity via one-ligand and two-ligand models as well as feedback loops. Lastly, we discuss limitations on the processes for the identification of physiologic NHR ligands and emerging new methodologies that could be used to identify the natural ligands for the remaining 17 orphan NHRs in the human genome.
Collapse
Affiliation(s)
- Yujie Chen
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; (Y.C.); (M.T.A.); (N.P.)
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Matthew Tom Anderson
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; (Y.C.); (M.T.A.); (N.P.)
| | - Nathaniel Payne
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; (Y.C.); (M.T.A.); (N.P.)
| | - Fabio R. Santori
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; (Y.C.); (M.T.A.); (N.P.)
| | - Natalia B. Ivanova
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; (Y.C.); (M.T.A.); (N.P.)
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
8
|
Casas-Rodríguez A, Medrano-Padial C, Jos A, Cameán AM, Campos A, Fonseca E. Characterization of NR1J1 Paralog Responses of Marine Mussels: Insights from Toxins and Natural Activators. Int J Mol Sci 2024; 25:6287. [PMID: 38928005 PMCID: PMC11204112 DOI: 10.3390/ijms25126287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
The pregnane X receptor (PXR) is a nuclear hormone receptor that plays a pivotal role in regulating gene expression in response to various ligands, particularly xenobiotics. In this context, the aim of this study was to shed light on the ligand affinity and functions of four NR1J1 paralogs identified in the marine mussel Mytilus galloprovincialis, employing a dual-luciferase reporter assay. To achieve this, the activation patterns of these paralogs in response to various toxins, including freshwater cyanotoxins (Anatoxin-a, Cylindrospermopsin, and Microcystin-LR, -RR, and -YR) and marine algal toxins (Nodularin, Saxitoxin, and Tetrodotoxin), alongside natural compounds (Saint John's Wort, Ursolic Acid, and 8-Methoxypsoralene) and microalgal extracts (Tetraselmis, Isochrysis, LEGE 95046, and LEGE 91351 extracts), were studied. The investigation revealed nuanced differences in paralog response patterns, highlighting the remarkable sensitivity of MgaNR1J1γ and MgaNR1J1δ paralogs to several toxins. In conclusion, this study sheds light on the intricate mechanisms of xenobiotic metabolism and detoxification, particularly focusing on the role of marine mussel NR1J1 in responding to a diverse array of compounds. Furthermore, comparative analysis with human PXR revealed potential species-specific adaptations in detoxification mechanisms, suggesting evolutionary implications. These findings deepen our understanding of PXR-mediated metabolism mechanisms, offering insights into environmental monitoring and evolutionary biology research.
Collapse
Affiliation(s)
- Antonio Casas-Rodríguez
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n◦2, 41012 Seville, Spain; (A.C.-R.); (A.J.); (A.M.C.)
| | - Concepción Medrano-Padial
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n◦2, 41012 Seville, Spain; (A.C.-R.); (A.J.); (A.M.C.)
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Campus Universitario 25, Espinardo, 30100 Murcia, Spain
| | - Angeles Jos
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n◦2, 41012 Seville, Spain; (A.C.-R.); (A.J.); (A.M.C.)
| | - Ana M. Cameán
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n◦2, 41012 Seville, Spain; (A.C.-R.); (A.J.); (A.M.C.)
| | - Alexandre Campos
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal;
| | - Elza Fonseca
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal;
| |
Collapse
|
9
|
Garcia-Maldonado E, Huber AD, Chai SC, Nithianantham S, Li Y, Wu J, Poudel S, Miller DJ, Seetharaman J, Chen T. Chemical manipulation of an activation/inhibition switch in the nuclear receptor PXR. Nat Commun 2024; 15:4054. [PMID: 38744881 PMCID: PMC11094003 DOI: 10.1038/s41467-024-48472-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
Nuclear receptors are ligand-activated transcription factors that can often be useful drug targets. Unfortunately, ligand promiscuity leads to two-thirds of receptors remaining clinically untargeted. PXR is a nuclear receptor that can be activated by diverse compounds to elevate metabolism, negatively impacting drug efficacy and safety. This presents a barrier to drug development because compounds designed to target other proteins must avoid PXR activation while retaining potency for the desired target. This problem could be avoided by using PXR antagonists, but these compounds are rare, and their molecular mechanisms remain unknown. Here, we report structurally related PXR-selective agonists and antagonists and their corresponding co-crystal structures to describe mechanisms of antagonism and selectivity. Structural and computational approaches show that antagonists induce PXR conformational changes incompatible with transcriptional coactivator recruitment. These results guide the design of compounds with predictable agonist/antagonist activities and bolster efforts to generate antagonists to prevent PXR activation interfering with other drugs.
Collapse
Affiliation(s)
- Efren Garcia-Maldonado
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Andrew D Huber
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| | - Sergio C Chai
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Stanley Nithianantham
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Yongtao Li
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Jing Wu
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Shyaron Poudel
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Darcie J Miller
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Jayaraman Seetharaman
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| |
Collapse
|
10
|
Ohno R, Mainka M, Kirchhoff R, Hartung NM, Schebb NH. Sterol Derivatives Specifically Increase Anti-Inflammatory Oxylipin Formation in M2-like Macrophages by LXR-Mediated Induction of 15-LOX. Molecules 2024; 29:1745. [PMID: 38675565 PMCID: PMC11052137 DOI: 10.3390/molecules29081745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/29/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
The understanding of the role of LXR in the regulation of macrophages during inflammation is emerging. Here, we show that LXR agonist T09 specifically increases 15-LOX abundance in primary human M2 macrophages. In time- and dose-dependent incubations with T09, an increase of 3-fold for ALOX15 and up to 15-fold for 15-LOX-derived oxylipins was observed. In addition, LXR activation has no or moderate effects on the abundance of macrophage marker proteins such as TLR2, TLR4, PPARγ, and IL-1RII, as well as surface markers (CD14, CD86, and CD163). Stimulation of M2-like macrophages with FXR and RXR agonists leads to moderate ALOX15 induction, probably due to side activity on LXR. Finally, desmosterol, 24(S),25-Ep cholesterol and 22(R)-OH cholesterol were identified as potent endogenous LXR ligands leading to an ALOX15 induction. LXR-mediated ALOX15 regulation is a new link between the two lipid mediator classes sterols, and oxylipins, possibly being an important tool in inflammatory regulation through anti-inflammatory oxylipins.
Collapse
Affiliation(s)
| | | | | | | | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
| |
Collapse
|
11
|
Williams LA, Hamilton MC, Edin ML, Lih FB, Eccles-Miller JA, Tharayil N, Leonard E, Baldwin WS. Increased Perfluorooctanesulfonate (PFOS) Toxicity and Accumulation Is Associated with Perturbed Prostaglandin Metabolism and Increased Organic Anion Transport Protein (OATP) Expression. TOXICS 2024; 12:106. [PMID: 38393201 PMCID: PMC10893382 DOI: 10.3390/toxics12020106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/12/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024]
Abstract
Perfluorooctanesulfonate (PFOS) is a widespread environmental pollutant with a long half-life and clearly negative outcomes on metabolic diseases such as fatty liver disease and diabetes. Male and female Cyp2b-null and humanized CYP2B6-transgenic (hCYP2B6-Tg) mice were treated with 0, 1, or 10 mg/kg/day PFOS for 21 days, and surprisingly it was found that PFOS was retained at greater concentrations in the serum and liver of hCYP2B6-Tg mice than those of Cyp2b-null mice, with greater differences in the females. Thus, Cyp2b-null and hCYP2B6-Tg mice provide new models for investigating individual mechanisms for PFOS bioaccumulation and toxicity. Overt toxicity was greater in hCYP2B6-Tg mice (especially females) as measured by mortality; however, steatosis occurred more readily in Cyp2b-null mice despite the lower PFOS liver concentrations. Targeted lipidomics and transcriptomics from PFOS-treated Cyp2b-null and hCYP2B6-Tg mouse livers were performed and compared to PFOS retention and serum markers of toxicity using PCA. Several oxylipins, including prostaglandins, thromboxanes, and docosahexaenoic acid metabolites, are associated or inversely associated with PFOS toxicity. Both lipidomics and transcriptomics indicate PFOS toxicity is associated with PPAR activity in all models. GO terms associated with reduced steatosis were sexually dimorphic with lipid metabolism and transport increased in females and circadian rhythm associated genes increased in males. However, we cannot rule out that steatosis was initially protective from PFOS toxicity. Moreover, several transporters are associated with increased retention, probably due to increased uptake. The strongest associations are the organic anion transport proteins (Oatp1a4-6) genes and a long-chain fatty acid transport protein (fatp1), enriched in female hCYP2B6-Tg mice. PFOS uptake was also reduced in cultured murine hepatocytes by OATP inhibitors. The role of OATP1A6 and FATP1 in PFOS transport has not been tested. In summary, Cyp2b-null and hCYP2B6-Tg mice provided unique models for estimating the importance of novel mechanisms in PFOS retention and toxicity.
Collapse
Affiliation(s)
- Lanie A. Williams
- Biological Sciences, Clemson University, Clemson, SC 29634, USA; (L.A.W.); (M.C.H.); (J.A.E.-M.)
| | - Matthew C. Hamilton
- Biological Sciences, Clemson University, Clemson, SC 29634, USA; (L.A.W.); (M.C.H.); (J.A.E.-M.)
| | - Matthew L. Edin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, Washington, NC 27709, USA; (M.L.E.); (F.B.L.)
| | - Fred B. Lih
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, Washington, NC 27709, USA; (M.L.E.); (F.B.L.)
| | - Jazmine A. Eccles-Miller
- Biological Sciences, Clemson University, Clemson, SC 29634, USA; (L.A.W.); (M.C.H.); (J.A.E.-M.)
| | - Nishanth Tharayil
- Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA; (N.T.); (E.L.)
| | - Elizabeth Leonard
- Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA; (N.T.); (E.L.)
| | - William S. Baldwin
- Biological Sciences, Clemson University, Clemson, SC 29634, USA; (L.A.W.); (M.C.H.); (J.A.E.-M.)
| |
Collapse
|
12
|
Kumar R, Chhillar N, Gupta DS, Kaur G, Singhal S, Chauhan T. Cholesterol Homeostasis, Mechanisms of Molecular Pathways, and Cardiac Health: A Current Outlook. Curr Probl Cardiol 2024; 49:102081. [PMID: 37716543 DOI: 10.1016/j.cpcardiol.2023.102081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
The metabolism of lipoproteins, which regulate the transit of the lipid to and from tissues, is crucial to maintaining cholesterol homeostasis. Cardiac remodeling is referred to as a set of molecular, cellular, and interstitial changes that, following injury, affect the size, shape, function, mass, and geometry of the heart. Acetyl coenzyme A (acetyl CoA), which can be made from glucose, amino acids, or fatty acids, is the precursor for the synthesis of cholesterol. In this article, the authors explain concepts behind cardiac remodeling, its clinical ramifications, and the pathophysiological roles played by numerous various components, such as cell death, neurohormonal activation, oxidative stress, contractile proteins, energy metabolism, collagen, calcium transport, inflammation, and geometry. The levels of cholesterol are traditionally regulated by 2 biological mechanisms at the transcriptional stage. First, the SREBP transcription factor family regulates the transcription of crucial rate-limiting cholesterogenic and lipogenic proteins, which in turn limits cholesterol production. Immune cells become activated, differentiated, and divided, during an immune response with the objective of eradicating the danger signal. In addition to creating ATP, which is used as energy, this process relies on metabolic reprogramming of both catabolic and anabolic pathways to create metabolites that play a crucial role in regulating the response. Because of changes in signal transduction, malfunction of the sarcoplasmic reticulum and sarcolemma, impairment of calcium handling, increases in cardiac fibrosis, and progressive loss of cardiomyocytes, oxidative stress appears to be the primary mechanism that causes the transition from cardiac hypertrophy to heart failure. De novo cholesterol production, intestinal cholesterol absorption, and biliary cholesterol output are consequently crucial processes in cholesterol homeostasis. In the article's final section, the pharmacological management of cardiac remodeling is explored. The route of treatment is explained in different steps: including, promising, and potential strategies. This chapter offers a brief overview of the history of the study of cholesterol absorption as well as the different potential therapeutic targets.
Collapse
Affiliation(s)
| | - Neelam Chhillar
- Deparetment of Biochemistry, School of Medicine, DY Patil University, Navi Mumbai, India
| | - Dhruv Sanjay Gupta
- Department of Pharmacology, SPP School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| | - Ginpreet Kaur
- Department of Pharmacology, SPP School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| | - Shailey Singhal
- Cluster of Applied Sciences, University of Petroleum and Energy Studies, Dehradun, India
| | - Tanya Chauhan
- Division of Forensic Biology, National Forensic Sciences University, Delhi Campus (LNJN NICFS) Delhi, India
| |
Collapse
|
13
|
Shchulkin AV, Abalenikhina YV, Slepnev AA, Rokunov ED, Yakusheva EN. The Role of Adopted Orphan Nuclear Receptors in the Regulation of an Organic Anion Transporting Polypeptide 1B1 (OATP1B1) under the Action of Sex Hormones. Curr Issues Mol Biol 2023; 45:9593-9605. [PMID: 38132446 PMCID: PMC10741745 DOI: 10.3390/cimb45120600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Organic anion transporting polypeptide 1B1 (OATP1B1) is an influx transporter protein of the SLC superfamily, expressed mainly in the liver and some tumor cells. The mechanisms of its regulation are being actively studied. In the present study, the effect of sex hormones (estradiol, progesterone and testosterone) on OATP1B1 expression in HepG2 cells was examined. The role of adopted orphan receptors, farnasoid X receptor (FXR), constitutive androstane receptor (CAR), pregnane X receptor (PXR) and liver X receptor subtype alpha (LXRa), was also evaluated. Hormones were used in concentrations of 1, 10 and 100 μM, with incubation for 24 h. The protein expression of OATP1B1, FXR, CAR, PXR and LXRa was analyzed by Western blot. It was shown that estradiol (10 and 100 μM) increased the expression of OATP1B1, acting through CAR. Testosterone (1, 10 and 100 μM) increased the expression of OATP1B1, acting through FXR, PXR and LXRa. Progesterone (10 and 100 μM) decreased the expression of OATP1B1 (10 and 100 μM) and adopted orphan receptors are not involved in this process. The obtained results have important practical significance and determine ways for targeted regulation of the transporter, in particular in cancer.
Collapse
Affiliation(s)
- Aleksey V. Shchulkin
- Department of Pharmacology, Ryazan State Medical University, 390026 Ryazan, Russia; (Y.V.A.); (A.A.S.); (E.N.Y.)
| | | | | | | | | |
Collapse
|
14
|
Kadasah SF, Radwan MO. Overview of Ursolic Acid Potential for the Treatment of Metabolic Disorders, Autoimmune Diseases, and Cancers via Nuclear Receptor Pathways. Biomedicines 2023; 11:2845. [PMID: 37893218 PMCID: PMC10604592 DOI: 10.3390/biomedicines11102845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Nuclear receptors (NRs) form a family of druggable transcription factors that are regulated by ligand binding to orchestrate multifaceted physiological functions, including reproduction, immunity, metabolism, and growth. NRs represent attractive and valid targets for the management and treatment of a vast array of ailments. Pentacyclic triterpenes (PTs) are ubiquitously distributed natural products in medicinal and aromatic plants, of which ursolic acid (UA) is an extensively studied member, due to its diverse bio-pertinent activities against different cancers, inflammation, aging, obesity, diabetes, dyslipidemia, and liver injury. In fact, PTs share a common lipophilic structure that resembles NRs' endogenous ligands. Herein, we present a review of the literature on UA's effect on NRs, showcasing the resulting health benefits and potential therapeutic outcomes. De facto, UA exhibited numerous pharmacodynamic effects on PPAR, LXR, FXR, and PXR, resulting in remarkable anti-inflammatory, anti-hyperlipidemic, and hepatoprotective properties, by lowering lipid accumulation in hepatocytes and mitigating non-alcoholic steatohepatitis (NASH) and its subsequent liver fibrosis. Furthermore, UA reversed valproate and rifampicin-induced hepatic lipid accumulation. Additionally, UA showed great promise for the treatment of autoimmune inflammatory diseases such as multiple sclerosis and autoimmune arthritis by antagonizing RORγ. UA exhibited antiproliferative effects against skin, prostate, and breast cancers, partially via PPARα and RORγ pathways. Herein, for the first time, we explore and provide insights into UA bioactivity with respect to NR modulation.
Collapse
Affiliation(s)
- Sultan F. Kadasah
- Department of Biology, Faculty of Science, University of Bisha, P.O. Box 551, Bisha 61922, Saudi Arabia
| | - Mohamed O. Radwan
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| |
Collapse
|
15
|
Abstract
It took several hundred million years of evolution, in order to develop the endocrine vitamin D signaling system, which is formed by a nuclear receptor, the transcription factor VDR (vitamin D receptor), its ligand, the vitamin D3 metabolite 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) and several metabolizing enzymes and transport proteins. Even within the nuclear receptor superfamily the affinity of VDR for 1,25(OH)2D3 is outstandingly high (KD = 0.1 nM). The activation of VDR by 1,25(OH)2D3 is the core mechanism of genomic signaling of vitamin D3, which results in the modulation of the epigenome at thousands of promoter and enhancer regions as well as finally in the activation or repression of hundreds of target gene transcription. In addition, rapid non-genomic actions of vitamin D are described, which are mechanistically far less understood. The main function of vitamin D is to keep the human body in homeostasis. This implies the control of calcium levels, which is essential for bone mineralization, as well as for pushing of innate immunity to react sufficiently strong to microbe infection and preventing overreactions of adaptive immunity, i.e., not to cause autoimmune diseases. This review will discuss whether genomic signaling is sufficient for explaining all physiological functions of vitamin D3.
Collapse
Affiliation(s)
- Carsten Carlberg
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, PL-10748 Olsztyn, Poland; School of Medicine, Institute of Biomedicine, University of Eastern Finland, FI-70211 Kuopio, Finland.
| |
Collapse
|
16
|
Carlberg C, Mycko MP. Linking Mechanisms of Vitamin D Signaling with Multiple Sclerosis. Cells 2023; 12:2391. [PMID: 37830605 PMCID: PMC10571821 DOI: 10.3390/cells12192391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/18/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023] Open
Abstract
Environmental triggers often work via signal transduction cascades that modulate the epigenome and transcriptome of cell types involved in the disease process. Multiple sclerosis (MS) is an autoimmune disease affecting the central nervous system being characterized by a combination of recurring inflammation, demyelination and progressive loss of axons. The mechanisms of MS onset are not fully understood and genetic variants may explain only some 20% of the disease susceptibility. From the environmental factors being involved in disease development low vitamin D levels have been shown to significantly contribute to MS susceptibility. The pro-hormone vitamin D3 acts via its metabolite 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) as a high affinity ligand to the transcription factor VDR (vitamin D receptor) and is a potent modulator of the epigenome at thousands of genomic regions and the transcriptome of hundreds of genes. A major target tissue of the effects of 1,25(OH)2D3 and VDR are cells of innate and adaptive immunity, such as monocytes, dendritic cells as well as B and T cells. Vitamin D induces immunological tolerance in T cells and reduces inflammatory reactions of various types of immune cells, all of which are implicated in MS pathogenesis. The immunomodulatory effects of 1,25(OH)2D3 contribute to the prevention of MS. However, the strength of the responses to vitamin D3 supplementation is highly variegated between individuals. This review will relate mechanisms of individual's vitamin D responsiveness to MS susceptibility and discuss the prospect of vitamin D3 supplementation as a way to extinguish the autoimmunity in MS.
Collapse
Affiliation(s)
- Carsten Carlberg
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Marcin P. Mycko
- Department of Neurology, Laboratory of Neuroimmunology, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland;
| |
Collapse
|
17
|
Radwan MO, Kadasah SF, Aljubiri SM, Alrefaei AF, El-Maghrabey MH, El Hamd MA, Tateishi H, Otsuka M, Fujita M. Harnessing Oleanolic Acid and Its Derivatives as Modulators of Metabolic Nuclear Receptors. Biomolecules 2023; 13:1465. [PMID: 37892147 PMCID: PMC10604226 DOI: 10.3390/biom13101465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Nuclear receptors (NRs) constitute a superfamily of ligand-activated transcription factors with a paramount role in ubiquitous physiological functions such as metabolism, growth, and reproduction. Owing to their physiological role and druggability, NRs are deemed attractive and valid targets for medicinal chemists. Pentacyclic triterpenes (PTs) represent one of the most important phytochemical classes present in higher plants, where oleanolic acid (OA) is the most studied PTs representative owing to its multitude of biological activities against cancer, inflammation, diabetes, and liver injury. PTs possess a lipophilic skeleton that imitates the NRs endogenous ligands. Herein, we report a literature overview on the modulation of metabolic NRs by OA and its semi-synthetic derivatives, highlighting their health benefits and potential therapeutic applications. Indeed, OA exhibited varying pharmacological effects on FXR, PPAR, LXR, RXR, PXR, and ROR in a tissue-specific manner. Owing to these NRs modulation, OA showed prominent hepatoprotective properties comparable to ursodeoxycholic acid (UDCA) in a bile duct ligation mice model and antiatherosclerosis effect as simvastatin in a model of New Zealand white (NZW) rabbits. It also demonstrated a great promise in alleviating non-alcoholic steatohepatitis (NASH) and liver fibrosis, attenuated alpha-naphthol isothiocyanate (ANIT)-induced cholestatic liver injury, and controlled blood glucose levels, making it a key player in the therapy of metabolic diseases. We also compiled OA semi-synthetic derivatives and explored their synthetic pathways and pharmacological effects on NRs, showcasing their structure-activity relationship (SAR). To the best of our knowledge, this is the first review article to highlight OA activity in terms of NRs modulation.
Collapse
Affiliation(s)
- Mohamed O. Radwan
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.T.); (M.O.); (M.F.)
| | - Sultan F. Kadasah
- Department of Biology, Faculty of Science, University of Bisha, Bisha 61922, Saudi Arabia;
| | - Salha M. Aljubiri
- Department of Chemistry, College of Science, University of Bisha, Bisha 61922, Saudi Arabia;
| | | | - Mahmoud H. El-Maghrabey
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt;
| | - Mohamed A. El Hamd
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt
| | - Hiroshi Tateishi
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.T.); (M.O.); (M.F.)
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.T.); (M.O.); (M.F.)
- Department of Drug Discovery, Science Farm Ltd., Kumamoto 862-0976, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.T.); (M.O.); (M.F.)
| |
Collapse
|
18
|
Liang Y, Gong Y, Jiang Q, Yu Y, Zhang J. Environmental endocrine disruptors and pregnane X receptor action: A review. Food Chem Toxicol 2023; 179:113976. [PMID: 37532173 DOI: 10.1016/j.fct.2023.113976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/11/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023]
Abstract
The pregnane X receptor (PXR) is a kind of orphan nuclear receptor activated by a series of ligands. Environmental endocrine disruptors (EEDs) are a wide class of molecules present in the environment that are suspected to have adverse effects on the endocrine system by interfering with the synthesis, transport, degradation, or action of endogenous hormones. Since EEDs may modulate human/rodent PXR, this review aims to summarize EEDs as PXR modulators, including agonists and antagonists. The modular structure of PXR is also described, interestingly, the pharmacology of PXR have been confirmed to vary among different species. Furthermore, PXR play a key role in the regulation of endocrine function. Endocrine disruption of EEDs via PXR and its related pathways are systematically summarized. In brief, this review may provide a way to understand the roles of EEDs in interaction with the nuclear receptors (such as PXR) and the related pathways.
Collapse
Affiliation(s)
- Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yiyao Gong
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Qiuyan Jiang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yifan Yu
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
19
|
Carlberg C, Raczyk M, Zawrotna N. Vitamin D: A master example of nutrigenomics. Redox Biol 2023; 62:102695. [PMID: 37043983 PMCID: PMC10119805 DOI: 10.1016/j.redox.2023.102695] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Nutrigenomics attempts to characterize and integrate the relation between dietary molecules and gene expression on a genome-wide level. One of the biologically active nutritional compounds is vitamin D3, which activates via its metabolite 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) the nuclear receptor VDR (vitamin D receptor). Vitamin D3 can be synthesized endogenously in our skin, but since we spend long times indoors and often live at higher latitudes where for many winter months UV-B radiation is too low, it became a true vitamin. The ligand-inducible transcription factor VDR is expressed in the majority of human tissues and cell types, where it modulates the epigenome at thousands of genomic sites. In a tissue-specific fashion this results in the up- and downregulation of primary vitamin D target genes, some of which are involved in attenuating oxidative stress. Vitamin D affects a wide range of physiological functions including the control of metabolism, bone formation and immunity. In this review, we will discuss how the epigenome- and transcriptome-wide effects of 1,25(OH)2D3 and its receptor VDR serve as a master example in nutrigenomics. In this context, we will outline the basis of a mechanistic understanding for personalized nutrition with vitamin D3.
Collapse
|
20
|
Bile acids and their receptors in regulation of gut health and diseases. Prog Lipid Res 2023; 89:101210. [PMID: 36577494 DOI: 10.1016/j.plipres.2022.101210] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/26/2022]
Abstract
It is well established that bile acids play important roles in lipid metabolism. In recent decades, bile acids have also been shown to function as signaling molecules via interacting with various receptors. Bile acids circulate continuously through the enterohepatic circulation and go through microbial transformation by gut microbes, and thus bile acids metabolism has profound effects on the liver and intestinal tissues as well as the gut microbiota. Farnesoid X receptor and G protein-coupled bile acid receptor 1 are two pivotal bile acid receptors that highly expressed in the intestinal tissues, and they have emerged as pivotal regulators in bile acids metabolism, innate immunity and inflammatory responses. There is considerable interest in manipulating the metabolism of bile acids and the expression of bile acid receptors as this may be a promising strategy to regulate intestinal health and disease. This review aims to summarize the roles of bile acids and their receptors in regulation of gut health and diseases.
Collapse
|
21
|
Henn M, Martin-Gorgojo V, Martin-Moreno JM. Vitamin D in Cancer Prevention: Gaps in Current Knowledge and Room for Hope. Nutrients 2022; 14:4512. [PMID: 36364774 PMCID: PMC9657468 DOI: 10.3390/nu14214512] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 08/03/2023] Open
Abstract
Intensive epigenome and transcriptome analyses have unveiled numerous biological mechanisms, including the regulation of cell differentiation, proliferation, and induced apoptosis in neoplastic cells, as well as the modulation of the antineoplastic action of the immune system, which plausibly explains the observed population-based relationship between low vitamin D status and increased cancer risk. However, large randomized clinical trials involving cholecalciferol supplementation have so far failed to show the potential of such interventions in cancer prevention. In this article, we attempt to reconcile the supposed contradiction of these findings by undertaking a thorough review of the literature, including an assessment of the limitations in the design, conduct, and analysis of the studies conducted thus far. We examine the long-standing dilemma of whether the beneficial effects of vitamin D levels increase significantly above a critical threshold or if the conjecture is valid that an increase in available cholecalciferol translates directly into an increase in calcitriol activity. In addition, we try to shed light on the high interindividual epigenetic and transcriptomic variability in response to cholecalciferol supplementation. Moreover, we critically review the standards of interpretation of the available study results and propose criteria that could allow us to reach sound conclusions in this field. Finally, we advocate for options tailored to individual vitamin D needs, combined with a comprehensive intervention that favors prevention through a healthy environment and responsible health behaviors.
Collapse
Affiliation(s)
- Matthias Henn
- Department of Preventive Medicine and Public Health, University of Navarra-IdiSNA (Instituto de Investigación Sanitaria de Navarra), 31008 Pamplona, Spain
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Victor Martin-Gorgojo
- Biomedical Research Institute INCLIVA, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
- Orthopedic Surgery and Traumatology Department, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - Jose M. Martin-Moreno
- Biomedical Research Institute INCLIVA, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
- Department of Preventive Medicine and Public Health, Universitat de Valencia, 46010 Valencia, Spain
| |
Collapse
|
22
|
Ma ZH, Wang XM, Wu RH, Hao DL, Sun LC, Li P, Niu JQ. Serum metabolic profiling of targeted bile acids reveals potentially novel biomarkers for primary biliary cholangitis and autoimmune hepatitis. World J Gastroenterol 2022; 28:5764-5783. [PMID: 36338890 PMCID: PMC9627419 DOI: 10.3748/wjg.v28.i39.5764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/07/2022] [Accepted: 09/23/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Primary biliary cholangitis (PBC) and autoimmune hepatitis (AIH) are two unexplained immune diseases. The golden standard for diagnosis of these diseases requires a liver biopsy. Liver biopsy is not widely accepted by patients because of its invasive nature, and atypical liver histology can confuse diagnosis. In view of the lack of effective diagnostic markers for PBC and AIH, combined with the increasingly mature metabolomics technologies, including full-contour metabolomics and target.
AIM To determine non-invasive, reliable, and sensitive biochemical markers for the differential diagnosis of PBC and AIH.
METHODS Serum samples from 54 patients with PBC, 26 patients with AIH and 30 healthy controls were analyzed by Ultra-high performance liquid chromatography-tandem mass spectrometry serum metabolomics. The metabolites and metabolic pathways were identified, and the metabolic changes, metabolic pathways and inter-group differences between PBC and AIH were analyzed. Fifteen kinds of target metabolites of bile acids (BAs) were quantitatively analyzed by SRM, and the differential metabolites related to the diagnosis of PBC were screened by receiver operating characteristic curve analysis.
RESULTS We found the changes in the levels of amino acids, BAs, organic acids, phospholipids, choline, sugar, and sugar alcohols in patients with PBC and AIH. Furthermore, the SRM assay of BAs revealed the increased levels of chenodeoxycholic acid, lithocholic acid (LCA), taurolithocholic acid (TLCA), and LCA + TLCA in the PBC group compared with those in the AIH group. The levels of BAs may be used as biomarkers to differentiate PBC from AIH diseases. The levels of glycochenodeoxycholic acid, glycochenodeoxycholic sulfate, and taurodeoxycholic acid were gradually elevated with the increase of Child-Pugh class, which was correlated with the severity of disease.
CONCLUSION The results demonstrated that the levels of BAs could serve as potential biomarkers for the early diagnosis and assessment of the severity of PBC and AIH.
Collapse
Affiliation(s)
- Zhen-Hua Ma
- Department of Infection and Hepatology, The Affiliated Hospital of Beihua University, Jilin 132011, Jilin Province, China
| | - Xiao-Mei Wang
- Department of Hepatology, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| | - Rui-Hong Wu
- Department of Hepatology, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| | - Da-Lin Hao
- Department of Infection and Hepatology, The Affiliated Hospital of Beihua University, Jilin 132011, Jilin Province, China
| | - Li-Chao Sun
- Department of Infection and Hepatology, The Affiliated Hospital of Beihua University, Jilin 132011, Jilin Province, China
| | - Pan Li
- Department of Pathology, The Affiliated Hospital of Beihua University, Jilin 132011, Jilin Province, China
| | - Jun-Qi Niu
- Department of Hepatology, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| |
Collapse
|
23
|
Jahanbani F, Maynard RD, Sing JC, Jahanbani S, Perrino JJ, Spacek DV, Davis RW, Snyder MP. Phenotypic characteristics of peripheral immune cells of Myalgic encephalomyelitis/chronic fatigue syndrome via transmission electron microscopy: A pilot study. PLoS One 2022; 17:e0272703. [PMID: 35943990 PMCID: PMC9362953 DOI: 10.1371/journal.pone.0272703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/25/2022] [Indexed: 01/06/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex chronic multi-systemic disease characterized by extreme fatigue that is not improved by rest, and worsens after exertion, whether physical or mental. Previous studies have shown ME/CFS-associated alterations in the immune system and mitochondria. We used transmission electron microscopy (TEM) to investigate the morphology and ultrastructure of unstimulated and stimulated ME/CFS immune cells and their intracellular organelles, including mitochondria. PBMCs from four participants were studied: a pair of identical twins discordant for moderate ME/CFS, as well as two age- and gender- matched unrelated subjects-one with an extremely severe form of ME/CFS and the other healthy. TEM analysis of CD3/CD28-stimulated T cells suggested a significant increase in the levels of apoptotic and necrotic cell death in T cells from ME/CFS patients (over 2-fold). Stimulated Tcells of ME/CFS patients also had higher numbers of swollen mitochondria. We also found a large increase in intracellular giant lipid droplet-like organelles in the stimulated PBMCs from the extremely severe ME/CFS patient potentially indicative of a lipid storage disorder. Lastly, we observed a slight increase in platelet aggregation in stimulated cells, suggestive of a possible role of platelet activity in ME/CFS pathophysiology and disease severity. These results indicate extensive morphological alterations in the cellular and mitochondrial phenotypes of ME/CFS patients' immune cells and suggest new insights into ME/CFS biology.
Collapse
Affiliation(s)
- Fereshteh Jahanbani
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Rajan D. Maynard
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Justin Cyril Sing
- Department of Molecular Genetics, Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Shaghayegh Jahanbani
- Division of Immunology and Rheumatology, Stanford University School of Medicine, and VA Palo Alto Health Care System, Palo Alto, California, United States of America
| | - John J. Perrino
- Stanford Cell Sciences Imaging Facility (CSIF), Stanford University School of Medicine Stanford, Stanford, California, United States of America
| | - Damek V. Spacek
- Karius Incorporated, Redwood City, California, United States of America
| | - Ronald W. Davis
- ME/CFS Collaborative Research Center at Stanford, Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Michael P. Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
24
|
Lai R, Hsu C, Yu B, Lo Y, Hsu Y, Chen M, Juang J. Vitamin D supplementation worsens Alzheimer's progression: Animal model and human cohort studies. Aging Cell 2022; 21:e13670. [PMID: 35822270 PMCID: PMC9381901 DOI: 10.1111/acel.13670] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 01/30/2023] Open
Abstract
Vitamin D deficiency has been epidemiologically linked to Alzheimer's disease (AD) and other dementias, but no interventional studies have proved causality. Our previous work revealed that the genomic vitamin D receptor (VDR) is already converted into a non-genomic signaling pathway by forming a complex with p53 in the AD brain. Here, we extend our previous work to assess whether it is beneficial to supplement AD mice and humans with vitamin D. Intriguingly, we first observed that APP/PS1 mice fed a vitamin D-sufficient diet showed significantly lower levels of serum vitamin D, suggesting its deficiency may be a consequence not a cause of AD. Moreover, supplementation of vitamin D led to increased Aβ deposition and exacerbated AD. Mechanistically, vitamin D supplementation did not rescue the genomic VDR/RXR complex but instead enhanced the non-genomic VDR/p53 complex in AD brains. Consistently, our population-based longitudinal study also showed that dementia-free older adults (n = 14,648) taking vitamin D3 supplements for over 146 days/year were 1.8 times more likely to develop dementia than those not taking the supplements. Among those with pre-existing dementia (n = 980), those taking vitamin D3 supplements for over 146 days/year had 2.17 times the risk of mortality than those not taking the supplements. Collectively, these animal model and human cohort studies caution against prolonged use of vitamin D by AD patients.
Collapse
Affiliation(s)
- Rai‐Hua Lai
- Institute of Molecular and Genomic MedicineNational Health Research InstitutesMiaoliTaiwan
| | - Chih‐Cheng Hsu
- National Center for Geriatrics and Welfare ResearchNational Health Research InstitutesMiaoliTaiwan
- Institute of Population Health SciencesNational Health Research InstitutesMiaoliTaiwan
- Department of Health Services AdministrationChina Medical UniversityTaichungTaiwan
- Department of Family MedicineMin‐Sheng General HospitalTaoyuanTaiwan
| | - Ben‐Hui Yu
- Institute of Population Health SciencesNational Health Research InstitutesMiaoliTaiwan
| | - Yu‐Ru Lo
- Institute of Population Health SciencesNational Health Research InstitutesMiaoliTaiwan
| | - Yueh‐Ying Hsu
- Institute of Molecular and Genomic MedicineNational Health Research InstitutesMiaoliTaiwan
| | - Mei‐Hsin Chen
- Institute of Molecular and Genomic MedicineNational Health Research InstitutesMiaoliTaiwan
| | - Jyh‐Lyh Juang
- Institute of Molecular and Genomic MedicineNational Health Research InstitutesMiaoliTaiwan
- Ph.D. Program for AgingChina Medical UniversityTaichungTaiwan
| |
Collapse
|
25
|
Vitamin D in the Context of Evolution. Nutrients 2022; 14:nu14153018. [PMID: 35893872 PMCID: PMC9332464 DOI: 10.3390/nu14153018] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/12/2022] Open
Abstract
For at least 1.2 billion years, eukaryotes have been able to synthesize sterols and, therefore, can produce vitamin D when exposed to UV-B. Vitamin D endocrinology was established some 550 million years ago in animals, when the high-affinity nuclear receptor VDR (vitamin D receptor), transport proteins and enzymes for vitamin D metabolism evolved. This enabled vitamin D to regulate, via its target genes, physiological process, the first of which were detoxification and energy metabolism. In this way, vitamin D was enabled to modulate the energy-consuming processes of the innate immune system in its fight against microbes. In the evolving adaptive immune system, vitamin D started to act as a negative regulator of growth, which prevents overboarding reactions of T cells in the context of autoimmune diseases. When, some 400 million years ago, species left the ocean and were exposed to gravitation, vitamin D endocrinology took over the additional role as a major regulator of calcium homeostasis, being important for a stable skeleton. Homo sapiens evolved approximately 300,000 years ago in East Africa and had adapted vitamin D endocrinology to the intensive exposure of the equatorial sun. However, when some 75,000 years ago, when anatomically modern humans started to populate all continents, they also reached regions with seasonally low or no UV-B, i.e., and under these conditions vitamin D became a vitamin.
Collapse
|
26
|
Zhou W, Anakk S. Enterohepatic and non-canonical roles of farnesoid X receptor in controlling lipid and glucose metabolism. Mol Cell Endocrinol 2022; 549:111616. [PMID: 35304191 PMCID: PMC9245558 DOI: 10.1016/j.mce.2022.111616] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 01/24/2022] [Indexed: 12/11/2022]
Abstract
Farnesoid X receptor (FXR) is a nuclear receptor that transcriptionally regulates bile acid homeostasis along with nutrient metabolism. In addition to the gastrointestinal (GI) tract, FXR expression has been widely noted in kidney, adrenal gland, pancreas, adipose, skeletal muscle, heart, and brain. Except for the liver and gut, the relevance of FXR signaling in metabolism in other tissues remains poorly understood. This review examines the classical and non-canonical tissue-specific roles of FXR in regulating, lipids, and glucose homeostasis under normal and diseased states. FXR activation has been reported to be protective against cholestasis, nonalcoholic fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH), type 2 diabetes, cardiovascular and kidney diseases. Several ongoing clinical trials are investigating FXR ligands as a therapeutic target for primary biliary cholangitis (PBC) and NASH, which substantiate the significance of FXR signaling in modulating metabolic processes. This review highlights that FXR ligands, albeit an attractive therapeutic target for treating metabolic diseases, tissue-specific modulation of FXR may be the key to overcoming some of the adverse clinical effects.
Collapse
Affiliation(s)
- Weinan Zhou
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sayeepriyadarshini Anakk
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
27
|
Dutta M, Lim JJ, Cui JY. Pregnane X Receptor and the Gut-Liver Axis: A Recent Update. Drug Metab Dispos 2022; 50:478-491. [PMID: 34862253 PMCID: PMC11022899 DOI: 10.1124/dmd.121.000415] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 12/02/2021] [Indexed: 02/04/2023] Open
Abstract
It is well-known that the pregnane X receptor (PXR)/Nr1i2 is a critical xenobiotic-sensing nuclear receptor enriched in liver and intestine and is responsible for drug-drug interactions, due to its versatile ligand binding domain (LBD) and target genes involved in xenobiotic biotransformation. PXR can be modulated by various xenobiotics including pharmaceuticals, nutraceuticals, dietary factors, and environmental chemicals. Microbial metabolites such as certain secondary bile acids (BAs) and the tryptophan metabolite indole-3-propionic acid (IPA) are endogenous PXR activators. Gut microbiome is increasingly recognized as an important regulator for host xenobiotic biotransformation and intermediary metabolism. PXR regulates and is regulated by the gut-liver axis. This review summarizes recent research advancements leveraging pharmaco- and toxico-metagenomic approaches that have redefined the previous understanding of PXR. Key topics covered in this review include: (1) genome-wide investigations on novel PXR-target genes, novel PXR-DNA interaction patterns, and novel PXR-targeted intestinal bacteria; (2) key PXR-modulating activators and suppressors of exogenous and endogenous sources; (3) novel bidirectional interactions between PXR and gut microbiome under physiologic, pathophysiological, pharmacological, and toxicological conditions; and (4) modifying factors of PXR-signaling including species and sex differences and time (age, critical windows of exposure, and circadian rhythm). The review also discusses critical knowledge gaps and important future research topics centering around PXR. SIGNIFICANCE STATEMENT: This review summarizes recent research advancements leveraging O'mics approaches that have redefined the previous understanding of the xenobiotic-sensing nuclear receptor pregnane X receptor (PXR). Key topics include: (1) genome-wide investigations on novel PXR-targeted host genes and intestinal bacteria as well as novel PXR-DNA interaction patterns; (2) key PXR modulators including microbial metabolites under physiological, pathophysiological, pharmacological, and toxicological conditions; and (3) modifying factors including species, sex, and time.
Collapse
Affiliation(s)
- Moumita Dutta
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Joe Jongpyo Lim
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| |
Collapse
|
28
|
Lai R, Hsu Y, Shie F, Huang C, Chen M, Juang J. Non-genomic rewiring of vitamin D receptor to p53 as a key to Alzheimer's disease. Aging Cell 2021; 20:e13509. [PMID: 34725922 PMCID: PMC8672786 DOI: 10.1111/acel.13509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/03/2021] [Accepted: 10/17/2021] [Indexed: 01/14/2023] Open
Abstract
Observational epidemiological studies have associated vitamin D deficiency with Alzheimer's disease (AD). However, whether vitamin D deficiency would result in some impacts on the vitamin D binding receptor (VDR) remains to be characterized in AD. Vitamin D helps maintain adult brain health genomically through binding with and activating a VDR/retinoid X receptor (RXR) transcriptional complex. Thus, we investigated the role of VDR in AD using postmortem human brains, APP/PS1 mice, and cell cultures. Intriguingly, although vitamin D was decreased in AD patients and mice, hippocampal VDR levels were inversely increased. The abnormally increased levels of VDR were found to be colocalized with Aβ plaques, gliosis and autophagosomes, implicating a non-genomic activation of VDR in AD pathogenesis. Mechanistic investigation revealed that Aβ upregulated VDR without its canonical ligand vitamin D and switched its heterodimer binding-partner from RXR to p53. The VDR/p53 complex localized mostly in the cytosol, increased neuronal autophagy and apoptosis. Chemically inhibiting p53 switched VDR back to RXR, reversing amyloidosis and cognitive impairment in AD mice. These results suggest a non-genomic rewiring of VDR to p53 is key for the progression of AD, and thus VDR/p53 pathway might be targeted to treat people with AD.
Collapse
Affiliation(s)
- Rai‐Hua Lai
- Institute of Molecular and Genomic MedicineNational Health Research InstitutesZhunanTaiwan
| | - Yueh‐Ying Hsu
- Institute of Molecular and Genomic MedicineNational Health Research InstitutesZhunanTaiwan
| | - Feng‐Shiun Shie
- Division of Mental Health and Addiction MedicineNational Health Research InstitutesZhunanTaiwan
| | - Che‐Ching Huang
- Institute of Molecular and Genomic MedicineNational Health Research InstitutesZhunanTaiwan
- Graduate Program of Biotechnology in MedicineDepartment of Life SciencesNTHU & NHRINational Tsing Hua UniversityHsinchuTaiwan
| | - Mei‐Hsin Chen
- Institute of Molecular and Genomic MedicineNational Health Research InstitutesZhunanTaiwan
| | - Jyh‐Lyh Juang
- Institute of Molecular and Genomic MedicineNational Health Research InstitutesZhunanTaiwan
- Ph.D. Program for AgingChina Medical UniversityTaichungTaiwan
| |
Collapse
|
29
|
FXR, a Key Regulator of Lipid Metabolism, Is Inhibited by ER Stress-Mediated Activation of JNK and p38 MAPK in Large Yellow Croakers ( Larimichthys crocea) Fed High Fat Diets. Nutrients 2021; 13:nu13124343. [PMID: 34959897 PMCID: PMC8706856 DOI: 10.3390/nu13124343] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 12/13/2022] Open
Abstract
High-fat diets induced abnormal lipid accumulation in the liver of cultured fish that caused body damage and diseases. The purpose of this research was to investigate the role and mechanism of farnesoid X receptor (FXR) in regulating lipid metabolism and to determine how high-fat diets affect FXR expression in large yellow croakers. The results showed that ligand-meditated FXR-activation could prevent abnormal lipid accumulation in the liver and hepatocytes of large yellow croakers. FXR activation increased the expression of lipid catabolism-related genes while decreasing the expression of lipogenesis-related genes. Further investigation found that the promoter activity of proliferator-activated receptor α (PPARα) could be increased by croaker FXR. Through the influence of SHP on LXR, FXR indirectly decreased the promoter activity of sterol regulatory element binding protein 1 (SREBP1) in large yellow croakers. Furthermore, the findings revealed that endoplasmic reticulum (ER)-stress-induced-activation of JNK and P38 MAPK participated in the reduction of FXR induced by high-fat diets. Then, hepatocyte nuclear factor 1α (HNF1α) was confirmed to be an FXR regulator in large yellow croaker, and it was reduced by high-fat diets and ER stress. In addition, co-expression of c-Jun with HNF1α inhibited the effect of HNF1α on FXR promoter, and suppression of P38 MAPK could relieve the HNF1α expression reduction caused by ER stress activation. In summary, the present study showed that FXR mediated lipid metabolism can prevent abnormal lipid accumulation through regulating PPARα and SREBP1 in large yellow croakers, while high-fat diets can suppress FXR expression by ER stress mediated-activation of JNK and P38 MAPK pathways. This research could benefit the study of FXR functions in vertebrate evolution and the development of therapy or preventative methods for nutrition-related disorders.
Collapse
|
30
|
De Anna JS, Darraz LA, Painefilú JC, Cárcamo JG, Moura-Alves P, Venturino A, Luquet CM. The insecticide chlorpyrifos modifies the expression of genes involved in the PXR and AhR pathways in the rainbow trout, Oncorhynchus mykiss. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 178:104920. [PMID: 34446196 DOI: 10.1016/j.pestbp.2021.104920] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/01/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Chlorpyrifos (CPF) is an organophosphate pesticide, commonly detected in water and food. Despite CPF toxicity on aquatic species has been extensively studied, few studies analyze the effects of CPF on fish transcriptional pathways. The Pregnane X receptor (PXR) is a nuclear receptor that is activated by binding to a wide variety of ligands and regulates the transcription of enzymes involved in the metabolism and transport of many endogenous and exogenous compounds. We evaluated the mRNA expression of PXR-regulated-genes (PXR, CYP3A27, CYP2K1, ABCB1, UGT, and ABCC2) in intestine and liver of the rainbow trout, Oncorhynchus mykiss, exposed in vivo to an environmentally relevant CPF concentration. Our results demonstrate that the expression of PXR and PXR-regulated genes is increased in O. mykiss liver and intestine upon exposure to CPF. Additionally, we evaluated the impact of CPF on other cellular pathway involved in xenobiotic metabolism, the Aryl Hydrocarbon Receptor (AhR) pathway, and on the expression and activity of different biotransformation enzymes (CYP2M1, GST, FMO1, or cholinesterases (ChEs)). In contrast to PXR, the expression of AhR, and its target gene CYP1A, are reduced upon CPF exposure. Furthermore, ChE and CYP1A activities are significantly inhibited by CPF, in both the intestine and the liver. CPF activates the PXR pathway in O. mykiss in the intestine and liver, with a more profound effect in the intestine. Likewise, our results support regulatory crosstalk between PXR and AhR pathways, where the induction of PXR coincides with the downregulation of AhR-mediated CYP1A mRNA expression and activity in the intestine.
Collapse
Affiliation(s)
- Julieta S De Anna
- Laboratorio de Ecotoxicología Acuática, INIBIOMA- CONICET- CEAN, Ruta Provincial 61, Km 3, Junín de los Andes, Neuquén, Argentina
| | - Luis Arias Darraz
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Independencia 641, Campus Isla Teja, Valdivia, Chile
| | - Julio C Painefilú
- Laboratorio de Ecotoxicología Acuática, INIBIOMA- CONICET- CEAN, Ruta Provincial 61, Km 3, Junín de los Andes, Neuquén, Argentina
| | - Juan G Cárcamo
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Independencia 641, Campus Isla Teja, Valdivia, Chile; Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR), Chile
| | - Pedro Moura-Alves
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Andrés Venturino
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue, CITAAC, UNCo-CONICET, Instituto de Biotecnología Agropecuaria del Comahue, Facultad de Ciencias Agrarias, Universidad Nacional del Comahue, Ruta 151, km 12, 8303 Cinco Saltos, Río Negro, Argentina
| | - Carlos M Luquet
- Laboratorio de Ecotoxicología Acuática, INIBIOMA- CONICET- CEAN, Ruta Provincial 61, Km 3, Junín de los Andes, Neuquén, Argentina.
| |
Collapse
|
31
|
Vitamin D and the risk for cancer: A molecular analysis. Biochem Pharmacol 2021; 196:114735. [PMID: 34411566 DOI: 10.1016/j.bcp.2021.114735] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 02/08/2023]
Abstract
Uncontrolled overgrowth of cells, such as in cancer, is an unavoidable risk in life that affects nearly every second individual in industrialized countries. However, in part this risk can be controlled through lifestyle adjustments, such as the avoidance of smoking, unhealthy diet, obesity, physical inactivity and other cancer risk factors. A low vitaminD status is a risk in particular for cancers of colon, prostate, breast and leukocytes. VitaminD3 is produced non-enzymatically, when the cholesterol precursor 7-dehydrocholesterol is exposed to UV-B from sunlight, i.e., all cholesterol synthesizing species, including humans, can make vitaminD3. VitaminD endocrinology started some 550million years ago, when the metabolite 1α,25-dihydroxyvitaminD3 and the transcription factor vitaminD receptor teamed up for regulating the expression of hundreds of target genes in a multitude of different tissues and cell types. Initially, these genes were focused on the control of energy homeostasis, which later also involved energy-demanding innate and adaptive immunity. Rapidly growing cells of the immune system as well as those of malignant tumors rely on comparable genes and pathways, some of which are modulated by vitaminD. Accordingly, vitaminD has anti-cancer effects both directly via controling the differentiation, proliferation and apoptosis of neoplastic cells as well as indirectly through regulating immune cells that belong to the microenvironment of malignant tumors. This review discusses effects of vitaminD on the epigenome and transcriptome of stromal and tumor cells, inter-individual variations in vitaminD responsiveness and their relation to the prevention and possible therapy of cancer.
Collapse
|
32
|
Kashyap K, Siddiqi MI. Recent trends in artificial intelligence-driven identification and development of anti-neurodegenerative therapeutic agents. Mol Divers 2021; 25:1517-1539. [PMID: 34282519 DOI: 10.1007/s11030-021-10274-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022]
Abstract
Neurological disorders affect various aspects of life. Finding drugs for the central nervous system is a very challenging and complex task due to the involvement of the blood-brain barrier, P-glycoprotein, and the drug's high attrition rates. The availability of big data present in online databases and resources has enabled the emergence of artificial intelligence techniques including machine learning to analyze, process the data, and predict the unknown data with high efficiency. The use of these modern techniques has revolutionized the whole drug development paradigm, with an unprecedented acceleration in the central nervous system drug discovery programs. Also, the new deep learning architectures proposed in many recent works have given a better understanding of how artificial intelligence can tackle big complex problems that arose due to central nervous system disorders. Therefore, the present review provides comprehensive and up-to-date information on machine learning/artificial intelligence-triggered effort in the brain care domain. In addition, a brief overview is presented on machine learning algorithms and their uses in structure-based drug design, ligand-based drug design, ADMET prediction, de novo drug design, and drug repurposing. Lastly, we conclude by discussing the major challenges and limitations posed and how they can be tackled in the future by using these modern machine learning/artificial intelligence approaches.
Collapse
Affiliation(s)
- Kushagra Kashyap
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Drug Research Institute (CSIR-CDRI) Campus, Lucknow, India.,Molecular and Structural Biology Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Mohammad Imran Siddiqi
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Drug Research Institute (CSIR-CDRI) Campus, Lucknow, India. .,Molecular and Structural Biology Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.
| |
Collapse
|
33
|
Arnesdotter E, Spinu N, Firman J, Ebbrell D, Cronin MTD, Vanhaecke T, Vinken M. Derivation, characterisation and analysis of an adverse outcome pathway network for human hepatotoxicity. Toxicology 2021; 459:152856. [PMID: 34252478 DOI: 10.1016/j.tox.2021.152856] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/17/2021] [Accepted: 07/07/2021] [Indexed: 12/27/2022]
Abstract
Adverse outcome pathways (AOPs) and their networks are important tools for the development of mechanistically based non-animal testing approaches, such as in vitro and/or in silico assays, to assess toxicity induced by chemicals. In the present study, an AOP network connecting 14 linear AOPs related to human hepatotoxicity, currently available in the AOP-Wiki, was derived according to established criteria. The derived AOP network was characterised and analysed with regard to its structure and topological features. In-depth analysis of the AOP network showed that cell injury/death, oxidative stress, mitochondrial dysfunction and accumulation of fatty acids are the most highly connected and central key events. Consequently, these key events may be considered as the rational and mechanistically anchored basis for selecting, developing and/optimising in vitro and/or in silico assays to predict hepatotoxicity induced by chemicals in view of animal-free hazard identification.
Collapse
Affiliation(s)
- Emma Arnesdotter
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Jette, Brussels, Belgium.
| | - Nicoleta Spinu
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK.
| | - James Firman
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK.
| | - David Ebbrell
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK.
| | - Mark T D Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK.
| | - Tamara Vanhaecke
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Jette, Brussels, Belgium.
| | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Jette, Brussels, Belgium.
| |
Collapse
|
34
|
Zhang F, Wang C, Jiang Y, Huang K, Liu F, Du M, Luo X, Huang D, Huang K. Yin and Yang Regulation of Liver X Receptor α Signaling Control of Cholesterol Metabolism by Poly(ADP-ribose) polymerase 1. Int J Biol Sci 2020; 16:2868-2882. [PMID: 33061802 PMCID: PMC7545717 DOI: 10.7150/ijbs.50042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 08/22/2020] [Indexed: 01/14/2023] Open
Abstract
Liver X receptor α (LXRα) controls a set of key genes involved in cholesterol metabolism. However, the molecular mechanism of this regulation remains unknown. The regulatory role of poly(ADP-ribose) polymerase 1 (PARP1) in cholesterol metabolism in the liver was examined. Activation of PARP1 in the liver suppressed LXRα sensing and prevented upregulation of genes involved in HCD-induced cholesterol disposal. Mechanistically, LXRα was poly(ADP-ribosyl)ated by activated PARP1, which decreased DNA binding capacity of LXRα, thus preventing its recruitment to the target promoter. Intriguingly, we found that unactivated PARP1 was indispensable for LXRα transactivation and target expression. Further exploration identified unactivated PARP1 as an essential component of the LXRα-promoter complex. Taken together, the results indicate that activated PARP1 suppresses LXRα activation through poly(ADP-ribosyl)ation, while unactivated PARP1 promotes LXRα activation through physical interaction. PARP1 is a pivotal regulator of LXRα signaling and cholesterol metabolism in the liver.
Collapse
Affiliation(s)
- Fengxiao Zhang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology.,Clinical Center for Human Genomic Research, Union Hospital, Huazhong University of Science and Technology
| | - Cheng Wang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Yuhan Jiang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology.,Clinical Center for Human Genomic Research, Union Hospital, Huazhong University of Science and Technology
| | - Kun Huang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology.,Clinical Center for Human Genomic Research, Union Hospital, Huazhong University of Science and Technology
| | - Fangmei Liu
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Meng Du
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Xi Luo
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Dan Huang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology.,Clinical Center for Human Genomic Research, Union Hospital, Huazhong University of Science and Technology
| | - Kai Huang
- Clinical Center for Human Genomic Research, Union Hospital, Huazhong University of Science and Technology
| |
Collapse
|
35
|
Jones BG, Penkert RR, Surman SL, Sealy RE, Hurwitz JL. Nuclear Receptors, Ligands and the Mammalian B Cell. Int J Mol Sci 2020; 21:E4997. [PMID: 32679815 PMCID: PMC7404052 DOI: 10.3390/ijms21144997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/22/2022] Open
Abstract
Questions concerning the influences of nuclear receptors and their ligands on mammalian B cells are vast in number. Here, we briefly review the effects of nuclear receptor ligands, including estrogen and vitamins, on immunoglobulin production and protection from infectious diseases. We describe nuclear receptor interactions with the B cell genome and the potential mechanisms of gene regulation. Attention to the nuclear receptor/ligand regulation of B cell function may help optimize B cell responses, improve pathogen clearance, and prevent damaging responses toward inert- and self-antigens.
Collapse
Affiliation(s)
- Bart G. Jones
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (B.G.J.); (R.R.P.); (S.L.S.); (R.E.S.)
| | - Rhiannon R. Penkert
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (B.G.J.); (R.R.P.); (S.L.S.); (R.E.S.)
| | - Sherri L. Surman
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (B.G.J.); (R.R.P.); (S.L.S.); (R.E.S.)
| | - Robert E. Sealy
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (B.G.J.); (R.R.P.); (S.L.S.); (R.E.S.)
| | - Julia L. Hurwitz
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (B.G.J.); (R.R.P.); (S.L.S.); (R.E.S.)
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
36
|
N1-Substituted benzimidazole scaffold for farnesoid X receptor (FXR) agonists accompanying prominent selectivity against vitamin D receptor (VDR). Bioorg Med Chem 2020; 28:115512. [DOI: 10.1016/j.bmc.2020.115512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 12/20/2022]
|
37
|
Impact of Epigenetics on Complications of Fanconi Anemia: The Role of Vitamin D-Modulated Immunity. Nutrients 2020; 12:nu12051355. [PMID: 32397406 PMCID: PMC7285109 DOI: 10.3390/nu12051355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/02/2020] [Accepted: 05/06/2020] [Indexed: 12/14/2022] Open
Abstract
Fanconi anemia (FA) is a rare disorder with the clinical characteristics of (i) specific malformations at birth, (ii) progressive bone marrow failure already during early childhood and (iii) dramatically increased risk of developing cancer in early age, such as acute myeloid leukemia and squamous cell carcinoma. Patients with FA show DNA fragility due to a defect in the DNA repair machinery based on predominately recessive mutations in 23 genes. Interestingly, patients originating from the same family and sharing an identical mutation, frequently show significant differences in their clinical presentation. This implies that epigenetics plays an important role in the manifestation of the disease. The biologically active form of vitamin D, 1α,25-dihydroxyvitamin D3 controls cellular growth, differentiation and apoptosis via the modulation of the immune system. The nuclear hormone activates the transcription factor vitamin D receptor that affects, via fine-tuning of the epigenome, the transcription of >1000 human genes. In this review, we discuss that changes in the epigenome, in particular in immune cells, may be central for the clinical manifestation of FA. These epigenetic changes can be modulated by vitamin D suggesting that the individual FA patient’s vitamin D status and responsiveness are of critical importance for disease progression.
Collapse
|
38
|
Torres-Vergara P, Ho YS, Espinoza F, Nualart F, Escudero C, Penny J. The constitutive androstane receptor and pregnane X receptor in the brain. Br J Pharmacol 2020; 177:2666-2682. [PMID: 32201941 DOI: 10.1111/bph.15055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/16/2022] Open
Abstract
Since their discovery, the orphan nuclear receptors constitutive androstane receptor (CAR;NR1I3) and pregnane X receptor (PXR;NR1I2) have been regarded as master regulators of drug disposition and detoxification mechanisms. They regulate the metabolism and transport of endogenous mediators and xenobiotics in organs including the liver, intestine and brain. However, with proposals of new physiological functions for NR1I3 and NR1I2, there is increasing interest in the role of these receptors in influencing brain function. This review will summarise key findings regarding the expression and function of NR1I3 and NR1I2 in the brain, hereby highlighting the need for further research in this field.
Collapse
Affiliation(s)
- Pablo Torres-Vergara
- Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile.,Centro de Microscopía Avanzada, CMA-BIO BIO, Laboratorio de Neurobiología y Células Madres NeuroCellT, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.,Group of Research and Innovation in Vascular Health (GRIVAS Health), Universidad del Bío Bío, Chillán, Chile
| | - Yu Siong Ho
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Health and Medicine, The University of Manchester, Manchester, UK
| | - Francisca Espinoza
- Centro de Microscopía Avanzada, CMA-BIO BIO, Laboratorio de Neurobiología y Células Madres NeuroCellT, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Francisco Nualart
- Centro de Microscopía Avanzada, CMA-BIO BIO, Laboratorio de Neurobiología y Células Madres NeuroCellT, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Carlos Escudero
- Laboratorio de FisiologíaVascular, Departamento de Ciencias Básicas, Facultad de Ciencias Básicas, Universidad del Bío-Bío, Chillán, Chile.,Group of Research and Innovation in Vascular Health (GRIVAS Health), Universidad del Bío Bío, Chillán, Chile
| | - Jeffrey Penny
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Health and Medicine, The University of Manchester, Manchester, UK
| |
Collapse
|
39
|
Liang X, Zhang Z, Zhou X, Lu Y, Li R, Yu Z, Tong L, Gong P, Yi H, Liu T, Zhang L. Probiotics improved hyperlipidemia in mice induced by a high cholesterol diet via downregulating FXR. Food Funct 2020; 11:9903-9911. [PMID: 33094788 DOI: 10.1039/d0fo02255a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bifidobacterium animalis subsp. Lactis F1-7 (F1-7) could alleviate hyperlipidemia through LXR/NPC1L1 pathway and FXR/FGF15/CYP7A1 pathway.
Collapse
Affiliation(s)
- Xi Liang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Zhe Zhang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | | | - Youyou Lu
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Rui Li
- The Affiliated Hospital of Qingdao University
- Qingdao
- China
| | - Zhuang Yu
- The Affiliated Hospital of Qingdao University
- Qingdao
- China
| | - Lingjun Tong
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Pimin Gong
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Huaxi Yi
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Tongjie Liu
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Lanwei Zhang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| |
Collapse
|
40
|
Carlberg C. Vitamin D Signaling in the Context of Innate Immunity: Focus on Human Monocytes. Front Immunol 2019; 10:2211. [PMID: 31572402 PMCID: PMC6753645 DOI: 10.3389/fimmu.2019.02211] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/02/2019] [Indexed: 12/11/2022] Open
Abstract
The vitamin D3 metabolite 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) activates at sub-nanomolar concentrations the transcription factor vitamin D receptor (VDR). VDR is primarily involved in the control of cellular metabolism but in addition modulates processes important for immunity, such as anti-microbial defense and the induction of T cell tolerance. Monocytes and their differentiated phenotypes, macrophages and dendritic cells, are key cell types of the innate immune system, in which vitamin D signaling was most comprehensively investigated via the use of next generation sequencing technologies. These investigations provided genome-wide maps illustrating significant effects of 1,25(OH)2D3 on the binding of VDR, the pioneer transcription factors purine-rich box 1 (PU.1) and CCAAT/enhancer binding protein α (CEBPA) and the chromatin modifier CCCTC-binding factor (CTCF) as well as on chromatin accessibility and histone markers of promoter and enhancer regions, H3K4me3 and H3K27ac. Thus, the epigenome of human monocytes is at multiple levels sensitive to vitamin D. These data served as the basis for the chromatin model of vitamin D signaling, which mechanistically explains the activation of a few hundred primary vitamin D target genes. Comparable epigenome- and transcriptome-wide effects of vitamin D were also described in peripheral blood mononuclear cells isolated from individuals before and after supplementation with a vitamin D3 bolus. This review will conclude with the hypothesis that vitamin D modulates the epigenome of immune cells during perturbations by antigens and other immunological challenges suggesting that an optimal vitamin D status may be essential for an effective epigenetic learning process, in particular of the innate immune system.
Collapse
Affiliation(s)
- Carsten Carlberg
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
41
|
Hanel A, Carlberg C. Vitamin D and evolution: Pharmacologic implications. Biochem Pharmacol 2019; 173:113595. [PMID: 31377232 DOI: 10.1016/j.bcp.2019.07.024] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 07/30/2019] [Indexed: 01/14/2023]
Abstract
Vitamin D3 is produced non-enzymatically when the cholesterol precursor 7-dehydrocholesterol is exposed to UV-B, i.e., evolutionary the first function of the molecule was that of an UV-B radiation scavenging end product. Vitamin D endocrinology started when some 550 million years ago first species developed a vitamin D receptor (VDR) that binds with high affinity the vitamin D metabolite 1α,25-dihydroxyvitamin D3. VDR evolved from a subfamily of nuclear receptors sensing the levels of cholesterol derivatives, such as bile acids, and controlling metabolic genes supporting cellular processes, such as innate and adaptive immunity. During vertebrate evolution, the skeletal and adaptive immune system showed in part interesting synchronous development although adaptive immunity is evolutionary older. There are bidirectional osteoimmune interactions between the immune system and bone metabolism, the regulation of both is under control of vitamin D. This diversity of physiological functions explains the pleiotropy of vitamin D signaling and opens the potential for various pharmacological applications of vitamin D as well as of its natural and synthetic derivatives. The overall impact of vitamin D on human health is demonstrated by the fact that the need for its efficient synthesis served in European hunter and gatherers as an evolutionary driver for increased 7-dehydrocholesterol levels, while light skin was established far later via populations from Anatolia and the northern Caucasus entering Europe 9000 and 5000 years ago, respectively. The later population settled preferentially in northern Europe and we hypothesize that that the introduction of high vitamin D responsiveness was an essential trait for surviving dark winters without suffering from the detrimental consequences of vitamin D deficiency.
Collapse
Affiliation(s)
- Andrea Hanel
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Carsten Carlberg
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, FI-70211 Kuopio, Finland.
| |
Collapse
|
42
|
Unsworth AJ, Flora GD, Gibbins JM. Non-genomic effects of nuclear receptors: insights from the anucleate platelet. Cardiovasc Res 2019; 114:645-655. [PMID: 29452349 PMCID: PMC5915957 DOI: 10.1093/cvr/cvy044] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/13/2018] [Indexed: 12/12/2022] Open
Abstract
Nuclear receptors (NRs) have the ability to elicit two different kinds of responses, genomic and non-genomic. Although genomic responses control gene expression by influencing the rate of transcription, non-genomic effects occur rapidly and independently of transcriptional regulation. Due to their anucleate nature and mechanistically well-characterized and rapid responses, platelets provide a model system for the study of any non-genomic effects of the NRs. Several NRs have been found to be present in human platelets, and multiple NR agonists have been shown to elicit anti-platelet effects by a variety of mechanisms. The non-genomic functions of NRs vary, including the regulation of kinase and phosphatase activity, ion channel function, intracellular calcium levels, and production of second messengers. Recently, the characterization of mechanisms and identification of novel binding partners of NRs have further strengthened the prospects of developing their ligands into potential therapeutics that offer cardio-protective properties in addition to their other defined genomic effects.
Collapse
Affiliation(s)
- Amanda J Unsworth
- School of Biological Sciences, Institute of Cardiovascular and Metabolic Research, Harborne Building, Whiteknights, Reading RG6 6AS, Berkshire, UK
| | - Gagan D Flora
- School of Biological Sciences, Institute of Cardiovascular and Metabolic Research, Harborne Building, Whiteknights, Reading RG6 6AS, Berkshire, UK
| | - Jonathan M Gibbins
- School of Biological Sciences, Institute of Cardiovascular and Metabolic Research, Harborne Building, Whiteknights, Reading RG6 6AS, Berkshire, UK
| |
Collapse
|
43
|
Chen K, Zhong J, Hu L, Li R, Du Q, Cai J, Li Y, Gao Y, Cui X, Yang X, Wu X, Yao L, Dai J, Wang Y, Jin H. The Role of Xenobiotic Receptors on Hepatic Glycolipid Metabolism. Curr Drug Metab 2019; 20:29-35. [PMID: 30227815 DOI: 10.2174/1389200219666180918152241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/13/2018] [Accepted: 08/20/2018] [Indexed: 01/14/2023]
Abstract
Background:
PXR (Pregnane X Receptor) and CAR (Constitutive Androstane Receptor) are termed as
xenobiotic receptors, which are known as core factors in regulation of the transcription of metabolic enzymes and
drug transporters. However, accumulating evidence has shown that PXR and CAR exert their effects on energy metabolism
through the regulation of gluconeogenesis, lipogenesis and β-oxidation. Therefore, in this review, we are
trying to summary recent advances to show how xenobiotic receptors regulate energy metabolism.
Methods:
A structured search of databases has been performed by using focused review topics. According to conceptual
framework, the main idea of research literature was summarized and presented.
Results:
For introduction of each receptor, the general introduction and the critical functions in hepatic glucose and
lipid metabolism have been included. Recent important studies have shown that CAR acts as a negative regulator of
lipogenesis, gluconeogenesis and β -oxidation. PXR activation induces lipogenesis, inhibits gluconeogenesis and
inhabits β-oxidation.
Conclusion:
In this review, the importance of xenobiotic receptors in hepatic glucose and lipid metabolism has been
confirmed. Therefore, PXR and CAR may become new therapeutic targets for metabolic syndrome, including obesity
and diabetes. However, further research is required to promote the clinical application of this new energy metabolism
function of xenobiotic receptors.
Collapse
Affiliation(s)
- Ke Chen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jinwei Zhong
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lin Hu
- Pi-wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruliu Li
- Pi-wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qun Du
- Pi-wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiazhong Cai
- Pi-wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanwu Li
- Pi-wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Gao
- Pi-wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaona Cui
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaoying Yang
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaojie Wu
- Department of Immunology, Binzhou Medical University, Yantai, Shangdong, China
| | - Lu Yao
- Jilin Medical University, Jilin, China
| | - Juji Dai
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan Wang
- Department of Otolaryngology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haiyong Jin
- Department of Otolaryngology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
44
|
Song Q, Li M, Fan C, Liu Y, Zheng L, Bao Y, Sun L, Yu C, Song Z, Sun Y, Wang G, Huang Y, Li Y. A novel benzamine lead compound of histone deacetylase inhibitor ZINC24469384 can suppresses HepG2 cells proliferation by upregulating NR1H4. Sci Rep 2019; 9:2350. [PMID: 30787420 PMCID: PMC6382829 DOI: 10.1038/s41598-019-39487-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 01/16/2019] [Indexed: 12/18/2022] Open
Abstract
Histone deacetylases (HDACs) can enzymatically transferred acetyl functional group from protein or lysine residues of histone, so they can regulate the expression of lots of genes. Now HDACs are used as drug targets and many HDAC inhibitors (HDACis) were approved for cancer therapy or in clinical trials. However, the physiological mechanisms and regulatory processes of HDACi anti-cancer effects are largely unexplored and uncompleted. Here we use the virtual screening workflow obtained 25 hit compounds and ZINC24469384 can significantly inhibit HDAC activity while arrest cell cycle at G1/S phase and significantly induced HepG2 cell apoptosis, time-course RNA-seq demonstrate that HepG2 cells transcriptionally respond to ZINC24469384. Pathway analysis of DEGs and DASGs reveal that NR1H4 may play an important role in ZINC24469384-induced anti-proliferation effect and is dramatically alleviated by down-regulating the SOCS2 expression and promoting STAT3 phosphorylation in knockdown NR1H4 HepG2 cells. Analysis based on TCGA database indicated that NR1H4 and SOCS2 were downregulated in liver cancer, this suggest NR1H4 and SOCS2 may play an important role in tumorigenesis. These results indicated that ZINC24469384 is a novel benzamine lead compound of HDACi and provides a novel mechanism for HDACi to inhibit cancer.
Collapse
Affiliation(s)
- Qiuhang Song
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Mingyue Li
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Cong Fan
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Yucui Liu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Lihua Zheng
- Research Center of Agriculture and Medicine gene Engineering of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Yongli Bao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Luguo Sun
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Chunlei Yu
- Research Center of Agriculture and Medicine gene Engineering of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Zhenbo Song
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Ying Sun
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Guannan Wang
- Research Center of Agriculture and Medicine gene Engineering of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Yanxin Huang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China.
| | - Yuxin Li
- Research Center of Agriculture and Medicine gene Engineering of Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
45
|
Abstract
As plant-derived natural products, saponins have been widely applied for the dietary modification of metabolic syndrome. However, the underlying mechanisms of their preventive and therapeutic effects are still largely unclear. Nuclear receptors have been identified as potential pharmaceutical targets for treating various types of metabolic disorders. With similar structure to endogenous hormones, several saponins may serve as selective ligands for nuclear receptors. Recently, a series of saponins are proved to exert their physiological activities through binding to nuclear receptors. This review summarizes the biological and pharmacological activities of typical saponins mediated by some of the most well described nuclear receptors, including the classical steroid hormone receptors (ER, GR, MR, and AR) and the adopted orphan receptors (PPAR, LXR, FXR, and PXR).
Collapse
Affiliation(s)
- Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Shuning Zhong
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Tiezhu Li
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| |
Collapse
|
46
|
Independent losses of a xenobiotic receptor across teleost evolution. Sci Rep 2018; 8:10404. [PMID: 29991818 PMCID: PMC6039460 DOI: 10.1038/s41598-018-28498-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/22/2018] [Indexed: 01/25/2023] Open
Abstract
Sensitivity to environmental stressors largely depend on the genetic complement of the organism. Recent sequencing and assembly of teleost fish genomes enable us to trace the evolution of defense genes in the largest and most diverse group of vertebrates. Through genomic searches and in-depth analysis of gene loci in 76 teleost genomes, we show here that the xenosensor pregnane X receptor (Pxr, Nr1i2) is absent in more than half of these species. Notably, out of the 27 genome assemblies that belong to the Gadiformes order, the pxr gene was only retained in the Merluccidae family (hakes) and Pelagic cod (Melanonus zugmayeri). As an important receptor for a wide range of drugs and environmental pollutants, vertebrate PXR regulate the transcription of a number of genes involved in the biotransformation of xenobiotics, including cytochrome P450 enzymes (CYP). In the absence of Pxr, we suggest that the aryl hydrocarbon receptor (Ahr) have evolved an extended regulatory role by governing the expression of certain Pxr target genes, such as cyp3a, in Atlantic cod (Gadus morhua). However, as several independent losses of pxr have occurred during teleost evolution, other lineages and species may have adapted alternative compensating mechanisms for controlling crucial cellular defense mechanisms.
Collapse
|
47
|
Lipid reducing activity of novel cholic acid (CA) analogs: Design, synthesis and preliminary mechanism study. Bioorg Chem 2018; 80:396-407. [PMID: 29986186 DOI: 10.1016/j.bioorg.2018.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 06/27/2018] [Accepted: 07/01/2018] [Indexed: 12/23/2022]
Abstract
Bile acids, initially discovered as endogenous ligands of farnesoid X receptor (FXR), play a central role in the regulation of triglyceride and cholesterol metabolism and have recently emerged as a privileged structure for interacting with nuclear receptors relevant to a large array of metabolic processes. In this paper, phenoxy containing cholic acid derivatives with excellent drug-likeness have been designed, synthesized, and assayed as agents against cholesterol accumulation in Raw264.7 macrophages. The most active compound 14b reduced total cholesterol accumulation in Raw264.7 cells up to 30.5% at non-toxic 10 μM and dosage-dependently attenuated oxLDL-induced foam cell formation. Western blotting and qPCR results demonstrate that 14b reduced both cholesterol and lipid in Raw264.7 cells through (1) increasing the expression of cholesterol transporters ABCA1 and ABCG1, (2) accelerating ApoA1-mediated cholesterol efflux. Through a cell-based luciferase reporter assay and molecular docking analysis, LXR was identified as the potential target for 14b. Interestingly, unlike conventional LXR agonist, 14b did not increase lipogenesis gene SREBP-1c expression. Overall, these diverse properties disclosed herein highlight the potential of 14b as a promising lead for further development of multifunctional agents in the therapy of cardiovascular disease.
Collapse
|
48
|
Frisch K, Alstrup AKO. On the Evolution of Bile Salts and the Farnesoid X Receptor in Vertebrates. Physiol Biochem Zool 2018; 91:797-813. [DOI: 10.1086/695810] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
49
|
Reece AS, Hulse GK. What are the characteristics of vitamin D metabolism in opioid dependence? An exploratory longitudinal study in Australian primary care. BMJ Open 2018; 8:e016806. [PMID: 29331964 PMCID: PMC5780717 DOI: 10.1136/bmjopen-2017-016806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE Compare vitamin D levels in opioid dependence and control population and adjust for relevant confounding effects. Nuclear hormone receptors (including the vitamin D receptor) have been shown to be key transducers and regulators of intracellular metabolism and comprise an important site of pathophysiological immune and metabolic dysregulation potentially contributing towards pro-ageing changes observed in opioid-dependent patients (ODPs). DESIGN Longitudinal prospective comparing ODPs with general medical controls (GMCs). SETTING Primary care. PARTICIPANTS Prospective review comparing 1168 ODP (72.5% men) and 415 GMC (51.6% men, p<0.0001). Mean ages were 33.92±0.31 (mean±SEM) and 41.22±1.32 years, respectively (p<0.0001). Opioid use in the ODP has been previously reported and shown to be typical. INTERVENTIONS Nil. Observational study only. PRIMARY AND SECONDARY OUTCOMES Serum vitamin D levels and relevant biochemical parameters. RESULTS Vitamin D levels were higher in the ODP (70.35±1.16 and 57.06±1.81 nmol/L, p<0.0001). The difference in ages between the two groups was handled in an age-matched case-control subanalysis and also by multiple regression. Sexes were analysed separately. The age:status (or age:time:status) was significant in case-control, cross-sectional and longitudinal analyses in both sexes (p<0.05). Modelled vitamin D was 62.71 vs 57.81 nmol/L in the two groups. Time-dependent mixed-effects models quadratic in age outperformed linear-only models (p=0.0377). ODP vitamin D was shown to vary with age and to correlate with alanine aminotransferase establishing it as a biomarker of age in this group. Hepatitis C seronegativity was significant in regression models (from p=0.0015). CONCLUSION Vitamin D was higher in ODP in both sexes in bivariate, cross-sectional, case-control and longitudinal analyses and was robust to the inclusion of metabolic and immune biomarkers. That Hepatitis C seronegativity was significant suggests opioid dependence has an effect beyond simply that of its associated hepatitides. This finding may relate to the accelerated ageing process previously described in opioid dependence.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Department of Psychiatry and Clinical Neurosciences, University of Western Australia, Brisbane, Queensland, Australia
| | - Gary Kenneth Hulse
- Department of Psychiatry and Clinical Neurosciences, University of Western Australia, Perth, Queensland, Australia
- Psychiatry, Edith Cowan University at Joondalup, Western Australia, Australia
| |
Collapse
|
50
|
Surman SL, Jones BG, Woodland DL, Hurwitz JL. Enhanced CD103 Expression and Reduced Frequencies of Virus-Specific CD8 + T Cells Among Airway Lymphocytes After Influenza Vaccination of Mice Deficient in Vitamins A + D. Viral Immunol 2017; 30:737-743. [PMID: 29130830 PMCID: PMC5709699 DOI: 10.1089/vim.2017.0086] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Previous research has evaluated antibody responses toward an influenza virus vaccine in the context of deficiencies for vitamins A and D (VAD+VDD). Results showed that antibodies and antibody-forming cells in the respiratory tract were reduced in VAD+VDD mice. However, effectors were recovered when oral supplements of vitamins A + D were delivered at the time of vaccination. Here we address the question of how vaccine-induced CD8+ T cell responses are affected by deficiencies for vitamins A + D. VAD+VDD and control mice were vaccinated with an intranasal, cold-adapted influenza virus A/Puerto Rico/8/34 vaccine, with or without oral supplements of vitamins A + D. Results showed that the percentages of vaccine-induced CD8+ T cell and total CD4+ T cell responses were low among lymphocytes in the airways of VAD+VDD animals compared to controls. The CD103 membrane marker, a protein that binds e-cadherin (expressed on respiratory tract epithelial cells), was unusually high on virus-specific T cells in VAD+VDD mice compared to controls. Interestingly, when T cells specific for the PA224-233/Db epitope were compared with T cells specific for the NP366-374/Db epitope, the former population was more strongly positive for CD103. Preliminary experiments revealed normal or above-normal percentages for vaccine-induced T cells in airways when VAD+VDD animals were supplemented with vitamins A + D at the time of vaccination and on days 3 and 7 after vaccination. Our results suggest that close attention should be paid to levels of vitamins A and D among vaccine recipients in the clinical arena, as low vitamin levels may render individuals poorly responsive to vaccines.
Collapse
Affiliation(s)
- Sherri L. Surman
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Bart G. Jones
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | - Julia L. Hurwitz
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|