1
|
Hadi S, Khoshraftar SH, Kiani Darabi AH, Soleimani A, Nejabati HR. Extracellular fluid miRNAs in PCOS. Clin Chim Acta 2025; 576:120404. [PMID: 40446894 DOI: 10.1016/j.cca.2025.120404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2025] [Revised: 05/27/2025] [Accepted: 05/27/2025] [Indexed: 06/02/2025]
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent endocrine condition that impacts both reproductive and metabolic functioning. Despite thorough research, the exact causes of PCOS remain unclear. Recent studies indicate that microRNAs (miRNAs), which are small non-coding RNAs that regulate gene expression, could be crucial for comprehending PCOS. This review article investigates the variations in extracellular fluids miRNAs expression in individuals diagnosed with PCOS and assesses their viability as diagnostic biomarkers, and determines their involvement in the mechanisms underlying the disease. The related reports show that miRNA expression profiles demonstrate notable differences between PCOS patients and healthy subjects. Several miRNAs exhibit dysregulation in essential biological processes such as follicular development, steroidogenesis, insulin signaling, and metabolic pathways. These results imply that miRNAs could lead to hormonal imbalances and metabolic problems linked to PCOS. The variations in miRNA expression noted in patients with PCOS underscore their possible role as biomarkers for the early detection and characterization of the condition. Continued investigation into miRNA-based diagnostic and therapeutic strategies may enhance our comprehension of PCOS. and facilitate the advancement of more precise therapeutic alternatives.
Collapse
Affiliation(s)
- Saba Hadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Hossein Khoshraftar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Hossein Kiani Darabi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Anahita Soleimani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Reza Nejabati
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
He Y, Gan M, Ma J, Liang S, Chen L, Niu L, Zhao Y, Wang Y, Zhu L, Shen L. TGF-β signaling in the ovary: Emerging roles in development and disease. Int J Biol Macromol 2025; 306:141455. [PMID: 40015411 DOI: 10.1016/j.ijbiomac.2025.141455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/19/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
The TGF-β superfamily plays a pivotal role in a wide array of cellular processes, including cell proliferation, differentiation, apoptosis, and migration. It is also critically involved in ovarian development and the pathogenesis of various diseases. Within the ovary, follicles act as the primary functional units, housing numerous members of the TGF-β superfamily that regulate follicular development and, consequently, overall ovarian function. Dysregulation of the TGF-β signaling pathway is associated with reproductive disorders and the development of ovarian diseases in female mammals, such as polycystic ovary syndrome (PCOS), premature ovarian aging, ovarian insufficiency, and ovarian cancer. This article highlights the significant contributions of key TGF-β signaling pathway members to follicular development and ovarian disease progression, aiming to deepen the understanding of TGF-β signaling's critical role in reproductive health.
Collapse
Affiliation(s)
- Yuxu He
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mailin Gan
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jianfeng Ma
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuang Liang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ye Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Zhu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Linyuan Shen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
3
|
Xiao S, Du J, Yuan G, Luo X, Song L. Granulosa Cells-Related MicroRNAs in Ovarian Diseases: Mechanism, Facts and Perspectives. Reprod Sci 2024; 31:3635-3650. [PMID: 38594585 DOI: 10.1007/s43032-024-01523-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
MicroRNAs (miRNAs) are a class of short single-stranded, noncoding RNAs that affect the translation of mRNAs by imperfectly binding to homologous 3'UTRs. Research on miRNAs in ovarian diseases is constantly expanding because miRNAs are powerful regulators of gene expression and cellular processes and are promising biomarkers. miRNA mimics, miRNA inhibitors and molecules targeting miRNAs (antimiRs) have shown promise as novel therapeutic agents in preclinical development. Granulosa cells (GCs) are supporting cells for developing oocytes in the ovary. GCs regulate female reproductive health by producing sex hormones and LH receptors. Increasing research has reported the relevance of miRNAs in GC pathophysiology. With in-depth studies of disease mechanisms, there are an increasing number of studies on the biomolecular pathways of miRNAs in gynecology and endocrinology. In the present review, we summarize the different functions of GC-related microRNAs in various ovarian disorders, such as polycystic ovary syndrome, premature ovarian insufficiency, premature ovarian failure and ovarian granulosa cell tumors.
Collapse
Affiliation(s)
- Shengmin Xiao
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China
| | - Juan Du
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China
| | - Guanghui Yuan
- Department of Oncology, Hejiang Hospital of Traditional Chinese Medicine, Luzhou, 611137, People's Republic of China
| | - Xiaohong Luo
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China.
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China.
| |
Collapse
|
4
|
Wu JS, Gong S, Zhang M, Ma RJ, Wang HL, Luo MJ, He N, Tan JH. Role and action mechanisms of miR-149 and miR-31 in regulating function of pig cumulus cells and oocytes. Theriogenology 2024; 220:84-95. [PMID: 38490113 DOI: 10.1016/j.theriogenology.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/06/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
Understanding the mechanisms for oocyte maturation and optimizing the protocols for in vitro maturation (IVM) are greatly important for improving developmental potential of IVM oocytes. The miRNAs expressed in cumulus cells (CCs) play important roles in oocyte maturation and may be used as markers for selection of competent oocytes/embryos. Although a recent study from our group identified several new CCs-expressed miRNAs that regulate cumulus expansion (CE) and CC apoptosis (CCA) in mouse oocytes, validation of these findings and further investigation of mechanisms of action in other model species was essential before wider applications. By using both in vitro and in vivo pig oocyte models with significant differences in CE, CCA and developmental potential, the present study validated that miR-149 and miR-31 improved CE and developmental potential while suppressing CCA of pig oocytes. We demonstrated that miR-149 and miR-31 targeted SMAD family member 6 (SMAD6) and transforming growth factor β2 (TGFB2), respectively, in the transforming growth factor-β (TGF-β) signaling. Furthermore, both miR-149 and miR-31 increased CE and decreased CCA via activating SMAD family member 2 (SMAD2) and increasing the expression of SMAD2 and SMAD family member 4. In conclusion, the present results show that miR-149 and miR-31 improved CE and developmental potential while suppressing CCA of pig oocytes by activating the TGF-β signaling, suggesting that they might be used as markers for pig oocyte quality.
Collapse
Affiliation(s)
- Jia-Shun Wu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, PR China
| | - Shuai Gong
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, PR China
| | - Min Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, PR China
| | - Rui-Jie Ma
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, PR China
| | - Hui-Li Wang
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| | - Ming-Jiu Luo
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, PR China
| | - Nan He
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, PR China.
| | - Jing-He Tan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, PR China.
| |
Collapse
|
5
|
Sabry R, Gallo JF, Rooney C, Scandlan OLM, Davis OS, Amin S, Faghih M, Karnis M, Neal MS, Favetta LA. Genetic and Epigenetic Profiles of Polycystic Ovarian Syndrome and In Vitro Bisphenol Exposure in a Human Granulosa Cell Model. Biomedicines 2024; 12:237. [PMID: 38275408 PMCID: PMC10813104 DOI: 10.3390/biomedicines12010237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/14/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Higher levels of bisphenols are found in granulosa cells of women with polycystic ovary syndrome (PCOS), posing the question: Is bisphenol exposure linked to PCOS pathophysiology? Human granulosa cells were obtained from women with and without PCOS, and genes and microRNAs associated with PCOS were investigated. The first phase compared healthy women and those with PCOS, revealing distinct patterns: PCOS subjects had lower 11β-HSD1 (p = 0.0217) and CYP11A1 (p = 0.0114) levels and elevated miR-21 expression (p = 0.02535), elucidating the molecular landscape of PCOS, and emphasizing key players in its pathogenesis. The second phase focused on healthy women, examining the impact of bisphenols (BPA, BPS, BPF) on the same genes. Results revealed alterations in gene expression profiles, with BPS exposure increasing 11β-HSD1 (p = 0.02821) and miR-21 (p = 0.01515) expression, with the latest mirroring patterns in women with PCOS. BPA exposure led to elevated androgen receptor (AR) expression (p = 0.0298), while BPF exposure was associated with higher levels of miR-155. Of particular interest was the parallel epigenetic expression profile between BPS and PCOS, suggesting a potential link. These results contribute valuable insights into the nuanced impact of bisphenol exposure on granulosa cell genes, allowing the study to speculate potential shared mechanisms with the pathophysiology of PCOS.
Collapse
Affiliation(s)
- Reem Sabry
- Reproductive Health and Biotechnology Laboratory, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.S.); (J.F.G.); (C.R.); (O.L.M.S.); (O.S.D.)
| | - Jenna F. Gallo
- Reproductive Health and Biotechnology Laboratory, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.S.); (J.F.G.); (C.R.); (O.L.M.S.); (O.S.D.)
- ONE Fertility, Burlington, ON L7N 3T1, Canada; (S.A.); (M.F.); (M.K.); (M.S.N.)
| | - Charlie Rooney
- Reproductive Health and Biotechnology Laboratory, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.S.); (J.F.G.); (C.R.); (O.L.M.S.); (O.S.D.)
| | - Olivia L. M. Scandlan
- Reproductive Health and Biotechnology Laboratory, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.S.); (J.F.G.); (C.R.); (O.L.M.S.); (O.S.D.)
| | - Ola S. Davis
- Reproductive Health and Biotechnology Laboratory, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.S.); (J.F.G.); (C.R.); (O.L.M.S.); (O.S.D.)
| | - Shilpa Amin
- ONE Fertility, Burlington, ON L7N 3T1, Canada; (S.A.); (M.F.); (M.K.); (M.S.N.)
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Mehrnoosh Faghih
- ONE Fertility, Burlington, ON L7N 3T1, Canada; (S.A.); (M.F.); (M.K.); (M.S.N.)
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Megan Karnis
- ONE Fertility, Burlington, ON L7N 3T1, Canada; (S.A.); (M.F.); (M.K.); (M.S.N.)
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Michael S. Neal
- ONE Fertility, Burlington, ON L7N 3T1, Canada; (S.A.); (M.F.); (M.K.); (M.S.N.)
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Laura A. Favetta
- Reproductive Health and Biotechnology Laboratory, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.S.); (J.F.G.); (C.R.); (O.L.M.S.); (O.S.D.)
| |
Collapse
|
6
|
Uju CN, Unniappan S. Growth factors and female reproduction in vertebrates. Mol Cell Endocrinol 2024; 579:112091. [PMID: 37863469 DOI: 10.1016/j.mce.2023.112091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Female reproductive efficiency is influenced by the outcomes of various processes, including folliculogenesis, apoptosis, response to gonadotropin signaling, oocyte maturation, and ovulation. The role of hormones in regulating these processes and other reproductive activities has been well established. It is becoming increasingly evident that in addition to well-characterized hormones, growth factors play vital roles in regulating some of these reproductive activities. Growth factors and their receptors are widely distributed in vertebrate ovaries at different stages of ovarian development, indicating their involvement in intraovarian reproductive functions. In the ovary, cell surface receptors allow growth factors to regulate intraovarian reproductive activities. Understanding these actions in the reproductive axis would provide a tool to target growth factors and/or their receptors to yield desirable reproductive outcomes. These include enrichment of in vitro maturation and fertilization culture media, and management of infertility. This review discusses some widely characterized growth factors belonging to the TGF, EGF, IGF, FGF, and BDNF family of peptides and their role in female reproduction in vertebrates, with a focus on mammals.
Collapse
Affiliation(s)
- Chinelo N Uju
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada.
| |
Collapse
|
7
|
Lee J, Huh J, Lee Y, Jin Y, Bai F, Ha UH. DnaJ-induced miRNA-146a negatively regulates the expression of IL-8 in macrophages. Microb Pathog 2023; 184:106357. [PMID: 37716625 DOI: 10.1016/j.micpath.2023.106357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
As a member of the damage-associated molecular patterns, heat shock proteins (HSPs) are widely recognized for their role in initiating innate immune responses. These highly conserved proteins are expressed ubiquitously in both prokaryotes and eukaryotes. In this study, our aim was to investigate how DnaJ, a HSP40 homolog derived from Pseudomonas aeruginosa (P. aeruginosa), influences the regulation of IL-8 expression in macrophages. Treatment with DnaJ served as a stimulus, inducing a more robust expression of IL-8 compared to other HSP homologs, including DnaK, GroEL, and HtpG. This effect was achieved through the activation of the NF-κB signaling pathway. Interestingly, DnaJ treatment also significantly increased the expression of microRNA-146a (miR-146a), which appears to play a role in modulating the expression of innate defense genes. As a consequence, pre-treatment with DnaJ led to a reduction in the extent of IL-8 induction in response to P. aeruginosa treatment. Notably, this reduction was counteracted by transfection of a miR-146a inhibitor, highlighting the involvement of miR-146a in P. aeruginosa-mediated induction of IL-8 expression. Therefore, this study uncovers the role of DnaJ in triggering the expression of miR-146a, which, in turn, modulates the excessive expression of IL-8 induced by P. aeruginosa infection.
Collapse
Affiliation(s)
- Jaehoo Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, 30019, Republic of Korea; Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong, 30019, Republic of Korea
| | - Jinwon Huh
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, 30019, Republic of Korea
| | - Yeji Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, 30019, Republic of Korea
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, Nankai University, Tianjin, 300071, China
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, Nankai University, Tianjin, 300071, China
| | - Un-Hwan Ha
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, 30019, Republic of Korea; Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong, 30019, Republic of Korea.
| |
Collapse
|
8
|
Wang S, Li Y, Du X, Li Q. Two single nucleotide variants in the miR-23a promoter affect granulosa cell apoptosis. Anim Genet 2023; 54:207-210. [PMID: 36478437 DOI: 10.1111/age.13284] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
microRNAs (miRNAs) are well known to be important in mammalian female fertility. However, the genetic regulation of miRNAs associated with female fertility remains largely unknown. Here, we report that two single-nucleotide variants (SNVs) in the miR-23a promoter strongly influence miR-23a transcription and function in granulosa cell (GC) apoptosis. Two novel SNVs, g.-283G>C and g.-271C>T, were detected in the porcine miR-23a promoter by pooled-DNA sequencing. Furthermore, SNVs in the promoter region influenced miR-23a transcription in porcine GCs by altering its promoter activity. Functionally, SNVs in the promoter strongly influenced miR-23a regulation of early apoptosis in porcine GCs cultured in vitro. In addition, a preliminary association analysis showed that the combined genotypes of the two SNVs, rather than a single SNV, were tentatively associated with sow fertility traits in a Large White population. Overall, our findings suggest that the SNVs g.-283G>C and g.-271C>T in the miR-23a promoter are causal variants affecting GC apoptosis and miR-23a may be a potential small-molecule nonhormonal drug for regulating female fertility.
Collapse
Affiliation(s)
- Siqi Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yuqi Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xing Du
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
9
|
Rani S, Chandna P. Multiomics Analysis-Based Biomarkers in Diagnosis of Polycystic Ovary Syndrome. Reprod Sci 2023; 30:1-27. [PMID: 35084716 PMCID: PMC10010205 DOI: 10.1007/s43032-022-00863-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 01/20/2022] [Indexed: 01/06/2023]
Abstract
Polycystic ovarian syndrome is an utmost communal endocrine, psychological, reproductive, and metabolic disorder that occurs in women of reproductive age with extensive range of clinical manifestations. This may even lead to long-term multiple morbidities including obesity, diabetes mellitus, insulin resistance, cardiovascular disease, infertility, cerebrovascular diseases, and ovarian and endometrial cancer. Women affliction from PCOS in midst assemblage of manifestations allied with menstrual dysfunction and androgen exorbitance, which considerably affects eminence of life. PCOS is recognized as a multifactorial disorder and systemic syndrome in first-degree family members; therefore, the etiology of PCOS syndrome has not been copiously interpreted. The disorder of PCOS comprehends numerous allied health conditions and has influenced various metabolic processes. Due to multifaceted pathophysiology engaging several pathways and proteins, single genetic diagnostic tests cannot be supportive to determine in straight way. Clarification of cellular and biochemical pathways and various genetic players underlying PCOS could upsurge our consideration of pathophysiology of this syndrome. It is requisite to know pathophysiological relationship between biomarker and their reflection towards PCOS disease. Biomarkers deliver vibrantly and potent ways to apprehend the spectrum of PCOS with applications in screening, diagnosis, characterization, and monitoring. This paper relies on the endeavor to point out many candidates as potential biomarkers based on omics technologies, thus highlighting correlation between PCOS disease with innovative technologies. Therefore, the objective of existing review is to encapsulate more findings towards cutting-edge advances in prospective use of biomarkers for PCOS disease. Discussed biomarkers may be fruitful in guiding therapies, addressing disease risk, and predicting clinical outcomes in future.
Collapse
Affiliation(s)
- Shikha Rani
- Department of Biophysics, University of Delhi, South Campus, Benito Juarez Road, New Delhi , 110021, India.
| | - Piyush Chandna
- Natdynamics Biosciences Confederation, Gurgaon, Haryana, 122001, India
| |
Collapse
|
10
|
Nouri N, Shareghi-Oskoue O, Aghebati-Maleki L, Danaii S, Ahmadian Heris J, Soltani-Zangbar MS, Kamrani A, Yousefi M. Role of miRNAs interference on ovarian functions and premature ovarian failure. Cell Commun Signal 2022; 20:198. [PMID: 36564840 PMCID: PMC9783981 DOI: 10.1186/s12964-022-00992-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/22/2022] [Indexed: 12/24/2022] Open
Abstract
Premature ovarian failure is a to some extent unknown and intricate problem with diverse causes and clinical manifestations. The lack of ovarian sex hormones presumably is effective in the occurrence of ovarian failure. Our progress in this field has been very little despite undertaken scientific research endeavors; scholars still are trying to understand the explanation of this dilemmatic medical condition. In contrast, the practice of clinical medicine has made meaningful strides in providing assurance to the women with premature ovarian insufficiency that their quality of life as well as long-term health can be optimized through timely intervention. Very recently Scientists have investigated the regulating effects of small RNA molecules on steroidogenesis apoptosis, ovulation, gonadal, and corpus luteum development of ovaries. In this literature review, we tried to talk over the mechanisms of miRNAs in regulating gene expression after transcription in the ovary. Video abstract.
Collapse
Affiliation(s)
- Narjes Nouri
- grid.412888.f0000 0001 2174 8913Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran ,grid.412888.f0000 0001 2174 8913Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran ,grid.412888.f0000 0001 2174 8913Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, PO Box: 516-6615573, Tabriz, Iran
| | - Olduz Shareghi-Oskoue
- grid.412888.f0000 0001 2174 8913Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran ,grid.412888.f0000 0001 2174 8913Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, PO Box: 516-6615573, Tabriz, Iran
| | - Leili Aghebati-Maleki
- grid.412888.f0000 0001 2174 8913Immunology Research Center, Tabriz University of Medical Sciences, PO Box: 516-6615573, Tabriz, Iran
| | - Shahla Danaii
- Gynecology Department, Eastern Azerbaijan ACECR ART Center, Eastern Azerbaijan Branch of ACECR, Tabriz, Iran
| | - Javad Ahmadian Heris
- grid.412888.f0000 0001 2174 8913Department of Allergy and Clinical Immunology, Pediatric Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Sadegh Soltani-Zangbar
- grid.412888.f0000 0001 2174 8913Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran ,grid.412888.f0000 0001 2174 8913Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, PO Box: 516-6615573, Tabriz, Iran
| | - Amin Kamrani
- grid.412888.f0000 0001 2174 8913Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran ,grid.412888.f0000 0001 2174 8913Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, PO Box: 516-6615573, Tabriz, Iran
| | - Mehdi Yousefi
- grid.412888.f0000 0001 2174 8913Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran ,grid.412888.f0000 0001 2174 8913Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, PO Box: 516-6615573, Tabriz, Iran ,grid.412888.f0000 0001 2174 8913Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Jie H, Xu Z, Gao J, Li F, Chen Y, Zeng D, Zhao G, Li D. Differential expression profiles of microRNAs in musk gland of unmated and mated forest musk deer ( Moschus berezovskii). PeerJ 2022; 9:e12710. [PMID: 35036174 PMCID: PMC8710055 DOI: 10.7717/peerj.12710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/08/2021] [Indexed: 11/26/2022] Open
Abstract
Background The formation of musk is a complex biophysical and biochemical process that change with the rut of male forest musk deer. We have reported that the mating status of male forest musk deer might result to the variations of chemical composition and microbiota of musk and its yields. Critical roles for microRNAs (miRNAs) of multi-tissues were profiled in our previous study; however, the role for miRNAs of the musk gland remains unclear in this species. Methods In this study, we used Illumina deep sequencing technology to sequence the small RNA transcriptome of unmated male (UM) and mated male (UM) of Chinese forest musk deer. Results We identified 1,652 known miRNAs and 45 novel miRNAs, of which there were 174 differentially expressed miRNAs between UM and MM. chi-miR-21-5p, ipu-miR-99b and bta-miR-26a were up-regulated in UM among the 10 most differentially expressed miRNAs. Functional enrichment of the target genes showed that monosaccharide biosynthetic process, protein targeting, cellular protein catabolic process enriched higher in MM. Meanwhile, structural molecule activity, secretion by cell, regulated exocytosis and circulatory system process enriched more in UM, hinting that the formation of musk in UM was mediated by target genes related to exocytosis. The miRNA-mRNA pairs such as miR-21: CHD7, miR143: HSD17B7, miR-141/200a: Noc2 might involve in musk gland development and musk secretion, which need to be verified in future study.
Collapse
Affiliation(s)
- Hang Jie
- Chongqing Institute of Medicinal Plant Cultivation, Bio-resource Research and Utilization joint key laboratory of Sichuan and Chongqing, Nanchuan, Chongqing, China
| | - Zhongxian Xu
- Sichuan Agricultural University, Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Chengdu, Sichuan, China.,China West Normal University, Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), Nanchong, Sichuan, China
| | - Jian Gao
- Sichuan Agricultural University, Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Chengdu, Sichuan, China
| | - Feng Li
- Sichuan Agricultural University, Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Chengdu, Sichuan, China.,China West Normal University, Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), Nanchong, Sichuan, China
| | - Yinglian Chen
- Chongqing Institute of Medicinal Plant Cultivation, Bio-resource Research and Utilization joint key laboratory of Sichuan and Chongqing, Nanchuan, Chongqing, China
| | - Dejun Zeng
- Chongqing Institute of Medicinal Plant Cultivation, Bio-resource Research and Utilization joint key laboratory of Sichuan and Chongqing, Nanchuan, Chongqing, China
| | - Guijun Zhao
- Chongqing Institute of Medicinal Plant Cultivation, Bio-resource Research and Utilization joint key laboratory of Sichuan and Chongqing, Nanchuan, Chongqing, China
| | - Diyan Li
- Sichuan Agricultural University, Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Chengdu, Sichuan, China
| |
Collapse
|
12
|
He C, Wang K, Gao Y, Wang C, Li L, Liao Y, Hu K, Liang M. Roles of Noncoding RNA in Reproduction. Front Genet 2021; 12:777510. [PMID: 34956326 PMCID: PMC8695933 DOI: 10.3389/fgene.2021.777510] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/18/2021] [Indexed: 12/17/2022] Open
Abstract
The World Health Organization predicts that infertility will be the third major health threat after cancer and cardiovascular disease, and will become a hot topic in medical research. Studies have shown that epigenetic changes are an important component of gametogenesis and related reproductive diseases. Epigenetic regulation of noncoding RNA (ncRNA) is appropriate and is a research hotspot in the biomedical field; these include long noncoding RNA (lncRNA), microRNA (miRNA), and PIWI-interacting RNA (piRNA). As vital members of the intracellular gene regulatory network, they affect various life activities of cells. LncRNA functions as a molecular bait, molecular signal and molecular scaffold in the body through molecular guidance. miRNAs are critical regulators of gene expression; they mainly control the stability or translation of their target mRNA after transcription. piRNA functions mainly through silencing genomic transposable elements and the post-transcriptional regulation of mRNAs in animal germ cells. Current studies have shown that these ncRNAs also play significant roles in the reproductive system and are involved in the regulation of essential cellular events in spermatogenesis and follicular development. The abnormal expression of ncRNA is closely linked to testicular germ cell tumors, poly cystic ovary syndrome and other diseases. This paper briefly presents the research on the reproductive process and reproductive diseases involving ncRNAs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ke Hu
- School of Life Science, Bengbu Medical College, Bengbu, China
| | - Meng Liang
- School of Life Science, Bengbu Medical College, Bengbu, China
| |
Collapse
|
13
|
Ben Maamar M, Nilsson EE, Skinner MK. Epigenetic transgenerational inheritance, gametogenesis and germline development†. Biol Reprod 2021; 105:570-592. [PMID: 33929020 PMCID: PMC8444706 DOI: 10.1093/biolre/ioab085] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/12/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
One of the most important developing cell types in any biological system is the gamete (sperm and egg). The transmission of phenotypes and optimally adapted physiology to subsequent generations is in large part controlled by gametogenesis. In contrast to genetics, the environment actively regulates epigenetics to impact the physiology and phenotype of cellular and biological systems. The integration of epigenetics and genetics is critical for all developmental biology systems at the cellular and organism level. The current review is focused on the role of epigenetics during gametogenesis for both the spermatogenesis system in the male and oogenesis system in the female. The developmental stages from the initial primordial germ cell through gametogenesis to the mature sperm and egg are presented. How environmental factors can influence the epigenetics of gametogenesis to impact the epigenetic transgenerational inheritance of phenotypic and physiological change in subsequent generations is reviewed.
Collapse
Affiliation(s)
- Millissia Ben Maamar
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Eric E Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
14
|
Dehghan Z, Mohammadi-Yeganeh S, Rezaee D, Salehi M. MicroRNA-21 is involved in oocyte maturation, blastocyst formation, and pre-implantation embryo development. Dev Biol 2021; 480:69-77. [PMID: 34411594 DOI: 10.1016/j.ydbio.2021.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 07/25/2021] [Accepted: 08/15/2021] [Indexed: 10/20/2022]
Abstract
Follicular fluid is one source of microRNAs (miRNAs). These miRNAs originate from oocytes and their neighboring cells. The changes in the miRNAs profile in the follicular fluid could alter folliculogenesis and oocyte maturation, and lead to infertility. Polycystic ovary syndrome (PCOS) patients have increased miR-21 levels in their sera, granulosa cells, and follicular fluid, and this mi-RNA plays a role in the pathophysiology and follicular dysfunction of PCOS patients. In the current study, we intend to examine whether expression levels of miR-21 influence oocyte maturation and embryo development. We examined miR-21 over-expression and down-regulation of miR-21 by miR-off 21 during in vitro maturation (IVM) to assess its influence on oocyte maturation and embryo development in mice. Over-expression of miR-21 in cumulus cells decreased expansion, meiotic progression, Glutathione-S-transferase GSH levels, and decreased expressions of Bmpr2 and Ptx3 genes. Subsequently, we noted that in vitro fertilization, and the cleavage rate and blastocyst formation significantly increased in cumulus oocyte complexes (COCs) that over-expressed miR-21. Inhibition of miR-21 by miR-off 21 led to increased cumulus expansion and GSH levels, along with decreased cleavage rate and blastocyst formation by alterations in Cdk2ap1 and Oct4 gene expressions. However, oocyte progression from the germinal vesicle (GV) to the metaphase II (MII) stage was not significant. miR-21 altered the gene expression levels in cumulus cells and influenced cytoplasmic oocyte maturation, cumulus expansion, and subsequent embryonic development in mice.
Collapse
Affiliation(s)
- Zeinab Dehghan
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular & Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular & Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Delsuz Rezaee
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular & Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Salehi
- Cellular & Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Zhang Y, Xu L. Preliminary study of Yulin mixture affecting the miR-320/SF-1/Cyp19a1 on mouse polycystic ovary syndrome model. Gynecol Endocrinol 2021; 37:546-553. [PMID: 33150797 DOI: 10.1080/09513590.2020.1843623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In this study, the polycystic ovary syndrome (PCOS) mice model was randomly divided into 6 groups: blank control group, Clomiphene group, PCOS group, and Yulin mixture high-/medium-/low-dose group. Rats were killed after 5 weeks of administration. The expression levels of serum E2,T,Insulin and LH were detected by ELISA. The localizations and quantities of Steroid-generating factor-1 (SF-1) and Cytochrome protein P450 a1 (Cyp19a1) were detected by immunohistochemistry and western blot. The quantities of miR-320 were detected by RT-PCR. The results showed that the mechanism of Yulin mixture inhibiting the growth of polycystic ovary on mouse PCOS model may be through the decreasing of serum T and LH levels and then reducing local estrogen content to make the polycystic ovary atrophy. Yulin mixture can decrease the level of miR-320 and increase the expression of SF-1 and Cyp19a1 in ovary, thereby regulating the ovarian granulosa cell proliferation and apoptosis.
Collapse
Affiliation(s)
- Yuxuan Zhang
- Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lingling Xu
- Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
16
|
Hu K, He C, Sun X, Li L, Xu Y, Zhang K, Liu X, Liang M. Integrated study of circRNA, lncRNA, miRNA, and mRNA networks in mediating the effects of testicular heat exposure. Cell Tissue Res 2021; 386:127-143. [PMID: 34014398 DOI: 10.1007/s00441-021-03474-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/06/2021] [Indexed: 12/13/2022]
Abstract
The World Health Organization has recognized that testicular function is temperature dependent. Testicular heat exposure caused by occupational factors, lifestyle, and clinical diseases can lead to different degrees of reproductive problems. The aim of this study was to reveal the transcriptional regulatory network and its potential crucial roles in mediating the effects of testicular heat exposure. Testicular tissue was collected from a group of mice subjected to scrotal heat exposure as well as a control group. RNA was isolated from both groups and used for high-throughput sequencing. Using differential transcriptome expression analysis, 172 circRNAs, 279 miRNAs, 465 lncRNAs, and 2721 mRNAs were identified as significantly differentially expressed in mouse testicular tissue after heat exposure compared with the control group. Through Gene Ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, differentially expressed lncRNAs and mRNAs were found to have potentially important functions in meiotic cell cycle (GO:0051321), cytoplasm (GO:0005737), membrane raft (GO:0045121), MAPK signaling (mmu04010), purine metabolism (mmu00230), and homologous recombination (mmu03440). Some of the most upregulated and downregulated lncRNAs and circRNAs were predicted to be associated with numerous miRNAs and mRNAs through competing endogenous RNA regulatory network analysis, which were validated with molecular biology experiments. This research provides high-throughput sequencing data of a testicular heat exposure model and lays the foundation for further study on circRNAs, miRNAs, and lncRNAs that are involved in male reproductive diseases related to elevated testicular temperature.
Collapse
Affiliation(s)
- Ke Hu
- School of Life Science, Bengbu Medical College, Bengbu, Anhui, China
| | - Chaofan He
- School of Life Science, Bengbu Medical College, Bengbu, Anhui, China
| | - Xunying Sun
- School of Life Science, Bengbu Medical College, Bengbu, Anhui, China
| | - Longhui Li
- School of Life Science, Bengbu Medical College, Bengbu, Anhui, China
| | - Yifan Xu
- School of Life Science, Bengbu Medical College, Bengbu, Anhui, China
| | - Kejia Zhang
- School of Life Science, Bengbu Medical College, Bengbu, Anhui, China
| | - Xiaohua Liu
- NHC Key Laboratory of Male Reproduction and Genetics (Family Planning Research Institute of Guangdong Province), Guangzhou, Guangdong, China
| | - Meng Liang
- School of Life Science, Bengbu Medical College, Bengbu, Anhui, China.
| |
Collapse
|
17
|
Abstract
Dynamic changes in microRNAs in oocyte and cumulus cells before and after maturation may explain the spatiotemporal post-transcriptional gene regulation within bovine follicular cells during the oocyte maturation process. miR-20a has been previously shown to regulate proliferation and differentiation as well as progesterone levels in cultured bovine granulosa cells. In the present study, we aimed to demonstrate the function of miR-20a during the bovine oocyte maturation process. Maturation of cumulus-oocyte complexes (COCs) was performed at 39°C in an humidified atmosphere with 5% CO2 in air. The expression of miR-20a was investigated in the cumulus cells and oocytes at 22 h post culture. The functional role of miR-20a was examined by modulating the expression of miR-20a in COCs during in vitro maturation (IVM). We found that the miR-20a expression was increased in cumulus cells but decreased in oocytes after IVM. Overexpression of miR-20a increased the oocyte maturation rate. Even though not statistically significant, miR-20a overexpression during IVM increased progesterone levels in the spent medium. This was further supported by the expression of STAR and CYP11A1 genes in cumulus cells. The phenotypes observed due to overexpression of miR-20a were validated by BMP15 supplementation during IVM and subsequent transfection of BMP15-treated COCs using miR-20a mimic or BMPR2 siRNA. We found that miR-20a mimic or BMPR2 siRNA transfection rescued BMP15-reduced oocyte maturation and progesterone levels. We concluded that miR-20a regulates oocyte maturation by increasing cumulus cell progesterone synthesis by simultaneous suppression of BMPR2 expression.
Collapse
|
18
|
Gebremedhn S, Ali A, Hossain M, Hoelker M, Salilew-Wondim D, Anthony RV, Tesfaye D. MicroRNA-Mediated Gene Regulatory Mechanisms in Mammalian Female Reproductive Health. Int J Mol Sci 2021; 22:938. [PMID: 33477832 PMCID: PMC7832875 DOI: 10.3390/ijms22020938] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 12/12/2022] Open
Abstract
Mammalian reproductive health affects the entire reproductive cycle starting with the ovarian function through implantation and fetal growth. Various environmental and physiological factors contribute to disturbed reproductive health status leading to infertility problems in mammalian species. In the last couple of decades a significant number of studies have been conducted to investigate the transcriptome of reproductive tissues and organs in relation to the various reproductive health issues including endometritis, polycystic ovarian syndrome (PCOS), intrauterine growth restriction (IUGR), preeclampsia, and various age-associated reproductive disorders. Among others, the post-transcriptional regulation of genes by small noncoding miRNAs contributes to the observed transcriptome dysregulation associated with reproductive pathophysiological conditions. MicroRNAs as a class of non-coding RNAs are also known to be involved in various pathophysiological conditions either in cellular cytoplasm or they can be released to the extracellular fluid via membrane-bounded extracellular vesicles and proteins. The present review summarizes the cellular and extracellular miRNAs and their association with the etiology of major reproductive pathologies including PCOS, endometritis, IUGR and age-associated disorders in various mammalian species.
Collapse
Affiliation(s)
- Samuel Gebremedhn
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, 3051 Rampart Rd, Fort Collins, CO 80523, USA; (S.G.); (A.A.); (R.V.A.)
| | - Asghar Ali
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, 3051 Rampart Rd, Fort Collins, CO 80523, USA; (S.G.); (A.A.); (R.V.A.)
| | - Munir Hossain
- Department of Animal Breeding and Genetics, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Michael Hoelker
- Institute of Animal Sciences, Department of Animal Breeding and Husbandry, University of Bonn, 53115 Bonn, Germany; (M.H.); (D.S.-W.)
| | - Dessie Salilew-Wondim
- Institute of Animal Sciences, Department of Animal Breeding and Husbandry, University of Bonn, 53115 Bonn, Germany; (M.H.); (D.S.-W.)
| | - Russell V. Anthony
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, 3051 Rampart Rd, Fort Collins, CO 80523, USA; (S.G.); (A.A.); (R.V.A.)
| | - Dawit Tesfaye
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, 3051 Rampart Rd, Fort Collins, CO 80523, USA; (S.G.); (A.A.); (R.V.A.)
| |
Collapse
|
19
|
miR-130a/TGF-β1 axis is involved in sow fertility by controlling granulosa cell apoptosis. Theriogenology 2020; 157:407-417. [PMID: 32871445 DOI: 10.1016/j.theriogenology.2020.08.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/05/2020] [Accepted: 08/12/2020] [Indexed: 12/16/2022]
Abstract
TGF-β1 is a ligand of the TGF-β superfamily and an important cytokine that regulates ovarian functions including follicular development, steroid production, ovulation, luteinization, and female fertility. However, little is known about the regulation of TGF-β1 expression in ovary. Here, we identified that TGF-β1 is a functional target of miR-130a in porcine ovarian granulosa cells (GCs). The 3'-UTR sequence of TGF-β1 gene (1137 bp in length) in Large White (LW) pig was isolated, and multiple RNA regulatory elements (RREs), including several binding motifs of different miRNAs, were identified in this region. Luciferase activity assay showed that miR-130a dramatically suppresses the 3'-UTR luciferase activity of TGF-β1 gene, and further inhibits the expression of TGF-β1 in porcine GCs. FACS revealed that miR-130a acts as a pro-apoptotic factor and promotes GC apoptosis by inhibiting TGF-β1. Two novel linked mutations (-573G > A and -540T > C) were identified in the promoter region of ssc-miR-130a, but their polymorphisms are not associated with sow reproductive traits. Importantly, combined genotype analysis with a known mutation (c.1583 A > G) in the 3'-UTR of porcine TGF-β1 gene showed a significant association with reproductive performance in LW sow population. Overall, our findings defined a novel regulatory axis, miR-130a/TGF-β1 axis, which is involved in regulating sow fertility.
Collapse
|
20
|
Abdalla M, Deshmukh H, Atkin SL, Sathyapalan T. miRNAs as a novel clinical biomarker and therapeutic targets in polycystic ovary syndrome (PCOS): A review. Life Sci 2020; 259:118174. [PMID: 32745529 DOI: 10.1016/j.lfs.2020.118174] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 12/17/2022]
Abstract
Polycystic ovary syndrome (PCOS) is the most prevalent endocrine disorder in females of the reproductive age. PCOS is commonly manifested as ovulatory dysfunction, clinical and biochemical excess androgen level, and polycystic ovaries. Metabolic sequelae associated with PCOS, including insulin resistance (IR), type 2 diabetes (T2DM), obesity and increased cardiometabolic risk. The underlying pathology of PCOS is not fully understood with various genetic and environmental factors have been proposed. MicroRNAs (miRNAs), are endogenously produced, small non-coding, single-stranded RNAs that capable of regulating gene expression at the post-transcriptional level. Altered miRNAs expression has been associated with various disorders, including T2DM, IR, lipid disorder, infertility, atherosclerosis, endometriosis, and cancer. Given that PCOS also present with similar features, there is an increasing interest to investigate the role of miRNAs in the diagnosis and management of PCOS. In recent years, studies have demonstrated that miRNAs are present in various body fluids, including follicular fluid of women with PCOS. Therefore, it may act as a potential biomarker and could serve as a novel therapeutic target for the diagnosis and treatment of PCOS. This review aims to summarise the up to date research on the relation between miRNAs and PCOS and explore its potential role in the diagnosis and the management of PCOS.
Collapse
Affiliation(s)
- Mohammed Abdalla
- Hull York Medical School, Academic Diabetes, Endocrinology and Metabolism, University of Hull, Hull, UK.
| | - Harshal Deshmukh
- Clinical lecturer at Hull York Medical School, Academic Diabetes, Endocrinology and Metabolism, University of Hull, Hull, UK.
| | - Stephen L Atkin
- Head of School Postgraduate Studies and Research, RCIS-Bahrain, Medical University of Bahrain, Bahrain.
| | - Thozhukat Sathyapalan
- Honorary Consultant Endocrinologist at Hull University Teaching Hospital NHS Trust, UK; Chair in Academic Diabetes, Endocrinology and metabolism in Hull York Medical School, University of Hull, UK.
| |
Collapse
|
21
|
Yang L, Lv Q, Liu J, Qi S, Fu D. miR-431 regulates granulosa cell function through the IRS2/PI3K/AKT signaling pathway. J Reprod Dev 2020; 66:231-239. [PMID: 32051352 PMCID: PMC7297634 DOI: 10.1262/jrd.2019-155] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 01/21/2020] [Indexed: 12/27/2022] Open
Abstract
MicroRNAs (miRNAs) regulate the functions of granulosa cells by interacting with their target mRNAs. Insulin receptor substrate 2 (IRS2) is one of the targets of miR-431 and can be regulated by ovarian hormones. However, the role of miR-431 and the associated signal transduction pathway in ovarian development has not been studied previously. In this study, we first analyzed the expression of miR-431 and IRS2 following stimulation with pregnant mare serum gonadotropin (PMSG) during the estrous cycle or different stages of ovarian development in mice. Subsequently, we investigated the role, function, and signaling pathway of miR-431 in the human granulosa cell line, COV434. The results showed that follicle stimulating hormone (FSH) gradually decreased miR-431 levels, induced IRS2, and promoted pAKT expression. Moreover, miR-431 overexpression and IRS2 knockdown attenuated AKT activation, inhibited cell proliferation, and decreased estradiol (E2) and progesterone (P4) synthesis. Further, luciferase reporter assay demonstrated that IRS2 was a direct target of miR-431. In conclusion, this study demonstrated that miR-431 regulates granulosa cell function through the IRS2/PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Lei Yang
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiangxi 332000, PR China
- College of Basic Medical Science, Jiujiang University, Jiangxi 332000, PR China
| | - Qizhuang Lv
- College of Biology & Pharmacy, Yulin Normal University, Guangxi 537000, PR China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin 537000, PR China
| | - Jianyun Liu
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiangxi 332000, PR China
- College of Basic Medical Science, Jiujiang University, Jiangxi 332000, PR China
| | - Shikai Qi
- College of Electric Engineering, Jiujiang University, Jiujiang 332000, PR China
| | - Denggang Fu
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiangxi 332000, PR China
- College of Basic Medical Science, Jiujiang University, Jiangxi 332000, PR China
| |
Collapse
|
22
|
Li L, Gou J, Yi T, Li Z. MicroRNA-30a-3p regulates epithelial-mesenchymal transition to affect embryo implantation by targeting Snai2†. Biol Reprod 2020; 100:1171-1179. [PMID: 30753312 DOI: 10.1093/biolre/ioz022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 11/11/2018] [Accepted: 02/08/2019] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE To study the potential role of miR-30a-3p in embryo implantation and explore underlying mechanisms. METHODS We first established normal pregnancy, pseudopregnancy, delayed implantation, and artificial decidualization mouse models. Next, we detected miR-30a-3p expression profiles of these models with real-time reverse transcription PCR(qRT-PCR), then predicted potential target genes through a dual-luciferase assay. Immunofluorescence-fluorescence in situ hybridization co-located miR-30a-3p and target genes. We then examined the effect of miR-30a-3p on embryo implantation in vivo and in vitro. Wound healing and transwell assays were employed to explore possible miR-30a-3p effects on epithelial-mesenchymal transition (EMT), before molecules related to the latter process were examined with qRT-PCR. RESULTS MiR-30a-3p expression decreased significantly on embryo implantation day, compared with the peri-implantation period (P < 0.05). Identified target gene Snai2 expression increased significantly during implantation (P < 0.05). In vivo and in vitro analysis showed that up-regulation of miR-30a-3p by agomir and mimics resulted in decreased implantation sites and embryo implantation rate. Transfection of miR-30a-3p mimics to HEC-1-b cells decreased expression of Snai2 and mesenchymal markers (Vimentin and N-cadherin). Furthermore, wound healing area decreased, as did migration and invasion capacity. CONCLUSION MiR-30a-3p is down-regulated in the embryo implantation period and might have some effect on embryo implantation by acting as a suppressor of EMT through targeting Snai2.
Collapse
Affiliation(s)
- Lin Li
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Jinhai Gou
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Tao Yi
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Zhengyu Li
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
23
|
Hohos NM, Elliott EM, Cho KJ, Lin IS, Rudolph MC, Skaznik-Wikiel ME. High-fat diet-induced dysregulation of ovarian gene expression is restored with chronic omega-3 fatty acid supplementation. Mol Cell Endocrinol 2020; 499:110615. [PMID: 31628964 PMCID: PMC6878773 DOI: 10.1016/j.mce.2019.110615] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/09/2019] [Accepted: 10/09/2019] [Indexed: 12/26/2022]
Abstract
Chronic high-fat diet (HFD) consumption causes ovarian dysfunction in rodents. Acute dietary treatment with docosahexaenoic acid (DHA) increases oocyte quality and ovarian reserve at advanced reproductive age. We hypothesized that DHA supplementation after HFD exposure reverses HFD-induced ovarian defects. We conducted a dietary intervention with reversal to chow, DHA-supplemented chow, or DHA-supplemented HFD after HFD consumption. After 10 weeks, HFD-fed mice had impaired estrous cyclicity, decreased primordial follicles, and altered ovarian expression of 24 genes compared to chow controls. Diet reversal to either chow or chow + DHA restored estrous cyclicity, however only chow + DHA appeared to mitigated the impact of HFD on ovarian reserve. All dietary interventions restored HFD-dysregulated gene expression to chow levels. We found no association between follicular fluid DHA levels and ovarian reserve. In conclusion our data suggest some benefit of DHA supplementation after HFD, particularly in regards to ovarian gene expression, however complete restoration of ovarian function was not achieved.
Collapse
Affiliation(s)
- Natalie M Hohos
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Emily M Elliott
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kirstin J Cho
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ivy S Lin
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Michael C Rudolph
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine, 12700 East 19th Ave, Aurora, CO, 80045, USA
| | | |
Collapse
|
24
|
Zhang Y, Yang J, Yang J, Li J, Zhang M. CREB activity is required for epidermal growth factor‐induced mouse cumulus expansion. Mol Reprod Dev 2019; 86:1887-1900. [DOI: 10.1002/mrd.23285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/28/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Yu Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological SciencesChina Agricultural University Beijing China
| | - Jian Yang
- State Key Laboratory for Agrobiotechnology, College of Biological SciencesChina Agricultural University Beijing China
| | - Jing Yang
- State Key Laboratory for Agrobiotechnology, College of Biological SciencesChina Agricultural University Beijing China
| | - Jia Li
- State Key Laboratory for Agrobiotechnology, College of Biological SciencesChina Agricultural University Beijing China
| | - Meijia Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological SciencesChina Agricultural University Beijing China
| |
Collapse
|
25
|
UGT2B17 and miR-224 contribute to hormone dependency trends in adenocarcinoma and squamous cell carcinoma of esophagus. Biosci Rep 2019; 39:BSR20190472. [PMID: 31164411 PMCID: PMC6609598 DOI: 10.1042/bsr20190472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/09/2019] [Accepted: 05/22/2019] [Indexed: 12/13/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EA) are the two main subtypes of esophageal cancer. Genetics underpinnings of EA are substantially less understood than that of ESCC. A large-scale relation data analysis was conducted to explore the genes implicated with either EA or ESCC, or both. Each gene linked to ESCC but not EA was further explored in mega-analysis of six independently collected EA RNA expression datasets. A multiple linear regression (MLR) model was built to study the possible influence of sample size, population region, and study date on the gene expression data in EA. Finally, a functional pathway analysis was conducted to identify the possible linkage between EA and the genes identified as novel significant contributors. We have identified 276 genes associated with EA, 1088 with ESCC, with a significant (P<5.14e-143) overlap between these two gene groups (n=157). Mega-analysis showed that two ESCC-related genes, UGT2B17 and MIR224, were significantly associated with EA (P-value <1e-10), with multiple connecting pathways revealed by functional analysis. ESCC and EA share some common pathophysiological pathways. Further study of UGT2B17 and MIR224, which are differentially dysregulated in ESCC and EA tumors, is warranted. Enhanced expression of UGT2B17 and the lack of miR-224 signaling may contribute to the responsiveness of EA to the male sex steroids.
Collapse
|
26
|
Robles V, Valcarce DG, Riesco MF. Non-coding RNA regulation in reproduction: Their potential use as biomarkers. Noncoding RNA Res 2019; 4:54-62. [PMID: 31193491 PMCID: PMC6531869 DOI: 10.1016/j.ncrna.2019.04.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 12/13/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are crucial regulatory elements in most biological processes and reproduction is also controlled by them. The different types of ncRNAs, as well as the high complexity of these regulatory pathways, present a complex scenario; however, recent studies have shed some light on these questions, discovering the regulatory function of specific ncRNAs on concrete reproductive biology processes. This mini review will focus on the role of ncRNAs in spermatogenesis and oogenesis, and their potential use as biomarkers for reproductive diseases or for reproduction success.
Collapse
Affiliation(s)
- Vanesa Robles
- Spanish Institute of Oceanography (IEO) Santander, Spain
- MODCELL GROUP, Department of Molecular Biology, Universidad de León, 24071, León, Spain
- Corresponding author. Planta de Cultivos el Bocal, IEO, Barrio Corbanera, Monte, Santander, 39012, Spain.
| | | | | |
Collapse
|
27
|
Vahdat‐Lasemi M, Hosseini S, Jajarmi V, Kazemi B, Salehi M. Intraovarian injection of miR‐224 as a marker of polycystic ovarian syndrome declines oocyte competency and embryo development. J Cell Physiol 2019; 234:13858-13866. [DOI: 10.1002/jcp.28067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 12/18/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Maryam Vahdat‐Lasemi
- Department of Biotechnology School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Sara Hosseini
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Vahid Jajarmi
- Department of Biotechnology School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Bahram Kazemi
- Department of Biotechnology School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences Tehran Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mohammad Salehi
- Department of Biotechnology School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences Tehran Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
28
|
Role of microRNAs in inner ear development and hearing loss. Gene 2018; 686:49-55. [PMID: 30389561 DOI: 10.1016/j.gene.2018.10.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/12/2018] [Accepted: 10/25/2018] [Indexed: 02/06/2023]
Abstract
The etiology of hearing loss tends to be multi-factorial and affects a significant proportion of the global population. Despite the differences in etiology, a common physical pathological change that leads to hearing loss is damage to the mechanosensory hair cells of the inner ear. MicroRNAs (miRNAs) have been shown to play a role in inner ear development and thus, may play a role in the development or prevention of hearing loss. In this paper, we review the mechanism of action of miRNAs in the auditory system. We present an overview about the role of miRNAs in inner ear development, summarize the current research on the role of miRNAs in gene regulation, and discuss the effects of both miRNA mutations as well as overexpression. We discuss the crucial role of miRNAs in ensuring normal physiological development of the inner ear. Any deviation from the proper function of miRNA in the cochlea seems to contribute to deleterious damage to the structure of the auditory system and subsequently results in hearing loss. As interest for miRNA research increases, this paper serves as a platform to review current understandings and postulate future avenues for research. A better knowledge about the role of miRNA in the auditory system will help in developing novel treatment modalities for restoring hearing function based on regeneration of damaged inner ear hair cells.
Collapse
|
29
|
Gay S, Bugeon J, Bouchareb A, Henry L, Delahaye C, Legeai F, Montfort J, Le Cam A, Siegel A, Bobe J, Thermes V. MiR-202 controls female fecundity by regulating medaka oogenesis. PLoS Genet 2018; 14:e1007593. [PMID: 30199527 PMCID: PMC6147661 DOI: 10.1371/journal.pgen.1007593] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 09/20/2018] [Accepted: 07/26/2018] [Indexed: 12/12/2022] Open
Abstract
Female gamete production relies on coordinated molecular and cellular processes that occur in the ovary throughout oogenesis. In fish, as in other vertebrates, these processes have been extensively studied both in terms of endocrine/paracrine regulation and protein expression and activity. The role of small non-coding RNAs in the regulation of animal reproduction remains however largely unknown and poorly investigated, despite a growing interest for the importance of miRNAs in a wide variety of biological processes. Here, we analyzed the role of miR-202, a miRNA predominantly expressed in male and female gonads in several vertebrate species. We studied its expression in the medaka ovary and generated a mutant line (using CRISPR/Cas9 genome editing) to determine its importance for reproductive success with special interest for egg production. Our results show that miR-202-5p is the most abundant mature form of the miRNA and that it is expressed in granulosa cells and in the unfertilized egg. The knock out (KO) of mir-202 gene resulted in a strong phenotype both in terms of number and quality of eggs produced. Mutant females exhibited either no egg production or produced a dramatically reduced number of eggs that could not be fertilized, ultimately leading to no reproductive success. We quantified the size distribution of the oocytes in the ovary of KO females and performed a large-scale transcriptomic analysis approach to identified dysregulated molecular pathways. Together, cellular and molecular analyses indicate that the lack of miR-202 impairs the early steps of oogenesis/folliculogenesis and decreases the number of large (i.e. vitellogenic) follicles, ultimately leading to dramatically reduced female fecundity. This study sheds new light on the regulatory mechanisms that control the early steps of follicular development, including possible targets of miR-202-5p, and provides the first in vivo functional evidence that a gonad-predominant microRNA may have a major role in female reproduction. The role of small non-coding RNAs in the regulation of animal reproduction remains poorly investigated, despite a growing interest for the importance of miRNAs in a wide variety of biological processes. Here, we analyzed the role of miR-202, a miRNA predominantly expressed in gonads in vertebrate. We studied its expression in the medaka ovary and knocked out the mir-202 gene to study its importance for reproductive success. We showed that the lack of miR-202 results in the sterility of both females and males. In particular, it led to a drastic reduction of both the number and the quality of eggs produced by females. Mutant females exhibited either no egg production or produced a drastically reduced number of eggs that could not be fertilized, ultimately leading to no reproductive success. Quantitative histological and molecular analyses indicated that mir-202 KO impairs oocyte development and is also associated with the dysregulation of many genes that are critical for reproduction. This study sheds new light on the regulatory mechanisms that control oogenesis, including possible targets of miR-202-5p, and provides the first in vivo functional evidence that a gonad-predominant microRNA may have a major role in female reproduction.
Collapse
Affiliation(s)
| | | | | | | | - Clara Delahaye
- LPGP, INRA, Rennes, France
- Univ Rennes, INRIA, CNRS, IRISA, Rennes, France
| | - Fabrice Legeai
- Univ Rennes, INRIA, CNRS, IRISA, Rennes, France
- IGEPP, INRA BP35327, Le Rheu, France
| | | | | | - Anne Siegel
- Univ Rennes, INRIA, CNRS, IRISA, Rennes, France
| | | | | |
Collapse
|
30
|
Han X, Xue R, Yuan HJ, Wang TY, Lin J, Zhang J, Liang B, Tan JH. MicroRNA-21 plays a pivotal role in the oocyte-secreted factor-induced suppression of cumulus cell apoptosis. Biol Reprod 2018; 96:1167-1180. [PMID: 28486664 DOI: 10.1093/biolre/iox044] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 05/08/2017] [Indexed: 01/22/2023] Open
Abstract
It is known that oocytes and cumulus cells (CCs) are more resistant to apoptosis than other compartments of the antral follicle. However, although oocyte-secreted factors (OSFs) have been found to be involved in suppressing bovine CC apoptosis, little is known about the intracellular mechanisms by which OSFs render CCs resistant to apoptosis. Here, we show that coculture with mouse or pig cumulus-denuded oocytes, culture with recombinant mouse growth differentiation factor-9 (GDF-9), or culture in pig oocyte-conditioned medium (POCM) significantly inhibited CC apoptosis of mouse oocytectomized cumulus oophorus complexes (OOXs). The POCM contained both GDF-9 and bone morphogenetic protein-15, and their levels remained constant during culture of OOXs. The level of microRNA-21 (miR-21) was significantly lower in OOXs than in COCs after culture in a simplified α-MEM medium, but increased significantly when OOXs were cultured with GDF-9 or in POCM. The level of miR-21 in OSF-treated CCs was correlated with that of Dicer1 but not that of Drosha mRNA. Inhibiting activin receptor-like kinase 5 or SMAD3 completely abolished the beneficial effects of GDF-9 or POCM on CC apoptosis and miR-21 levels. Up- and downregulating miR-21 expression significantly reduced and increased CC apoptosis, respectively. The OSF-upregulated miR-21 expression suppressed CC apoptosis with activation of the PI3K/Akt signaling. In conclusion, miR-21 plays a pivotal role in the OSF suppression of CC apoptosis. OSFs upregulated miR-21 expression through the TGF-β superfamily signaling, which worked through DICER. MicroRNA-21 prevented apoptosis via the PI3K/Akt signaling.
Collapse
Affiliation(s)
- Xiao Han
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, Shandong Province, P. R. China
| | - Rui Xue
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, Shandong Province, P. R. China
| | - Hong-Jie Yuan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, Shandong Province, P. R. China
| | - Tian-Yang Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, Shandong Province, P. R. China
| | - Juan Lin
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, Shandong Province, P. R. China
| | - Jie Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, Shandong Province, P. R. China
| | - Bo Liang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, Shandong Province, P. R. China
| | - Jing-He Tan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, Shandong Province, P. R. China
| |
Collapse
|
31
|
Wang L, Cano M, Datta S, Wei H, Ebrahimi KB, Gorashi Y, Garlanda C, Handa JT. Pentraxin 3 recruits complement factor H to protect against oxidative stress-induced complement and inflammasome overactivation. J Pathol 2017; 240:495-506. [PMID: 27659908 DOI: 10.1002/path.4811] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 06/18/2016] [Accepted: 09/02/2016] [Indexed: 12/21/2022]
Abstract
The discovery that genetic abnormalities in complement factor H (FH) are associated with an increased risk for age-related macular degeneration (AMD), the most common cause of blindness among the elderly, raised hope of new treatments for this vision-threatening disease. Nonetheless, over a decade after the identification of this important association, how innate immunity contributes to AMD remains unresolved. Pentraxin 3 (PTX3), an essential component of the innate immunity system that plays a non-redundant role in controlling inflammation, regulates complement by interacting with complement components. Here, we show that PTX3 is induced by oxidative stress, a known cause of AMD, in the retinal pigmented epithelium (RPE). PTX3 deficiency in vitro and in vivo magnified complement activation induced by oxidative stress, leading to increased C3a, FB, and C3d, but not C5b-9 complex formation. Increased C3a levels, resulting from PTX3 deficiency, raised the levels of Il1b mRNA and secretion of activated interleukin (IL)-1β by interacting with C3aR. Importantly, PTX3 deficiency augmented NLRP3 inflammasome activation, resulting in enhanced IL-1β, but not IL-18, production by the RPE. Thus, in the presence of PTX3 deficiency, the complement and inflammasome pathways worked in concert to produce IL-1β in sufficient abundance to, importantly, result in macrophages accumulating in the choroid. These results demonstrate that PTX3 acts as an essential brake for complement and inflammasome activation by regulating the abundance of FH in the RPE, and provide critical insights into the complex interplay between oxidative stress and innate immunity in the early stages of AMD development. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Lei Wang
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, USA
| | - Marisol Cano
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, USA
| | - Sayantan Datta
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, USA
| | - Hong Wei
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, USA
| | | | - Yara Gorashi
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, USA
| | - Cecilia Garlanda
- Istituto di Ricovero e Cura a Carattere Scientifico-Humanitas Clinical and Research Centre, Milan, Italy
| | - James T Handa
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, USA
| |
Collapse
|
32
|
Bisphenol S negatively affects the meotic maturation of pig oocytes. Sci Rep 2017; 7:485. [PMID: 28352085 PMCID: PMC5428703 DOI: 10.1038/s41598-017-00570-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/01/2017] [Indexed: 01/19/2023] Open
Abstract
Bisphenol A (BPA), a chemical component of plastics, is a widely distributed environmental pollutant and contaminant of water, air, and food that negatively impacts human health. Concerns regarding BPA have led to the use of BPA-free alternatives, one of which is bisphenol S (BPS). However, the effects of BPS are not well characterized, and its specific effects on reproduction and fertility remain unknown. It is therefore necessary to evaluate any effects of BPS on mammalian oocytes. The present study is the first to demonstrate the markedly negative effects of BPS on pig oocyte maturation in vitro, even at doses lower than those humans are exposed to in the environment. Our results demonstrate (1) an effect of BPS on the course of the meiotic cell cycle; (2) the failure of tubulin fibre formation, which controls proper chromosome movement; (3) changes in the supply of maternal mRNA; (4) changes in the protein amounts and distribution of oestrogen receptors α and β and of aromatase; and (5) disrupted cumulus cell expansion. Thus, these results confirm that BPS is an example of regrettable substitution because this substance exerts similar or even worse negative effects than those of the material it replaced.
Collapse
|
33
|
Pseudomonas aeruginosa GroEL Stimulates Production of PTX3 by Activating the NF-κB Pathway and Simultaneously Downregulating MicroRNA-9. Infect Immun 2017; 85:IAI.00935-16. [PMID: 28031262 DOI: 10.1128/iai.00935-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/18/2016] [Indexed: 12/18/2022] Open
Abstract
As one of the first lines of host defense, monocytes play important roles in clearing infected microbes. The defensive response is triggered by recognition of diverse microbial moieties, including released factors, which modulate host immune responses to establish a harsh environment for clinically important bacterial pathogens. In this study, we found that the expression of PTX3, a soluble form of pattern recognition receptor, was induced by infection with live Pseudomonas aeruginosa or treatment of cells with its supernatant. P. aeruginosa GroEL, a homolog of heat shock protein 60, was identified as one of the factors responsible for inducing the expression of PTX3 in host cells. GroEL induced PTX3 expression by activating the Toll-like receptor 4 (TLR4)-dependent pathway via nuclear factor-kappa B (NF-κB), while simultaneously inhibiting expression of microRNA-9, which targets the PTX3 transcript. Finally, by acting as an opsonin, GroEL-induced PTX3 promoted the association and phagocytosis of Staphylococcus aureus into macrophages. These data suggest that the host defensive environment is supported by the production of PTX3 in response to GroEL, which thus has therapeutic potential for clearance of bacterial infections.
Collapse
|
34
|
MicroRNA Mediating Networks in Granulosa Cells Associated with Ovarian Follicular Development. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4585213. [PMID: 28316977 PMCID: PMC5337806 DOI: 10.1155/2017/4585213] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 02/08/2023]
Abstract
Ovaries, which provide a place for follicular development and oocyte maturation, are important organs in female mammals. Follicular development is complicated physiological progress mediated by various regulatory factors including microRNAs (miRNAs). To demonstrate the role of miRNAs in follicular development, this study analyzed the expression patterns of miRNAs in granulosa cells through investigating three previous datasets generated by Illumina miRNA deep sequencing. Furthermore, via bioinformatic analyses, we dissected the associated functional networks of the observed significant miRNAs, in terms of interacting with signal pathways and transcription factors. During the growth and selection of dominant follicles, 15 dysregulated miRNAs and 139 associated pathways were screened out. In comparison of different styles of follicles, 7 commonly abundant miRNAs and 195 pathways, as well as 10 differentially expressed miRNAs and 117 pathways in dominant follicles in comparison with subordinate follicles, were collected. Furthermore, SMAD2 was identified as a hub factor in regulating follicular development. The regulation of miR-26a/b on smad2 messenger RNA has been further testified by real time PCR. In conclusion, we established functional networks which play critical roles in follicular development including pivotal miRNAs, pathways, and transcription factors, which contributed to the further investigation about miRNAs associated with mammalian follicular development.
Collapse
|
35
|
MicroRNA-144 is regulated by CP2 and decreases COX-2 expression and PGE2 production in mouse ovarian granulosa cells. Cell Death Dis 2017; 8:e2597. [PMID: 28182010 PMCID: PMC5386473 DOI: 10.1038/cddis.2017.24] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/28/2016] [Accepted: 12/21/2016] [Indexed: 12/24/2022]
Abstract
Mammalian folliculogenesis is a complex process in which primordial follicles develop into pre-ovulatory follicles, followed by ovulation to release mature oocytes. In this study, we explored the role of miR-144 in ovulation. miR-144 was one of the differentially expressed microRNAs, which showed 5.59-fold changes, in pre-ovulatory ovarian follicles between Large White and Chinese Taihu sows detected by Solexa deep sequencing. We demonstrated that overexpression of miR-144 significantly decreased the luciferase reporter activity under the control of the cyclooxygenase-2 (COX-2) or mothers against decapentaplegic homologue 4 (Smad4) 3'-untranslated region (3'-UTR) and suppressed COX-2 and Smad4 expression. In contrast, a miR-144 inhibitor increased COX-2 and Smad4 expression in mouse granulosa cells (mGCs). Meanwhile, Smad4 upregulated COX-2 expression, but this effect was abolished when the mGCs were treated with the transforming growth factor beta signalling pathway inhibitor SB431542. Moreover, luciferase reporter, chromatin immunoprecipitation and electrophoretic mobility shift assay results showed that the transcription factor CP2 upregulated miR-144 expression, which partially contributed to the suppression of COX-2 in mGCs. Both CP2 and miR-144 alter prostaglandin E2 (PGE2) production by regulating COX-2 expression. In addition, miR-144 regulated mGC apoptosis and affected follicular atresia, but these activities did not appear to be through COX-2 and Smad4. Taken together, we revealed an important CP2/miR-144/COX-2/PGE2/ovulation pathway in mGCs.
Collapse
|
36
|
Li X, Wang H, Sheng Y, Wang Z. MicroRNA-224 delays oocyte maturation through targeting Ptx3 in cumulus cells. Mech Dev 2016; 143:20-25. [PMID: 28039065 DOI: 10.1016/j.mod.2016.12.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 12/19/2016] [Accepted: 12/26/2016] [Indexed: 01/15/2023]
Abstract
MicroRNAs (miRNAs) have been improved to regulate oocyte development in a cell- or stage-specific manner. In this study, we aimed to clarify microRNA-224's (miR-224) role in cumulus cells (CCs), to find out whether a change level of miR-224 in CCs could influence the maturation of oocyte. We found that overexpression of miR-224 of CCs led to the impairment of cell expansion, along with a decrease in the gene expression associated with cell expansion and maturation of oocyte. The increased expression of miR-224 in CC interrupted oocyte cell cycle at the GV stage. The GDF9, BMP15 and ZP3 of the oocytes were also down-regulated. The following in vitro fertilization had yielded a lower number of oocytes from cumulus-oocyte complexes (COCs) overexpressing miR-224 when reaching the blastocyst stage. The suppressive effect of miR-224 in the maturation of COC is validated by the miR-224 knockdown model, where the expansion of cumulus cell was increased and oocyte was developed to MII stage. In addition, the expression of aromatase in CCs was down-regulated by miR-224, resulting in a decreased level of estradiol (E2). A further investigation found that miR-224 down-regulated the expression of protein and mRNA of Ptx3 by targeting its 3'UTR. Our study revealed that miR-224 regulates the gene expression and function of CCs, which influences the maturation of oocyte, at least in part, via targeting Ptx3.
Collapse
Affiliation(s)
- Xiufang Li
- Center for Reproductive Medicine, Shandong University, Jinan 250001, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan 250001, China; The Key Laboratory for Reproductive Endocrinology of Ministry of Education, Jinan 250001, China
| | - Huidan Wang
- Center for Reproductive Medicine, Shandong University, Jinan 250001, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan 250001, China; The Key Laboratory for Reproductive Endocrinology of Ministry of Education, Jinan 250001, China
| | - Yan Sheng
- Center for Reproductive Medicine, Shandong University, Jinan 250001, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan 250001, China; The Key Laboratory for Reproductive Endocrinology of Ministry of Education, Jinan 250001, China
| | - Zhongqing Wang
- Department of Traditional Chinese Medicine, Provincial Hospital Affiliated to Shandong University, Jinan 250022, China.
| |
Collapse
|
37
|
Huang L, Yin ZJ, Feng YF, Zhang XD, Wu T, Ding YY, Ye PF, Fu K, Zhang MQ. Identification and differential expression of microRNAs in the ovaries of pigs (Sus scrofa) with high and low litter sizes. Anim Genet 2016; 47:543-51. [PMID: 27435155 DOI: 10.1111/age.12452] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2016] [Indexed: 12/01/2022]
Abstract
Litter size affects profitability in the swine industry. Mammalian ovaries play important roles during reproduction, including ovulation and hormone secretion, which are tightly regulated by specific microRNAs (miRNAs). In this study, we investigated the effects of specific miRNAs on porcine litter size. We compared the ovarian miRNAs of Yorkshire pigs with high (YH) and low (YL) litter sizes using Solexa sequencing technology. We identified 327 and 320 miRNAs in the ovaries of YH and YL pigs respectively. A total of 297 miRNAs were co-expressed; 30 and 23 miRNAs respectively were specifically expressed in the two libraries. A total of 83 novel miRNAs were predicted; 37 specific miRNAs were obtained, of which 21 miRNAs were upregulated and 16 miRNAs were downregulated in YH compared with YL. Additionally, 19 628 and 19 250 target genes were predicted in the two libraries respectively. The results revealed that specific miRNAs (i.e., miR-224, miR-99a, let-7c, miR-181c, miR-214 and miR-21) may affect porcine litter size. The results of this study will help in gaining understanding of the role of miRNAs in porcine litter size regulation.
Collapse
Affiliation(s)
- L Huang
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, P. R. China
| | - Z J Yin
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, P. R. China
| | - Y F Feng
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, P. R. China
| | - X D Zhang
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, P. R. China.
| | - T Wu
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, P. R. China
| | - Y Y Ding
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, P. R. China
| | - P F Ye
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, P. R. China
| | - K Fu
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, P. R. China
| | - M Q Zhang
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, P. R. China
| |
Collapse
|
38
|
Nagyova E, Kalous J, Nemcova L. Increased expression of pentraxin 3 after in vivo and in vitro stimulation with gonadotropins in porcine oocyte-cumulus complexes and granulosa cells. Domest Anim Endocrinol 2016; 56:29-35. [PMID: 26986845 DOI: 10.1016/j.domaniend.2016.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 01/26/2016] [Accepted: 01/31/2016] [Indexed: 11/18/2022]
Abstract
It has been previously shown that multimeric pentraxin 3 (PTX3) is a key component of the cumulus oophorus extracellular matrix (ECM) in mice. In response to the ovulatory LH surge, the cumulus cells assemble a unique ECM that envelopes the oocyte and cumulus cell complex. Importantly, cumuli from PTX3(-/-) mice were defective in their ECM organization and their fertility was impaired. It has been demonstrated that tumor necrosis factor alpha-induced protein 6 catalyzes the formation of heavy chains of (inter-alpha-trypsin inhibitor) -hyaluronan complexes and these are then cross-linked via PTX3. This process is tightly regulated and requires the proteins to meet/interact in the correct order. Finally, in this way, the above-listed proteins form the cumulus oophorus ECM. We investigated whether PTX3 is expressed in the porcine preovulatory follicle. Porcine oocyte-cumulus complexes (OCC) and mural granulosa cells (MGC) from gilts were obtained either after stimulation in vivo with eCG/hCG (4, 8, 16, 24, and 32 h) or culture in vitro (4, 24, and 44 h) in FSH/LH-supplemented medium. The methods performed were real-time reverse transcriptase-polymerase chain reaction, Western blot analysis, and immunostaining. The expression of PTX3 transcripts was significantly increased 24 h after either in vivo hCG stimulation or in vitro FSH/LH treatment in both OCC and MGC. Western blot analysis with PTX3 antibody revealed that not only matrix extracts from in vivo-stimulated gilts contain high levels of PTX3 protein but also matrix extracts of FSH/LH-stimulated OCC cultured in medium supplemented either with follicular fluid or with porcine serum. The localization of PTX3 in the cumulus oocyte complex was confirmed by immunostaining. In conclusion, PTX3 is produced by porcine OCC and MGC both in vivo and in vitro with gonadotropin stimuli inducing cumulus expansion.
Collapse
Affiliation(s)
- E Nagyova
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, 27721, Czech Republic.
| | - J Kalous
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, 27721, Czech Republic
| | - L Nemcova
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, 27721, Czech Republic
| |
Collapse
|
39
|
MicroRNAs related to androgen metabolism and polycystic ovary syndrome. Chem Biol Interact 2016; 259:8-16. [PMID: 27270454 DOI: 10.1016/j.cbi.2016.06.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 05/25/2016] [Accepted: 06/03/2016] [Indexed: 01/14/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a frequent endocrine disorder in women. PCOS is associated with altered features of androgen metabolism, increased insulin resistance and impaired fertility. Furthermore, PCOS, being a syndrome diagnosis, is heterogeneous and characterized by polycystic ovaries, chronic anovulation and evidence of hyperandrogenism, as well as being associated with chronic low-grade inflammation and an increased life time risk of type 2 diabetes. A number of androgen species contribute to the symptoms of increased androgen exposure seen in many, though not all, cases of PCOS: Testosterone, androstenedione, dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEAS), where the quantitatively highest amount of androgen is found as DHEAS. The sulfation of DHEA to DHEAS depends on a number of enzymes, and altered sulfate metabolism may be associated with and contribute to the pathogenesis of PCOS. MicroRNAs (miRNAs) are small, non-coding RNAs that are able to regulate gene expression at the post-transcriptional level. Altered miRNA levels have been associated with diabetes, insulin resistance, inflammation and various cancers. Studies have shown that circulating miRNAs are present in whole blood, serum, plasma and the follicular fluid of PCOS patients and that these might serve as potential biomarkers and a new approach for the diagnosis of PCOS. In this review, recent work on miRNAs with respect to PCOS will be summarized. Our understanding of miRNAs, particularly in relation to PCOS, is currently at a very early stage, and additional studies will yield important insight into the molecular mechanisms behind this complex and heterogenic syndrome.
Collapse
|
40
|
Cui N, Hao G, Zhao Z, Wang F, Cao J, Yang A. MicroRNA-224 regulates self-renewal of mouse spermatogonial stem cells via targeting DMRT1. J Cell Mol Med 2016; 20:1503-12. [PMID: 27099200 PMCID: PMC4956939 DOI: 10.1111/jcmm.12838] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/14/2016] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRs) play a key role in the control of gene expression in a wide array of tissue systems, where their functions include the regulation of self-renewal, cellular differentiation, proliferation and apoptosis. However, the function and mechanisms of individual miRs in regulating spermatogonial stem cell (SSC) homeostasis remain unclear. In the present study, we report for the first time that miR-224 is highly expressed in mouse SSCs. Functional assays using miRNA mimics and inhibitors reveal that miR-224 is essential for differentiation of SSCs. Mechanistically, miR-224 promotes differentiation of SSCs via targeting doublesex and Mab-3-related transcription factor 1 (DMRT1). Moreover, WNT/β-catenin signalling pathway is involved in miR-224-mediated regulation of SSCs self-renewal. We further demonstrate that miR-224 overexpression increases the expression of GFRα1 and PLZF, accompanied by the down-regulation of DMRT1 in mouse testes. Our findings provide novel insights into molecular mechanisms regulating differentiation of SSCs and may have important implications for regulating male reproduction.
Collapse
Affiliation(s)
- Na Cui
- Department of Reproduction, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guimin Hao
- Department of Reproduction, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhiming Zhao
- Department of Reproduction, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Feng Wang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jinfeng Cao
- Department of Reproduction, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Aimin Yang
- Department of Reproduction, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
41
|
Grossman H, Shalgi R. A Role of MicroRNAs in Cell Differentiation During Gonad Development. Results Probl Cell Differ 2016; 58:309-36. [PMID: 27300184 DOI: 10.1007/978-3-319-31973-5_12] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are a group of small noncoding RNA molecules that play a major role in posttranscriptional regulation of gene expression and are expressed in an organ-specific manner. One miRNA can potentially regulate the expression of several genes, depending on cell type and differentiation stage. miRNAs are differentially expressed in the male and female gonads and have an organ-specific reproductive function. Exerting their affect through germ cells and gonadal somatic cells, miRNAs regulate key proteins necessary for gonad development. The role of miRNAs in the testes is only starting to emerge though they have been shown to be required for adequate spermatogenesis. Widely explored in the ovary, miRNAs were suggested to play a fundamental role in follicles' assembly, growth, differentiation, and ovulation. In this chapter, we focus on data obtained from mice in which distinct proteins that participate in the biosynthesis of miRNAs were conditionally knocked out from germ cells (spermatogonial cells or oocytes) or gonadal somatic cells (Sertoli or granulosa cells). We detail recent advances in identification of particular miRNAs and their significance in the development and function of male and female gonads. miRNAs can serve as biomarkers and therapeutic agents of pathological conditions; thus, elucidating the branched and complex network of reproduction-related miRNAs will aid understanding of gonads' physiology and managing reproduction disorders.
Collapse
Affiliation(s)
- Hadas Grossman
- Department of Cell Biology and Development, Tel Aviv University, Ramat Aviv, Israel
| | - Ruth Shalgi
- Department of Cell Biology and Development, Tel Aviv University, Ramat Aviv, Israel.
| |
Collapse
|
42
|
Wang L, Li C, Li R, Deng Y, Tan Y, Tong C, Qi H. MicroRNA-764-3p regulates 17β-estradiol synthesis of mouse ovarian granulosa cells by targeting steroidogenic factor-1. In Vitro Cell Dev Biol Anim 2015; 52:365-373. [PMID: 26676955 DOI: 10.1007/s11626-015-9977-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 11/05/2015] [Indexed: 12/18/2022]
Abstract
Previous studies have reported that microRNA-764-3p (miR-764-3p) is one of the most up-regulated microRNAs (miRNAs) in TGF-β1-stimulated mouse ovarian granulosa cells. However, little is known about the roles and mechanisms of miR-764-3p in granulosa cell function during follicular development. In this study, we found that overexpression of miR-764-3p inhibited 17β-estradiol (E2) synthesis of granulosa cells through directly targeting steroidogenic factor-1 (SF-1). MiR-764-3p inhibited SF-1 by affecting its messenger RNA (mRNA) stability, which subsequently suppressed the expression levels of Cyp19a1 gene (aromatase, a downstream target of SF-1). In addition, SF-1 was involved in regulation of miR-764-3p-mediated Cyp19a1 expression in granulosa cells which contributed, at least partially, to the effects of miR-764-3p on granulosa cell E2 release. These results suggest that miR-764-3p functions to decrease steroidogenesis by targeting SF-1, at least in part, through inactivation of Cyp19a1. Taken together, our data provide mechanistic insights into the roles of miR-764-3p on E2 synthesis. Understanding of potential miRNAs affecting estrogen synthesis will help to diagnose and treat steroid-related diseases.
Collapse
Affiliation(s)
- Lianlian Wang
- Department of Reproduction Health and Infertility, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.,China-Canada-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Cong Li
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Rong Li
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.,China-Canada-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Youlin Deng
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yixin Tan
- Department of Medical Records, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Chao Tong
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.,China-Canada-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Hongbo Qi
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China. .,China-Canada-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
43
|
Khan HA, Zhao Y, Wang L, Li Q, Du YA, Dan Y, Huo LJ. Identification of miRNAs during mouse postnatal ovarian development and superovulation. J Ovarian Res 2015; 8:44. [PMID: 26152307 PMCID: PMC4499447 DOI: 10.1186/s13048-015-0170-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 06/18/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND MicroRNAs are small noncoding RNAs that play critical roles in regulation of gene expression in wide array of tissues including the ovary through sequence complementarity at post-transcriptional level. Tight regulation of multitude of genes involved in ovarian development and folliculogenesis could be regulated at transcription level by these miRNAs. Therefore, tissue specific miRNAs identification is considered a key step towards understanding the role of miRNAs in biological processes. METHODS To investigate the role of microRNAs during ovarian development and folliculogenesis we sequenced eight different libraries using Illumina deep sequencing technology. Different developmental stages were selected to explore miRNAs expression pattern at different stages of gonadal maturation with/without treatment of PMSG/hCG for superovulation. RESULTS From massive sequencing reads, clean reads of 16-26 bp were selected for further analysis of differential expression analysis and novel microRNA annotation. Expression analysis of all miRNAs at different developmental stages showed that some miRNAs were present ubiquitously while others were differentially expressed at different stages. Among differentially expressed miRNAs we reported 61 miRNAs with a fold change of more than 2 at different developmental stages among all libraries. Among the up-regulated miRNAs, mmu-mir-1298 had the highest fold change with 4.025 while mmu-mir-150 was down-regulated more than 3 fold. Furthermore, we found 2659 target genes for 20 differentially expressed microRNAs using seven different target predictions programs (DIANA-mT, miRanda, miRDB, miRWalk, RNAhybrid, PICTAR5, TargetScan). Analysis of the predicted targets showed certain ovary specific genes targeted by single or multiple microRNAs. Furthermore, pathway annotation and Gene ontology showed involvement of these microRNAs in basic cellular process. CONCLUSIONS These results suggest the presence of different miRNAs at different stages of ovarian development and superovulation. Potential role of these microRNAs was elucidated using bioinformatics tools in regulation of different pathways, biological functions and cellular components underlying ovarian development and superovulation. These results provide a framework for extended analysis of miRNAs and their roles during ovarian development and superovulation. Furthermore, this study provides a base for characterization of individual miRNAs to discover their role in ovarian development and female fertility.
Collapse
Affiliation(s)
- Hamid Ali Khan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Yi Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Li Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Qian Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Yu-Ai Du
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Yi Dan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
44
|
MicroRNA 224 Regulates Ion Transporter Expression in Ameloblasts To Coordinate Enamel Mineralization. Mol Cell Biol 2015; 35:2875-90. [PMID: 26055330 DOI: 10.1128/mcb.01266-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 06/04/2015] [Indexed: 02/05/2023] Open
Abstract
Enamel mineralization is accompanied by the release of protons into the extracellular matrix, which is buffered to regulate the pH value in the local microenvironment. The present study aimed to investigate the role of microRNA 224 (miR-224) as a regulator of SLC4A4 and CFTR, encoding the key buffering ion transporters, in modulating enamel mineralization. miR-224 was significantly downregulated as ameloblasts differentiated, in parallel with upregulation of SLC4A4 and CFTR. Overexpression of miR-224 downregulated SLC4A4 and CFTR expression in cultured human epithelial cells. A microRNA luciferase assay confirmed the specific binding of miR-224 to the 3' untranslated regions (UTRs) of SLC4A4 and CFTR mRNAs, thereby inhibiting protein translation. miR-224 agomir injection in mouse neonatal incisors resulted in normal enamel length and thickness, but with disturbed organization of the prism structure and deficient crystal growth. Moreover, the enamel Ca/P ratio and microhardness were markedly reduced after miR-224 agomir administration. These results demonstrate that miR-224 plays a pivotal role in fine tuning enamel mineralization by modulating SLC4A4 and CFTR to maintain pH homeostasis and support enamel mineralization.
Collapse
|
45
|
McGinnis LK, Luense LJ, Christenson LK. MicroRNA in Ovarian Biology and Disease. Cold Spring Harb Perspect Med 2015; 5:a022962. [PMID: 25986593 DOI: 10.1101/cshperspect.a022962] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
MicroRNAs (miRNAs) are posttranscriptional gene regulatory molecules that show regulated expression within ovarian tissue. Most research investigating miRNAs in the ovary has relied exclusively on in vitro analyses. In this review, we highlight those few studies in which investigators have illustrated an in vivo effect of miRNAs on ovarian function. We also provide a synopsis of how these small noncoding RNAs can impact ovarian disease. miRNAs have great potential as novel diagnostic biomarkers for the detection of ovarian disease and in the assisted reproductive technologies (ART) for selection of healthy viable oocytes and embryos.
Collapse
Affiliation(s)
- Lynda K McGinnis
- Department Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Lacey J Luense
- Epigenetics Program, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Lane K Christenson
- Department Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160
| |
Collapse
|
46
|
Moussa M, Shu J, Zhang X, Zeng F. Maternal control of oocyte quality in cattle “a review”. Anim Reprod Sci 2015; 155:11-27. [DOI: 10.1016/j.anireprosci.2015.01.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 11/20/2014] [Accepted: 01/15/2015] [Indexed: 02/09/2023]
|
47
|
Li Z, Gou J, Jia J, Zhao X. MicroRNA-429 functions as a regulator of epithelial-mesenchymal transition by targeting Pcdh8 during murine embryo implantation. Hum Reprod 2015; 30:507-18. [PMID: 25609238 DOI: 10.1093/humrep/dev001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
STUDY QUESTION What is the role of miR-429 in murine embryo implantation? SUMMARY ANSWER miR-429 functions as a suppressor of epithelial-mesenchymal transition (EMT) during the process of embryo implantation by reverse regulation of Pcdh8. WHAT IS KNOWN ALREADY MicroRNAs (miRNAs) may serve as promising regulators of embryo implantation. miR-429 was recently found to be down-regulated during embryo implantation period in a microarray analysis. STUDY DESIGN, SIZE, DURATION The expression profile of miR-429 was clarified in a series of models, and the target gene was confirmed. The in vivo and in vitro effect of miR-429 on embryo implantation was examined. PARTICIPANTS/MATERIALS, SETTING, METHODS Pregnancy was produced by natural mating between female C57BL6/J mice and male mice, and a series of models, including pseudopregnancy, delayed implantation and artificial decidualization, were established. The expression profile of miR-429 during the embryo implantation period was clarified in these models. Candidate target genes of miR-429 were predicted by bioinformatic analysis and tested by luciferase activity assay. The in vivo effects of miR-429 on embryo implantation were also examined. The in vitro effects of miR-429 on EMT were studied by examining migratory and invasive capacities by transwell assay and expression profiles of cadherin family members by western blotting and qRT-PCR. MAIN RESULTS AND THE ROLE OF CHANCE The expression profile of miR-429 in animal models suggested its down-regulation should be dependent on the presence and status of blastocysts and on endometrial decidualization. The luciferase activity assay showed that Pcdh8, a member of cadherin gene family, was the target gene of miR-429, and miR-429 suppressed the expression of Pcdh8 mRNA and protein. Gain-of-function of miR-429 in vivo resulted in a significant reduction of the number of implantation sites, but had little effect on fertilization. Up-regulation of miR-429 in vitro led to suppression of mesenchymal marker genes Vim, Cdh2, Zeb1 and Zeb2, and activation of epithelial marker gene Cdh1, resulting in suppression of the migratory and invasive capacities of cells. miR-429 also partially abrogated TGF-beta-induced EMT. The dysregulated expression profiles of EMT markers during embryo implantation period could be partially reversed by gain-of-function of miR-429 in vivo. LIMITATIONS, REASONS FOR CAUTION The association of miR-429 with other members of the miR-200 family in embryo implantation remains to be determined. The relationship between miR-429 and the cadherin family needs more intensive description and the detailed mechanism of miR-429 in regulating the cadherin family needs to be elucidated. WIDER IMPLICATIONS OF THE FINDINGS Our findings indicate that miR-429 plays a major role in embryo implantation as a suppressor of EMT by targeting Pcdh8. This information could contribute to a better understanding of the mechanisms involved in the miRNA-mediated regulation of embryo implantation, and subsequently improve treatments for infertility. The findings are consistent with that from previous research of the other members in miR-200 family in embryo implantation and in the EMT. STUDY FUNDING/COMPETING INTERESTS This study was supported by the Natural Science Foundation of China (Grant number: 81170592), and Special Fund from National Excellent Doctoral Dissertation (Grant number: 201079). There was no conflict of interest.
Collapse
Affiliation(s)
- Zhengyu Li
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu 610041, People's Republic of China Sichuan Key Laboratory of Gynecologic Oncology, West China Second University Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Jinhai Gou
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Jia Jia
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu 610041, People's Republic of China Sichuan Key Laboratory of Gynecologic Oncology, West China Second University Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|
48
|
MicroRNA-451 plays a role in murine embryo implantation through targeting Ankrd46, as implicated by a microarray-based analysis. Fertil Steril 2014; 103:834-4.e4. [PMID: 25542822 DOI: 10.1016/j.fertnstert.2014.11.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/18/2014] [Accepted: 11/18/2014] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine the potential microRNA (miRNA) regulators of embryo implantation, as a continuation of genomic and proteomic research. DESIGN Laboratory animal research. SETTING University hospital laboratory. ANIMAL(S) Adult healthy female C57BL6/J mice (age 6-8 weeks, nonfertile, weighing 18-20 g each). INTERVENTION(S) Female mice were mated naturally with fertile males to produce pregnancy. Luminal epithelium was collected by laser-capture microdissection during the implantation period. Mouse models of pseudopregnancy, delayed implantation, and artificial decidualization were established. MAIN OUTCOME MEASURE(S) The miRNA profile in luminal epithelium was clarified by microarray analysis and validated by real-time reverse transcription polymerase chain reaction (qRT-PCR) in a series of models. Target genes were predicted and confirmed by luciferase activity assay. The role of miRNA in implantation was examined by loss-of-function and gain-of-function of miRNA in vitro and in vivo. RESULT(S) A total of 29 and 15 miRNAs were up- and down-regulated, respectively, during the implantation period; 11 of these miRNAs were validated by qRT-PCR. The profile of miR-451 was clarified in a series of models. A dual-luciferase activity assay showed that Ankrd46 was a target gene of miR-451. Loss-of-function by LV-miR-451 sponge or miR-451 inhibitor led to a reduced number of embryo implantations, but had little effect on fertilization. CONCLUSION(S) miR-451 was specifically up-regulated during the implantation period, and it may play a major role in embryo implantation by targeting Ankrd46.
Collapse
|
49
|
Tian X, Wang F, He C, Zhang L, Tan D, Reiter RJ, Xu J, Ji P, Liu G. Beneficial effects of melatonin on bovine oocytes maturation: a mechanistic approach. J Pineal Res 2014; 57:239-47. [PMID: 25070516 DOI: 10.1111/jpi.12163] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 07/25/2014] [Indexed: 12/18/2022]
Abstract
This study was performed to investigate the effect of melatonin on bovine oocyte maturation and subsequent embryonic development in vitro. The endogenous melatonin concentration in bovine follicular fluid is approximately 10(-11) M. To examine the potential beneficial effects of melatonin on bovine oocyte maturation in vitro, germinal vesicle (GV) oocytes were incubated with different concentrations of melatonin (10(-11), 10(-9), 10(-7), 10(-5), 10(-3) M). Melatonin supplementation at suitable concentrations significantly promoted oocyte maturation. The development of embryos and the mean cell number/blastocyst produced after in vitro fertilization were remarkably improved. The most effective melatonin concentrations obtained from the studies ranged from 10(-9) to 10(-7) M. The expression of melatonin receptor MT1 and MT2 genes was identified in cumulus cells, granulosa cells, and oocytes using reverse transcription PCR, immunofluorescence, and Western blot. The mechanistic studies show that the beneficial effects of melatonin on bovine oocyte maturation are mediated via melatonin membrane receptors as the melatonin receptor agonist (IIK7) promotes this effect while the melatonin receptor antagonist (luzindole) blocks this action. Mechanistic explorations revealed that melatonin supplementation during bovine oocyte maturation significantly up-regulated the expressions of oocyte maturation-associated genes (GDF9, MARF1, and DNMT1a) and cumulus cells expansion-related gene (PTX3, HAS1/2) and that LHR1/2, EGFR are involved in signal transduction and epigenetic reprogramming. The results obtained from the studies provide new information regarding the mechanisms by which melatonin promotes bovine oocyte maturation in vitro and provide an important reference for in vitro embryo production of bovine and the human-assisted reproductive technology.
Collapse
Affiliation(s)
- XiuZhi Tian
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Sørensen AE, Wissing ML, Salö S, Englund ALM, Dalgaard LT. MicroRNAs Related to Polycystic Ovary Syndrome (PCOS). Genes (Basel) 2014; 5:684-708. [PMID: 25158044 PMCID: PMC4198925 DOI: 10.3390/genes5030684] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/07/2014] [Accepted: 08/12/2014] [Indexed: 12/12/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common, though heterogeneous, endocrine aberration in women of reproductive age, with high prevalence and socioeconomic costs. The syndrome is characterized by polycystic ovaries, chronic anovulation and hyperandrogenism, as well as being associated with infertility, insulin resistance, chronic low-grade inflammation and an increased life time risk of type 2 diabetes. MicroRNAs (miRNAs) are small, non-coding RNAs that are able to regulate gene expression at the post-transcriptional level. Altered miRNA levels have been associated with diabetes, insulin resistance, inflammation and various cancers. Studies have shown that circulating miRNAs are present in whole blood, serum, plasma and the follicular fluid of PCOS patients and that they might serve as potential biomarkers and a new approach for the diagnosis of PCOS. In this review, recent work on miRNAs with respect to PCOS will be summarized. Our understanding of miRNAs, particularly in relation to PCOS, is currently at a very early stage, and additional studies will yield important insight into the molecular mechanisms behind this complex and heterogenic syndrome.
Collapse
Affiliation(s)
- Anja Elaine Sørensen
- Department of Science, Systems and Models, Roskilde University, Universitetsvej 1, Roskilde 4000, Denmark.
| | | | - Sofia Salö
- Department of Science, Systems and Models, Roskilde University, Universitetsvej 1, Roskilde 4000, Denmark.
| | | | - Louise Torp Dalgaard
- Department of Science, Systems and Models, Roskilde University, Universitetsvej 1, Roskilde 4000, Denmark.
| |
Collapse
|