1
|
Lago-Sampedro A, Oualla-Bachiri W, Maldonado-Araque C, Valdés S, González-Molero I, Doulatram-Gamgaram V, Delgado E, Chaves FJ, Castaño L, Calle-Pascual A, Franch-Nadal J, Rojo-Martínez G, García-Serrano S, García-Escobar E. The Interactive Effects of Fruit Intake Frequency and Serum miR-484 Levels as Biomarkers for Incident Type 2 Diabetes in a Prospective Cohort of the Spanish Adult Population: The Di@bet.es Study. Biomedicines 2025; 13:160. [PMID: 39857744 PMCID: PMC11762795 DOI: 10.3390/biomedicines13010160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/21/2024] [Accepted: 12/26/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Although evidence suggests that miR-484 and several fruit components are involved in glucose metabolism and insulin resistance metabolic pathways, the relationship between serum miR-484 levels and fruit consumption in relation to the risk of Type 2 diabetes (T2DM) remains elusive. The aim of this study was to evaluate the possible association between serum miR-484 levels and fruit intake frequency with the risk of T2DM in the Spanish adult population. Methods: 2234 subjects from the Di@bet.es cohort study without T2DM at baseline were studied. Socio-demographic, anthropometric and clinical data were recorded, as well as responses to a questionnaire on habits, including frequency of fruit consumption (daily vs. occasional). T2DM was diagnosed at baseline and after 7.5 years of follow-up. Baseline serum miR-484 levels were measured using real-time qPCR and categorized based on the 25th percentile. Association analyses were performed using logistic regression models adjusted for potential confounders. Interaction effects were evaluated on the multiplicative and additive scales. Results: There was no association between miR-484 levels and fruit intake frequency. Categorized miR-484 levels and fruit consumption were inversely and independently associated with the likelihood of incident T2DM. Analysis of the interaction effect suggests the presence of both positive multiplicative and additive interactions between miR-484 categories and fruit consumption frequency. Conclusions: Our study demonstrates a protective effect of daily fruit intake and high miR-484 levels regarding the risk of T2DM and supports the nutritional recommendations advocating daily fruit consumption. This study also suggests that the combined effect of low miR-484 levels and occasional fruit intake may increase the risk of T2DM beyond their independent effects.
Collapse
Affiliation(s)
- Ana Lago-Sampedro
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
- UGC Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, IBIMA Plataforma BIONAND, 29590 Malaga, Spain
- Facultad de Medicina, Universidad de Malaga, Campus de Teatinos s/n, 29071 Malaga, Spain
| | - Wasima Oualla-Bachiri
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
- UGC Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, IBIMA Plataforma BIONAND, 29590 Malaga, Spain
- Facultad de Medicina, Universidad de Malaga, Campus de Teatinos s/n, 29071 Malaga, Spain
| | - Cristina Maldonado-Araque
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
- UGC Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, IBIMA Plataforma BIONAND, 29590 Malaga, Spain
| | - Sergio Valdés
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
- UGC Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, IBIMA Plataforma BIONAND, 29590 Malaga, Spain
| | - Inmaculada González-Molero
- UGC Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, IBIMA Plataforma BIONAND, 29590 Malaga, Spain
| | - Viyey Doulatram-Gamgaram
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
- UGC Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, IBIMA Plataforma BIONAND, 29590 Malaga, Spain
| | - Elias Delgado
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Endocrinology and Nutrition, Central University Hospital of Asturias, Health Research Institute of the Principality of Asturias (ISPA), University of Oviedo, 33011 Oviedo, Spain
| | - Felipe J. Chaves
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Genomic and Genetic Diagnosis Unit, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - Luis Castaño
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Cruces University Hospital, Bio-Bizkaia, Department of Pediatrics, University of the Basque Country (UPV/EHU), European Reference Network on Rare Endocrine Conditions (Endo-ERN), 48903 Barakaldo, Spain
| | - Alfonso Calle-Pascual
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Endocrinology and Nutrition, San Carlos University Hospital of Madrid, 28040 Madrid, Spain
| | - Josep Franch-Nadal
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
- EAP Raval Sud, Catalan Institute of Health, GEDAPS Network, Primary Care, Research Support Unit (IDIAP—Jordi Gol Foundation), 08007 Barcelona, Spain
| | - Gemma Rojo-Martínez
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
- UGC Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, IBIMA Plataforma BIONAND, 29590 Malaga, Spain
| | - Sara García-Serrano
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
- UGC Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, IBIMA Plataforma BIONAND, 29590 Malaga, Spain
| | - Eva García-Escobar
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
- UGC Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, IBIMA Plataforma BIONAND, 29590 Malaga, Spain
| |
Collapse
|
2
|
Duisenbek A, Avilés Pérez MD, Pérez M, Aguilar Benitez JM, Pereira Pérez VR, Gorts Ortega J, Ussipbek B, Yessenbekova A, López-Armas GC, Ablaikhanova N, Olivieri F, Escames G, Acuña-Castroviejo D, Rusanova I. Unveiling the Predictive Model for Macrovascular Complications in Type 2 Diabetes Mellitus: microRNAs Expression, Lipid Profile, and Oxidative Stress Markers. Int J Mol Sci 2024; 25:11763. [PMID: 39519313 PMCID: PMC11546857 DOI: 10.3390/ijms252111763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
To assay new circulating markers related to macrovascular complications (MVC) in type 2 diabetes mellitus (T2DM), we carried out a descriptive cross-sectional study. We recruited 30 controls (CG), 34 patients with T2DM (DG), and 28 patients with T2DM and vascular complications (DG+C); among them, 22 presented MVC. Peripheral blood was used to determine redox status (superoxide dismutase, SOD; catalase, CAT; glutathione reductase, GRd; glutathione peroxidase, GPx; glucose-6-phosphate dehydrogenase, G6PD) and markers of oxidative damage (advanced oxidation protein products, AOPP; lipid peroxidation, LPO), nitrite levels in plasma (NOx). Inflammatory markers (IL-1β, IL-6, IL-10, IL-18, MCP-1, TNF-α) and the relative expression of c-miRNAs were analyzed. The real-time PCR results showed that the expressions of miR-155-5p, miR-21-5p, miR-146a-3p, and miR-210-3p were significantly higher in the DG group compared to the CG. The DG+C group presented statistically relevant differences with CG for four miRs: the increased expression of miR-484-5p, miR-21-5p, and miR-210-3p, and decreased expression of miR-126a-3p. Moreover, miR-126a-3p was significantly less expressed in DG+C compared to DG. The application of binary logistic regression analysis and construction of receiving operator characteristic curves (ROC) revealed two models with high predictive values for vascular complications presence: (1) HbAc1, creatinine, total cholesterol (TC), LPO, GPx, SOD, miR-126, miR-484 (Exp(B) = 0.926, chi2 = 34.093, p < 0.001; AUC = 0.913). (2) HbAc1, creatinine, TC, IL-6, LPO, miR-126, miR-484 (Exp(B) = 0.958, Chi2 = 33.863, p < 0.001; AUC = 0.938). Moreover, our data demonstrated that gender, TC, GPx, CAT, and miR-484 were associated with MVC and exhibited higher predictive values (Exp(B) = 0.528, p = 0.024, Chi2 = 28.214, AUC = 0.904) than classical variables (Exp(B) 0.462, p = 0.007, Chi2 = 18.814, AUC = 0.850). miR-126, miR-484, IL-6, SOD, CAT, and GPx participate in vascular damage development in the studied diabetic population and should be considered for future studies.
Collapse
Affiliation(s)
- Ayauly Duisenbek
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Al-Farabi Av. 71, Almaty 050040, Kazakhstan; (A.D.); (B.U.); (A.Y.); (N.A.)
| | - María D. Avilés Pérez
- Endocrinology and Nutrition Unit, Instituto de Investigación Biosanitaria de Granada Ibs.GRANADA, University Hospital San Cecilio, 18007 Granada, Spain;
| | - Miguel Pérez
- Hospital Alto Guadalquivir, 23740 Andujar, Spain;
| | | | - Víctor Roger Pereira Pérez
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18071 Granada, Spain; (V.R.P.P.); (J.G.O.)
| | - Juan Gorts Ortega
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18071 Granada, Spain; (V.R.P.P.); (J.G.O.)
| | - Botagoz Ussipbek
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Al-Farabi Av. 71, Almaty 050040, Kazakhstan; (A.D.); (B.U.); (A.Y.); (N.A.)
| | - Arailym Yessenbekova
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Al-Farabi Av. 71, Almaty 050040, Kazakhstan; (A.D.); (B.U.); (A.Y.); (N.A.)
| | - Gabriela C. López-Armas
- Departamento de Investigación y Extensión, Centro de Enseñanza Técnica Industrial, C. Nueva Escocia 1885, Guadalajara C.P. 44638, Mexico;
| | - Nurzhanyat Ablaikhanova
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Al-Farabi Av. 71, Almaty 050040, Kazakhstan; (A.D.); (B.U.); (A.Y.); (N.A.)
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Disclimo, Università Politecnica delle Marche, 60126 Ancona, Italy;
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121 Ancona, Italy
| | - Germaine Escames
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain; (G.E.); (D.A.-C.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, Hospital Universitario San Cecilio, 18016 Granada, Spain
- Centro de Investigación Biomédica, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
- Department of Physiology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Darío Acuña-Castroviejo
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain; (G.E.); (D.A.-C.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, Hospital Universitario San Cecilio, 18016 Granada, Spain
- Centro de Investigación Biomédica, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
- Department of Physiology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Iryna Rusanova
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18071 Granada, Spain; (V.R.P.P.); (J.G.O.)
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain; (G.E.); (D.A.-C.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, Hospital Universitario San Cecilio, 18016 Granada, Spain
- Centro de Investigación Biomédica, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
| |
Collapse
|
3
|
Dearden L, Furigo IC, Pantaleão LC, Wong LWP, Fernandez-Twinn DS, de Almeida-Faria J, Kentistou KA, Carreira MV, Bidault G, Vidal-Puig A, Ong KK, Perry JRB, Donato J, Ozanne SE. Maternal obesity increases hypothalamic miR-505-5p expression in mouse offspring leading to altered fatty acid sensing and increased intake of high-fat food. PLoS Biol 2024; 22:e3002641. [PMID: 38833481 PMCID: PMC11149872 DOI: 10.1371/journal.pbio.3002641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 04/25/2024] [Indexed: 06/06/2024] Open
Abstract
In utero exposure to maternal obesity programs increased obesity risk. Animal models show that programmed offspring obesity is preceded by hyperphagia, but the mechanisms that mediate these changes are unknown. Using a mouse model of maternal obesity, we observed increased intake of a high-fat diet (HFD) in offspring of obese mothers that precedes the development of obesity. Through small RNA sequencing, we identified programmed overexpression of hypothalamic miR-505-5p that is established in the fetus, lasts to adulthood and is maintained in hypothalamic neural progenitor cells cultured in vitro. Metabolic hormones and long-chain fatty acids associated with obesity increase miR-505-5p expression in hypothalamic neurons in vitro. We demonstrate that targets of miR-505-5p are enriched in fatty acid metabolism pathways and overexpression of miR-505-5p decreased neuronal fatty acid metabolism in vitro. miR-505-5p targets are associated with increased BMI in human genetic studies. Intra-cerebroventricular injection of miR-505-5p in wild-type mice increased HFD intake, mimicking the phenotype observed in offspring exposed to maternal obesity. Conversely, maternal exercise intervention in an obese mouse pregnancy rescued the programmed increase of hypothalamic miR-505-5p in offspring of obese dams and reduced HFD intake to control offspring levels. This study identifies a novel mechanism by which maternal obesity programs obesity in offspring via increased intake of high-fat foods.
Collapse
Affiliation(s)
- Laura Dearden
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, Cambridge, United Kingdom
| | - Isadora C. Furigo
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, Cambridge, United Kingdom
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, Sao Paulo, Brazil
- Centre for Health and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Lucas C. Pantaleão
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, Cambridge, United Kingdom
| | - L W. P. Wong
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, Cambridge, United Kingdom
| | - Denise S. Fernandez-Twinn
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, Cambridge, United Kingdom
| | - Juliana de Almeida-Faria
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, Cambridge, United Kingdom
- University of Campinas, Faculty of Medical Sciences, Department of Pharmacology, Campinas, Brazil
| | | | - Maria V. Carreira
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, Cambridge, United Kingdom
| | - Guillaume Bidault
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, Cambridge, United Kingdom
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, Cambridge, United Kingdom
| | - Ken K. Ong
- MRC Epidemiology Unit, Institute of Metabolic Science, Cambridge, United Kingdom
| | - John R. B. Perry
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
- MRC Epidemiology Unit, Institute of Metabolic Science, Cambridge, United Kingdom
| | - Jose Donato
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, Sao Paulo, Brazil
| | - Susan E. Ozanne
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, Cambridge, United Kingdom
| |
Collapse
|
4
|
Wang R, Huang K, Feng Y, Duan J, Ying H, Shi Q, Zhang Y, Jiang R, Yang L. Exo-miR-144-3p as a promising diagnostic biomarker for depressive symptoms in heart failure. Neurobiol Dis 2024; 192:106415. [PMID: 38266934 DOI: 10.1016/j.nbd.2024.106415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/11/2024] [Accepted: 01/21/2024] [Indexed: 01/26/2024] Open
Abstract
AIMS The prevalence of depression is higher in heart failure (HF) patients. Early screening of depressive symptoms in HF patients and timely intervention can help to improve patients' quality of life and prognosis. This study aims to explore diagnostic biomarkers by examining the expression profile of serum exosomal miRNAs in HF patients with depressive symptoms. METHODS Serum exosomal RNA was isolated and extracted from 6 HF patients with depressive symptoms (HF-DS) and 6 HF patients without depressive symptoms (HF-NDS). High-throughput sequencing was performed to obtain miRNA expression profiles and target genes were predicted for the screened differentially expressed miRNAs. Biological functions of the target genes were analyzed through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Subsequently, we collected serum exosomal RNAs from HF-DS (n = 20) and HF-NDS (n = 20). The differentially expressed miRNAs selected from the sequencing results were validated using reverse transcription quantitative polymerase chain reaction (RT-qPCR). Finally, the diagnostic efficacy of the differentially expressed exosomal miRNAs for HF-DS was evaluated by using receiver operating characteristic (ROC) curves. RESULTS A total of 19 significantly differentially expressed exosomal miRNAs were screened by high-throughput sequencing, consisting of 12 up-regulated and 7 down-regulated exosomal miRNAs. RT-qPCR validation demonstrated that the expression level of exo-miR-144-3p was significantly down-regulated in the HF-DS group, and the expression levels of exo-miR-625-3p and exo-miR-7856-5p were significantly up-regulated. In addition, the expression level of exo-miR-144-3p was negatively correlated with the severity of depressive symptoms in HF patients, and that the area under the curve (AUC) of exo-miR-144-3p for diagnosing HF-DS was 0.763. CONCLUSIONS In this study, we examined the serum exosomal miRNA expression profiles of HF patients with depressive symptoms and found that lower level of exo-miR-144-3p was associated with more severe depressive symptoms. Exo-miR-144-3p is a potential biomarker for the diagnosis of HF-DS.
Collapse
Affiliation(s)
- Ruting Wang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Kai Huang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Yuehua Feng
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Jiahao Duan
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Hangfeng Ying
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Qianyuan Shi
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Yi Zhang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Riyue Jiang
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Ling Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China.
| |
Collapse
|
5
|
Wang Z, Zheng Y, Zhong C, Ou Y, Feng Y, Lin Y, Zhao Y. Circular RNA as new serum metabolic biomarkers in patients with premature ovarian insufficiency. Arch Gynecol Obstet 2023; 308:1871-1879. [PMID: 37740794 DOI: 10.1007/s00404-023-07219-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/05/2023] [Indexed: 09/25/2023]
Abstract
OBJECTIVE Quantitative real-time PCR (qPCR) is used to detect the differential expression of circular RNAs in patients of premature ovarian insufficiency (POI), to explore the new biomarkers of POI that can be detected from blood as soon as possible. METHODS The study collected plasma samples from 30 patients in POI group and 30 normal people group who meet the inclusion criteria, who visited the gynecology clinic of The First Affiliated Hospital of Guangzhou University of Chinese Medicine from July 2019 to December 2020. Then, circRNAs in plasma were extracted for qPCR validation. RESULTS 1. qPCR technology was performed on hsa_circRNA_008901 and hsa_circRNA_403959, and it was found that the levels of both were considerably downregulated in POI group. Clinical evaluation showed that both hsa_circRNA_008901 and hsa_circRNA_403959 have good diagnostic value for POI. 2. According to miRNA Regulatory Element (MRE) analysis, the predicted target miRNAs of hsa_circRNA_008901 are: hsa-miR-548c-3p, hsa-miR-924, hsa-miR-4677-5p, hsa-miR-6786-3p and hsa-miR-7974; the predicted target miRNAs of hsa_circRNA_403959 are: hsa-miR-1207-5p, hsa-miR-4691-5p, hsa-miR-4763-3p, hsa-miR-6807-5p and hsa-miR-7160-5p. CONCLUSION Compared with the normal group, the expression levels of hsa_circRNA_008901 and hsa_circRNA_403959 in the POI group were downregulated, suggesting that these two circRNAs may be potential biomarkers of POI. Bioinformatics analysis indicated that hsa_circRNA_008901 and hsa_circRNA_403959 may regulate their binding miRNA through the action form of "molecular sponge", and then regulate the signaling pathway regulated by miRNA, and ultimately affect the disease progression of POI.
Collapse
Affiliation(s)
- Zhuoya Wang
- Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Department of Traditional Chinese Medicine, Yuzhou People's Hospital, Xuchang, 461670, China
| | - Yuqi Zheng
- Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Caiting Zhong
- Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Yuyang Ou
- Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Yihui Feng
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Yu Lin
- Guangzhou University of Chinese Medicine, Guangzhou, 510000, China.
- Nanfang Hospital, Southern Medical University, Guangzhou, 510006, China.
| | - Ying Zhao
- Guangzhou University of Chinese Medicine, Guangzhou, 510000, China.
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China.
| |
Collapse
|
6
|
de Freitas RCC, Bortolin RH, Borges JB, de Oliveira VF, Dagli-Hernandez C, Marçal EDSR, Bastos GM, Gonçalves RM, Faludi AA, Silbiger VN, Luchessi AD, Hirata RDC, Hirata MH. LDLR and PCSK9 3´UTR variants and their putative effects on microRNA molecular interactions in familial hypercholesterolemia: a computational approach. Mol Biol Rep 2023; 50:9165-9177. [PMID: 37776414 DOI: 10.1007/s11033-023-08784-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/25/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND Familial hypercholesterolemia (FH) is caused by pathogenic variants in low-density lipoprotein (LDL) receptor (LDLR) or its associated genes, including apolipoprotein B (APOB), proprotein convertase subtilisin/kexin type 9 (PCSK9), and LDLR adaptor protein 1 (LDLRAP1). However, approximately 40% of the FH patients clinically diagnosed (based on FH phenotypes) may not carry a causal variant in a FH-related gene. Variants located at 3' untranslated region (UTR) of FH-related genes could elucidate mechanisms involved in FH pathogenesis. This study used a computational approach to assess the effects of 3'UTR variants in FH-related genes on miRNAs molecular interactions and to explore the association of these variants with molecular diagnosis of FH. METHODS AND RESULTS Exons and regulatory regions of FH-related genes were sequenced in 83 FH patients using an exon-target gene sequencing strategy. In silico prediction tools were used to study the effects of 3´UTR variants on interactions between miRNAs and target mRNAs. Pathogenic variants in FH-related genes (molecular diagnosis) were detected in 44.6% FH patients. Among 59 3'UTR variants identified, LDLR rs5742911 and PCSK9 rs17111557 were associated with molecular diagnosis of FH, whereas LDLR rs7258146 and rs7254521 and LDLRAP1 rs397860393 had an opposite effect (p < 0.05). 3´UTR variants in LDLR (rs5742911, rs7258146, rs7254521) and PCSK9 (rs17111557) disrupt interactions with several miRNAs, and more stable bindings were found with LDLR (miR-4435, miR-509-3 and miR-502) and PCSK9 (miR-4796). CONCLUSION LDLR and PCSK9 3´UTR variants disturb miRNA:mRNA interactions that could affect gene expression and are potentially associated with molecular diagnosis of FH.
Collapse
Affiliation(s)
- Renata Caroline Costa de Freitas
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580. São Paulo, Sao Paulo, 05508-000, Brazil
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Raul Hernandes Bortolin
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580. São Paulo, Sao Paulo, 05508-000, Brazil
- Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Jessica Bassani Borges
- Department of Research, Hospital Beneficiencia Portuguesa de Sao Paulo, Sao Paulo, 01323-001, Brazil
| | - Victor Fernandes de Oliveira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580. São Paulo, Sao Paulo, 05508-000, Brazil
| | - Carolina Dagli-Hernandez
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580. São Paulo, Sao Paulo, 05508-000, Brazil
| | - Elisangela da Silva Rodrigues Marçal
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580. São Paulo, Sao Paulo, 05508-000, Brazil
- Laboratory of Molecular Research in Cardiology, Institute of Cardiology Dante Pazzanese, Sao Paulo, 04012-909, Brazil
| | - Gisele Medeiros Bastos
- Department of Research, Hospital Beneficiencia Portuguesa de Sao Paulo, Sao Paulo, 01323-001, Brazil
| | | | - Andre Arpad Faludi
- Medical Division, Institute of Cardiology Dante Pazzanese, Sao Paulo, 04012-909, Brazil
| | - Vivian Nogueira Silbiger
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Natal, 59012-570, Brazil
- Northeast Biotechnology Network (RENORBIO), Graduate Program in Biotechnology, Federal University of Rio Grande do Norte, Natal, 59078-900, Brazil
| | - André Ducati Luchessi
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Natal, 59012-570, Brazil
- Northeast Biotechnology Network (RENORBIO), Graduate Program in Biotechnology, Federal University of Rio Grande do Norte, Natal, 59078-900, Brazil
| | - Rosario Dominguez Crespo Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580. São Paulo, Sao Paulo, 05508-000, Brazil
| | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580. São Paulo, Sao Paulo, 05508-000, Brazil.
| |
Collapse
|
7
|
Kim YG, Park J, Park EY, Kim SM, Lee SY. Analysis of MicroRNA Signature Differentially Expressed in Pancreatic Islet Cells Treated with Pancreatic Cancer-Derived Exosomes. Int J Mol Sci 2023; 24:14301. [PMID: 37762604 PMCID: PMC10532014 DOI: 10.3390/ijms241814301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Since the majority of patients with pancreatic cancer (PC) develop insulin resistance and/or diabetes mellitus (DM) prior to PC diagnosis, PC-induced diabetes mellitus (PC-DM) has been a focus for a potential platform for PC detection. In previous studies, the PC-derived exosomes were shown to contain the mediators of PC-DM. In the present study, the response of normal pancreatic islet cells to the PC-derived exosomes was investigated to determine the potential biomarkers for PC-DM, and consequently, for PC. Specifically, changes in microRNA (miRNA) expression were evaluated. The miRNA specimens were prepared from the untreated islet cells as well as the islet cells treated with the PC-derived exosomes (from 50 patients) and the healthy-derived exosomes (from 50 individuals). The specimens were subjected to next-generation sequencing and bioinformatic analysis to determine the differentially expressed miRNAs (DEmiRNAs) only in the specimens treated with the PC-derived exosomes. Consequently, 24 candidate miRNA markers, including IRS1-modulating miRNAs such as hsa-miR-144-5p, hsa-miR-3148, and hsa-miR-3133, were proposed. The proposed miRNAs showed relevance to DM and/or insulin resistance in a literature review and pathway analysis, indicating a potential association with PC-DM. Due to the novel approach used in this study, additional evidence from future studies could corroborate the value of the miRNA markers discovered.
Collapse
Affiliation(s)
- Young-gon Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (Y.-g.K.); (S.-M.K.)
| | - Jisook Park
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul 06351, Republic of Korea; (J.P.); (E.Y.P.)
| | - Eun Young Park
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul 06351, Republic of Korea; (J.P.); (E.Y.P.)
| | - Sang-Mi Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (Y.-g.K.); (S.-M.K.)
| | - Soo-Youn Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (Y.-g.K.); (S.-M.K.)
- Department of Clinical Pharmacology and Therapeutics, Samsung Medical Center, Seoul 06351, Republic of Korea
| |
Collapse
|
8
|
Aguilar S, García-Olloqui P, Amigo-Morán L, Torán JL, López JA, Albericio G, Abizanda G, Herrero D, Vales Á, Rodríguez-Diaz S, Higuera M, García-Martín R, Vázquez J, Mora C, González-Aseguinolaza G, Prosper F, Pelacho B, Bernad A. Cardiac Progenitor Cell Exosomal miR-935 Protects against Oxidative Stress. Cells 2023; 12:2300. [PMID: 37759522 PMCID: PMC10528297 DOI: 10.3390/cells12182300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/31/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Oxidative stress-induced myocardial apoptosis and necrosis are critically involved in ischemic infarction, and several sources of extracellular vesicles appear to be enriched in therapeutic activities. The central objective was to identify and validate the differential exosome miRNA repertoire in human cardiac progenitor cells (CPC). CPC exosomes were first analyzed by LC-MS/MS and compared by RNAseq with exomes of human mesenchymal stromal cells and human fibroblasts to define their differential exosome miRNA repertoire (exo-miRSEL). Proteomics demonstrated a highly significant representation of cardiovascular development functions and angiogenesis in CPC exosomes, and RNAseq analysis yielded about 350 different miRNAs; among the exo-miRSEL population, miR-935 was confirmed as the miRNA most significantly up-regulated; interestingly, miR-935 was also found to be preferentially expressed in mouse primary cardiac Bmi1+high CPC, a population highly enriched in progenitors. Furthermore, it was found that transfection of an miR-935 antagomiR combined with oxidative stress treatment provoked a significant increment both in apoptotic and necrotic populations, whereas transfection of a miR-935 mimic did not modify the response. Conclusion. miR-935 is a highly differentially expressed miRNA in exo-miRSEL, and its expression reduction promotes oxidative stress-associated apoptosis. MiR-935, together with other exosomal miRNA members, could counteract oxidative stress-related apoptosis, at least in CPC surroundings.
Collapse
Affiliation(s)
- Susana Aguilar
- Cardiac Stem Cells Lab, Centro Nacional de Biotecnología (CNB-CSIC), Department of Immunology and Oncology, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (S.A.); (L.A.-M.); (J.L.T.); (G.A.); (D.H.); (M.H.); (R.G.-M.); (C.M.)
| | - Paula García-Olloqui
- Center for Applied Medical Research (CIMA), Regenerative Medicine Department, University of Navarra, 31008 Pamplona, Spain; (P.G.-O.); (G.A.); (Á.V.); (S.R.-D.); (F.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Lidia Amigo-Morán
- Cardiac Stem Cells Lab, Centro Nacional de Biotecnología (CNB-CSIC), Department of Immunology and Oncology, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (S.A.); (L.A.-M.); (J.L.T.); (G.A.); (D.H.); (M.H.); (R.G.-M.); (C.M.)
| | - José Luis Torán
- Cardiac Stem Cells Lab, Centro Nacional de Biotecnología (CNB-CSIC), Department of Immunology and Oncology, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (S.A.); (L.A.-M.); (J.L.T.); (G.A.); (D.H.); (M.H.); (R.G.-M.); (C.M.)
| | - Juan Antonio López
- Cardiovascular Proteomics Laboratory, Spanish National Cardiovascular Research Center (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain; (J.A.L.); (J.V.)
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Guillermo Albericio
- Cardiac Stem Cells Lab, Centro Nacional de Biotecnología (CNB-CSIC), Department of Immunology and Oncology, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (S.A.); (L.A.-M.); (J.L.T.); (G.A.); (D.H.); (M.H.); (R.G.-M.); (C.M.)
| | - Gloria Abizanda
- Center for Applied Medical Research (CIMA), Regenerative Medicine Department, University of Navarra, 31008 Pamplona, Spain; (P.G.-O.); (G.A.); (Á.V.); (S.R.-D.); (F.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Diego Herrero
- Cardiac Stem Cells Lab, Centro Nacional de Biotecnología (CNB-CSIC), Department of Immunology and Oncology, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (S.A.); (L.A.-M.); (J.L.T.); (G.A.); (D.H.); (M.H.); (R.G.-M.); (C.M.)
| | - África Vales
- Center for Applied Medical Research (CIMA), Regenerative Medicine Department, University of Navarra, 31008 Pamplona, Spain; (P.G.-O.); (G.A.); (Á.V.); (S.R.-D.); (F.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Saray Rodríguez-Diaz
- Center for Applied Medical Research (CIMA), Regenerative Medicine Department, University of Navarra, 31008 Pamplona, Spain; (P.G.-O.); (G.A.); (Á.V.); (S.R.-D.); (F.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Marina Higuera
- Cardiac Stem Cells Lab, Centro Nacional de Biotecnología (CNB-CSIC), Department of Immunology and Oncology, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (S.A.); (L.A.-M.); (J.L.T.); (G.A.); (D.H.); (M.H.); (R.G.-M.); (C.M.)
| | - Rubén García-Martín
- Cardiac Stem Cells Lab, Centro Nacional de Biotecnología (CNB-CSIC), Department of Immunology and Oncology, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (S.A.); (L.A.-M.); (J.L.T.); (G.A.); (D.H.); (M.H.); (R.G.-M.); (C.M.)
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jesús Vázquez
- Cardiovascular Proteomics Laboratory, Spanish National Cardiovascular Research Center (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain; (J.A.L.); (J.V.)
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Carmen Mora
- Cardiac Stem Cells Lab, Centro Nacional de Biotecnología (CNB-CSIC), Department of Immunology and Oncology, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (S.A.); (L.A.-M.); (J.L.T.); (G.A.); (D.H.); (M.H.); (R.G.-M.); (C.M.)
| | - Gloria González-Aseguinolaza
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Felipe Prosper
- Center for Applied Medical Research (CIMA), Regenerative Medicine Department, University of Navarra, 31008 Pamplona, Spain; (P.G.-O.); (G.A.); (Á.V.); (S.R.-D.); (F.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
- Program of Gene Therapy, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Department of Hematology and Cell Therapy, Clínica Universidad de Navarra, 30008 Pamplona, Spain
| | - Beatriz Pelacho
- Center for Applied Medical Research (CIMA), Regenerative Medicine Department, University of Navarra, 31008 Pamplona, Spain; (P.G.-O.); (G.A.); (Á.V.); (S.R.-D.); (F.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Antonio Bernad
- Cardiac Stem Cells Lab, Centro Nacional de Biotecnología (CNB-CSIC), Department of Immunology and Oncology, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (S.A.); (L.A.-M.); (J.L.T.); (G.A.); (D.H.); (M.H.); (R.G.-M.); (C.M.)
| |
Collapse
|
9
|
Li SQ, Xie LY, Cai ZM, Wei HT, Xie MZ, Hu BL, Ning SF. Systematic analyzing a five- miRNA panel and its diagnostic value of plasma expression in colorectal cancer. Mol Biol Rep 2023; 50:7253-7261. [PMID: 37418078 DOI: 10.1007/s11033-023-08642-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Aberrant expression of miRNAs have been implicated in cancers, but the role of miRNAs in colorectal cancer (CRC) remains need to be elucidated. This study aimed to identify miRNAs that related to colorectal cancer (CRC) pathogenesis and determine the diagnostic value. METHODS Three GEO datasets (GSE128449, GSE35602 and GSE49246) with 131 samples were used to screen miRNAs that differential expression between tumor and control tissues. The expression of the identified miRNAs was validated in 50 clinical tissue samples and the GSE35834 dataset. The clinical significance of these miRNAs was analyzed in the TCGA dataset and clinical tissue samples. The expression of miRNAs in tissues and plasma samples were tested by RT-PCR assay in clinical samples, and their diagnostic value was determined. RESULTS The analysis of three GEO datasets revealed that miR-595 and miR-1237 were upregulated, while miR-126, miR-139, and miR-143 were downregulated in CRC tissues compared to control tissues. The differential expression of the five miRNAs in CRC tissues was confirmed using clinical tissue samples and GEO databases. There was no significant correlation between the TNM stage and tumor stage of CRC and any of the five miRNAs. Plasma expression of the miRNAs differed significantly between CRC and non-cancer patients, and each miRNA had moderate diagnostic value for CRC. Combining the five miRNAs provided better diagnostic potential for CRC than a single miRNA. CONCLUSIONS This study demonstrated that five miRNAs were related to the pathogenesis of CRC, but independent of the stage of CRC; Plasma expression of these miRNAs have moderate diagnostic value, and combination of these miRNAs showed better diagnostic ability in CRC.
Collapse
Affiliation(s)
- Si-Qi Li
- Department of Research, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Nanning, 530021, China
| | - Li-Ye Xie
- Department of Research, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Nanning, 530021, China
| | - Zheng-Min Cai
- Department of Research, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Nanning, 530021, China
| | - Hao-Tang Wei
- Department of Gastrointestinal Surgery, Third Affiliated Hospital of Guangxi Medical University, Nanning, 530031, China
| | - Ming-Zhi Xie
- Department of Chemotherapy, Guangxi Medical University Cancer Hospital, Nanning, 530031, China
| | - Bang-Li Hu
- Department of Research, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Nanning, 530021, China.
| | - Shu-Fang Ning
- Department of Research, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Nanning, 530021, China.
| |
Collapse
|
10
|
Xin X, Xu Z, Wei J, Zhang Y. MiR-376a-3p increases cell apoptosis in acute myeloid leukemia by targeting MT1X. Cancer Biol Ther 2022; 23:234-242. [PMID: 35316152 PMCID: PMC8942499 DOI: 10.1080/15384047.2022.2054243] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Metallothioneins (MTs) are a group of low-molecular weight cysteine-rich proteins that play vital roles in oxidative stress, metal homeostasis, carcinogenesis and drug resistance. However, few studies have analyzed the roles of MTs in acute myeloid leukemia (AML). In this study, we revealed that the expression of metallothionein1X (MT1X), a main isoform of MTs, was highly expressed and acted as a candidate of prognostic indicator in AML patients. In vitro cell function experiments verified that silencing MT1X inhibited the proliferation of AML cells, sensitized cells to doxorubicin, and increased their apoptosis. We also showed that the downregulation of MT1X expression suppressed nuclear factor-κB (NF-κB) signaling by reducing p65, p-IκB-α, and downstream effectors. Elevated p65 and MT1X levels were indicators in AML. Moreover, we revealed that miR-376a-3p had binding sites with 3'-UTR of MT1X, suggesting that MT1X was negatively regulated by miR-376a-3p. Cell functional assay results indicated that miR-376a-3p overexpression significantly inhibited the proliferation, arrested the AML cells in the G0/G1 phase and induced cell apoptosis. The rescue experiments further confirmed that miR-376a-3p could reverse the promotion of MT1X overexpression on the progress of AML cells. Taken together, our results revealed that elevated MT1X expression might be involved in the mechanism underlying AML progression, indicating that the miR-376a/MT1X axis might serve as a promising novel target for the effective treatment of patients with AML.
Collapse
Affiliation(s)
- Xiangke Xin
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Hematology, Xinyang Hospital Affiliated to Zhengzhou University, Xinyang, Henan, China
| | - Zheng Xu
- Department of Hematology, Xinyang Hospital Affiliated to Zhengzhou University, Xinyang, Henan, China
| | - Jia Wei
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
11
|
Zhang Y, Zhang Y, Yao R, He X, Zhao L, Zuo X, Lu B, Pang Z. Ferroptosis-related differentially expressed genes serve as new biomarkers in ischemic stroke and identification of therapeutic drugs. Front Nutr 2022; 9:1010918. [PMID: 36438734 PMCID: PMC9686348 DOI: 10.3389/fnut.2022.1010918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/26/2022] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Iron is an essential nutrient element, and iron metabolism is related to many diseases. Ferroptosis is an iron-dependent form of regulated cell death associated with ischemic stroke (IS). Hence, this study intended to discover and validate the possible ferroptosis-related genes involved in IS. MATERIALS AND METHODS GSE16561, GSE37587, and GSE58294 were retrieved from the GEO database. Using R software, we identified ferroptosis-related differentially expressed genes (DEGs) in IS. Protein-protein interactions (PPIs) and enrichment analyses were conducted. The ROC curve was plotted to explore the diagnostic significance of those identified genes. The consistent clustering method was used to classify the IS samples. The level of immune cell infiltration of different subtypes was evaluated by ssGSEA and CIBERSORT algorithm. Validation was conducted in the test sets GSE37587 and GSE58294. RESULTS Twenty-one ferroptosis-related DEGs were detected in IS vs. the normal controls. Enrichment analysis shows that the 21 DEGs are involved in monocarboxylic acid metabolism, iron ion response, and ferroptosis. Moreover, their expression levels were pertinent to the age and gender of IS patients. The ROC analysis demonstrated remarkable diagnostic values of LAMP2, TSC22D3, SLC38A1, and RPL8 for IS. Transcription factors and targeting miRNAs of the 21 DEGs were determined. Vandetanib, FERRIC CITRATE, etc., were confirmed as potential therapeutic drugs for IS. Using 11 hub genes, IS patients were categorized into C1 and C2 subtypes. The two subtypes significantly differed between immune cell infiltration, checkpoints, and HLA genes. The 272 DEGs were identified from two subtypes and their biological functions were explored. Verification was performed in the GSE37587 and GSE58294 datasets. CONCLUSION Our findings indicate that ferroptosis plays a critical role in the diversity and complexity of the IS immune microenvironment.
Collapse
Affiliation(s)
- Yinjiang Zhang
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing, China
| | - Yashuo Zhang
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing, China
| | - Rongfei Yao
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing, China
| | - Xu He
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing, China
| | - Linyi Zhao
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing, China
| | - Xiangyu Zuo
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing, China
| | - Binan Lu
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing, China
| | - Zongran Pang
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing, China
| |
Collapse
|
12
|
Chen Y, Wu L, Bao M. MiR-485-5p Suppress the Malignant Characteristics of the Lung Adenocarcinoma via Targeting NADPH Quinone Oxidoreductase-1 to Inhibit the PI3K/Akt. Mol Biotechnol 2022; 65:794-806. [PMID: 36219369 DOI: 10.1007/s12033-022-00577-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/22/2022] [Indexed: 10/17/2022]
Abstract
Lung adenocarcinoma (LUAD), a prevalent form of non-small cell lung cancer (NSCLC), has a high incidence and mortality rate. However, its molecular regulatory mechanisms have yet to be fully understood. The purpose of this study was to look into how NADPH quinone oxidoreductase-1 (NQO1) and it miR-485-5p and affected LUAD cells. The levels of miR-485-5p and NQO1 expression in LUAD cells and tissues were determined by means of quantitative reverse transcription polymerase chain reaction. The viability, proliferation, migration, and apoptosis of LUAD cells were assessed using cell counting Kit-8, 5-bromo-2'-deoxyuridine, transwell, and caspase-3 assays, respectively. Western blot experiments were used to examine the relative protein expression of matrix metallopeptidase 2 and matrix metallopeptidase 9, as well as the phosphorylation of phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt) in LUAD cells. Luciferase and RNA pull-down experiments were also conducted for the verification of miR-485-5p's underlying relationship with NQO1. In our study, we found that LUAD cells and tissues had miR-485-5p downregulation and NQO1 upregulation. The experimental outcomes indicated that miR-485-5p overexpression in LUAD cells reduced their malignant behaviors, suppressed PI3K and Akt phosphorylation, and facilitated apoptosis. The results also revealed that NQO1 was a direct miR-485-5p target, and that NQO1 could reverse miR-485-5p's inhibitory effect on the malignant phenotype of LUAD cells. Furthermore, it was also observed that through targeting NQO1, miR-485-5p could suppress LUAD cell migration and proliferation, further blocking the phosphorylation of PI3K and Akt and inducing apoptosis among LUAD cells. In conclusion, the miR-485-5/NQO1 axis regulates LUAD progression through the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Yupeng Chen
- Thoracic Surgery, Wuhan No.1 Hospital, Wuhan, 430022, Hubei, China
| | - Lin Wu
- Department of Oncology, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, 430014, Hubei, China
| | - Min Bao
- Department of Respiratory Medicine, Wuhan Third Hospital, No. 241 Pengliuyang Road, Wuchang District, Wuhan, 430060, Hubei, China.
| |
Collapse
|
13
|
Onuoha CP, Ipe J, Simpson E, Liu Y, Skaar T, Kreutz RP. MicroRNA
sequencing in patients with coronary artery disease – considerations for use as biomarker for thrombotic risk. Clin Transl Sci 2022; 15:1946-1958. [PMID: 35643946 PMCID: PMC9372418 DOI: 10.1111/cts.13307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 04/24/2022] [Accepted: 04/30/2022] [Indexed: 12/05/2022] Open
Abstract
MicroRNAs (miRNAs) are small RNAs integral in the regulation of gene expression. Analysis of circulating miRNA levels may identify patients with coronary artery disease (CAD) at risk for recurrent myocardial infarction (MI) after percutaneous coronary interventions (PCIs). Subjects with CAD were selected from the GENCATH cardiac catheterization biobank. Subjects with recurrent MI after PCI were compared with those without recurrent MI during follow‐up in the initial (n = 48) and replication cohort (n = 67). Next generation MiRNA sequencing was performed on plasma samples and whole blood samples fixed with PAXGENE tubes upon collection. Overall, 164 miRNAs derived from whole blood were differentially expressed in the replication cohort between subjects with and without recurrent MI events (p < 0.05), with 69 remaining significant after false‐discovery rate (FDR) correction. None of the miRNAs in plasma was significantly different by FDR among subjects with and without MI. Overall, correlation between direction of effects between plasma and whole blood assays was variable, and only two miRNAs were concordant and significant in both. Associations of miRNA with vascular disease, MI, and thrombosis were further explored. MiRNA profiling has potential as the future biomarker for disease prognosis and treatment response marker in secondary treatment of patients with CAD after PCI. Whole blood may be the preferred sample source as compared to plasma.
Collapse
Affiliation(s)
- Chimnonso P. Onuoha
- Department of Medicine/Clinical Pharmacology Indiana University School of Medicine Indianapolis Indiana USA
| | - Joseph Ipe
- Department of Medicine/Clinical Pharmacology Indiana University School of Medicine Indianapolis Indiana USA
| | - Edward Simpson
- Center for Medical Genomics Indiana University School of Medicine Indianapolis Indiana USA
| | - Yunlong Liu
- Center for Medical Genomics Indiana University School of Medicine Indianapolis Indiana USA
| | - Todd C. Skaar
- Department of Medicine/Clinical Pharmacology Indiana University School of Medicine Indianapolis Indiana USA
| | - Rolf P. Kreutz
- Department of Medicine/Cardiology Indiana University School of Medicine Indianapolis Indiana USA
| |
Collapse
|
14
|
Jia YZ, Liu J, Wang GQ, Song ZF. miR-484: A Potential Biomarker in Health and Disease. Front Oncol 2022; 12:830420. [PMID: 35356223 PMCID: PMC8959652 DOI: 10.3389/fonc.2022.830420] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/11/2022] [Indexed: 01/30/2023] Open
Abstract
Disorders of miR-484 expression are observed in cancer, different diseases or pathological states. There is accumulating evidence that miR-484 plays an essential role in the development as well as the regression of different diseases, and miR-484 has been reported as a key regulator of common cancer and non-cancer diseases. The miR-484 targets that have effects on inflammation, apoptosis and mitochondrial function include SMAD7, Fis1, YAP1 and BCL2L13. For cancer, identified targets include VEGFB, VEGFR2, MAP2, MMP14, HNF1A, TUSC5 and KLF12. The effects of miR-484 on these targets have been documented separately. Moreover, miR-484 is typically described as an oncosuppressor, but this claim is simplistic and one-sided. This review will combine relevant basic and clinical studies to find that miR-484 promotes tumorigenesis and metastasis in liver, prostate and lung tissues. It will provide a basis for the possible mechanisms of miR-484 in early tumor diagnosis, prognosis determination, disease assessment, and as a potential therapeutic target for tumors.
Collapse
Affiliation(s)
- Yin-Zhao Jia
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Liu
- Key Laboratory of Coal Science and Technology of Ministry of Education, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Geng-Qiao Wang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zi-Fang Song
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Pan HT, Shi XL, Fang M, Sun XM, Chen PP, Ding JL, Xia GY, Yu B, Zhang T, Zhu HD. Profiling of exosomal microRNAs expression in umbilical cord blood from normal and preeclampsia patients. BMC Pregnancy Childbirth 2022; 22:124. [PMID: 35152894 PMCID: PMC8842963 DOI: 10.1186/s12884-022-04449-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/03/2022] [Indexed: 02/08/2023] Open
Abstract
Background Epidemiological and experimental studies suggest that preeclampsia has a negative impact on maternity and offspring health. Previous studies report that dysregulation in utero-environment increases risk for elderly disease such as cardiovascular disease. However, the underlying mechanisms remain elusive. Specific microRNAs (miRNAs) are packaged in exosomes may regulate microvascular dysfunction in offspring of mothers with preeclampsia. The present study aimed to identify the differential expression profiles of microRNAs in the serum exosomes between patients with preeclampsia and normal pregnancies. Methods A comprehensive miRNA sequence-based approach was performed to compare exosomes carry miRNAs (Exo-miRNAs) expression levels in umbilical serum between normal and preeclampsia patients. Exosomes were isolated using the ExoQuick precipitation kit. Serum exosomes were then viewed under electron microscopy, and their characteristics determined by western blotting and nanoparticle-tracking analysis. Illumina platform was used to perform sequencing. Bioinformatics analysis was used to explore differentially expressed Exo-miRNAs in umbilical serum. Results Based on sequence similarity, 1733 known miRNAs were retrieved. Furthermore, 157 mature miRNAs in serum exosomes were significantly differential expressed between PE and those control groups (P<0.05, log2|FC| > 1). Out, of the 157 miRNAs, 96 were upregulated miRNAs whereas 61 miRNAs were downregulated. The 157 differentially expressed miRNAs targeted 51,424 differentially expressed genes. Functional analysis through KEGG pathway and Gene Ontology results uncovered that target genes of miRNAs with differential expression were significantly linked to several pathways and biological processes. Conclusion The findings of this study showed differential expression of umbilical serum Exo-miRNAs in normal compared with PE patients, implying that these Exo-miRNAs may associate with microvascular dysfunction in offspring of mothers with preeclampsia. Supplementary Information The online version contains supplementary material available at 10.1186/s12884-022-04449-w.
Collapse
Affiliation(s)
- Hai-Tao Pan
- Shaoxing Maternity and Child Health Care Hospital, Shaoxing, 312000, China.,Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China.,The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xiao-Liang Shi
- Shaoxing Maternity and Child Health Care Hospital, Shaoxing, 312000, China.,Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Min Fang
- Shaoxing Maternity and Child Health Care Hospital, Shaoxing, 312000, China.,Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Xiang-Mei Sun
- Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Pan-Pan Chen
- Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Jin-Long Ding
- Shaoxing Maternity and Child Health Care Hospital, Shaoxing, 312000, China.,Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Gui-Yu Xia
- Shaoxing Maternity and Child Health Care Hospital, Shaoxing, 312000, China.,Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Bin Yu
- Shaoxing Maternity and Child Health Care Hospital, Shaoxing, 312000, China.,Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Tao Zhang
- Shaoxing Maternity and Child Health Care Hospital, Shaoxing, 312000, China. .,Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China.
| | - Hong-Dan Zhu
- Shaoxing Maternity and Child Health Care Hospital, Shaoxing, 312000, China. .,Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China.
| |
Collapse
|
16
|
MicroRNA-603 Promotes Progression of Cutaneous Melanoma by Regulating TBX5. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2021:1888501. [PMID: 35003317 PMCID: PMC8741382 DOI: 10.1155/2021/1888501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 11/28/2022]
Abstract
Background Although studies manifested that microRNA-603 plays a vital role in many cancers, the modulatory mechanism of microRNA-603 in cutaneous melanoma remains unknown. We aimed to investigate the roles of microRNA-603 in cutaneous melanoma cells. Methods First, microRNA-603 expression in cutaneous melanoma cell lines was detected by qRT-PCR. The mRNA and protein expression levels of TBX5 in cutaneous melanoma cell lines were tested by qRT-PCR and western blot, respectively. In addition, the interaction between microRNA-603 and TBX5 was determined by dual-luciferase reporter gene assay, and their impacts on the growth of cutaneous melanoma cells were detected by cellular function experiments such as MTT, colony formation, and Transwell assays. Results The expression level of microRNA-603 in human cutaneous melanoma cells was relatively upregulated. Overexpressing microRNA-603 could promote progression of cutaneous melanoma cells, while silencing microRNA-603 expression could suppress the malignant progression of cutaneous melanoma. In addition, TBX5 was lowly expressed in cutaneous melanoma cells. As confirmed by dual-luciferase assay, microRNA-603 could specifically bind to 3′UTR of TBX5 and regulate TBX5. The results of the rescue experiment demonstrated that inhibiting microRNA-603 expression could suppress the proliferation, migration, and invasion of cutaneous melanoma cells, but its suppressive effect could be restored by TBX5. Conclusion MicroRNA-603 could regulate the expression of TBX5, thus promoting the malignant progression of cutaneous melanoma cells.
Collapse
|
17
|
Solís-Toro D, Mosquera Escudero M, García-Perdomo HA. Association between circulating microRNAs and the metabolic syndrome in adult populations: A systematic review. Diabetes Metab Syndr 2022; 16:102376. [PMID: 34954485 DOI: 10.1016/j.dsx.2021.102376] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 10/16/2021] [Accepted: 12/18/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Circulating microRNAs (miRNAs) are one of the most abundant classes of gene regulatory molecules, and had been associated to the metabolic syndrome, higher BMI, dyslipidemia and diabetes mellitus. In this sense, miRNAs could help to understand the mechanism behind the development of metabolic syndrome. OBJECTIVE To determine the relationship between circulating microRNAs and the metabolic syndrome in adult population. METHODS We performed a systematic review according to the recommendations of the Cochrane Collaboration and following the PRISMA Statement. The results were grouped for miRNAs levels in MetS and metabolic variables included in MetS and their statistic association with miRNAs levels. RESULTS We finally included sixteen studies with a total of 7195 individuals. We found 47 miRNAs reported to be related to metabolic syndrome (p < 0,05) and 98 associated with the metabolic alterations included in its diagnostic (p < 0,05). Forty-nine miRNAs levels were described as relate to insulin resistance, 29 with high triglycerides, 35 with hypertension, 28 with obesity, and 16 miRNAs with cholesterol HDL(p < 0,05). Changes in levels of miR-505-5p, miR-148a-3p, miR-19b-3p, miR-320b, miR-342-3p, miR-197-3p, miR-192-5p, miR-122-5p, miR-103, miR-130a, miR-155-5p and miR-375, were reported as significant in more than one study. The results only included a descriptive synthesis, clinical heterogeneity did not allow a meta-analysis. CONCLUSION The findings on the current systematic review suggests a possible relationship between miRNAs with metabolic syndrome and metabolic traits. This association could help to understand the mechanism behind the develop of the metabolic syndrome. However, more studies are necessary for further validation.
Collapse
Affiliation(s)
- Daniel Solís-Toro
- Nutrition Group, School of Basic Sciences, Universidad del Valle, Cali, Colombia.
| | | | - Herney Andrés García-Perdomo
- Nutrition Group, School of Basic Sciences, Universidad del Valle, Cali, Colombia; Department of Surgery, Department of Urology, School of Medicine, Universidad del Valle, Cali, Colombia.
| |
Collapse
|
18
|
Peters T, Antel J, Naaresh R, Laabs BH, Föcker M, Albers N, Bühlmeier J, Hinney A, Libuda L, Hebebrand J. Suggestive Evidence for Causal Effect of Leptin Levels on Risk for Anorexia Nervosa: Results of a Mendelian Randomization Study. Front Genet 2021; 12:733606. [PMID: 34594363 PMCID: PMC8476861 DOI: 10.3389/fgene.2021.733606] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
Genetic correlations suggest a coexisting genetic predisposition to both low leptin levels and risk for anorexia nervosa (AN). To investigate the causality and direction of these associations, we performed bidirectional two-sample Mendelian randomization (MR) analyses using data of the most recent genome-wide association study (GWAS) for AN and both a GWAS and an exome-wide-association-study (EWAS) for leptin levels. Most MR methods with genetic instruments from GWAS showed a causal effect of lower leptin levels on higher risk of AN (e.g. IVW b = -0.923, p = 1.5 × 10-4). Because most patients with AN are female, we additionally performed analyses using leptin GWAS data of females only. Again, there was a significant effect of leptin levels on the risk of AN (e.g. IVW b = -0.826, p = 1.1 × 10-04). MR with genetic instruments from EWAS showed no overall effect of leptin levels on the risk for AN. For the opposite direction, MR revealed no causal effect of AN on leptin levels. If our results are confirmed in extended GWAS data sets, a low endogenous leptin synthesis represents a risk factor for developing AN.
Collapse
Affiliation(s)
- Triinu Peters
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jochen Antel
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Roaa Naaresh
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Björn-Hergen Laabs
- Institut für Medizinische Biometrie und Statistik, Universität zu Lübeck, Universitätsklinikum Schleswig-Holstein, Lübeck, Germany
| | - Manuel Föcker
- Department of Child and Adolescent Psychiatry, University of Münster, Münster, Germany
| | - Nicola Albers
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Judith Bühlmeier
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Institute of Nutrition, Consumption and Health, Faculty of Natural Sciences, Paderborn University, Paderborn, Germany
| | - Anke Hinney
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lars Libuda
- Institute of Nutrition, Consumption and Health, Faculty of Natural Sciences, Paderborn University, Paderborn, Germany.,Evangelisches Krankenhaus Düsseldorf, Children's Hospital, Düsseldorf, Germany
| | - Johannes Hebebrand
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
19
|
Li Q, Xu K, Tian J, Lu Z, Pu J. MiR-129-5p/DLX1 signalling axis mediates functions of prostate cancer during malignant progression. Andrologia 2021; 53:e14230. [PMID: 34472106 DOI: 10.1111/and.14230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 11/30/2022] Open
Abstract
We mainly corroborated the potential mechanism of DLX1 and miR-129-5p in prostate cancer cells. DLX1 was upregulated in cancer cells according to qRT-PCR assay. We evaluated the functional changes of the transfected cells via Transwell assay, CCK-8 assay and wound healing assay. DLX1 was confirmed as a cancer promoter. In addition, qRT-PCR showed down-regulated miR-129-5p expression in prostate cancer. We further used dual-luciferase reporter detection to elucidate the targeting between these two genes. The inhibition of miR-129-5p on tumour was verified. Besides, co-transfection of oe-DLX1 and miR-129-5p mimics attenuated this inhibition. These data demonstrated functions of DLX1/miR-129-5p axis in prostate cancer: miR-129-5p hindered the biological functions of cancer cells via inhibiting DLX1 expression. We provide a novel biomarker for prostate cancer.
Collapse
Affiliation(s)
- Qi Li
- Department of Urology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Ke Xu
- Department of Urology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Jianguo Tian
- Department of Urology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Zhicheng Lu
- Department of Urology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Jianming Pu
- Department of Urology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| |
Collapse
|
20
|
Azarova I, Klyosova E, Polonikov A. The Link between Type 2 Diabetes Mellitus and the Polymorphisms of Glutathione-Metabolizing Genes Suggests a New Hypothesis Explaining Disease Initiation and Progression. Life (Basel) 2021; 11:886. [PMID: 34575035 PMCID: PMC8466482 DOI: 10.3390/life11090886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 01/11/2023] Open
Abstract
The present study investigated whether type 2 diabetes (T2D) is associated with polymorphisms of genes encoding glutathione-metabolizing enzymes such as glutathione synthetase (GSS) and gamma-glutamyl transferase 7 (GGT7). A total of 3198 unrelated Russian subjects including 1572 T2D patients and 1626 healthy subjects were enrolled. Single nucleotide polymorphisms (SNPs) of the GSS and GGT7 genes were genotyped using the MassArray-4 system. We found that the GSS and GGT7 gene polymorphisms alone and in combinations are associated with T2D risk regardless of sex, age, and body mass index, as well as correlated with plasma glutathione, hydrogen peroxide, and fasting blood glucose levels. Polymorphisms of GSS (rs13041792) and GGT7 (rs6119534 and rs11546155) genes were associated with the tissue-specific expression of genes involved in unfolded protein response and the regulation of proteostasis. Transcriptome-wide association analysis has shown that the pancreatic expression of some of these genes such as EDEM2, MYH7B, MAP1LC3A, and CPNE1 is linked to the genetic risk of T2D. A comprehensive analysis of the data allowed proposing a new hypothesis for the etiology of type 2 diabetes that endogenous glutathione deficiency might be a key condition responsible for the impaired folding of proinsulin which triggered an unfolded protein response, ultimately leading to beta-cell apoptosis and disease development.
Collapse
Affiliation(s)
- Iuliia Azarova
- Department of Biological Chemistry, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia;
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., 305041 Kursk, Russia;
| | - Elena Klyosova
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., 305041 Kursk, Russia;
| | - Alexey Polonikov
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., 305041 Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia
| |
Collapse
|
21
|
Liu G, Lei Y, Luo S, Huang Z, Chen C, Wang K, Yang P, Huang X. MicroRNA expression profile and identification of novel microRNA biomarkers for metabolic syndrome. Bioengineered 2021; 12:3864-3872. [PMID: 34269146 PMCID: PMC8806888 DOI: 10.1080/21655979.2021.1952817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The lack of efficient biomarkers is the main reason for the inaccurate early diagnosis and poor treatment outcomes of patients with metabolic syndrome (MetS). The current study aimed to identify several novel microRNA (miRNA) biomarkers for metabolic syndrome via high-throughput sequencing and comprehensive bioinformatics analysis. Through high-throughput sequencing and differentially expressed miRNA (DEM) analysis, we first identified two upregulated and 36 downregulated DEMs in the plasma samples of patients with MetS compared to the healthy volunteers. Additionally, we also predicted 379 potential target genes and subsequently carried out enrichment analysis and protein–protein interaction network analysis to investigate the signaling pathways and functions of the identified DEMs as well as the interactions between their target genes. Furthermore, we selected two upregulated and top 10 downregulated DEMs with the highest |log2FC| values as the key microRNAs, which may serve as potential biomarkers for MetS. RT-qPCR was performed to validated these result. Finally, hsa-miR-526b-5p, hsa-miR-6516-5p was identified as the novel biomarkers for MetS.
Collapse
Affiliation(s)
- Guanzhi Liu
- Bone and Joint Surgery Center, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yutian Lei
- Bone and Joint Surgery Center, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Sen Luo
- Bone and Joint Surgery Center, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhuo Huang
- Bone and Joint Surgery Center, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chen Chen
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Kunzheng Wang
- Bone and Joint Surgery Center, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Pei Yang
- Bone and Joint Surgery Center, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin Huang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
22
|
Enwald M, Lehtimäki T, Mishra PP, Mononen N, Murtola TJ, Raitoharju E. Human Prostate Tissue MicroRNAs and Their Predicted Target Pathways Linked to Prostate Cancer Risk Factors. Cancers (Basel) 2021; 13:cancers13143537. [PMID: 34298752 PMCID: PMC8307951 DOI: 10.3390/cancers13143537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 01/15/2023] Open
Abstract
MicroRNAs are important in prostate cancer development, progression and metastasis. The aim of this study was to test microRNA expression profile in prostate tissue obtained from prostate cancer patients for associations with various prostate cancer related factors and to pinpoint the predicted target pathways for these microRNAs. Prostate tissue samples were obtained at prostatectomy from patients participating in a trial evaluating impact of pre-operative atorvastatin on serum prostate specific antigen (PSA) and Ki-67 expression in prostate tissue. Prostate tissue microRNA expression profiles were analyzed using OpenArray® MicroRNA Panel. Pathway enrichment analyses were conducted for predicted target genes of microRNAs that correlated significantly with studied factors. Eight microRNAs correlated significantly with studied factors of patients after Bonferroni multiple testing correction. MiR-485-3p correlated with serum HDL-cholesterol levels. In atorvastatin-treated subjects, miR-34c-5p correlated with a change in serum PSA and miR-138-3p with a change in total cholesterol. In the placebo arm, both miR-576-3p and miR-550-3p correlated with HDL-cholesterol and miR-627 with PSA. In pathway analysis, these eight microRNAs related significantly to several pathways relevant to prostate cancer. This study brings new evidence from the expression of prostate tissue microRNAs and related pathways that may link risk factors to prostate cancer and pinpoint new therapeutic possibilities.
Collapse
Affiliation(s)
- Max Enwald
- Pirkanmaa Hospital District, Fimlab Laboratories, and Finnish Cardiovascular Research Center Tampere, Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
| | - Terho Lehtimäki
- Pirkanmaa Hospital District, Fimlab Laboratories, and Finnish Cardiovascular Research Center Tampere, Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
| | - Pashupati P Mishra
- Pirkanmaa Hospital District, Fimlab Laboratories, and Finnish Cardiovascular Research Center Tampere, Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
| | - Nina Mononen
- Pirkanmaa Hospital District, Fimlab Laboratories, and Finnish Cardiovascular Research Center Tampere, Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
| | - Teemu J Murtola
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
- TAYS Cancer Center, Department of Urology, 33520 Tampere, Finland
| | - Emma Raitoharju
- Pirkanmaa Hospital District, Fimlab Laboratories, and Finnish Cardiovascular Research Center Tampere, Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
| |
Collapse
|
23
|
Auvinen J, Tapio J, Karhunen V, Kettunen J, Serpi R, Dimova EY, Gill D, Soininen P, Tammelin T, Mykkänen J, Puukka K, Kähönen M, Raitoharju E, Lehtimäki T, Ala-Korpela M, Raitakari OT, Keinänen-Kiukaanniemi S, Järvelin MR, Koivunen P. Systematic evaluation of the association between hemoglobin levels and metabolic profile implicates beneficial effects of hypoxia. SCIENCE ADVANCES 2021; 7:eabi4822. [PMID: 34261659 PMCID: PMC8279517 DOI: 10.1126/sciadv.abi4822] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/01/2021] [Indexed: 05/22/2023]
Abstract
Activation of the hypoxia-inducible factor (HIF) pathway reprograms energy metabolism. Hemoglobin (Hb) is the main carrier of oxygen. Using its normal variation as a surrogate measure for hypoxia, we explored whether lower Hb levels could lead to healthier metabolic profiles in mice and humans (n = 7175) and used Mendelian randomization (MR) to evaluate potential causality (n = 173,480). The results showed evidence for lower Hb levels being associated with lower body mass index, better glucose tolerance and other metabolic profiles, lower inflammatory load, and blood pressure. Expression of the key HIF target genes SLC2A4 and Slc2a1 in skeletal muscle and adipose tissue, respectively, associated with systolic blood pressure in MR analyses and body weight, liver weight, and adiposity in mice. Last, manipulation of murine Hb levels mediated changes to key metabolic parameters. In conclusion, low-end normal Hb levels may be favorable for metabolic health involving mild chronic activation of the HIF response.
Collapse
Affiliation(s)
- Juha Auvinen
- Faculty of Medicine, Center for Life Course Health Research, University of Oulu, 90014 Oulu, Finland
- Medical Research Center, Oulu University Hospital and University of Oulu, 90220 Oulu, Finland
| | - Joona Tapio
- Biocenter Oulu, 90014 Oulu, Finland
- Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, 90014 Oulu, Finland
| | - Ville Karhunen
- Faculty of Medicine, Center for Life Course Health Research, University of Oulu, 90014 Oulu, Finland
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, Norfolk Place, W2 1PG London, UK
- Research Unit of Mathematical Sciences, University of Oulu, 90014 Oulu, Finland
| | - Johannes Kettunen
- Faculty of Medicine, Center for Life Course Health Research, University of Oulu, 90014 Oulu, Finland
- Biocenter Oulu, 90014 Oulu, Finland
- Computational Medicine, Faculty of Medicine, University of Oulu, 90014 Oulu, Finland
- NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, 70210 Kuopio, Finland
| | - Raisa Serpi
- Biocenter Oulu, 90014 Oulu, Finland
- Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, 90014 Oulu, Finland
| | - Elitsa Y Dimova
- Biocenter Oulu, 90014 Oulu, Finland
- Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, 90014 Oulu, Finland
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, Norfolk Place, W2 1PG London, UK
- Clinical Pharmacology and Therapeutics Section, Institute of Medical and Biomedical Education and Institute for Infection and Immunity, St George's, University of London, London, UK
| | - Pasi Soininen
- Computational Medicine, Faculty of Medicine, University of Oulu, 90014 Oulu, Finland
- NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, 70210 Kuopio, Finland
| | - Tuija Tammelin
- LIKES Research Center for Physical Activity and Health, 40700 Jyväskylä, Finland
| | - Juha Mykkänen
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, 20520 Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Katri Puukka
- NordLab Oulu, Medical Research Center Oulu, Oulu University Hospital and Department of Clinical Chemistry, University of Oulu, 90014 Oulu, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Emma Raitoharju
- Department of Clinical Chemistry, Fimlab Laboratories and Faculty of Medicine and Health Technology, Finnish Cardiovascular Research Center - Tampere, Tampere University, Tampere, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and Faculty of Medicine and Health Technology, Finnish Cardiovascular Research Center - Tampere, Tampere University, Tampere, Finland
| | - Mika Ala-Korpela
- Faculty of Medicine, Center for Life Course Health Research, University of Oulu, 90014 Oulu, Finland
- Biocenter Oulu, 90014 Oulu, Finland
- Computational Medicine, Faculty of Medicine, University of Oulu, 90014 Oulu, Finland
- NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, 70210 Kuopio, Finland
| | - Olli T Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, 20520 Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, 20520 Turku, Finland
| | - Sirkka Keinänen-Kiukaanniemi
- Faculty of Medicine, Center for Life Course Health Research, University of Oulu, 90014 Oulu, Finland
- Unit of Primary Care, Oulu University Hospital, 90220 Oulu, Finland
| | - Marjo-Riitta Järvelin
- Faculty of Medicine, Center for Life Course Health Research, University of Oulu, 90014 Oulu, Finland.
- Biocenter Oulu, 90014 Oulu, Finland
- Unit of Primary Care, Oulu University Hospital, 90220 Oulu, Finland
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, Norfolk Place, London W2 1PG, UK
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, Middlesex UB8 3PH, UK
| | - Peppi Koivunen
- Biocenter Oulu, 90014 Oulu, Finland.
- Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, 90014 Oulu, Finland
| |
Collapse
|
24
|
Hsa-miR-30a-3p attenuates gastric adenocarcinoma proliferation and metastasis via APBB2. Aging (Albany NY) 2021; 13:16763-16772. [PMID: 34182542 PMCID: PMC8266363 DOI: 10.18632/aging.203197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022]
Abstract
Background: There is a well-established relationship between cell cycle progression and the development of stomach adenocarcinoma. This study aimed to elucidate the molecular mechanism and biological function of APBB2 in gastric cancer. Methods: Gastric adenocarcinoma (GA) data were downloaded from the TCGA-GA and GEO databases and analyzed to explore differentially expressed miRNAs and mRNAs. Moreover, potential target mRNAs were also predicted. The relative level of gene and protein expression in GA cell lines and gastric mucosa cells was detected by q-PCR and Western blot, respectively. Moreover, the influence of APBB2 on proliferation, metastasis, and cell cycle changes in SGC-7901 and BGC-823 cells was evaluated. The binding relationship between the target miRNA and mRNA was confirmed with a dual-luciferase reporter assay. Results: High APBB2 expression was detected in GA patients, indicating that it may be represent a predictive biomarker for poor prognosis. Related experiments confirmed that APBB2 silencing inhibited GA cellular functions, including proliferation, cell cycle progression, migration, and invasion. In addition, to explore the molecular mechanism, our results indicated that the binding sites were located at hsa-mir-30a and the 3′-UTR of APBB2, suggesting that hsa-mir-30a can regulate the expression of APBB2. The biological functions of hsa-mir-30a were also evaluated. Hsa-mir-30a overexpression attenuated the proliferation and metastasis of cancer cells. In rescue experiments, hsa-mir-30a was confirmed to reverse the cell cycle promoting function associated with APBB2 overexpression. Conclusion: Our findings show that hsa-mir-30a can attenuate the development of GA by down-regulating APBB2 expression.
Collapse
|
25
|
Wang G, Zhou Y, Chen W, Yang Y, Ye J, Ou H, Wu H. miR-21-5p promotes lung adenocarcinoma cell proliferation, migration and invasion via targeting WWC2. Cancer Biomark 2021; 28:549-559. [PMID: 32623387 DOI: 10.3233/cbm-201489] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Studies have suggested that miR-21-5p and WWC2 are key players in most cancer types, yet the underlying mechanisms in lung adenocarcinoma (LUAD) remain elusive. This study made in-depth research on the two factors-dependent mechanisms underlying LUAD occurrence and development. METHODS Bioinformatics methods were employed to identify the miRNA and its target gene of interest. In all, 20 pairs of LUAD tumor tissue samples and matched adjacent normal samples along with 5 LUAD cell lines were collected for evaluating the aberrant expression of miR-21-5p and WWC2. Dual-luciferase reporter assay was performed to validate the targeted relationship between miR-21-5p and WWC2. A series of in vitro experiments including colony formation assay, EdU, wound healing assay and Transwell were conducted for assessment of the LUAD cell biological behaviors. In addition, Western blot was carried out to determine the protein expression of epithelial-mesenchymal transition (EMT)-related proteins. RESULTS miR-21-5p was found to be considerably increased in LUAD tissue and cells relative to that in the adjacent tissue and the human bronchial epithelial cells, whereas WWC2 was significantly decreased. Dual-luciferase reporter assay revealed that miR-21-5p targeted WWC2 and down-regulated its expression. Besides, silencing miR-21-5p or overexpressing WWC2 played an inhibitory role in PC-9 cancer cell proliferation, migration and invasion, but such effect was suppressed when miR-21-5p was overexpressed. Furthermore, Western blot uncovered that WWC2 overexpression impeded the EMT process in LUAD cells. CONCLUSION miR-21-5p facilitates LUAD cell proliferation, migration and invasion through targeting WWC2, which provides a novel therapeutic target for LUAD treatment.
Collapse
|
26
|
Sun Y, Liu Z, Huang L, Shang Y. MiR-144-3p inhibits the proliferation, migration and invasion of lung adenocargen cancer cells by targeting COL11A1. J Chemother 2021; 33:409-419. [PMID: 33845716 DOI: 10.1080/1120009x.2021.1906031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This study aimed to investigate the regulatory relationship between miR-144-3p and COL11A1, and to explore its effect on the proliferation, migration and invasion of lung adenocarcinoma (LUAD) cells. A series of methods and experiments were applied. miR-144-3p was downregulated in LUAD tissue and cells, whereas COL11A1 was highly expressed. Overexpressing miR-144-3p inhibited the proliferation, migration and invasion of LUAD cells, which could be reversed by overexpression of COL11A1. Overexpressing miR-144-3p inhibits the proliferation, migration and invasion of LUAD cells by silencing COL11A1.
Collapse
Affiliation(s)
- Yahong Sun
- Lung and CriticalLy Ill Emergency Medicine, Department of Haining People's Hospital, Haining, China
| | - Zhihao Liu
- Lung and CriticalLy Ill Emergency Medicine, Department of Haining People's Hospital, Haining, China
| | - Lifei Huang
- Lung and CriticalLy Ill Emergency Medicine, Department of Haining People's Hospital, Haining, China
| | - Yan Shang
- Respiratory and Critical Emergency Medicine, Changhai Hospital, Department of Naval Medical University (Second Military Medical University), Shanghai, China
| |
Collapse
|
27
|
The Unique Biology behind the Early Onset of Breast Cancer. Genes (Basel) 2021; 12:genes12030372. [PMID: 33807872 PMCID: PMC8000244 DOI: 10.3390/genes12030372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 01/19/2023] Open
Abstract
Breast cancer commonly affects women of older age; however, in developing countries, up to 20% of breast cancer cases present in young women (younger than 40 years as defined by oncology literature). Breast cancer in young women is often defined to be aggressive in nature, usually of high histological grade at the time of diagnosis and negative for endocrine receptors with poor overall survival rate. Several researchers have attributed this aggressive nature to a hidden unique biology. However, findings in this aspect remain controversial. Thus, in this article, we aimed to review published work addressing somatic mutations, chromosome copy number variants, single nucleotide polymorphisms, differential gene expression, microRNAs and gene methylation profile of early-onset breast cancer, as well as its altered pathways resulting from those aberrations. Distinct biology behind early-onset of breast cancer was clear among estrogen receptor-positive and sporadic cases. However, further research is needed to determine and validate specific novel markers, which may help in customizing therapy for this group of patients.
Collapse
|
28
|
Zhang L, Zhang T, Sun D, Cheng G, Ren H, Hong H, Chen L, Jiao X, Du Y, Zou Y, Wang L. Diagnostic value of dysregulated microribonucleic acids in the placenta and circulating exosomes in gestational diabetes mellitus. J Diabetes Investig 2021; 12:1490-1500. [PMID: 33411988 PMCID: PMC8354507 DOI: 10.1111/jdi.13493] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/26/2020] [Accepted: 01/01/2021] [Indexed: 12/19/2022] Open
Abstract
Aims/Introduction Differentially expressed microribonucleic acids (miRNAs) in the placenta and circulating exosomes are of diagnostic value for gestational diabetes mellitus (GDM). In a cross‐sectional study, we identified miRNAs expressed both in the placenta and circulating exosomes of pregnant women with GDM, and estimated their diagnostic value. Materials and Methods Next‐generation sequencing was used to identify miRNAs in the placenta that were differentially expressed between GDM and normal glucose tolerance pregnancies. Quantitative polymerase chain reaction was used to validate the identified targets. Western blot and transmission electron microscopy were used to validate exosomes. Univariate logistic regression analysis was used to establish diagnostic models based on miRNAs expression, and the diagnostic value was estimated using the receiver operator characteristic curve. Results We identified 157 dysregulated miRNAs in the placental tissue obtained from GDM pregnancies. Of these, miRNA‐125b was downregulated (P < 0.001), whereas miRNA‐144 was upregulated (P < 0.001). The patterns of these two miRNAs remained the same in circulating exosomes from GDM pregnancies (all P < 0.001). miRNA‐144 levels in the circulating exosomes negatively correlated with body mass index both before pregnancy (P = 0.018) and before delivery (P = 0.039), and positively correlated with blood glucose at 1 h, estimated using the oral glucose tolerance test (P = 0.044). The area under curve for the established diagnostic model was 0.898, which was higher than blood glucose levels at 0 h. Conclusions These findings suggest that miRNA‐125b and miRNA‐144 are consistently dysregulated in circulating exosomes and the placenta from GDM pregnancies, and are of excellent diagnostic value for GDM.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Obstetrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan, China
| | - Ting Zhang
- Department of Pharmacy, Jinan Infectious Disease Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan, China
| | - Daoxu Sun
- Office of Heze Health Association, Heze, China
| | - Guanghui Cheng
- Central Research Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan, China
| | - Hanxiao Ren
- Department of Clinical Laboratory Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan, China
| | - Haijie Hong
- Department of Obstetrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan, China
| | - Liyu Chen
- Department of Obstetrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan, China
| | - Xue Jiao
- School of Medicine, Cheeloo College of Medicine, Shandong University, Ji'nan, China
| | - Yijia Du
- School of Medicine, Cheeloo College of Medicine, Shandong University, Ji'nan, China
| | - Yuqing Zou
- School of Medicine, Cheeloo College of Medicine, Shandong University, Ji'nan, China
| | - Lina Wang
- Department of Clinical Laboratory Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan, China
| |
Collapse
|
29
|
Cai L, Ye L, Hu X, He W, Zhuang D, Guo Q, Shu K, Jie Y. MicroRNA miR-330-3p suppresses the progression of ovarian cancer by targeting RIPK4. Bioengineered 2021; 12:440-449. [PMID: 33487072 PMCID: PMC8291835 DOI: 10.1080/21655979.2021.1871817] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Previous studies reported that miR-330-3p was involved in the progression of several cancers, but the potential roles of miR-330-3p in ovarian cancer (OC) were unclear. In the current study, we aimed to explore the expression pattern and functions of miR-330-3p in OC. The expression level of miR-330-3p in OC tissues and cell lines was detected using RT-qPCR. The proliferation, migration and invasion of OC cells were detected using CCK-8 assay and transwell assay, respectively. Bioinformatics analysis and luciferase reporter assay were used to analyze the targeted binding
site of miR-330-3p and RIPK4. The results showed that miR-330-3p was significantly downregulated in OC tissues and cell lines. Overexpression of miR-330-3p inhibited the proliferation, migration and invasion of OC cells. Mechanistically, a dual-luciferase reported assay showed that RIPK4 is a target gene of miR-330-3p. Furthermore, rescue experiments revealed that miR-330-3p suppressed the proliferation, migration and invasion of OC cells by targeting RIPK4. In summary, our findings indicated that miR-330-3p suppressed the progression of OC by targeting RIPK4. Our results indicated that miR-330-3p/RIPK4 axis might act as a novel therapeutic target for OC treatment.
Collapse
Affiliation(s)
- Li Cai
- Department of Oncology, Jiangxi Maternal and Child Health Hospital , Nanchang, Jiangxi, China
| | - Lu Ye
- Department of Pathology, Jiangxi Maternal and Child Health Hospital , Nanchang, Jiangxi, China
| | - Xiaoqing Hu
- Department of Oncology, Jiangxi Maternal and Child Health Hospital , Nanchang, Jiangxi, China
| | - Wenfeng He
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University , Nanchang, Jiangxi, China
| | - Debao Zhuang
- Department of Pathology, Jiangxi Maternal and Child Health Hospital , Nanchang, Jiangxi, China
| | - Qi Guo
- Department of Pathology, Jiangxi Maternal and Child Health Hospital , Nanchang, Jiangxi, China
| | - Kuanyong Shu
- Department of Oncology, Jiangxi Maternal and Child Health Hospital , Nanchang, Jiangxi, China
| | - Youkun Jie
- Department of Pathology, Jiangxi Maternal and Child Health Hospital , Nanchang, Jiangxi, China.,Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University , Nanchang, Jiangxi, China
| |
Collapse
|
30
|
Zhang X, Wang J, Liu B, Yao H, Chen Y, Yin Y, Yang X, Li L. Potential mechanism of Huatan Qushi decoction on improving phlegm-dampness constitution using microRNA array and RT-qPCR targeting on hsa-miR-1237–3p. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2021. [DOI: 10.1016/j.jtcms.2021.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
31
|
Jiang H, Li L, Zhang J, Wan Z, Wang Y, Hou J, Yu Y. MiR-101-3p and Syn-Cal14.1a Synergy in Suppressing EZH2-Induced Progression of Breast Cancer. Onco Targets Ther 2020; 13:9599-9609. [PMID: 33061442 PMCID: PMC7532305 DOI: 10.2147/ott.s264600] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/03/2020] [Indexed: 01/20/2023] Open
Abstract
Objective EZH2 is the catalytic subunit of the polycomb repressive complex 2 (PRC2) and has been documented as an oncogene in breast cancer. The microRNA (miR)-101-3p can suppress breast cancer progression by targeting with EZH2. Syn-cal14.1a, a synthetic peptide derived from Californiconus californicus (Cal14.1a), can decrease the cell viability and activate the cell apoptosis in cancer. In this study, we explored whether the synergy of miR-101-3p mimic and syn-cal14.1a could inhibit the expression of EZH2. We also investigated this binding treatment’s effects on the suppression of breast cancer cells. Methods MiR-101-3p mimic was transfected and syn-cal14.1a was added in SK-BR-3 and MCF-7 breast cancer cells. The expression of EZH2 protein level was determined. Then, cell proliferation, migration, invasion, and apoptosis were observed. Results MiR-101-3p and syn-cal14.1a, when applied together, exerted a synergistic anti-EZH2 expression in breast cancer cells. The combination of miR-101-3p and syn-cal14.1a synergistically suppressed the EZH2-induced breast cancer cell migration, invasion, and proliferation. In parallel, this synergy treatment was able to promote the apoptosis of breast cancer cells. To our knowledge, this is the first report describing inhibition of EZH2 in human breast cancer cell lines by syn-cal14.1a. Conclusion The anti-EZH2 roles of miR-101-3p and/or syn-cal14.1a could provide an effective therapeutic strategy in breast cancer. These data provide significant insights into molecular mechanisms of breast cancer and may have benefits in clinical therapeutics for breast cancer.
Collapse
Affiliation(s)
- Huabo Jiang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Li Li
- Assisted Reproduction Technology Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jingjing Zhang
- Department of Plastic Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Zhong Wan
- Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yuanyuan Wang
- Department of Health Medicine, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Jingjing Hou
- Department of Gastrointestinal Surgery, Institute of Gastrointestinal Oncology, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Yongsheng Yu
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
32
|
Wang X, Xiao H, Wu D, Zhang D, Zhang Z. miR-335-5p Regulates Cell Cycle and Metastasis in Lung Adenocarcinoma by Targeting CCNB2. Onco Targets Ther 2020; 13:6255-6263. [PMID: 32636645 PMCID: PMC7335273 DOI: 10.2147/ott.s245136] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/17/2020] [Indexed: 12/14/2022] Open
Abstract
Background Lots of studies have shown that cyclin disorders can promote tumor development. This study aims to investigate the biological function and molecular mechanism of CCNB2 in lung adenocarcinoma (LUAD). Methods LUAD data were downloaded from GEO database and TCGA-LUAD database. Differential analysis was conducted to find the differentially expressed miRNAs and mRNAs, while targeted prediction was done for the access of potential target mRNAs. Gene expression level was detected by qRT-PCR and Western blot in human LUAD cell lines A-427, A549, Calu-3, PC-9 and human bronchial epithelial cell line BEAS-2B. MTT, colony formation, Transwell and flow cytometry assays were used to detect cell proliferation, metastasis, and cell cycle changes of PC-9 cell line. The dual-luciferase reporter gene was used to detect the targeted binding relationship of the target miRNA and mRNA. Results CCNB2 was highly expressed and served as a biomarker indicating poor prognosis in LUAD patients. Cell function experiments confirmed the inhibitory effects of silencing CCNB2 on the proliferation, migration and invasion of LUAD cells and cell cycle was blocked in the G0/G1 phase. In addition, with regard to the regulatory mechanism, we demonstrated that miR-335-5p had binding sites with 3ʹ-UTR of CCNB2, indicating that miR-335-5p could target the regulation expression of CCNB2. In subsequent cell function tests, overexpression of miR-335-5p inhibited the proliferation and metastasis of cancer cells, and the rescue experiments also verified that miR-335-5p could reverse the promotion of CCNB2 overexpression on the progress of cancer cells. Conclusion In summary, our results revealed that miR-335-5p could target the down-regulation of CCNB2 to inhibit the occurrence and development of LUAD.
Collapse
Affiliation(s)
- Xiyong Wang
- Department of Thoracic Surgery, China Coast Guard Hospital of the People's Armed Police Force, Jiaxing 314000, People's Republic of China
| | - Huaiqing Xiao
- Department of Thoracic Surgery, China Coast Guard Hospital of the People's Armed Police Force, Jiaxing 314000, People's Republic of China
| | - Dongqiang Wu
- Department of Thoracic Surgery, China Coast Guard Hospital of the People's Armed Police Force, Jiaxing 314000, People's Republic of China
| | - Dongliang Zhang
- Department of Thoracic Surgery, China Coast Guard Hospital of the People's Armed Police Force, Jiaxing 314000, People's Republic of China
| | - Zhihao Zhang
- Department of Thoracic Surgery, China Coast Guard Hospital of the People's Armed Police Force, Jiaxing 314000, People's Republic of China
| |
Collapse
|
33
|
Li Q, Qin M, Tan Q, Li T, Gu Z, Huang P, Ren L. MicroRNA-129-1-3p protects cardiomyocytes from pirarubicin-induced apoptosis by down-regulating the GRIN2D-mediated Ca 2+ signalling pathway. J Cell Mol Med 2020; 24:2260-2271. [PMID: 31957170 PMCID: PMC7011137 DOI: 10.1111/jcmm.14908] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 12/11/2022] Open
Abstract
Pirarubicin (THP), an anthracycline anticancer drug, is a first‐line therapy for various solid tumours and haematologic malignancies. However, THP can cause dose‐dependent cumulative cardiac damage, which limits its therapeutic window. The mechanisms underlying THP cardiotoxicity are not fully understood. We previously showed that MiR‐129‐1‐3p, a potential biomarker of cardiovascular disease, was down‐regulated in a rat model of THP‐induced cardiac injury. In this study, we used Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) pathway enrichment analyses to determine the pathways affected by miR‐129‐1‐3p expression. The results linked miR‐129‐1‐3p to the Ca2+ signalling pathway. TargetScan database screening identified a tentative miR‐129‐1‐3p‐binding site at the 3′‐UTR of GRIN2D, a subunit of the N‐methyl‐D‐aspartate receptor calcium channel. A luciferase reporter assay confirmed that miR‐129‐1‐3p directly regulates GRIN2D. In H9C2 (rat) and HL‐1 (mouse) cardiomyocytes, THP caused oxidative stress, calcium overload and apoptotic cell death. These THP‐induced changes were ameliorated by miR‐129‐1‐3p overexpression, but exacerbated by miR‐129‐1‐3p knock‐down. In addition, miR‐129‐1‐3p overexpression in cardiomyocytes prevented THP‐induced changes in the expression of proteins that are either key components of Ca2+ signalling or important regulators of intracellular calcium trafficking/balance in cardiomyocytes including GRIN2D, CALM1, CaMKⅡδ, RyR2‐pS2814, SERCA2a and NCX1. Together, these bioinformatics and cell‐based experiments indicate that miR‐129‐1‐3p protects against THP‐induced cardiomyocyte apoptosis by down‐regulating the GRIN2D‐mediated Ca2+ pathway. Our results reveal a novel mechanism underlying the pathogenesis of THP‐induced cardiotoxicity. The miR‐129‐1‐3p/Ca2+ signalling pathway could serve as a target for the development of new cardioprotective agents to control THP‐induced cardiotoxicity.
Collapse
Affiliation(s)
- Qi Li
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China.,The Third Hospital Affiliated of Jinzhou Medical University, Jinzhou, China
| | - Meng Qin
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China
| | - Qi Tan
- The Third Hospital Affiliated of Jinzhou Medical University, Jinzhou, China.,Department of Pathology and Pathophysiology, Jinzhou Medical University, Jinzhou, China
| | - Tengteng Li
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China
| | - Zehui Gu
- The Third Hospital Affiliated of Jinzhou Medical University, Jinzhou, China.,Department of Pathology and Pathophysiology, Jinzhou Medical University, Jinzhou, China
| | - Peng Huang
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China
| | - Liqun Ren
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China
| |
Collapse
|
34
|
Chao CT, Yuan TH, Yeh HY, Chen HY, Huang JW, Chen HW. Risk Factors Associated With Altered Circulating Micro RNA -125b and Their Influences on Uremic Vascular Calcification Among Patients With End-Stage Renal Disease. J Am Heart Assoc 2020; 8:e010805. [PMID: 30646802 PMCID: PMC6497364 DOI: 10.1161/jaha.118.010805] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background MicroRNA‐125b (miR‐125b) has been shown to regulate vascular calcification (VC), and serum miR‐125b levels are a potential biomarker for estimating the risk of uremic VC status. However, it is unknown whether clinical features, including chronic kidney disease–mineral bone disorder molecules, affect serum miR‐125b levels. Methods and Results Patients receiving chronic dialysis for ≥3 months were recruited from different institutes. Serum miR‐125b and chronic kidney disease–mineral bone disorder effectors, including intact parathyroid hormone, 25‐OH‐D, fibroblast growth factor‐23, osteoprotegerin, and fetuin‐A, were quantified. We used multivariate regression analyses to identify factors associated with low serum miR‐125b levels and an area under receiver operating characteristic curve curve to derive optimal cutoffs for factors exhibiting close associations. Further regression analyses evaluated the influence of miR‐125b on VC risk. Among 223 patients receiving chronic dialysis (mean age, 67.3 years; mean years of dialysis, 5.2), 54 (24.2%) had high serum miR‐125b levels. Osteoprotegerin (P=0.013), fibroblast growth factor‐23 (P=0.006), and fetuin‐A (P=0.036) were linearly associated with serum miR‐125b levels. High osteoprotegerin levels independently correlated with high serum miR‐125 levels. Adding serum miR‐125b levels and serum osteoprotegerin levels (≥400 pg/mL) into models estimating the risk of uremic VC increased the area under receiver operating characteristic curve values (for models without miR‐125b/osteoprotegerin, with miR‐125b, and both: 0.74, 0.79, and 0.81, respectively). Conclusions Serum osteoprotegerin levels ≥400 pg/mL and serum miR‐125b levels synergistically increased the accuracy of estimating VC risk among patients receiving chronic dialysis. Taking miR‐125b and osteoprotegerin levels into consideration when estimating VC risk may be recommended.
Collapse
Affiliation(s)
- Chia-Ter Chao
- 1 Department of Medicine National Taiwan University Hospital BeiHu Branch Taipei Taiwan.,2 Nephrology Division Department of Internal Medicine National Taiwan University Hospital Taipei Taiwan.,3 Department of Geriatric and Community Medicine Research Center National Taiwan University Hospital BeiHu branch Taipei Taiwan
| | - Tzu-Hang Yuan
- 4 Graduate Institute of Toxicology National Taiwan University Taipei Taiwan
| | - Hsiang-Yuan Yeh
- 5 School of Big Data Management Soochow University Taipei Taiwan
| | - Hsuan-Yu Chen
- 6 Institute of Statistical Science Academia Sinica Taipei Taiwan
| | - Jenq-Wen Huang
- 2 Nephrology Division Department of Internal Medicine National Taiwan University Hospital Taipei Taiwan
| | - Huei-Wen Chen
- 4 Graduate Institute of Toxicology National Taiwan University Taipei Taiwan
| |
Collapse
|
35
|
Zhu X, Tian G, Quan J, He P, Liu J. Effects of miR‑340 overexpression and knockdown on the proliferation and metastasis of NSCLC cell lines. Int J Mol Med 2019; 44:643-651. [PMID: 31173161 PMCID: PMC6605470 DOI: 10.3892/ijmm.2019.4213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 05/23/2019] [Indexed: 12/19/2022] Open
Abstract
The present study aimed to investigate the potential biological functions of microRNA‑340 (miR‑340) in non‑small cell lung cancer (NSCLC) beyond its role as a critical regulator of tumorigenesis and tumor progression. The expression levels of miR‑340 and RAB27B were analyzed by reverse transcription‑quantitative polymerase chain reaction. Subsequently, the protein expression levels of RAB27A, RAB27B, RAB9A, RAB11A and BRAB21 were determined by western blot analysis. The expression levels of the aforementioned proteins in NSCLC tissues were analyzed by immunohistochemistry. RAB27B, as a potential target of miR‑340 was investigated via a dual‑luciferase reporter assay. The proliferative ability of PC9, A549 and BEAS‑2B cells was detected with a Cell Counting kit‑8 assay, while the migration and invasion of the NSCLC cells were analyzed using a Transwell assay. The results revealed that the expression levels of miR‑340 in the NSCLC cells were significantly decreased compared with those in normal cells (BEAS‑2B cells). RAB27B was proposed as a potential target gene of miR‑340, and its expression was notably increased in the NSCLC cells. miR‑340 overexpression inhibited the migration and invasion of the NSCLC cells by targeting RAB27B, while the knockdown of miR‑340 exerted opposite effects. On the whole, these findings indicate that the miR‑340/RAB27B axis may be actively involved in the occurrence of NSCLC. Thus, miR‑340 and RAB27B may be novel therapeutic targets for the treatment of NSCLC.
Collapse
Affiliation(s)
- Xidan Zhu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Gang Tian
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jing Quan
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Peng He
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
36
|
Mononen N, Lyytikäinen LP, Seppälä I, Mishra PP, Juonala M, Waldenberger M, Klopp N, Illig T, Leiviskä J, Loo BM, Laaksonen R, Oksala N, Kähönen M, Hutri-Kähönen N, Raitakari O, Lehtimäki T, Raitoharju E. Whole blood microRNA levels associate with glycemic status and correlate with target mRNAs in pathways important to type 2 diabetes. Sci Rep 2019; 9:8887. [PMID: 31222113 PMCID: PMC6586838 DOI: 10.1038/s41598-019-43793-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 04/29/2019] [Indexed: 12/25/2022] Open
Abstract
We analyzed the associations between whole blood microRNA profiles and the indices of glucose metabolism and impaired fasting glucose and examined whether the discovered microRNAs correlate with the expression of their mRNA targets. MicroRNA and gene expression profiling were performed for the Young Finns Study participants (n = 871). Glucose, insulin, and glycated hemoglobin (HbA1c) levels were measured, the insulin resistance index (HOMA2-IR) was calculated, and the glycemic status (normoglycemic [n = 534]/impaired fasting glucose [IFG] [n = 252]/type 2 diabetes [T2D] [n = 24]) determined. Levels of hsa-miR-144-5p, -122-5p, -148a-3p, -589-5p, and hsa-let-7a-5p associated with glycemic status. hsa-miR-144-5p and -148a-3p associated with glucose levels, while hsa-miR-144-5p, -122-5p, -184, and -339-3p associated with insulin levels and HOMA2-IR, and hsa-miR-148a-3p, -15b-3p, -93-3p, -146b-5p, -221-3p, -18a-3p, -642a-5p, and -181-2-3p associated with HbA1c levels. The targets of hsa-miR-146b-5p that correlated with its levels were enriched in inflammatory pathways, and the targets of hsa-miR-221-3p were enriched in insulin signaling and T2D pathways. These pathways showed indications of co-regulation by HbA1c-associated miRNAs. There were significant differences in the microRNA profiles associated with glucose, insulin, or HOMA-IR compared to those associated with HbA1c. The HbA1c-associated miRNAs also correlated with the expression of target mRNAs in pathways important to the development of T2D.
Collapse
Affiliation(s)
- Nina Mononen
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and the Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and the Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ilkka Seppälä
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and the Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Pashupati P Mishra
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and the Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Markus Juonala
- Division of Medicine, Turku University Hospital, and Department of Medicine, University of Turku, Turku, Finland
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum, German Research Center for Environmental Health, Munich, Germany
| | - Norman Klopp
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany.,Institute for Human Genetics, Hannover Medical School, Hanover, Germany
| | - Thomas Illig
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum, German Research Center for Environmental Health, Munich, Germany.,Hannover Unified Biobank, Hannover Medical School, Hannover, Germany.,Institute for Human Genetics, Hannover Medical School, Hanover, Germany
| | - Jaana Leiviskä
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital HUSLAB, Helsinki, Finland
| | - Britt-Marie Loo
- Joint Clinical Biochemistry Laboratory of the University of Turku and Turku University Central Hospital and Department of Chronic Disease Prevention, National Institute for Health and Welfare, Turku, Finland
| | - Reijo Laaksonen
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and the Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Niku Oksala
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and the Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Centre for Vascular Surgery and Interventional Radiology, Tampere University Hospital, Tampere, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Nina Hutri-Kähönen
- Department of Pediatrics, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Olli Raitakari
- Research Centre for Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland.,Department of Clinical Physiology and Nuclear Medicine and Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and the Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Emma Raitoharju
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and the Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| |
Collapse
|
37
|
Smieszek A, Kornicka K, Szłapka-Kosarzewska J, Androvic P, Valihrach L, Langerova L, Rohlova E, Kubista M, Marycz K. Metformin Increases Proliferative Activity and Viability of Multipotent Stromal Stem Cells Isolated from Adipose Tissue Derived from Horses with Equine Metabolic Syndrome. Cells 2019; 8:E80. [PMID: 30678275 PMCID: PMC6406832 DOI: 10.3390/cells8020080] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 12/17/2022] Open
Abstract
In this study, we investigated the influence of metformin (MF) on proliferation and viability of adipose-derived stromal cells isolated from horses (EqASCs). We determined the effect of metformin on cell metabolism in terms of mitochondrial metabolism and oxidative status. Our purpose was to evaluate the metformin effect on cells derived from healthy horses (EqASCHE) and individuals affected by equine metabolic syndrome (EqASCEMS). The cells were treated with 0.5 μM MF for 72 h. The proliferative activity was evaluated based on the measurement of BrdU incorporation during DNA synthesis, as well as population doubling time rate (PDT) and distribution of EqASCs in the cell cycle. The influence of metformin on EqASC viability was determined in relation to apoptosis profile, mitochondrial membrane potential, oxidative stress markers and BAX/BCL-2 mRNA ratio. Further, we were interested in possibility of metformin affecting the Wnt3a signalling pathway and, thus, we determined mRNA and protein level of WNT3A and β-catenin. Finally, using a two-tailed RT-qPCR method, we investigated the expression of miR-16-5p, miR-21-5p, miR-29a-3p, miR-140-3p and miR-145-5p. Obtained results indicate pro-proliferative and anti-apoptotic effects of metformin on EqASCs. In this study, MF significantly improved proliferation of EqASCs, which manifested in increased synthesis of DNA and lowered PDT value. Additionally, metformin improved metabolism and viability of cells, which correlated with higher mitochondrial membrane potential, reduced apoptosis and increased WNT3A/β-catenin expression. Metformin modulates the miRNA expression differently in EqASCHE and EqASCEMS. Metformin may be used as a preconditioning agent which stimulates proliferative activity and viability of EqASCs.
Collapse
Affiliation(s)
- Agnieszka Smieszek
- Department of Experimental Biology, The Faculty of Biology and Animal Science, University of Environmental and Life Sciences, 50-375 Wroclaw, Poland.
| | - Katarzyna Kornicka
- Department of Experimental Biology, The Faculty of Biology and Animal Science, University of Environmental and Life Sciences, 50-375 Wroclaw, Poland.
| | - Jolanta Szłapka-Kosarzewska
- Department of Experimental Biology, The Faculty of Biology and Animal Science, University of Environmental and Life Sciences, 50-375 Wroclaw, Poland.
| | - Peter Androvic
- Laboratory of Gene Expression, Institute of Biotechnology CAS, Biocev, 252 50 Vestec, Czech Republic.
- Laboratory of Growth Regulators, Faculty of Science, Palacky University, 78371 Olomouc, Czech Republic.
| | - Lukas Valihrach
- Laboratory of Gene Expression, Institute of Biotechnology CAS, Biocev, 252 50 Vestec, Czech Republic.
| | - Lucie Langerova
- Gene Core BIOCEV, Průmyslová 595, Vestec 252 50, Czech Republic.
| | - Eva Rohlova
- Laboratory of Gene Expression, Institute of Biotechnology CAS, Biocev, 252 50 Vestec, Czech Republic.
- Department of Anthropology and Human Genetics, Faculty of Science, Charles University, 128 43 Prague, Czech Republic.
| | - Mikael Kubista
- Laboratory of Gene Expression, Institute of Biotechnology CAS, Biocev, 252 50 Vestec, Czech Republic.
- TATAA Biocenter AB, 411 03 Gothenburg, Sweden.
| | - Krzysztof Marycz
- Department of Experimental Biology, The Faculty of Biology and Animal Science, University of Environmental and Life Sciences, 50-375 Wroclaw, Poland.
- Faculty of Veterinary Medicine, Equine Clinic-Equine Surgery, Justus-Liebig-University, 35392 Giessen, Germany.
| |
Collapse
|
38
|
Li J, Wang R, Ge Y, Chen D, Wu B, Fang F. Assessment of microRNA-144-5p and its putative targets in inflamed gingiva from chronic periodontitis patients. J Periodontal Res 2018; 54:266-277. [PMID: 30450635 DOI: 10.1111/jre.12627] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/27/2018] [Accepted: 10/19/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND OBJECTIVE This study aimed to discover the distinctive MicroRNAs (miRNA) functioning in the pathogenesis of periodontal inflammation, which might be potential therapy targets of chronic periodontitis. MATERIAL AND METHODS miRNA profiles of human inflamed gingival tissue from three previous microarrays were re-analysed. Gingival tissues were collected for the validation of overlapping miRNAs, and a network was constructed to show regulatory connection between overlapping miRNAs and periodontitis-associated target genes. Potential miRNAs were screened based on their expression levels and predicted target genes. Correlation analysis and binding site prediction were conducted to reveal the relationship between the potential miRNAs and their target genes. RESULTS miR-144-5p, found to be upregulated in all three studies, showed the greatest upregulation (P < 0.0001). Another 16 miRNAs (10 upregulated and six downregulated) overlapped between any two of the three studies. All overlapping miRNAs had expected expression levels except for miR-203 during validation. Ten miRNAs (six upregulated and four downregulated) were found to have periodontal inflammation-associated targets. Cyclooxygenase 2 (COX2) and interleukin-17F (IL17F), predicted target genes of upregulated miR-144-5p, showed significant decreases and were negatively correlated with miR-144-5p in the periodontitis group (r = -0.742 for COX2, r = -0.615 for IL17F). CONCLUSION This re-analysis of miRNA signatures has implied the potential regulatory mechanism of miR-144-5p and its potential for exploring alternative therapeutic approaches, especially those that use miRNA delivery systems to treat chronic periodontitis. Nevertheless, further study based on larger sample size and homogenous cells is needed to reveal the exact roles of miRNAs in chronic periodontitis.
Collapse
Affiliation(s)
- Jianjia Li
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Runting Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yihong Ge
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Danhong Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Buling Wu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fuchun Fang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
39
|
Liu C, Yang Z, Deng Z, Zhou Y, Gong Q, Zhao R, Chen T. Downregulated miR-144-3p contributes to progression of lung adenocarcinoma through elevating the expression of EZH2. Cancer Med 2018; 7:5554-5566. [PMID: 30280514 PMCID: PMC6246953 DOI: 10.1002/cam4.1714] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/12/2018] [Accepted: 07/15/2018] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES The intention of our study was to investigate the relationship between miR-144-3p and EZH2 as well as the effects of their interaction on cell propagation and invasiveness in lung adenocarcinoma (LUAD). METHODS The expression levels of miR-144-3p and EZH2 in LUAD tissues and normal tissues were determined by qRT-PCR. The dual-luciferase reporter assay was utilized to validate the targeting relationship between miR-144-3p and EZH2. MTT assay and colony formation assay were performed to evaluate the viability and propagation of LUAD cells, while the effects of miR-144-3p and EZH2 on LUAD cell invasiveness were confirmed by transwell assay. Protein expression levels of VEGFA, MMP2, and MMP9 were measured by Western blot. Furthermore, xenograft tumor models were established to verify the effects of miR-144-3p on tumor formation and EZH2, VEGFA, MMP2 and MMP9 expressions in vivo. RESULTS miR-144-3P was downregulated in LUAD tissues, and overexpression of miR-144-3p inhibited propagation and invasiveness of LUAD cells. EZH2 was a target of miR-144-3p and was highly expressed in LUAD cells. Knockdown of EZH2 could suppress the propagation and invasion of LUAD cells. Increased miR-144-3p expression exerted an inhibitory effect on LUAD tumor formation in vivo. CONCLUSION Overexpression of miR-144-3p impeded the propagation and invasiveness of LUAD cells by targeting EZH2.
Collapse
Affiliation(s)
- Chao Liu
- Department of Nuclear Medicine, Tumor Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical College, Kunming, Yunnan, China
| | - Zuozhang Yang
- Departments of Orthopaedics, Tumor Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical College, Kunming, Yunnan, China
| | - Zhiyong Deng
- Department of Nuclear Medicine, Tumor Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical College, Kunming, Yunnan, China
| | - Youjun Zhou
- Department of Nuclear Medicine, The Affiliated Yan'an Hospital of Kunming Medical College, Kunming, Yunnan, China
| | - Quan Gong
- Department of Palliative Medicine, Tumor Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical College, Kunming, Yunnan, China
| | - Ruilian Zhao
- Departments of Combination of Chinese Traditional and Western Medicine, Tumor Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical College, Kunming, Yunnan, China
| | - Ting Chen
- Department of Nuclear Medicine, Tumor Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical College, Kunming, Yunnan, China
| |
Collapse
|
40
|
Fathi Dizaji B. The investigations of genetic determinants of the metabolic syndrome. Diabetes Metab Syndr 2018; 12:783-789. [PMID: 29673926 DOI: 10.1016/j.dsx.2018.04.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/09/2018] [Indexed: 11/17/2022]
Abstract
Metabolic syndrome is the aggregation of cardiovascular risk factors that increases the risk of type 2 diabetes and cardiovascular diseases. Family and twin studies, heritability spectrum for its components and different prevalence among ethnicities, have provided genetic susceptibility to the metabolic syndrome. The investigations of genetic base for the disorder have recognized numerous chromosomes, various DNA polymorphisms in candidate genes and many gene variants, that are associated with metabolic syndrome as an entity or its traits, which mostly are related to lipid metabolism. In addition, recent finding of the role of rare variants, epigenetic mechanisms, non-coding RNAs and evaluating the function of genes in molecular networks have improved our knowledge. However, a common genetic basis explaining the co-occurrence of its components has not been identified and more researches are essential.
Collapse
Affiliation(s)
- Behdokht Fathi Dizaji
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
41
|
Mafi A, Aghadavod E, Mirhosseini N, Mobini M, Asemi Z. The effects of expression of different microRNAs on insulin secretion and diabetic nephropathy progression. J Cell Physiol 2018; 234:42-50. [DOI: 10.1002/jcp.26895] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Alireza Mafi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases Kashan University of Medical Sciences Kashan Iran
| | - Esmat Aghadavod
- Research Center for Biochemistry and Nutrition in Metabolic Diseases Kashan University of Medical Sciences Kashan Iran
| | | | - Moein Mobini
- Kinesiology Department University of Calgary Calgary Alberta Canada
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases Kashan University of Medical Sciences Kashan Iran
| |
Collapse
|
42
|
Wu Y, Meng Q, Yang Z, Shi L, Hu R, Zhang P, Wei J, Ren J, Leng B, Xu D, Jiang GQ. Circulating HER-2 mRNA in the peripheral blood as a potential diagnostic and prognostic biomarker in females with breast cancer. Oncol Lett 2018; 16:3726-3734. [PMID: 30127983 PMCID: PMC6096115 DOI: 10.3892/ol.2018.9091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 05/04/2018] [Indexed: 01/04/2023] Open
Abstract
Breast cancer is a prevalent malignant cancer worldwide, and a lack of defined biomarkers for early prognostication contributes to its high associated mortality rate, especially in human epidermal growth factor receptor 2 (HER-2)-positive breast cancer. In the present study, HER-2 mRNA levels in patients were detected prior to surgery and during neoadjuvant chemotherapy to explore its potential diagnostic and prognostic value. Blood samples were collected from 70 patients with breast cancer, including 50 HER-2-negative and 20 HER-2-positive patients, prior to and following surgery (postoperative, n=13; neoadjuvant chemotherapy, n=5); the control group included 35 samples from healthy individuals. The relative mRNA level of HER-2 in blood was determined by one-step reverse transcription-quantitative polymerase chain reaction. HER-2 expression curves of measurements taken during neoadjuvant chemotherapy were compared with the tumor size. A significant difference in the blood HER-2 mRNA level was observed between healthy women and patients with breast cancer (P<0.0001). A cutoff value of 1.512 was established for the circulating HER-2 level in healthy subjects based on the upper 95% confidence interval value of samples from the control group. The level of HER-2 mRNA in blood was associated with the HER-2 status, Ki-67 expression, and lymphovascular invasion in primary tumor tissue samples; however, there was no association with the lymph node status, tumor stage, tumor grade, tumor size, patient age, estrogen or progesterone receptor status of the primary tumor. HER-2 mRNA levels were associated with the response rate, as determined by primary tumor size, in patients who received neoadjuvant chemotherapy. In conclusion, baseline and early changes in peripheral blood HER-2 mRNA indicated that HER-2 mRNA may be a potential diagnostic biomarker for breast cancer and a prognostic marker for predicting the efficacy of neoadjuvant therapy.
Collapse
Affiliation(s)
- Yanlin Wu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Qiping Meng
- GenePharma Limited Liability Company, Suzhou, Jiangsu 215125, P.R. China
| | - Zhixue Yang
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Lili Shi
- GenePharma Limited Liability Company, Suzhou, Jiangsu 215125, P.R. China
| | - Rongkuan Hu
- GenePharma Limited Liability Company, Suzhou, Jiangsu 215125, P.R. China
| | - Peizhuo Zhang
- GenePharma Limited Liability Company, Suzhou, Jiangsu 215125, P.R. China
| | - Jinrong Wei
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Jie Ren
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Bingjing Leng
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Dong Xu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Guo-Qin Jiang
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| |
Collapse
|
43
|
|
44
|
Sun Y, Mei H, Xu C, Tang H, Wei W. Circulating microRNA-339-5p and -21 in plasma as an early detection predictors of lung adenocarcinoma. Pathol Res Pract 2018; 214:119-125. [PMID: 29103767 DOI: 10.1016/j.prp.2017.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 10/08/2017] [Accepted: 10/08/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Many studies have shown that differentially expressed miRs in body fluids can serve as biomarkers in non-invasive detection of the cancers. However, the clinical significance of plasma miRs in the diagnosis of lung adenocarcinoma (LA) is still not clear. Therefore, we examined the LA-specific miRs in plasma, which could be utilized to diagnosis and monitor LA in routine clinical practice. METHODS Twenty-eight LA cases and twenty-eight healthy controls were recruited to our study. MiRs differential expression in plasma was measured by miRNA Microarray assay and revalidated by using qRT-PCR based absolute quantification methods The diagnostic power of circulating miRs in LA was evaluated using the receiver operating characteristics (ROC) curves and the area under the ROC curves (AUC). RESULTS Tumor tissues and plasma levels of miR-339-5p were significantly down-regulated in LA patients compared with those in the control group, whereas the levels of miR-21 in LA patients were significantly higher than control group. ROC analysis showed that miR-339-5p and miR-21 could distinguish LA patients from healthy controls with high AUC (0.900 and 0.880, respectively), sensitivity (0.821 and 0.821, respectively) and specificity (0.929 and 0.964, respectively). Importantly, the combination of miR-339-5p and miR-21 markedly improved AUC (0.963), sensitivity (0.929) and specificity (0.929). CONCLUSION Plasma miR-339-5p or miR-21 could serve as a potential biomarker for diagnosis of LA, however, the combination of miR-339-5p and miR-21 was more efficient for LA detection.
Collapse
Affiliation(s)
- Yongpan Sun
- Department of thoracic surgery, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Hong Mei
- Department of thoracic surgery, Guizhou Provincial People's Hospital, Guiyang 550002, China.
| | - Chuan Xu
- Department of thoracic surgery, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Hongjun Tang
- Department of thoracic surgery, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Wei Wei
- Department of thoracic surgery, Guizhou Provincial People's Hospital, Guiyang 550002, China
| |
Collapse
|
45
|
Jones A, Danielson KM, Benton MC, Ziegler O, Shah R, Stubbs RS, Das S, Macartney-Coxson D. miRNA Signatures of Insulin Resistance in Obesity. Obesity (Silver Spring) 2017; 25:1734-1744. [PMID: 28834285 PMCID: PMC5614819 DOI: 10.1002/oby.21950] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Extracellular microRNAs (miRNAs) represent functional biomarkers for obesity and related disorders; this study investigated plasma miRNAs in insulin resistance phenotypes in obesity. METHODS One hundred seventy-five miRNAs were analyzed in females with obesity (insulin sensitivity, n = 11; insulin resistance, n = 19; type 2 diabetes, n = 15) and without obesity (n = 12). Correlations between miRNA level and clinical parameters and levels of 15 miRNAs in a murine obesity model were investigated. RESULTS One hundred six miRNAs were significantly (adjusted P ≤ 0.05) different between controls and at least one obesity phenotype, including miRNAs with the following attributes: previously reported roles in obesity and altered circulating levels (e.g., miR-122, miR-192); known roles in obesity but no reported changes in circulating levels (e.g., miR-378a); and no current reported role in, or association with, obesity (e.g., miR-28-5p, miR-374b, miR-32). The miRNAs in the latter group were found to be associated with extracellular vesicles. Forty-eight miRNAs showed significant correlations with clinical parameters; stepwise regression retained let-7b, miR-144-5p, miR-34a, and miR-532-5p in a model predictive of insulin resistance (R2 = 0.57, P = 7.5 × 10-8 ). Both miR-378a and miR-122 were perturbed in metabolically relevant tissues in a murine model of obesity. CONCLUSIONS This study expands on the role of extracellular miRNAs in insulin-resistant phenotypes of obesity and identifies candidate miRNAs not previously associated with obesity.
Collapse
Affiliation(s)
- Angela Jones
- Biomarkers Group, Institute of Environmental Science and Research (ESR), Wellington, New Zealand
| | - Kirsty M Danielson
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, USA
| | - Miles C Benton
- Biomarkers Group, Institute of Environmental Science and Research (ESR), Wellington, New Zealand
- Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Australia
| | - Olivia Ziegler
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, USA
| | - Ravi Shah
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, USA
| | | | - Saumya Das
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, USA
| | - Donia Macartney-Coxson
- Biomarkers Group, Institute of Environmental Science and Research (ESR), Wellington, New Zealand
- corresponding author Contact: Donia Macartney-Coxson, Biomarkers Group, Institute of Environmental Science and Research (ESR), Wellington, 5022, New Zealand. Telephone: +64 4 917 5931 Fax: +64 4 914 0770
| |
Collapse
|
46
|
Nath AP, Ritchie SC, Byars SG, Fearnley LG, Havulinna AS, Joensuu A, Kangas AJ, Soininen P, Wennerström A, Milani L, Metspalu A, Männistö S, Würtz P, Kettunen J, Raitoharju E, Kähönen M, Juonala M, Palotie A, Ala-Korpela M, Ripatti S, Lehtimäki T, Abraham G, Raitakari O, Salomaa V, Perola M, Inouye M. An interaction map of circulating metabolites, immune gene networks, and their genetic regulation. Genome Biol 2017; 18:146. [PMID: 28764798 PMCID: PMC5540552 DOI: 10.1186/s13059-017-1279-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 07/14/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Immunometabolism plays a central role in many cardiometabolic diseases. However, a robust map of immune-related gene networks in circulating human cells, their interactions with metabolites, and their genetic control is still lacking. Here, we integrate blood transcriptomic, metabolomic, and genomic profiles from two population-based cohorts (total N = 2168), including a subset of individuals with matched multi-omic data at 7-year follow-up. RESULTS We identify topologically replicable gene networks enriched for diverse immune functions including cytotoxicity, viral response, B cell, platelet, neutrophil, and mast cell/basophil activity. These immune gene modules show complex patterns of association with 158 circulating metabolites, including lipoprotein subclasses, lipids, fatty acids, amino acids, small molecules, and CRP. Genome-wide scans for module expression quantitative trait loci (mQTLs) reveal five modules with mQTLs that have both cis and trans effects. The strongest mQTL is in ARHGEF3 (rs1354034) and affects a module enriched for platelet function, independent of platelet counts. Modules of mast cell/basophil and neutrophil function show temporally stable metabolite associations over 7-year follow-up, providing evidence that these modules and their constituent gene products may play central roles in metabolic inflammation. Furthermore, the strongest mQTL in ARHGEF3 also displays clear temporal stability, supporting widespread trans effects at this locus. CONCLUSIONS This study provides a detailed map of natural variation at the blood immunometabolic interface and its genetic basis, and may facilitate subsequent studies to explain inter-individual variation in cardiometabolic disease.
Collapse
Affiliation(s)
- Artika P Nath
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, 3010, Victoria, Australia.,Systems Genomics Lab, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Scott C Ritchie
- Systems Genomics Lab, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Pathology, The University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Sean G Byars
- Department of Pathology, The University of Melbourne, Parkville, 3010, Victoria, Australia.,School of BioSciences, The University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Liam G Fearnley
- Department of Pathology, The University of Melbourne, Parkville, 3010, Victoria, Australia.,School of BioSciences, The University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Aki S Havulinna
- National Institute for Health and Welfare, Helsinki, 00271, Finland.,Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, 00014, Finland
| | - Anni Joensuu
- National Institute for Health and Welfare, Helsinki, 00271, Finland
| | - Antti J Kangas
- Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, 90014, Finland
| | - Pasi Soininen
- Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, 90014, Finland.,NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, 70211, Finland
| | | | - Lili Milani
- University of Tartu, Estonian Genome Center, Tartu, 51010, Estonia
| | - Andres Metspalu
- University of Tartu, Estonian Genome Center, Tartu, 51010, Estonia
| | - Satu Männistö
- National Institute for Health and Welfare, Helsinki, 00271, Finland
| | - Peter Würtz
- Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, 90014, Finland.,Diabetes and Obesity Research Program, University of Helsinki, Helsinki, Finland
| | - Johannes Kettunen
- National Institute for Health and Welfare, Helsinki, 00271, Finland.,Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, 90014, Finland.,NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, 70211, Finland.,Biocenter Oulu, University of Oulu, Oulu, 90014, Finland
| | - Emma Raitoharju
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Life Sciences, University of Tampere, 33014, Tampere, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, University of Tampere and Tampere University Hospital, FI-33521, Tampere, Finland
| | - Markus Juonala
- Department of Medicine, University of Turku and Division of Medicine, Turku University Hospital, FI-20520, Turku, Finland.,Murdoch Childrens Research Institute, Parkville, 3052, Victoria, Australia
| | - Aarno Palotie
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, 00014, Finland.,Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.,Psychiatric & Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Mika Ala-Korpela
- Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, 90014, Finland.,NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, 70211, Finland.,Biocenter Oulu, University of Oulu, Oulu, 90014, Finland.,Computational Medicine, School of Social and Community Medicine, University of Bristol, Bristol, BS8 1TH, UK.,Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, 00014, Finland.,Department of Public Health, University of Helsinki, Helsinki, 00014, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Life Sciences, University of Tampere, 33014, Tampere, Finland
| | - Gad Abraham
- Systems Genomics Lab, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Pathology, The University of Melbourne, Parkville, 3010, Victoria, Australia.,School of BioSciences, The University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Olli Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, 20520, Finland.,Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, 20520, Finland
| | - Veikko Salomaa
- National Institute for Health and Welfare, Helsinki, 00271, Finland
| | - Markus Perola
- National Institute for Health and Welfare, Helsinki, 00271, Finland.,Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, 00014, Finland.,University of Tartu, Estonian Genome Center, Tartu, 51010, Estonia
| | - Michael Inouye
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, 3010, Victoria, Australia. .,Systems Genomics Lab, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia. .,Department of Pathology, The University of Melbourne, Parkville, 3010, Victoria, Australia. .,School of BioSciences, The University of Melbourne, Parkville, 3010, Victoria, Australia.
| |
Collapse
|
47
|
Marques FZ, Prestes PR, Byars SG, Ritchie SC, Würtz P, Patel SK, Booth SA, Rana I, Minoda Y, Berzins SP, Curl CL, Bell JR, Wai B, Srivastava PM, Kangas AJ, Soininen P, Ruohonen S, Kähönen M, Lehtimäki T, Raitoharju E, Havulinna A, Perola M, Raitakari O, Salomaa V, Ala-Korpela M, Kettunen J, McGlynn M, Kelly J, Wlodek ME, Lewandowski PA, Delbridge LM, Burrell LM, Inouye M, Harrap SB, Charchar FJ. Experimental and Human Evidence for Lipocalin-2 (Neutrophil Gelatinase-Associated Lipocalin [NGAL]) in the Development of Cardiac Hypertrophy and heart failure. J Am Heart Assoc 2017; 6:e005971. [PMID: 28615213 PMCID: PMC5669193 DOI: 10.1161/jaha.117.005971] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/02/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND Cardiac hypertrophy increases the risk of developing heart failure and cardiovascular death. The neutrophil inflammatory protein, lipocalin-2 (LCN2/NGAL), is elevated in certain forms of cardiac hypertrophy and acute heart failure. However, a specific role for LCN2 in predisposition and etiology of hypertrophy and the relevant genetic determinants are unclear. Here, we defined the role of LCN2 in concentric cardiac hypertrophy in terms of pathophysiology, inflammatory expression networks, and genomic determinants. METHODS AND RESULTS We used 3 experimental models: a polygenic model of cardiac hypertrophy and heart failure, a model of intrauterine growth restriction and Lcn2-knockout mouse; cultured cardiomyocytes; and 2 human cohorts: 114 type 2 diabetes mellitus patients and 2064 healthy subjects of the YFS (Young Finns Study). In hypertrophic heart rats, cardiac and circulating Lcn2 was significantly overexpressed before, during, and after development of cardiac hypertrophy and heart failure. Lcn2 expression was increased in hypertrophic hearts in a model of intrauterine growth restriction, whereas Lcn2-knockout mice had smaller hearts. In cultured cardiomyocytes, Lcn2 activated molecular hypertrophic pathways and increased cell size, but reduced proliferation and cell numbers. Increased LCN2 was associated with cardiac hypertrophy and diastolic dysfunction in diabetes mellitus. In the YFS, LCN2 expression was associated with body mass index and cardiac mass and with levels of inflammatory markers. The single-nucleotide polymorphism, rs13297295, located near LCN2 defined a significant cis-eQTL for LCN2 expression. CONCLUSIONS Direct effects of LCN2 on cardiomyocyte size and number and the consistent associations in experimental and human analyses reveal a central role for LCN2 in the ontogeny of cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Francine Z Marques
- School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Ballarat, Victoria, Australia
- Heart Failure Research Group, Baker Heart and Diabetes Research Institute, Melbourne, Victoria, Australia
| | - Priscilla R Prestes
- School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Ballarat, Victoria, Australia
| | - Sean G Byars
- Centre for Systems Genomics, The University of Melbourne, Victoria, Australia
- School of BioSciences, The University of Melbourne, Victoria, Australia
- Department of Pathology, The University of Melbourne, Victoria, Australia
| | - Scott C Ritchie
- Centre for Systems Genomics, The University of Melbourne, Victoria, Australia
- Department of Pathology, The University of Melbourne, Victoria, Australia
| | - Peter Würtz
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland
| | - Sheila K Patel
- Department of Medicine, The University of Melbourne Austin Health, Heidelberg, Victoria, Australia
| | - Scott A Booth
- School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Ballarat, Victoria, Australia
| | - Indrajeetsinh Rana
- School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Ballarat, Victoria, Australia
| | - Yosuke Minoda
- School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Ballarat, Victoria, Australia
| | - Stuart P Berzins
- School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Ballarat, Victoria, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute, The University of Melbourne, Victoria, Australia
| | - Claire L Curl
- Department of Physiology, The University of Melbourne, Victoria, Australia
| | - James R Bell
- Department of Physiology, The University of Melbourne, Victoria, Australia
| | - Bryan Wai
- Department of Medicine, The University of Melbourne Austin Health, Heidelberg, Victoria, Australia
- Department of Cardiology, Austin Health, Heidelberg, Victoria, Australia
| | - Piyush M Srivastava
- Department of Medicine, The University of Melbourne Austin Health, Heidelberg, Victoria, Australia
- Department of Cardiology, Austin Health, Heidelberg, Victoria, Australia
| | - Antti J Kangas
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland
| | - Pasi Soininen
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland
- NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Saku Ruohonen
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Terho Lehtimäki
- Fimlab Laboratories, Department of Clinical Chemistry, Pirkanmaa Hospital District, School of Medicine, University of Tampere, Finland
| | - Emma Raitoharju
- Fimlab Laboratories, Department of Clinical Chemistry, Pirkanmaa Hospital District, School of Medicine, University of Tampere, Finland
| | - Aki Havulinna
- National Institute for Health and Welfare, Helsinki, Finland
| | - Markus Perola
- National Institute for Health and Welfare, Helsinki, Finland
- Institute for Molecular Medicine Finland, University of Helsinki, Finland
| | - Olli Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Veikko Salomaa
- National Institute for Health and Welfare, Helsinki, Finland
| | - Mika Ala-Korpela
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland
- NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, United Kingdom
- School of Social and Community Medicine, University of Bristol, United Kingdom
| | - Johannes Kettunen
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland
- NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
- National Institute for Health and Welfare, Helsinki, Finland
| | - Maree McGlynn
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Jason Kelly
- School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Ballarat, Victoria, Australia
| | - Mary E Wlodek
- Department of Medicine, The University of Melbourne Austin Health, Heidelberg, Victoria, Australia
| | | | - Lea M Delbridge
- Department of Physiology, The University of Melbourne, Victoria, Australia
| | - Louise M Burrell
- Department of Medicine, The University of Melbourne Austin Health, Heidelberg, Victoria, Australia
- Department of Cardiology, Austin Health, Heidelberg, Victoria, Australia
| | - Michael Inouye
- Heart Failure Research Group, Baker Heart and Diabetes Research Institute, Melbourne, Victoria, Australia
- Centre for Systems Genomics, The University of Melbourne, Victoria, Australia
- School of BioSciences, The University of Melbourne, Victoria, Australia
- Department of Pathology, The University of Melbourne, Victoria, Australia
- Department of Physiology, The University of Melbourne, Victoria, Australia
| | - Stephen B Harrap
- Department of Physiology, The University of Melbourne, Victoria, Australia
| | - Fadi J Charchar
- School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Ballarat, Victoria, Australia
- Department of Physiology, The University of Melbourne, Victoria, Australia
- Department of Cardiovascular Sciences, University of Leicester, United Kingdom
| |
Collapse
|
48
|
Njock MS, Fish JE. Endothelial miRNAs as Cellular Messengers in Cardiometabolic Diseases. Trends Endocrinol Metab 2017; 28:237-246. [PMID: 27989505 DOI: 10.1016/j.tem.2016.11.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 01/08/2023]
Abstract
Metabolic syndrome is a clustering of risk factors that increases susceptibility to serious cardiometabolic complications, including type 2 diabetes (T2D) and myocardial infarction. Understanding the underlying mechanisms will advance the development of diagnostic and therapeutic approaches. A prominent feature of cardiometabolic diseases is endothelial dysfunction. Endothelial cell (EC) homeostasis and response to pathological stimuli are controlled by gene regulatory networks in which miRNAs play a critical role. Recently, miRNAs have been implicated as cell-cell messengers that can influence cellular function. This review investigates the known and potential roles for miRNA-based cell-cell communication in the control of cardiovascular health and explores the value of identifying miRNA biomarkers and developing therapeutics that harness or antagonize miRNA-based communication.
Collapse
Affiliation(s)
- Makon-Sébastien Njock
- Laboratory of Molecular Angiogenesis, GIGA-R, University of Liège, Liège, Belgium; Toronto General Hospital Research Institute, University Health Network, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Canada.
| | - Jason E Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Canada.
| |
Collapse
|
49
|
Pérez-Campo FM, De Castro-Orós I, Noriega A, Cofán M, Lamiquiz-Moneo I, Cenarro A, Ros E, Civeira F, Pocoví M, Rodríguez-Rey JC. Functional analysis of new 3' untranslated regions genetic variants in genes associated with genetic hypercholesterolemias. J Clin Lipidol 2017; 11:532-542. [PMID: 28502511 DOI: 10.1016/j.jacl.2017.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/12/2017] [Accepted: 02/14/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Familial hypercholesterolemia (FH) is the best-described autosomal dominant genetic hypercholesterolemia (GH). Mutations in candidate genes can explain a high proportion of FH cases, but for many, no causative mutations are detected (designed non-FG-GH), suggesting the existence of additional genetic variants associated with the disease. OBJECTIVE We aimed to identify new single-nucleotide variants (SNVs) located at the 3' untranslated regions (3'UTRs) of the low-density lipoprotein receptor, low-density lipoprotein receptor-related protein-associated protein 1, ATP-binding cassette sub-family G member 5, and sterol regulatory element-binding protein 2 genes in non-FH-GH individuals and investigated whether the association of these SNVs with non-FH-GH could be explained by changes in the affinity of regulatory microRNAs (miRNA) targeting the sequences modified by the SNVs. METHODS The study includes probands with non-FH-GH attending 2 lipid clinics in Spain. We performed functional analyses of selected variants using a luciferase reporter system. Through in silico target-prediction tools, we identified miRNAs, which binding to the 3'UTR could be affected by the presence of specific SNVs. We used analogs and inhibitors of these miRNAs to test this possibility. RESULTS We identified 11 new SNVs showing significant association with non-FH-GH. We show that the presence of 4 of these SNVs leads to significant changes in the transcriptional levels of the reporter gene. Through mechanistic analysis, we identified 2 miRNAs (miR-27a and miR-133-3p) targeting the 3'UTR of sterol regulatory element-binding protein 2 and an additional miRNA (miR-92a) targeting the 3'UTR of low-density lipoprotein receptor-related protein-associated protein 1. CONCLUSION Our findings reveal novel regulatory links between certain miRNAs and key genes regulating cholesterol homeostasis. They also highlight the potential of miRNAs as therapeutic targets for the treatment of FH.
Collapse
Affiliation(s)
- Flor María Pérez-Campo
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, and Instituto de Investigacion Valdecilla (IDIVAL), Santander, Cantabria, Spain.
| | - Isabel De Castro-Orós
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain; Lipid Unit, Miguel Servet, IIS Aragon, Zaragoza, Spain
| | - Alicia Noriega
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, and Instituto de Investigacion Valdecilla (IDIVAL), Santander, Cantabria, Spain
| | - Montserrat Cofán
- Lipid Clinic, Endocrinology and Nutrition Service, Institut d'Investigacions Biomédiques August Pi Sunyer (IDIBAPS), Hospital Clínic, Barcelona and Ciber Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| | | | - Ana Cenarro
- Lipid Unit, Miguel Servet, IIS Aragon, Zaragoza, Spain
| | - Emilio Ros
- Lipid Clinic, Endocrinology and Nutrition Service, Institut d'Investigacions Biomédiques August Pi Sunyer (IDIBAPS), Hospital Clínic, Barcelona and Ciber Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| | | | - Miguel Pocoví
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
| | - José Carlos Rodríguez-Rey
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, and Instituto de Investigacion Valdecilla (IDIVAL), Santander, Cantabria, Spain.
| |
Collapse
|
50
|
McManus DD, Rong J, Huan T, Lacey S, Tanriverdi K, Munson PJ, Larson MG, Joehanes R, Murthy V, Shah R, Freedman JE, Levy D. Messenger RNA and MicroRNA transcriptomic signatures of cardiometabolic risk factors. BMC Genomics 2017; 18:139. [PMID: 28178938 PMCID: PMC5299677 DOI: 10.1186/s12864-017-3533-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 02/01/2017] [Indexed: 02/04/2023] Open
Abstract
Background Cardiometabolic (CM) risk factors are heritable and cluster in individuals. We hypothesized that CM risk factors are associated with multiple shared and unique mRNA and microRNA (miRNA) signatures. We examined associations of mRNA and miRNA levels with 6 CM traits: body mass index, HDL-cholesterol and triglycerides, fasting glucose, and systolic and diastolic blood pressures through cross-sectional analysis of 2812 Framingham Heart Study who had whole blood collection for RNA isolation for mRNA and miRNA expression studies and who consented to genetic research. We excluded participants taking medication for hypertension, dyslipidemia, or diabetes. We measured mRNA (n = 17,318; using the Affymetrix GeneChip Human Exon 1.0 ST Array) and miRNA (n = 315; using qRT-PCR) expression in whole blood. We used linear regression for mRNA analyses and a combination of linear and logistic regression for miRNA analyses. We conducted miRNA-mRNA coexpression and gene ontology enrichment analyses to explore relations between pleiotropic miRNAs, mRNA expression, and CM trait clustering. Results We identified hundreds of significant associations between mRNAs, miRNAs, and individual CM traits. Four mRNAs (FAM13A, CSF2RB, HIST1H2AC, WNK1) were associated with all 6 CM traits (FDR < 0.001) and four miRNAs (miR-197-3p, miR-328, miR-505-5p, miR-145-5p) were associated with four CM traits (FDR < 0.05). Twelve mRNAs, including WNK1, that were coexpressed with the four most pleiotropic miRNAs, were also miRNA targets. mRNAs coexpressed with pleiotropic miRNAs were enriched for RNA metabolism (miR-505-5p), ubiquitin-dependent protein catabolism (miR-197-3p, miR-328) and chromatin assembly (miR-328). Conclusions We identified mRNA and miRNA signatures of individual CM traits and their clustering. Implicated transcripts may play causal roles in CM risk or be downstream consequences of CM risk factors on the transcriptome. Studies are needed to establish whether or not pleiotropic circulating transcripts illuminate causal pathways for CM risk. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3533-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David D McManus
- Cardiology Division, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA. .,National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA. .,Epidemiology Division, Department of Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, MA, USA. .,, 55 Lake Avenue North, Worcester, MA, 01655, USA.
| | - Jian Rong
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA.,Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.,Neurology Division, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Tianxiao Huan
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA.,Population Sciences Branch and Division of Intramural Research, National Heart, Lung, and Blood Institute of the National Institutes of Health, Bethesda, MA, USA
| | - Sean Lacey
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA.,Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Kahraman Tanriverdi
- Cardiology Division, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Peter J Munson
- Mathematical and Statistical Computing Laboratory, Center for Information Technology, National Institutes of Health, Bethesda, MD, USA
| | - Martin G Larson
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA.,Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.,Department of Mathematics and Statistics, Boston University, Boston, MA, USA
| | - Roby Joehanes
- Population Sciences Branch and Division of Intramural Research, National Heart, Lung, and Blood Institute of the National Institutes of Health, Bethesda, MA, USA.,Mathematical and Statistical Computing Laboratory, Center for Information Technology, National Institutes of Health, Bethesda, MD, USA.,Hebrew SeniorLife, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Venkatesh Murthy
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Ravi Shah
- Cardiology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jane E Freedman
- Cardiology Division, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Daniel Levy
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA.,Population Sciences Branch and Division of Intramural Research, National Heart, Lung, and Blood Institute of the National Institutes of Health, Bethesda, MA, USA
| |
Collapse
|