1
|
Tan S, Yang W, Ren Z, Peng Q, Xu X, Jiang X, Wu Z, Oyang L, Luo X, Lin J, Xia L, Peng M, Wu N, Tang Y, Han Y, Liao Q, Zhou Y. Noncoding RNA-encoded peptides in cancer: biological functions, posttranslational modifications and therapeutic potential. J Hematol Oncol 2025; 18:20. [PMID: 39972384 PMCID: PMC11841355 DOI: 10.1186/s13045-025-01671-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/07/2025] [Indexed: 02/21/2025] Open
Abstract
In the present era, noncoding RNAs (ncRNAs) have become a subject of considerable scientific interest, with peptides encoded by ncRNAs representing a particularly promising avenue of investigation. The identification of ncRNA-encoded peptides in human cancers is increasing. These peptides regulate cancer progression through multiple molecular mechanisms. Here, we delineate the patterns of diverse ncRNA-encoded peptides and provide a synopsis of the methodologies employed for the identification of ncRNAs that possess the capacity to encode these peptides. Furthermore, we discuss the impacts of ncRNA-encoded peptides on the biological behavior of cancer cells and the underlying molecular mechanisms. In conclusion, we describe the prospects of ncRNA-encoded peptides in cancer and the challenges that need to be overcome.
Collapse
Affiliation(s)
- Shiming Tan
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Wenjuan Yang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Zongyao Ren
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Qiu Peng
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Xuemeng Xu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Xianjie Jiang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Zhu Wu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Linda Oyang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Xia Luo
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Jinguan Lin
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Longzheng Xia
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Mingjing Peng
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Nayiyuan Wu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Yanyan Tang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Yaqian Han
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China.
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China.
| | - Qianjin Liao
- Department of Oncology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, People's Republic of China.
| | - Yujuan Zhou
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China.
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China.
| |
Collapse
|
2
|
Ghosh S, Ganguly A, Habib M, Shin BC, Thamotharan S, Andersson S, Devaskar SU. Hepatic and Pancreatic Cellular Response to Early Life Nutritional Mismatch. Endocrinology 2025; 166:bqaf007. [PMID: 39823439 PMCID: PMC11815087 DOI: 10.1210/endocr/bqaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/22/2024] [Accepted: 01/15/2025] [Indexed: 01/19/2025]
Abstract
To determine the basis for perinatal nutritional mismatch causing metabolic dysfunction-associated steatotic liver disease and diabetes mellitus, we examined adult phenotype, hepatic transcriptome, and pancreatic β-islet function. In prenatal caloric-restricted rats with intrauterine growth restriction (IUGR) and postnatal exposure to high fat with fructose (HFhf) or high carbohydrate, we investigated male and female IUGR-HFhf and IUGR-high carbohydrate, vs HFhf and control offspring. Males more than females displayed adiposity, glucose intolerance, insulin resistance, hyperlipidemia, and hepatomegaly with hepatic steatosis. Male hepatic triglyceride synthesis, de novo lipogenesis genes increased, while female lipolysis, β-oxidation, fatty acid efflux, and FGF21 genes increased. IUGR-HFhf males demonstrated reduced β-islet insulin and humanin, and type 1 diabetes mellitus human amniotic fluid increased humanin. Humanin suppression disabled glucose stimulated insulin, ATP production, with apoptotic diminished β-islet viability. Humanin and FGF21 may reverse perinatal nutritional mismatched phenotype by restoring functional β islets and preventing metabolic dysfunction-associated steatotic liver disease and diabetes mellitus.
Collapse
Affiliation(s)
- Shubhamoy Ghosh
- Division of Neonatology & Developmental Biology, Department of Pediatrics, UCLA Children’s Discovery & Innovation Institute at the David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1752, USA
| | - Amit Ganguly
- Division of Neonatology & Developmental Biology, Department of Pediatrics, UCLA Children’s Discovery & Innovation Institute at the David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1752, USA
| | - Manal Habib
- Division of Endocrinology, Department of Pediatrics, UCLA Children’s Discovery & Innovation Institute at the David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1752, USA
| | - Bo-Chul Shin
- Division of Neonatology & Developmental Biology, Department of Pediatrics, UCLA Children’s Discovery & Innovation Institute at the David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1752, USA
| | - Shanthie Thamotharan
- Division of Neonatology & Developmental Biology, Department of Pediatrics, UCLA Children’s Discovery & Innovation Institute at the David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1752, USA
| | - Sture Andersson
- Department of Pediatrics, Helsinki University Central Hospital, 00290 Helsinki, Finland
| | - Sherin U Devaskar
- Division of Neonatology & Developmental Biology, Department of Pediatrics, UCLA Children’s Discovery & Innovation Institute at the David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1752, USA
| |
Collapse
|
3
|
Yen K, Miller B, Kumagai H, Silverstein A, Cohen P. Mitochondrial-derived microproteins: from discovery to function. Trends Genet 2025; 41:132-145. [PMID: 39690001 PMCID: PMC11794013 DOI: 10.1016/j.tig.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 12/19/2024]
Abstract
Given the uniqueness of the mitochondria, and the fact that they have their own genome, mitochondrial-derived microproteins (MDPs) are similar to, but different from, nuclear-encoded microproteins. The discovery of an increasing number of microproteins from this organelle and the importance of mitochondria to cellular and organismal health make it a priority to study this novel class of proteins in search of possible therapeutic targets and cures. In this review, we discuss the history of MDP discovery, describe the function of each MDP, and conclude with future goals and techniques to help discover more MDPs.
Collapse
Affiliation(s)
- Kelvin Yen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| | - Brendan Miller
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Hiroshi Kumagai
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Ana Silverstein
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
4
|
Yang M, Chen W, He L, Wang X, Liu D, Xiao L, Sun L. The Role of Mitokines in Diabetic Nephropathy. Curr Med Chem 2025; 32:1276-1287. [PMID: 37921178 DOI: 10.2174/0109298673255403230919061828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/06/2023] [Accepted: 08/17/2023] [Indexed: 11/04/2023]
Abstract
Diabetic nephropathy (DN) has gradually become one of the main causes of end-stage renal disease (ESRD). However, there is still a lack of effective preventive measures to delay its progression. As the energy factory in the cell, mitochondria play an irreplaceable role in maintaining cell homeostasis. Interestingly, recent studies have shown that in addition to maintaining homeostasis in cells in which mitochondria reside, when mitochondrial perturbations occur in one tissue, distal tissues can also sense and act through mitochondrial stress response pathways through a group of proteins or peptides called "mitokines". Here, we reviewed the mitokines that have been found thus far and summarized their research progress in DN. Finally, we explored the possibility of mitokines as potential therapeutic targets for DN.
Collapse
Affiliation(s)
- Ming Yang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wei Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Liyu He
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xi Wang
- Department of Nutrition, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Di Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li Xiao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
5
|
Heuchel A, Emblem Å, Jørgensen TE, Moum T, Johansen SD. The Mitogenome of the Subarctic Octocoral Alcyonium digitatum Reveals a Putative tRNA Pro Gene Nested within MutS. Curr Issues Mol Biol 2024; 46:8104-8110. [PMID: 39194696 DOI: 10.3390/cimb46080479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
We sequenced and analyzed the complete mitogenome of a Norwegian isolate of the octocoral Alcyonium digitatum using the Ion Torrent sequencing technology. The 18,790 bp circular mitochondrial genome was found to harbor the same set of 17 genes, which encode 14 protein subunits, two structural ribosomal RNAs and one tRNA, as reported in other octocorals. In addition, we detected a new tRNAPro-like gene sequence nested within the MutS protein coding region. This putative tRNA gene feature appears to be conserved among the octocorals but has not been reported previously. The A. digitatum mitogenome was also shown to harbor an optional gene (ORFA) that encodes a putative protein of 191 amino acids with unknown function. A mitogenome-based phylogenetic analysis, presented as a maximum likelihood tree, showed that A. digitatum clustered with high statistical confidence with two other Alcyonium species endemic to the Mediterranean Sea and the Southeast Pacific Ocean.
Collapse
Affiliation(s)
- Alisa Heuchel
- Genomic Division, Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
- Abisko Scientific Research Station, Swedish Polar Research Secretariat, SE-981 07 Abisko, Sweden
| | - Åse Emblem
- Research Laboratory, Nordland Hospital Trust, 8005 Bodø, Norway
| | - Tor Erik Jørgensen
- Genomic Division, Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
| | - Truls Moum
- Genomic Division, Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
| | - Steinar Daae Johansen
- Genomic Division, Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
| |
Collapse
|
6
|
Chen L, Yang X, Wang K, Guo L, Zou C. Humanin inhibits lymphatic endothelial cells dysfunction to alleviate myocardial infarction-reperfusion injury via BNIP3-mediated mitophagy. Free Radic Res 2024; 58:180-193. [PMID: 38535980 DOI: 10.1080/10715762.2024.2333074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 02/20/2024] [Indexed: 05/02/2024]
Abstract
OBJECTIVE Acute myocardial infarction (AMI) ranks among the top contributors to sudden death and disability worldwide. It should be noted that current therapies always cause increased reperfusion damage. Evidence suggests that humanin (HN) reduces mitochondrial dysfunction to have cardio-protective effects against MI-reperfusion injury. In this context, we hypothesized that HN may attenuate MI-reperfusion injury by alleviating lymphatic endothelial cells dysfunction through the regulation of mitophagy. MATERIALS AND METHODS In this study, primary lymphatic endothelial cells were selected as the experimental model. Cells were maintained under 1% O2 to induce a hypoxic phenotype. For in vivo experiments, the left coronary arteries of C57/BL6 mice were clamped for 45 min followed by 24 h reperfusion to develop MI-reperfusion injury. The volume of infarcted myocardium in MI-reperfusion injury mouse models were TTC staining. PCR and western blot were used to quantify the expression of autophagy-, mitophagy- and mitochondria-related markers. The fibrosis and apoptosis in the ischemic area were evaluated for Masson staining and TUNEL respectively. We also used western blot to analyze the expression of VE-Cadherin in lymphatic endothelial cells. RESULTS We firstly exhibited a specific mechanism by which HN mitigates MI-reperfusion injury. We demonstrated that HN effectively reduces such injury in vivo and also inhibits dysfunction in lymphatic endothelial cells in vitro. Importantly, this inhibitory effect is mediated through BNIP3-associated mitophagy. CONCLUSIONS In conclusion, HN alleviates myocardial infarction-reperfusion injury by inhibiting lymphatic endothelial cells dysfunction, primarily through BNIP3-mediated mitophagy.
Collapse
Affiliation(s)
- Lu Chen
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Center for Cardiovascular Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaohua Yang
- Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Wang
- Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Lina Guo
- Center for Cardiovascular Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Cao Zou
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
7
|
Liu J, Gao Z, Liu X. Mitochondrial dysfunction and therapeutic perspectives in osteoporosis. Front Endocrinol (Lausanne) 2024; 15:1325317. [PMID: 38370357 PMCID: PMC10870151 DOI: 10.3389/fendo.2024.1325317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/03/2024] [Indexed: 02/20/2024] Open
Abstract
Osteoporosis (OP) is a systemic skeletal disorder characterized by reduced bone mass and structural deterioration of bone tissue, resulting in heightened vulnerability to fractures due to increased bone fragility. This condition primarily arises from an imbalance between the processes of bone resorption and formation. Mitochondrial dysfunction has been reported to potentially constitute one of the most crucial mechanisms influencing the pathogenesis of osteoporosis. In essence, mitochondria play a crucial role in maintaining the delicate equilibrium between bone formation and resorption, thereby ensuring optimal skeletal health. Nevertheless, disruption of this delicate balance can arise as a consequence of mitochondrial dysfunction. In dysfunctional mitochondria, the mitochondrial electron transport chain (ETC) becomes uncoupled, resulting in reduced ATP synthesis and increased generation of reactive oxygen species (ROS). Reinforcement of mitochondrial dysfunction is further exacerbated by the accumulation of aberrant mitochondria. In this review, we investigated and analyzed the correlation between mitochondrial dysfunction, encompassing mitochondrial DNA (mtDNA) alterations, oxidative phosphorylation (OXPHOS) impairment, mitophagy dysregulation, defects in mitochondrial biogenesis and dynamics, as well as excessive ROS accumulation, with regards to OP (Figure 1). Furthermore, we explore prospective strategies currently available for modulating mitochondria to ameliorate osteoporosis. Undoubtedly, certain therapeutic strategies still require further investigation to ensure their safety and efficacy as clinical treatments. However, from a mitochondrial perspective, the potential for establishing effective and safe therapeutic approaches for osteoporosis appears promising.
Collapse
Affiliation(s)
- Jialing Liu
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhonghua Gao
- School of Medicine, Ezhou Vocational University, Ezhou, China
| | - Xiangjie Liu
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Blatkiewicz M, Szyszka M, Olechnowicz A, Kamiński K, Jopek K, Komarowska H, Tyczewska M, Klimont A, Wierzbicki T, Karczewski M, Ruchała M, Rucinski M. Impaired Expression of Humanin during Adrenocortical Carcinoma. Int J Mol Sci 2024; 25:1038. [PMID: 38256114 PMCID: PMC10816135 DOI: 10.3390/ijms25021038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
The discovery of mitochondria-derived peptides (MDPs) has provided a new perspective on mitochondrial function. MDPs encoded by mitochondrial DNA (mtDNA) can act as hormone-like peptides, influencing cell survival and proliferation. Among these peptides, humanin has been identified as a crucial factor for maintaining cell survival and preventing cell death under various conditions. Adrenocortical carcinoma (ACC) is a rare and aggressive malignancy that results from adrenal hormone dysfunction. This study aimed to investigate humanin expression in the adrenal tissue and serum of patients with ACC. For the first time, our study revealed significant reduction in the mRNA expression of humanin in patients with ACC compared to healthy controls. However, no significant changes were observed in the serum humanin levels. Interestingly, we identified a positive correlation between patient age and serum humanin levels and a negative correlation between tumor size and LDL levels. While the impaired expression of humanin in patients with ACC may be attributed to mitochondrial dysfunction, an alternative explanation could be related to diminished mitochondrial copy number. Further investigations are warranted to elucidate the intricate relationship among humanin, mitochondrial function, and ACC pathology.
Collapse
Affiliation(s)
- Małgorzata Blatkiewicz
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.S.); (K.J.); (M.R.)
| | - Marta Szyszka
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.S.); (K.J.); (M.R.)
| | - Anna Olechnowicz
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.S.); (K.J.); (M.R.)
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Kacper Kamiński
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.S.); (K.J.); (M.R.)
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Karol Jopek
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.S.); (K.J.); (M.R.)
| | - Hanna Komarowska
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-356 Poznan, Poland; (H.K.); (A.K.); (M.R.)
| | - Marianna Tyczewska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.S.); (K.J.); (M.R.)
- Department of Anatomy and Histology, University of Zielona Góra, Licealna Street 9, 65-417 Zielona Góra, Poland
| | - Anna Klimont
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-356 Poznan, Poland; (H.K.); (A.K.); (M.R.)
| | - Tomasz Wierzbicki
- Department of General, Endocrinological and Gastroenterological Surgery, Poznan University of Medical Sciences, 60-355 Poznan, Poland;
| | - Marek Karczewski
- Department of General and Transplantation Surgery, Poznan University of Medical Sciences, 60-356 Poznan, Poland;
| | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-356 Poznan, Poland; (H.K.); (A.K.); (M.R.)
| | - Marcin Rucinski
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.S.); (K.J.); (M.R.)
| |
Collapse
|
9
|
Hekım MG, Ozcan S, Yur M, Yıldırım N, Ozcan M. Exploring the potential of humanin as a biomarker for early breast cancer detection: a study of serum levels and diagnostic performance. Biomarkers 2023; 28:555-561. [PMID: 37552125 DOI: 10.1080/1354750x.2023.2246700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/06/2023] [Indexed: 08/09/2023]
Abstract
INTRODUCTION Breast cancer is a leading cause of cancer death in women worldwide, and early detection is crucial for effective treatment. Mitochondrial dysfunction has been linked to cancer development and progression. Humanin, a mitochondrial-derived peptide, has been shown to have cytoprotective effects and may be involved in breast cancer development. In this study, we aimed to investigate the potential of humanin as a biomarker for breast cancer. METHODS We recruited 45 female patients diagnosed with primary invasive ductal breast cancer and 45 healthy volunteers. Serum humanin levels were measured using ELISA, and other cancer markers were measured using an Advia Centaur Immunology Analyser. RESULTS Our results showed that serum humanin levels were significantly higher in breast cancer patients than in healthy controls (p = 0.008). ROC curve analysis indicated that humanin could effectively discriminate between patients and healthy individuals, with a sensitivity of 62.5% and a specificity of 77.5%. CONCLUSION This suggests that humanin may be a potential new biomarker for breast cancer screening and early detection. Further research is needed to fully understand the relationship between humanin and breast cancer and to develop new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
| | - Sibel Ozcan
- Department of Anaesthesiology and Reanimation, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Mesut Yur
- Department of Surgical Oncology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Nilgun Yıldırım
- Department of Medical Oncology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Mete Ozcan
- Department of Biophysics, Faculty of Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
10
|
Emser SV, Spielvogel CP, Millesi E, Steinborn R. Mitochondrial polymorphism m.3017C>T of SHLP6 relates to heterothermy. Front Physiol 2023; 14:1207620. [PMID: 37675281 PMCID: PMC10478271 DOI: 10.3389/fphys.2023.1207620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/31/2023] [Indexed: 09/08/2023] Open
Abstract
Heterothermic thermoregulation requires intricate regulation of metabolic rate and activation of pro-survival factors. Eliciting these responses and coordinating the necessary energy shifts likely involves retrograde signalling by mitochondrial-derived peptides (MDPs). Members of the group were suggested before to play a role in heterothermic physiology, a key component of hibernation and daily torpor. Here we studied the mitochondrial single-nucleotide polymorphism (SNP) m.3017C>T that resides in the evolutionarily conserved gene MT-SHLP6. The substitution occurring in several mammalian orders causes truncation of SHLP6 peptide size from twenty to nine amino acids. Public mass spectrometric (MS) data of human SHLP6 indicated a canonical size of 20 amino acids, but not the use of alternative translation initiation codons that would expand the peptide. The shorter isoform of SHLP6 was found in heterothermic rodents at higher frequency compared to homeothermic rodents (p < 0.001). In heterothermic mammals it was associated with lower minimal body temperature (T b, p < 0.001). In the thirteen-lined ground squirrel, brown adipose tissue-a key organ required for hibernation, showed dynamic changes of the steady-state transcript level of mt-Shlp6. The level was significantly higher before hibernation and during interbout arousal and lower during torpor and after hibernation. Our finding argues to further explore the mode of action of SHLP6 size isoforms with respect to mammalian thermoregulation and possibly mitochondrial retrograde signalling.
Collapse
Affiliation(s)
- Sarah V. Emser
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
- Genomics Core Facility, VetCore, University of Veterinary Medicine, Vienna, Austria
| | - Clemens P. Spielvogel
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Eva Millesi
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
| | - Ralf Steinborn
- Genomics Core Facility, VetCore, University of Veterinary Medicine, Vienna, Austria
- Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Abozaid ER, Abdel-Kareem RH, Habib MA. A novel beneficial role of humanin on intestinal apoptosis and dysmotility in a rat model of ischemia reperfusion injury. Pflugers Arch 2023; 475:655-666. [PMID: 37020079 PMCID: PMC10105677 DOI: 10.1007/s00424-023-02804-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/08/2022] [Accepted: 03/07/2023] [Indexed: 04/07/2023]
Abstract
A prevalent clinical problem including sepsis, shock, necrotizing enterocolitis, and mesenteric thrombosis is intestinal ischemia/reperfusion (I/R) injury. Humanin (HN), a recently identified mitochondrial polypeptide, exhibits antioxidative and antiapoptotic properties. This work aimed to study the role of HN in a model of experimental intestinal I/R injury and its effect on associated dysmotility. A total of 36 male adult albino rats were allocated into 3 equal groups. Sham group: merely a laparotomy was done. I/R group: for 1 h, clamping of the superior mesenteric artery was done, and then reperfusion was allowed for 2 h later. HN-I/R group: rats underwent ischemia and reperfusion, and 30 min before the reperfusion, they received an intraperitoneal injection of 252 μg/kg of HN. Small intestinal motility was evaluated, and jejunal samples were got for biochemical and histological analysis. I/R group showed elevation of intestinal NO, MDA, TNF- α, and IL-6 and decline of GPx and SOD levels. Furthermore, histologically, there were destructed jejunal villi especially their tips and increased tissue expression of caspase-3 and i-NOS, in addition to reduced small intestinal motility. Compared to I/R group, HN-I/R group exhibited decrease intestinal levels of NO, MDA, TNF- α, and IL-6 and increase GPx and SOD. Moreover, there was noticeable improvement of the histopathologic features and decreased caspase-3 and iNOS immunoreactivity, beside enhanced small intestinal motility. HN alleviates inflammation, apoptosis, and intestinal dysmotility encouraged by I/R. Additionally, I/R-induced apoptosis and motility alterations depend partly on the production of nitric oxide.
Collapse
Affiliation(s)
- Eman R Abozaid
- Medical Physiology Department, Faculty of Medicine, Zagazig University, Alsharquiah, 44519, Egypt
| | - Reham H Abdel-Kareem
- Human Anatomy & Embryology Department, Faculty of Medicine, Zagazig University, Alsharquiah, 44519, Egypt.
| | - Marwa A Habib
- Medical Physiology Department, Faculty of Medicine, Zagazig University, Alsharquiah, 44519, Egypt
| |
Collapse
|
12
|
Gong Z, Goetzman E, Muzumdar RH. Cardio-protective role of Humanin in myocardial ischemia-reperfusion. Biochim Biophys Acta Gen Subj 2022; 1866:130066. [PMID: 34896254 DOI: 10.1016/j.bbagen.2021.130066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/18/2021] [Accepted: 12/02/2021] [Indexed: 01/07/2023]
Abstract
Mitochondria-derived peptides (MDPs) are bioactive peptides encoded by and secreted from the mitochondria. To date, a few MDPs including humanin, MOTS-c and SHLP1-6, and their diverse biological functions have been identified. The first and most studied MDP is humanin, a 24-amino-acid poly peptide. It was first identified in 2001 in the surviving neurons of patient with Alzheimer's disease, and since then has been well characterized for its neuro-protective effect through inhibition of apoptosis. Over the past two decades, humanin has been reported to play critical roles in aging as well as multiple diseases including metabolic disorders, cardiovascular diseases, and autoimmune disease. Humanin has been shown to modulate multiple biological processes including autophagy, ER stress, cellular metabolism, oxidative stress, and inflammation. A role for humanin has been shown in a wide range of cardiovascular diseases, such as coronary heart disease, atherosclerosis, and myocardial fibrosis. In this minireview, we will summarize the literature demonstrating a role for humanin in cardio-protection following myocardial ischemia-reperfusion induced injury and the potential mechanisms that mediate it.
Collapse
Affiliation(s)
- Zhenwei Gong
- Division of Endocrinology, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Eric Goetzman
- Division of Genetic and Genomic Medicine, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Radhika H Muzumdar
- Division of Endocrinology, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA.
| |
Collapse
|
13
|
AITKEN RJ, GIBB Z. Sperm oxidative stress in the context of male infertility: current evidence, links with genetic and epigenetic factors and future clinical needs. Minerva Endocrinol (Torino) 2022; 47:38-57. [DOI: 10.23736/s2724-6507.21.03630-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Kattawy M D HAE, Abozaid ER, Abdullah DM. Humanin ameliorates late-onset hypogonadism in aged male rats. Curr Mol Pharmacol 2022; 15:996-1008. [PMID: 35086467 DOI: 10.2174/1874467215666220127115602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/08/2021] [Accepted: 11/29/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The reproductive potential declines with age. Late-onset hypogonadism is characterized by reduced serum testosterone. Humanin is a mitochondrial-derived signaling peptide encoded by short open reading frames within the mitochondrial genome. It may protect against some age-related diseases such as atherosclerosis by its cytoprotective effects. OBJECTIVE it aimed to investigate the potential anti-aging effects of humanin on the testicular architecture, oxidative stress, some apoptotic and inflammatory markers in the hypogonadal aged male rats. METHODS Forty male albino rats were divided into 4 groups: normal adult controls, aged vehicle-treated group, aged testosterone-treated group, and aged humanin-treated group. Twenty-month-old male rats with declined serum testosterone were selected to be the animal models of late-onset hypogonadism. Testicular weights, serum testosterone, and some sperm parameters were measured. Testicular tissue IL-6 and TNF-α, superoxide dismutase activity, glutathione peroxidase, and malondialdehyde were assessed. The activity of caspase-3, BCL2, PCNA, and the nuclear factor erythroid 2-related factor 2-antioxidant response element pathway were evaluated. Testes were subjected to histopathological and immunohistochemical examination. Statistical analysis was executed using One Way Analysis of variance (ANOVA) followed by Post hoc (LSD) test to compare means among all studied groups. RESULTS humanin treatment significantly improved serum testosterone, some sperm characteristics, and antioxidant defenses. It decreased active caspase-3, pro-apoptotic BAX expression, and increased antiapoptotic BCL2 and proliferating cell nuclear antigen (PCNA) possibly via activating the (Nrf2-ARE) pathway. CONCLUSION humanin might be a promising therapeutic modality in late-onset hypogonadism as it ameliorated some age-related testicular and hormonal adverse effects.
Collapse
Affiliation(s)
- Hany A El Kattawy M D
- Department of Basic Medical Sciences, College of Medicine, Almaarefa University, P.O. Box 71666, Riyadh, Saudi Arabia
- Medical Physiology Department, College of Medicine, Zagazig University, Egypt
| | - Eman R Abozaid
- Department of Basic Medical Sciences, College of Medicine, Almaarefa University, P.O. Box 71666, Riyadh, Saudi Arabia
| | - Doaa M Abdullah
- Clinical Pharmacology Department, College of Medicine, Zagazig University, Egypt
| |
Collapse
|
15
|
Lue Y, Swerdloff R, Jia Y, Wang C. The emerging role of mitochondrial derived peptide humanin in the testis. Biochim Biophys Acta Gen Subj 2021; 1865:130009. [PMID: 34534645 DOI: 10.1016/j.bbagen.2021.130009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 11/19/2022]
Abstract
The discovery of mitochondrial derive peptides (MDPs) has spotlighted mitochondria as central hubs in control and regulation of cell viability and metabolism in the testis in response to intracellular and extracellular stresses. MDPs (Humanin, MOTS-c and SHLP-2) are present in testes. Humanin, the first MDP, is predominantly expressed in Leydig cells, and moderately in germ cells and seminal plasma. The administration of synthetic humanin peptide agonist HNG protects male germ cells against apoptosis induced by intratesticular hormonal deprivation, testicular hyperthermia, and chemotherapeutic agents in rodent testes. Humanin interacting with IGFBP-3 and/or Bax (pro-apoptotic proteins) prevents the activation of germ cell apoptosis. Humanin participates in the network of IL-12/IL-27 family of cytokines to exert the immune-modulation of the testicular environment. Humanin and other MDPs may be important in the amelioration of testicular stress and prevention of cell injury with possible implications for male infertility, fertility preservation and contraceptive development.
Collapse
Affiliation(s)
- Yanhe Lue
- Division of Endocrinology, Department of Medicine, The Lundquist Institute and Harbor-UCLA Medical Center, Torrance, CA, United States of America
| | - Ronald Swerdloff
- Division of Endocrinology, Department of Medicine, The Lundquist Institute and Harbor-UCLA Medical Center, Torrance, CA, United States of America
| | - Yue Jia
- Department of Pathology, The Lundquist Institute and Harbor-UCLA Medical Center, Torrance, CA, United States of America
| | - Christina Wang
- Division of Endocrinology, Department of Medicine, The Lundquist Institute and Harbor-UCLA Medical Center, Torrance, CA, United States of America.
| |
Collapse
|
16
|
Wang Y, Li N, Zeng Z, Tang L, Zhao S, Zhou F, Zhou L, Xia W, Zhu C, Rao M. Humanin regulates oxidative stress in the ovaries of polycystic ovary syndrome patients via the Keap1/Nrf2 pathway. Mol Hum Reprod 2021; 27:gaaa081. [PMID: 33337472 DOI: 10.1093/molehr/gaaa081] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrinological pathology among women of reproductive age, whereas the pathogenesis is still not fully understood. Systemic and ovarian oxidative stress (OS) imbalance is a pivotal feature of PCOS. Humanin, a mitochondria-derived peptide, has been reported to function as an antioxidant in cardiomyocytes, pancreatic beta cells and other cells, but how this function is regulated remains unclear. In this study, we investigated whether humanin expression differs in the granulosa cells (GCs) of PCOS patients versus controls, and whether humanin alleviates OS in PCOS ovaries. Sixteen PCOS patients and 28 age- and BMI-matched controls undergoing IVF were recruited, and their serum, follicular fluid and GCs were collected for humanin analysis. Dehydroepiandrosterone-induced rat PCOS models, and vitamin K3-induced OS COV434 cell lines were applied to investigate the mechanism. Humanin expression was significantly down-regulated in the ovaries of PCOS patients relative to those of non-PCOS patients. Exogenous humanin supplementation significantly attenuated body weight gain, ovarian morphological abnormalities, endocrinological disorders and ovarian and systemic OS in PCOS rat models. Our study further demonstrated that this attenuation effect was involved in the modulation of the Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor-erythroid 2-related factor 2 (Nrf2) signalling pathway. In summary, this study reported for the first time that decreased expression of humanin in the GCs was associated with oxidative imbalance in PCOS. Humanin alleviates OS in ovarian GCs of PCOS patients via modulation of the Keap1/Nrf2 signalling pathway.
Collapse
Affiliation(s)
- Yingying Wang
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nianyu Li
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengyan Zeng
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Li Tang
- Department of Reproduction and Genetics, The First affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shuhua Zhao
- Department of Reproduction and Genetics, The First affiliated Hospital of Kunming Medical University, Kunming, China
| | - Fang Zhou
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liping Zhou
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Xia
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Reproductive Medicine Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Changhong Zhu
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Reproductive Medicine Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Rao
- Department of Reproduction and Genetics, The First affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
17
|
Hazafa A, Batool A, Ahmad S, Amjad M, Chaudhry SN, Asad J, Ghuman HF, Khan HM, Naeem M, Ghani U. Humanin: A mitochondrial-derived peptide in the treatment of apoptosis-related diseases. Life Sci 2021; 264:118679. [PMID: 33130077 DOI: 10.1016/j.lfs.2020.118679] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/19/2020] [Accepted: 10/25/2020] [Indexed: 02/07/2023]
Abstract
Humanin (HN) is a small mitochondrial-derived cytoprotective polypeptide encoded by mtDNA. HN exhibits protective effects in several cell types, including leukocytes, germ cells, neurons, tissues against cellular stress conditions and apoptosis through regulating various signaling mechanisms, such as JAK/STAT pathway and interaction of BCL-2 family of protein. HN is an essential cytoprotective peptide in the human body that regulates mitochondrial functions under stress conditions. The present review aims to evaluate HN peptide's antiapoptotic activities as a potential therapeutic target in the treatment of cancer, diabetes mellitus, male infertility, bone-related diseases, cardiac diseases, and brain diseases. Based on in vitro and in vivo studies, HN significantly suppressed the apoptosis during the treatment of bone osteoporosis, cardiovascular diseases, diabetes mellitus, and neurodegenerative diseases. According to accumulated data, it is concluded that HN exerts the proapoptotic activity of TNF-α in cancer, which makes HN as a novel therapeutic agent in the treatment of cancer and suggested that along with HN, the development of another mitochondrial-derived peptide could be a viable therapeutic option against different oxidative stress and apoptosis-related diseases.
Collapse
Affiliation(s)
- Abu Hazafa
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan.
| | - Ammara Batool
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Saeed Ahmad
- Centre of Biotechnology & Microbiology, University of Peshawar, Pakistan
| | - Muhammad Amjad
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan
| | - Sundas Nasir Chaudhry
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Jamal Asad
- Department of Biochemistry, University of Health Sciences Lahore, Pakistan
| | - Hasham Feroz Ghuman
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan
| | | | - Muhammad Naeem
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Usman Ghani
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| |
Collapse
|
18
|
Sreekumar PG, Kannan R. Mechanisms of protection of retinal pigment epithelial cells from oxidant injury by humanin and other mitochondrial-derived peptides: Implications for age-related macular degeneration. Redox Biol 2020; 37:101663. [PMID: 32768357 PMCID: PMC7767738 DOI: 10.1016/j.redox.2020.101663] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/18/2020] [Accepted: 07/26/2020] [Indexed: 02/06/2023] Open
Abstract
The mitochondrial-derived peptides (MDPs) are a new class of small open reading frame encoded polypeptides with pleiotropic properties. The prominent members are Humanin (HN) and small HN-like peptide (SHLP) 2, which encode 16S rRNA, while mitochondrial open reading frame of the twelve S c (MOTS-c) encodes 12S rRNA of the mitochondrial genome. While the multifunctional properties of HN and its analog 14-HNG have been well documented, their protective role in the retinal pigment epithelium (RPE)/retina has been investigated only recently. In this review, we have summarized the multiple effects of HN and its analogs, SHLP2 and MOTS-c in oxidatively stressed human RPE and the regulatory pathways of signaling, mitochondrial function, senescence, and inter-organelle crosstalk. Emphasis is given to the mitochondrial functions such as biogenesis, bioenergetics, and autophagy in RPE undergoing oxidative stress. Further, the potential use of HN and its analogs in the prevention of age-related macular degeneration (AMD) are also presented. In addition, the role of novel, long-acting HN elastin-like polypeptides in nanotherapy of AMD and other ocular diseases stemming from oxidative damage is discussed. It is expected MDPs will become a promising group of mitochondrial peptides with valuable therapeutic applications in the treatment of retinal diseases.
Collapse
Affiliation(s)
- Parameswaran G Sreekumar
- The Stephen J. Ryan Initiative for Macular Research (RIMR), Doheny Eye Institute, Los Angeles, CA, 90033, USA
| | - Ram Kannan
- The Stephen J. Ryan Initiative for Macular Research (RIMR), Doheny Eye Institute, Los Angeles, CA, 90033, USA; Stein Eye Institute, Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
19
|
Zhu X, Zhao Z, Zeng C, Chen B, Huang H, Chen Y, Zhou Q, Yang L, Lv J, Zhang J, Pan D, Shen J, Duque G, Cai D. HNGF6A Inhibits Oxidative Stress-Induced MC3T3-E1 Cell Apoptosis and Osteoblast Phenotype Inhibition by Targeting Circ_0001843/miR-214 Pathway. Calcif Tissue Int 2020; 106:518-532. [PMID: 32189040 DOI: 10.1007/s00223-020-00660-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/11/2020] [Indexed: 01/08/2023]
Abstract
Humanin (HN), a mitochondrial derived peptide, plays cyto-protective role under various stress. In this study, we aimed to investigate the effects of HNGF6A, an analogue of HN, on osteoblast apoptosis and differentiation and the underlying mechanisms. Cell proliferation of murine osteoblastic cell line MC3TC-E1 was examined by CCK8 assay and Edu staining. Cell apoptosis was detected by Annexin V assay under H2O2 treatment. The differentiation of osteoblast was determined by Alizarin red S staining. We also tested the expression of osteoblast phenotype related protein by real-time PCR and Western blot. The interaction between Circ_0001843 and miR-214, miR-214 and TAFA5 was examined by luciferase report assay. Circ_0001843 was inhibited by siRNA and miR-214 was suppressed by miR-214 inhibitor to determine the effects of Circ_0001843 and miR-214 on cell proliferation, apoptosis, and differentiation. HNGF6A, an analogue of HN, exerted cyto-protection and osteogenesis-promotion in MC3T3-E1 cells. The expression of osteoblast phenotype related protein was significantly induced by HNGF6A. Additionally, HNGF6A treatment decreased Circ_0001843 and increased miR-214 levels, as well as inhibited the phosphorylation of p38 and JNK. We further found that Circ_0001843 directly bound with miR-214, which in turn inhibited the phosphorylation of p38 and JNK. Furthermore, both Circ_0001843 overexpression and miR-214 knockdown significantly decreased the cyto-protection and osteogenic promotion of HNGF6A. In summary, our data showed that HNGF6A protected osteoblasts from oxidative stress-induced apoptosis and osteoblast phenotype inhibition by targeting Circ_0001843/miR-214 pathway and the downstream kinases, p38 and JNK.
Collapse
Affiliation(s)
- Xiao Zhu
- Department of Endocrinology, The Third Affiliated Hospital of Southern Medical University, No. 183 West Zhongshan Road, Tianhe District, Guangzhou, 510630, Guangdong, China
| | - Ziping Zhao
- Department of Joint Surgery, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, No.183 West Zhongshan Road, Tianhe District, Guangzhou, 510630, Guangdong, China
| | - Canjun Zeng
- Department of Foot and Ankle Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, China
| | - Bo Chen
- Department of Endocrinology, Guangdong Second Provincial General Hospital, Guangzhou, 510317, Guangdong, China
| | - Haifeng Huang
- Department of Internal Medicine, the Eastern Hospital of the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510700, Guangdong, China
| | - Youming Chen
- Department of Clinical Laboratory, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, China
| | - Quan Zhou
- Department of Medical Image, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, China
| | - Li Yang
- Department of Endocrinology, People's Hospital of Hunan Province, Changsha, 410011, Hunan, China
| | - Jicheng Lv
- Department of Endocrinology, The Third Affiliated Hospital of Southern Medical University, No. 183 West Zhongshan Road, Tianhe District, Guangzhou, 510630, Guangdong, China
| | - Jing Zhang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, China
| | - Daoyan Pan
- Department of Endocrinology, The Third Affiliated Hospital of Southern Medical University, No. 183 West Zhongshan Road, Tianhe District, Guangzhou, 510630, Guangdong, China
| | - Jie Shen
- Department of Endocrinology, The Third Affiliated Hospital of Southern Medical University, No. 183 West Zhongshan Road, Tianhe District, Guangzhou, 510630, Guangdong, China.
| | - Gustavo Duque
- Department of Medicine, Western Health, The University of Melbourne, St Albans, Victoria, 3021, Australia.
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St Albans, Victoria, 3021, Australia.
| | - Daozhang Cai
- Department of Joint Surgery, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, No.183 West Zhongshan Road, Tianhe District, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
20
|
The Mitochondria-Derived Peptide Humanin Improves Recovery from Intracerebral Hemorrhage: Implication of Mitochondria Transfer and Microglia Phenotype Change. J Neurosci 2020; 40:2154-2165. [PMID: 31980585 DOI: 10.1523/jneurosci.2212-19.2020] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/07/2020] [Accepted: 01/11/2020] [Indexed: 01/16/2023] Open
Abstract
Astrocytes are an integral component of the neurovascular unit where they act as homeostatic regulators, especially after brain injuries, such as stroke. One process by which astrocytes modulate homeostasis is the release of functional mitochondria (Mt) that are taken up by other cells to improve their function. However, the mechanisms underlying the beneficial effect of Mt transfer are unclear and likely multifactorial. Using a cell culture system, we established that astrocytes release both intact Mt and humanin (HN), a small bioactive peptide normally transcribed from the Mt genome. Further experiments revealed that astrocyte-secreted Mt enter microglia, where they induce HN expression. Similar to the effect of HN alone, incorporation of Mt by microglia (1) upregulated expression of the transcription factor peroxisome proliferator-activated receptor gamma and its target genes (including mitochondrial superoxide dismutase), (2) enhanced phagocytic activity toward red blood cells (an in vitro model of hematoma clearance after intracerebral hemorrhage [ICH]), and (3) reduced proinflammatory responses. ICH induction in male mice caused profound HN loss in the affected hemisphere. Intravenously administered HN penetrated perihematoma brain tissue, reduced neurological deficits, and improved hematoma clearance, a function that normally requires microglia/macrophages. This study suggests that astrocytic Mt-derived HN could act as a beneficial secretory factor, including when transported within Mt to microglia, where it promotes a phagocytic/reparative phenotype. These findings also indicate that restoring HN levels in the injured brain could represent a translational target for ICH. These favorable biological responses to HN warrant studies on HN as therapeutic target for ICH.SIGNIFICANCE STATEMENT Astrocytes are critical for maintaining brain homeostasis. Here, we demonstrate that astrocytes secrete mitochondria (Mt) and the Mt-genome-encoded, small bioactive peptide humanin (HN). Mt incorporate into microglia, and both Mt and HN promote a "reparative" microglia phenotype characterized by enhanced phagocytosis and reduced proinflammatory responses. Treatment with HN improved outcomes in an animal model of intracerebral hemorrhage, suggesting that this process could have biological relevance to stroke pathogenesis.
Collapse
|
21
|
Dubin A, Jørgensen TE, Jakt LM, Johansen SD. The mitochondrial transcriptome of the anglerfish Lophius piscatorius. BMC Res Notes 2019; 12:800. [PMID: 31823814 PMCID: PMC6905026 DOI: 10.1186/s13104-019-4835-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 11/29/2019] [Indexed: 01/22/2023] Open
Abstract
Objective Analyze key features of the anglerfish Lophius piscatorius mitochondrial transcriptome based on high-throughput total RNA sequencing. Results We determined the complete mitochondrial DNA and corresponding transcriptome sequences of L. piscatorius. Key features include highly abundant mitochondrial ribosomal RNAs (10–100 times that of mRNAs), and that cytochrome oxidase mRNAs appeared > 5 times more abundant than both NADH dehydrogenase and ATPase mRNAs. Unusual for a vertebrate mitochondrial mRNA, the polyadenylated COI mRNA was found to harbor a 75 nucleotide 3′ untranslated region. The mitochondrial genome expressed several non-canonical genes, including the long noncoding RNAs lncCR-H, lncCR-L and lncCOI. Whereas lncCR-H and lncCR-L mapped to opposite strands in a non-overlapping organization within the control region, lncCOI appeared novel among vertebrates. We found lncCOI to be a highly abundant mitochondrial RNA in antisense to the COI mRNA. Finally, we present the coding potential of a humanin-like peptide within the large subunit ribosomal RNA.
Collapse
Affiliation(s)
- Arseny Dubin
- Genomics Group, Faculty of Biosciences and Aquaculture, Nord University, 8049, Bodø, Norway
| | - Tor Erik Jørgensen
- Genomics Group, Faculty of Biosciences and Aquaculture, Nord University, 8049, Bodø, Norway
| | - Lars Martin Jakt
- Genomics Group, Faculty of Biosciences and Aquaculture, Nord University, 8049, Bodø, Norway
| | - Steinar Daae Johansen
- Genomics Group, Faculty of Biosciences and Aquaculture, Nord University, 8049, Bodø, Norway.
| |
Collapse
|
22
|
Mehta HH, Xiao J, Ramirez R, Miller B, Kim SJ, Cohen P, Yen K. Metabolomic profile of diet-induced obesity mice in response to humanin and small humanin-like peptide 2 treatment. Metabolomics 2019; 15:88. [PMID: 31172328 PMCID: PMC6554247 DOI: 10.1007/s11306-019-1549-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/24/2019] [Indexed: 01/10/2023]
Abstract
INTRODUCTION The mitochondrial-derived peptides (MDPs) are a novel group of natural occurring peptides that have important signaling functions and biological activity. Both humanin and small-humanin-like peptide 2 (SHLP2) have been reported to act as insulin sensitizers and modulate metabolism. OBJECTIVES By using a metabolomic approach, this study explores how the plasma metabolite profile is regulated in response to humanin and SHLP2 treatment in a diet-induced obesity (DIO) mouse model. The results also shed light on the potential mechanism underlying MDPs' insulin sensitization effects. METHODS Plasma samples were obtained from DIO mice subjected to vehicle (water) treatment, or peptide treatment with either humanin analog S14G (HNG) or SHLP2 (n = 6 per group). Vehicle or peptides were given as intraperitoneal (IP) injections twice a day at dose of 2.5 mg/kg/injection for 3 days. Metabolites in plasma samples were comprehensively identified and quantified using UPLC-MS/MS. RESULTS HNG and SHLP2 administration significantly altered the concentrations of amino acid and lipid metabolites in plasma. Among all the metabolic pathways, the glutathione and sphingolipid metabolism responded most strongly to the peptide treatment. CONCLUSIONS The present study indicates that humanin and SHLP2 can lower several markers associated with age-related metabolic disorders. With the previous understanding of the effects of humanin and SHLP2 on cardiovascular function, insulin sensitization, and anti-inflammation, this metabolomic discovery provides a more comprehensive molecular explanation of the mechanism of action for humanin and SHLP2 treatment.
Collapse
Affiliation(s)
- Hemal H Mehta
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Jialin Xiao
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Ricardo Ramirez
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Brendan Miller
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Su-Jeong Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Kelvin Yen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
23
|
Yang C, Xu L, Cui Y, Wu B, Liao Z. Potent humanin analogue (HNG) protects human sperm from freeze-thaw-induced damage. Cryobiology 2019; 88:47-53. [DOI: 10.1016/j.cryobiol.2019.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/06/2019] [Accepted: 04/02/2019] [Indexed: 01/18/2023]
|
24
|
Zárate SC, Traetta ME, Codagnone MG, Seilicovich A, Reinés AG. Humanin, a Mitochondrial-Derived Peptide Released by Astrocytes, Prevents Synapse Loss in Hippocampal Neurons. Front Aging Neurosci 2019; 11:123. [PMID: 31214013 PMCID: PMC6555273 DOI: 10.3389/fnagi.2019.00123] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/09/2019] [Indexed: 01/13/2023] Open
Abstract
Astroglial cells are crucial for central nervous system (CNS) homeostasis. They undergo complex morpho-functional changes during aging and in response to hormonal milieu. Ovarian hormones positively affect different astroglia parameters, including regulation of cell morphology and release of neurotrophic and neuroprotective factors. Thus, ovarian hormone loss during menopause has profound impact in astroglial pathophysilogy and has been widely associated to the process of brain aging. Humanin (HN) is a secreted mitochondrial-encoded peptide with neuroprotective effects. It is localized in several tissues with high metabolic rate and its expression decreases with age. In the brain, humanin has been found in glial cells in physiological conditions. We previously reported that surgical menopause induces hippocampal mitochondrial dysfunction that mimics an aging phenotype. However, the effect of ovarian hormone deprivation on humanin expression in this area has not been studied. Also, whether astrocytes express and release humanin and the regulation of such processes by ovarian hormones remain elusive. Although humanin has also proven to be beneficial in ameliorating cognitive impairment induced by different insults, its putative actions on structural synaptic plasticity have not been fully addressed. In a model of surgical menopause in rats, we studied hippocampal humanin expression and localization by real-time quantitative polymerase chain reaction (RT-qPCR) and double immunohistochemistry, respectively. Humanin production and release and ovarian hormone regulation of such processes were studied in cultured astrocytes by flow cytometry and ELISA, respectively. Humanin effects on glutamate-induced structural synaptic alterations were determined in primary cultures of hippocampal neurons by immunocytochemistry. Humanin expression was lower in the hippocampus of ovariectomized rats and its immunoreactivity colocalized with astroglial markers. Chronic ovariectomy also promoted the presence of less complex astrocytes in this area. Ovarian hormones increased humanin intracellular content and release by cultured astrocytes. Humanin prevented glutamate-induced dendritic atrophy and reduction in puncta number and total puncta area for pre-synaptic marker synaptophysin in cultured hippocampal neurons. In conclusion, astroglial functional and morphological alterations induced by chronic ovariectomy resemble an aging phenotype and could affect astroglial support to neuronal function by altering synaptic connectivity and functionality. Reduced astroglial-derived humanin may represent an underlying mechanism for synaptic dysfunction and cognitive decline after menopause.
Collapse
Affiliation(s)
- Sandra Cristina Zárate
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Histología, Embriología, Biología Celular y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marianela Evelyn Traetta
- Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis" (IBCN, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Martín Gabriel Codagnone
- Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis" (IBCN, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Adriana Seilicovich
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Histología, Embriología, Biología Celular y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Analía Gabriela Reinés
- Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis" (IBCN, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
25
|
Rao M, Wu Z, Wen Y, Wang R, Zhao S, Tang L. Humanin levels in human seminal plasma and spermatozoa are related to sperm quality. Andrology 2019; 7:859-866. [PMID: 30920769 DOI: 10.1111/andr.12614] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Humanin has reportedly been expressed in testis and spermatozoa, but no study has yet reported its presence in human seminal plasma (SP). OBJECTIVE The aim of this study was to investigate the presence of humanin in human SP and to determine the correlation between humanin levels in SP/spermatozoa and sperm quality. MATERIALS AND METHODS Semen samples for SP/sperm humanin level measurement were collected from 164 patients who attended our andrology clinic for fertility evaluation. The localization of humanin in spermatozoa was evaluated using an immunofluorescence method, and SP/sperm humanin levels were measured with ELISA. Correlations between SP/sperm humanin levels and sperm parameters were analyzed. RESULTS Humanin was expressed in the midpiece of the spermatozoa. Humanin concentrations in the SP ranged from 24.4 to 285.1 pg/mL, with a median of 89.7 pg/mL. The SP humanin concentrations in patients with normospermia were significantly higher than those in patients with oligospermia (p < 0.001), asthenospermia (p = 0.002), and oligoasthenospermia (p < 0.001). Spearman analysis showed a positive and significant correlation between SP humanin concentration and sperm concentration (r = 0.75, p < 0.001), and progressive sperm motility (r = 0.29, p < 0.001). Sperm humanin level was significantly and positively associated with progressive sperm motility (r = 0.70, p < 0.001). In addition, a significantly higher level of humanin was found in swim-up spermatozoa than in non-swim-up spermatozoa (p = 0.03). CONCLUSIONS Seminal plasma and sperm humanin levels were significantly and positively correlated with sperm quality, especially sperm motility. Further studies of the origin of SP humanin and its role in spermatogenesis should be conducted.
Collapse
Affiliation(s)
- M Rao
- Department of Reproduction and Genetics, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Z Wu
- Department of Reproduction and Genetics, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Y Wen
- Department of Reproduction and Genetics, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - R Wang
- Department of Reproduction and Genetics, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - S Zhao
- Department of Reproduction and Genetics, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - L Tang
- Department of Reproduction and Genetics, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
26
|
Kim SJ, Miller B, Kumagai H, Yen K, Cohen P. MOTS-c: an equal opportunity insulin sensitizer. J Mol Med (Berl) 2019; 97:487-490. [PMID: 30788534 DOI: 10.1007/s00109-019-01758-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/11/2019] [Accepted: 02/14/2019] [Indexed: 01/15/2023]
Affiliation(s)
- Su-Jeong Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Brendan Miller
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Hiroshi Kumagai
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Kelvin Yen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089-0191, USA.
| |
Collapse
|
27
|
Angers A, Ouimet P, Tsyvian-Dzyabko A, Nock T, Breton S. [The underestimated coding potential of mitochondrial DNA]. Med Sci (Paris) 2019; 35:46-54. [PMID: 30672456 DOI: 10.1051/medsci/2018308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mitochondria are ancient organelles that emerged from the endosymbiosis of free-living proto-bacteria. They still retain a semi-autonomous genetic system with a small genome. Mitochondrial DNA (mtDNA) codes for 13 essential proteins for the production of ATP, the sequences of which are relatively conserved across Metazoans. The discovery of additional mitochondria-derived peptides (MDPs) indicates an underestimated coding potential. Humanin, an anti-apoptotic peptide, is likely independently transcribed from within the 16S rRNA gene, as are recently described SHLPs. MOTS-c, discovered in silico, has been demonstrated to be involved in metabolism and insulin sensitivity. Gau, is a positionally conserved open reading frame (ORF) sequence found in the antisense strand of the COX1 gene and its corresponding peptide is strictly colocalized with mitochondrial markers. In bivalves with doubly uniparental inheritance of mtDNA, male and female mtDNAs each carry a separate additional gene possibly involved in sex determination. Other MDPs likely exist and their investigation will shed light on the underestimated functional repertoire of mitochondria.
Collapse
Affiliation(s)
- Annie Angers
- Département de sciences biologiques, université de Montréal, pavillon Marie-Victorin, faculté des arts et des sciences. CP 6128, succursale centre-ville, Montréal QC, H3C 3J7, Canada
| | - Philip Ouimet
- Département de sciences biologiques, université de Montréal, pavillon Marie-Victorin, faculté des arts et des sciences. CP 6128, succursale centre-ville, Montréal QC, H3C 3J7, Canada
| | - Assia Tsyvian-Dzyabko
- Département de sciences biologiques, université de Montréal, pavillon Marie-Victorin, faculté des arts et des sciences. CP 6128, succursale centre-ville, Montréal QC, H3C 3J7, Canada
| | - Tanya Nock
- Département de sciences biologiques, université de Montréal, pavillon Marie-Victorin, faculté des arts et des sciences. CP 6128, succursale centre-ville, Montréal QC, H3C 3J7, Canada
| | - Sophie Breton
- Département de sciences biologiques, université de Montréal, pavillon Marie-Victorin, faculté des arts et des sciences. CP 6128, succursale centre-ville, Montréal QC, H3C 3J7, Canada
| |
Collapse
|
28
|
Janzen C, Lei MYY, Jeong ISD, Ganguly A, Sullivan P, Paharkova V, Capodanno G, Nakamura H, Perry A, Shin BC, Lee KW, Devaskar SU. Humanin (HN) and glucose transporter 8 (GLUT8) in pregnancies complicated by intrauterine growth restriction. PLoS One 2018; 13:e0193583. [PMID: 29590129 PMCID: PMC5873989 DOI: 10.1371/journal.pone.0193583] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 02/14/2018] [Indexed: 12/20/2022] Open
Abstract
Background Intrauterine growth restriction (IUGR) results from a lack of nutrients transferred to the developing fetus, particularly oxygen and glucose. Increased expression of the cytoprotective mitochondrial peptide, humanin (HN), and the glucose transporter 8, GLUT8, has been reported under conditions of hypoxic stress. However, the presence and cellular localization of HN and GLUT8 in IUGR-related placental pathology remain unexplored. Thus, we undertook this study to investigate placental expression of HN and GLUT8 in IUGR-affected versus normal pregnancies. Results We found 1) increased HN expression in human IUGR-affected pregnancies on the maternal aspect of the placenta (extravillous trophoblastic (EVT) cytoplasm) compared to control (i.e. appropriate for gestational age) pregnancies, and a concomitant increase in GLUT8 expression in the same compartment, 2) HN and GLUT8 showed a protein-protein interaction by co-immunoprecipitation, 3) elevated HN and GLUT8 levels in vitro under simulated hypoxia in human EVT cells, HTR8/SVneo, and 4) increased HN expression but attenuated GLUT8 expression in vitro under serum deprivation in HTR8/SVneo cells. Conclusions There was elevated HN expression with cytoplasmic localization to EVTs on the maternal aspect of the human placenta affected by IUGR, also associated with increased GLUT8 expression. We found that while hypoxia increased both HN and GLUT8, serum deprivation increased HN expression alone. Also, a protein-protein interaction between HN and GLUT8 suggests that their interaction may fulfill a biologic role that requires interdependency. Future investigations delineating molecular interactions between these proteins are required to fully uncover their role in IUGR-affected pregnancies.
Collapse
Affiliation(s)
- Carla Janzen
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- * E-mail:
| | - Margarida Y. Y. Lei
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Il Seok D. Jeong
- Department of Pediatrics, Division of Endocrinology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Neonatal Research Center of the UCLA Children’s Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Amit Ganguly
- Neonatal Research Center of the UCLA Children’s Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Department of Pediatrics, Division of Neonatology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Peggy Sullivan
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Vladislava Paharkova
- Department of Pediatrics, Division of Endocrinology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Neonatal Research Center of the UCLA Children’s Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Gina Capodanno
- Department of Pediatrics, Division of Endocrinology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Neonatal Research Center of the UCLA Children’s Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Hiromi Nakamura
- Department of Pediatrics, Division of Endocrinology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Neonatal Research Center of the UCLA Children’s Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Alix Perry
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Bo-Chul Shin
- Neonatal Research Center of the UCLA Children’s Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Department of Pediatrics, Division of Neonatology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Kuk-Wha Lee
- Department of Pediatrics, Division of Endocrinology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Neonatal Research Center of the UCLA Children’s Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Sherin U. Devaskar
- Neonatal Research Center of the UCLA Children’s Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Department of Pediatrics, Division of Neonatology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| |
Collapse
|
29
|
Kim SJ, Guerrero N, Wassef G, Xiao J, Mehta HH, Cohen P, Yen K. The mitochondrial-derived peptide humanin activates the ERK1/2, AKT, and STAT3 signaling pathways and has age-dependent signaling differences in the hippocampus. Oncotarget 2018; 7:46899-46912. [PMID: 27384491 PMCID: PMC5216912 DOI: 10.18632/oncotarget.10380] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/20/2016] [Indexed: 12/23/2022] Open
Abstract
Humanin is a small secreted peptide that is encoded in the mitochondrial genome. Humanin and its analogues have a protective role in multiple age-related diseases including type 2 diabetes and Alzheimer's disease, through cytoprotective and neuroprotective effects both in vitro and in vivo. However, the humanin-mediated signaling pathways are not well understood. In this paper, we demonstrate that humanin acts through the GP130/IL6ST receptor complex to activate AKT, ERK1/2, and STAT3 signaling pathways. Humanin treatment increases phosphorylation in AKT, ERK 1/2, and STAT3 where PI3K, MEK, and JAK are involved in the activation of those three signaling pathways, respectively. Furthermore, old mice, but not young mice, injected with humanin showed an increase in phosphorylation in AKT and ERK1/2 in the hippocampus. These findings uncover a key signaling pathway of humanin that is important for humanin's function and also demonstrates an age-specific in vivo effect in a region of the brain that is critical for memory formation in an age-dependent manner.
Collapse
Affiliation(s)
- Su-Jeong Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Noel Guerrero
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Gabriella Wassef
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Jialin Xiao
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Hemal H Mehta
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Kelvin Yen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
30
|
Singh B, Modica-Napolitano JS, Singh KK. Defining the momiome: Promiscuous information transfer by mobile mitochondria and the mitochondrial genome. Semin Cancer Biol 2017; 47:1-17. [PMID: 28502611 PMCID: PMC5681893 DOI: 10.1016/j.semcancer.2017.05.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/20/2017] [Accepted: 05/07/2017] [Indexed: 12/30/2022]
Abstract
Mitochondria are complex intracellular organelles that have long been identified as the powerhouses of eukaryotic cells because of the central role they play in oxidative metabolism. A resurgence of interest in the study of mitochondria during the past decade has revealed that mitochondria also play key roles in cell signaling, proliferation, cell metabolism and cell death, and that genetic and/or metabolic alterations in mitochondria contribute to a number of diseases, including cancer. Mitochondria have been identified as signaling organelles, capable of mediating bidirectional intracellular information transfer: anterograde (from nucleus to mitochondria) and retrograde (from mitochondria to nucleus). More recently, evidence is now building that the role of mitochondria extends to intercellular communication as well, and that the mitochondrial genome (mtDNA) and even whole mitochondria are indeed mobile and can mediate information transfer between cells. We define this promiscuous information transfer function of mitochondria and mtDNA as "momiome" to include all mobile functions of mitochondria and the mitochondrial genome. Herein, we review the "momiome" and explore its role in cancer development, progression, and treatment.
Collapse
Affiliation(s)
- Bhupendra Singh
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Keshav K Singh
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Environmental Health, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Aging, University of Alabama at Birmingham, Birmingham, AL, USA; UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA; Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA.
| |
Collapse
|
31
|
|
32
|
Cui AL, Zhang YH, Li JZ, Song T, Liu XM, Wang H, Zhang C, Ma GL, Zhang H, Li K. Humanin rescues cultured rat cortical neurons from NMDA-induced toxicity through the alleviation of mitochondrial dysfunction. Drug Des Devel Ther 2017; 11:1243-1253. [PMID: 28458518 PMCID: PMC5402890 DOI: 10.2147/dddt.s133042] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
N-methyl-D-aspartate (NDMA) receptor-mediated excitotoxicity has been implicated in a variety of pathological situations such as Alzheimer's disease (AD) and Parkinson's disease. However, no effective treatments for the same have been developed so far. Humanin (HN) is a 24-amino acid peptide originally cloned from the brain of patients with AD and it prevents stress-induced cell death in many cells/tissues. In our previous study, HN was found to effectively rescue rat cortical neurons. It is still not clear whether HN protects the neurons through the attenuation of mitochondrial dysfunction. In this study, excitatory toxicity was induced by NMDA, which binds the NMDA receptor in primarily cultured rat cortical neurons. We found that NMDA (100 μmol/L) dramatically induced the decrease of cell viability and caused mitochondrial dysfunction. Pretreatment of the neurons with HN (1 μmol/L) led to significant increases of mitochondrial succinate dehydrogenase (SDH) activity and membrane potential. In addition, HN pretreatment significantly reduced the excessive production of both reactive oxygen species (ROS) and nitric oxide (NO). Thus, HN could attenuate the excitotoxicity caused by the overactivation of the NMDA receptor through the alleviation of mitochondrial dysfunction.
Collapse
Affiliation(s)
- Ai-Ling Cui
- Anatomy Department, Changzhi Medical College, Changzhi, Shanxi
| | - Ying-Hua Zhang
- Key Laboratory of Tissue Regeneration of Henan Province, Xinxiang Medical University, Xinxiang, Henan
| | - Jian-Zhong Li
- Clinical Laboratory of Heji Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi
| | - Tianbin Song
- Department of Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing
| | - Xue-Min Liu
- Anatomy Department, Changzhi Medical College, Changzhi, Shanxi
| | - Hui Wang
- Key Laboratory of Tissue Regeneration of Henan Province, Xinxiang Medical University, Xinxiang, Henan
| | - Ce Zhang
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi
| | - Guo-Lin Ma
- Department of Radiology, China-Japan Friendship Hospital, Beijing
| | - Hui Zhang
- Department of Radiology, First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Kefeng Li
- School of Medicine, University of California – San Diego, San Diego, CA, USA
| |
Collapse
|
33
|
Wasilewski M, Chojnacka K, Chacinska A. Protein trafficking at the crossroads to mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:125-137. [PMID: 27810356 DOI: 10.1016/j.bbamcr.2016.10.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 12/14/2022]
Abstract
Mitochondria are central power stations in the cell, which additionally serve as metabolic hubs for a plethora of anabolic and catabolic processes. The sustained function of mitochondria requires the precisely controlled biogenesis and expression coordination of proteins that originate from the nuclear and mitochondrial genomes. Accuracy of targeting, transport and assembly of mitochondrial proteins is also needed to avoid deleterious effects on protein homeostasis in the cell. Checkpoints of mitochondrial protein transport can serve as signals that provide information about the functional status of the organelles. In this review, we summarize recent advances in our understanding of mitochondrial protein transport and discuss examples that involve communication with the nucleus and cytosol.
Collapse
Affiliation(s)
- Michal Wasilewski
- International Institute of Molecular and Cell Biology in Warsaw, Poland.
| | | | | |
Collapse
|
34
|
New Peptides Under the s(ORF)ace of the Genome. Trends Biochem Sci 2016; 41:665-678. [DOI: 10.1016/j.tibs.2016.05.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/28/2016] [Accepted: 05/03/2016] [Indexed: 01/30/2023]
|
35
|
Xiao J, Kim SJ, Cohen P, Yen K. Humanin: Functional Interfaces with IGF-I. Growth Horm IGF Res 2016; 29:21-27. [PMID: 27082450 PMCID: PMC4961574 DOI: 10.1016/j.ghir.2016.03.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/04/2016] [Accepted: 03/21/2016] [Indexed: 01/10/2023]
Abstract
Humanin is the first newly discovered peptide encoded in the mitochondrial genome in over three decades. It is the first member of a novel class of mitochondrial derived peptides. This small, 24 amino acid peptide was initially discovered to have neuroprotective effects and subsequent experiments have shown that it is beneficial in a diverse number of disease models including stroke, cardiovascular disease, and cancer. Over a decade ago, our lab found that humanin bound IGFBP-3 and more recent studies have found it to decrease circulating IGF-I levels. In turn, IGF-I also seems to regulate humanin levels and in this review, we cover the known interaction between humanin and IGF-I. Although the exact mechanism for how humanin and IGF-I regulate each other still needs to be elucidated, it is clear that humanin is a new player in IGF-I signaling.
Collapse
Affiliation(s)
- J Xiao
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - S-J Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - P Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - K Yen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
36
|
Gottlieb RA, Bernstein D. Mitochondrial remodeling: Rearranging, recycling, and reprogramming. Cell Calcium 2016; 60:88-101. [PMID: 27130902 PMCID: PMC4996709 DOI: 10.1016/j.ceca.2016.04.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/15/2016] [Accepted: 04/17/2016] [Indexed: 12/26/2022]
Abstract
Mitochondria are highly dynamic and responsive organelles that respond to environmental cues with fission and fusion. They undergo mitophagy and biogenesis, and are subject to extensive post-translational modifications. Calcium plays an important role in regulating mitochondrial functions. Mitochondria play a central role in metabolism of glucose, fatty acids, and amino acids, and generate ATP with effects on redox poise, oxidative stress, pH, and other metabolites including acetyl-CoA and NAD(+) which in turn have effects on chromatin remodeling. The complex interplay of mitochondria, cytosolic factors, and the nucleus ensure a well-coordinated response to environmental stresses.
Collapse
Affiliation(s)
| | - Daniel Bernstein
- Department of Pediatrics (Cardiology) and the Cardiovascular Institute, Stanford University, Stanford, CA, United States
| |
Collapse
|
37
|
Charununtakorn ST, Shinlapawittayatorn K, Chattipakorn SC, Chattipakorn N. Potential Roles of Humanin on Apoptosis in the Heart. Cardiovasc Ther 2016; 34:107-14. [DOI: 10.1111/1755-5922.12168] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Savitree T. Charununtakorn
- Cardiac Electrophysiology Research and Training Center; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Cardiac Electrophysiology Unit; Department of Physiology; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology; Chiang Mai University; Chiang Mai Thailand
| | - Krekwit Shinlapawittayatorn
- Cardiac Electrophysiology Research and Training Center; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Cardiac Electrophysiology Unit; Department of Physiology; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology; Chiang Mai University; Chiang Mai Thailand
| | - Siriporn C. Chattipakorn
- Cardiac Electrophysiology Research and Training Center; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Cardiac Electrophysiology Unit; Department of Physiology; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology; Chiang Mai University; Chiang Mai Thailand
- Department of Oral Biology and Diagnostic Sciences; Faculty of Dentistry; Chiang Mai University; Chiang Mai Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Cardiac Electrophysiology Unit; Department of Physiology; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology; Chiang Mai University; Chiang Mai Thailand
| |
Collapse
|
38
|
Sreekumar PG, Ishikawa K, Spee C, Mehta HH, Wan J, Yen K, Cohen P, Kannan R, Hinton DR. The Mitochondrial-Derived Peptide Humanin Protects RPE Cells From Oxidative Stress, Senescence, and Mitochondrial Dysfunction. Invest Ophthalmol Vis Sci 2016; 57:1238-53. [PMID: 26990160 PMCID: PMC4811181 DOI: 10.1167/iovs.15-17053] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 02/08/2016] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To investigate the expression of humanin (HN) in human retinal pigment epithelial (hRPE) cells and its effect on oxidative stress-induced cell death, mitochondrial bioenergetics, and senescence. METHODS Humanin localization in RPE cells and polarized RPE monolayers was assessed by confocal microscopy. Human RPE cells were treated with 150 μM tert-Butyl hydroperoxide (tBH) in the absence/presence of HN (0.5-10 μg/mL) for 24 hours. Mitochondrial respiration was measured by XF96 analyzer. Retinal pigment epithelial cell death and caspase-3 activation, mitochondrial biogenesis and senescence were analyzed by TUNEL, immunoblot analysis, mitochondrial DNA copy number, SA-β-Gal staining, and p16INK4a expression and HN levels by ELISA. Oxidative stress-induced changes in transepithelial resistance were studied in RPE monolayers with and without HN cotreatment. RESULTS A prominent localization of HN was found in the cytoplasmic and mitochondrial compartments of hRPE. Humanin cotreatment inhibited tBH-induced reactive oxygen species formation and significantly restored mitochondrial bioenergetics in hRPE cells. Exogenous HN was taken up by RPE and colocalized with mitochondria. The oxidative stress-induced decrease in mitochondrial bioenergetics was prevented by HN cotreatment. Humanin treatment increased mitochondrial DNA copy number and upregulated mitochondrial transcription factor A, a key biogenesis regulator protein. Humanin protected RPE cells from oxidative stress-induced cell death by STAT3 phosphorylation and inhibiting caspase-3 activation. Humanin treatment inhibited oxidant-induced senescence. Polarized RPE demonstrated elevated cellular HN and increased resistance to cell death. CONCLUSIONS Humanin protected RPE cells against oxidative stress-induced cell death and restored mitochondrial function. Our data suggest a potential role for HN therapy in the prevention of retinal degeneration, including AMD.
Collapse
Affiliation(s)
- Parameswaran G. Sreekumar
- Arnold and Mabel Beckman Macular Research Center, Doheny Eye Institute, Los Angeles, California, United States
| | - Keijiro Ishikawa
- Arnold and Mabel Beckman Macular Research Center, Doheny Eye Institute, Los Angeles, California, United States
| | - Chris Spee
- Department of Ophthalmology, University of Southern California, Los Angeles, California, United States
| | - Hemal H. Mehta
- USC Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, United States
| | - Junxiang Wan
- USC Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, United States
| | - Kelvin Yen
- USC Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, United States
| | - Pinchas Cohen
- USC Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, United States
| | - Ram Kannan
- Arnold and Mabel Beckman Macular Research Center, Doheny Eye Institute, Los Angeles, California, United States
| | - David R. Hinton
- Department of Ophthalmology, University of Southern California, Los Angeles, California, United States
- Department of Pathology, University of Southern California, Los Angeles, California, United States
| |
Collapse
|