1
|
Zochodne DW. Growth factors and molecular-driven plasticity in neurological systems. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:569-598. [PMID: 37620091 DOI: 10.1016/b978-0-323-98817-9.00017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
It has been almost 70 years since the discovery of nerve growth factor (NGF), a period of a dramatic evolution in our understanding of dynamic growth, regeneration, and rewiring of the nervous system. In 1953, the extraordinary finding that a protein found in mouse submandibular glands generated a halo of outgrowing axons has now redefined our concept of the nervous system connectome. Central and peripheral neurons and their axons or dendrites are no longer considered fixed or static "wiring." Exploiting this molecular-driven plasticity as a therapeutic approach has arrived in the clinic with a slate of new trials and ideas. Neural growth factors (GFs), soluble proteins that alter the behavior of neurons, have expanded in numbers and our understanding of the complexity of their signaling and interactions with other proteins has intensified. However, beyond these "extrinsic" determinants of neuron growth and function are the downstream pathways that impact neurons, ripe for translational development and potentially more important than individual growth factors that may trigger them. Persistent and ongoing nuances in clinical trial design in some of the most intractable and irreversible neurological conditions give hope for connecting new biological ideas with clinical benefits. This review is a targeted update on neural GFs, their signals, and new therapeutic ideas, selected from an expansive literature.
Collapse
Affiliation(s)
- Douglas W Zochodne
- Division of Neurology, Department of Medicine and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
2
|
Idrisova KF, Zeinalova AK, Masgutova GA, Bogov AA, Allegrucci C, Syromiatnikova VY, Salafutdinov II, Garanina EE, Andreeva DI, Kadyrov AA, Rizvanov AA, Masgutov RF. Application of neurotrophic and proangiogenic factors as therapy after peripheral nervous system injury. Neural Regen Res 2022; 17:1240-1247. [PMID: 34782557 PMCID: PMC8643040 DOI: 10.4103/1673-5374.327329] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/14/2020] [Accepted: 06/04/2021] [Indexed: 11/24/2022] Open
Abstract
The intrinsic ability of peripheral nerves to regenerate after injury is extremely limited, especially in case of severe injury. This often leads to poor motor function and permanent disability. Existing approaches for the treatment of injured nerves do not provide appropriate conditions to support survival and growth of nerve cells. This drawback can be compensated by the use of gene therapy and cell therapy-based drugs that locally provide an increase in the key regulators of nerve growth, including neurotrophic factors and extracellular matrix proteins. Each growth factor plays its own specific angiotrophic or neurotrophic role. Currently, growth factors are widely studied as accelerators of nerve regeneration. Particularly noteworthy is synergy between various growth factors, that is essential for both angiogenesis and neurogenesis. Fibroblast growth factor 2 and vascular endothelial growth factor are widely known for their proangiogenic effects. At the same time, fibroblast growth factor 2 and vascular endothelial growth factor stimulate neural cell growth and play an important role in neurodegenerative diseases of the peripheral nervous system. Taken together, their neurotrophic and angiogenic properties have positive effect on the regeneration process. In this review we provide an in-depth overview of the role of fibroblast growth factor 2 and vascular endothelial growth factor in the regeneration of peripheral nerves, thus demonstrating their neurotherapeutic efficacy in improving neuron survival in the peripheral nervous system.
Collapse
Affiliation(s)
| | | | | | | | - Cinzia Allegrucci
- Biodiscovery Institute, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | | | | | | | | | | | | | - Ruslan Faridovich Masgutov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Republican Clinical Hospital, Kazan, Russia
| |
Collapse
|
3
|
Wang J, Wang Y, Yu D, Liu Q, Lin S, Tian R, Li J, Luo Y. Protective Effect of a Bispecific Fc-Fusion Protein on the Barrier of Human Retinal Pigment Epithelial Cells. Ophthalmic Res 2021; 64:656-663. [PMID: 33550303 DOI: 10.1159/000515053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 01/28/2021] [Indexed: 02/05/2023]
Abstract
INTRODUCTION The aim of the study was to evaluate the protective effects of IBI302, a bispecific Fc-fusion protein that theoretically can bind vascular endothelial growth factor (VEGF), complement C3b, and C4b in the barrier of the cultured human retinal pigment epithelial (hRPE) cells. METHODS Primary hRPE cells were isolated and cultured to monolayer barrier. hRPE monolayers were divided into the PBS control group, VEGF-Trap group, complement receptor 1 (CR1) group, and IBI302 group. Identification of hRPE cells, barrier function, inflammation factors, and immune response products was tested by immunofluorescent staining, transepithelial resistance (TER), and ELISA. RESULTS IBI302 treatment significantly improved the TER of the barrier of hRPE cells after complement-activated oxidative stress compared with the PBS control group, VEGF-Trap group, and CR1 group. The maximum effect of IBI302 on protecting hRPE cell viability was observed at the concentration of 1 μg/mL. The elevated expression of VEGF, chemokine (C-C Motif) ligand 2, C3a, C5a, and membrane attack complex was reduced by IBI302. CONCLUSION IBI302 could protect the barrier function of hRPE cells. IBI302 might be a potentially effective drug for the RPE barrier-associated ocular diseases.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yishen Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Dechao Yu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qiuhui Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shaofen Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Rong Tian
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jia Li
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Neurotrophic effects of G M1 ganglioside, NGF, and FGF2 on canine dorsal root ganglia neurons in vitro. Sci Rep 2020; 10:5380. [PMID: 32214122 PMCID: PMC7096396 DOI: 10.1038/s41598-020-61852-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/04/2020] [Indexed: 01/26/2023] Open
Abstract
Dogs share many chronic morbidities with humans and thus represent a powerful model for translational research. In comparison to rodents, the canine ganglioside metabolism more closely resembles the human one. Gangliosides are components of the cell plasma membrane playing a role in neuronal development, intercellular communication and cellular differentiation. The present in vitro study aimed to characterize structural and functional changes induced by GM1 ganglioside (GM1) in canine dorsal root ganglia (DRG) neurons and interactions of GM1 with nerve growth factor (NGF) and fibroblast growth factor (FGF2) using immunofluorescence for several cellular proteins including neurofilaments, synaptophysin, and cleaved caspase 3, transmission electron microscopy, and electrophysiology. GM1 supplementation resulted in increased neurite outgrowth and neuronal survival. This was also observed in DRG neurons challenged with hypoxia mimicking neurodegenerative conditions due to disruptions of energy homeostasis. Immunofluorescence indicated an impact of GM1 on neurofilament phosphorylation, axonal transport, and synaptogenesis. An increased number of multivesicular bodies in GM1 treated neurons suggested metabolic changes. Electrophysiological changes induced by GM1 indicated an increased neuronal excitability. Summarized, GM1 has neurotrophic and neuroprotective effects on canine DRG neurons and induces functional changes. However, further studies are needed to clarify the therapeutic value of gangliosides in neurodegenerative diseases.
Collapse
|
5
|
Lv W, Deng B, Duan W, Li Y, Song X, Ji Y, Li Z, Liu Y, Wang X, Li C. FGF9 alters the Wallerian degeneration process by inhibiting Schwann cell transformation and accelerating macrophage infiltration. Brain Res Bull 2019; 152:285-296. [PMID: 31220553 DOI: 10.1016/j.brainresbull.2019.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 06/04/2019] [Accepted: 06/13/2019] [Indexed: 01/06/2023]
Abstract
In vitro experiments have proved that Fibroblast Growth Factor 9 (FGF9) was decreased in Schwann cells (SCs) in which Wallerian degeneration (WD) occurred after nerve injury. We hypothesize that FGF9 downregulation in WD has some biological influence on Schwann cells (SCs) and macrophages - the two most important cell components involved in WD. In this study, we employed strategies to regulate FGF9 in sciatic nerve crush by generating a mouse model, wherein Fgf9 was specifically knocked-out in SCs, and an intraneural injection of human FGF9 protein administered to overexpress FGF9 independently. Furthermore, an inhibitor of extracellular-regulated kinases 1/2 (ERK1/2), PD0325901, was used to clarify the underlying downstream mechanism of ERK1/2 activated by FGF9. Analysis of WD revealed the novel features of FGF9: (i) FGF9 was widely expressed in axons and SCs, and was decreased during WD process. (ii) Fgf9 knockout in SCs impaired the debris clearance and eventually impeded the regeneration of nerve fibers after damage. (iii) Fgf9 knockout in SCs promoted the dedifferentiation of SCs and delayed the infiltration of macrophages by decreasing Mcp1, Tnfα, Il1β levels and leaky blood-nerve-barrier (BNB) in WD. (iv) FGF9 injection preserved the nerve fibers, inhibited SCs dedifferentiation and accelerated macrophages infiltration. (v) ERK1/2 phosphorylation was increased by exogenous FGF9 injection. P75, Cyclin D1, Mcp1, Tnfα, Il1β, c-Jun changes by FGF9 intraneural injection were partially reversed by the ERK1/2 inhibitor. Conclusion was that FGF9 inhibited the dedifferentiation of SCs and accelerated the accumulation of macrophages in WD, and exogenous FGF9 took effects partially by ERK1/2.
Collapse
Affiliation(s)
- Wenjing Lv
- Department of Geriatirics, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, PR China.
| | - Binbin Deng
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, PR China
| | - Weisong Duan
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, PR China; Institute of Cardiocerebrovascular Disease, West Heping Road 215, Shijiazhuang 050000, Hebei, PR China; Neurological Laboratory of Hebei Province, Shijiazhuang 050000, Hebei, PR China
| | - Yi Li
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, PR China; Institute of Cardiocerebrovascular Disease, West Heping Road 215, Shijiazhuang 050000, Hebei, PR China
| | - Xueqin Song
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, PR China; Institute of Cardiocerebrovascular Disease, West Heping Road 215, Shijiazhuang 050000, Hebei, PR China; Neurological Laboratory of Hebei Province, Shijiazhuang 050000, Hebei, PR China
| | - Yingxiao Ji
- Department of Neurology, People's hospital of Hebei Province, Shijiazhuang 050000, Hebei, PR China
| | - Zhongyao Li
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, PR China; Neurological Laboratory of Hebei Province, Shijiazhuang 050000, Hebei, PR China
| | - Yakun Liu
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, PR China; Neurological Laboratory of Hebei Province, Shijiazhuang 050000, Hebei, PR China
| | - Xiaoxiao Wang
- Department of Neurology, First Hospital of Handan City, Handan 056000, Hebei, PR China
| | - Chunyan Li
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, PR China; Institute of Cardiocerebrovascular Disease, West Heping Road 215, Shijiazhuang 050000, Hebei, PR China; Neurological Laboratory of Hebei Province, Shijiazhuang 050000, Hebei, PR China.
| |
Collapse
|
6
|
Application of CNTF or FGF-2 increases the number of M2-like macrophages after optic nerve injury in adult Rana pipiens. PLoS One 2019; 14:e0209733. [PMID: 31048836 PMCID: PMC6507305 DOI: 10.1371/journal.pone.0209733] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/17/2019] [Indexed: 02/07/2023] Open
Abstract
We have previously shown that a single application of the growth factors ciliary
neurotrophic factor (CNTF) or fibroblast growth factor 2 (FGF-2) to the crushed
optic nerve of the frog, Rana pipiens, increases the numbers
and elongation rate of regenerating retinal ganglion cell axons. Here we
investigate the effects of these factors on the numbers and types of macrophages
that invade the regeneration zone. In control PBS-treated nerves, many
macrophages are present 100 μm distal to the crush site at 1 week after injury;
their numbers halve by 2 weeks. A single application of CNTF at the time of
injury triples the numbers of macrophages at 1 week, with this increase compared
to control being maintained at 2 weeks. Application of FGF-2 is equally
effective at 1 week, but the macrophage numbers have fallen to control levels at
2 weeks. Immunostaining with a pan-macrophage marker, ED1, and a marker for
M2-like macrophages, Arg-1, showed that the proportion of the putative M2
phenotype remained at approximately 80% with all treatments. Electron microscopy
of the macrophages at 1 week shows strong phagocytic activity with all
treatments, with many vacuoles containing axon fragments and membrane debris. At
2 weeks with PBS or FGF-2 treatment the remaining macrophages are less
phagocytically active, containing mainly lipid inclusions. With CNTF treatment,
at 2 weeks many of the more numerous macrophages are still phagocytosing axonal
debris, although they also contain lipid inclusions. We conclude that the
increase in macrophage influx seen after growth factor application is beneficial
for the regenerating axons, probably due to more extensive removal of
degenerating distal axons, but also perhaps to secretion of growth-promoting
substances.
Collapse
|
7
|
Taetzsch T, Brayman VL, Valdez G. FGF binding proteins (FGFBPs): Modulators of FGF signaling in the developing, adult, and stressed nervous system. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2983-2991. [PMID: 29902550 DOI: 10.1016/j.bbadis.2018.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/17/2018] [Accepted: 06/09/2018] [Indexed: 01/18/2023]
Abstract
Members of the fibroblast growth factor (FGF) family are involved in a variety of cellular processes. In the nervous system, they affect the differentiation and migration of neurons, the formation and maturation of synapses, and the repair of neuronal circuits following insults. Because of the varied yet critical functions of FGF ligands, their availability and activity must be tightly regulated for the nervous system, as well as other tissues, to properly develop and function in adulthood. In this regard, FGF binding proteins (FGFBPs) have emerged as strong candidates for modulating the actions of secreted FGFs in neural and non-neural tissues. Here, we will review the roles of FGFBPs in the peripheral and central nervous systems.
Collapse
Affiliation(s)
- Thomas Taetzsch
- Virginia Tech Carilion Research Institute, Roanoke, VA, USA.
| | - Vanessa L Brayman
- Virginia Tech Carilion Research Institute, Roanoke, VA, USA; Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, USA.
| | - Gregorio Valdez
- Virginia Tech Carilion Research Institute, Roanoke, VA, USA; Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
8
|
Lv W, Deng B, Duan W, Li Y, Liu Y, Li Z, Xia W, Li C. Schwann Cell Plasticity is Regulated by a Weakened Intrinsic Antioxidant Defense System in Acute Peripheral Nerve Injury. Neuroscience 2018; 382:1-13. [PMID: 29684504 DOI: 10.1016/j.neuroscience.2018.04.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 12/01/2022]
Abstract
The biological effects of the transcription factor NF-E2-related factor 2 (Nrf2) in acute peripheral nervous system (PNS) injury have not been adequately elucidated. By analyzing the results of Nrf2 knockout and Nrf2 activation experiments, we found the following: (1) the antioxidant system was rapidly inactivated after acute PNS injury in a partly Nrf2-dependent manner, giving rise to a temporary state of oxidative stress, and then slowly and partially recovered following regeneration. (2) Nrf2 knockout promoted the reprogramming and proliferation of Schwann cells and inhibited myelination, as well as the redifferentiation of repair Schwann cells. (3) Dimethyl fumarate had no influence on the myelination of regenerated nerves. (4) Nrf2 functional regulation was able to regulate the redox status of nerves by changing the levels of target antioxidants and reactive oxygen species (ROS) at the same time, without altering the balance between them. In conclusion, the Nrf2-antioxidant system was temporarily inactivated in injured nerves, promoting Schwann cell reprogramming and proliferation, and its functional recovery was essential for Schwann cell redifferentiation and myelination.
Collapse
Affiliation(s)
- Wenjing Lv
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, PR China
| | - Binbin Deng
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, PR China
| | - Weisong Duan
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, PR China; Institute of Cardiocerebrovascular Disease, West Heping Road 215, Shijiazhuang 050000, Hebei, PR China; Neurological Laboratory of Hebei Province, Shijiazhuang 050000, Hebei, PR China
| | - Yuanyuan Li
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, PR China; Neurological Laboratory of Hebei Province, Shijiazhuang 050000, Hebei, PR China
| | - Yakun Liu
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, PR China; Neurological Laboratory of Hebei Province, Shijiazhuang 050000, Hebei, PR China
| | - Zhongyao Li
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, PR China; Neurological Laboratory of Hebei Province, Shijiazhuang 050000, Hebei, PR China
| | - Wei Xia
- Neurological Intensive Care Unit, Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong, PR China
| | - Chunyan Li
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, PR China; Institute of Cardiocerebrovascular Disease, West Heping Road 215, Shijiazhuang 050000, Hebei, PR China; Neurological Laboratory of Hebei Province, Shijiazhuang 050000, Hebei, PR China.
| |
Collapse
|
9
|
Mozafari R, Kyrylenko S, Castro MV, Ferreira RS, Barraviera B, Oliveira ALR. Combination of heterologous fibrin sealant and bioengineered human embryonic stem cells to improve regeneration following autogenous sciatic nerve grafting repair. J Venom Anim Toxins Incl Trop Dis 2018; 24:11. [PMID: 29681920 PMCID: PMC5897995 DOI: 10.1186/s40409-018-0147-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/16/2018] [Indexed: 12/17/2022] Open
Abstract
Background Peripheral nerve injury is a worldwide clinical problem, and the preferred surgical method for treating it is the end-to-end neurorrhaphy. When it is not possible due to a large nerve gap, autologous nerve grafting is used. However, these surgical techniques result in nerve regeneration at highly variable degrees. It is thus very important to seek complementary techniques to improve motor and sensory recovery. One promising approach could be cell therapy. Transplantation therapy with human embryonic stem cells (hESCs) is appealing because these cells are pluripotent and can differentiate into specialized cell types and have self-renewal ability. Therefore, the main objective of this study was to find conditions under which functional recovery is improved after sciatic nerve neurorrhaphy. We assumed that hESC, either alone or in combination with heterologous fibrin sealant scaffold, could be used to support regeneration in a mouse model of sciatic nerve injury and repair via autografting with end-to-end neurorrhaphy. Methods Five millimeters of the sciatic nerve of C57BL/6 J mice were transected off and rotated 180 degrees to simulate an injury, and then stumps were sutured. Next, we applied heterologous fibrin sealant and/or human embryonic stem cells genetically altered to overexpress fibroblast growth factor 2 (FGF2) at the site of the injury. The study was designed to include six experimental groups comprising neurorrhaphy (N), neurorrhaphy + heterologous fibrin sealant (N + F), neurorrhaphy + heterologous fibrin sealant + doxycycline (N + F + D), neurorrhaphy + heterologous fibrin sealant + wild-type hESC (N + F + W), neurorrhaphy + heterologous fibrin sealant + hESC off (N + F + T), and neurorrhaphy + heterologous fibrin sealant + hESC on via doxycycline (N + F + D + T). We evaluated the recovery rate using Catwalk and von Frey functional recovery tests, as well as immunohistochemistry analysis. Results The experiments indicated that sensory function improved when transgenic hESCs were used. The regeneration of sensory fibers indeed led to increased reflexes, upon stimulation of the paw ipsilateral to the lesion, as seen by von-Frey evaluation, which was supported by immunohistochemistry. Conclusions Overall, the present data demonstrated that transgenic embryonic stem cells, engineered to overexpress FGF-2 in an inducible fashion, could be employed to support regeneration aiming at the recovery of both motor and sensory functions.
Collapse
Affiliation(s)
- Roghayeh Mozafari
- 1Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Laboratory of Nerve Regeneration, Campinas, SP CEP 13083-970 Brazil
| | - Sergiy Kyrylenko
- 2Department of Public Health, Medical Institute of Sumy State University, Sumy, 40007 Ukraine
| | - Mateus Vidigal Castro
- 1Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Laboratory of Nerve Regeneration, Campinas, SP CEP 13083-970 Brazil
| | - Rui Seabra Ferreira
- 3Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP - Univ Estadual Paulista), Botucatu, SP Brazil
| | - Benedito Barraviera
- 3Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP - Univ Estadual Paulista), Botucatu, SP Brazil
| | - Alexandre Leite Rodrigues Oliveira
- 1Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Laboratory of Nerve Regeneration, Campinas, SP CEP 13083-970 Brazil
| |
Collapse
|
10
|
Bendella H, Rink S, Grosheva M, Sarikcioglu L, Gordon T, Angelov DN. Putative roles of soluble trophic factors in facial nerve regeneration, target reinnervation, and recovery of vibrissal whisking. Exp Neurol 2017; 300:100-110. [PMID: 29104116 DOI: 10.1016/j.expneurol.2017.10.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/25/2017] [Accepted: 10/30/2017] [Indexed: 12/15/2022]
Abstract
It is well-known that, after nerve transection and surgical repair, misdirected regrowth of regenerating motor axons may occur in three ways. The first way is that the axons enter into endoneurial tubes that they did not previously occupy, regenerate through incorrect fascicles and reinnervate muscles that they did not formerly supply. Consequently the activation of these muscles results in inappropriate movements. The second way is that, in contrast with the precise target-directed pathfinding by elongating motor nerves during embryonic development, several axons rather than a single axon grow out from each transected nerve fiber. The third way of misdirection occurs by the intramuscular terminal branching (sprouting) of each regenerating axon to culminate in some polyinnervation of neuromuscular junctions, i.e. reinnervation of junctions by more than a single axon. Presently, "fascicular" or "topographic specificity" cannot be achieved and hence target-directed nerve regeneration is, as yet, unattainable. Nonetheless, motor and sensory reinnervation of appropriate endoneurial tubes does occur and can be promoted by brief nerve electrical stimulation. This review considers the expression of neurotrophic factors in the neuromuscular system and how this expression can promote functional recovery, with emphasis on the whisking of vibrissae on the rat face in relationship to the expression of the factors. Evidence is reviewed for a role of neurotrophic factors as short-range diffusible sprouting stimuli in promoting complete functional recovery of vibrissal whisking in blind Sprague Dawley (SD)/RCS rats but not in SD rats with normal vision, after facial nerve transection and surgical repair. Briefly, a complicated time course of growth factor expression in the nerves and denervated muscles include (1) an early increase in FGF2 and IGF2, (2) reduced NGF between 2 and 14days after nerve transection and surgical repair, (3) a late rise in BDNF and (4) reduced IGF1 protein in the denervated muscles at 28days. These findings suggest that recovery of motor function after peripheral nerve injury is due, at least in part, to a complex regulation of nerve injury-associated neurotrophic factors and cytokines at the neuromuscular junctions of denervated muscles. In particular, the increase of FGF2 and concomittant decrease of NGF during the first week after facial nerve-nerve anastomosis in SD/RCS blind rats may prevent intramuscular axon sprouting and, in turn, reduce poly-innervation of the neuromuscular junction.
Collapse
Affiliation(s)
- Habib Bendella
- Department of Neurosurgery, University of Witten/Herdecke, Cologne Merheim Medical Center (CMMC), Cologne, Germany
| | - Svenja Rink
- Department of Prosthetic Dentistry, School of Dental and Oral Medicine, University of Cologne, Germany
| | - Maria Grosheva
- Department of Oto-Rhino-Laryngology, University of Cologne, Germany
| | | | - Tessa Gordon
- Department of Surgery, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | |
Collapse
|
11
|
Rao SNR, Pearse DD. Regulating Axonal Responses to Injury: The Intersection between Signaling Pathways Involved in Axon Myelination and The Inhibition of Axon Regeneration. Front Mol Neurosci 2016; 9:33. [PMID: 27375427 PMCID: PMC4896923 DOI: 10.3389/fnmol.2016.00033] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/02/2016] [Indexed: 01/06/2023] Open
Abstract
Following spinal cord injury (SCI), a multitude of intrinsic and extrinsic factors adversely affect the gene programs that govern the expression of regeneration-associated genes (RAGs) and the production of a diversity of extracellular matrix molecules (ECM). Insufficient RAG expression in the injured neuron and the presence of inhibitory ECM at the lesion, leads to structural alterations in the axon that perturb the growth machinery, or form an extraneous barrier to axonal regeneration, respectively. Here, the role of myelin, both intact and debris, in antagonizing axon regeneration has been the focus of numerous investigations. These studies have employed antagonizing antibodies and knockout animals to examine how the growth cone of the re-growing axon responds to the presence of myelin and myelin-associated inhibitors (MAIs) within the lesion environment and caudal spinal cord. However, less attention has been placed on how the myelination of the axon after SCI, whether by endogenous glia or exogenously implanted glia, may alter axon regeneration. Here, we examine the intersection between intracellular signaling pathways in neurons and glia that are involved in axon myelination and axon growth, to provide greater insight into how interrogating this complex network of molecular interactions may lead to new therapeutics targeting SCI.
Collapse
Affiliation(s)
- Sudheendra N R Rao
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine Miami, FL, USA
| | - Damien D Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of MedicineMiami, FL, USA; The Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, USA; The Neuroscience Program, University of Miami Miller School of MedicineMiami, FL, USA; The Interdisciplinary Stem Cell Institute, University of Miami Miller School of MedicineMiami, FL, USA; Bruce W. Carter Department of Veterans Affairs Medical CenterMiami, FL, USA
| |
Collapse
|
12
|
Grosheva M, Nohroudi K, Schwarz A, Rink S, Bendella H, Sarikcioglu L, Klimaschewski L, Gordon T, Angelov DN. Comparison of trophic factors' expression between paralyzed and recovering muscles after facial nerve injury. A quantitative analysis in time course. Exp Neurol 2016; 279:137-148. [PMID: 26940083 DOI: 10.1016/j.expneurol.2016.02.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 02/07/2016] [Accepted: 02/26/2016] [Indexed: 01/08/2023]
Abstract
After peripheral nerve injury, recovery of motor performance negatively correlates with the poly-innervation of neuromuscular junctions (NMJ) due to excessive sprouting of the terminal Schwann cells. Denervated muscles produce short-range diffusible sprouting stimuli, of which some are neurotrophic factors. Based on recent data that vibrissal whisking is restored perfectly during facial nerve regeneration in blind rats from the Sprague Dawley (SD)/RCS strain, we compared the expression of brain derived neurotrophic factor (BDNF), fibroblast growth factor-2 (FGF2), insulin growth factors 1 and 2 (IGF1, IGF2) and nerve growth factor (NGF) between SD/RCS and SD-rats with normal vision but poor recovery of whisking function after facial nerve injury. To establish which trophic factors might be responsible for proper NMJ-reinnervation, the transected facial nerve was surgically repaired (facial-facial anastomosis, FFA) for subsequent analysis of mRNA and proteins expressed in the levator labii superioris muscle. A complicated time course of expression included (1) a late rise in BDNF protein that followed earlier elevated gene expression, (2) an early increase in FGF2 and IGF2 protein after 2 days with sustained gene expression, (3) reduced IGF1 protein at 28 days coincident with decline of raised mRNA levels to baseline, and (4) reduced NGF protein between 2 and 14 days with maintained gene expression found in blind rats but not the rats with normal vision. These findings suggest that recovery of motor function after peripheral nerve injury is due, at least in part, to a complex regulation of lesion-associated neurotrophic factors and cytokines in denervated muscles. The increase of FGF-2 protein and concomittant decrease of NGF (with no significant changes in BDNF or IGF levels) during the first week following FFA in SD/RCS blind rats possibly prevents the distal branching of regenerating axons resulting in reduced poly-innervation of motor endplates.
Collapse
Affiliation(s)
- Maria Grosheva
- Department of Oto-Rhino-Laryngology, University of Cologne, Germany
| | | | - Alisa Schwarz
- Department of Anatomy I, University of Cologne, Germany
| | - Svenja Rink
- Department of Anatomy I, University of Cologne, Germany
| | - Habib Bendella
- Department of Neurosurgery, Hospital Merheim, University of Witten-Herdecke, Cologne, Germany
| | | | - Lars Klimaschewski
- Division of Neuroanatomy Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Tessa Gordon
- Department of Surgery,The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | |
Collapse
|
13
|
Förthmann B, Grothe C, Claus P. A nuclear odyssey: fibroblast growth factor-2 (FGF-2) as a regulator of nuclear homeostasis in the nervous system. Cell Mol Life Sci 2015; 72:1651-62. [PMID: 25552245 PMCID: PMC11113852 DOI: 10.1007/s00018-014-1818-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/10/2014] [Accepted: 12/19/2014] [Indexed: 01/07/2023]
Abstract
Nuclear localization of classical growth factors is a well-known phenomenon but still remains a molecular and cellular conundrum. Fibroblast growth factor-2 (FGF-2) is an excellent example of a protein which functions as an extracellular molecule involved in canonical receptor tyrosine kinase signaling as well as displaying intracellular functions. Paracrine and nuclear functions are two important sides of the same protein. FGF-2 is expressed in isoforms with different molecular weights from one mRNA species. In rodents, all of these isoforms become imported to the nucleus. In this review, we discuss structural and functional aspects of FGF-2 isoforms in the nervous system. The nuclear odyssey of FGF-2 is reflected by nuclear dynamics, localization to nuclear bodies such as nucleoli, binding to chromatin and engagement in various protein interactions. Recently discovered molecular partnerships of the isoforms shed light on their nuclear functions, thereby greatly extending our knowledge of the multifaceted functions of FGF-2.
Collapse
Affiliation(s)
- Benjamin Förthmann
- Department of Neuroanatomy, Institute of Neuroanatomy, Hannover Medical School, OE 4140, Carl-Neuberg-Str.1, 30625 Hannover, Germany
| | - Claudia Grothe
- Department of Neuroanatomy, Institute of Neuroanatomy, Hannover Medical School, OE 4140, Carl-Neuberg-Str.1, 30625 Hannover, Germany
- Center for Systems Neuroscience, 30625 Hannover, Germany
| | - Peter Claus
- Department of Neuroanatomy, Institute of Neuroanatomy, Hannover Medical School, OE 4140, Carl-Neuberg-Str.1, 30625 Hannover, Germany
- Center for Systems Neuroscience, 30625 Hannover, Germany
| |
Collapse
|
14
|
Schenk H, Haastert‐Talini K, Jungnickel J, Grothe C, Meyer H, Rehage J, Fehr M, Bokemeyer J, Rohn C, Tipold A. Morphometric parameters of peripheral nerves in calves correlated with conduction velocity. J Vet Intern Med 2014; 28:646-55. [PMID: 24417498 PMCID: PMC4857965 DOI: 10.1111/jvim.12271] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 09/21/2013] [Accepted: 11/06/2013] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Peripheral nerve injuries are the most frequent neurologic disorder in cattle. So far, no physiologic values have been established for the motor nerve conduction velocity (mNCV) in this precocial species. OBJECTIVES The electrophysiologic and morphometric reference values of peripheral nerves in calves were determined. It was hypothesized that these parameters would correlate to the high degree of maturity in the first days of life in this species compared to other species. ANIMALS Twenty-six healthy calves were used in this study. METHODS The mNCV of the radial and the sciatic/common peroneal nerve was measured in all 26 calves. Nerve biopsies from a group of 6 calves were taken to correlate the obtained electrophysiologic data with morphological parameters. RESULTS The mean mNCV of the radial nerve was 48.3 ± 10.6 m/s, whereas the mean mNCV of the sciatic/peroneal nerve was with 83.8 ± 5.9 m/s significantly faster (P < .0001). The average fiber diameter was 8.40 ± 2.80 μm (range, 1.98-17.90 μm) and the average g-ratio was 0.61 ± 0.04 SD. CONCLUSION AND CLINICAL IMPORTANCE The established reference values for mNCV in calves correlate well with the evaluated morphometric parameters. Attributable to their comparably fast mNCV and high fiber diameters, juvenile calves appear to be much more mature individuals than other mammals. Electrophysiologic characterization of peripheral nerve injury now is feasible in this species.
Collapse
Affiliation(s)
- H.C. Schenk
- Department of Small Animal Medicine and SurgeryUniversity of Veterinary MedicineHannoverGermany
- Center for Systems Neuroscience (ZSN)HannoverGermany
| | - K. Haastert‐Talini
- School of MedicineInstitute of NeuroanatomyHannoverGermany
- Center for Systems Neuroscience (ZSN)HannoverGermany
| | - J. Jungnickel
- School of MedicineInstitute of NeuroanatomyHannoverGermany
| | - C. Grothe
- School of MedicineInstitute of NeuroanatomyHannoverGermany
- Center for Systems Neuroscience (ZSN)HannoverGermany
| | - H. Meyer
- Clinic for CattleUniversity of Veterinary MedicineHannoverGermany
| | - J. Rehage
- Clinic for CattleUniversity of Veterinary MedicineHannoverGermany
| | - M. Fehr
- Department of Small Animal Medicine and SurgeryUniversity of Veterinary MedicineHannoverGermany
| | - J. Bokemeyer
- Department of Small Animal Medicine and SurgeryUniversity of Veterinary MedicineHannoverGermany
| | - C. Rohn
- Institute of Biometry, Epidemiology and Information ProcessingUniversity of Veterinary MedicineHannoverGermany
| | - A. Tipold
- Department of Small Animal Medicine and SurgeryUniversity of Veterinary MedicineHannoverGermany
- Center for Systems Neuroscience (ZSN)HannoverGermany
| |
Collapse
|
15
|
Förthmann B, van Bergeijk J, Lee YW, Lübben V, Schill Y, Brinkmann H, Ratzka A, Stachowiak MK, Hebert M, Grothe C, Claus P. Regulation of neuronal differentiation by proteins associated with nuclear bodies. PLoS One 2013; 8:e82871. [PMID: 24358231 PMCID: PMC3866168 DOI: 10.1371/journal.pone.0082871] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 11/06/2013] [Indexed: 12/17/2022] Open
Abstract
Nuclear bodies are large sub-nuclear structures composed of RNA and protein molecules. The Survival of Motor Neuron (SMN) protein localizes to Cajal bodies (CBs) and nuclear gems. Diminished cellular concentration of SMN is associated with the neurodegenerative disease Spinal Muscular Atrophy (SMA). How nuclear body architecture and its structural components influence neuronal differentiation remains elusive. In this study, we analyzed the effects of SMN and two of its interaction partners in cellular models of neuronal differentiation. The nuclear 23 kDa isoform of Fibroblast Growth Factor - 2 (FGF-2(23)) is one of these interacting proteins - and was previously observed to influence nuclear bodies by destabilizing nuclear gems and mobilizing SMN from Cajal bodies (CBs). Here we demonstrate that FGF-2(23) blocks SMN-promoted neurite outgrowth, and also show that SMN disrupts FGF-2(23)-dependent transcription. Our results indicate that FGF-2(23) and SMN form an inactive complex that interferes with neuronal differentiation by mutually antagonizing nuclear functions. Coilin is another nuclear SMN binding partner and a marker protein for Cajal bodies (CBs). In addition, coilin is essential for CB function in maturation of small nuclear ribonucleoprotein particles (snRNPs). The role of coilin outside of Cajal bodies and its putative impacts in tissue differentiation are poorly defined. The present study shows that protein levels of nucleoplasmic coilin outside of CBs decrease during neuronal differentiation. Overexpression of coilin has an inhibitory effect on neurite outgrowth. Furthermore, we find that nucleoplasmic coilin inhibits neurite outgrowth independent of SMN binding revealing a new function for coilin in neuronal differentiation.
Collapse
Affiliation(s)
- Benjamin Förthmann
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Yu-Wei Lee
- Department of Pathology and Anatomical Sciences, State University of New York, Buffalo, New York, United States of America
| | - Verena Lübben
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
| | - Yvonne Schill
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
| | - Hella Brinkmann
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
| | - Andreas Ratzka
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
| | - Michal K. Stachowiak
- Department of Pathology and Anatomical Sciences, State University of New York, Buffalo, New York, United States of America
| | - Michael Hebert
- Department of Biochemistry, The University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Claudia Grothe
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Peter Claus
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Hannover, Germany
- * E-mail:
| |
Collapse
|
16
|
Förthmann B, Brinkmann H, Ratzka A, Stachowiak MK, Grothe C, Claus P. Immobile survival of motoneuron (SMN) protein stored in Cajal bodies can be mobilized by protein interactions. Cell Mol Life Sci 2013; 70:2555-68. [PMID: 23334184 PMCID: PMC11113639 DOI: 10.1007/s00018-012-1242-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 11/29/2012] [Accepted: 12/10/2012] [Indexed: 12/25/2022]
Abstract
Reduced levels of survival of motoneuron (SMN) protein lead to spinal muscular atrophy, but it is still unknown how SMN protects motoneurons in the spinal cord against degeneration. In the nucleus, SMN is associated with two types of nuclear bodies denoted as gems and Cajal bodies (CBs). The 23 kDa isoform of fibroblast growth factor-2 (FGF-2(23)) is a nuclear protein that binds to SMN and destabilizes the SMN-Gemin2 complex. In the present study, we show that FGF-2(23) depletes SMN from CBs without affecting their general structure. FRAP analysis of SMN-EGFP in CBs demonstrated that the majority of SMN in CBs remained mobile and allowed quantification of fast, slow and immobile nuclear SMN populations. The potential for SMN release was confirmed by in vivo photoconversion of SMN-Dendra2, indicating that CBs concentrate immobile SMN that could have a specialized function in CBs. FGF-2(23) accelerated SMN release from CBs, accompanied by a conversion of immobile SMN into a mobile population. Furthermore, FGF-2(23) caused snRNP accumulation in CBs. We propose a model in which Cajal bodies store immobile SMN that can be mobilized by its nuclear interaction partner FGF-2(23), leading to U4 snRNP accumulation in CBs, indicating a role for immobile SMN in tri-snRNP assembly.
Collapse
Affiliation(s)
- Benjamin Förthmann
- Institute of Neuroanatomy, Hannover Medical School, OE 4140, Carl-Neuberg-Str.1, 30625 Hannover, Germany
- Center for Systems Neuroscience, 30625 Hannover, Germany
| | - Hella Brinkmann
- Institute of Neuroanatomy, Hannover Medical School, OE 4140, Carl-Neuberg-Str.1, 30625 Hannover, Germany
| | - Andreas Ratzka
- Institute of Neuroanatomy, Hannover Medical School, OE 4140, Carl-Neuberg-Str.1, 30625 Hannover, Germany
| | - Michal K. Stachowiak
- Department of Pathology and Anatomical Sciences, State University of New York, Buffalo, NY 14214 USA
| | - Claudia Grothe
- Institute of Neuroanatomy, Hannover Medical School, OE 4140, Carl-Neuberg-Str.1, 30625 Hannover, Germany
- Center for Systems Neuroscience, 30625 Hannover, Germany
| | - Peter Claus
- Institute of Neuroanatomy, Hannover Medical School, OE 4140, Carl-Neuberg-Str.1, 30625 Hannover, Germany
- Center for Systems Neuroscience, 30625 Hannover, Germany
| |
Collapse
|
17
|
Patejdl R, Markmann S, Benecke R, Wittstock M. Severe acute motor neuropathy after treatment with triple tyrosine kinase inhibitor BIBF 1120 (Nintedanib). Clin Neurol Neurosurg 2013; 115:1851-2. [PMID: 23414813 DOI: 10.1016/j.clineuro.2013.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/22/2013] [Accepted: 01/23/2013] [Indexed: 11/27/2022]
Affiliation(s)
- R Patejdl
- Department of Neurology, University of Rostock, Rostock, Germany.
| | | | | | | |
Collapse
|
18
|
Klimaschewski L, Hausott B, Angelov DN. The pros and cons of growth factors and cytokines in peripheral axon regeneration. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 108:137-71. [PMID: 24083434 DOI: 10.1016/b978-0-12-410499-0.00006-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Injury to a peripheral nerve induces a complex cellular and molecular response required for successful axon regeneration. Proliferating Schwann cells organize into chains of cells bridging the lesion site, which is invaded by macrophages. Approximately half of the injured neuron population sends out axons that enter the glial guidance channels in response to secreted neurotrophic factors and neuropoietic cytokines. These lesion-associated polypeptides create an environment that is highly supportive for axon regrowth, particularly after acute injury, and ensure that the vast majority of regenerating axons are directed toward the distal nerve stump. Unfortunately, most neurotrophic factors and neuropoietic cytokines are also strong stimulators of axonal sprouting. Although some of the axonal branches will withdraw at later stages, the sprouting effect contributes to the misdirection of reinnervation that results in the lack of functional recovery observed in many patients with peripheral nerve injuries. Here, we critically review the role of neuronal growth factors and cytokines during axon regeneration in the peripheral nervous system. Their differential effects on axon elongation and sprouting were elucidated in various studies on intraneuronal signaling mechanisms following nerve lesion. The present data define a goal for future therapeutic strategies, namely, to selectively stimulate a Ras/Raf/ERK-mediated axon elongation program over an intrinsic PI3K-dependent axonal sprouting program in lesioned motor and sensory neurons. Instead of modulating growth factor or cytokine levels at the lesion site, targeting specific intraneuronal molecules, such as the negative feedback inhibitors of ERK signaling, has been shown to promote long-distance regeneration while avoiding sprouting of regenerating axons until they have reached their target areas.
Collapse
Affiliation(s)
- Lars Klimaschewski
- Division of Neuroanatomy, Department of Anatomy and Histology, Innsbruck Medical University, Innsbruck, Austria
| | | | | |
Collapse
|
19
|
Ribeiro-Resende VT, Carrier-Ruiz A, Lemes RMR, Reis RAM, Mendez-Otero R. Bone marrow-derived fibroblast growth factor-2 induces glial cell proliferation in the regenerating peripheral nervous system. Mol Neurodegener 2012; 7:34. [PMID: 22793996 PMCID: PMC3503565 DOI: 10.1186/1750-1326-7-34] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 05/01/2012] [Indexed: 01/19/2023] Open
Abstract
Background Among the essential biological roles of bone marrow-derived cells, secretion of many soluble factors is included and these small molecules can act upon specific receptors present in many tissues including the nervous system. Some of the released molecules can induce proliferation of Schwann cells (SC), satellite cells and lumbar spinal cord astrocytes during early steps of regeneration in a rat model of sciatic nerve transection. These are the major glial cell types that support neuronal survival and axonal growth following peripheral nerve injury. Fibroblast growth factor-2 (FGF-2) is the main mitogenic factor for SCs and is released in large amounts by bone marrow-derived cells, as well as by growing axons and endoneurial fibroblasts during development and regeneration of the peripheral nervous system (PNS). Results Here we show that bone marrow-derived cell treatment induce an increase in the expression of FGF-2 in the sciatic nerve, dorsal root ganglia and the dorsolateral (DL) region of the lumbar spinal cord (LSC) in a model of sciatic nerve transection and connection into a hollow tube. SCs in culture in the presence of bone marrow derived conditioned media (CM) resulted in increased proliferation and migration. This effect was reduced when FGF-2 was neutralized by pretreating BMMC or CM with a specific antibody. The increased expression of FGF-2 was validated by RT-PCR and immunocytochemistry in co-cultures of bone marrow derived cells with sciatic nerve explants and regenerating nerve tissue respectivelly. Conclusion We conclude that FGF-2 secreted by BMMC strongly increases early glial proliferation, which can potentially improve PNS regeneration.
Collapse
Affiliation(s)
- Victor Tulio Ribeiro-Resende
- Laboratório de Neurobiologia Celular e Molecular, Programa de Terapia Celular e Bioengenharia, Instituto de Biofísica Carlos Chagas Filho, UFRJ, Centro de Ciências da Saúde, Bl, G, Cidade Universitária, 21949-900, Rio de Janeiro, Brazil.
| | | | | | | | | |
Collapse
|
20
|
Thau N, Jungnickel J, Knippenberg S, Ratzka A, Dengler R, Petri S, Grothe C. Prolonged survival and milder impairment of motor function in the SOD1 ALS mouse model devoid of fibroblast growth factor 2. Neurobiol Dis 2012; 47:248-57. [PMID: 22542539 DOI: 10.1016/j.nbd.2012.04.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 04/02/2012] [Accepted: 04/09/2012] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by selective motoneuron loss in brain and spinal cord. Mutations in the superoxide dismutase (SOD) 1 gene account for 10-20% of familial ALS patients. The ALS-mouse model over-expressing a mutant human SOD1 (G93A) gene closely mimics human ALS disease. The cause for the selective death of motoneurons is still unclear, but among several pathomechanisms discussed, loss of neurotrophic factors is one possibility. Basic fibroblast growth factor 2 (FGF-2) plays a prominent role in the motor system. In order to evaluate a role of FGF-2 in ALS pathogenesis, double mouse mutants transgenic for the human SOD1 mutation and lacking the endogenous FGF-2 gene were generated. Both heterozygous and homozygous FGF-2 deficient mutant SOD1 mice showed a significant delay in disease onset and less impaired motor performance in comparison to mutant SOD1 mice with normal FGF-2 levels. Survival of the double mouse mutants was significantly prolonged for two weeks. Motoneuron numbers were significantly higher in the double mutants and astrocytosis was diminished at disease endstage. While one would initially have expected that FGF-2 deficiency deteriorates the phenotype of mutant SOD1 animals, our results revealed a protective effect of FGF-2 reduction. In search of the underlying mechanisms, we could show up-regulation of other neurotrophic factors with proven protective effects in the ALS mouse model, ciliary neurotrophic factor (CNTF) and glial derived neurotrophic factor (GDNF) in muscle and spinal cord tissue of double mutant animals.
Collapse
Affiliation(s)
- Nadine Thau
- Hannover Medical School, Department of Neurology, Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|
21
|
Jungnickel J, Eckhardt M, Haastert-Talini K, Claus P, Bronzlik P, Lipokatic-Takacs E, Maier H, Gieselmann V, Grothe C. Polysialyltransferase overexpression in Schwann cells mediates different effects during peripheral nerve regeneration. Glycobiology 2011; 22:107-15. [DOI: 10.1093/glycob/cwr113] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
22
|
Seitz M, Grosheva M, Skouras E, Angelova SK, Ankerne J, Jungnickel J, Grothe C, Klimaschewski L, Hübbers CU, Dunlop SA, Angelov DN. Poor functional recovery and muscle polyinnervation after facial nerve injury in fibroblast growth factor-2-/- mice can be improved by manual stimulation of denervated vibrissal muscles. Neuroscience 2011; 182:241-7. [PMID: 21440044 DOI: 10.1016/j.neuroscience.2011.03.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 03/17/2011] [Accepted: 03/17/2011] [Indexed: 12/23/2022]
Abstract
Functional recovery following facial nerve injury is poor. Adjacent neuromuscular junctions (NMJs) are "bridged" by terminal Schwann cells and numerous regenerating axonal sprouts. We have recently shown that manual stimulation (MS) restores whisking function and reduces polyinnervation of NMJs. Furthermore, MS requires both insulin-like growth factor-1 (IGF-1) and brain-derived neurotrophic factor (BDNF). Here, we investigated whether fibroblast growth factor-2 (FGF-2) was also required for the beneficial effects of MS. Following transection and suture of the facial nerve (facial-facial anastomisis, FFA) in homozygous mice lacking FGF-2 (FGF-2(-/-)), vibrissal motor performance and the percentage of poly-innervated NMJ were quantified. In intact FGF-2(-/-) mice and their wildtype (WT) counterparts, there were no differences in amplitude of vibrissal whisking (about 50°) or in the percentage of polyinnervated NMJ (0%). After 2 months FFA and handling alone (i.e. no MS), the amplitude of vibrissal whisking in WT-mice decreased to 22±3°. In the FGF-2(-/-) mice, the amplitude was reduced further to 15±4°, that is, function was significantly poorer. Functional deficits were mirrored by increased polyinnervation of NMJ in WT mice (40.33±2.16%) with polyinnervation being increased further in FGF-2(-/-) mice (50.33±4.33%). However, regardless of the genotype, MS increased vibrissal whisking amplitude (WT: 33.9°±7.7; FGF-2(-/-): 33.4°±8.1) and concomitantly reduced polyinnervation (WT: 33.9%±7.7; FGF-2(-/-): 33.4%±8.1) to a similar extent. We conclude that, whereas lack of FGF-2 leads to poor functional recovery and target reinnervation, MS can nevertheless confer some functional benefit in its absence.
Collapse
Affiliation(s)
- M Seitz
- Department of Anatomy I, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Jungnickel J, Haastert K, Grzybek M, Thau N, Lipokatic-Takacs E, Ratzka A, Nölle A, Claus P, Grothe C. Mice lacking basic fibroblast growth factor showed faster sensory recovery. Exp Neurol 2010; 223:166-72. [DOI: 10.1016/j.expneurol.2009.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 05/20/2009] [Accepted: 06/02/2009] [Indexed: 01/08/2023]
|
24
|
Jungnickel J, Brämer C, Bronzlik P, Lipokatic-Takacs E, Weinhold B, Gerardy-Schahn R, Grothe C. Level and localization of polysialic acid is critical for early peripheral nerve regeneration. Mol Cell Neurosci 2008; 40:374-81. [PMID: 19138743 DOI: 10.1016/j.mcn.2008.12.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 11/21/2008] [Accepted: 12/11/2008] [Indexed: 12/31/2022] Open
Abstract
PolySia, the most striking post-translational modification of the neural cell adhesion molecule, is down-regulated during postnatal development. After peripheral nerve lesion, polySia is located on neuronal and glial cells normally not synthesizing polySia. However, structural consequences of reduced polySia content for peripheral nerve regeneration have not yet been clear. Furthermore, the contribution of sialyltransferases ST8SiaII and ST8SiaIV for the up-regulation of polySia has not been studied so far. In order to investigate the impact of polySia on regeneration processes of myelinated axons, we examined mouse mutants retaining only one functional sialyltransferase allele. In the absence of ST8SiaII, quantification of myelinated axons revealed a significant decrease in number and size of regenerated fibers without impairment of remyelination. In contrast, St8SiaIV deficiency resulted in increased fiber outgrowth and axonal maturation. Western blot analysis demonstrated that both ST8SiaII and St8SiaIV direct up-regulation of polySia. Cell-specific induction of polySia in myelinating Schwann cells and on regenerated axons in the presence of ST8SiaIV, but not ST8SiaII, indicates that not only the amount of polySia but also its cellular localization has a high impact on the regeneration progress of peripheral nerves.
Collapse
|
25
|
Grothe C, Jungnickel J, Haastert K. Physiological role of basic FGF in peripheral nerve development and regeneration: potential for reconstruction approaches. FUTURE NEUROLOGY 2008. [DOI: 10.2217/14796708.3.5.605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
According to expression studies and functional analyses in mutant mice and in rats, FGF-2 appears to be specifically involved during development of peripheral nerves and in de-/re-generating processes at the lesion site and in spinal ganglia. In the absence of FGF receptor (FGFR)3, axonal and myelin diameters of peripheral nerves are significantly reduced, suggesting that FGFR3 physiologically regulates axonal development. The normally occurring neuronal cell death in spinal ganglia after peripheral nerve axotomy does not take place in FGF-2 and FGFR3-deleted mice, respectively, suggesting that injury-induced apoptosis is mediated via FGF-2 binding to FGFR3. According to a bimodal function of FGF-2, lesion-induced neuron death in rat spinal ganglia can be prevented by application of FGF-2 to the proximal nerve stump, which could be mediated via FGFR1/2. At the lesion site, FGF-2 appears to be involved in stimulating Schwann cell proliferation, promoting neurite outgrowth, especially of sensory nerve fibers, and regulating remyelination.
Collapse
Affiliation(s)
- Claudia Grothe
- Hannover Medical School, Institute of Neuroanatomy, OE 4140, Carl-Neuberg Str. 1, D-30625, Hannover, Germany
| | - Julia Jungnickel
- Hannover Medical School, Institute of Neuroanatomy, OE 4140, Carl-Neuberg Str. 1, D-30625, Hannover, Germany
| | - Kirsten Haastert
- Hannover Medical School, Institute of Neuroanatomy, OE 4140, Carl-Neuberg Str. 1, D-30625, Hannover, Germany
| |
Collapse
|
26
|
Grothe C, Claus P, Haastert K, Lutwak E, Ron D. Expression and regulation of Sef, a novel signaling inhibitor of receptor tyrosine kinases-mediated signaling in the nervous system. Acta Histochem 2008; 110:155-62. [PMID: 17980404 DOI: 10.1016/j.acthis.2007.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 08/06/2007] [Accepted: 08/23/2007] [Indexed: 10/22/2022]
Abstract
Fibroblast growth factors (FGFs) signal via four distinct high affinity cell surface tyrosine kinase receptors, termed FGFR1-FGFR4 (FGFR-FGF-receptor). Recently, a new modulator of the FGF signaling pathway, the transmembrane protein 'similar expression to FGF genes' (Sef), has been identified in zebrafish and subsequently in mammals. Sef from mouse and human inhibits FGF mitogenic activity. In the present study, we analyzed the expression of Sef in distinct rat brain areas, in the spinal cord and in peripheral nerves and spinal ganglia using semi-quantitative RT-PCR. Furthermore, we studied the cellular expression pattern of Sef in intact spinal ganglia and sciatic nerves and, in addition, after crush lesion, using in situ hybridization and immunohistochemistry. Sef transcripts were expressed in all brain areas evaluated and in the spinal cord. A neuronal expression was found in both intact and injured spinal ganglia. Intact sciatic nerves, however, showed little or no Sef expression. Seven days after injury, high Sef expression was concentrated to the crush site, and Schwann cells seemed to be the source of Sef. The labeling pattern of up-regulated Sef was complementary to the patterns of FGF-2 and FGFR1-3, which were localized proximal and distal to the crush site. These results suggest an involvement of Sef during the nerve regeneration process, possibly by fine-tuning the effects of FGF signaling.
Collapse
|
27
|
Know thy Sef: A novel class of feedback antagonists of receptor tyrosine kinase signaling. Int J Biochem Cell Biol 2008; 40:2040-52. [DOI: 10.1016/j.biocel.2008.03.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 03/06/2008] [Accepted: 03/06/2008] [Indexed: 02/06/2023]
|
28
|
Abstract
Whereas the central nervous system (CNS) usually cannot regenerate, peripheral nerves regenerate spontaneously after injury because of a permissive environment and activation of the intrinsic growth capacity of neurons. Functional regeneration requires axon regrowth and remyelination of the regenerated axons by Schwann cells. Multiple factors including neurotrophic factors, extracellular matrix (ECM) proteins, and hormones participate in Schwann cell dedifferentiation, proliferation, and remyelination. We describe the current understanding of peripheral axon regeneration and focus on the molecules and potential mechanisms involved in remyelination.
Collapse
Affiliation(s)
- Zu-Lin Chen
- Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY 10021, USA.
| | | | | |
Collapse
|
29
|
Timmer M, Cesnulevicius K, Winkler C, Kolb J, Lipokatic-Takacs E, Jungnickel J, Grothe C. Fibroblast growth factor (FGF)-2 and FGF receptor 3 are required for the development of the substantia nigra, and FGF-2 plays a crucial role for the rescue of dopaminergic neurons after 6-hydroxydopamine lesion. J Neurosci 2007; 27:459-71. [PMID: 17234579 PMCID: PMC6672785 DOI: 10.1523/jneurosci.4493-06.2007] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Basic fibroblast growth factor (FGF-2) is involved in the development and maintenance of the nervous system. Exogenous administration of FGF-2 increased dopaminergic (DA) graft survival in different animal models of Parkinson's disease. To study the physiological function of the endogenous FGF-2 system, we analyzed the nigrostriatal system of mice lacking FGF-2, mice overexpressing FGF-2, and FGF-receptor-3 (FGFR3)-deficient mice both after development and after 6-hydroxydopamine lesion. FGFR3-deficient mice (+/-) displayed a reduced number of DA neurons compared with the respective wild type. Whereas absence of FGF-2 led to significantly increased numbers of DA neurons, enhanced amount of the growth factor in mice overexpressing FGF-2 resulted in less tyrosine hydroxylase expression and a reduced DA cell density. The volumes of the substantia nigra were enlarged in both FGF-2(-/-) and in FGF-2 transgenic mice, suggesting an important role of FGF-2 for the establishment of the proper number of DA neurons and a normal sized substantia nigra during development. In a second set of experiments, the putative relevance of endogenous FGF-2 after neurotoxin application was investigated regarding the number of rescued DA neurons after partial 6-OHDA lesion. Interestingly, the results after lesion were directly opposed to the results after development: significantly less DA neurons survived in FGF-2(-/-) mice compared with wild-type mice. Together, the results indicate that FGFR3 is crucially involved in regulating the number of DA neurons. The lack of FGF-2 seems to be (over)compensated during development, but, after lesion, compensation mechanisms fail. The transgenic mice showed that endogenous FGF-2 protects DA neurons from 6-OHDA neurotoxicity.
Collapse
Affiliation(s)
| | | | - Christian Winkler
- Neurology, Hannover Medical School, Center for Systems Neuroscience Hannover, 30625 Hannover, Germany
| | | | | | | | | |
Collapse
|
30
|
Raivich G, Makwana M. The making of successful axonal regeneration: Genes, molecules and signal transduction pathways. ACTA ACUST UNITED AC 2007; 53:287-311. [PMID: 17079020 DOI: 10.1016/j.brainresrev.2006.09.005] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 09/12/2006] [Accepted: 09/18/2006] [Indexed: 12/16/2022]
Abstract
Unlike its central counterpart, the peripheral nervous system is well known for its comparatively good potential for regeneration following nerve fiber injury. This ability is mirrored by the de novo expression or upregulation of a wide variety of molecules including transcription factors, growth-stimulating substances, cell adhesion molecules, intracellular signaling enzymes and proteins involved in regulating cell-surface cytoskeletal interactions, that promote neurite outgrowth in cultured neurons. However, their role in vivo is less known. Recent studies using neutralizing antibodies, gene inactivation and overexpression techniques have started to shed light on those endogenous molecules that play a key role in axonal outgrowth and the process of successful functional repair in the injured nervous system. The aim of the current review is to provide a summary on this rapidly growing field and the experimental techniques used to define the specific effects of candidate signaling molecules on axonal regeneration in vivo.
Collapse
Affiliation(s)
- Gennadij Raivich
- Perinatal Brain Repair Group, Department of Obstetrics and Gynaecology, University College London, 86-96 Chenies Mews, London, UK.
| | | |
Collapse
|
31
|
Sabayan B, Bagheri M, Borhani Haghighi A. Possible joint origin of restless leg syndrome (RLS) and migraine. Med Hypotheses 2007; 69:64-6. [PMID: 17258401 DOI: 10.1016/j.mehy.2006.10.060] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Accepted: 10/03/2006] [Indexed: 11/15/2022]
Abstract
Sleep disorders have been described in migraine patients. Among sleep disorders RLS has been reported in up to one-third of migraineurs. Adverse effects of anti migraine therapy by dopamine antagonists can not fully explain this association. Therefore we present the hypothesis that RLS and migraine may have a joint origin. The hypothesis is supported by: (1) the same genetic origin for migraine without aura and RLS in single Italian family on chromosome 14q21; this gene codes survival motor neuron-interacting protein 1 (SIP1) which can play role in both diseases. (2) Correlation of both RLS and migraine with fibromyalgia. (3) Alteration of cortical excitability in both migraine and RLS.
Collapse
Affiliation(s)
- Behnam Sabayan
- Student Research Committee, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | |
Collapse
|
32
|
ZHOU YONGXING, FLINT NICOLEC, MURTIE JOSHUAC, LE TUANQ, ARMSTRONG REGINAC. Retroviral lineage analysis of fibroblast growth factor receptor signaling in FGF2 inhibition of oligodendrocyte progenitor differentiation. Glia 2006; 54:578-90. [PMID: 16921523 PMCID: PMC1876694 DOI: 10.1002/glia.20410] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Fibroblast growth factor 2 (FGF2) inhibits oligodendrocyte progenitor cell (OPC) differentiation during development and limits remyelination following chronic demyelination. The current study examines the mechanism underlying this effect of FGF2 expression on OPC differentiation. Retroviral lineage tracing demonstrates a direct in vivo effect of FGF receptor (FGFR) signaling on OPC differentiation. Retrovirus expressing a dominant negative FGFR construct (FGFRdn) and green fluorescent protein (GFP) was injected into the dorsal columns of postnatal day 7 (P7) mice followed by perfusion at P28. Among the GFP-labeled cells, FGFRdn retrovirus generated a higher proportion of oligodendrocytes than did control infections. This result from FGFRdn expression in OPCs was similar to the result obtained in our previous study using control retrovirus in FGF2 null mice. Further, in vitro retroviral siRNA expression distinguishes the function of specific FGFR isoforms in OPC responses to FGF2. FGF2 inhibition of OPC differentiation was effectively blocked by siRNA targeted to FGFR1, but not FGFR2 or FGFR3. We propose a model of direct FGF2 activation of FGFR1 leading to inhibition of OPC differentiation. This signaling pathway may be an important regulator of oligodendrocyte generation during myelination in development and may perturb OPC generation of remyelinating oligodendrocytes in demyelinating disease.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Cell Lineage/drug effects
- Cell Lineage/physiology
- Cells, Cultured
- Fibroblast Growth Factor 2/metabolism
- Fibroblast Growth Factor 2/pharmacology
- Genetic Vectors/genetics
- Green Fluorescent Proteins
- Growth Inhibitors/metabolism
- Growth Inhibitors/pharmacology
- Male
- Mice
- Mice, Inbred C57BL
- Nerve Fibers, Myelinated/drug effects
- Nerve Fibers, Myelinated/metabolism
- Nerve Regeneration/physiology
- Oligodendroglia/drug effects
- Oligodendroglia/metabolism
- RNA, Small Interfering/genetics
- Rats
- Receptor, Fibroblast Growth Factor, Type 1/drug effects
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Recombinant Fusion Proteins/genetics
- Retroviridae/genetics
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Stem Cells/drug effects
- Stem Cells/metabolism
- Transfection/methods
Collapse
Affiliation(s)
- YONG-XING ZHOU
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - NICOLE C. FLINT
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - JOSHUA C. MURTIE
- Program in Molecular and Cell Biology and Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - TUAN Q. LE
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - REGINA C. ARMSTRONG
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Program in Molecular and Cell Biology and Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Neuroscience Program; Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
33
|
Grothe C, Haastert K, Jungnickel J. Physiological function and putative therapeutic impact of the FGF-2 system in peripheral nerve regeneration—Lessons from in vivo studies in mice and rats. ACTA ACUST UNITED AC 2006; 51:293-9. [PMID: 16430964 DOI: 10.1016/j.brainresrev.2005.12.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Accepted: 12/07/2005] [Indexed: 11/23/2022]
Abstract
Diffusible and substratum-bound molecules regulate development and regeneration of the peripheral nervous system. The understanding of physiological function of these factors could have an impact on the development of new therapeutic strategies to stimulate nerve regeneration across long gaps. Within the group of trophic factors, basic fibroblast growth factor (FGF-2) and its high-affinity receptors are expressed in the intact peripheral nervous system and regulated following nerve injury. After exogenous application, FGF-2 promotes neuronal survival and neurite outgrowth in vitro and in vivo. In this review, animal studies on the physiological role of the endogenous FGF-2 system and the regenerative capacity after exogenous FGF-2 administration are summarized. The concept of FGF-2 function is discussed in context with other growth factors that are also physiologically relevant in the peripheral nervous system. Studies of sciatic nerve axotomy in FGF-2- and FGF receptor (R) 3-deleted mice, respectively, strongly suggested that FGF-2 binding to FGFR3 is involved in injury-induced neuronal apoptosis. At the lesion site, inhibition of myelination and stimulation of Schwann cell proliferation by FGF-2 via FGFR1/2 is suggested from rat and mouse studies, whereas neurite formation is very likely enhanced via FGFR3 activation. Additionally to these demonstrated physiological functions of endogenous FGF-2, administration of FGF-2 isoforms in the rat model of nerve regeneration across long gaps revealed a role of the high molecular weight isoforms of FGF-2 on sensory recovery. Within the group of physiologically relevant trophic factors, the FGF-2 system seems to be crucially involved in the scenario of peripheral nerve development and regeneration.
Collapse
Affiliation(s)
- Claudia Grothe
- Hannover Medical School, Department of Neuroanatomy, Hannover, Germany.
| | | | | |
Collapse
|
34
|
Abstract
In multiple sclerosis lesions, remyelination typically fails with repeated or chronic demyelinating episodes and results in neurologic disability. Acute demyelination models in rodents typically exhibit robust spontaneous remyelination that prevents appropriate evaluation of strategies for improving conditions of insufficient remyelination. In the current study, we used a mouse model of chronic demyelination induced by continuous ingestion of 0.2% cuprizone for 12 weeks. This chronic process depleted the oligodendrocyte progenitor population and impaired oligodendrocyte regeneration. Remyelination remained limited after removal of cuprizone from the diet. Fibroblast growth factor 2 (FGF2) expression was persistently increased in the corpus callosum of chronically demyelinated mice as compared with nonlesioned mice. We used FGF2−/− mice to determine whether removal of endogenous FGF2 promoted remyelination of chronically demyelinated areas. Wild-type and FGF2−/− mice exhibited similar demyelination during chronic cuprizone treatment. Importantly, in contrast to wild-type mice, the FGF2−/− mice spontaneously remyelinated completely during the recovery period after chronic demyelination. Increased remyelination in FGF2−/− mice correlated with enhanced oligodendroglial regeneration. FGF2 genotype did not alter the density of oligodendrocyte progenitor cells or proliferating cells after chronic demyelination. These findings indicate that attenuating FGF2 created a sufficiently permissive lesion environment for endogenous cells to effectively remyelinate viable axons even after chronic demyelination.
Collapse
Affiliation(s)
- Regina C Armstrong
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA. 20814, USA.
| | | | | | | | | |
Collapse
|
35
|
Jungnickel J, Haase K, Konitzer J, Timmer M, Grothe C. Faster nerve regeneration after sciatic nerve injury in mice over-expressing basic fibroblast growth factor. ACTA ACUST UNITED AC 2006; 66:940-8. [PMID: 16758491 DOI: 10.1002/neu.20265] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Basic fibroblast growth factor (FGF-2) is expressed in the peripheral nervous system and is up-regulated after nerve lesion. It has been demonstrated that administration of FGF-2 protects neurons from injury-induced cell death and promotes axonal regrowth. Using transgenic mice over-expressing FGF-2 (TgFGF-2), we addressed the importance of endogenously generated FGF-2 on sensory neuron loss and sciatic nerve regeneration. After sciatic nerve transection, wild-type and transgenic mice showed the same degree of cell death in L5 spinal ganglia. Also, the number of chromatolytic, eccentric, and pyknotic sensory neurons was not changed under elevated levels of FGF-2. Morphometric evaluation of intact nerves from TgFGF-2 mice revealed no difference in number and size of myelinated fibers compared to wild-type mice. One week after crush injury, the number of regenerated axons was doubled and the myelin thickness was significantly smaller in transgenic mice. After 2 and 4 weeks, morphometric analysis and functional tests revealed no differences in recovery of sensory and motor nerve fibers. To study the role of FGF-2 over-expression on Schwann cell proliferation during the early regeneration process, we used BrdU-labeling to mark dividing cells. In transgenic mice, the number of proliferating cells was significantly increased distal to the crush site compared to wild-types. We propose that endogenously synthesized FGF-2 influences early peripheral nerve regeneration by regulating Schwann cell proliferation, axonal regrowth, and remyelination.
Collapse
Affiliation(s)
- Julia Jungnickel
- Department of Neuroanatomy OE 4140, Center of Anatomy, Hannover Medical School, D-30623 Hannover, Germany.
| | | | | | | | | |
Collapse
|
36
|
Haastert K, Lipokatic E, Fischer M, Timmer M, Grothe C. Differentially promoted peripheral nerve regeneration by grafted Schwann cells over-expressing different FGF-2 isoforms. Neurobiol Dis 2005; 21:138-53. [PMID: 16122933 DOI: 10.1016/j.nbd.2005.06.020] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Revised: 06/27/2005] [Accepted: 06/27/2005] [Indexed: 10/25/2022] Open
Abstract
Artificial nerve grafts are needed to reconstruct massive defects in the peripheral nervous system when autologous nerve grafts are not available in sufficient amounts. Nerve grafts containing Schwann cells display a suitable substrate for long-distance regeneration. We present here a comprehensive analysis of the in vivo effects of different isoforms of fibroblast growth factor-2 (FGF-2) on peripheral nerve regeneration across long gaps. FGF-2 isoforms were provided by grafted, genetically modified Schwann cells over-expressing 18-kDa-FGF-2 and 21-/23-kDa-FGF-2, respectively. Functional tests evaluated motor and sensory recovery. Additionally, morphometrical analyses of regenerated nerves were performed 3 and 6 months after grafting. Distinct regeneration promoting effects of the different FGF-2 isoforms were found. 18-kDa-FGF-2 mediated inhibitory effects on the grade of myelination of regenerating axons, whereas 21-/23-kDa-FGF-2 mediated early recovery of sensory functions and stimulation of long-distance myelination of regenerating axons. The results contribute to the development of new therapeutic strategies in peripheral nerve repair.
Collapse
Affiliation(s)
- Kirsten Haastert
- Department of Neuroanatomy, Hannover Medical School, OE 4140, Carl-Neuberg-Str.1, 30625 Hannover, Germany.
| | | | | | | | | |
Collapse
|
37
|
Jungnickel J, Klutzny A, Guhr S, Meyer K, Grothe C. Regulation of neuronal death and calcitonin gene-related peptide by fibroblast growth factor-2 and FGFR3 after peripheral nerve injury: Evidence from mouse mutants. Neuroscience 2005; 134:1343-50. [PMID: 16009496 DOI: 10.1016/j.neuroscience.2005.04.066] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 04/19/2005] [Accepted: 04/23/2005] [Indexed: 10/25/2022]
Abstract
The presence and regulation of basic fibroblast growth factor and its high-affinity tyrosine kinase receptor FGFR3 in sensory neurons during development and after peripheral nerve injury suggest a physiological role of the fibroblast growth factor-2 system for survival and maintenance of sensory neurons. Here we investigated L5 spinal ganglia of intact and lesioned fibroblast growth factor-2 knock-out and FGFR3 knock-out mice. Quantification of sensory neurons in intact L5 spinal ganglia revealed no differences between wild-types and mutant mice. After sciatic nerve axotomy, the normally occurring neuron loss in wild-type mice was significantly reduced in both knock-out strains suggesting that fibroblast growth factor-2 is involved in neuronal death mediated via FGFR3. In addition, the number of chromatolytic and eccentric cells was significantly increased in fibroblast growth factor-2 knock-out mice indicating a transient protection of injured spinal ganglia neurons in the absence of fibroblast growth factor-2. The expression of the neuropeptide calcitonin gene-related peptide in sensory neurons of intact fibroblast growth factor-2 knock-out and FGFR3 knock-out mice was not changed in comparison to adequate wild-types. Fibroblast growth factor-2 wild-type and FGFR3 wild-type mice showed a lesion-induced decrease of calcitonin gene-related peptide-positive neurons in ipsilateral L5 spinal ganglia whereas the loss of calcitonin gene-related peptide-immunoreactive sensory neurons is reduced in the absence of fibroblast growth factor-2 or FGFR3, respectively. In addition, FGFR3 wild-type and knock-out mice displayed a contralateral reduction of the neuropeptide after axotomy. These results suggest that endogenous fibroblast growth factor-2 and FGFR3 are crucially involved in the regulation of survival and calcitonin gene-related peptide expression of lumbar sensory neurons after lesion, but not during development.
Collapse
Affiliation(s)
- J Jungnickel
- Hannover Medical School, Department of Neuroanatomy, Germany.
| | | | | | | | | |
Collapse
|