1
|
Yi LX, Woon HR, Saw G, Zeng L, Tan EK, Zhou ZD. Induced pluripotent stem cell-related approaches to generate dopaminergic neurons for Parkinson's disease. Neural Regen Res 2025; 20:3193-3206. [PMID: 39665833 PMCID: PMC11881713 DOI: 10.4103/nrr.nrr-d-24-00771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/25/2024] [Accepted: 10/23/2024] [Indexed: 12/13/2024] Open
Abstract
The progressive loss of dopaminergic neurons in affected patient brains is one of the pathological features of Parkinson's disease, the second most common human neurodegenerative disease. Although the detailed pathogenesis accounting for dopaminergic neuron degeneration in Parkinson's disease is still unclear, the advancement of stem cell approaches has shown promise for Parkinson's disease research and therapy. The induced pluripotent stem cells have been commonly used to generate dopaminergic neurons, which has provided valuable insights to improve our understanding of Parkinson's disease pathogenesis and contributed to anti-Parkinson's disease therapies. The current review discusses the practical approaches and potential applications of induced pluripotent stem cell techniques for generating and differentiating dopaminergic neurons from induced pluripotent stem cells. The benefits of induced pluripotent stem cell-based research are highlighted. Various dopaminergic neuron differentiation protocols from induced pluripotent stem cells are compared. The emerging three-dimension-based brain organoid models compared with conventional two-dimensional cell culture are evaluated. Finally, limitations, challenges, and future directions of induced pluripotent stem cell-based approaches are analyzed and proposed, which will be significant to the future application of induced pluripotent stem cell-related techniques for Parkinson's disease.
Collapse
Affiliation(s)
| | | | | | - Li Zeng
- National Neuroscience Institute, Singapore
- Department of Neurology, Singapore General Hospital, Singapore
- Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore
| | - Eng King Tan
- National Neuroscience Institute, Singapore
- Department of Neurology, Singapore General Hospital, Singapore
- Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore
| | - Zhi Dong Zhou
- National Neuroscience Institute, Singapore
- Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore
| |
Collapse
|
2
|
Wang Y, Wang Z, Wang L, Sun Y, Song H, Cheng X, He X, Gao Z, Sun Y. Human Induced Pluripotent Stem Cells: Directed Differentiation Methods and Applications in Brain Diseases. J Neurosci Res 2025; 103:e70027. [PMID: 39935271 DOI: 10.1002/jnr.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 01/08/2025] [Accepted: 01/29/2025] [Indexed: 02/13/2025]
Abstract
Human induced pluripotent stem cells (hiPSCs), similar to embryonic stem cells, are a class of pluripotent stem cells with the potential to differentiate into various kinds of cells. Because the application of hiPSCs obtained by reprogramming patients' somatic cells in the treatment of brain diseases bypasses the ethical constraints on the use of embryonic stem cells and mitigates immune rejection, hiPSCs have profound clinical application prospects. In this review, we first summarized the differentiation methods of hiPSCs into different kinds of neurons, and secondly discussed the application of hiPSCs in several brain disease models, so as to provide a reference for the future application of hiPSCs in the studies and treatment of brain diseases.
Collapse
Affiliation(s)
- Yu Wang
- Department of Pharmacy, College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Ziping Wang
- Department of Pharmacy, College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Le Wang
- Department of Pharmaceutical Engineering, Hebei Chemical & Pharmaceutical College, Shijiazhuang, China
- Hebei Technological Innovation Center of Chiral Medicine, Shijiazhuang, Hebei province, China
| | - Yanping Sun
- Department of Pharmacy, College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Huijia Song
- Department of Pharmacy, College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Xiaokun Cheng
- New Drug Research & Development Co., Ltd., North China Pharmaceutical Group Corporation, Shijiazhuang, China
| | - Xiaoliang He
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| | - Zibin Gao
- Department of Pharmacy, College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- Hebei Pharmaceutical and Chemical Technology Innovation Center, Hebei University of Science and Technology, Shijiazhuang, China
- State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, China
| | - Yongjun Sun
- Department of Pharmacy, College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- Hebei Pharmaceutical and Chemical Technology Innovation Center, Hebei University of Science and Technology, Shijiazhuang, China
- State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, China
| |
Collapse
|
3
|
Galgani A, Scotto M, Giorgi FS. The Neuroanatomy of Induced Pluripotent Stem Cells: In Vitro Models of Subcortical Nuclei in Neurodegenerative Disorders. Curr Issues Mol Biol 2024; 46:10180-10199. [PMID: 39329959 PMCID: PMC11430477 DOI: 10.3390/cimb46090607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Neuromodulatory subcortical systems (NSSs) are monoaminergic and cholinergic neuronal groups that are markedly and precociously involved in the pathogenesis of many neurodegenerative disorders (NDDs), including Parkinson's and Alzheimer's diseases. In humans, although many tools have been developed to infer information on these nuclei, encompassing neuroimaging and neurophysiological methods, a detailed and specific direct evaluation of their cellular features in vivo has been difficult to obtain until recent years. The development of induced pluripotent stem cell (iPSC) models has allowed research to deeply delve into the cellular and molecular biology of NSS neurons. In fact, iPSCs can be produced easily and non-invasively from patients' fibroblasts or circulating blood monocytes, by de-differentiating those cells using specific protocols, and then be re-differentiated towards neural phenotypes, which may reproduce the specific features of the correspondent brain neurons (including NSS ones) from the same patient. In this review, we summarized findings obtained in the field of NDDs using iPSCs, with the aim to understand how reliably these might represent in vitro models of NSS. We found that most of the current literature in the field of iPSCs and NSSs in NDDs has focused on midbrain dopaminergic neurons in Parkinson's disease, providing interesting results on cellular pathophysiology and even leading to the first human autologous transplantation. Differentiation protocols for noradrenergic, cholinergic, and serotoninergic neurons have also been recently defined and published. Thus, it might be expected that in the near future, this approach could extend to other NSSs and other NDDs.
Collapse
Affiliation(s)
- Alessandro Galgani
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Marco Scotto
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
- Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Filippo S. Giorgi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
- IRCCS Stella Maris Foundation, 56128 Pisa, Italy
| |
Collapse
|
4
|
Bhatt A, Bhardwaj H, Srivastava P. Mesenchymal stem cell therapy for Alzheimer's disease: A novel therapeutic approach for neurodegenerative diseases. Neuroscience 2024; 555:52-68. [PMID: 39032806 DOI: 10.1016/j.neuroscience.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Alzheimer's disease (AD) is one of the most progressive and prevalent types of neurodegenerative diseases in the aging population (aged >65 years) and is considered a major factor for dementia, affecting 55 million people worldwide. In the current scenario, drug-based therapies have been employed for the treatment of Alzheimer's disease but are only able to provide symptomatic relief to patients rather than a permanent solution from Alzheimer's. Recent advancements in stem cell research unlock new horizons for developing effective and highly potential therapeutic approaches due to their self-renewal, self-replicating, regenerative, and high differentiation capabilities. Stem cells come in multiple lineages such as embryonic, neural, and induced pluripotent, among others. Among different kinds of stem cells, mesenchymal stem cells are the most investigated for Alzheimer's treatment due to their multipotent nature, low immunogenicity, ability to penetrate the blood-brain barrier, and low risk of tumorigenesis, immune & inflammatory modulation, etc. They have been seen to substantially promote neurogenesis, synaptogenesis by secreting neurotrophic growth factors, as well as in ameliorating the Aβ and tau-mediated toxicity. This review covers the pathophysiology of AD, new medications, and therapies. Further, it will focus on the advancements and benefits of Mesenchymal Stem Cell therapies, their administration methods, clinical trials concerning AD progression, along with their future prospective.
Collapse
Affiliation(s)
- Aditya Bhatt
- Department of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, India
| | - Harshita Bhardwaj
- Department of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, India
| | - Priyanka Srivastava
- Department of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
5
|
Potdar C, Jagtap S, Singh K, Yadav R, Pal PK, Datta I. Impaired Sonic Hedgehog Responsiveness of Induced Pluripotent Stem Cell-Derived Floor Plate Cells Carrying the LRRK2-I1371V Mutation Contributes to the Ontogenic Origin of Lower Dopaminergic Neuron Yield. Stem Cells Dev 2024; 33:306-320. [PMID: 38753688 DOI: 10.1089/scd.2023.0283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
Lower population of dopaminergic (DA) neurons is known to increase susceptibility to Parkinson's disease (PD), and our earlier study showed a lower yield of DA neurons in Leucine-Rich Repeat Kinase Isoleucine 1371 Valine (LRRK2-I1371V) mutation-carrying PD patient-derived induced Pluripotent Stem Cells (iPSCs). Although the role of Sonic Hedgehog (SHH) in DA neurogenesis of floor plate cells (FPCs) is known, the effect of LRRK2 mutations on SHH responsiveness of FPCs impacting DA neuronal yield has not been studied. We investigated SHH responsiveness of FPCs derived from LRRK2-I1371V PD patient iPSCs with regard to the expression of SHH receptors Patched1 (Ptch1) and Smoothened (Smo), in conjunction with nuclear Gli1 (glioma-associated oncogene 1) expression, intracellular Ca2+ rise, and cytosolic cyclic adenosine monophosphate (cAMP) levels upon SHH induction. In addition, we examined the mechanistic link with LRRK2-I1371V gain-of-function by assessing membrane fluidity and Rab8A and Rab10 phosphorylation in SH-SY5Y cells and healthy control (HC) FPCs overexpressing LRRK2-I1371V as well as FPCs. Although total expression of Ptch1 and Smo was comparable, receptor expression on cell surface was significantly lower in LRRK2-I1371V FPCs than in HC FPCs, with distinctly lower nuclear expression of the downstream transcription factor Gli1. HC-FPCs transfected with LRRK2-I1371V exhibited a similarly reduced cell surface expression of Ptch1 and Smo. Intracellular Ca2+ response was significantly lower with corresponding elevated cAMP levels in LRRK2-I1371V FPCs compared with HC FPCs upon SHH stimulation. The LRRK2-I1371V mutant FPCs and LRRK2-I1371V-transfected SH-SY5Y and HC FPCs too exhibited higher autophosphorylation of phospho LRRK2 (pLRRK2) serine1292 and serine935, as well as substrate phosphorylation of Rab8A and Rab10. Concurrent increase in membrane fluidity, accompanied by a decrease in membrane cholesterol, and lower expression of lipid raft marker caveolin 1 were also observed in them. These findings suggest that impaired SHH responsiveness of LRRK2-I1371V PD FPCs indeed leads to lower yield of DA neurons during ontogeny. Reduced cell surface expression of SHH receptors is influenced by alteration in membrane fluidity owing to the increased substrate phosphorylation of Rab8A and reduced membrane protein trafficking due to pRab10, both results of the LRRK2-I1371V mutation.
Collapse
Affiliation(s)
- Chandrakanta Potdar
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru, India
| | - Soham Jagtap
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru, India
| | - Khushboo Singh
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru, India
| | - Ravi Yadav
- Department of Neurology, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru, India
| | - Indrani Datta
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru, India
| |
Collapse
|
6
|
Ifediora N, Canoll P, Hargus G. Human stem cell transplantation models of Alzheimer's disease. Front Aging Neurosci 2024; 16:1354164. [PMID: 38450383 PMCID: PMC10915253 DOI: 10.3389/fnagi.2024.1354164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/06/2024] [Indexed: 03/08/2024] Open
Abstract
Alzheimer's disease (AD) is the most frequent form of dementia. It is characterized by pronounced neuronal degeneration with formation of neurofibrillary tangles and deposition of amyloid β throughout the central nervous system. Animal models have provided important insights into the pathogenesis of AD and they have shown that different brain cell types including neurons, astrocytes and microglia have important functions in the pathogenesis of AD. However, there are difficulties in translating promising therapeutic observations in mice into clinical application in patients. Alternative models using human cells such as human induced pluripotent stem cells (iPSCs) may provide significant advantages, since they have successfully been used to model disease mechanisms in neurons and in glial cells in neurodegenerative diseases in vitro and in vivo. In this review, we summarize recent studies that describe the transplantation of human iPSC-derived neurons, astrocytes and microglial cells into the forebrain of mice to generate chimeric transplantation models of AD. We also discuss opportunities, challenges and limitations in using differentiated human iPSCs for in vivo disease modeling and their application for biomedical research.
Collapse
Affiliation(s)
- Nkechime Ifediora
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Gunnar Hargus
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, United States
| |
Collapse
|
7
|
Balestri W, Sharma R, da Silva VA, Bobotis BC, Curle AJ, Kothakota V, Kalantarnia F, Hangad MV, Hoorfar M, Jones JL, Tremblay MÈ, El-Jawhari JJ, Willerth SM, Reinwald Y. Modeling the neuroimmune system in Alzheimer's and Parkinson's diseases. J Neuroinflammation 2024; 21:32. [PMID: 38263227 PMCID: PMC10807115 DOI: 10.1186/s12974-024-03024-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/16/2024] [Indexed: 01/25/2024] Open
Abstract
Parkinson's disease (PD) and Alzheimer's disease (AD) are neurodegenerative disorders caused by the interaction of genetic, environmental, and familial factors. These diseases have distinct pathologies and symptoms that are linked to specific cell populations in the brain. Notably, the immune system has been implicated in both diseases, with a particular focus on the dysfunction of microglia, the brain's resident immune cells, contributing to neuronal loss and exacerbating symptoms. Researchers use models of the neuroimmune system to gain a deeper understanding of the physiological and biological aspects of these neurodegenerative diseases and how they progress. Several in vitro and in vivo models, including 2D cultures and animal models, have been utilized. Recently, advancements have been made in optimizing these existing models and developing 3D models and organ-on-a-chip systems, holding tremendous promise in accurately mimicking the intricate intracellular environment. As a result, these models represent a crucial breakthrough in the transformation of current treatments for PD and AD by offering potential for conducting long-term disease-based modeling for therapeutic testing, reducing reliance on animal models, and significantly improving cell viability compared to conventional 2D models. The application of 3D and organ-on-a-chip models in neurodegenerative disease research marks a prosperous step forward, providing a more realistic representation of the complex interactions within the neuroimmune system. Ultimately, these refined models of the neuroimmune system aim to aid in the quest to combat and mitigate the impact of debilitating neuroimmune diseases on patients and their families.
Collapse
Affiliation(s)
- Wendy Balestri
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Medical Technologies Innovation Facility, Nottingham Trent University, Nottingham, UK
| | - Ruchi Sharma
- Department of Mechanical Engineering, University of Victoria, Victoria, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
| | - Victor A da Silva
- Department of Mechanical Engineering, University of Victoria, Victoria, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
| | - Bianca C Bobotis
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
| | - Annabel J Curle
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Vandana Kothakota
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | | | - Maria V Hangad
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
- Department of Chemistry, University of Victoria, Victoria, BC, Canada
| | - Mina Hoorfar
- Department of Mechanical Engineering, University of Victoria, Victoria, Canada
| | - Joanne L Jones
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
- Neurosciences Axis, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Institute On Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
| | - Jehan J El-Jawhari
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Stephanie M Willerth
- Department of Mechanical Engineering, University of Victoria, Victoria, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
| | - Yvonne Reinwald
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, UK.
- Medical Technologies Innovation Facility, Nottingham Trent University, Nottingham, UK.
| |
Collapse
|
8
|
Wu D, Khan FA, Zhang K, Pandupuspitasari NS, Negara W, Guan K, Sun F, Huang C. Retinoic acid signaling in development and differentiation commitment and its regulatory topology. Chem Biol Interact 2024; 387:110773. [PMID: 37977248 DOI: 10.1016/j.cbi.2023.110773] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
Retinoic acid (RA), the derivative of vitamin A/retinol, is a signaling molecule with important implications in health and disease. It is a well-known developmental morphogen that functions mainly through the transcriptional activity of nuclear RA receptors (RARs) and, uncommonly, through other nuclear receptors, including peroxisome proliferator-activated receptors. Intracellular RA is under spatiotemporally fine-tuned regulation by synthesis and degradation processes catalyzed by retinaldehyde dehydrogenases and P450 family enzymes, respectively. In addition to dictating the transcription architecture, RA also impinges on cell functioning through non-genomic mechanisms independent of RAR transcriptional activity. Although RA-based differentiation therapy has achieved impressive success in the treatment of hematologic malignancies, RA also has pro-tumor activity. Here, we highlight the relevance of RA signaling in cell-fate determination, neurogenesis, visual function, inflammatory responses and gametogenesis commitment. Genetic and post-translational modifications of RAR are also discussed. A better understanding of RA signaling will foster the development of precision medicine to improve the defects caused by deregulated RA signaling.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Faheem Ahmed Khan
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | | | - Windu Negara
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| |
Collapse
|
9
|
Emborg ME, Gambardella JC, Zhang A, Federoff HJ. Autologous vs heterologous cell replacement strategies for Parkinson disease and other neurologic diseases. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:41-56. [PMID: 39341662 DOI: 10.1016/b978-0-323-90120-8.00010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Successful cell replacement strategies for brain repair depend on graft integration into the neural network, which is affected by the immune response to the grafted cells. Using Parkinson disease as an example, in this chapter, we consider the immune system interaction and its role in autologous vs heterologous graft survival and integration, as well as past and emerging strategies to overcome the immunologic response. We also reflect on the role of nonhuman primate research to assess novel approaches and consider the role of different stakeholders on advancing the most promising new approaches into the clinic.
Collapse
Affiliation(s)
- Marina E Emborg
- Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States; Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, United States; Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States.
| | - Julia C Gambardella
- Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States; Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Ai Zhang
- Aspen Neuroscience, San Diego, CA, United States
| | - Howard J Federoff
- Kenai Therapeutics, San Diego, CA, United States; Georgetown University Medical Center, Georgetown, Washington, DC, United States
| |
Collapse
|
10
|
Chitrangi S, Vaity P, Jamdar A, Bhatt S. Patient-derived organoids for precision oncology: a platform to facilitate clinical decision making. BMC Cancer 2023; 23:689. [PMID: 37479967 PMCID: PMC10362580 DOI: 10.1186/s12885-023-11078-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/16/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Despite recent advances in research, there are still critical lacunae in our basic understanding of the cause, pathogenesis, and natural history of many cancers, especially heterogeneity in patient response to drugs and mediators in the transition from malignant to invasive phenotypes. The explication of the pathogenesis of cancer has been constrained by limited access to patient samples, tumor heterogeneity and lack of reliable biological models. Amelioration in cancer treatment depends on further understanding of the etiologic, genetic, biological, and clinical heterogeneity of tumor microenvironment. Patient-derived organoids recapitulate the basic features of primary tumors, including histological complexity and genetic heterogeneity, which is instrumental in predicting patient response to drugs. METHODS Human iPSCs from healthy donors, breast and ovarian cancer patients were successfully differentiated towards isogenic hepatic, cardiac, neural and endothelial lineages. Multicellular organoids were established using Primary cells isolated from tumor tissues, histologically normal tissues adjacent to the tumors (NATs) and adipose tissues (source of Mesenchymal Stem Cells) from ovarian and breast cancer patients. Further these organoids were propagated and used for drug resistance/sensitivity studies. RESULTS Ovarian and breast cancer patients' organoids showed heterogeneity in drug resistance and sensitivity. iPSCs-derived cardiomyocytes, hepatocytes and neurons showed donor-to-donor variability of chemotherapeutic drug sensitivity in ovarian cancer patients, breast cancer patients and healthy donors. CONCLUSION We report development of a novel integrated platform to facilitate clinical decision-making using the patient's primary cells, iPSCs and derivatives, to clinically relevant models for oncology research.
Collapse
Affiliation(s)
- Swati Chitrangi
- Department of Integrated Drug Discovery and Development, Yashraj Biotechnology Limited, C-232 and C-113, TTC Industrial Area, MIDC, Pawane, Maharashtra, 400705, India
| | - Pooja Vaity
- Department of Integrated Drug Discovery and Development, Yashraj Biotechnology Limited, C-232 and C-113, TTC Industrial Area, MIDC, Pawane, Maharashtra, 400705, India
| | - Aishwarya Jamdar
- Department of Integrated Drug Discovery and Development, Yashraj Biotechnology Limited, C-232 and C-113, TTC Industrial Area, MIDC, Pawane, Maharashtra, 400705, India
| | - Shweta Bhatt
- Department of Integrated Drug Discovery and Development, Yashraj Biotechnology Limited, C-232 and C-113, TTC Industrial Area, MIDC, Pawane, Maharashtra, 400705, India.
- Yashraj Biotechnology GmbH, Uhlandstraße 20-25, 10623, Berlin, Germany.
- Yashraj Biotechnology Limited, 8, The Green STE A, Dover, Delaware State, 19901, USA.
| |
Collapse
|
11
|
Prajapati A, Mehan S, Khan Z. The role of Smo-Shh/Gli signaling activation in the prevention of neurological and ageing disorders. Biogerontology 2023:10.1007/s10522-023-10034-1. [PMID: 37097427 DOI: 10.1007/s10522-023-10034-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/05/2023] [Indexed: 04/26/2023]
Abstract
Sonic hedgehog (Shh) signaling is an essential central nervous system (CNS) pathway involved during embryonic development and later life stages. Further, it regulates cell division, cellular differentiation, and neuronal integrity. During CNS development, Smo-Shh signaling is significant in the proliferation of neuronal cells such as oligodendrocytes and glial cells. The initiation of the downstream signalling cascade through the 7-transmembrane protein Smoothened (Smo) promotes neuroprotection and restoration during neurological disorders. The dysregulation of Smo-Shh is linked to the proteolytic cleavage of GLI (glioma-associated homolog) into GLI3 (repressor), which suppresses target gene expression, leading to the disruption of cell growth processes. Smo-Shh aberrant signalling is responsible for several neurological complications contributing to physiological alterations like increased oxidative stress, neuronal excitotoxicity, neuroinflammation, and apoptosis. Moreover, activating Shh receptors in the brain promotes axonal elongation and increases neurotransmitters released from presynaptic terminals, thereby exerting neurogenesis, anti-oxidation, anti-inflammatory, and autophagy responses. Smo-Shh activators have been shown in preclinical and clinical studies to help prevent various neurodegenerative and neuropsychiatric disorders. Redox signalling has been found to play a critical role in regulating the activity of the Smo-Shh pathway and influencing downstream signalling events. In the current study ROS, a signalling molecule, was also essential in modulating the SMO-SHH gli signaling pathway in neurodegeneration. As a result of this investigation, dysregulation of the pathway contributes to the pathogenesis of various neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD).Thus, Smo-Shh signalling activators could be a potential therapeutic intervention to treat neurocomplications of brain disorders.
Collapse
Affiliation(s)
- Aradhana Prajapati
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| |
Collapse
|
12
|
Wu A, Turner KA, Woolfson A, Jiang X. The Hedgehog Pathway as a Therapeutic Target in Chronic Myeloid Leukemia. Pharmaceutics 2023; 15:pharmaceutics15030958. [PMID: 36986819 PMCID: PMC10053130 DOI: 10.3390/pharmaceutics15030958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Despite the development of therapeutic agents that selectively target cancer cells, relapse driven by acquired drug resistance and resulting treatment failure remains a significant issue. The highly conserved Hedgehog (HH) signaling pathway performs multiple roles in both development and tissue homeostasis, and its aberrant regulation is known to drive the pathogenesis of numerous human malignancies. However, the role of HH signaling in mediating disease progression and drug resistance remains unclear. This is especially true for myeloid malignancies. The HH pathway, and in particular the protein Smoothened (SMO), has been shown to be essential for regulating stem cell fate in chronic myeloid leukemia (CML). Evidence suggests that HH pathway activity is critical for maintaining the drug-resistant properties and survival of CML leukemic stem cells (LSCs), and that dual inhibition of BCR-ABL1 and SMO may comprise an effective therapeutic strategy for the eradication of these cells in patients. This review will explore the evolutionary origins of HH signaling, highlighting its roles in development and disease, which are mediated by canonical and non-canonical HH signaling. Development of small molecule inhibitors of HH signaling and clinical trials using these inhibitors as therapeutic agents in cancer and their potential resistance mechanisms, are also discussed, with a focus on CML.
Collapse
Affiliation(s)
- Andrew Wu
- Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Interdisciplinary Oncology, Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Kelly A. Turner
- Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Adrian Woolfson
- Replay Holdings Inc., 5555 Oberlin Drive, San Diego, CA 92121, USA
| | - Xiaoyan Jiang
- Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Interdisciplinary Oncology, Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Correspondence:
| |
Collapse
|
13
|
LUHMES Cells: Phenotype Refinement and Development of an MPP +-Based Test System for Screening Antiparkinsonian Drugs. Int J Mol Sci 2023; 24:ijms24010733. [PMID: 36614176 PMCID: PMC9821222 DOI: 10.3390/ijms24010733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
The low effectiveness of symptomatic pharmacotherapy for Parkinson's disease (PD), which compensates for dopamine (DA) deficiency under degeneration of nigrostriatal dopaminergic (DAergic) neurons, could apparently be improved with neuroprotective therapy, which slows down neurodegeneration and PD progression. For this, it is necessary to have a DAergic cell line for the development of a PD model to screen neuroprotectors. We used immortalized human embryonic mesencephalon LUHMES cells (LCs) differentiated into DAergic neurons. The aim of this study was to characterize the phenotype of differentiated LCs and develop an 1-methyl-4-phenylpyridinium iodide (MPP+)-based test system for screening neuroprotectors. Using polymerase chain reaction (PCR) and immunocytochemistry, it has been shown that all differentiated LCs express genes and synthesize proteins characteristic of all neurons (microtubule-associated protein 2, bIII-tubulin, synaptotagmin 1) and specifically of DAergic neurons (tyrosine hydroxylase, aromatic L-amino acid decarboxylase, DA transporter, vesicular monoamine transporter 2). Furthermore, LCs are able to produce a small amount of DA, but under special conditions. To assess the mechanisms of neurodegeneration and neuroplasticity under the influence of toxins and antiparkinsonian drugs, including neuroprotectors, we have developed an LCs-based MPP+ PD model and proposed an original panel of markers for testing functional and structural cell disorders.
Collapse
|
14
|
Elzayat EM, Shahien SA, El-Sherif AA, Hosney M. miRNAs and Stem Cells as Promising Diagnostic and Therapeutic Targets for Alzheimer's Disease. J Alzheimers Dis 2023; 94:S203-S225. [PMID: 37212107 PMCID: PMC10473110 DOI: 10.3233/jad-221298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/23/2023]
Abstract
Alzheimer's disease (AD) is a cumulative progressive neurodegenerative disease characterized mainly by impairment in cognitive functions accompanied by memory loss, disturbance in behavior and personality, and difficulties in learning. Although the main causes of AD pathogenesis are not fully understood yet, amyloid-β peptides and tau proteins are supposed to be responsible for AD onset and pathogenesis. Various demographic, genetic, and environmental risk factors are involved in AD onset and pathogenesis such as age, gender, several genes, lipids, malnutrition, and poor diet. Significant changes were observed in microRNA (miRNA) levels between normal and AD cases giving hope for a diagnostic procedure for AD through a simple blood test. As yet, only two classes of AD therapeutic drugs are approved by FDA. They are classified as acetylcholinesterase inhibitors and N-methyl-D-aspartate antagonists (NMDA). Unfortunately, they can only treat the symptoms but cannot cure AD or stop its progression. New therapeutic approaches were developed for AD treatment including acitretin due to its ability to cross blood-brain barrier in the brain of rats and mice and induce the expression of ADAM 10 gene, the α-secretase of human amyloid-β protein precursor, stimulating the non-amyloidogenic pathway for amyloid-β protein precursor processing resulting in amyloid-β reduction. Also stem cells may have a crucial role in AD treatment as they can improve cognitive functions and memory in AD rats through regeneration of damaged neurons. This review spotlights on promising diagnostic techniques such as miRNAs and therapeutic approaches such as acitretin and/or stem cells keeping in consideration AD pathogenesis, stages, symptoms, and risk factors.
Collapse
Affiliation(s)
- Emad M. Elzayat
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Sherif A. Shahien
- Biotechnology/Bimolecular Chemistry Program, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ahmed A. El-Sherif
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Mohamed Hosney
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
15
|
Luo HM, Xu J, Huang DX, Chen YQ, Liu YZ, Li YJ, Chen H. Mitochondrial dysfunction of induced pluripotent stem cells-based neurodegenerative disease modeling and therapeutic strategy. Front Cell Dev Biol 2022; 10:1030390. [DOI: 10.3389/fcell.2022.1030390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative diseases (NDDs) are disorders in which neurons are lost owing to various factors, resulting in a series of dysfunctions. Their rising prevalence and irreversibility have brought physical pain to patients and economic pressure to both individuals and society. However, the pathogenesis of NDDs has not yet been fully elucidated, hampering the use of precise medication. Induced pluripotent stem cell (IPSC) modeling provides a new method for drug discovery, and exploring the early pathological mechanisms including mitochondrial dysfunction, which is not only an early but a prominent pathological feature of NDDs. In this review, we summarize the iPSC modeling approach of Alzheimer’s disease, Parkinson’s disease, and Amyotrophic lateral sclerosis, as well as outline typical mitochondrial dysfunction and recapitulate corresponding therapeutic strategies.
Collapse
|
16
|
Ahrabi B, Tabatabaei Mirakabad FS, Niknazar S, Payvandi AA, Ahmady Roozbahany N, Ahrabi M, Torkamani SD, Abbaszadeh HA. Photobiomodulation Therapy and Cell Therapy Improved Parkinson's Diseases by Neuro-regeneration and Tremor Inhibition. J Lasers Med Sci 2022; 13:e28. [PMID: 36743130 PMCID: PMC9841383 DOI: 10.34172/jlms.2022.28] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/02/2022] [Indexed: 11/22/2022]
Abstract
Introduction: Parkinson's disease (PD) is a progressive and severe neurodegenerative disorder of the central nervous system (CNS). The most prominent features of this disease are cell reduction in the substantia nigra and accumulation of α-synuclein, especially in the brainstem, spinal cord, and cortical areas. In addition to drug-based treatment, other therapies such as surgery, cell therapy, and laser therapy can be considered. In this study, articles on cell therapy and laser therapy for PD have been collected to evaluate the improvement of motor function, cell differentiation, and dopaminergic cell proliferation. Methods: Articles were collected from four electronic databases: PubMed, Scopus, Google Scholar, and Web of Science from 2010 to 2022. The keywords were "photobiomodulation", "low-level light therapy", "Low-level laser therapy", "near-infrared light", "Parkinson's disease", "Parkinsonism", and "stem cell therapy". About 100 related articles were included in the study. Results: The results of the studies showed that cell therapy and laser therapy are useful in the treatment of PD, and despite their limitations, they can be useful in improving PD. Conclusion: Concomitant use of cell therapy and photobiomodulation therapy can improve the symptoms of PD.
Collapse
Affiliation(s)
- Behnaz Ahrabi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Somayeh Niknazar
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Asghar Payvandi
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mahnaz Ahrabi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shaysteh Dordshaikh Torkamani
- Department of Anatomical Sciences and Biology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hojjat Allah Abbaszadeh
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Department of Anatomical Sciences and Biology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Correspondence to Hojjat-Allah Abbaszadeh, Laser Application in Medical Sciences Research Center and Department of Biology and Anatomical Sciences, school of medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. P.O. Box: 19395-4719. Tel: +98-21-23872555;
| |
Collapse
|
17
|
Alekseenko Z, Dias JM, Adler AF, Kozhevnikova M, van Lunteren JA, Nolbrant S, Jeggari A, Vasylovska S, Yoshitake T, Kehr J, Carlén M, Alexeyenko A, Parmar M, Ericson J. Robust derivation of transplantable dopamine neurons from human pluripotent stem cells by timed retinoic acid delivery. Nat Commun 2022; 13:3046. [PMID: 35650213 PMCID: PMC9160024 DOI: 10.1038/s41467-022-30777-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/11/2022] [Indexed: 12/03/2022] Open
Abstract
Stem cell therapies for Parkinson's disease (PD) have entered first-in-human clinical trials using a set of technically related methods to produce mesencephalic dopamine (mDA) neurons from human pluripotent stem cells (hPSCs). Here, we outline an approach for high-yield derivation of mDA neurons that principally differs from alternative technologies by utilizing retinoic acid (RA) signaling, instead of WNT and FGF8 signaling, to specify mesencephalic fate. Unlike most morphogen signals, where precise concentration determines cell fate, it is the duration of RA exposure that is the key-parameter for mesencephalic specification. This concentration-insensitive patterning approach provides robustness and reduces the need for protocol-adjustments between hPSC-lines. RA-specified progenitors promptly differentiate into functional mDA neurons in vitro, and successfully engraft and relieve motor deficits after transplantation in a rat PD model. Our study provides a potential alternative route for cell therapy and disease modelling that due to its robustness could be particularly expedient when use of autologous- or immunologically matched cells is considered.
Collapse
Affiliation(s)
- Zhanna Alekseenko
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - José M Dias
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Andrew F Adler
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, 221 84, Lund, Sweden
- Lund Stem Cell Center, Lund University, 22184, Lund, Sweden
| | - Mariya Kozhevnikova
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | | | - Sara Nolbrant
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, 221 84, Lund, Sweden
- Lund Stem Cell Center, Lund University, 22184, Lund, Sweden
| | - Ashwini Jeggari
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Svitlana Vasylovska
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Takashi Yoshitake
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Jan Kehr
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65, Stockholm, Sweden
- Pronexus Analytical AB, Bromma, Sweden
| | - Marie Carlén
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83, Huddinge, Sweden
- Department of Neuroscience, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Andrey Alexeyenko
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65, Stockholm, Sweden
- Science for Life Laboratory, 171 21, Solna, Sweden
| | - Malin Parmar
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, 221 84, Lund, Sweden
- Lund Stem Cell Center, Lund University, 22184, Lund, Sweden
| | - Johan Ericson
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 65, Stockholm, Sweden.
| |
Collapse
|
18
|
Rakovic A, Voß D, Vulinovic F, Meier B, Hellberg AK, Nau C, Klein C, Leipold E. Electrophysiological Properties of Induced Pluripotent Stem Cell-Derived Midbrain Dopaminergic Neurons Correlate With Expression of Tyrosine Hydroxylase. Front Cell Neurosci 2022; 16:817198. [PMID: 35401116 PMCID: PMC8983830 DOI: 10.3389/fncel.2022.817198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Induced pluripotent stem cell (iPSC)-based generation of tyrosine hydroxylase-positive (TH+) dopaminergic neurons (DNs) is a powerful method for creating patient-specific in vitro models to elucidate mechanisms underlying Parkinson’s disease (PD) at the cellular and molecular level and to perform drug screening. However, currently available differentiation paradigms result in highly heterogeneous cell populations, often yielding a disappointing fraction (<50%) of the PD-relevant TH+ DNs. To facilitate the targeted analysis of this cell population and to characterize their electrophysiological properties, we employed CRISPR/Cas9 technology and generated an mCherry-based human TH reporter iPSC line. Subsequently, reporter iPSCs were subjected to dopaminergic differentiation using either a “floor plate protocol” generating DNs directly from iPSCs or an alternative method involving iPSC-derived neuronal precursors (NPC-derived DNs). To identify the strategy with the highest conversion efficiency to mature neurons, both cultures were examined for a period of 8 weeks after triggering neuronal differentiation by means of immunochemistry and single-cell electrophysiology. We confirmed that mCherry expression correlated with the expression of endogenous TH and that genetic editing did neither affect the differentiation process nor the endogenous TH expression in iPSC- and NPC-derived DNs. Although both cultures yielded identical proportions of TH+ cells (≈30%), whole-cell patch-clamp experiments revealed that iPSC-derived DNs gave rise to larger currents mediated by voltage-gated sodium and potassium channels, showed a higher degree of synaptic activity, and fired trains of mature spontaneous action potentials more frequently compared to NPC-derived DNs already after 2 weeks in differentiation. Moreover, spontaneous action potential firing was more frequently detected in TH+ neurons compared to the TH– cells, providing direct evidence that these two neuronal subpopulations exhibit different intrinsic electrophysiological properties. In summary, the data reveal substantial differences in the electrophysiological properties of iPSC-derived TH+ and TH– neuronal cell populations and that the “floor plate protocol” is particularly efficient in generating electrophysiologically mature TH+ DNs, which are the most vulnerable neuronal subtype in PD.
Collapse
Affiliation(s)
| | - Dorothea Voß
- Department of Anesthesiology and Intensive Care, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Franca Vulinovic
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Britta Meier
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Ann-Katrin Hellberg
- Department of Anesthesiology and Intensive Care, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Carla Nau
- Department of Anesthesiology and Intensive Care, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Enrico Leipold
- Department of Anesthesiology and Intensive Care, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
- *Correspondence: Enrico Leipold,
| |
Collapse
|
19
|
Rocha C, Prinos P. Post-transcriptional and Post-translational Modifications of Primary Cilia: How to Fine Tune Your Neuronal Antenna. Front Cell Neurosci 2022; 16:809917. [PMID: 35295905 PMCID: PMC8918543 DOI: 10.3389/fncel.2022.809917] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/19/2022] [Indexed: 12/27/2022] Open
Abstract
Primary cilia direct cellular signaling events during brain development and neuronal differentiation. The primary cilium is a dynamic organelle formed in a multistep process termed ciliogenesis that is tightly coordinated with the cell cycle. Genetic alterations, such as ciliary gene mutations, and epigenetic alterations, such as post-translational modifications and RNA processing of cilia related factors, give rise to human neuronal disorders and brain tumors such as glioblastoma and medulloblastoma. This review discusses the important role of genetics/epigenetics, as well as RNA processing and post-translational modifications in primary cilia function during brain development and cancer formation. We summarize mouse and human studies of ciliogenesis and primary cilia activity in the brain, and detail how cilia maintain neuronal progenitor populations and coordinate neuronal differentiation during development, as well as how cilia control different signaling pathways such as WNT, Sonic Hedgehog (SHH) and PDGF that are critical for neurogenesis. Moreover, we describe how post-translational modifications alter cilia formation and activity during development and carcinogenesis, and the impact of missplicing of ciliary genes leading to ciliopathies and cell cycle alterations. Finally, cilia genetic and epigenetic studies bring to light cellular and molecular mechanisms that underlie neurodevelopmental disorders and brain tumors.
Collapse
Affiliation(s)
- Cecilia Rocha
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
- *Correspondence: Cecilia Rocha,
| | - Panagiotis Prinos
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Panagiotis Prinos,
| |
Collapse
|
20
|
Wang N, Ji X, Wu Y, Zhou S, Peng H, Wang J, Yu S, Zhang J. The Different Molecular Code in Generation of Dopaminergic Neurons from Astrocytes and Mesenchymal Stem Cells. Int J Mol Sci 2021; 22:ijms222212141. [PMID: 34830023 PMCID: PMC8622032 DOI: 10.3390/ijms222212141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 11/26/2022] Open
Abstract
Transplantation of exogenous dopaminergic (DA) neurons is an alternative strategy to replenish DA neurons that have lost along the course of Parkinson’s disease (PD). From the perspective of ethical acceptation, the source limitations, and the intrinsic features of PD pathology, astrocytes (AS) and mesenchymal stem cells (MSCs) are the two promising candidates of DA induction. In the present study, we induced AS or MSCs primary culture by the combination of the classical transcription-factor cocktails Mash1, Lmx1a, and Nurr1 (MLN), the chemical cocktails (S/C/D), and the morphogens SHH, FGF8, and FGF2 (S/F8/F2); the efficiency of induction into DA neurons was further analyzed by using immunostaining against the DA neuronal markers. AS could be efficiently converted into the DA neurons in vitro by the transcriptional regulation of MLN, and the combination with S/C/D or S/F8/F2 further increased the conversion efficiency. In contrast, MSCs from umbilical cord (UC-MSCs) or adipose tissue (AD-MSCs) showed moderate TH immunoreactivity after the induction with S/F8/F2 instead of with MLN or S/C/D. Our data demonstrated that AS and MSCs held lineage-specific molecular codes on the induction into DA neurons and highlighted the unique superiority of AS in the potential of cell replacement therapy for PD.
Collapse
Affiliation(s)
- Nana Wang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (N.W.); (X.J.); (S.Z.); (H.P.)
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; (Y.W.); (J.W.)
| | - Xingrui Ji
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (N.W.); (X.J.); (S.Z.); (H.P.)
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; (Y.W.); (J.W.)
| | - Yue Wu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; (Y.W.); (J.W.)
- Zhengzhou Zhongke Institute of Biomedical Engineering and Technology, Zhengzhou 450001, China
| | - Shaocong Zhou
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (N.W.); (X.J.); (S.Z.); (H.P.)
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; (Y.W.); (J.W.)
| | - Huiyu Peng
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (N.W.); (X.J.); (S.Z.); (H.P.)
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; (Y.W.); (J.W.)
| | - Jingwen Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; (Y.W.); (J.W.)
- Zhengzhou Zhongke Institute of Biomedical Engineering and Technology, Zhengzhou 450001, China
| | - Shuang Yu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (N.W.); (X.J.); (S.Z.); (H.P.)
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; (Y.W.); (J.W.)
- Correspondence: (S.Y.); (J.Z.); Tel.: +86-13951103916 (S.Y.); +86-13913161723 (J.Z.)
| | - Jingzhong Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (N.W.); (X.J.); (S.Z.); (H.P.)
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; (Y.W.); (J.W.)
- Zhengzhou Zhongke Institute of Biomedical Engineering and Technology, Zhengzhou 450001, China
- Correspondence: (S.Y.); (J.Z.); Tel.: +86-13951103916 (S.Y.); +86-13913161723 (J.Z.)
| |
Collapse
|
21
|
Iacovitti L. On the Road from Phenotypic Plasticity to Stem Cell Therapy. J Neurosci 2021; 41:5331-5337. [PMID: 33958488 PMCID: PMC8221603 DOI: 10.1523/jneurosci.0340-21.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/18/2021] [Accepted: 04/27/2021] [Indexed: 11/21/2022] Open
Abstract
In 1981, I published a paper in the first issue of The Journal of Neuroscience with my postdoctoral mentor, Richard Bunge. At that time, the long-standing belief that each neuron expressed only one neurotransmitter, known as Dale's Principle (Dale, 1935), was being hotly debated following a report by French embryologist Nicole Le Douarin showing that neural crest cells destined for one transmitter phenotype could express characteristics of another if transplanted to alternate sites in the developing embryo (Le Douarin, 1980). In the Bunge laboratory, we were able to more directly test the question of phenotypic plasticity in the controlled environment of the tissue culture dish. Thus, in our paper, we grew autonomic catecholaminergic neurons in culture under conditions which promoted the acquisition of cholinergic traits and showed that cells did not abandon their inherited phenotype to adopt a new one but instead were capable of dual transmitter expression. In this Progressions article, I detail the path that led to these findings and how this study impacted the direction I followed for the next 40 years. This is my journey from phenotypic plasticity to the promise of a stem cell therapy.
Collapse
Affiliation(s)
- Lorraine Iacovitti
- Department of Neuroscience, Director, Jefferson Stem Cell and Regenerative Neuroscience Center, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| |
Collapse
|
22
|
Madrid M, Sumen C, Aivio S, Saklayen N. Autologous Induced Pluripotent Stem Cell-Based Cell Therapies: Promise, Progress, and Challenges. Curr Protoc 2021; 1:e88. [PMID: 33725407 DOI: 10.1002/cpz1.88] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The promise of human induced pluripotent stem cells (iPSCs) lies in their ability to serve as a starting material for autologous, or patient-specific, stem cell-based therapies. Since the first publications describing the generation of iPSCs from human tissue in 2007, a Phase I/IIa clinical trial testing an autologous iPSC-derived cell therapy has been initiated in the U.S., and several other autologous iPSC-based therapies have advanced through various stages of development. Three single-patient in-human transplants of autologous iPSC-derived cells have taken place worldwide. None of the patients suffered serious adverse events, despite not undergoing immunosuppression. These promising outcomes support the proposed advantage of an autologous approach: a cell therapy product that can engraft without the risk of immune rejection, eliminating the need for immunosuppression and the associated side effects. Despite this advantage, there are currently more allogeneic than autologous iPSC-based cell therapy products in development due to the cost and complexity of scaling out manufacturing for each patient. In this review, we highlight recent progress toward clinical translation of autologous iPSC-based cell therapies. We also highlight technological advancements that would reduce the cost and complexity of autologous iPSC-based cell therapy production, enabling autologous iPSC-based therapies to become a more commonplace treatment modality for patients. © 2021 The Authors.
Collapse
Affiliation(s)
| | - Cenk Sumen
- Stemson Therapeutics, San Diego, California
| | | | | |
Collapse
|
23
|
Current State-of-the-Art and Unresolved Problems in Using Human Induced Pluripotent Stem Cell-Derived Dopamine Neurons for Parkinson's Disease Drug Development. Int J Mol Sci 2021; 22:ijms22073381. [PMID: 33806103 PMCID: PMC8037675 DOI: 10.3390/ijms22073381] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Human induced pluripotent stem (iPS) cells have the potential to give rise to a new era in Parkinson's disease (PD) research. As a unique source of midbrain dopaminergic (DA) neurons, iPS cells provide unparalleled capabilities for investigating the pathogenesis of PD, the development of novel anti-parkinsonian drugs, and personalized therapy design. Significant progress in developmental biology of midbrain DA neurons laid the foundation for their efficient derivation from iPS cells. The introduction of 3D culture methods to mimic the brain microenvironment further expanded the vast opportunities of iPS cell-based research of the neurodegenerative diseases. However, while the benefits for basic and applied studies provided by iPS cells receive widespread coverage in the current literature, the drawbacks of this model in its current state, and in particular, the aspects of differentiation protocols requiring further refinement are commonly overlooked. This review summarizes the recent data on general and subtype-specific features of midbrain DA neurons and their development. Here, we review the current protocols for derivation of DA neurons from human iPS cells and outline their general weak spots. The associated gaps in the contemporary knowledge are considered and the possible directions for future research that may assist in improving the differentiation conditions and increase the efficiency of using iPS cell-derived neurons for PD drug development are discussed.
Collapse
|
24
|
Sharma Y, Shobha K, Sundeep M, Pinnelli VB, Parveen S, Dhanushkodi A. Neural Basis of Dental Pulp Stem Cells and its Potential Application in Parkinson's disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:62-76. [PMID: 33719979 DOI: 10.2174/1871527320666210311122921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 01/16/2021] [Accepted: 01/29/2021] [Indexed: 11/22/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease. Though significant insights into the molecular-biochemical-cellular-behavioral basis of PD have been understood, there is no appreciable treatment available till date. Current therapies provide symptomatic relief without any influence on the progression of the disease. Stem cell therapy has been vigorously explored to treat PD. In this comprehensive review, we analyze various stem cell candidates for treating PD and discuss the possible mechanisms. We advocate the advantage of using neural crest originated dental pulp stem cells (DPSC) due to their predisposition towards neural differentiation and their potential to regenerate neurons far better than commonly used bone marrow derived mesenchymal stem cells (BM-MSCs). Eventually, we highlight the current challenges in the field and the strategies which may be used for overcoming the impediments.
Collapse
Affiliation(s)
- Yogita Sharma
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Bangalore, Karnataka. India
| | - Shobha K
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Bangalore, Karnataka. India
| | - Mata Sundeep
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Bangalore, Karnataka. India
| | | | - Shagufta Parveen
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Bangalore, Karnataka. India
| | - Anandh Dhanushkodi
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Bangalore, Karnataka. India
| |
Collapse
|
25
|
Mohamed NV, Mathur M, da Silva RV, Thomas RA, Lepine P, Beitel LK, Fon EA, Durcan TM. Generation of human midbrain organoids from induced pluripotent stem cells. ACTA ACUST UNITED AC 2021. [DOI: 10.12688/mniopenres.12816.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The development of brain organoids represents a major technological advance in the stem cell field, a novel bridge between traditional 2D cultures and in vivo animal models. In particular, the development of midbrain organoids containing functional dopaminergic neurons producing neuromelanin granules, a by-product of dopamine synthesis, represents a potential new model for Parkinson’s disease. To generate human midbrain organoids, we introduce specific inductive cues, at defined timepoints, during the 3D culture process to drive the stem cells towards a midbrain fate. In this method paper, we describe a standardized protocol to generate human midbrain organoids (hMOs) from induced pluripotent stem cells (iPSCs). This protocol was developed to demonstrate how human iPSCs can be successfully differentiated into numerous, high quality midbrain organoids in one batch. We also describe adaptations for cryosectioning of fixed organoids for subsequent histological analysis.
Collapse
|
26
|
Nilsson F, Storm P, Sozzi E, Hidalgo Gil D, Birtele M, Sharma Y, Parmar M, Fiorenzano A. Single-Cell Profiling of Coding and Noncoding Genes in Human Dopamine Neuron Differentiation. Cells 2021; 10:137. [PMID: 33445654 PMCID: PMC7827700 DOI: 10.3390/cells10010137] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/06/2021] [Accepted: 01/09/2021] [Indexed: 02/07/2023] Open
Abstract
Dopaminergic (DA) neurons derived from human pluripotent stem cells (hPSCs) represent a renewable and available source of cells useful for understanding development, developing disease models, and stem-cell therapies for Parkinson's disease (PD). To assess the utility of stem cell cultures as an in vitro model system of human DA neurogenesis, we performed high-throughput transcriptional profiling of ~20,000 ventral midbrain (VM)-patterned stem cells at different stages of maturation using droplet-based single-cell RNA sequencing (scRNAseq). Using this dataset, we defined the cellular composition of human VM cultures at different timepoints and found high purity DA progenitor formation at an early stage of differentiation. DA neurons sharing similar molecular identities to those found in authentic DA neurons derived from human fetal VM were the major cell type after two months in culture. We also developed a bioinformatic pipeline that provided a comprehensive long noncoding RNA landscape based on temporal and cell-type specificity, which may contribute to unraveling the intricate regulatory network of coding and noncoding genes in DA neuron differentiation. Our findings serve as a valuable resource to elucidate the molecular steps of development, maturation, and function of human DA neurons, and to identify novel candidate coding and noncoding genes driving specification of progenitors into functionally mature DA neurons.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Malin Parmar
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund Stem Cell Centre, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden; (F.N.); (P.S.); (E.S.); (D.H.G.); (M.B.); (Y.S.)
| | - Alessandro Fiorenzano
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund Stem Cell Centre, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden; (F.N.); (P.S.); (E.S.); (D.H.G.); (M.B.); (Y.S.)
| |
Collapse
|
27
|
Nikolakopoulou P, Rauti R, Voulgaris D, Shlomy I, Maoz BM, Herland A. Recent progress in translational engineered in vitro models of the central nervous system. Brain 2020; 143:3181-3213. [PMID: 33020798 PMCID: PMC7719033 DOI: 10.1093/brain/awaa268] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 06/17/2020] [Accepted: 06/21/2020] [Indexed: 02/07/2023] Open
Abstract
The complexity of the human brain poses a substantial challenge for the development of models of the CNS. Current animal models lack many essential human characteristics (in addition to raising operational challenges and ethical concerns), and conventional in vitro models, in turn, are limited in their capacity to provide information regarding many functional and systemic responses. Indeed, these challenges may underlie the notoriously low success rates of CNS drug development efforts. During the past 5 years, there has been a leap in the complexity and functionality of in vitro systems of the CNS, which have the potential to overcome many of the limitations of traditional model systems. The availability of human-derived induced pluripotent stem cell technology has further increased the translational potential of these systems. Yet, the adoption of state-of-the-art in vitro platforms within the CNS research community is limited. This may be attributable to the high costs or the immaturity of the systems. Nevertheless, the costs of fabrication have decreased, and there are tremendous ongoing efforts to improve the quality of cell differentiation. Herein, we aim to raise awareness of the capabilities and accessibility of advanced in vitro CNS technologies. We provide an overview of some of the main recent developments (since 2015) in in vitro CNS models. In particular, we focus on engineered in vitro models based on cell culture systems combined with microfluidic platforms (e.g. 'organ-on-a-chip' systems). We delve into the fundamental principles underlying these systems and review several applications of these platforms for the study of the CNS in health and disease. Our discussion further addresses the challenges that hinder the implementation of advanced in vitro platforms in personalized medicine or in large-scale industrial settings, and outlines the existing differentiation protocols and industrial cell sources. We conclude by providing practical guidelines for laboratories that are considering adopting organ-on-a-chip technologies.
Collapse
Affiliation(s)
- Polyxeni Nikolakopoulou
- AIMES, Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Rossana Rauti
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Dimitrios Voulgaris
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Iftach Shlomy
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Ben M Maoz
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Anna Herland
- AIMES, Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
28
|
Kolagar TA, Farzaneh M, Nikkar N, Khoshnam SE. Human Pluripotent Stem Cells in Neurodegenerative Diseases: Potentials, Advances and Limitations. Curr Stem Cell Res Ther 2020; 15:102-110. [PMID: 31441732 DOI: 10.2174/1574888x14666190823142911] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/15/2019] [Accepted: 07/17/2019] [Indexed: 12/14/2022]
Abstract
Neurodegenerative diseases are progressive and uncontrolled gradual loss of motor neurons function or death of neuron cells in the central nervous system (CNS) and the mechanisms underlying their progressive nature remain elusive. There is urgent need to investigate therapeutic strategies and novel treatments for neural regeneration in disorders like Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). Currently, the development and identification of pluripotent stem cells enabling the acquisition of a large number of neural cells in order to improve cell recovery after neurodegenerative disorders. Pluripotent stem cells which consist of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are characterized by their ability to indefinitely self-renew and the capacity to differentiate into different types of cells. The first human ESC lines were established from donated human embryos; while, because of a limited supply of donor embryos, human ESCs derivation remains ethically and politically controversial. Hence, hiPSCs-based therapies have been shown as an effective replacement for human ESCs without embryo destruction. Compared to the invasive methods for derivation of human ESCs, human iPSCs has opened possible to reprogram patient-specific cells by defined factors and with minimally invasive procedures. Human pluripotent stem cells are a good source for cell-based research, cell replacement therapies and disease modeling. To date, hundreds of human ESC and human iPSC lines have been generated with the aim of treating various neurodegenerative diseases. In this review, we have highlighted the recent potentials, advances, and limitations of human pluripotent stem cells for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Tannaz Akbari Kolagar
- Faculty of Biological Sciences, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Farzaneh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Negin Nikkar
- Department of Biology, Faculty of Sciences, Alzahra University, Tehran, Iran
| | - Seyed Esmaeil Khoshnam
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
29
|
Qin H, Zhao AD, Sun ML, Ma K, Fu XB. Direct conversion of human fibroblasts into dopaminergic neuron-like cells using small molecules and protein factors. Mil Med Res 2020; 7:52. [PMID: 33129359 PMCID: PMC7603706 DOI: 10.1186/s40779-020-00284-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 10/21/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Generation of neurons is essential in cell replacement therapy for neurodegenerative disorders like Parkinson's disease. Several studies have reported the generation of dopaminergic (DA) neurons from mouse and human fibroblasts by ectopic expression of transcription factors, in which genetic manipulation is associated with potential risks. METHODS The small molecules and protein factors were selected based on their function to directly induce human fetal lung IMR-90 fibroblasts into DA neuron-like cells. Microscopical, immunocytochemical, and RT-qPCR analyses were used to characterize the morphology, phenotype, and gene expression features of the induced cells. The whole-cell patch-clamp recordings were exploited to measure the electrophysiological properties. RESULTS Human IMR-90 fibroblasts were rapidly converted into DA neuron-like cells after the chemical induction using small molecules and protein factors, with a yield of approximately 95% positive TUJ1-positive cells. The induced DA neuron-like cells were immunopositive for pan-neuronal markers MAP2, NEUN, and Synapsin 1 and DA markers TH, DDC, DAT, and NURR1. The chemical induction process did not involve a neural progenitor/stem cell intermediate stage. The induced neurons could fire single action potentials, which reflected partially the electrophysiological properties of neurons. CONCLUSION We developed a chemical cocktail of small molecules and protein factors to convert human fibroblasts into DA neuron-like cells without passing through a neural progenitor/stem cell intermediate stage. The induced DA neuron-like cells from human fibroblasts might provide a cellular source for cell-based therapy of Parkinson's disease in the future.
Collapse
Affiliation(s)
- Hua Qin
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Haidian District, Beijing, 100853, China
| | - An-Dong Zhao
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Haidian District, Beijing, 100853, China.,Tianjin Medical University, Tianjin, 300070, China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, China
| | - Meng-Li Sun
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Haidian District, Beijing, 100853, China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, China
| | - Kui Ma
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Haidian District, Beijing, 100853, China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, China
| | - Xiao-Bing Fu
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Haidian District, Beijing, 100853, China. .,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, China. .,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China.
| |
Collapse
|
30
|
Jang SE, Qiu L, Chan LL, Tan EK, Zeng L. Current Status of Stem Cell-Derived Therapies for Parkinson's Disease: From Cell Assessment and Imaging Modalities to Clinical Trials. Front Neurosci 2020; 14:558532. [PMID: 33177975 PMCID: PMC7596695 DOI: 10.3389/fnins.2020.558532] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 09/17/2020] [Indexed: 12/23/2022] Open
Abstract
Curative therapies or treatments reversing the progression of Parkinson’s disease (PD) have attracted considerable interest in the last few decades. PD is characterized by the gradual loss of dopaminergic (DA) neurons and decreased striatal dopamine levels. Current challenges include optimizing neuroprotective strategies, developing personalized drug therapy, and minimizing side effects from the long-term prescription of pharmacological drugs used to relieve short-term motor symptoms. Transplantation of DA cells into PD patients’ brains to replace degenerated DA has the potential to change the treatment paradigm. Herein, we provide updates on current progress in stem cell-derived DA neuron transplantation as a therapeutic alternative for PD. We briefly highlight cell sources for transplantation and focus on cell assessment methods such as identification of genetic markers, single-cell sequencing, and imaging modalities used to access cell survival and function. More importantly, we summarize clinical reports of patients who have undergone cell-derived transplantation in PD to better perceive lessons that can be drawn from past and present clinical outcomes. Modifying factors include (1) source of the stem cells, (2) quality of the stem cells, (3) age of the patient, (4) stage of disease progression at the time of cell therapy, (5) surgical technique/practices, and (6) the use of immunosuppression. We await the outcomes of joint efforts in clinical trials around the world such as NYSTEM and CiRA to further guide us in the selection of the most suitable parameters for cell-based neurotransplantation in PD.
Collapse
Affiliation(s)
- Se Eun Jang
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, Singapore
| | - Lifeng Qiu
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, Singapore
| | - Ling Ling Chan
- Department of Diagnostic Radiology, Singapore General Hospital, Singapore, Singapore.,Neuroscience & Behavioral Disorders Program, Duke University and National University of Singapore (DUKE-NUS), Graduate Medical School, Singapore, Singapore
| | - Eng-King Tan
- Neuroscience & Behavioral Disorders Program, Duke University and National University of Singapore (DUKE-NUS), Graduate Medical School, Singapore, Singapore.,Department of Neurology, National Neuroscience Institute, Singapore General Hospital Campus, Singapore, Singapore
| | - Li Zeng
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, Singapore.,Neuroscience & Behavioral Disorders Program, Duke University and National University of Singapore (DUKE-NUS), Graduate Medical School, Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Novena Campus, Singapore, Singapore
| |
Collapse
|
31
|
Carter JL, Halmai JANM, Fink KD. The iNs and Outs of Direct Reprogramming to Induced Neurons. Front Genome Ed 2020; 2:7. [PMID: 34713216 PMCID: PMC8525349 DOI: 10.3389/fgeed.2020.00007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
Understanding of cell-type specific transcription factors has promoted progress in methods for cellular reprogramming, such as directly reprogramming somatic cells to induced neurons (iN). Methods for direct reprogramming require neuronal-fate determining gene activation via neuron-specific microRNAs, chemical modulation of key neuronal signaling pathways or overexpression via viral vectors, with some reprogramming strategies requiring a combination of these methods to induce the neuronal-cell fate. These methods have been employed in a multitude of cell types, including fibroblasts, hepatocytes, peripheral blood mononuclear, and T cells. The ability to create iN from skin biopsies and blood samples coupled with recent advancements in artificially inducing age- and disease-associated phenotypes are accelerating the development of disease models for late-onset neurodegenerative disorders. Here, we review how activation of the neuronal transcriptome alters the epigenetic landscape of the donor cell to facilitate reprogramming to neurons. We also discuss the advantages of using DNA binding domains such as CRISPR/dCas9 to overcome epigenetic barriers to induce neuronal-cell fate by activating endogenous neuronal cell-fate determining genes.
Collapse
|
32
|
Liu XY, Yang LP, Zhao L. Stem cell therapy for Alzheimer's disease. World J Stem Cells 2020; 12:787-802. [PMID: 32952859 PMCID: PMC7477654 DOI: 10.4252/wjsc.v12.i8.787] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/10/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by memory loss and cognitive impairment. It is caused by synaptic failure and excessive accumulation of misfolded proteins. To date, almost all advanced clinical trials on specific AD-related pathways have failed mostly due to a large number of neurons lost in the brain of patients with AD. Also, currently available drug candidates intervene too late. Stem cells have improved characteristics of self-renewal, proliferation, differentiation, and recombination with the advent of stem cell technology and the transformation of these cells into different types of central nervous system neurons and glial cells. Stem cell treatment has been successful in AD animal models. Recent preclinical studies on stem cell therapy for AD have proved to be promising. Cell replacement therapies, such as human embryonic stem cells or induced pluripotent stem cell-derived neural cells, have the potential to treat patients with AD, and human clinical trials are ongoing in this regard. However, many steps still need to be taken before stem cell therapy becomes a clinically feasible treatment for human AD and related diseases. This paper reviews the pathophysiology of AD and the application prospects of related stem cells based on cell type.
Collapse
Affiliation(s)
- Xin-Yu Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
| | - Lin-Po Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
| | - Lan Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- Tianjin Key Laboratory of Acupuncture and Moxibustion, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
33
|
Kheradmand H, Babaloo H, Vojgani Y, Mirzakhanlouei S, Bayat N. PCL/gelatin scaffolds and beta-boswellic acid synergistically increase the efficiency of CGR8 stem cells differentiation into dopaminergic neuron: A new paradigm of Parkinson's disease cell therapy. J Biomed Mater Res A 2020; 109:562-571. [PMID: 32588502 DOI: 10.1002/jbm.a.37040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/09/2020] [Indexed: 12/20/2022]
Abstract
Parkinson's disease is a progressive degenerative disorder in the central nervous system, which is distinguished by the death of dopamine-producing nerve cells. Levodopa, a dopamine precursor drug, is the current standard of care of symptomatic treatment for Parkinson's disease. However, the long-term use of the drug is associated with the development of motor fluctuations and dyskinesias. Cellular therapies aim to deploy fetal dopaminergic neurons as a means to replace the missing dopamine-producing cells. The present study aims to study the impact of beta-boswellic acid (BBA) coupled with poly ε-caprolactone (PCL)/gelatin scaffolds on the dopaminergic differentiation course of CGR8 embryonic stem cells (ESCs). For this purpose, CGR8 ESCs were cultured on PCL/gelatin scaffolds and a five-step protocol was employed to be promoted the neural differentiation of CGR8 ESCs. Gene expression analysis by real-time qPCR demonstrated that PCL/gelatin scaffolds along with BBA treatment impose synergistic effects on the derivation of dopaminergic-like cells from CGR8 ESCs. Reverse-phase high-performance liquid chromatography confirmed the functionality of the derived neurons by demonstrating the efficient secretion of dopamine in response to stimuli. Our results suggested that the generation of functional dopaminergic-like cells from CGR8 ESCs was increased and supported by PCL/gelatin scaffolds and BBA treatment can heighten the efficiency. The result of this study may open insight into Parkinson's disease cell therapy and provide future directions for tissue engineering aimed at the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Hamed Kheradmand
- Department of Neurosurgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamideh Babaloo
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yasaman Vojgani
- Department of Molecular Medicine, Iran University of Medical Sciences, Tehran, Iran.,Student Research Committee, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sasan Mirzakhanlouei
- Biotechnology Department, Faculty of Advanced Science and Technologies, University of Isfahan, Isfahan, Iran
| | - Neda Bayat
- Brain and Spinal Cord Injury Research Center (BASIR), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Development and Differentiation of Midbrain Dopaminergic Neuron: From Bench to Bedside. Cells 2020; 9:cells9061489. [PMID: 32570916 PMCID: PMC7349799 DOI: 10.3390/cells9061489] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/29/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
Parkinson’s Disease (PD) is a neurodegenerative disorder affecting the motor system. It is primarily due to substantial loss of midbrain dopamine (mDA) neurons in the substantia nigra pars compacta and to decreased innervation to the striatum. Although existing drug therapy available can relieve the symptoms in early-stage PD patients, it cannot reverse the pathogenic progression of PD. Thus, regenerating functional mDA neurons in PD patients may be a cure to the disease. The proof-of-principle clinical trials showed that human fetal graft-derived mDA neurons could restore the release of dopamine neurotransmitters, could reinnervate the striatum, and could alleviate clinical symptoms in PD patients. The invention of human-induced pluripotent stem cells (hiPSCs), autologous source of neural progenitors with less ethical consideration, and risk of graft rejection can now be generated in vitro. This advancement also prompts extensive research to decipher important developmental signaling in differentiation, which is key to successful in vitro production of functional mDA neurons and the enabler of mass manufacturing of the cells required for clinical applications. In this review, we summarize the biology and signaling involved in the development of mDA neurons and the current progress and methodology in driving efficient mDA neuron differentiation from pluripotent stem cells.
Collapse
|
35
|
Björklund A, Parmar M. Neuronal Replacement as a Tool for Basal Ganglia Circuitry Repair: 40 Years in Perspective. Front Cell Neurosci 2020; 14:146. [PMID: 32547369 PMCID: PMC7272540 DOI: 10.3389/fncel.2020.00146] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/30/2020] [Indexed: 01/07/2023] Open
Abstract
The ability of new neurons to promote repair of brain circuitry depends on their capacity to re-establish afferent and efferent connections with the host. In this review article, we give an overview of past and current efforts to restore damaged connectivity in the adult mammalian brain using implants of fetal neuroblasts or stem cell-derived neuronal precursors, with a focus on strategies aimed to repair damaged basal ganglia circuitry induced by lesions that mimic the pathology seen in humans affected by Parkinson’s or Huntington’s disease. Early work performed in rodents showed that neuroblasts obtained from striatal primordia or fetal ventral mesencephalon can become anatomically and functionally integrated into lesioned striatal and nigral circuitry, establish afferent and efferent connections with the lesioned host, and reverse the lesion-induced behavioral impairments. Recent progress in the generation of striatal and nigral progenitors from pluripotent stem cells have provided compelling evidence that they can survive and mature in the lesioned brain and re-establish afferent and efferent axonal connectivity with a remarkable degree of specificity. The studies of cell-based circuitry repair are now entering a new phase. The introduction of genetic and virus-based techniques for brain connectomics has opened entirely new possibilities for studies of graft-host integration and connectivity, and the access to more refined experimental techniques, such as chemo- and optogenetics, has provided new powerful tools to study the capacity of grafted neurons to impact the function of the host brain. Progress in this field will help to guide the efforts to develop therapeutic strategies for cell-based repair in Huntington’s and Parkinson’s disease and other neurodegenerative conditions involving damage to basal ganglia circuitry.
Collapse
Affiliation(s)
- Anders Björklund
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Malin Parmar
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| |
Collapse
|
36
|
Tiklová K, Nolbrant S, Fiorenzano A, Björklund ÅK, Sharma Y, Heuer A, Gillberg L, Hoban DB, Cardoso T, Adler AF, Birtele M, Lundén-Miguel H, Volakakis N, Kirkeby A, Perlmann T, Parmar M. Single cell transcriptomics identifies stem cell-derived graft composition in a model of Parkinson's disease. Nat Commun 2020; 11:2434. [PMID: 32415072 PMCID: PMC7229159 DOI: 10.1038/s41467-020-16225-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/17/2020] [Indexed: 02/03/2023] Open
Abstract
Cell replacement is a long-standing and realistic goal for the treatment of Parkinsonʼs disease (PD). Cells for transplantation can be obtained from fetal brain tissue or from stem cells. However, after transplantation, dopamine (DA) neurons are seen to be a minor component of grafts, and it has remained difficult to determine the identity of other cell types. Here, we report analysis by single-cell RNA sequencing (scRNA-seq) combined with comprehensive histological analyses to characterize intracerebral grafts from human embryonic stem cells (hESCs) and fetal tissue after functional maturation in a pre-clinical rat PD model. We show that neurons and astrocytes are major components in both fetal and stem cell-derived grafts. Additionally, we identify a cell type closely resembling a class of recently identified perivascular-like cells in stem cell-derived grafts. Thus, this study uncovers previously unknown cellular diversity in a clinically relevant cell replacement PD model. What happens to cells on engrafting into the brain in animal models to treat Parkinson’s disease is unclear. Here, the authors use scRNA-seq to examine ventral midbrain (VM)-patterned human embryonic stem cells after functional maturation in a pre-clinical rat model for Parkinson’s disease and identify perivascular-like cells.
Collapse
Affiliation(s)
- Katarína Tiklová
- Ludwig Institute for Cancer Research, Box 240, SE-171 77, Stockholm, Sweden.,Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Sara Nolbrant
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, and Lund Stem Cell Centre, Department of Experimental Medical Science, Lund University, 22184, Lund, Sweden
| | - Alessandro Fiorenzano
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, and Lund Stem Cell Centre, Department of Experimental Medical Science, Lund University, 22184, Lund, Sweden
| | - Åsa K Björklund
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Husargatan 3, SE-752 37, Uppsala, Sweden
| | - Yogita Sharma
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, and Lund Stem Cell Centre, Department of Experimental Medical Science, Lund University, 22184, Lund, Sweden
| | - Andreas Heuer
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, and Lund Stem Cell Centre, Department of Experimental Medical Science, Lund University, 22184, Lund, Sweden
| | - Linda Gillberg
- Ludwig Institute for Cancer Research, Box 240, SE-171 77, Stockholm, Sweden.,Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Deirdre B Hoban
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, and Lund Stem Cell Centre, Department of Experimental Medical Science, Lund University, 22184, Lund, Sweden
| | - Tiago Cardoso
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, and Lund Stem Cell Centre, Department of Experimental Medical Science, Lund University, 22184, Lund, Sweden
| | - Andrew F Adler
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, and Lund Stem Cell Centre, Department of Experimental Medical Science, Lund University, 22184, Lund, Sweden
| | - Marcella Birtele
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, and Lund Stem Cell Centre, Department of Experimental Medical Science, Lund University, 22184, Lund, Sweden
| | | | - Nikolaos Volakakis
- Ludwig Institute for Cancer Research, Box 240, SE-171 77, Stockholm, Sweden
| | - Agnete Kirkeby
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, and Lund Stem Cell Centre, Department of Experimental Medical Science, Lund University, 22184, Lund, Sweden.,Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, 2200, Copenhagen, Denmark
| | - Thomas Perlmann
- Ludwig Institute for Cancer Research, Box 240, SE-171 77, Stockholm, Sweden. .,Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden.
| | - Malin Parmar
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, and Lund Stem Cell Centre, Department of Experimental Medical Science, Lund University, 22184, Lund, Sweden.
| |
Collapse
|
37
|
Mohamed NV, Larroquette F, Beitel LK, Fon EA, Durcan TM. One Step Into the Future: New iPSC Tools to Advance Research in Parkinson's Disease and Neurological Disorders. JOURNAL OF PARKINSONS DISEASE 2020; 9:265-281. [PMID: 30741685 PMCID: PMC6597965 DOI: 10.3233/jpd-181515] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Studying Parkinson’s disease (PD) in the laboratory presents many challenges, the main one being the limited availability of human cells and tissue from affected individuals. As PD is characterized by a loss of dopaminergic (DA) neurons in the brain, it is nearly impossible for researchers to access and extract these cells from living patients. Thus, in the past PD research has focused on the use of patients’ post-mortem tissues, animal models, or immortalized cell lines to dissect cellular pathways of interest. While these strategies deepened our knowledge of pathological mechanisms in PD, they failed to faithfully capture key mechanisms at play in the human brain. The emergence of induced pluripotent stem cell (iPSC) technology is revolutionizing PD research, as it allows for the differentiation and growth of human DA neurons in vitro, holding immense potential not only for modelling PD, but also for identifying novel therapies. However, to reproduce the complexity of the brain’s environment, researchers are recognizing the need to further develop and refine iPSC-based tools. In this review, we provide an overview of different systems now available for the study of PD, with a particular emphasis on the potential and limitations of iPSC as research tools to generate more relevant models of PD pathophysiology and advance the drug discovery process.
Collapse
Affiliation(s)
- Nguyen-Vi Mohamed
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Frédérique Larroquette
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Lenore K Beitel
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Edward A Fon
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Thomas M Durcan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
38
|
Osborn TM, Hallett PJ, Schumacher JM, Isacson O. Advantages and Recent Developments of Autologous Cell Therapy for Parkinson's Disease Patients. Front Cell Neurosci 2020; 14:58. [PMID: 32317934 PMCID: PMC7147334 DOI: 10.3389/fncel.2020.00058] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/27/2020] [Indexed: 12/14/2022] Open
Abstract
Parkinson’s Disease (PD) is a progressive degenerative disease characterized by tremor, bradykinesia, rigidity and postural instability. There are approximately 7–10 million PD patients worldwide. Currently, there are no biomarkers available or pharmaceuticals that can halt the dopaminergic neuron degeneration. At the time of diagnosis about 60% of the midbrain dopamine (mDA) neurons have already degenerated, resulting in a depletion of roughly 70% of striatal dopamine (DA) levels and synapses. Symptomatic treatment (e.g., with L-dopa) can initially restore DA levels and motor function, but with time often lead to side-effects like dyskinesia. Deep-brain-stimulation can alleviate these side-effects and some of the motor symptoms but requires repeat procedures and adds limitations for the patients. Restoration of dopaminergic synapses using neuronal cell replacement therapy has shown benefit in clinical studies using cells from fetal ventral midbrain. This approach, if done correctly, increases DA levels and restores synapses, allowing biofeedback regulation between the grafted cells and the host brain. Drawbacks are that it is not scalable for a large patient population and the patients require immunosuppression. Stem cells differentiated in vitro to mDA neurons or progenitors have shown promise in animal studies and is a scalable approach that allows for cryopreservation of transplantable cells and rigorous quality control prior to transplantation. However, all allogeneic grafts require immunosuppression. HLA-donor-matching, reduces, but does not completely eliminate, the need for immunosuppression, and is currently investigated in a clinical trial for PD in Japan. Since immune compatibility is very important in all areas of transplantation, these approaches may ultimately be of less benefit to the patients than an autologous approach. By using the patient’s own somatic cells, reprogrammed to induced pluripotent stem cells (iPSCs) and differentiated to mDA neurons immunosuppression is not required, and may also present with several biological and functional advantages in the patients, as described in this article. The proof-of-principle of autologous iPSC mDA restoration of function has been shown in parkinsonian non-human primates (NHPs), and this can now be investigated in clinical trials in addition to the allogeneic and HLA-matched approaches. In this review, we focus on the autologous approach of cell therapy for PD.
Collapse
Affiliation(s)
- Teresia M Osborn
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, Belmont, MA, United States
| | - Penelope J Hallett
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, Belmont, MA, United States
| | - James M Schumacher
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, Belmont, MA, United States
| | - Ole Isacson
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, Belmont, MA, United States
| |
Collapse
|
39
|
Bitar M, Barry G. Building a Human Brain for Research. Front Mol Neurosci 2020; 13:22. [PMID: 32132903 PMCID: PMC7040093 DOI: 10.3389/fnmol.2020.00022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/31/2020] [Indexed: 12/17/2022] Open
Affiliation(s)
- Maina Bitar
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Guy Barry
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.,The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
40
|
Amin N, Tan X, Ren Q, Zhu N, Botchway BOA, Hu Z, Fang M. Recent advances of induced pluripotent stem cells application in neurodegenerative diseases. Prog Neuropsychopharmacol Biol Psychiatry 2019; 95:109674. [PMID: 31255650 DOI: 10.1016/j.pnpbp.2019.109674] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/03/2019] [Accepted: 06/17/2019] [Indexed: 01/30/2023]
Abstract
Stem cell is defined by its ability to self-renewal and generates differentiated functional cell types, which are derived from the embryo and various sources of postnatal animal. These cells can be divided according to their potential development into totipotent, unipotent, multipotent andpluripotent. Pluripotent is considered as the most important type due to its advantageous capability to create different cell types of the body in a similar behavior as embryonic stem cell. Induced pluripotent stem cells (iPSCs) are adult cells that maintain the characteristics of embryonic stem cells because it can be genetically reprogrammed to an embryonic stem cell-like state via express genes and transcription factors. Such cells provide an efficient pathway to explorehuman diseases and their corresponding therapy, particularly, neurodevelopmental disorders. Consequently, iPSCs can be investigated to check the specific mutations of neurodegenerative disease due to their unique ability to differentiate into neural cell types and/or neural organoids. The current review addresses the different neurodegenerative diseases model by using iPSCs approach such as Alzheimer's diseases (AD), Parkinson diseases (PD),multiplesclerosis(MS) and psychiatric disorders. We also highlight the importance of autophagy in neurodegenerative diseases.
Collapse
Affiliation(s)
- Nashwa Amin
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China; Department of Zoology, Faculty of Science, Aswan University, Egypt
| | - Xiaoning Tan
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiannan Ren
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Ning Zhu
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China; Hebei North University,Zhangjiakou, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiying Hu
- Obstetrics & Gynecology Department, Zhejiang Integrated Traditional and Western Medicine Hospital, Hangzhou, China.
| | - Marong Fang
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
41
|
George S, Hamblin MR, Abrahamse H. Differentiation of Mesenchymal Stem Cells to Neuroglia: in the Context of Cell Signalling. Stem Cell Rev Rep 2019; 15:814-826. [PMID: 31515658 PMCID: PMC6925073 DOI: 10.1007/s12015-019-09917-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The promise of engineering specific cell types from stem cells and rebuilding damaged or diseased tissues has fascinated stem cell researchers and clinicians over last few decades. Mesenchymal Stem Cells (MSCs) have the potential to differentiate into non-mesodermal cells, particularly neural-lineage, consisting of neurons and glia. These multipotent adult stem cells can be used for implementing clinical trials in neural repair. Ongoing research identifies several molecular mechanisms involved in the speciation of neuroglia, which are tightly regulated and interconnected by various components of cell signalling machinery. Growing MSCs with multiple inducers in culture media will initiate changes on intricately interlinked cell signalling pathways and processes. Net result of these signal flow on cellular architecture is also dependent on the type of ligands and stem cells investigated in vitro. However, our understanding about this dynamic signalling machinery is limited and confounding, especially with spheroid structures, neurospheres and organoids. Therefore, the results for differentiating neurons and glia in vitro have been inconclusive, so far. Added to this complication, we have no convincing evidence about the electrical conductivity and functionality status generated in differentiating neurons and glia. This review has taken a step forward to tailor the information on differentiating neuroglia with the common methodologies, in practice.
Collapse
Affiliation(s)
- Sajan George
- Laser Research Centre, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa
| | - Michael R Hamblin
- Laser Research Centre, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa
- Wellman Centre for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA
| | - Heidi Abrahamse
- Laser Research Centre, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa.
| |
Collapse
|
42
|
Ke M, Chong CM, Su H. Using induced pluripotent stem cells for modeling Parkinson’s disease. World J Stem Cells 2019; 11:634-649. [PMID: 31616540 PMCID: PMC6789186 DOI: 10.4252/wjsc.v11.i9.634] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/26/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023] Open
Abstract
Parkinson’s disease (PD) is an age-related neurodegenerative disease caused by the progressive loss of dopaminergic (DA) neurons in the substantia nigra. As DA neurons degenerate, PD patients gradually lose their ability of movement. To date no effective therapies are available for the treatment of PD and its pathogenesis remains unknown. Experimental models that appropriately mimic the development of PD are certainly needed for gaining mechanistic insights into PD pathogenesis and identifying new therapeutic targets. Human induced pluripotent stem cells (iPSCs) could provide a promising model for fundamental research and drug screening. In this review, we summarize various iPSCs-based PD models either derived from PD patients through reprogramming technology or established by gene-editing technology, and the promising application of iPSC-based PD models for mechanistic studies and drug testing.
Collapse
Affiliation(s)
- Minjing Ke
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Cheong-Meng Chong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| |
Collapse
|
43
|
de Leeuw S, Tackenberg C. Alzheimer's in a dish - induced pluripotent stem cell-based disease modeling. Transl Neurodegener 2019; 8:21. [PMID: 31338163 PMCID: PMC6624934 DOI: 10.1186/s40035-019-0161-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/25/2019] [Indexed: 02/06/2023] Open
Abstract
Background Since the discovery of the induced pluripotent stem cell (iPSC) technique more than a decade ago, extensive progress has been made to develop clinically relevant cell culture systems. Alzheimer’s disease (AD) is the most common neurodegenerative disease, accounting for approximately two thirds of all cases of dementia. The massively increasing number of affected individuals explains the major interest of research in this disease as well as the strong need for better understanding of disease mechanisms. Main body IPSC-derived neural cells have been widely used to recapitulating key aspects of AD. In this Review we highlight the progress made in studying AD pathophysiology and address the currently available techniques, such as specific differentiation techniques for AD-relevant cell types as well as 2D and 3D cultures. Finally, we critically discuss the key challenges and future directions of this field and how some of the major limitations of the iPSC technique may be overcome. Conclusion Stem cell-based disease models have the potential to induce a paradigm shift in biomedical research. In particular, the combination of the iPSC technology with recent advances in gene editing or 3D cell cultures represents a breakthrough for in vitro disease modeling and provides a platform for a better understanding of disease mechanisms in human cells and the discovery of novel therapeutics.
Collapse
Affiliation(s)
- Sherida de Leeuw
- 1Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland.,2Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Christian Tackenberg
- 1Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland.,2Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
44
|
Zunke F, Mazzulli JR. Modeling neuronopathic storage diseases with patient-derived culture systems. Neurobiol Dis 2019; 127:147-162. [PMID: 30790616 PMCID: PMC6588474 DOI: 10.1016/j.nbd.2019.01.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 02/08/2023] Open
Abstract
Lysosomes are organelles involved in the degradation and recycling of macromolecules, and play a critical role in sensing metabolic information in the cell. A class of rare metabolic diseases called lysosomal storage disorders (LSD) are characterized by lysosomal dysfunction and the accumulation of macromolecular substrates. The central nervous system appears to be particularly vulnerable to lysosomal dysfunction, since many LSDs are characterized by severe, widespread neurodegeneration with pediatric onset. Furthermore, variants in lysosomal genes are strongly associated with some common neurodegenerative disorders such as Parkinson's disease (PD). To better understand disease pathology and develop novel treatment strategies, it is critical to study the fundamental molecular disease mechanisms in the affected cell types that harbor endogenously expressed mutations. The discovery of methods for reprogramming of patient-derived somatic cells into induced pluripotent stem cells (iPSCs), and their differentiation into distinct neuronal and glial cell types, have provided novel opportunities to study mechanisms of lysosomal dysfunction within the relevant, vulnerable cell types. These models also expand our ability to develop and test novel therapeutic targets. We discuss recently developed methods for iPSC differentiation into distinct neuronal and glial cell types, while addressing the need for meticulous experimental techniques and parameters that are essential to accurately identify inherent cellular pathologies. iPSC models for neuronopathic LSDs and their relationship to sporadic age-related neurodegeneration are also discussed. These models should facilitate the discovery and development of personalized therapies in the future.
Collapse
Affiliation(s)
- Friederike Zunke
- Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, Kiel 24118, Germany.
| | - Joseph R Mazzulli
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
45
|
Calatayud C, Carola G, Fernández-Carasa I, Valtorta M, Jiménez-Delgado S, Díaz M, Soriano-Fradera J, Cappelletti G, García-Sancho J, Raya Á, Consiglio A. CRISPR/Cas9-mediated generation of a tyrosine hydroxylase reporter iPSC line for live imaging and isolation of dopaminergic neurons. Sci Rep 2019; 9:6811. [PMID: 31048719 PMCID: PMC6497635 DOI: 10.1038/s41598-019-43080-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 04/10/2019] [Indexed: 01/03/2023] Open
Abstract
Patient-specific induced pluripotent stem cells (iPSCs) are a powerful tool to investigate the molecular mechanisms underlying Parkinson’s disease (PD), and might provide novel platforms for systematic drug screening. Several strategies have been developed to generate iPSC-derived tyrosine hydroxylase (TH)-positive dopaminergic neurons (DAn), the clinically relevant cell type in PD; however, they often result in mixed neuronal cultures containing only a small proportion of TH-positive DAn. To overcome this limitation, we used CRISPR/Cas9-based editing to generate a human iPSC line expressing a fluorescent protein (mOrange) knocked-in at the last exon of the TH locus. After differentiation of the TH-mOrange reporter iPSC line, we confirmed that mOrange expression faithfully mimicked endogenous TH expression in iPSC-derived DAn. We also employed calcium imaging techniques to determine the intrinsic functional differences between dopaminergic and non-dopaminergic ventral midbrain neurons. Crucially, the brightness of mOrange allowed direct visualization of TH-expressing cells in heterogeneous cultures, and enabled us to isolate live mOrange-positive cells through fluorescence-activated cell sorting, for further differentiation. This technique, coupled to refined imaging and data processing tools, could advance the investigation of PD pathogenesis and might offer a platform to test potential new therapeutics for PD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Carles Calatayud
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, 08908, Hospitalet de Llobregat, Spain.,Institute of Biomedicine (IBUB) of the University of Barcelona (UB), 08028, Barcelona, Spain.,Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, Hospitalet de Llobregat, 08908, Barcelona, Spain
| | - Giulia Carola
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, 08908, Hospitalet de Llobregat, Spain.,Institute of Biomedicine (IBUB) of the University of Barcelona (UB), 08028, Barcelona, Spain
| | - Irene Fernández-Carasa
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, 08908, Hospitalet de Llobregat, Spain.,Institute of Biomedicine (IBUB) of the University of Barcelona (UB), 08028, Barcelona, Spain
| | - Marco Valtorta
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, 08908, Hospitalet de Llobregat, Spain.,Institute of Biomedicine (IBUB) of the University of Barcelona (UB), 08028, Barcelona, Spain.,Department of Bioscience, University of Milan, Via Festa del Perdono 7, Milan, 20122, Italy
| | - Senda Jiménez-Delgado
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, Hospitalet de Llobregat, 08908, Barcelona, Spain.,Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Hospitalet de Llobregat, 08098, Barcelona, Spain
| | - Mònica Díaz
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, Hospitalet de Llobregat, 08908, Barcelona, Spain.,Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Hospitalet de Llobregat, 08098, Barcelona, Spain
| | - Jordi Soriano-Fradera
- Department of Condensed Matter Physics, University of Barcelona, Avinguda de la Diagonal 645, 08028, Barcelona, Spain
| | - Graziella Cappelletti
- Department of Bioscience, University of Milan, Via Festa del Perdono 7, Milan, 20122, Italy
| | - Javier García-Sancho
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid, Calle Sanz y Forés 3, 47003, Valladolid, Spain
| | - Ángel Raya
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, Hospitalet de Llobregat, 08908, Barcelona, Spain. .,Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Hospitalet de Llobregat, 08098, Barcelona, Spain. .,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain.
| | - Antonella Consiglio
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, 08908, Hospitalet de Llobregat, Spain. .,Institute of Biomedicine (IBUB) of the University of Barcelona (UB), 08028, Barcelona, Spain. .,Department of Molecular and Translational Medicine, University of Brescia, Piazza del Mercato 15, 25121, Brescia, Italy.
| |
Collapse
|
46
|
de Boni L, Wüllner U. Epigenetic Analysis in Human Neurons: Considerations for Disease Modeling in PD. Front Neurosci 2019; 13:276. [PMID: 31024227 PMCID: PMC6460245 DOI: 10.3389/fnins.2019.00276] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 03/08/2019] [Indexed: 12/28/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder next to Alzheimer’s disease. Most PD cases are considered to be sporadic and despite considerable scientific effort, the underlying cause(s) still remain(s) enigmatic. In particular, it is unknown to which extent epigenetic alterations contribute to the pathophysiology of this devastating disorder. This is partly due to the fact that appropriate PD models are not yet available. Moreover, epigenetic patterns and mechanisms are species specific and murine systems reflect only a few of the idiosyncrasies of human neurons. For several years now, patient-specific stem cell-derived neural and non-neural cells have been employed to overcome this limitation allowing the analysis and establishment of humanized disease models for PD. Thus, several studies tried to dissect epigenetic alterations such as aberrant DNA methylation or microRNA patterns using lund human mesencephalic cell lines or neurons derived from (patient-specific) induced pluripotent stem cells. These studies demonstrate that human neurons have the potential to be used as model systems for the study of epigenetic modifications in PD such as characterizing epigenetic changes, correlating epigenetic changes to gene expression alterations and hopefully using these insights for the development of novel therapeutics. However, more research is required to define the epigenetic (age-associated) landscape of human in vitro neurons and compare these to native neurons before they can be established as suitable models for epigenetic studies in PD. In this review, we summarize the knowledge about epigenetic studies performed on human neuronal PD models, and we discuss advantages and current limitations of these (stem cell-derived) neuronal models for the study of epigenetic alterations in PD.
Collapse
Affiliation(s)
- Laura de Boni
- Dementia Research Institute, University College London, London, United Kingdom
| | - Ullrich Wüllner
- Department of Neurology, University Hospital Bonn, German Center for Neurologic Diseases, Bonn, Germany
| |
Collapse
|
47
|
Mohamed NV, Mathur M, da Silva RV, Beitel LK, Fon EA, Durcan TM. Generation of human midbrain organoids from induced pluripotent stem cells. ACTA ACUST UNITED AC 2019. [DOI: 10.12688/mniopenres.12816.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The development of brain organoids represents a major technological advance in the stem cell field, a novel bridge between traditional 2D cultures and in vivo animal models. In particular, the development of midbrain organoids containing functional dopaminergic neurons producing neuromelanin granules, a by-product of dopamine synthesis, represents a potential new model for Parkinson’s disease. To generate human midbrain organoids, we introduce specific inductive cues, at defined timepoints, during the 3D culture process to drive the stem cells towards a midbrain fate. In this method paper, we describe a standardized protocol to generate human midbrain organoids (hMOs) from induced pluripotent stem cells (iPSCs). This protocol was developed to demonstrate how human iPSCs can be successfully differentiated into numerous, high quality midbrain organoids in one batch. We also describe adaptations for cryosectioning of fixed organoids for subsequent histological analysis.
Collapse
|
48
|
Chen W, Huang Q, Ma S, Li M. Progress in Dopaminergic Cell Replacement and Regenerative Strategies for Parkinson's Disease. ACS Chem Neurosci 2019; 10:839-851. [PMID: 30346716 DOI: 10.1021/acschemneuro.8b00389] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Parkinson's disease (PD) is a chronic progressive neurodegenerative disorder symptomatically characterized by resting tremor, rigidity, bradykinesia, and gait impairment. These motor deficits suffered by PD patients primarily result from selective dysfunction or loss of dopaminergic neurons of the substantia nigra pars compacta (SNpc). Most of the existing therapies for PD are based on the replacement of dopamine, which is symptomatically effective in the early stage but becomes increasingly less effective and is accompanied by serious side effects in the advanced stages of the disease. Currently, there are no strategies to slow neuronal degeneration or prevent the progression of PD. Thus, the prospect of regenerating functional dopaminergic neurons is very attractive. Over the last few decades, significant progress has been made in the development of dopaminergic regenerative strategies for curing PD. The most promising approach seems to be cell-replacement therapy (CRT) using human embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs), which are unlimitedly available and have gained much success in preclinical trials. Despite the challenges, stem cell-based CRT will make significant steps toward the clinic in the coming decade. Alternatively, direct lineage reprogramming, especially in situ direct conversion of glia cells to induced neurons, which exhibits some advantages including no ethical concerns, no risk of tumor formation, and even no need for transplantation, has gained much attention recently. Evoking the endogenous regeneration ability of neural stem cells (NSCs) is an idyllic method of dopaminergic neuroregeneration which remains highly controversial. Here, we review many of these advances, highlighting areas and strategies that might be particularly suited to the development of regenerative approaches that restore dopaminergic function in PD.
Collapse
Affiliation(s)
- Weizhao Chen
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Qiaoying Huang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Shanshan Ma
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Mingtao Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou 510080, China
| |
Collapse
|
49
|
van Hugte E, Nadif Kasri N. Modeling Psychiatric Diseases with Induced Pluripotent Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1192:297-312. [PMID: 31705501 DOI: 10.1007/978-981-32-9721-0_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neuropsychiatric disorders are a heterogeneous group of disorders that are challenging to model and treat, due to their underlying complex genetic architecture and clinical variability. Presently, increasingly more studies are making use of induced pluripotent stem cell (iPSC)-derived neurons, reprogrammed from patient somatic cells, to model neuropsychiatric disorders. iPSC-derived neurons offer the possibility to recapitulate relevant disease biology in the context of the individual patient genetic background. In addition to disease modeling, iPSC-derived neurons offer unprecedented opportunities in drug screening. In this chapter, the current status of iPSC disease modeling for neuropsychiatric disorders is presented. Both 2D and 3D disease modeling approaches are discussed as well as the generation of different neuronal cell types that are relevant for studying neuropsychiatric disorders. Moreover, the advantages and limitations are highlighted in addition to the future perspectives of using iPSC-derived neurons in the uncovering of robust cellular phenotypes that consecutively have the potential to lead to clinical developments.
Collapse
Affiliation(s)
- Eline van Hugte
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB, Nijmegen, The Netherlands
- Academic Center for Epileptology Kempenhaeghe, Heeze, The Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB, Nijmegen, The Netherlands.
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.
| |
Collapse
|
50
|
Kim HJ. Regulation of Neural Stem Cell Fate by Natural Products. Biomol Ther (Seoul) 2019; 27:15-24. [PMID: 30481958 PMCID: PMC6319553 DOI: 10.4062/biomolther.2018.184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/22/2018] [Accepted: 11/02/2018] [Indexed: 12/13/2022] Open
Abstract
Neural stem cells (NSCs) can proliferate and differentiate into multiple cell types that constitute the nervous system. NSCs can be derived from developing fetuses, embryonic stem cells, or induced pluripotent stem cells. NSCs provide a good platform to screen drugs for neurodegenerative diseases and also have potential applications in regenerative medicine. Natural products have long been used as compounds to develop new drugs. In this review, natural products that control NSC fate and induce their differentiation into neurons or glia are discussed. These phytochemicals enable promising advances to be made in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Hyun-Jung Kim
- Laboratory of Molecular Stem Cell Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 06974,
Republic of Korea
| |
Collapse
|