1
|
Hayashi MAL, Simon SM, Zou K, Van Wyk H, Zahid MH, Eisenberg JNS, Freeman MC. Shared sanitation facilities and risk of respiratory virus transmission in resource-poor settings: A COVID-19 modeling case study. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2025; 45:638-652. [PMID: 39179379 PMCID: PMC11954722 DOI: 10.1111/risa.17633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 05/08/2024] [Accepted: 07/04/2024] [Indexed: 08/26/2024]
Abstract
Water supply and sanitation are essential household services frequently shared in resource-poor settings. Shared sanitation can increase the risk of enteric pathogen transmission due to suboptimal cleanliness of facilities used by large numbers of individuals. It also can potentially increase the risk of respiratory disease transmission. As sanitation is an essential need, shared sanitation facilities may act as important respiratory pathogen transmission venues even with strict control measures such as stay-at-home recommendations in place. This analysis explores how behavioral and infrastructural conditions surrounding shared sanitation may individually and interactively influence respiratory pathogen transmission. We developed an individual-based community transmission model using COVID-19 as a motivating example parameterized from empirical literature to explore how transmission in shared latrines interacts with transmission at the community level. We explored mitigation strategies, including infrastructural and behavioral interventions. Our review of empirical literature confirms that shared sanitation venues in resource-poor settings are relatively small with poor ventilation and high use patterns. In these contexts, shared sanitation facilities may act as strong drivers of respiratory disease transmission, especially in areas reliant on shared facilities. Decreasing dependence on shared latrines was most effective at attenuating sanitation-associated transmission. Improvements to latrine ventilation and handwashing behavior were also able to decrease transmission. The type and order of interventions are important in successfully attenuating disease risk, with infrastructural and engineering controls being most effective when administered first, followed by behavioral controls after successful attenuation of sufficient alternate transmission routes. Beyond COVID-19, our modeling framework can be extended to address water, sanitation, and hygiene measures targeted at a range of environmentally mediated infectious diseases.
Collapse
Affiliation(s)
- Michael A. L. Hayashi
- Department of Epidemiology, School of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | - Sophia M. Simon
- Department of Environmental Science and PolicyUniversity of CaliforniaDavisCaliforniaUSA
| | - Kaiyue Zou
- Department of Epidemiology, Bloomberg School of Public HealthJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Hannah Van Wyk
- Department of Epidemiology, School of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | - Mondal Hasan Zahid
- Department of Epidemiology, School of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | - Joseph N. S. Eisenberg
- Department of Epidemiology, School of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | - Matthew C. Freeman
- Gangarosa Department of Environmental Health, Rollins School of Public HealthEmory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
2
|
Angelopoulos N, Staines J, Chamberlin M, Bates S, McGain F. A narrative review of personal protective equipment gowns: lessons from COVID-19. Br J Anaesth 2025; 134:368-381. [PMID: 39516124 DOI: 10.1016/j.bja.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/25/2024] [Accepted: 09/18/2024] [Indexed: 11/16/2024] Open
Abstract
This narrative review evaluates the evidence regarding the protection offered by isolation gowns, approaches to imparting antimicrobial activity to gowns, and the environmental impacts of gown use, particularly during the COVID-19 pandemic. We conducted a search of the Medline, PubMed, and Google Scholar databases for articles published between January 1, 2019 to February 20, 2024. We found that current standards pertaining to isolation gowns might be irrelevant to the protection of healthcare workers from pathogen transmission, as they focus primarily on fluid barrier resistance values that are not reflective of all transmission conditions in hospitals. Although most available isolation gowns are disposable, reusable gowns could offer greater barrier protection and are more environmentally sustainable. Several techniques have been studied for their ability to impart antimicrobial properties to isolation gowns, extending their lifespan and reducing environmental impacts. However, evidence of the effectiveness of such techniques in clinical settings is scarce. We advocate for standardised guidelines inclusive of common pathogen survival tests, comfort, and durability, which reflect the actual infection risks encountered by healthcare workers, to improve the safety and efficacy of isolation gowns in hospital settings. Further research into the clinical effectiveness of antimicrobial gowns and their long-term implications on the environment is also warranted.
Collapse
Affiliation(s)
- Nikolaos Angelopoulos
- Department of Anaesthesia and Intensive Care, Western Health, Melbourne, VIC, Australia.
| | - Jo Staines
- Department of Mechanical Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Meriel Chamberlin
- Limebranch Pty Ltd trading as Full Circle Fibres, Brisbane, QLD, Australia
| | - Samantha Bates
- Department of Anaesthesia and Intensive Care, Western Health, Melbourne, VIC, Australia; Department of Critical Care, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Forbes McGain
- Department of Anaesthesia and Intensive Care, Western Health, Melbourne, VIC, Australia; Department of Critical Care, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Ramírez S, Zúñiga F, Amenábar A, Contreras P, Benavides V, Norambuena J, Martínez J, Silva N. Copper-Modified Cellulose Paper: A Comparative Study of How Antimicrobial Activity Is Affected by Particle Size and Testing Standards. Int J Mol Sci 2025; 26:480. [PMID: 39859196 PMCID: PMC11765064 DOI: 10.3390/ijms26020480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
This study aims to provide evidence that when testing cellulose paper modified with copper particles (CuPs), the particle size and the analysis method influence the antimicrobial activity observed by this material. Commercial CuPs of nanometric size (2.7 nm, CuNPs) and micrometric size (2.5 µm, CuMPs) were used to modify cellulose paper sheets. CuPs were incorporated during the pulp disintegration phase (stage 1) of the sheet formation process, according to the ISO 5269-1:2005 standard. Modified paper sheets retained 16% and 14% of CuNPs and CuMPs, respectively. Additionally, CuPs were distributed randomly on the fiber surfaces, often forming aggregates. Finally, the antimicrobial activity of the modified paper sheets was evaluated using ISO 20645:2004 and ISO 20743:2013. The results showed that the antimicrobial activity assessed using each standard method is conditioned by the mechanism of action of the CuPs and, therefore, by their size. It was concluded that ISO 20645:2004 is suitable for evaluating the antibacterial effect of paper/CuNPs, as nanoparticles diffuse from the paper and are released into the culture medium. In contrast, ISO 20743:2013 can be used for both CuNP- and CuMP-based paper, as it evaluates the antibacterial effect based on the direct interaction between the copper particle and the bacteria.
Collapse
Affiliation(s)
- Sara Ramírez
- Facultad de Diseño, Universidad del Desarrollo, Avenida Plaza 680, Las Condes 7610658, Santiago, Chile (A.A.); (P.C.)
| | - Fabian Zúñiga
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Avenida Plaza 680, Las Condes 7610658, Santiago, Chile
| | - Alejandra Amenábar
- Facultad de Diseño, Universidad del Desarrollo, Avenida Plaza 680, Las Condes 7610658, Santiago, Chile (A.A.); (P.C.)
| | - Paulina Contreras
- Facultad de Diseño, Universidad del Desarrollo, Avenida Plaza 680, Las Condes 7610658, Santiago, Chile (A.A.); (P.C.)
| | - Viviana Benavides
- Facultad de Diseño, Universidad del Desarrollo, Avenida Plaza 680, Las Condes 7610658, Santiago, Chile (A.A.); (P.C.)
| | - Javiera Norambuena
- Facultad de Diseño, Universidad del Desarrollo, Avenida Plaza 680, Las Condes 7610658, Santiago, Chile (A.A.); (P.C.)
| | - Jessica Martínez
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Avenida Plaza 680, Las Condes 7610658, Santiago, Chile
| | - Nataly Silva
- Facultad de Diseño, Universidad del Desarrollo, Avenida Plaza 680, Las Condes 7610658, Santiago, Chile (A.A.); (P.C.)
| |
Collapse
|
4
|
Quinonez-Munoz A, Sobhy NM, Goyal SM. Comparative survival of five porcine reproductive and respiratory syndrome virus strains on six fomites. Vet World 2024; 17:2774-2779. [PMID: 39897367 PMCID: PMC11784046 DOI: 10.14202/vetworld.2024.2774-2779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/04/2024] [Indexed: 02/04/2025] Open
Abstract
Background and Aim Despite the availability of vaccines, porcine reproductive and respiratory syndrome virus (PRRSV) continues to cause disease outbreaks in pigs worldwide. One of the reasons for this problem is the frequent mutation of the virus, which creates new variants. This study was conducted to determine the survival of five PRRSV strains on four non-porous and two porous fomites at 22-25°C (room temperature). Materials and Methods Five strains of PRRSV (1-7-4, 1-8-4, VR 2332, 1-4-4 MN, and 1-4-4 SD) were used in this study. Circular pieces of aluminum, boot material, polyvinyl chloride, stainless steel, cardboard, and concrete were used as fomites. A small volume of each virus strain was placed on the fomite, followed by incubation at room temperature. The virus surviving at different time points was eluted in an eluent solution. Serial 10-fold dilutions of the eluate were inoculated in MARC-145 cells for virus titration. Multivariate analysis of variance (MANOVA) was used for statistical analysis, and post hoc analysis was used for multiple pairwise comparisons. Results Three of the five strains were inactivated within 36 h on non-porous fomites; the remaining two survived for 72 h. On porous fomites, all five strains were inactivated within 12 h. MANOVA at p < 0.05 indicated that the inactivation of strains 1-7-4 and 1-4-4 SD was significant compared with the other strains. In addition, the number of virus titers was significantly reduced on stainless steel compared to other fomites. Conclusion Our findings illustrate how the interaction between the PRRSV strain and fomite material affect viral stability over time. The results also provide an understanding of fomites' role in PRRSV epidemiology as indirect transmitters of the virus.
Collapse
Affiliation(s)
- Angie Quinonez-Munoz
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Nader M. Sobhy
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
- Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia, Egypt
| | - Sagar M. Goyal
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
5
|
Longest AK, Rockey NC, Lakdawala SS, Marr LC. Review of factors affecting virus inactivation in aerosols and droplets. J R Soc Interface 2024; 21:18. [PMID: 38920060 DOI: 10.1098/rsif.2024.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/25/2024] [Indexed: 06/27/2024] Open
Abstract
The inactivation of viruses in aerosol particles (aerosols) and droplets depends on many factors, but the precise mechanisms of inactivation are not known. The system involves complex physical and biochemical interactions. We reviewed the literature to establish current knowledge about these mechanisms and identify knowledge gaps. We identified 168 relevant papers and grouped results by the following factors: virus type and structure, aerosol or droplet size, temperature, relative humidity (RH) and evaporation, chemical composition of the aerosol or droplet, pH and atmospheric composition. These factors influence the dynamic microenvironment surrounding a virion and thus may affect its inactivation. Results indicate that viruses experience biphasic decay as the carrier aerosols or droplets undergo evaporation and equilibrate with the surrounding air, and their final physical state (liquid, semi-solid or solid) depends on RH. Virus stability, RH and temperature are interrelated, but the effects of RH are multifaceted and still not completely understood. Studies on the impact of pH and atmospheric composition on virus stability have raised new questions that require further exploration. The frequent practice of studying virus inactivation in large droplets and culture media may limit our understanding of inactivation mechanisms that are relevant for transmission, so we encourage the use of particles of physiologically relevant size and composition in future research.
Collapse
Affiliation(s)
- Alexandra K Longest
- Department of Civil and Environmental Engineering, Virginia Tech , Blacksburg, VA, USA
| | - Nicole C Rockey
- Department of Civil and Environmental Engineering, Duke University , Durham, NC, USA
| | - Seema S Lakdawala
- Department of Microbiology and Immunology, Emory University , Atlanta, GA, USA
| | - Linsey C Marr
- Department of Civil and Environmental Engineering, Virginia Tech , Blacksburg, VA, USA
| |
Collapse
|
6
|
Reissner J, Siller P, Bartel A, Roesler U, Friese A. Stability of Feline Coronavirus in aerosols and dried in organic matrices on surfaces at various environmental conditions. Sci Rep 2023; 13:22012. [PMID: 38086913 PMCID: PMC10716419 DOI: 10.1038/s41598-023-49361-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/07/2023] [Indexed: 12/18/2023] Open
Abstract
Enveloped respiratory viruses, including the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can be transmitted through aerosols and contact with contaminated surfaces. The stability of these viruses outside the host significantly impacts their transmission dynamics and the spread of diseases. In this study, we investigated the tenacity of Feline Coronavirus (FCoV) in aerosols and on surfaces under varying environmental conditions. We found that airborne FCoV showed different stability depending on relative humidity (RH), with higher stability observed at low and high RH. Medium RH conditions (50-60%) were associated with increased loss of infectivity. Furthermore, FCoV remained infectious in the airborne state over 7 h. On stainless-steel surfaces, FCoV remained infectious for several months, with stability influenced by organic material and temperature. The presence of yeast extract and a temperature of 4 °C resulted in the longest maintenance of infectivity, with a 5 log10 reduction of the initial concentration after 167 days. At 20 °C, this reduction was achieved after 19 days. These findings highlight the potential risk of aerosol and contact transmission of respiratory viruses, especially in enclosed environments, over extended periods. Studying surrogate viruses like FCoV provides important insights into the behavior of zoonotic viruses like SARS-CoV-2 in the environment.
Collapse
Affiliation(s)
- Janina Reissner
- Institute of Animal Hygiene and Environmental Health, Veterinary Centre for Resistance Research-TZR, School of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany.
| | - Paul Siller
- Institute of Animal Hygiene and Environmental Health, Veterinary Centre for Resistance Research-TZR, School of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
- Federal Office of Consumer Protection and Food Safety, Department Veterinary Drugs, Mittelstraße 51-54, 10117, Berlin, Germany
| | - Alexander Bartel
- Institute of Veterinary Epidemiology and Biostatistics, School of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
| | - Uwe Roesler
- Institute of Animal Hygiene and Environmental Health, Veterinary Centre for Resistance Research-TZR, School of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
| | - Anika Friese
- Institute of Animal Hygiene and Environmental Health, Veterinary Centre for Resistance Research-TZR, School of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
| |
Collapse
|
7
|
Coleman CM, Wang B, Wang Y, Tapia-Brito E, Chen Z, Riffat J, Riffat S, Tarlinton R, Ghaemmaghami A. Antiviral activity of salt-coated materials against SARS-CoV-2. Access Microbiol 2023; 5:000492.v5. [PMID: 37841099 PMCID: PMC10569654 DOI: 10.1099/acmi.0.000492.v5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 09/04/2023] [Indexed: 10/17/2023] Open
Abstract
The SARS-CoV-2 pandemic demonstrated the importance of human coronaviruses and the need to develop materials to prevent the spread of emergent respiratory viruses. Coating of surfaces with antiviral materials is a major interest in controlling spread of viruses, especially in high-risk or high-traffic areas. A number of different coatings for surfaces have been proposed, each with their own advantages and disadvantages. Here we show that simple salt coating on a range of surfaces, including a novel biomass aerogel can reduce the infectivity of SARS-CoV-2 placed onto the surface. This suggests that a simple to apply coating could be applied to a range of materials and have an antiviral effect against SARS-CoV-2, as well as other potential emerging viruses.
Collapse
Affiliation(s)
- Christopher M. Coleman
- School of Life Sciences, University of Nottingham, Nottingham, UK
- Wolfson Centre for Global Virus Research, University of Nottingham, Nottingham, UK
| | - Belinda Wang
- Wolfson Centre for Global Virus Research, University of Nottingham, Nottingham, UK
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Yixin Wang
- Department of Architecture and the Built Environment, University of Nottingham, Nottingham, UK
| | - Emmanuel Tapia-Brito
- Department of Architecture and the Built Environment, University of Nottingham, Nottingham, UK
| | - Ziwei Chen
- Department of Architecture and the Built Environment, University of Nottingham, Nottingham, UK
| | - James Riffat
- Department of Architecture and the Built Environment, University of Nottingham, Nottingham, UK
| | - Saffa Riffat
- Department of Architecture and the Built Environment, University of Nottingham, Nottingham, UK
| | - Rachael Tarlinton
- Wolfson Centre for Global Virus Research, University of Nottingham, Nottingham, UK
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | | |
Collapse
|
8
|
Juozapaitė D, Minkauskas M, Laurinaitytė I, Simutytė M, Griškevičius L, Naumovas D. The COVID-19 pandemic reveals the wide-ranging role of biobanks. Front Public Health 2023; 11:1256601. [PMID: 37719742 PMCID: PMC10502418 DOI: 10.3389/fpubh.2023.1256601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/07/2023] [Indexed: 09/19/2023] Open
Abstract
The pandemic of COVID-19 reached an unprecedented scale in terms of spread and deaths, its mitigation required a joint effort of governments, hospitals, private companies and other organizations. One type of organization that could undertake a major role in the process is biobank - a mediator between clinical practice and research. Naturally, biobanks are well equipped to alleviate the burden of a pandemic with their expertise in biospecimen and health information collection, sample preparation and storage, bioethics and project management. Here, we present the participation of Vilnius Santaros Klinikos Biobank (BB VSK), Lithuania in the overall management of the pandemics on the national level. We further discuss the role of biobanks in preparation and management of future pandemics.
Collapse
Affiliation(s)
- Dovilė Juozapaitė
- Vilnius Santaros Klinikos Biobank, Hematology, Oncology and Transfusion Medicine Centre, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Mantas Minkauskas
- Vilnius Santaros Klinikos Biobank, Hematology, Oncology and Transfusion Medicine Centre, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Inga Laurinaitytė
- Vilnius Santaros Klinikos Biobank, Hematology, Oncology and Transfusion Medicine Centre, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Martyna Simutytė
- Vilnius Santaros Klinikos Biobank, Hematology, Oncology and Transfusion Medicine Centre, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Laimonas Griškevičius
- Hematology, Oncology and Transfusion Medicine Centre, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Daniel Naumovas
- Vilnius Santaros Klinikos Biobank, Hematology, Oncology and Transfusion Medicine Centre, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| |
Collapse
|
9
|
Li F, Xu K, Pan Y, Liu P, Zhang J, Yang M, Lei W, Feng Z, Liang Z, Zhang D, Wu G, Wang Q. Stability of SARS-CoV-2 and persistence of viral nucleic acids on common foods and widely used packaging material surfaces. J Med Virol 2023; 95:e28871. [PMID: 37314009 DOI: 10.1002/jmv.28871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/15/2023]
Abstract
SARS-CoV-2 is still spreading globally. Studies have reported the stability of SARS-CoV-2 in aerosols and on surfaces under different conditions. However, studies on the stability of SARS-CoV-2 and viral nucleic acids on common food and packaging material surfaces are insufficient. The study evaluated the stability of SARS-CoV-2 using TCID50 assays and the persistence of SARS-CoV-2 nucleic acids using droplet digital polymerase chain reaction on various food and packaging material surfaces. Viral nucleic acids were stable on food and material surfaces under different conditions. The viability of SARS-CoV-2 varied among different surfaces. SARS-CoV-2 was inactivated on most food and packaging material surfaces within 1 day at room temperature but was more stable at lower temperatures. Viruses survived for at least 1 week on pork and plastic at 4°C, while no viable viruses were detected on hairtail, orange, or carton after 3 days. There were viable viruses and a slight titer decrease after 8 weeks on pork and plastic, but titers decreased rapidly on hairtail and carton at -20°C. These results highlight the need for targeted preventive and disinfection measures based on different types of foods, packaging materials, and environmental conditions, particularly in the cold-chain food trade, to combat the ongoing pandemic.
Collapse
Affiliation(s)
- Fu Li
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Ke Xu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yang Pan
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Peipei Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jing Zhang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Mengjie Yang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wenwen Lei
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhaomin Feng
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Zhichao Liang
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Daitao Zhang
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Guizhen Wu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Quanyi Wang
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, Beijing, China
| |
Collapse
|
10
|
Jayasinghe RR, Abeyrathna WP, Lythgoe D, Hendawitharana MP, Liyanage C, Williams K, Halwatura RU. Analysis of the community behavioural patterns in management of household plastic waste due to the COVID-19 pandemic in Sri Lanka. CASE STUDIES IN CHEMICAL AND ENVIRONMENTAL ENGINEERING 2022; 6:100246. [PMID: 37520918 PMCID: PMC9385346 DOI: 10.1016/j.cscee.2022.100246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/23/2022] [Accepted: 08/08/2022] [Indexed: 05/29/2023]
Abstract
The COVID-19 pandemic has adversely affected human lifestyle in numerous ways and one such key affected social element is the management of household plastic waste. Due to its effective barrier properties against the COVID-19 virus, usage and consumption of personal protective equipment (PPE) and other single-use plastic (SUP) products have increased exponentially to meet the accelerated demand. Therefore, this paper analyses the changes in community behavioural patterns of household plastic waste management with the prevailing COVID-19 pandemic situation in Sri Lanka. The comparative analysis of majorly consumed plastic waste types, plastic disposal methods, and perceptions of existing policies before and after the pandemic are broadly discussed. A comprehensive questionnaire was conducted in a stratified randomly sampled community and analysed using SPSS. Disposable face masks (39.9%) and hand sanitiser products (33.0%) were popular plastic products during the pandemic. The frequency of handing over the waste to collectors and recycling centres decreased slightly, from 32.1% to 31.4% and 24.2%-19.8%, respectively. Conversely, respondents' preference for burning plastic waste increased from 23.4% to 27.0% after the pandemic. The plastic disposal methods from before and after the pandemic are significantly associated with income level (p = 0.00) and employment status (p = 0.00). No significant association was observed between the disposal method before the pandemic and the education level of respondents (p = 0.185). However, a significant association was evident between the disposal method after the pandemic and the education level of respondents (p = 0.025).
Collapse
Affiliation(s)
| | | | - Daniel Lythgoe
- School of Engineering, University of Central Lancashire, Fylde Rd, Preston, United Kingdom
| | | | - Champika Liyanage
- School of Engineering, University of Central Lancashire, Fylde Rd, Preston, United Kingdom
| | - Karl Williams
- School of Engineering, University of Central Lancashire, Fylde Rd, Preston, United Kingdom
| | - Rangika Umesh Halwatura
- Department of Civil Engineering, University of Moratuwa, Bandaranayake Mawatha, Katubedda, Sri Lanka
| |
Collapse
|
11
|
Zhang F, Wang Z, Vijver MG, Peijnenburg WJGM. Theoretical investigation on the interactions of microplastics with a SARS-CoV-2 RNA fragment and their potential impacts on viral transport and exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156812. [PMID: 35738381 PMCID: PMC9212631 DOI: 10.1016/j.scitotenv.2022.156812] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/08/2022] [Accepted: 06/15/2022] [Indexed: 02/08/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the coronavirus disease-19 (COVID-19) pandemic spread across the world and remains difficult to control. Environmental pollution and habitat conditions do facilitate SARS-CoV-2 transmission as well as increase the risk of exposure to SARS-CoV-2. The coexistence of microplastics (MPs) with SARS-CoV-2 affects the viral behavior in the indoor and outdoor environment, and it is essential to study the interactions between MPs and SARS-CoV-2 because they both are ubiquitously present in our environment. To determine the mechanisms underlying the impact of MPs on SARS-CoV-2, we used molecular dynamic simulations to investigate the molecular interactions between five MPs and a SARS-CoV-2 RNA fragment at temperatures ranging from 223 to 310 K in vacuum and in water. We furthermore compared the interactions of MPs and SARS-CoV-2 RNA fragment to the performance of SARS-CoV-1 and Hepatitis B virus (HBV) RNA fragments in interacting with the MPs. The interaction affinity between the MPs and the SARS-CoV-2 RNA fragment was found to be greater than the affinity between the MPs and the SARS-CoV-1 or HBV RNA fragments, independent of the environmental media, temperature, and type of MPs. The mechanisms of the interaction between the MPs and the SARS-CoV-2 RNA fragment involved electrostatic and hydrophobic processes, and the interaction affinity was associated with the inherent structural parameters (i.e., molecular volume, polar surface area, and molecular topological index) of the MPs monomers. Although the evidence on the infectious potential of SARS-CoV-2 RNA is not fully understood, humans are exposed to MPs via their lungs, and the strong interaction with the gene materials of SARS-CoV-2 likely affects the exposure of humans to SARS-CoV-2.
Collapse
Affiliation(s)
- Fan Zhang
- Institute of Environmental Sciences (CML), Leiden University, Leiden 2300 RA, the Netherlands
| | - Zhuang Wang
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing 210044, PR China
| | - Martina G Vijver
- Institute of Environmental Sciences (CML), Leiden University, Leiden 2300 RA, the Netherlands
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, Leiden 2300 RA, the Netherlands; Centre for Safety of Substances and Products, National Institute of Public Health and the Environment (RIVM), Bilthoven 3720 BA, the Netherlands.
| |
Collapse
|
12
|
Baker CA, Gibson KE. Persistence of SARS-CoV-2 on surfaces and relevance to the food industry. Curr Opin Food Sci 2022; 47:100875. [PMID: 35784376 PMCID: PMC9238272 DOI: 10.1016/j.cofs.2022.100875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Determining the prevalence and persistence of viruses outside the human host aids our ability to characterize exposure risk across multiple transmission pathways. Since 2020, the Coronavirus Disease 2019 pandemic has resulted in a surge of research regarding severe acute respiratory syndrome-coronavirus-type 2 (SARS-CoV-2) and its potential to spread via direct and indirect contact transmission routes. Here, the authors discuss the current state of the science concerning SARS-CoV-2 transmission via contaminated surfaces and its persistence on environmental surfaces. This review aims to provide the reader with an overview of the currently published SARS-CoV-2 persistence studies, factors impacting persistence, guidelines for performing persistence studies, limitation of current data, and future directions for assessing SARS-CoV-2 persistence on fomites.
Collapse
Affiliation(s)
- Christopher A Baker
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, AR 72704, USA
| | - Kristen E Gibson
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, AR 72704, USA
| |
Collapse
|
13
|
Olagüe C, Mitxelena-Iribarren O, Sierra-García JE, Rodriguez-Merino F, Maestro S, Pérez-Lorenzo E, Guillen-Grima F, González-Aseguinolaza G, Arana S, Smerdou C. Rapid SARS-CoV-2 disinfection on distant surfaces with UV-C: The inactivation is affected by the type of material. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2022; 11:100138. [PMID: 35958025 PMCID: PMC9356637 DOI: 10.1016/j.jpap.2022.100138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
SARS-CoV-2 is responsible for the COVID-19 pandemic, which has caused almost 570 million infections and over six million deaths worldwide. To help curb its spread, solutions using ultraviolet light (UV) for quick virus inactivation inside buildings without human intervention could be very useful to reduce chances of contagion. The UV dose must be sufficient to inactivate the virus considering the different materials in the room, but it should not be too high, not to degrade the environment. In the present study, we have analyzed the ability of a 254 nm wavelength UV-C lamp to inactivate dried samples of SARS-CoV-2 exposed at a distance of two meters, simulating a full-scale scenario. Our results showed that virus inactivation was extremely efficient in most tested materials, which included plastic, metal, wood, and textile, with a UV-C exposure of only 42 s (equivalent to 10 mJ/cm2). However, porous materials like medium density fibreboard, were hard to decontaminate, indicating that they should be avoided in hospital rooms and public places.
Collapse
Affiliation(s)
- Cristina Olagüe
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra and Instituto de Investigación Sanitaria de Navarra (IdISNA), 31008 Pamplona, Spain
| | - Oihane Mitxelena-Iribarren
- CEIT-Basque Research and Technology Alliance (BRTA), Manuel Lardizábal 15, 20018 Donostia-San Sebastián, Spain
- Universidad de Navarra, Tecnun, Manuel Lardizábal 13, 20018 Donostia-San Sebastián, Spain
| | | | | | - Sheila Maestro
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra and Instituto de Investigación Sanitaria de Navarra (IdISNA), 31008 Pamplona, Spain
| | - Eva Pérez-Lorenzo
- CEIT-Basque Research and Technology Alliance (BRTA), Manuel Lardizábal 15, 20018 Donostia-San Sebastián, Spain
- Universidad de Navarra, Tecnun, Manuel Lardizábal 13, 20018 Donostia-San Sebastián, Spain
| | - Francisco Guillen-Grima
- Department of Preventive Medicine, Clínica Universidad de Navarra, Pio XII 36, 3108 Pamplona, Navarra, Spain
| | - Gloria González-Aseguinolaza
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra and Instituto de Investigación Sanitaria de Navarra (IdISNA), 31008 Pamplona, Spain
| | - Sergio Arana
- CEIT-Basque Research and Technology Alliance (BRTA), Manuel Lardizábal 15, 20018 Donostia-San Sebastián, Spain
- Universidad de Navarra, Tecnun, Manuel Lardizábal 13, 20018 Donostia-San Sebastián, Spain
| | - Cristian Smerdou
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra and Instituto de Investigación Sanitaria de Navarra (IdISNA), 31008 Pamplona, Spain
| |
Collapse
|
14
|
da Silva DJ, Duran A, Cabral AD, Fonseca FLA, Bueno RF, Rosa DS. Questioning ZnO, Ag, and Ag/ZnO nanoparticles as antimicrobial agents for textiles: Do they guarantee total protection against bacteria and SARS-CoV-2? JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112538. [PMID: 35964336 PMCID: PMC9349053 DOI: 10.1016/j.jphotobiol.2022.112538] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/24/2022] [Accepted: 08/01/2022] [Indexed: 11/02/2022]
Abstract
Coronavirus Disease 2019 (COVID-19) occasioned global economic and health systems collapse. Also, it raised several concerns about using conventional cotton fabrics for manufacturing personal protective equipment without the antimicrobial capacity to inactivate viruses, such as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and its variants. Therefore, developing antimicrobial cotton fibers is crucial to avoid new global pandemics or the transmission of dangerous pathogens that remain on surfaces for long periods, especially in hospitals and medical clinics. Herein, we developed antimicrobial cotton fabrics with Ag, ZnO, and Ag/ZnO nanoparticles and evaluated their bactericidal activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), photocatalytic activity, and antiviral activity against Delta SARS-CoV-2. Although the antimicrobial fabrics are effective against these bacteria, they only reduce part of the SARS-CoV-2 virions during the first 15 min of direct contact via damage only to biological structures on the viral surface particle while the viral RNA remains intact.
Collapse
Affiliation(s)
- Daniel J da Silva
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo André, Brazil
| | - Adriana Duran
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo André, Brazil
| | - Aline D Cabral
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo André, Brazil
| | - Fernando L A Fonseca
- Faculty of Medicine of ABC (FMABC), Department of Clinical Analysis, Santo André, São Paulo, Brazil
| | - Rodrigo F Bueno
- Coordinator of the COVID-19 Monitoring Network in Wastewater National Water and Basic Sanitation Agency, Ministry of Science, Technology and Innovation and Ministry of Health, Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo André, Brazil
| | - Derval S Rosa
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo André, Brazil.
| |
Collapse
|
15
|
Mahmoudnia A, Mehrdadi N, Golbabaei Kootenaei F, Rahmati Deiranloei M, Al-E-Ahmad E. Increased personal protective equipment consumption during the COVID-19 pandemic: An emerging concern on the urban waste management and strategies to reduce the environmental impact. JOURNAL OF HAZARDOUS MATERIALS ADVANCES 2022; 7:100109. [PMID: 37520796 PMCID: PMC9190174 DOI: 10.1016/j.hazadv.2022.100109] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/08/2022] [Accepted: 06/12/2022] [Indexed: 10/28/2022]
Abstract
Personal protective equipments (PPEs) are essential protective products for individuals exposed to microorganism, toxic substances, and pathogens. However, the advent of the coronavirus pandemic generated a heavy demand for PPE, which has led to a rapid accumulation of plastic waste related to potentially infectious PPE in the urban waste stream. Mismanagement of these wastes can lead to subsequent environmental problems. This study estimates the daily consumption of facemasks, gloves, and daily medical waste generation during the SARs-CoV-2 pandemic in the selected 33 countries worldwide. The results indicate that China used the highest daily facemasks and gloves among these selected countries, followed by India, the US, Brazil, Indonesia, and Japan. Moreover, India is the first one in medical waste production, followed by the USA, Brazil, the United Kingdom, France, and Spain. The article also provides viable strategies and discusses the pros and cons of strategies to address the unprecedented generation of plastic waste material during the pandemic. This manuscript also encourages scientific communities and policymakers to pay exceptional attention to the pandemic's plastic waste.
Collapse
Affiliation(s)
- Ali Mahmoudnia
- Department of Built Environment, School of Engineering, Aalto University, Aalto University, Espoo, Finland
| | - Nasser Mehrdadi
- Department of Environmental Engineering, School of Engineering, University of Tehran, Tehran, Iran
| | | | - Masood Rahmati Deiranloei
- Department of Environmental Engineering, School of Engineering, University of Tehran, Tehran, Iran
- Department of Project Management and Construction, College of Engineering, Mehralborz University, Tehran, Iran
| | - Elham Al-E-Ahmad
- Department of Environmental Engineering, School of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
16
|
Barkhordari A, I Guzman M, Ebrahimzadeh G, Sorooshian A, Delikhoon M, Jamshidi Rastani M, Golbaz S, Fazlzadeh M, Nabizadeh R, Norouzian Baghani A. Characteristics and health effects of particulate matter emitted from a waste sorting plant. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 150:244-256. [PMID: 35868092 DOI: 10.1016/j.wasman.2022.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 06/01/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Solid waste components can be recycled in waste paper and cardboard sorting plants (WPCSP) through a multistep process. This work collected 15 samples every six days from each of the 9 points selected to study the processes taking place in a WPCSP (135 particulate matter samples total). Examining the concentration and size fraction of particulate matter (i.e., PM1, PM2.5 and PM10) in WPCSP is an essential issue to notify policy makers about the health impacts on exposed workers. The major activities for increasing of the concentration of PM in various processing units in the WPCSP, especially in hand-picking routes I and II were related to manual dismantling, mechanical grinding, mechanical agitation, and separation and movement of waste. The results of this work showed that a negative correlation between temperature and particulate matter size followed the order PM10 > PM2.5 > PM1. Exposure to PM2.5 and PM10 in the WPCSP lead to possible risk (HI = 5.561 and LTCRs = 3.41 × 10-6 to 9.43 × 10-5 for PM2.5 and HI = 7.454 for PM10). The exposure duration and the previous concentrations had the most effect on the ILCRs and HQs for PM2.5 and PM10 in all sampling sites. Hence, because WPCSP are infected indoor environments (I/O ratio > 1), the use of control methods such as isolation of units, misting systems, blower systems equipped with bag houses, protective equipment, a mechanical ventilation system, and additional natural ventilation can reduce the amount of suspended PM, enhance worker safety, and increase the recycling rate.
Collapse
Affiliation(s)
- Abdullah Barkhordari
- Environmental and Occupational Health Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Marcelo I Guzman
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Gholamreza Ebrahimzadeh
- Department of Environmental Health Engineering, Faculty of Health, Zabol University of Medical Sciences, Zabol, Iran
| | - Armin Sorooshian
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA; Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA
| | - Mahdieh Delikhoon
- Department of Occupational Health Engineering, School of Public Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Jamshidi Rastani
- Environmental and Occupational Health Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Somayeh Golbaz
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Fazlzadeh
- Department of Environmental Health, School of Health, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ramin Nabizadeh
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.
| | - Abbas Norouzian Baghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Mohammadi A, Soleimani A, Abdolahnejad A, Ahmed M, Akther T, Nemati-Mansour S, Raeghi S, Rashedi GH, Miri M. SARS-CoV-2 detection in hospital indoor environments, NW Iran. ATMOSPHERIC POLLUTION RESEARCH 2022; 13:101511. [PMID: 35880204 PMCID: PMC9301582 DOI: 10.1016/j.apr.2022.101511] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/06/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to investigate the potential contamination of SARS-CoV-2 in indoor settled dust and surfaces of Amir Al-Muminin hospital in Maragheh, Iran. Samples were taken from surfaces and settled dust using a passive approach and particulate matter (PM) using an active approach from different hospital wards. SARS-CoV-2 was detected in 15% of settled dust samples (N = 4/26) and 10% of surface samples (3/30). SARS-CoV-2 has been detected in 13.8% and 9.1% of the dust samples collected at a distance of fewer than 1 m and more than 3 m from the patient bed, respectively. SARS-CoV-2 was found in 11% of surface samples from low-touch surfaces and 8% from high touch surfaces. The relationship between PM2.5, PM10, humidity, temperature, and positive samples of SARS-CoV-2 was investigated. A positive correlation was observed between relative humidity, PM2.5, and positive SARS-CoV-2 samples. Principal component analysis (PCA) suggested positive correlation between positive SARS-CoV-2 samples, relative humidity, and PM2.5. Risk assessment results indicated that the annual mean infection risk of SARS-CoV-2 for hospital staff with illness and death was 2.6 × 10-2 and 7.7 × 10-4 per person per year. Current findings will help reduce the permanence of viral particles in the COVID 19 tragedy and future similar pandemics e.g., novel influenza viruses.
Collapse
Affiliation(s)
- Amir Mohammadi
- Department of Environmental Health Engineering, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Ali Soleimani
- Department of Public Health, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Ali Abdolahnejad
- Department of Environmental Health Engineering, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Morshad Ahmed
- Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX, 77024, United States
| | - Tanzina Akther
- Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX, 77024, United States
| | | | - Saber Raeghi
- Department of Laboratory Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Gholam Hossein Rashedi
- Expert of Environmental Health Engineering, Amir Al-muminin Hospital, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mohammad Miri
- Non-communicable Disease Research Center, Department of Environmental Health Engineering, Sabzevar University of Medical Sciences, Sabzevar, Iran
| |
Collapse
|
18
|
Wang J, Xu W, Ma X. Possible processes and origin-tracing methods of "human-to-item" contamination and "item-to-human" infection with SARS-CoV-2. BIOSAFETY AND HEALTH 2022; 4:209-212. [PMID: 35664918 PMCID: PMC9151455 DOI: 10.1016/j.bsheal.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 11/27/2022] Open
Affiliation(s)
- Ji Wang
- Chinese Field Epidemiology Training Program (CFETP), Beijing 100050, China,NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Wenbo Xu
- Chinese Field Epidemiology Training Program (CFETP), Beijing 100050, China,NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xuejun Ma
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China,Joint Center for Biosafety Mega-Science, Wuhan 430071, China,Corresponding author: NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
19
|
Antibacterial and Angiogenic Poly(ionic liquid) Hydrogels. Gels 2022; 8:gels8080476. [PMID: 36005077 PMCID: PMC9407512 DOI: 10.3390/gels8080476] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
Wounds, particularly under low-hydration conditions, require more time to repair successfully. Therefore, there is an urgent need to develop wound dressings that can accelerate wound healing. Hydrogels, which can maintain a moist environment around the wound and allow gas to pass through the material, act as antibacterial hydrogels as dressings and have great application value in the treatment of wounds. In addition, wound dressings (hydrogels) containing antibacterial capacity have lasting antibacterial effects and reduce damage to cells. In this work, we firstly synthesized two antibacterial agents: imidazolium poly(ionic liquids) containing sulfhydryl (Imidazole-SH) and ε-Poly(lysine) containing SH (EPL-SH). Then, lysine as a cross-linking agent, by “thiol-ene” click reaction, was mixed with Deferoxamine (DFO) to prepare the antibacterial hydrogels. The in vitro assays showed that the hydrogels could effectively kill Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). In addition, it also could reduce the inflammatory response produced by Lipopolysaccharide (LPS). More importantly, according to the transwell and angiogenesis assays, DFO-incorporated hydrogels promoted the migration and vascular repair of human umbilical vein endothelial cells (HUVECs). All the results revealed that the hydrogels provided new strategies for wound dressings.
Collapse
|
20
|
Tateo F, Fiorino S, Peruzzo L, Zippi M, De Biase D, Lari F, Melucci D. Effects of environmental parameters and their interactions on the spreading of SARS-CoV-2 in North Italy under different social restrictions. A new approach based on multivariate analysis. ENVIRONMENTAL RESEARCH 2022; 210:112921. [PMID: 35150709 PMCID: PMC8828377 DOI: 10.1016/j.envres.2022.112921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/13/2022] [Accepted: 02/06/2022] [Indexed: 02/07/2023]
Abstract
In 2020 North Italy suffered the SARS-CoV-2-related pandemic with a high number of deaths and hospitalization. The effect of atmospheric parameters on the amount of hospital admissions (temperature, solar radiation, particulate matter, relative humidity and wind speed) is studied through about 8 months (May-December). Two periods are considered depending on different conditions: a) low incidence of COVID-19 and very few regulations concerning personal mobility and protection ("free/summer period"); b) increasing incidence of disease, social restrictions and use of personal protections ("confined/autumn period"). The "hospitalized people in medical area wards/100000 residents" was used as a reliable measure of COVID-19 spreading and load on the sanitary system. We developed a chemometric approach (multiple linear regression analysis) using the daily incidence of hospitalizations as a function of the single independent variables and of their products (interactions). Eight administrative domains were considered (altogether 26 million inhabitants) to account for relatively homogeneous territorial and social conditions. The obtained models very significantly match the daily variation of hospitalizations, during the two periods. Under the confined/autumn period, the effect of non-pharmacologic measures (social distances, personal protection, etc.) possibly attenuates the virus diffusion despite environmental factors. On the contrary, in the free/summer conditions the effects of atmospheric parameters are very significant through all the areas. Particulate matter matches the growth of hospitalizations in areas with low chronic particulate pollution. Fewer hospitalizations strongly correspond to higher temperature and solar radiation. Relative humidity plays the same role, but with a lesser extent. The interaction between solar radiation and high temperature is also highly significant and represents surprising evidence. The solar radiation alone and combined with high temperature exert an anti-SARS-CoV-2 effect, via both the direct inactivation of virions and the stimulation of vitamin D synthesis, improving immune system function.
Collapse
Affiliation(s)
- Fabio Tateo
- Institute of Geosciences and Earth Resources (IGG), National Research Council of Italy (CNR), Via G. Gradenigo, 6, 35131, Padova, Italy
| | - Sirio Fiorino
- Internal Medicine Unit, Budrio Hospital, Azienda USL, Via Benni, 44, 40054, Bologna, Italy
| | - Luca Peruzzo
- Institute of Geosciences and Earth Resources (IGG), National Research Council of Italy (CNR), Via G. Gradenigo, 6, 35131, Padova, Italy.
| | - Maddalena Zippi
- Unit of Gastroenterology and Digestive Endoscopy, Sandro Pertini Hospital, Via dei Monti Tiburtini 385, 00157, Rome, Italy
| | - Dario De Biase
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Federico Lari
- Internal Medicine Unit, Budrio Hospital, Azienda USL, Via Benni, 44, 40054, Bologna, Italy
| | - Dora Melucci
- Department of Chemistry Ciamician, University of Bologna, Via Selmi, 2, 40126, Bologna, Italy
| |
Collapse
|
21
|
Wolff A, Günther T, Johne R. Stability of Hepatitis E Virus After Drying on Different Surfaces. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:138-148. [PMID: 35084668 PMCID: PMC8793819 DOI: 10.1007/s12560-022-09510-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/12/2022] [Indexed: 06/02/2023]
Abstract
The hepatitis E virus (HEV) causes acute and chronic hepatitis in humans. The zoonotic HEV genotype 3 is mainly transmitted by consumption of contaminated food produced from infected animals. However, transmission via contaminated surfaces has also to be considered. Here, the genotype 3c strain 47832c was dried on steel, wood, plastics and ceramics, stored at 23 °C or 3 °C for up to 8 weeks and remaining infectivity was titrated on cell culture. During the drying process, only a mean 0.2 log10 decrease of HEV infectivity was observed. At 23 °C, remaining infectious virus was detected until week 4 on most surfaces, but HEV was completely inactivated (> 4 log10 decrease) after 8 weeks. At 3 °C, HEV was detectable up to 8 weeks on most surfaces, with an average 2.3 log10 decrease. HEV showed the highest stability on plastics, which was lower on ceramics and steel, and lowest on wood. The addition of bovine serum albumin mimicking high protein load had only a slight stabilizing effect. In conclusion, HEV shows a high stability against drying and subsequent storage on different surfaces. Strict application of hygienic measures during food production is therefore crucial in order to prevent HEV persistence on surfaces and subsequent cross-contamination.
Collapse
Affiliation(s)
- Alexander Wolff
- German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Taras Günther
- German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Reimar Johne
- German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany.
| |
Collapse
|
22
|
Owen L, Shivkumar M, Cross RBM, Laird K. Porous surfaces: stability and recovery of coronaviruses. Interface Focus 2022; 12:20210039. [PMID: 34956608 PMCID: PMC8662390 DOI: 10.1098/rsfs.2021.0039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022] Open
Abstract
The role of indirect contact in the transmission of SARS-CoV-2 is not clear. SARS-CoV-2 persists on dry surfaces for hours to days; published studies have largely focused on hard surfaces with less research being conducted on different porous surfaces, such as textiles. Understanding the potential risks of indirect transmission of COVID-19 is useful for settings where there is close contact with textiles, including healthcare, manufacturing and retail environments. This article aims to review current research on porous surfaces in relation to their potential as fomites of coronaviruses compared to non-porous surfaces. Current methodologies for assessing the stability and recovery of coronaviruses from surfaces are also explored. Coronaviruses are often less stable on porous surfaces than non-porous surfaces, for example, SARS-CoV-2 persists for 0.5 h-5 days on paper and 3-21 days on plastic; however, stability is dependent on the type of surface. In particular, the surface properties of textiles differ widely depending on their construction, leading to variation in the stability of coronaviruses, with longer persistence on more hydrophobic materials such as polyester (1-3 days) compared to highly absorbent cotton (2 h-4 days). These findings should be considered where there is close contact with potentially contaminated textiles.
Collapse
Affiliation(s)
- Lucy Owen
- Infectious Disease Research Group, The Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Maitreyi Shivkumar
- Infectious Disease Research Group, The Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Richard B. M. Cross
- Emerging Technologies Research Centre, School of Engineering and Sustainable Development, De Montfort University, Leicester LE1 9BH, UK
| | - Katie Laird
- Infectious Disease Research Group, The Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| |
Collapse
|
23
|
Mallakpour S, Behranvand V, Hussain CM. Worldwide fight against COVID-19 using nanotechnology, polymer science, and 3D printing technology. Polym Bull (Berl) 2022; 80:165-183. [PMID: 35106016 PMCID: PMC8794596 DOI: 10.1007/s00289-021-04006-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 01/17/2023]
Abstract
One of the lethal illnesses that humanity has ever seen is COVID-19 irrefutably. The speed of virus spread is high and happens through polluted surfaces, respiratory droplets, and bodily fluids. It was found that without an efficient vaccine or specific treatment using personal protective equipment, preventing contamination of hands, and social distancing are the best ways to stay safe during the present pandemic. In this line, polymers, nanotechnology, and additive manufacturing, or 3D printing technology have been considered to probe, sense, and treat COVID-19. All aforementioned fields showed undeniable roles during the COVID-19 pandemic, which their contributions have been reviewed here. Finally, the effect of COVID-19 on the environment, alongside its positive and negative effects has been mentioned.
Collapse
Affiliation(s)
- Shadpour Mallakpour
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111 Islamic Republic of Iran
| | - Vajiheh Behranvand
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111 Islamic Republic of Iran
| | | |
Collapse
|
24
|
Newey CR, Olausson AT, Applegate A, Reid AA, Robison RA, Grose JH. Presence and stability of SARS-CoV-2 on environmental currency and money cards in Utah reveals a lack of live virus. PLoS One 2022; 17:e0263025. [PMID: 35077511 PMCID: PMC8789161 DOI: 10.1371/journal.pone.0263025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/10/2022] [Indexed: 01/22/2023] Open
Abstract
The highly contagious nature of SARS-CoV-2 has led to several studies on the transmission of the virus. A little studied potential fomite of great concern in the community is currency, which has been shown to harbor microbial pathogens in several studies. Since the onset of the COVID-19 pandemic, many businesses in the United States have limited the use of banknotes in favor of credit cards. However, SARS-CoV-2 has shown greater stability on plastic in several studies. Herein, the stability of SARS-CoV-2 at room temperature on banknotes, money cards and coins was investigated. In vitro studies with live virus suggested SARS-CoV-2 was highly unstable on banknotes, showing an initial rapid reduction in viable virus and no viral detection by 24 hours. In contrast, SARS-CoV-2 displayed increased stability on money cards with live virus detected after 48 hours. Environmental swabbing of currency and money cards on and near the campus of Brigham Young University supported these results, with no detection of SARS-CoV-2 RNA on banknotes, and a low level on money cards. However, no viable virus was detected on either. These preliminary results suggest that the use of money cards over banknotes in order to slow the spread of this virus may be ill-advised. These findings should be investigated further through larger environmental studies involving more locations.
Collapse
Affiliation(s)
- Colleen R. Newey
- Department of Microbiology and Molecular Biology, College of Life Sciences, Brigham Young University, Provo, UT, United States of America
| | - Abigail T. Olausson
- Department of Microbiology and Molecular Biology, College of Life Sciences, Brigham Young University, Provo, UT, United States of America
| | - Alyssa Applegate
- Department of Microbiology and Molecular Biology, College of Life Sciences, Brigham Young University, Provo, UT, United States of America
| | - Ann-Aubrey Reid
- Department of Microbiology and Molecular Biology, College of Life Sciences, Brigham Young University, Provo, UT, United States of America
| | - Richard A. Robison
- Department of Microbiology and Molecular Biology, College of Life Sciences, Brigham Young University, Provo, UT, United States of America
| | - Julianne H. Grose
- Department of Microbiology and Molecular Biology, College of Life Sciences, Brigham Young University, Provo, UT, United States of America
| |
Collapse
|
25
|
Amato-Lourenço LF, de Souza Xavier Costa N, Dantas KC, Dos Santos Galvão L, Moralles FN, Lombardi SCFS, Júnior AM, Lindoso JAL, Ando RA, Lima FG, Carvalho-Oliveira R, Mauad T. Airborne microplastics and SARS-CoV-2 in total suspended particles in the area surrounding the largest medical centre in Latin America. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118299. [PMID: 34626707 PMCID: PMC8494494 DOI: 10.1016/j.envpol.2021.118299] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/14/2021] [Accepted: 10/04/2021] [Indexed: 05/19/2023]
Abstract
Microplastics (MPs) have been reported in the outdoor/indoor air of urban centres, raising health concerns due to the potential for human exposure. Since aerosols are considered one of the routes of Coronavirus disease 2019 (COVID-19) transmission and may bind to the surface of airborne MPs, we hypothesize that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) could be associated with the levels of MPs in the air. Our goal was to quantify the SARS-CoV-2 RNA and MPs present in the total suspended particles (TSP) collected in the area surrounding the largest medical centre in Latin America and to elucidate a possible association among weather variables, MPs, and SARS-CoV-2 in the air. TSP were sampled from three outdoor locations in the areas surrounding a medical centre. MPs were quantified and measured under a fluorescence microscope, and their polymeric composition was characterized by Fourier transform infrared (FT-IR) microspectroscopy coupled with attenuated total reflectance (ATR). The viral load of SARS-CoV-2 was quantified by an in-house real-time PCR assay. A generalized linear model (GzLM) was employed to evaluate the effect of the SARS-CoV-2 quantification on MPs and weather variables. TSP samples tested positive for SARS-CoV-2 in 22 out of 38 samples at the three sites. Polyester was the most frequent polymer (80%) found in the samples. The total amount of MPs was positively associated with the quantification of SARS-CoV-2 envelope genes and negatively associated with weather variables (temperature and relative humidity). Our findings show that SARS-CoV-2 aerosols may bind to TSP, such as MPs, and facilitate virus entry into the human body.
Collapse
Affiliation(s)
- Luís Fernando Amato-Lourenço
- Department of Pathology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil; Institute of Advanced Studies (IEA) Global Cities Program, University of São Paulo, São Paulo, Brazil.
| | | | - Kátia Cristina Dantas
- Department of Pathology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | | | | | | | - Alfredo Mendroni Júnior
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in OncoImmuno-Hematology (LIM-31), Department of Hematology, Hospital das Clínicas -HCFMUSP, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - José Angelo Lauletta Lindoso
- Department of Infectious and Parasitic Diseases, Faculty of Medicine, University of São Paulo, São Paulo, Brazil; Institute of Infectiology Emilio Ribas, Sao Paulo, Brazil
| | - Rômulo Augusto Ando
- Chemical Analyses Laboratory, Institute for Technological Research (IPT), São Paulo, Brazil
| | - Felipe Gallego Lima
- Heart Institute (InCor), School of Medicine at Sao Paulo University, Sao Paulo, Brazil
| | | | - Thais Mauad
- Department of Pathology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil; Institute of Advanced Studies (IEA) Global Cities Program, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
26
|
Chatterjee S, Murallidharan JS, Agrawal A, Bhardwaj R. A review on coronavirus survival on impermeable and porous surfaces. SĀDHANĀ 2022; 47:5. [PMCID: PMC8670619 DOI: 10.1007/s12046-021-01772-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We review recent studies on fomite transmission of COVID-19, caused by the novel coronavirus. In particular, we focus on survival time of coronavirus on solid and porous surfaces. Since the aqueous phase of a respiratory droplet serves as a medium for virus survival, evaporation of the droplet on a surface plays a crucial role in determining the virus survival time. While the bulk of the droplet takes a few seconds to evaporate, previous virus titer measurements revealed that the virus can survive for several hours or days on a surface. This long survival of virus has been attributed to a residual thin-liquid film which remains after drying of the bulk droplet. The evaporation of the thin-film is governed by the disjoining pressure within it and therefore, is a much slower process which causes the virus to survive longer. However, the aforesaid disjoining pressure is significantly modulated for the case of porous surfaces due to their typical geometries. This accelerates the thin-film evaporation on porous surfaces and thereby making them lesser susceptible to virus survival. Therefore, porous materials are deemed to be relatively safer for mitigating the spread of COVID-19 via fomite transmission. Using results of the reported research, we briefly discuss the possible recommendations to mitigate the spread of the disease.
Collapse
Affiliation(s)
- Sanghamitro Chatterjee
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | | | - Amit Agrawal
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Rajneesh Bhardwaj
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| |
Collapse
|
27
|
Di Maria F, La Rosa G, Bonato T, Pivato A, Piazza R, Mancini P, Bonanno Ferraro G, Veneri C, Iaconelli M, Beccaloni E, Scaini F, Bonadonna L, Vicenza T, Suffredini E. An innovative approach for the non-invasive surveillance of communities and early detection of SARS-CoV-2 via solid waste analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149743. [PMID: 34467913 PMCID: PMC8372477 DOI: 10.1016/j.scitotenv.2021.149743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/11/2021] [Accepted: 08/14/2021] [Indexed: 05/11/2023]
Abstract
The diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection requires the detection of viral RNA by reverse transcription-polymerase chain reaction (RT-qPCR) performed mainly using nasopharyngeal swabs. However, this procedure requires separate analysis per each individual, performed in advanced centralized laboratory facilities with specialized medical personnel. In this study, an alternative approach termed "solid waste-based surveillance (SWBS)" was explored, in order to investigate SARS-CoV-2 infection in small communities through the indirect sampling of saliva left on waste. Sampling was performed at 20 different sites in Italy during the second peak of COVID-19. Three swabs were positive for SARS-CoV-2 using a published RT-qPCR protocol targeting the non-structural protein 14 region, and the viral load ranged 4.8 × 103-4.0 × 106 genome copies/swab. Amino acid substitutions already reported in SARS-CoV-2 sequences circulating in Italy (A222V and P521S) were detected in two positive samples. These findings confirmed the effectiveness of SWBS for non-invasive and dynamic SARS-CoV-2 surveillance.
Collapse
Affiliation(s)
- F Di Maria
- LAR Laboratory, Department of Engineering, University of Perugia, Perugia, Italy.
| | - G La Rosa
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - T Bonato
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Venice, Italy
| | - A Pivato
- Department of Civil, Environmental and Architectural Engineering, University of Padua, Italy
| | - R Piazza
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Venice, Italy
| | - P Mancini
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - G Bonanno Ferraro
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - C Veneri
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - M Iaconelli
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - E Beccaloni
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - F Scaini
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - L Bonadonna
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - T Vicenza
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - E Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
28
|
Ayub M, Othman MHD, Khan IU, Yusop MZM, Kurniawan TA. Graphene-based nanomaterials as antimicrobial surface coatings: A parallel approach to restrain the expansion of COVID-19. SURFACES AND INTERFACES 2021; 27:101460. [PMID: 34957347 PMCID: PMC8442307 DOI: 10.1016/j.surfin.2021.101460] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 05/26/2023]
Abstract
The recently emerged severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has become a significant and topmost global health challenge of today. SARS-CoV-2 can propagate through several direct or indirect means resulting in its exponential spread in short times. Consequently, finding new research based real-world and feasible solutions to interrupt the spread of pathogenic microorganisms is indispensable. It has been established that this virus can survive on a variety of available surfaces ranging from a few hours to a few days, which has increased the risk of COVID-19 spread to large populations. Currently, available surface disinfectant chemicals provide only a temporary solution and are not recommended to be used in the long run due to their toxicity and irritation. Apart from the urgent development of vaccine and antiviral drugs, there is also a need to design and develop surface disinfectant antiviral coatings for long-term applications even for new variants. The unique physicochemical properties of graphene-based nanomaterials (GBNs) have been widely investigated for antimicrobial applications. However, the research work for their use in antimicrobial surface coatings is minimal. This perspective enlightens the scope of using GBNs as antimicrobial/antiviral surface coatings to reduce the spread of transmittable microorganisms, precisely, SARS-CoV-2. This study attempts to demonstrate the synergistic effect of GBNs and metallic nanoparticles (MNPs), for their potential antiviral applications in the development of surface disinfectant coatings. Some proposed mechanisms for the antiviral activity of the graphene family against SARS-CoV-2 has also been explained. It is anticipated that this study will potentially lead to new insights and future trends to develop a framework for further investigation on this research area of pivotal importance to minimize the transmission of current and any future viral outbreaks.
Collapse
Affiliation(s)
- Muhammad Ayub
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Imran Ullah Khan
- Department of Chemical and Energy Engineering, Pak-Austria Fachhochschule, Institute of Applied Sciences & Technology (PAF:IAST), Khanpur Road, Mang, Haripur 22650, Pakistan
| | - Mohd Zamri Mohd Yusop
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Tonni Agustiono Kurniawan
- Key Laboratory of Coastal and Wetland Ecosystems, College of Environment & Ecology, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
29
|
Su WL, Lin CP, Huang HC, Wu YK, Yang MC, Chiu SK, Peng MY, Chan MC, Chao YC. Clinical Application of Ultraviolet C Inactivation of Severe Acute Respiratory Syndrome Coronavirus 2 in Contaminated Hospital Environments. Viruses 2021; 13:v13122367. [PMID: 34960637 PMCID: PMC8706350 DOI: 10.3390/v13122367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 01/25/2023] Open
Abstract
To overcome the ongoing coronavirus disease 2019 (COVID-19) pandemic, transmission routes, such as healthcare worker infection, must be effectively prevented. Ultraviolet C (UVC) (254 nm) has recently been demonstrated to prevent environmental contamination by infected patients; however, studies on its application in contaminated hospital settings are limited. Herein, we explored the clinical application of UVC and determined its optimal dose. Environmental samples (n = 267) collected in 2021 were analyzed by a reverse transcription-polymerase chain reaction and subjected to UVC irradiation for different durations (minutes). We found that washbasins had a high contamination rate (45.5%). SARS-CoV-2 was inactivated after 15 min (estimated dose: 126 mJ/cm2) of UVC irradiation, and the contamination decreased from 41.7% before irradiation to 16.7%, 8.3%, and 0% after 5, 10, and 15 min of irradiation, respectively (p = 0.005). However, SARS-CoV-2 was still detected in washbasins after irradiation for 20 min but not after 30 min (252 mJ/cm2). Thus, 15 min of 254-nm UVC irradiation was effective in cleaning plastic, steel, and wood surfaces in the isolation ward. For silicon items, such as washbasins, 30 min was suggested; however, further studies using hospital environmental samples are needed to confirm the effective UVC inactivation of SARS-CoV-2.
Collapse
Affiliation(s)
- Wen-Lin Su
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 23142, Taiwan; (Y.-K.W.); (M.-C.Y.)
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan; (C.-P.L.); (S.-K.C.); (Y.-C.C.)
- Correspondence: ; Tel.: +886-2-6628-9779
| | - Chih-Pei Lin
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan; (C.-P.L.); (S.-K.C.); (Y.-C.C.)
- Department of Pathology and Laboratory Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 23142, Taiwan;
| | - Hui-Ching Huang
- Department of Pathology and Laboratory Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 23142, Taiwan;
| | - Yao-Kuang Wu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 23142, Taiwan; (Y.-K.W.); (M.-C.Y.)
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan; (C.-P.L.); (S.-K.C.); (Y.-C.C.)
| | - Mei-Chen Yang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 23142, Taiwan; (Y.-K.W.); (M.-C.Y.)
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan; (C.-P.L.); (S.-K.C.); (Y.-C.C.)
| | - Sheg-Kang Chiu
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan; (C.-P.L.); (S.-K.C.); (Y.-C.C.)
- Division of Infectious Disease, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 23142, Taiwan;
- Infection Control Center, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 23142, Taiwan;
| | - Ming-Yieh Peng
- Division of Infectious Disease, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 23142, Taiwan;
- Infection Control Center, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 23142, Taiwan;
| | - Ming-Chin Chan
- Infection Control Center, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 23142, Taiwan;
| | - You-Chen Chao
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan; (C.-P.L.); (S.-K.C.); (Y.-C.C.)
- Division of Gastroenterology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 23142, Taiwan
| |
Collapse
|
30
|
Stability of SARS-CoV-2 and influenza virus varies across different paper types. J Infect Chemother 2021; 28:252-256. [PMID: 34799238 PMCID: PMC8590490 DOI: 10.1016/j.jiac.2021.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/14/2021] [Accepted: 11/09/2021] [Indexed: 02/04/2023]
Abstract
INTRODUCTION The assessment of the risk of virus transmission through papers, such as postcards, is important. However, the stability of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus (IAV) on different types of papers is currently unknown. Investigation of the survival time of these viruses on different types of papers will provide insights into their risk of long-distance transport by postal items. METHODS We evaluated the stability of SARS-CoV-2 and IAV, mixed with a culture medium, on the surface of postcards with various coatings, including plain paper (PP), inkjet paper (IP), and inkjet photo paper (IPP). The surface structure of each paper was microscopically assessed. RESULTS The surface structures of PP, IP, and IPP varied greatly depending on the presence or absence, and type, of coat layer, regardless of the base material. IP and IPP surfaces were less conducive to virus survival than PP surfaces, because of the difference in surface shapes. The survival times of SARS-CoV-2 on each paper were approximately 59.8 (PP), 6.5 (IP), and 9.8 h (IPP), and significantly longer than those of IAV (10.3, 1.8, and 3.3 h, respectively). CONCLUSIONS The risk of SARS-CoV-2 transmission via paper, such as postcards, is significantly higher than that of IAV transmission. While PP, IP, and IPP have the same base material, their surface structures differ, which affects viral stability. The IP and IPP surfaces are less suitable for virus survival. This study provides novel insights into the risks of viral transmission via paper.
Collapse
|
31
|
De-la-Torre GE, Pizarro-Ortega CI, Dioses-Salinas DC, Ammendolia J, Okoffo ED. Investigating the current status of COVID-19 related plastics and their potential impact on human health. CURRENT OPINION IN TOXICOLOGY 2021; 27:47-53. [PMID: 34541428 PMCID: PMC8441111 DOI: 10.1016/j.cotox.2021.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The COVID-19 pandemic led to a sudden global increase in the production, consumption, and mismanagement of personal protective equipment (PPE). As plastic-based PPE such as disposable face masks and gloves have become widely used, human exposure to PPE-derived pollutants may occur through indirect and direct pathways. This review explores the potential health impacts related to plastic-based PPE through these pathways. Face masks release microplastics, which are directly inhaled during use or transported through the environment. The latter can adsorb chemical contaminants and harbor pathogenic microbiota, and once consumed by organisms, they can translocate to multiple organs upon intake, potentially causing detrimental and cytotoxic effects. However, more research is required to have a comprehensive overview of the human health effects.
Collapse
Affiliation(s)
| | | | | | - Justine Ammendolia
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - Elvis D Okoffo
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| |
Collapse
|
32
|
Chatterjee S, Murallidharan JS, Agrawal A, Bhardwaj R. How coronavirus survives for hours in aerosols. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2021; 33:081708. [PMID: 34471334 PMCID: PMC8404379 DOI: 10.1063/5.0059908] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/01/2021] [Indexed: 05/10/2023]
Abstract
COVID (CoronaVirus Disease)-19, caused by severe acute respiratory syndrome-CoronaVirus-2 (SARS-CoV-2) virus, predominantly transmits via airborne route, as highlighted by recent studies. Furthermore, recently published titer measurements of SARS-CoV-2 in aerosols have disclosed that the coronavirus can survive for hours. A consolidated knowledge on the physical mechanism and governing rules behind the significantly long survival of coronavirus in aerosols is lacking, which is the subject of the present investigation. We model the evaporation of aerosolized droplets of diameter ≤ 5 μ m. The conventional diffusion-limited evaporation is not valid to model the evaporation of small size (μm-nm) droplets since it predicts drying time on the order of milliseconds. Also, the sedimentation timescale of desiccated droplets is on the order of days and overpredicts the virus survival time; hence, it does not corroborate with the above-mentioned titer-decay timescale. We attribute the virus survival timescale to the fact that the drying of small ( ∼ μ m-nm) droplets is governed, in principle, by the excess internal pressure within the droplet, which stems from the disjoining pressure due to the cohesive intermolecular interaction between the liquid molecules and the Laplace-pressure. The model predictions for the temporal reduction in the aerosolized droplet number density agree well with the temporal decay of virus titer. The findings, therefore, provide insight on the survival of coronavirus in aerosols, which is particularly important to mitigate the spread of COVID-19 from indoors.
Collapse
Affiliation(s)
- Sanghamitro Chatterjee
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | | | - Amit Agrawal
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Rajneesh Bhardwaj
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
33
|
Massey TL, Borucki MK, Paik SY, Fuhrer KW, Bora M, Kane SR, Haque RUM, Baxamusa SH. Quantitative Fit Evaluation of N95 Filtering Facepiece Respirators and Coronavirus Inactivation Following Heat Treatment. Ann Work Expo Health 2021; 65:979-987. [PMID: 33999132 PMCID: PMC8194874 DOI: 10.1093/annweh/wxab020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/12/2021] [Accepted: 03/03/2021] [Indexed: 11/14/2022] Open
Abstract
Reuse of filtering facepiece respirators (FFRs, commonly referred to as N95s) normally meant for single use has become common in healthcare facilities due to shortages caused by the COVID-19 pandemic. Here, we report that murine hepatitis coronavirus initially seeded on FFR filter material is inactivated (6 order of magnitude reduction as measured by median tissue culture infective dose, TCID50) after dry heating at 75°C for 30 min. We also find that the quantitative fit of FFRs after heat treatment at this temperature, under dry conditions or at 90% relative humidity, is not affected by single or 10 heating cycles. Previous studies have reported that the filtration efficiency of FFRs is not negatively impacted by these heating conditions. These results suggest that thermal inactivation of coronaviruses is a potentially rapid and widely deployable method to reuse N95 FFRs in emergency situations where reusing FFRs is a necessity and broad-spectrum sterilization is unavailable. However, we also observe that a radiative heat source (e.g. an exposed heating element) results in rapid qualitative degradation of the FFR. Finally, we discuss differences in the results reported here and other recent studies investigating heat as a means to recycle FFRs. These differences suggest that while our repeated decontamination cycles do not affect FFR fit, overall wear time and the number of donning/doffing cycles are important factors that likely degrade FFR fit and must be investigated further.
Collapse
Affiliation(s)
| | | | - Samuel Y Paik
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Kyle W Fuhrer
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Mihail Bora
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Staci R Kane
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | | | | |
Collapse
|
34
|
Ursachi CȘ, Munteanu FD, Cioca G. The Safety of Slaughterhouse Workers during the Pandemic Crisis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:2633. [PMID: 33807936 PMCID: PMC7967316 DOI: 10.3390/ijerph18052633] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/22/2021] [Accepted: 03/01/2021] [Indexed: 12/23/2022]
Abstract
The working conditions in a slaughterhouse are difficult because of the low temperatures, high humidity, and little natural light. Therefore, in these facilities, there is a high demand in the maintenance of strict hygiene rules. Lately, the new SARS-CoV-2 pandemic situation has brought new challenges in the meat industry, as this sector has to maintain its operability to supply the meat and meat products demanded by the consumers. In this challenging period, the safety of the workers is as important as keeping the high demands for the safety of the meat and meat products along with consumer confidence. This paper aims to give an overview of the risks associated with the SARS-CoV-2 virus transmission between the workers in slaughterhouses and to evaluate the stability and infectivity in the working environment of these facilities. Considering the persistence of this virus on different surfaces and the environmental conditions affecting its stability (temperature, relative humidity, and natural light), in the study we proposed several short-, medium-, and long-term preventive measures for minimizing the potential threats of the actual pandemic.
Collapse
Affiliation(s)
- Claudiu Ștefan Ursachi
- Faculty of Food Engineering, Tourism and Environmental Protection, “Aurel Vlaicu” University of Arad, 2-4 E. Drăgoi Str., 310330 Arad, Romania;
| | - Florentina-Daniela Munteanu
- Faculty of Food Engineering, Tourism and Environmental Protection, “Aurel Vlaicu” University of Arad, 2-4 E. Drăgoi Str., 310330 Arad, Romania;
| | - Gabriela Cioca
- Preclinical Department, Faculty of Medicine, Lucian Blaga University of Sibiu, 550024 Sibiu, Romania;
| |
Collapse
|
35
|
Gidari A, Sabbatini S, Bastianelli S, Pierucci S, Busti C, Bartolini D, Stabile AM, Monari C, Galli F, Rende M, Cruciani G, Francisci D. SARS-CoV-2 Survival on Surfaces and the Effect of UV-C Light. Viruses 2021; 13:v13030408. [PMID: 33807521 PMCID: PMC7998261 DOI: 10.3390/v13030408] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 12/23/2022] Open
Abstract
The aim of this study was to establish the persistence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on inanimate surfaces such as plastic, stainless steel, and glass during UV-C irradiation which is a physical means commonly utilized in sanitization procedures. The viral inactivation rate, virus half-life, and percentage of titer reduction after UV-C irradiation were assessed. Infectivity was maintained on plastic and glass until 120 h and on stainless steel until 72 h. The virus half-life was 5.3, 4.4, and 4.2 h on plastic, stainless steel, and glass, respectively. In all cases, titer decay was >99% after drop drying. UV-C irradiation efficiently reduced virus titer (99.99%), with doses ranging from 10.25 to 23.71 mJ/cm2. Plastic and stainless steel needed higher doses to achieve target reduction. The total inactivation of SARS-CoV-2 on glass was obtained with the lower dose applied. SARS-CoV-2 survival can be long lasting on inanimate surfaces. It is worth recommending efficient disinfection protocols as a measure of prevention of viral spread. UV-C can provide rapid, efficient and sustainable sanitization procedures of different materials and surfaces. The dosages and mode of irradiation are important parameters to consider in their implementation as an important means to fight the SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Anna Gidari
- Department of Medicine and Surgery, Clinic of Infectious Diseases, “Santa Maria della Misericordia” Hospital, University of Perugia, 06129 Perugia, Italy; (S.B.); (S.P.); (C.B.); (D.F.)
- Correspondence:
| | - Samuele Sabbatini
- Department of Medicine and Surgery, Medical Microbiology Section, University of Perugia, 06129 Perugia, Italy; (S.S.); (C.M.)
| | - Sabrina Bastianelli
- Department of Medicine and Surgery, Clinic of Infectious Diseases, “Santa Maria della Misericordia” Hospital, University of Perugia, 06129 Perugia, Italy; (S.B.); (S.P.); (C.B.); (D.F.)
| | - Sara Pierucci
- Department of Medicine and Surgery, Clinic of Infectious Diseases, “Santa Maria della Misericordia” Hospital, University of Perugia, 06129 Perugia, Italy; (S.B.); (S.P.); (C.B.); (D.F.)
| | - Chiara Busti
- Department of Medicine and Surgery, Clinic of Infectious Diseases, “Santa Maria della Misericordia” Hospital, University of Perugia, 06129 Perugia, Italy; (S.B.); (S.P.); (C.B.); (D.F.)
| | - Desirée Bartolini
- Department of Pharmaceutical Sciences, Unit of Nutrition and Clinical Biochemistry, University of Perugia, 06122 Perugia, Italy; (D.B.); (F.G.)
| | - Anna Maria Stabile
- Department of Medicine and Surgery, Unit of Human, Clinical and Forensic Anatomy, University of Perugia, 06129 Perugia, Italy; (A.M.S.); (M.R.)
| | - Claudia Monari
- Department of Medicine and Surgery, Medical Microbiology Section, University of Perugia, 06129 Perugia, Italy; (S.S.); (C.M.)
| | - Francesco Galli
- Department of Pharmaceutical Sciences, Unit of Nutrition and Clinical Biochemistry, University of Perugia, 06122 Perugia, Italy; (D.B.); (F.G.)
| | - Mario Rende
- Department of Medicine and Surgery, Unit of Human, Clinical and Forensic Anatomy, University of Perugia, 06129 Perugia, Italy; (A.M.S.); (M.R.)
| | - Gabriele Cruciani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy;
| | - Daniela Francisci
- Department of Medicine and Surgery, Clinic of Infectious Diseases, “Santa Maria della Misericordia” Hospital, University of Perugia, 06129 Perugia, Italy; (S.B.); (S.P.); (C.B.); (D.F.)
| |
Collapse
|
36
|
He Z, Shao S, Li J, Kumar SS, Sokoloff JB, Hong J. Droplet evaporation residue indicating SARS-COV-2 survivability on surfaces. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2021; 33:013309. [PMID: 33746482 PMCID: PMC7976051 DOI: 10.1063/5.0038562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 12/18/2020] [Indexed: 05/05/2023]
Abstract
We conducted a systematic investigation of droplet evaporation on different surfaces. We found that droplets formed even with distilled water do not disappear with evaporation but instead shrink to a residue of a few micrometers lasting over 24 h. The residue formation process differs across surfaces and humidity levels. Specifically, under 40% relative humidity, 80% of droplets form residues on plastic and uncoated and coated glass, while less than 20% form on stainless steel and none on copper. The formation of residues and their variability are explained by modeling the evaporation process considering the presence of nonvolatile solutes on substrates and substrate thermal conductivity. Such variability is consistent with the survivability of SARS-CoV-2 measured on these surfaces. We hypothesize that these long-lasting microscale residues can potentially insulate the virus against environmental changes, allowing them to survive and remain infectious for extended durations.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiarong Hong
- Author to whom correspondence should be addressed:
| |
Collapse
|