1
|
Zhao M, Wang Q, Yang Y, Sun L, Gu XS, Lai CJS. Isolating and Purification Technologies for Glycyrrhizic Acid. J Sep Sci 2025; 48:e70165. [PMID: 40344483 DOI: 10.1002/jssc.70165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/13/2025] [Accepted: 04/20/2025] [Indexed: 05/11/2025]
Abstract
Glycyrrhizic acid (GA) is the primary active component of the traditional Chinese medicinal herb licorice. It possesses antimicrobial, anti-inflammatory, and antitumor activities. In addition, due to its unique sweetness, it can also be used as a food additive. Traditional Chinese medicines are typically used directly as drugs. However, the chemical composition of Chinese medicinal materials such as licorice is complex, containing not only effective components but also ineffective and even toxic substances. To efficiently exert their medicinal value and minimize the side effects of harmful substances, the extraction and separation of the active components is an important means to achieve the modernization of traditional Chinese medicine utilization. This article focuses on the extraction of GA, summarizes the current technologies related to the extraction and separation of GA, reveals the underlying chemical principles, and evaluates the advantages and disadvantages of the corresponding technologies. On this basis, it proposes challenges faced in the separation of GA and provides corresponding solutions. The author believes that with the continuous introduction of precise chemical synthesis and other methods in separation, the extraction and separation of the active substance will become greener and more efficient. It will also provide a reference for the extraction of other effective components of traditional Chinese medicine.
Collapse
Affiliation(s)
- Meng Zhao
- Department of Chemistry, College of Biotechnology and Food Science, Tianjin Key Laboratory of Food Biotechnology, Institute of Collaborative Innovation in Great Health, Tianjin University of Commerce, Tianjin, People's Republic of China
| | - Qing Wang
- Department of Chemistry, College of Biotechnology and Food Science, Tianjin Key Laboratory of Food Biotechnology, Institute of Collaborative Innovation in Great Health, Tianjin University of Commerce, Tianjin, People's Republic of China
| | - Yun Yang
- Department of Chemistry, College of Biotechnology and Food Science, Tianjin Key Laboratory of Food Biotechnology, Institute of Collaborative Innovation in Great Health, Tianjin University of Commerce, Tianjin, People's Republic of China
| | - Lanlan Sun
- Department of Chemistry, College of Biotechnology and Food Science, Tianjin Key Laboratory of Food Biotechnology, Institute of Collaborative Innovation in Great Health, Tianjin University of Commerce, Tianjin, People's Republic of China
| | - Xue-Song Gu
- Department of Chemistry, College of Biotechnology and Food Science, Tianjin Key Laboratory of Food Biotechnology, Institute of Collaborative Innovation in Great Health, Tianjin University of Commerce, Tianjin, People's Republic of China
| | - Chang-Jiang-Sheng Lai
- Department of Chemistry, College of Biotechnology and Food Science, Tianjin Key Laboratory of Food Biotechnology, Institute of Collaborative Innovation in Great Health, Tianjin University of Commerce, Tianjin, People's Republic of China
| |
Collapse
|
2
|
Ahmed YW, Loukanov A, Tsai HC. State-of-the-Art Synthesis of Porous Polymer Materials and Their Several Fantastic Biomedical Applications: a Review. Adv Healthc Mater 2024:e2403743. [PMID: 39723689 DOI: 10.1002/adhm.202403743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/04/2024] [Indexed: 12/28/2024]
Abstract
Porous polymers, including hydrogels, covalent organic frameworks (COFs), and hyper crosslinked polymers (HCPs), have become essential in biomedical research for their tunable pore architectures, large surface areas, and functional versatility. This review provides a comprehensive overview of their classification and updated synthesis mechanisms, such as 3D printing, electrospinning, and molecular imprinting. Their pivotal roles in drug delivery, tissue engineering, wound healing, and photodynamic/photothermal therapies, focusing on how pore size, distribution, and architecture impact drug release, cellular interactions, and therapeutic outcomes, are explored. Key challenges, including biocompatibility, mechanical strength, controlled degradation, and scalability, are critically assessed alongside emerging strategies to enhance clinical potential. Finally, recent challenges and future perspectives, emphasizing the broader biomedical applications of porous polymers, are addressed. This work provides valuable insights for advancing next-generation biomedical innovations through these materials.
Collapse
Affiliation(s)
- Yohannis Wondwosen Ahmed
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan, 106, P. R. China
| | - Alexandre Loukanov
- Department of Chemistry and Material Science, National Institute of Technology, Gunma College, Maebashi, 371-8530, Japan
- Laboratory of Engineering NanoBiotechnology, University of Mining and Geology, St Ivan Rilski, Sofia, 1100, Bulgaria
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan, 106, P. R. China
- Advanced Membrane Material Center, National Taiwan University of Science and Technology, Taipei, Taiwan, 106, P. R. China
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan, Taiwan, 320, P. R. China
| |
Collapse
|
3
|
Song Q, Liu P, Zhang C, Ning Y, Pi X, Zhang Y. Investigation into the Simulation and Mechanisms of Metal-Organic Framework Membrane for Natural Gas Dehydration. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1583. [PMID: 39404310 PMCID: PMC11478295 DOI: 10.3390/nano14191583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/19/2024]
Abstract
Natural gas dehydration is a critical process in natural gas extraction and transportation, and the membrane separation method is the most suitable technology for gas dehydration. In this paper, based on molecular dynamics theory, we investigate the performance of a metal-organic composite membrane (ZIF-90 membrane) in natural gas dehydration. The paper elucidates the adsorption, diffusion, permeation, and separation mechanisms of water and methane with the ZIF-90 membrane, and clarifies the influence of temperature on gas separation. The results show that (1) the diffusion energy barrier and pore size are the primary factors in achieving the separation of water and methane. The diffusion energy barriers for the two molecules (CH4 and H2O) are ΔE(CH4) = 155.5 meV and ΔE(H2O) = 50.1 meV, respectively. (2) The ZIF-90 is more selective of H2O, which is mainly due to the strong interaction between the H2O molecule and the polar functional groups (such as aldehyde groups) within the ZIF-90. (3) A higher temperature accelerates the gas separation process. The higher the temperature is, the faster the separation process is. (4) The pore radius is identified as the intrinsic mechanism enabling the separation of water and methane in ZIF-90 membranes.
Collapse
Affiliation(s)
- Qingxiang Song
- College of Science, China University of Petroleum (Beijing), Beijing 102249, China;
| | - Pengxiao Liu
- PetroChina Tarim Oilfield Company, Kuerle City 841000, China
| | - Congjian Zhang
- Collaborative Innovation Center of Capital Resource-Recycling Material Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yao Ning
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| | - Xingjian Pi
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| | - Ying Zhang
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| |
Collapse
|
4
|
Kmetík M, Kopal I, Král M, Dendisová M. Characterization of Modified PVDF Membranes Using Fourier Transform Infrared and Raman Microscopy and Infrared Nanoimaging: Challenges and Advantages of Individual Methods. ACS OMEGA 2024; 9:24685-24694. [PMID: 38882160 PMCID: PMC11170652 DOI: 10.1021/acsomega.4c01197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/18/2024]
Abstract
Polymer materials are integral to diverse scientific fields, including chemical engineering and biochemical research, as well as analytical and physical chemistry. This study focuses on the characterization of modified poly(vinylidene fluoride) (PVDF) membranes from both physical and chemical perspectives. Unfortunately, current surface characterization methods face various challenges when simultaneously measuring diverse material properties such as morphology and chemical composition. Addressing this issue, we introduce infrared scattering scanning near-field optical microscopy (IR-sSNOM), a modern technique with the ability to overcome limitations and provide simultaneous topographical, mechanical, and chemical information. We demonstrate the capabilities of IR-sSNOM for investigation of four samples of PVDF membranes modified with 2-(methacryloyloxyethyl)trimethylammonium iodide and/or methacryloyloxyethyl phosphorylcholine in various ratios. These membranes, desirable for their specific properties, represent a challenging material for analysis due to their thermal instability and mechanical vulnerability. Employing Fourier transform infrared (FTIR) microscopy, IR-sSNOM, and Raman microscopy, we successfully overcame these challenges by carefully selecting the experimental parameters and performing detailed characterization of the polymer samples. Valuable insights into morphological and chemical homogeneity, the abundance of modifying side chains, and the distribution of different crystal phases of PVDF were obtained. Most notably, the presence of modifying side chains was confirmed by FTIR microscopy, the Raman spectral mapping revealed the distribution of crystalline phases of the studied polymer, and the IR-sSNOM showed the abundance of chemically diverse aggregates on the surface of the membranes, thanks to the unique nanometer-scale resolution and chemical sensitivity of this technique. This comprehensive approach represents a powerful toolset for characterization of polymeric materials at the nano- and microscale. We believe that this methodology can be applied to similar samples, provided that their thermal stability is considered, opening avenues for detailed exploration of physical and chemical properties in various scientific applications.
Collapse
Affiliation(s)
- Matěj Kmetík
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague 6 166 28, Czech Republic
| | - Ivan Kopal
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague 6 166 28, Czech Republic
| | - Martin Král
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague 6 166 28, Czech Republic
| | - Marcela Dendisová
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague 6 166 28, Czech Republic
| |
Collapse
|
5
|
Henkensmeier D, Cho WC, Jannasch P, Stojadinovic J, Li Q, Aili D, Jensen JO. Separators and Membranes for Advanced Alkaline Water Electrolysis. Chem Rev 2024; 124:6393-6443. [PMID: 38669641 PMCID: PMC11117188 DOI: 10.1021/acs.chemrev.3c00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/23/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024]
Abstract
Traditionally, alkaline water electrolysis (AWE) uses diaphragms to separate anode and cathode and is operated with 5-7 M KOH feed solutions. The ban of asbestos diaphragms led to the development of polymeric diaphragms, which are now the state of the art material. A promising alternative is the ion solvating membrane. Recent developments show that high conductivities can also be obtained in 1 M KOH. A third technology is based on anion exchange membranes (AEM); because these systems use 0-1 M KOH feed solutions to balance the trade-off between conductivity and the AEM's lifetime in alkaline environment, it makes sense to treat them separately as AEM WE. However, the lifetime of AEM increased strongly over the last 10 years, and some electrode-related issues like oxidation of the ionomer binder at the anode can be mitigated by using KOH feed solutions. Therefore, AWE and AEM WE may get more similar in the future, and this review focuses on the developments in polymeric diaphragms, ion solvating membranes, and AEM.
Collapse
Affiliation(s)
- Dirk Henkensmeier
- Hydrogen
· Fuel Cell Research Center, Korea
Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division
of Energy & Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
- KU-KIST
Green School, Korea University, Seoul 02841, Republic of Korea
| | - Won-Chul Cho
- Department
of Future Energy Convergence, Seoul National
University of Science & Technology, 232 Gongreung-ro, Nowon-gu, Seoul 01811, Korea
| | - Patric Jannasch
- Polymer
& Materials Chemistry, Department of Chemistry, Lund University, 221 00 Lund, Sweden
| | | | - Qingfeng Li
- Department
of Energy Conversion and Storage, Technical
University of Denmark (DTU), Fysikvej 310, 2800 Kgs. Lyngby, Denmark
| | - David Aili
- Department
of Energy Conversion and Storage, Technical
University of Denmark (DTU), Fysikvej 310, 2800 Kgs. Lyngby, Denmark
| | - Jens Oluf Jensen
- Department
of Energy Conversion and Storage, Technical
University of Denmark (DTU), Fysikvej 310, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
6
|
Wang Z, Huang G, Liu X, Liu P, Lin F, Nie B, Luo B. Investigation on the Gas Emission Law of Water-Containing Coal across the Rank Range. ACS OMEGA 2024; 9:17289-17296. [PMID: 38645359 PMCID: PMC11024968 DOI: 10.1021/acsomega.3c10295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 04/23/2024]
Abstract
Water commonly occurs in coal reservoirs, and it can block the gas flow channels. This has a significant influence on methane transportation within coal. To reveal the gas emission law of water-containing coal across the rank range, three typical coal samples with different coal ranks covering lignite to anthracite were selected in this work. The initial velocity of gas emission (ΔP) under the effect of moisture was measured, and the combination of scanning electron microscopy and mercury injection method was adopted to study the pores and fracture characteristics within coal. Distribution features of oxygen-containing groups in coal were explored by X-ray photoelectron spectroscopy. The microscopic influence mechanism of the water content on ΔP in coal was also comprehensively elucidated. The experimental results show that the moisture content has an obvious inhibitory effect on the ΔP of coal, but the degree of influence on different coal rank samples was different. As the pore space of anthracite (sample XJ) is developed with numerous gas transportation channels, the ΔP has less changes at the lower moisture content (<4.36%). When the moisture content is >4.36%, a large number of water molecules will band together to form water clusters, hindering the gas release, thus greatly reducing the ΔP. However, the change of lignite (sample SL) shows an inverse trend to that of anthracite. Its ΔP is sensitive to the moisture content due to the small number of pores and low porosity. In addition, a great number of oxygen-containing groups in lignite can also provide good surface hydrophilicity for water molecules, and even a small amount of the moisture content (<3.21%) can block most of the pore and facture channels within coal, leading to the remarkable decrease in ΔP. For bituminous coal (sample ML), the distribution of pores and oxygen-containing groups is the most uniform, and the ΔP decreases linearly with the increase in the moisture content.
Collapse
Affiliation(s)
- Zhen Wang
- State
Key Laboratory of the Gas Disaster Detecting, Preventing and Emergency
Controlling, China Coal Technology and Engineering
Group Chongqing Research Institute, Chongqing 400037, China
- State
Key Laboratory of Coal Mine Disaster Dynamics and Control, School
of Resources and Safety Engineering, Chongqing
University, Chongqing 400044, China
| | - Guangli Huang
- State
Key Laboratory of the Gas Disaster Detecting, Preventing and Emergency
Controlling, China Coal Technology and Engineering
Group Chongqing Research Institute, Chongqing 400037, China
- State
Key Laboratory of Coal Mine Disaster Dynamics and Control, School
of Resources and Safety Engineering, Chongqing
University, Chongqing 400044, China
| | - Xianfeng Liu
- State
Key Laboratory of Coal Mine Disaster Dynamics and Control, School
of Resources and Safety Engineering, Chongqing
University, Chongqing 400044, China
- State
Key Laboratory for Fine Exploration and Intelligent Development of
Coal Resources, China University of Mining
and Technology, Xuzhou, Jiangsu 221116, China
| | - Peng Liu
- State
Key Laboratory of Coal Mine Disaster Dynamics and Control, School
of Resources and Safety Engineering, Chongqing
University, Chongqing 400044, China
| | - Fujin Lin
- State
Key Laboratory of the Gas Disaster Detecting, Preventing and Emergency
Controlling, China Coal Technology and Engineering
Group Chongqing Research Institute, Chongqing 400037, China
- State
Key Laboratory of Coal Mine Disaster Dynamics and Control, School
of Resources and Safety Engineering, Chongqing
University, Chongqing 400044, China
| | - Baisheng Nie
- State
Key Laboratory of Coal Mine Disaster Dynamics and Control, School
of Resources and Safety Engineering, Chongqing
University, Chongqing 400044, China
| | - Binyu Luo
- Hubei
Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic
Mineral Resources, Wuhan University of Science
and Technology, Wuhan 430081, China
| |
Collapse
|
7
|
Peinador RI, Darbouret D, Paragot C, Calvo JI. Automated Liquid-Liquid Displacement Porometry (LLDP) for the Non-Destructive Characterization of Ultrapure Water Purification Filtration Devices. MEMBRANES 2023; 13:660. [PMID: 37505026 PMCID: PMC10385612 DOI: 10.3390/membranes13070660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
This scientific publication presents a novel modification of the liquid-liquid displacement porosimetry (LLDP) method, aiming for the non-destructive automated analysis of water purification membrane filtration devices in the microfiltration (MF) and ultrafiltration (UF) range. The technical adaptation of LLDP enables the direct in-line porosimetric analysis of commercial filtration devices, avoiding the filtration devices' destruction. Six commercially available filtration devices with polyethersulfone (PES) and polysulfone (PS) membranes were studied using an improved device developed by the IFTS, which was based on a commercial LLDP instrument. The filtration devices were evaluated in three different configurations: flat disks, hollow fibers, and pleated membranes. The results obtained using the proposed method were compared with other characterization techniques, including submicronic efficiency retention, image analysis of scanning electron microscopy (SEM), and gas-liquid displacement porosimetry (GLDP). The comparison of the results demonstrated that the proposed method accurately determined the porosimetric characteristics of the filters. It proved to be a precise technique for the non-destructive in-line evaluation of filter performance, as well as for periodic quality control and the fouling degree assessment of commercial filtration devices. This modified LLDP approach offers significant potential for the advanced characterization and quality assessment of water purification membrane filtration devices, contributing to improved understanding and optimization of their performance.
Collapse
Affiliation(s)
- René I Peinador
- Institut de la Filtration et des Techniques Séparatives (IFTS), Rue Marcel Pagnol, 47510 Foulayronnes, France
| | - Daniel Darbouret
- Millipore S.A.S., (affiliate of Merck KGaA, Darmstadt, Germany), 78280 Guyancourt, France
| | - Christophe Paragot
- Millipore S.A.S., (affiliate of Merck KGaA, Darmstadt, Germany), 78280 Guyancourt, France
| | - José I Calvo
- Departamento de Física Aplicada, ETSIIAA, Universidad de Valladolid, 34071 Palencia, Spain
- Institute of Sustainable Processes (ISP), Dr. Mergelina s/n, 47071 Valladolid, Spain
| |
Collapse
|
8
|
Huang J, Wang S, Gao J, Wang Y, Ma C, Tian G, Chen H. Insight into the effect of catalytic reactions on correlations of soot oxidation activity and microspatial structures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121540. [PMID: 37019256 DOI: 10.1016/j.envpol.2023.121540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/22/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
A catalyst is usually coated on Diesel particulate filter (DPF) for assisted regeneration. In this paper, the oxidation activity and pore structure evolutions of soot under the effect of CeO2 are explored. CeO2 effectively increases the oxidation activity of soot and reduces the initial activation energy; in the meantime, the addition of CeO2 changes the soot oxidation mode. Pure soot particles tend to produce the porous structure in the oxidation process. Mesopores promote the diffusion of oxygen, and macropores contribute to reduce the agglomeration of soot particles. Additionally, CeO2 provides the active oxygen for soot oxidation and promotes the multi-point oxidation at the beginning of soot oxidation. With the oxidation proceeding, catalysis causes the collapsion of soot microspatial structures, in the meantime, the macropores caused by the catalytic oxidation are filled by CeO2. It results in the tight contact between soot and catalyst, further promoting the formation of the available active oxygen for soot oxidation. This paper is meaningful to analyze the oxidation mechanism of soot under catalysis, which lays a foundation for improving the regeneration efficiency of DPF and reducing the particle emission.
Collapse
Affiliation(s)
- Junfeng Huang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 10081, China
| | - Shanshan Wang
- Analysis & Testing Center, Beijing Institute of Technology, Beijing, 10081, China
| | - Jianbing Gao
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 10081, China.
| | - Yufeng Wang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 10081, China
| | - Chaochen Ma
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 10081, China
| | - Guohong Tian
- Department of Mechanical Engineering Sciences, University of Surrey, GU2 7XH, UK
| | - Haibo Chen
- Institute for Transport Studies, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
9
|
Islam MA, Ulbricht M. A New Interpretation of Gas Viscosity for Flow through Micro-Capillaries and Pores. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205827. [PMID: 36670268 DOI: 10.1002/smll.202205827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/29/2022] [Indexed: 06/17/2023]
Abstract
The Hagen-Poiseuille equation for gas flow had never been derived theoretically; it is rather a simple analogy of the same for liquid flow, and "gas viscosity" is a measure for overall resistance to flow. In this work, experimental flow data for different gases through capillaries and porous media, reported in literature by different groups, including those measured and treated by Knudsen are treated with Hagen-Poiseuille equation, but taking "gas viscosity" as an adjustable parameter. It is found that, at constant temperature, there exists an unambiguous relation between the viscosity (µ) of a given gas, and the product of average pressure (Pav ) and capillary diameter (D). In addition, for Pav * D < 0.01, a universal linear relation exists between µ/M0.5 (where M is molecular mass) for different gases and the parameter Pav * D. The new interpretation of gas viscosity avoids the differentiation of regimes into "Knudsen" and "viscous" flow as it is frequently done in literature. The concept can be applied to obtain a reliable data base for gas viscosities in different fields of applications, for example in microfluidic systems or the analysis of pore size distributions of filters and membranes by gas flow porometry.
Collapse
Affiliation(s)
- Md Akhtarul Islam
- Department of Chemical Engineering and Polymer Science, Shahjalal University of Science and Technology (SUST), Sylhet, 3114, Bangladesh
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, D-45117, Essen, Germany
| |
Collapse
|
10
|
Siwy ZS, Bruening ML, Howorka S. Nanopores: synergy from DNA sequencing to industrial filtration - small holes with big impact. Chem Soc Rev 2023; 52:1983-1994. [PMID: 36794856 DOI: 10.1039/d2cs00894g] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Nanopores in thin membranes play important roles in science and industry. Single nanopores have provided a step-change in portable DNA sequencing and understanding nanoscale transport while multipore membranes facilitate food processing and purification of water and medicine. Despite the unifying use of nanopores, the fields of single nanopores and multipore membranes differ - to varying degrees - in terms of materials, fabrication, analysis, and applications. Such a partial disconnect hinders scientific progress as important challenges are best resolved together. This Viewpoint suggests how synergistic crosstalk between the two fields can provide considerable mutual benefits in fundamental understanding and the development of advanced membranes. We first describe the main differences including the atomistic definition of single pores compared to the less defined conduits in multipore membranes. We then outline steps to improve communication between the two fields such as harmonizing measurements and modelling of transport and selectivity. The resulting insight is expected to improve the rational design of porous membranes. The Viewpoint concludes with an outlook of other developments that can be best achieved by collaboration across the two fields to advance the understanding of transport in nanopores and create next-generation porous membranes tailored for sensing, filtration, and other applications.
Collapse
Affiliation(s)
- Zuzanna S Siwy
- Department of Physics and Astronomy, University of California, Irvine, USA.
| | - Merlin L Bruening
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, USA.
| | - Stefan Howorka
- Department of Chemistry, Institute of Structural Molecular Biology, University College London, UK.
| |
Collapse
|
11
|
Mills R, Baldridge KC, Bernard M, Bhattacharyya D. Recent Advances in Responsive Membrane Functionalization Approaches and Applications. SEP SCI TECHNOL 2022; 58:1202-1236. [PMID: 37063489 PMCID: PMC10103845 DOI: 10.1080/01496395.2022.2145222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/28/2022] [Indexed: 11/25/2022]
Abstract
In recent years, significant advances have been made in the field of functionalized membranes. With the functionalization using various materials, such as polymers and enzymes, membranes can exhibit property changes in response to an environmental stimulation, such as heat, light, ionic strength, or pH. The resulting responsive nature allows for an increased breadth of membrane uses, due to the developed functionalization properties, such as smart-gating filtration for size-selective water contaminant removal, self-cleaning antifouling surfaces, increased scalability options, and highly sensitive molecular detection. In this review, new advances in both fabrication and applications of functionalized membranes are reported and summarized, including temperature-responsive, pH-responsive, light-responsive, enzyme-functionalized, and two-dimensional material-functionalized membranes. Specific emphasis was given to the most recent technological improvements, current limitations, advances in characterization techniques, and future directions for the field of functionalized membranes.
Collapse
Affiliation(s)
- Rollie Mills
- Department of Chemical and Materials Engineering, University of Kentucky; Lexington, KY 40506, USA
| | - Kevin C. Baldridge
- Department of Chemical and Materials Engineering, University of Kentucky; Lexington, KY 40506, USA
| | - Matthew Bernard
- Department of Chemical and Materials Engineering, University of Kentucky; Lexington, KY 40506, USA
| | - Dibakar Bhattacharyya
- Department of Chemical and Materials Engineering, University of Kentucky; Lexington, KY 40506, USA
| |
Collapse
|
12
|
Yu H, Shangguan S, Xie C, Yang H, Wei C, Rong H, Qu F. Chemical Cleaning and Membrane Aging in MBR for Textile Wastewater Treatment. MEMBRANES 2022; 12:membranes12070704. [PMID: 35877907 PMCID: PMC9316503 DOI: 10.3390/membranes12070704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 02/01/2023]
Abstract
Membrane bioreactors have been widely used in textile wastewater treatment. Intensive chemical cleaning is indispensable in the MBR for textile wastewater treatment due to the severe membrane fouling implied. This work investigated the aging of three different membranes, polyvinylidene fluoride (PVDF), polyether sulfone (PES), and polytetrafluoroethylene (PTFE), in the MBRs for textile wastewater treatment. Pilot-scale MBRs were operated and the used membrane was characterized. Batch chemical soaking tests were conducted to elucidate the aging properties of the membranes. The results indicated that the PVDF membrane was most liable to the chemical cleaning, and the PES and PTFE membranes were rather stable. The surface hydrophobicity of the PVDF increased in the acid aging test, and the pore size and pure water flux decreased due to the elevated hydrophobic effect; alkaline oxide aging destructed the structure of the PVDF membrane, enlarged pore size, and increased pure water flux. Chemical cleaning only altered the interfacial properties (hydrophobicity and surface zeta potential) of the PES and PTFE membranes. The fluoro-substitution and the dehydrofluorination of the PVDF, chain scission of the PES molecules, and dehydrofluorination of the PTFE were observed in aging. A chemically stable and anti-aging membrane would be of great importance in the MBR for textile wastewater treatment due to the intensive chemical cleaning applied.
Collapse
Affiliation(s)
- Huarong Yu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou 510006, China; (H.Y.); (S.S.); (C.W.); (H.R.)
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Siyuan Shangguan
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou 510006, China; (H.Y.); (S.S.); (C.W.); (H.R.)
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Chenyu Xie
- Foshan Nanhai Jinglong Investment Holding Co., Ltd., Foshan 528211, China;
| | - Haiyang Yang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou 510006, China; (H.Y.); (S.S.); (C.W.); (H.R.)
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
- Correspondence: (H.Y.); (F.Q.)
| | - Chunhai Wei
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou 510006, China; (H.Y.); (S.S.); (C.W.); (H.R.)
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Hongwei Rong
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou 510006, China; (H.Y.); (S.S.); (C.W.); (H.R.)
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Fangshu Qu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou 510006, China; (H.Y.); (S.S.); (C.W.); (H.R.)
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
- Correspondence: (H.Y.); (F.Q.)
| |
Collapse
|
13
|
Determination of the key structural factors affecting permeability and selectivity of PAN and PES polymeric filtration membranes using 3D FIB/SEM. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
A realistic approach for determining the pore size distribution of nanofiltration membranes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Effect of polymer-solvent compatibility on polyamide hollow fiber membranes prepared via thermally induced phase separation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Impact of Particle Shape and Surface Group on Membrane Fouling. MEMBRANES 2022; 12:membranes12040403. [PMID: 35448373 PMCID: PMC9032257 DOI: 10.3390/membranes12040403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022]
Abstract
Membrane fouling remains one of the most critical drawbacks in membrane filtration processes. Although the effect of various operating parameters—such as flow velocity, concentration, and foulant size—are well-studied, the impact of particle shape is not well understood. To bridge this gap, this study investigated the effect of polystyrene particle sphericity (sphere, peanut and pear) on external membrane fouling, along with the effect of particle charge (unmodified, carboxylated, and aminated). The results indicate that the non-spherical particles produce higher critical fluxes than the spherical particles (i.e., respectively 24% and 13% higher for peanut and pear), which is caused by the looser packing in the cake due to the varied particle orientations. Although higher crossflow velocities diminished the differences in the critical flux values among the particles of different surface charges, the differences among the particle shapes remained distinct. In dead-end filtration, non-spherical particles also produced lower flux declines. The shear-induced diffusion model predicts all five particle types well. The Derjaguin-Landau-Verwey-Overbeek (DLVO) and extended DLVO (XDLVO) models were used to quantify the interaction energies, and the latter agreed with the relative critical flux trends of all of the PS particles. As for the flux decline trends, both the DLVO and XDLVO results are in good agreement.
Collapse
|
17
|
Begum Tanis-Kanbur M, Raj Tamilselvam N, Wei Chew J. Membrane fouling mechanisms by BSA in aqueous-organic solvent mixtures. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Calvo JI, Casado-Coterillo C, Hernández A. Past, Present and Future of Membrane Technology in Spain. MEMBRANES 2021; 11:membranes11110808. [PMID: 34832037 PMCID: PMC8625950 DOI: 10.3390/membranes11110808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/14/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022]
Abstract
The following review aims at analyzing the contribution of Spanish researchers to membrane science and technology, with a historical compilation of the main milestones. We used a bibliometric analysis based on the Scopus database (1960–2020) dealing with 8707 documents covering the different disciplines and subject areas where membranes are involved. Furthermore, the information has been updated to the present moment of writing this manuscript in order to include the latest research lines and the different research groups currently active in Spain, which may lead the way to the development of the field in the coming years.
Collapse
Affiliation(s)
- José I. Calvo
- Surfaces and Porous Materials (SMAP) Group, Associated Research Unit to CSIC, UVa-innova Bldg, P. Belén, 11 and Institute of Sustainable Processes (ISP), Dr. Mergelina, s/n, University of Valladolid, 47071 Valladolid, Spain;
- Correspondence: (J.I.C.); (C.C.-C.)
| | - Clara Casado-Coterillo
- Department of Chemical and Biomolecular Engineering, Universidad de Cantabria, Av. Los Castros s/n, 39005 Santander, Spain
- Correspondence: (J.I.C.); (C.C.-C.)
| | - Antonio Hernández
- Surfaces and Porous Materials (SMAP) Group, Associated Research Unit to CSIC, UVa-innova Bldg, P. Belén, 11 and Institute of Sustainable Processes (ISP), Dr. Mergelina, s/n, University of Valladolid, 47071 Valladolid, Spain;
| |
Collapse
|
19
|
Taylor N, Ma WJ, Kristopeit A, Wang SC, Zydney AL. Retention characteristics of sterile filters – Effect of pore size and structure. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119436] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
|
21
|
Deutou JGN, Kaze RC, Kamseu E, Sglavo VM. Controlling the Thermal Stability of Kyanite-Based Refractory Geopolymers. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2903. [PMID: 34071390 PMCID: PMC8197970 DOI: 10.3390/ma14112903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 11/23/2022]
Abstract
The present project investigated the thermal stability of cold-setting refractory composites under high-temperature cycles. The proposed route dealt with the feasibility of using fillers with different particle sizes and studying their influence on the thermo-mechanical properties of refractory geopolymer composites. The volumetric shrinkage was studied with respect to particle sizes of fillers (80, 200 and 500 µm), treatment temperature (1050-1250 °C) and amount of fillers (70-85 wt.%). The results, combined with thermal analysis, indicated the efficiency of refractory-based kyanite aggregates for enhancing thermo-mechanical properties. At low temperatures, larger amounts of kyanite aggregates promoted mechanical strength development. Flexural strengths of 45, 42 and 40 MPa were obtained for geopolymer samples, respectively, at 1200 °C, made with filler particles sieved at 80, 200 and 500 µm. In addition, a sintering temperature equal to 1200 °C appeared beneficial for the promotion of densification as well as bonding between kyanite aggregates and the matrix, contributing to the reinforcement of the refractory geopolymer composites without any sign of vitrification. From the obtained properties of thermal stability, good densification and high strength, kyanite aggregates are efficient and promising candidates for the production of environmentally friendly, castable refractory composites.
Collapse
Affiliation(s)
- Juvenal Giogetti Nemaleu Deutou
- Local Material Promotion Authority (MIPROMALO), P.O. Box 2396 Yaoundé, Cameroon; (R.C.K.); (E.K.)
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Rodrigue Cyriaque Kaze
- Local Material Promotion Authority (MIPROMALO), P.O. Box 2396 Yaoundé, Cameroon; (R.C.K.); (E.K.)
- Laboratory of Applied Inorganic Chemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812 Yaoundé, Cameroon
| | - Elie Kamseu
- Local Material Promotion Authority (MIPROMALO), P.O. Box 2396 Yaoundé, Cameroon; (R.C.K.); (E.K.)
- Dipartimento di Ingegneria dei Materiali e dell’Ambiente, Università di Modena e Reggio Emilia, Via Vignolese 905, 41100 Modena, Italy
| | - Vincenzo M. Sglavo
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| |
Collapse
|
22
|
Toledano-Osorio M, Manzano-Moreno FJ, Ruiz C, Toledano M, Osorio R. Testing active membranes for bone regeneration: A review. J Dent 2021; 105:103580. [PMID: 33417978 DOI: 10.1016/j.jdent.2021.103580] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Maxillofacial bone defects are the main hindering conditions for traditional dental implant strategies. Guided Bone Regeneration (GBR) is used to handle this situation. The principle of GBR is to use a membrane to prevent the colonization of soft tissue cells of the bone defect and favors the migration of osteogenic linages. Current membranes do not completely fulfill the requirements that an optimal membrane should have, sometimes resulting in non-predictable results. Thus, the need to develop an ideal membrane to perform this duty is clear. Recent developments in bio-manufacturing are driving innovations in membranes technology permitting the active participation of the membrane in the healing and regenerative process trough native tissue mimicking, drug-delivery and cells interaction, away from being a passive barrier. New membranes features need specific evaluation techniques, beyond the International Standard for membrane materials (last reviewed in 2004), being this the rationale for the present review. Nanotechnology application has completely shifted the way of analyzing structural characterization. New progresses on osteoimmmunomodulation have also switched the understanding of cells-membranes interaction. DATA AND SOURCES To propose an updated protocol for GBR membranes evaluation, critical reading of the relevant published literature was carried out after a MEDLINE/PubMed database search. CONCLUSIONS The main findings are that a potential active membrane should be assessed in its nanostructure, physicochemical and nanomechanical properties, bioactivity and antibacterial, osteoblasts proliferation, differentiation and mineralization. Immunomodulation testing for macrophages recruitment and M2 phenotype promotion in osteoblasts co-culture has to be achieved to completely analyze membranes/tissue interactions.
Collapse
Affiliation(s)
- Manuel Toledano-Osorio
- Biomaterials in Dentistry Research Group, Department of Stomatology, School of Dentistry, University of Granada, Spain; Medicina Clínica y Salud Pública PhD Programme, Spain
| | - Francisco Javier Manzano-Moreno
- Biomedical Group (BIO277), Department of Stomatology, School of Dentistry, University of Granada, Spain; Instituto Investigación Biosanitaria, ibs. Granada, Granada, Spain
| | - Concepción Ruiz
- Instituto Investigación Biosanitaria, ibs. Granada, Granada, Spain; Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences. University of Granada, Spain; Institute of Neuroscience, University of Granada, Centro de Investigación Biomédica (CIBM), Parque Tecnológico de la Salud (PTS), Granada, Spain
| | - Manuel Toledano
- Biomaterials in Dentistry Research Group, Department of Stomatology, School of Dentistry, University of Granada, Spain.
| | - Raquel Osorio
- Biomaterials in Dentistry Research Group, Department of Stomatology, School of Dentistry, University of Granada, Spain
| |
Collapse
|
23
|
Peinador RI, Kaabouch M, Ben Aim R, Calvo JI. Non-Destructive Characterization of Industrial Membrane Cartridges by Using Liquid-Liquid Displacement Porosimetry (LLDP). MEMBRANES 2020; 10:membranes10120369. [PMID: 33255821 PMCID: PMC7759944 DOI: 10.3390/membranes10120369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 05/08/2023]
Abstract
This works aims to propose and demonstrate the accuracy of a novel method of characterization aimed for non-destructive analysis of microfiltration (MF) membrane cartridges. The method adapts conventional liquid-liquid displacement porosimetry (LLDP) for performing an in-line porosimetric analysis of the membrane cartridges, getting their pore size distributions (PSDs) and mean pore diameters (davg). Six commercial filtration cartridges featuring polyethersulfone (PES) pleated membranes were analyzed using a newly designed filtration rig, based on the liquid-liquid displacement porometer, developed at the Institut de la Filtration et des Techniques Séparatives (IFTS) and operated at constant flow. The experimental rig allows the direct and non-destructive characterization of the cartridge in its original presentation. Results have been compared with those obtained by using gas-liquid displacement porosimetry (GLDP) on small membrane coupons detached from such cartridges. The comparison allows us to conclude that the proposed method gives enough accuracy in the determination of porosimetric characteristics of the filters. This method can be used as a precise characterization technique for a non-destructive in-line study of filter performance and can be envisaged as useful to periodic quality or fouling control of the commercial cartridges.
Collapse
Affiliation(s)
- René I. Peinador
- Laboratoire Mesures et Charactérisations, Institut de la Filtration et des Techniques Séparatives (IFTS), Rue Marcel Pagnol, 47510 Foulayronnes, France; (R.I.P.); (R.B.A.)
| | - Mohamed Kaabouch
- Département de Mécanique, Faculté des Sciences et d’Ingénierie (FSI), University of Toulouse III-Paul Sabatier, 31400 Toulouse, France;
| | - Roger Ben Aim
- Laboratoire Mesures et Charactérisations, Institut de la Filtration et des Techniques Séparatives (IFTS), Rue Marcel Pagnol, 47510 Foulayronnes, France; (R.I.P.); (R.B.A.)
| | - José I. Calvo
- Departamento de Física Aplicada, ETSIIAA, Universidad de Valladolid, 34071 Palencia, Spain
- Institute of Sustainable Processes (ISP), Dr. Mergelina s/n, 47071 Valladolid, Spain
- Correspondence:
| |
Collapse
|