1
|
Nishida N, Sugimoto S, Miyagaki S, Cho C, Konishi M, Goda T, Yamaguchi M, Kawabe Y, Morimoto H, Kusuyama J, Okamura T, Hamaguchi M, Mori J, Nakajima H, Fukui M, Iehara T. Anti-inflammatory effect of Angiotensin 1-7 in white adipose tissue. Adipocyte 2025; 14:2449027. [PMID: 39803918 PMCID: PMC11730366 DOI: 10.1080/21623945.2024.2449027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/08/2024] [Accepted: 12/29/2024] [Indexed: 01/16/2025] Open
Abstract
Obesity is a global health concern that promotes chronic low-grade inflammation, leading to insulin resistance, a key factor in many metabolic diseases. Angiotensin 1-7 (Ang 1-7), a component of the renin-angiotensin system (RAS), exhibits anti-inflammatory effects in obesity and related disorders, though its mechanisms remain unclear. In this study, we examined the effect of Ang 1-7 on inflammation of white adipose tissue (WAT) in dietary-induced obese mice. Monocyte chemoattractant protein-1 (MCP-1) produced by white adipocytes and tumour necrosis factor-α (TNF-α) produced by macrophages are pro-inflammatory cytokines and interact to form a pathogenic loop to exacerbate obesity-induced inflammation. We found that Ang 1-7 reduced MCP-1 and TNF-α gene expressions and the number of crown-like structures, which are histological hallmarks of the pro-inflammatory process, in visceral epididymal WAT (eWAT) and reduced circulating MCP-1 and TNF-α levels, accompanied by improvement in insulin resistance, in dietary-induced obese mice. Furthermore, Ang 1-7 reduced MCP-1 and TNF-α secretions in 3T3-L1 white adipocytes and RAW 264.7 macrophages, respectively, which are in vitro experimental models mimicking obesity condition. Our results suggest that Ang 1-7 directly acts on WAT to mitigate obesity-induced inflammation. Thus, this study provides novel insights into the underlying mechanism of anti-obesity effects of Ang 1-7.
Collapse
Affiliation(s)
- Nozomi Nishida
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoru Sugimoto
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoshi Miyagaki
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Chiharu Cho
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Madoka Konishi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takeshi Goda
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mihoko Yamaguchi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yasuhiro Kawabe
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hidechika Morimoto
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Joji Kusuyama
- Department of Biosignals and Inheritance, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Takuro Okamura
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Jun Mori
- Division of Pediatric Endocrinology, Metabolism and Nephrology, Children’s Medical Center, Osaka City General Hospital, Osaka, Japan
| | - Hisakazu Nakajima
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomoko Iehara
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
2
|
Mahmood NMS, Mahmud AMR, Maulood IM. Vascular actions of Ang 1-7 and Ang 1-8 through EDRFs and EDHFs in non-diabetes and diabetes mellitus. Nitric Oxide 2025; 156:9-26. [PMID: 40032212 DOI: 10.1016/j.niox.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/23/2025] [Accepted: 02/27/2025] [Indexed: 03/05/2025]
Abstract
The renin-angiotensin system (RAS) plays a pivotal role in regulating vascular homeostasis, while angiotensin 1-8 (Ang 1-8) traditionally dominates as a vasoconstrictor factor. However, the discovery of angiotensin 1-7 (Ang 1-7) and Ang 1-8 has revealed counter-regulatory mechanisms mediated through endothelial-derived relaxing factors (EDRFs) and endothelial-derived hyperpolarizing factors (EDHFs). This review delves into the vascular actions of Ang 1-7 and Ang 1-8 in both non-diabetes mellitus (non-DM) and diabetes mellitus (DM) conditions, highlighting their effects on vascular endothelial cell (VECs) function as well. In a non-DM vasculature context, Ang 1-8 demonstrate dual effect including vasoconstriction and vasodilation, respectively. Additionally, Ang 1-7 induces vasodilation upon nitric oxide (NO) production as a prominent EDRFs in distinct mechanisms. Further research elucidating the precise mechanisms underlying the vascular actions of Ang 1-7 and Ang 1-8 in DM will facilitate the development of tailored therapeutic interventions aimed at preserving vascular health and preventing cardiovascular complications.
Collapse
Affiliation(s)
- Nazar M Shareef Mahmood
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq.
| | - Almas M R Mahmud
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Ismail M Maulood
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| |
Collapse
|
3
|
Klersy T, Achner L, Fels B, Rezende F, Lopez M, Alenina N, Spiecker F, Stölting I, Häuser W, Reinberger T, Aherrahrou Z, Kuenne C, Vahldieck C, Matschl U, Hille S, Bader M, Brandes RP, Müller OJ, Kusche-Vihrog K, Raasch W. The anti-atherosclerotic effect of chronic AT1 receptor blocker treatment also depends on the ACE2/Ang(1-7)/Mas axis. Biomed Pharmacother 2025; 186:117990. [PMID: 40106968 DOI: 10.1016/j.biopha.2025.117990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/06/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025] Open
Abstract
Blockade of AT1-receptors by telmisartan (TEL) has anti-atherosclerotic efficacy. We investigated to what extent the ACE2/Ang1-7/Mas axis-dependent mechanism contributes to the TEL-induced protection of endothelial function. Atherosclerosis was induced in C57BL/6 N, Mas-knock out (ko), and Ace2-ko mice by AAV-PCSK9DY (2 ×1011 VG) injections plus Western diet (WD) feeding (12w). Mice were treated (12w) with TEL or vehicle. Controls received no PCSK9DY, chow-feeding, and vehicle-treatment. In the aortae of mice, the plaque burden was determined, RNAseq analyses were performed and functional properties were assessed by quantifying the mechanical properties of the endothelial surface by Atomic Force Microscopy. Regardless of strain, plaque burden and total cholesterol were increased upon AAV-PCSK9DY+WD but decreased by TEL. Cortical stiffness was also enhanced in all strains by AAV-PCSK9DY+WD but reduced under TEL only in the C57BL/6 N, while remaining still high in both knockout strains. Plasma NO negatively correlated with cortical stiffness in C57BL/6 N, but not in transgenic mice. TNFα plasma levels and aortic MMP12 expression was increased in PCSK9DY/WD vehicle-treated controls and was normalized by TEL in C57BL/6 N but not in Mas-ko and Ace2-ko mice. We conclude that TEL-induced reduction of endothelial stiffness occurred only in the C57BL/6 N but not in the Mas-ko and Ace2-ko mice. We suggest that the protective TEL effect is partly due to an Ang(1-7)/ACE2/Mas axis mediated mechanism. Since Mmp12 has well-known proatherogenic properties but was not altered in the two transgenic mouse lines, follow-up studies are required to further elucidate the correlation between Mmp12 and the Ang(1-7)/ACE2/Mas axis with respect to atherosclerosis.
Collapse
Affiliation(s)
- Tobias Klersy
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany
| | - Leonie Achner
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany
| | - Benedikt Fels
- Institute for Physiology, University Lübeck, Germany
| | - Flavia Rezende
- Institute for Cardiovascular Physiology, Faculty of Medicine, Goethe-University Frankfurt, Germany; DZHK (German Center for Cardiovascular Research) Partner site Rhine-Main, Germany
| | - Melina Lopez
- Institute for Cardiovascular Physiology, Faculty of Medicine, Goethe-University Frankfurt, Germany; DZHK (German Center for Cardiovascular Research) Partner site Rhine-Main, Germany
| | - Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Frauke Spiecker
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany
| | - Ines Stölting
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany
| | - Walter Häuser
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany
| | - Tobias Reinberger
- Institute for Cardiogenetics, University Lübeck; University of Lübeck, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Zouhair Aherrahrou
- Institute for Cardiogenetics, University Lübeck; University of Lübeck, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Carsten Kuenne
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | | | - Urte Matschl
- Department Virus Immunology, Leibniz Institute for Virology, Hamburg, Germany
| | - Susanne Hille
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany; Department of Internal Medicine V, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany; DZHK (German Centre for Cardiovascular Research), partner site, Berlin, Germany; Center for Structural and Cell Biology in Medicine, Institute for Biology, University of Lübeck, Lübeck, Germany; Charité - University Medicine Berlin, Berlin, Germany
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Faculty of Medicine, Goethe-University Frankfurt, Germany; DZHK (German Center for Cardiovascular Research) Partner site Rhine-Main, Germany
| | - Oliver J Müller
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany; Department of Internal Medicine V, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Kristina Kusche-Vihrog
- Institute for Physiology, University Lübeck, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Walter Raasch
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany; CBBM (Centre for Brain, Behavior and Metabolism), University of Lübeck, Germany.
| |
Collapse
|
4
|
He MZ, Zhang HT, Yang Y, Fang Y, Zhang M, Deng SQ, Sun X. Coinfection of COVID-19 and malaria: clinical profiles, interactions, and strategies for effective control. Malar J 2025; 24:99. [PMID: 40133914 PMCID: PMC11938571 DOI: 10.1186/s12936-025-05315-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 02/27/2025] [Indexed: 03/27/2025] Open
Abstract
Since SARS-CoV-2 has caused unprecedented changes in the epidemiology of other infectious diseases, investigations on coinfection between SARS-CoV-2 and one of the famous vector-borne diseases, malaria, are crucial for disease control, especially in malaria-endemic areas. The clinical profiles, possible mechanisms for interactions, and representative control measures of COVID-19 and malaria coinfections have recently garnered public attention. The overlap in epidemiology, infection incubation, and clinical symptoms between COVID-19 and malaria coinfections has been thoroughly discussed to provide a detailed diagnostic procedure for coinfections, thereby guiding appropriate clinical interventions. Immunological and genetic evidence has shown that previous malaria exposure may protect the body from the poor prognosis of COVID-19. ACE2 downregulation and TLR-induced pathways play a role in this protective effect, as do CD8 + and CD4 + T-cell activation and coinhibitory receptor upregulation, which help maintain a balance of immune reactions. Finally, multiple control measures for coinfections were discussed, and malaria control efforts were enriched in the context of COVID-19. These efforts included (1) developing vaccinations; (2) evaluating the efficacy of anti-malarial drugs in the SARS-CoV-2 treatment; (3) exploring recent advances in natural products that are potentially useful for coinfection treatment; (4) researching and implementing bioinsecticides for malaria control, such as gene-driven mosquitoes, fungi, and bacterial symbionts; and (5) improving national electronic disease surveillance platforms in malaria-endemic regions. At last, the above findings summarized valuable lessons about malaria and COVID-19 control and expedite further investigations on coinfections with complex clinical presentations.
Collapse
Affiliation(s)
- Mu-Zi He
- Gezhouba Central Hospital of Sinopharm, The Third Clinical Medical College of the Three Gorges University, Yichang, 443002, Hubei, China
- Department of Pathogen Biology, Anhui Province Key Laboratory of Zoonoses, The Provincial Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Hai-Ting Zhang
- Department of Pathogen Biology, Anhui Province Key Laboratory of Zoonoses, The Provincial Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Yi Yang
- Gezhouba Central Hospital of Sinopharm, The Third Clinical Medical College of the Three Gorges University, Yichang, 443002, Hubei, China
| | - Yi Fang
- Gezhouba Central Hospital of Sinopharm, The Third Clinical Medical College of the Three Gorges University, Yichang, 443002, Hubei, China
| | - Mao Zhang
- Gezhouba Central Hospital of Sinopharm, The Third Clinical Medical College of the Three Gorges University, Yichang, 443002, Hubei, China
| | - Sheng-Qun Deng
- Department of Pathogen Biology, Anhui Province Key Laboratory of Zoonoses, The Provincial Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
- Department of Pathology, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China.
| | - Xun Sun
- Gezhouba Central Hospital of Sinopharm, The Third Clinical Medical College of the Three Gorges University, Yichang, 443002, Hubei, China.
| |
Collapse
|
5
|
Phua TJ. Hallmarks of aging: middle-aging hypovascularity, tissue perfusion and nitric oxide perspective on healthspan. FRONTIERS IN AGING 2025; 5:1526230. [PMID: 39839443 PMCID: PMC11747043 DOI: 10.3389/fragi.2024.1526230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025]
Abstract
Aging is a complex process marked by various changes at both cellular and systemic levels, impacting the functioning and lifespan of organisms. Over time, researchers have pinpointed several significant hallmarks of aging that lead to the gradual deterioration of tissue function, regulation, and homeostasis associated with aging in humans. Despite this, the intricate interactions and cumulative effects of these hallmarks are still mostly uncharted territory. Understanding this complex web is a major challenge in Geroscience, yet it is crucial for developing effective strategies that promote healthy aging, reduce medical costs, and ensure the sustainability of health systems. Gaining insights in this area is essential for creating interventions that can slow the aging process, enhance healthspan, and decrease the likelihood of age-related diseases. The integration of knowledge from various fields concerning the middle-aging nitric oxide (NO)-mediated hypovascularity hypoxia hemodynamic hypothesis points to a systems-based approach to the biological hallmarks of aging. Key evidence suggests a systemic connection between the endocrine system (specifically sex hormones), endogenous NO deficiency, and the vascular system, which serves as a network of microvascular structures crucial for tissue perfusion functions at cellular level. These processes also involve oxidative stress and inflammation triggered by hypoxia.
Collapse
Affiliation(s)
- Teow J. Phua
- Molecular Medicine, NSW Health Pathology, John Hunter Hospital, Newcastle, NSW, Australia
| |
Collapse
|
6
|
Wen W, Fan H, Zhang S, Hu S, Chen C, Tang J, You Y, Wang C, Li J, Luo L, Cheng Y, Zhou M, Zhao X, Tan T, Xu F, Fu X, Chen J, Dong P, Zhang X, Wang M, Feng Y. Associations between metabolic dysfunction-associated fatty liver disease and atherosclerotic cardiovascular disease. Am J Med Sci 2024; 368:557-568. [PMID: 38944203 DOI: 10.1016/j.amjms.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is closely related to metabolic syndrome and remains a major global health burden. The increased prevalence of obesity and type 2 diabetes mellitus (T2DM) worldwide has contributed to the rising incidence of NAFLD. It is widely believed that atherosclerotic cardiovascular disease (ASCVD) is associated with NAFLD. In the past decade, the clinical implications of NAFLD have gone beyond liver-related morbidity and mortality, with a majority of patient deaths attributed to malignancy, coronary heart disease (CHD), and other cardiovascular (CVD) complications. To better define fatty liver disease associated with metabolic disorders, experts proposed a new term in 2020 - metabolic dysfunction associated with fatty liver disease (MAFLD). Along with this new designation, updated diagnostic criteria were introduced, resulting in some differentiation between NAFLD and MAFLD patient populations, although there is overlap. The aim of this review is to explore the relationship between MAFLD and ASCVD based on the new definitions and diagnostic criteria, while briefly discussing potential mechanisms underlying cardiovascular disease in patients with MAFLD.
Collapse
Affiliation(s)
- Wen Wen
- Department of Cardiology, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, 313000, Zhejiang, China
| | - Hua Fan
- School of Clinical Medicine, The First Affiliated Hospital of Henan University of Science and Technology, Henan University of Science and Technology, Luoyang 471003, Henan, China
| | - Shenghui Zhang
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Siqi Hu
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Chen Chen
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Jiake Tang
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Yao You
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Chunyi Wang
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Jie Li
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Lin Luo
- Hangzhou Ruolin Hospital Management Co. Ltd, Hangzhou, 310007, China
| | - Yongran Cheng
- School of Public Health, Hangzhou Medical College, Hangzhou, 311300, China
| | - Mengyun Zhou
- Department of Molecular & Cellular Physiology, Shinshu University School of Medicine, 3900803, Japan
| | - Xuezhi Zhao
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China
| | - Tao Tan
- Faculty of Applied Science, Macao Polytechnic University, Macao SAR, 999078, China
| | - Fangfang Xu
- Strategy Research and Knowledge Information Center, SAIC Motor Group, 200030, Shanghai, China
| | - Xinyan Fu
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Juan Chen
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Peng Dong
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Xingwei Zhang
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Mingwei Wang
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China.
| | - Yan Feng
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China.
| |
Collapse
|
7
|
Gao Y, Chen Q, Yang S, Cao J, Li F, Li R, Wu Z, Wang Y, Yuan L. Indole alleviates nonalcoholic fatty liver disease in an ACE2-dependent manner. FASEB J 2024; 38:e70061. [PMID: 39305120 DOI: 10.1096/fj.202401172rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/27/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024]
Abstract
Indole is a microbial metabolite produced by the gut microbiota through the degradation of dietary tryptophan, known for its well-established anti-inflammatory and antioxidant properties. In this study, we collected fecal samples from mice fed a high-fat diet (HFD) and those on a standard diet (SD), then conducted 16S rRNA sequencing to analyze their gut microbiota. The analysis revealed distinct differences in the dominant bacterial species between the two groups, with a significant decrease in indole-producing probiotics in the HFD mice compared to the SD group. Then we administered oral indole treatment to male C57BL/6J mice with HFD-induced NAFLD and observed a significant improvement in hepatic steatosis and inflammation. Notably, indole alleviated the HFD-induced decline in serum Angiotensin-(1-7) [Ang-(1-7)] levels and Angiotensin-Converting Enzyme 2 (ACE2) expression. To further investigate the role of indole and ACE2 in NAFLD, we conducted experiments using ACE2 knockout (ACE2KO) mice that were also induced with HFD-induced NAFLD and treated with indole. Interestingly, the protective effects of indole were compromised in the absence of ACE2. In HepG2 cells, indole similarly stimulated ACE2 expression and, in an ACE2-dependent manner, reduced ROS generation, maintained mitochondrial membrane potential stability, and increased SIRT3 expression. In summary, our results highlight the formation of a biologically active gut-liver axis between the gut microbiota and the liver through the tryptophan metabolite indole, which mitigates NAFLD in an ACE2-dependent manner. Elevating dietary tryptophan and increasing indole levels may represent an effective approach for preventing and treating NAFLD.
Collapse
Affiliation(s)
- Yuanyuan Gao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Songtao Yang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Cao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangyu Li
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Li
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuoying Wu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Wang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Yuan
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Drzymała A. The Functions of SARS-CoV-2 Receptors in Diabetes-Related Severe COVID-19. Int J Mol Sci 2024; 25:9635. [PMID: 39273582 PMCID: PMC11394807 DOI: 10.3390/ijms25179635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/25/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is considered a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor of high importance, but due to its non-ubiquitous expression, studies of other proteins that may participate in virus internalisation have been undertaken. To date, many alternative receptors have been discovered. Their functioning may provide an explanation for some of the events observed in severe COVID-19 that cannot be directly explained by the model in which ACE2 constitutes the central point of infection. Diabetes mellitus type 2 (T2D) can induce severe COVID-19 development. Although many mechanisms associated with ACE2 can lead to increased SARS-CoV-2 virulence in diabetes, proteins such as basigin (CD147), glucose-regulated protein 78 kDa (GRP78), cluster of differentiation 4 (CD4), transferrin receptor (TfR), integrins α5β1/αvβ3, or ACE2 co-receptors neuropilin 2 (NRP2), vimentin, and even syalilated gangliosides may also be responsible for worsening the COVID-19 course. On the other hand, some others may play protective roles. Understanding how diabetes-associated mechanisms can induce severe COVID-19 via modification of virus receptor functioning needs further extensive studies.
Collapse
Affiliation(s)
- Adam Drzymała
- Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medical Sciences, University of Opole, Oleska 48, 45-052 Opole, Poland
| |
Collapse
|
9
|
Timofeeva AM, Nikitin AO, Nevinsky GA. Circulating miRNAs in the Plasma of Post-COVID-19 Patients with Typical Recovery and Those with Long-COVID Symptoms: Regulation of Immune Response-Associated Pathways. Noncoding RNA 2024; 10:48. [PMID: 39311385 PMCID: PMC11417918 DOI: 10.3390/ncrna10050048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024] Open
Abstract
Following the acute phase of SARS-CoV-2 infection, certain individuals experience persistent symptoms referred to as long COVID. This study analyzed the patients categorized into three distinct groups: (1) individuals presenting rheumatological symptoms associated with long COVID, (2) patients who have successfully recovered from COVID-19, and (3) donors who have never contracted COVID-19. A notable decline in the expression of miR-200c-3p, miR-766-3p, and miR-142-3p was identified among patients exhibiting rheumatological symptoms of long COVID. The highest concentration of miR-142-3p was found in healthy donors. One potential way to reduce miRNA concentrations is through antibody-mediated hydrolysis. Not only can antibodies possessing RNA-hydrolyzing activity recognize the miRNA substrate specifically, but they also catalyze its hydrolysis. The analysis of the catalytic activity of plasma antibodies revealed that antibodies from patients with long COVID demonstrated lower hydrolysis activity against five fluorescently labeled oligonucleotide sequences corresponding to the Flu-miR-146b-5p, Flu-miR-766-3p, Flu-miR-4742-3p, and Flu-miR-142-3p miRNAs and increased activity against the Flu-miR-378a-3p miRNA compared to other patient groups. The changes in miRNA concentrations and antibody-mediated hydrolysis of miRNAs are assumed to have a complex regulatory mechanism that is linked to gene pathways associated with the immune system. We demonstrate that all six miRNAs under analysis are associated with a large number of signaling pathways associated with immune response-associated pathways.
Collapse
Affiliation(s)
- Anna M. Timofeeva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Artem O. Nikitin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
| | - Georgy A. Nevinsky
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
10
|
Ribeiro GHM, Guimarães VHD, Teixeira HADS, Farias LC, Guimarães ALS, de Paula AMB, Santos SHS. Dietary supplementation with black cricket (Gryllus assimilis) reverses protein-energy malnutrition and modulates renin-angiotensin system expression in adipose tissue. Food Res Int 2024; 189:114570. [PMID: 38876598 DOI: 10.1016/j.foodres.2024.114570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/16/2024]
Abstract
Edible insects are recognized as promising food sources due to their nutritional composition. Some species, such as Gryllus assimilis, contain proteins, lipids, and carbohydrates of high biological value, which regulate several metabolic functions, including the Renin-Angiotensin System (RAS). In this context, the present study aimed to assess the effects of dietary supplementation with whole Gryllus assimilis powder on the metabolism of malnourished mice. Thirty-two male Swiss mice were used and divided into four treatment groups. The groups were identified as (AIN93-M); AIN93-M + Gryllus assimilis diet (AIN93-M + GA); AIN93-M + Renutrition diet (AIN93-M + REN) and AIN93-M + Renutrition diet + Gryllus assimilis (AIN93-M + REN + GA). The results showed that whole Gryllus assimilis powder inclusion promotes recovery from protein-energy malnutrition, reduces adiposity, and improves glucose tolerance and insulin sensitivity. It also reduces total cholesterol, triglycerides, VLDL, and adipocyte area. We also observed a significant increase in the expression of RAS-related genes, such as ACE2 and MasR, followed by a reduction in Angiotensinogen and ACE. The main findings of the present study suggest the use of black cricket as a viable strategy for the prevention and treatment of protein-energy malnutrition, as well as the reduction of adiposity, and improvement of lipid and glycemic parameters, with antihypertensive potential.
Collapse
Affiliation(s)
- Guilherme Henrique Mendes Ribeiro
- Postgraduate Program in Food Science, Faculty of Food Engineering, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Institute of Agricultural Science, Postgraduate Program in Food and Health, University Federal of Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil
| | - Victor Hugo Dantas Guimarães
- Postgraduate Program in Health Sciences, State University of Montes Claros (UNIMONTES), Montes Claros, Minas Gerais, Brazil
| | | | - Lucyana Conceição Farias
- Postgraduate Program in Health Sciences, State University of Montes Claros (UNIMONTES), Montes Claros, Minas Gerais, Brazil
| | - André Luiz Sena Guimarães
- Postgraduate Program in Health Sciences, State University of Montes Claros (UNIMONTES), Montes Claros, Minas Gerais, Brazil
| | | | - Sérgio Henrique Sousa Santos
- Institute of Agricultural Science, Postgraduate Program in Food and Health, University Federal of Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil; Postgraduate Program in Health Sciences, State University of Montes Claros (UNIMONTES), Montes Claros, Minas Gerais, Brazil.
| |
Collapse
|
11
|
Proença AB, Medeiros GR, Reis GDS, Losito LDF, Ferraz LM, Bargut TCL, Soares NP, Alexandre-Santos B, Campagnole-Santos MJ, Magliano DC, Nobrega ACLD, Santos RAS, Frantz EDC. Adipose tissue plasticity mediated by the counterregulatory axis of the renin-angiotensin system: Role of Mas and MrgD receptors. J Cell Physiol 2024; 239:e31265. [PMID: 38577921 DOI: 10.1002/jcp.31265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/28/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024]
Abstract
The renin-angiotensin system (RAS) is an endocrine system composed of two main axes: the classical and the counterregulatory, very often displaying opposing effects. The classical axis, primarily mediated by angiotensin receptors type 1 (AT1R), is linked to obesity-associated metabolic effects. On the other hand, the counterregulatory axis appears to exert antiobesity effects through the activation of two receptors, the G protein-coupled receptor (MasR) and Mas-related receptor type D (MrgD). The local RAS in adipose organ has prompted extensive research into white adipose tissue and brown adipose tissue (BAT), with a key role in regulating the cellular and metabolic plasticity of these tissues. The MasR activation favors the brown plasticity signature in the adipose organ by improve the thermogenesis, adipogenesis, and lipolysis, decrease the inflammatory state, and overall energy homeostasis. The MrgD metabolic effects are related to the maintenance of BAT functionality, but the signaling remains unexplored. This review provides a summary of RAS counterregulatory actions triggered by Mas and MrgD receptors on adipose tissue plasticity. Focus on the effects related to the morphology and function of adipose tissue, especially from animal studies, will be given targeting new avenues for treatment of obesity-associated metabolic effects.
Collapse
Affiliation(s)
- Ana Beatriz Proença
- Department of Physiology, Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
- Department of Morphology, Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Gabriela Rodrigues Medeiros
- Department of Physiology, Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
- Department of Morphology, Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Guilherme Dos Santos Reis
- Department of Physiology, Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
- Department of Morphology, Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Luiza da França Losito
- Department of Physiology, Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
- Department of Morphology, Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Luiza Mazzali Ferraz
- Department of Physiology, Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
- Department of Morphology, Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Thereza Cristina Lonzetti Bargut
- Department of Basic Sciences, Nova Friburgo Health Institute, Fluminense Federal University, Nova Friburgo, Rio de Janeiro, Brazil
| | - Nícia Pedreira Soares
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Beatriz Alexandre-Santos
- Department of Physiology, Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
- Department of Morphology, Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Maria Jose Campagnole-Santos
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - D'Angelo Carlo Magliano
- Department of Morphology, Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Antonio Claudio Lucas da Nobrega
- Department of Physiology, Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Robson Augusto Souza Santos
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Eliete Dalla Corte Frantz
- Department of Physiology, Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
- Department of Morphology, Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Cipryan L, Litschmannova M, Barot T, Dostal T, Sindler D, Kutac P, Jandacka D, Hofmann P. Air pollution, cardiorespiratory fitness and biomarkers of oxidative status and inflammation in the 4HAIE study. Sci Rep 2024; 14:9620. [PMID: 38671019 PMCID: PMC11053001 DOI: 10.1038/s41598-024-60388-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/22/2024] [Indexed: 04/28/2024] Open
Abstract
The aim of this study was to investigate the associations between cardiorespiratory fitness (CRF), long-term air pollution exposure and biochemical markers of oxidative status and inflammation. This is a cross-sectional investigation focusing on biochemical markers of oxidative status and inflammation. Participants were Caucasian (N = 1188; age 18-65 years) who lived for at least 5 years in a high air-polluted (Moravian-Silesian; MS) or low air-polluted (South Bohemia; SB) region of the Czech Republic. Healthy runners and inactive individuals were recruited. A multiple regression analysis was used to explain the relationship between multiple independent variables (CRF, trunk fat mass, sex, socioeconomic status, and region (MS region vs. SB region) and dependent variables (oxidative status, inflammation). CRF, trunk fat mass, age and sex significantly predicted almost all selected markers of oxidative status and inflammation (except GSSG, GSH/GSSG and BDNF). Participants living in the MS region presented significantly higher GPx (by 3.1%) and lower BDNF values (by 4.5%). All other investigated biochemical markers were not significantly influenced by region. We did not find meaningful interactions between long-term air-pollution exposure versus markers of oxidative status and inflammation. However, we showed various significant interactions with sex, age, CRF and body composition. The significant association of living in the high air polluted MS region with the BDNF level warrants further attention.
Collapse
Affiliation(s)
- Lukas Cipryan
- Department of Human Movement Studies and Human Motion Diagnostic Centre, The University of Ostrava, Ostrava, Czech Republic.
| | - Martina Litschmannova
- Department of Applied Mathematics, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, Ostrava, Czech Republic
| | - Tomas Barot
- Department of Mathematics with Didactics, The University of Ostrava, Ostrava, Czech Republic
| | - Tomas Dostal
- Department of Human Movement Studies and Human Motion Diagnostic Centre, The University of Ostrava, Ostrava, Czech Republic
| | - Dominik Sindler
- Department of Human Movement Studies and Human Motion Diagnostic Centre, The University of Ostrava, Ostrava, Czech Republic
| | - Petr Kutac
- Department of Human Movement Studies and Human Motion Diagnostic Centre, The University of Ostrava, Ostrava, Czech Republic
| | - Daniel Jandacka
- Department of Human Movement Studies and Human Motion Diagnostic Centre, The University of Ostrava, Ostrava, Czech Republic
| | - Peter Hofmann
- Institute of Human Movement Science, Sport and Health, University of Graz, Graz, Austria
| |
Collapse
|
13
|
Zhao JY, Zhou LJ, Ma KL, Hao R, Li M. MHO or MUO? White adipose tissue remodeling. Obes Rev 2024; 25:e13691. [PMID: 38186200 DOI: 10.1111/obr.13691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 01/09/2024]
Abstract
In this review, we delve into the intricate relationship between white adipose tissue (WAT) remodeling and metabolic aspects in obesity, with a specific focus on individuals with metabolically healthy obesity (MHO) and metabolically unhealthy obesity (MUO). WAT is a highly heterogeneous, plastic, and dynamically secreting endocrine and immune organ. WAT remodeling plays a crucial role in metabolic health, involving expansion mode, microenvironment, phenotype, and distribution. In individuals with MHO, WAT remodeling is beneficial, reducing ectopic fat deposition and insulin resistance (IR) through mechanisms like increased adipocyte hyperplasia, anti-inflammatory microenvironment, appropriate extracellular matrix (ECM) remodeling, appropriate vascularization, enhanced WAT browning, and subcutaneous adipose tissue (SWAT) deposition. Conversely, for those with MUO, WAT remodeling leads to ectopic fat deposition and IR, causing metabolic dysregulation. This process involves adipocyte hypertrophy, disrupted vascularization, heightened pro-inflammatory microenvironment, enhanced brown adipose tissue (BAT) whitening, and accumulation of visceral adipose tissue (VWAT) deposition. The review underscores the pivotal importance of intervening in WAT remodeling to hinder the transition from MHO to MUO. This insight is valuable for tailoring personalized and effective management strategies for patients with obesity in clinical practice.
Collapse
Affiliation(s)
- Jing Yi Zhao
- Research Laboratory of Molecular Biology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Juan Zhou
- Research Laboratory of Molecular Biology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kai Le Ma
- Research Laboratory of Molecular Biology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Rui Hao
- Research Laboratory of Molecular Biology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Li
- Research Laboratory of Molecular Biology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Guo X, Ma H, Cui Z, Zhao Q, Zhang Y, Jia L, Zhang L, Guo H, Zhang X, Zhang Y, Guan Y, Ma H. Chronic Intermittent Hypobaric Hypoxia Reduces Hypothalamic N-Methyl-d-Aspartate Receptor Activity and Sympathetic Outflow in Spontaneously Hypertensive Rats. High Alt Med Biol 2024; 25:77-88. [PMID: 38241485 DOI: 10.1089/ham.2023.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024] Open
Abstract
Guo, Xinqi, Hongyu Ma, Ziye Cui, Qiyue Zhao, Ying Zhang, Lu Jia, Liping Zhang, Hui Guo, Xiangjian Zhang, Yi Zhang, Yue Guan, and Huijie Ma. Chronic intermittent hypobaric hypoxia reduces hypothalamic N-Methyl-d-Aspartate Receptor activity and sympathetic outflow in spontaneously hypertensive rats. High Alt Med Biol. 25:77-88, 2024. Objective: This study aims to determine the role of hypothalamic renin-angiotensin system (RAS) in the antihypertensive effect of chronic intermittent hypobaric hypoxia (CIHH). Methods: Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHRs) received 35 days of hypobaric hypoxia simulating an altitude of 4,000 m, 5 h/day. The levels of RAS, blood pressure, and N-methyl-d-aspartate receptor (NMDAR) activities of hypothalamic paraventricular nucleus (PVN) presympathetic neurons from each group of rats were determined. Results: The systolic blood pressure, diastolic blood pressure, and mean arterial blood pressure (MAP) of SHRs significantly decreased from the third week of CIHH treatment. This blood pressure reduction effect could be maintained for at least 2 weeks after stopping the CIHH treatment. CIHH treatment also attenuated the decrease in MAP and renal sympathetic nerve activity induced by hexamethonium administration in SHRs, but not in WKY rats. Furthermore, CIHH reversed the increase in serum angiotensin (Ang)II concentration and the expression of PVN angiotensin-converting enzyme (ACE) and AngII type 1 (AT1) receptors, as well as the decrease in serum Ang1-7 concentration and the expression of PVN ACE2 and Mas receptors in SHRs. In addition, the administration of CIHH resulted in a reduction in the frequency of miniature excitatory postsynaptic currents and amplitude of NMDAR current in PVN presympathetic neurons of SHRs, which means that CIHH decreased the pre- and postsynaptic NMDAR activity of PVN presympathetic neurons in SHRs. However, pretreatment with A779 (a Mas receptor blocker) or AngII abrogated the above effects. Meanwhile, Ang1-7 pretreatment mimicked the CIHH effect on pre- and postsynaptic NMDAR activity of presympathetic neurons in SHRs. Conclusions: Our data indicate that CIHH reduces pre- and postsynaptic NMDAR activity of PVN presympathetic neurons, sympathetic outflow, and blood pressure by decreasing the activity of the ACE/AngII/AT1 axis and increasing the activity of ACE2/Ang1-7/Mas axis in the hypothalamus in hypertension.
Collapse
Affiliation(s)
- Xinqi Guo
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Hongyu Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Ziye Cui
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Qiyue Zhao
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Ying Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Lu Jia
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Liping Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Hui Guo
- Department of Gynaecology and Obstetrics, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiangjian Zhang
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, China
| | - Yi Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, China
| | - Yue Guan
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Huijie Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Neurophysiology of Hebei Province, Shijiazhuang, China
| |
Collapse
|
15
|
Gamiño-Gutiérrez JA, Terán-Hernández IM, Castellar-Lopez J, Villamizar-Villamizar W, Osorio-Llanes E, Palacios-Cruz M, Rosales W, Chang AY, Díaz-Ariza LA, Ospino MC, Mendoza-Torres E. Novel Insights into the Cardioprotective Effects of the Peptides of the Counter-Regulatory Renin-Angiotensin System. Biomedicines 2024; 12:255. [PMID: 38397857 PMCID: PMC10887066 DOI: 10.3390/biomedicines12020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 02/25/2024] Open
Abstract
Currently, cardiovascular diseases are a major contributor to morbidity and mortality worldwide, having a significant negative impact on both the economy and public health. The renin-angiotensin system contributes to a high spectrum of cardiovascular disorders and is essential for maintaining normal cardiovascular homeostasis. Overactivation of the classical renin-angiotensin system is one of the most important pathophysiological mechanisms in the progression of cardiovascular diseases. The counter-regulatory renin-angiotensin system is an alternate pathway which favors the synthesis of different peptides, including Angiotensin-(1-7), Angiotensin-(1-9), and Alamandine. These peptides, via the angiotensin type 2 receptor (AT2R), MasR, and MrgD, initiate multiple downstream signaling pathways that culminate in the activation of various cardioprotective mechanisms, such as decreased cardiac fibrosis, decreased myocardial hypertrophy, vasodilation, decreased blood pressure, natriuresis, and nitric oxide synthesis. These cardioprotective effects position them as therapeutic alternatives for reducing the progression of cardiovascular diseases. This review aims to show the latest findings on the cardioprotective effects of the main peptides of the counter-regulatory renin-angiotensin system.
Collapse
Affiliation(s)
| | - Ivana María Terán-Hernández
- Grupo de Investigación Avanzada en Biomedicina, Faculty of Health Sciences, Universidad Libre Seccional Barranquilla, Barranquilla 081001, Colombia; (I.M.T.-H.); (W.V.-V.); (L.A.D.-A.); (M.C.O.)
| | - Jairo Castellar-Lopez
- Grupo de Investigación Avanzada en Biomedicina, Faculty of Exact and Natural Sciences, Universidad Libre Seccional Barranquilla, Barranquilla 081001, Colombia; (J.C.-L.); (E.O.-L.); (W.R.)
| | - Wendy Villamizar-Villamizar
- Grupo de Investigación Avanzada en Biomedicina, Faculty of Health Sciences, Universidad Libre Seccional Barranquilla, Barranquilla 081001, Colombia; (I.M.T.-H.); (W.V.-V.); (L.A.D.-A.); (M.C.O.)
| | - Estefanie Osorio-Llanes
- Grupo de Investigación Avanzada en Biomedicina, Faculty of Exact and Natural Sciences, Universidad Libre Seccional Barranquilla, Barranquilla 081001, Colombia; (J.C.-L.); (E.O.-L.); (W.R.)
| | | | - Wendy Rosales
- Grupo de Investigación Avanzada en Biomedicina, Faculty of Exact and Natural Sciences, Universidad Libre Seccional Barranquilla, Barranquilla 081001, Colombia; (J.C.-L.); (E.O.-L.); (W.R.)
| | - Aileen Y. Chang
- School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA;
| | - Luis Antonio Díaz-Ariza
- Grupo de Investigación Avanzada en Biomedicina, Faculty of Health Sciences, Universidad Libre Seccional Barranquilla, Barranquilla 081001, Colombia; (I.M.T.-H.); (W.V.-V.); (L.A.D.-A.); (M.C.O.)
| | - María Clara Ospino
- Grupo de Investigación Avanzada en Biomedicina, Faculty of Health Sciences, Universidad Libre Seccional Barranquilla, Barranquilla 081001, Colombia; (I.M.T.-H.); (W.V.-V.); (L.A.D.-A.); (M.C.O.)
| | - Evelyn Mendoza-Torres
- Grupo de Investigación Avanzada en Biomedicina, Faculty of Health Sciences, Universidad Libre Seccional Barranquilla, Barranquilla 081001, Colombia; (I.M.T.-H.); (W.V.-V.); (L.A.D.-A.); (M.C.O.)
| |
Collapse
|
16
|
Shaker O, El Amir M, Elfatah YA, Elwi HM. Expression patterns of lncRNA MALAT-1 in SARS-COV-2 infection and its potential effect on disease severity via miR-200c-3p and SIRT1. Biochem Biophys Rep 2023; 36:101562. [PMID: 37965063 PMCID: PMC10641570 DOI: 10.1016/j.bbrep.2023.101562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023] Open
Abstract
Downregulating Angiotensin Converting Enzyme2 (ACE2) expression may be a shared mechanism for RNA viruses. Aim Evaluate the expressions of ACE2 effectors: the long non-coding RNA 'MALAT-1', the micro-RNA 'miR-200c-3p' and the histone deacetylase 'SIRT1' in SARS-COV-2 patients and correlate to disease severity. Sera samples from 98 SARS-COV-2 patients and 30 healthy control participants were collected. qRT-PCR was used for MALAT-1 and miR-200c-3p expression. SIRT1 was measured using ELISA. Results In sera of COVID-19 patients, gene expression of miR-200c-3p is increased while MALAT-1 is decreased. SIRT1 protein level is decreased (P value < 0.001). Findings are accentuated with increased disease severity. Serum MALAT-1, miR-200c-3p and SIRT1 could be used as diagnostic markers at cut off values of 0.04 (95.9 % sensitivity), 5.59 (94.9 % sensitivity, 99 % specificity), and 7.4 (98 % sensitivity) respectively. A novel MALAT-1-miR-200c-3p-SIRT1 pathway may be involved in the regulation of SARS-COV-2 severity.
Collapse
Affiliation(s)
- Olfat Shaker
- Medical Biochemistry and Molecular Biology, Kasr Alainy Faculty of Medicine, Cairo University, Kasralainy st, Cairo, 11562, Egypt
| | - Monica El Amir
- Medical Biochemistry and Molecular Biology, Kasr Alainy Faculty of Medicine, Cairo University, Kasralainy st, Cairo, 11562, Egypt
| | - Yasmine Abd Elfatah
- Internal Medicine, Kasr Alainy Faculty of Medicine, Cairo University, Kasralainy st, Cairo, 11562, Egypt
| | - Heba M. Elwi
- Medical Biochemistry and Molecular Biology, Kasr Alainy Faculty of Medicine, Cairo University, Kasralainy st, Cairo, 11562, Egypt
| |
Collapse
|
17
|
Zhu J, Li X, Lv F, Zhou W. Bioinformatics Approach to Identify the Influences of COVID-19 on Ischemic Stroke. Biochem Genet 2023; 61:2222-2241. [PMID: 37184686 PMCID: PMC10184096 DOI: 10.1007/s10528-023-10366-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/09/2023] [Indexed: 05/16/2023]
Abstract
As severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) is becoming more infectious and less virulent, symptoms beyond the lungs of the Coronavirus Disease 2019 (COVID-19) patients are a growing concern. Studies have found that the severity of COVID-19 patients is associated with an increased risk of ischemic stroke (IS); however, the underlying pathogenic mechanisms remain unknown. In this study, bioinformatics approaches were utilized to explore potential pathogenic mechanisms and predict potential drugs that may be useful in the treatment of COVID-19 and IS. The GSE152418 and GSE122709 datasets were downloaded from the GEO website to obtain the common differentially expressed genes (DEGs) of the two datasets for further functional enrichment, pathway analysis, and drug candidate prediction. A total of 80 common DEGs were identified in COVID-19 and IS datasets for GO and KEGG analysis. Next, the protein-protein interaction (PPI) network was constructed and hub genes were identified. Further, transcription factor-gene interactions and DEGs-miRNAs coregulatory network were investigated to explore their regulatory roles in disease. Finally, protein-drug interactions with common DEGs were analyzed to predict potential drugs. We successfully identified the top 10 hub genes that could serve as novel targeted therapies for COVID-19 and screened out some potential drugs for the treatment of COVID-19 and IS.
Collapse
Affiliation(s)
- Jiabao Zhu
- Department of Vascular Surgery, The Second Affliated Hospital of Nanchang University, Minde Road 1, Nanchang City, Jiangxi Province, China
| | - Xiangui Li
- Department of Vascular Surgery, The Second Affliated Hospital of Nanchang University, Minde Road 1, Nanchang City, Jiangxi Province, China
| | - Fanzhen Lv
- Department of Vascular Surgery, The Second Affliated Hospital of Nanchang University, Minde Road 1, Nanchang City, Jiangxi Province, China
| | - Weimin Zhou
- Department of Vascular Surgery, The Second Affliated Hospital of Nanchang University, Minde Road 1, Nanchang City, Jiangxi Province, China.
| |
Collapse
|
18
|
Karamese M, Gumus A, Atalay E, Tutuncu EE. Assessment of the levels of some prognostic biomolecules (galectins, ACE2, SCUBE1/2/3) in COVID-19 patients. Future Microbiol 2023; 18:1329-1337. [PMID: 37910069 DOI: 10.2217/fmb-2023-0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/20/2023] [Indexed: 11/03/2023] Open
Abstract
Aim: Our aim was to investigate the differences between healthy people and COVID-19 patients in terms of some immunological biomolecules, especially including those related to the inflammation process. Materials & methods: A total of 180 participants (90 healthy controls and 90 COVID-19 patients) were included. The expression levels of eight different inflammation-related biomolecules were measured by the ELISA technique. Results: The mean levels of ACE2, ANG1-7, GAL3, GAL9, SCUBE1, SCUBE2 and SCUBE3 were elevated in COVID-19 patients when compared with healthy controls, while the mean level of GAL2 was lower in COVID-19 patients than controls. Conclusion: To understand the cytokine storm mechanism and related parameters, more detailed studies should be performed investigating more related biomolecules and related signaling pathways.
Collapse
Affiliation(s)
- Murat Karamese
- Department of Medical Microbiology, Kafkas University, Faculty of Medicine, Kars, 36100, Turkey
| | - Abdullah Gumus
- Department of Medical Microbiology, Kafkas University, Faculty of Medicine, Kars, 36100, Turkey
| | - Eray Atalay
- Department of Internal Medicine, Kafkas University, Faculty of Medicine, Kars, 36100, Turkey
| | - Emin E Tutuncu
- Department of Clinical Microbiology & Infectious Diseases, Etlik City Hospital, Ankara, 06100, Turkey
| |
Collapse
|
19
|
Chen HH, Bhat A, Gan GC, Khanna S, Ahlenstiel G, Negishi K, Tan TC. The impact of body mass index on cardiac structure and function in a cohort of obese patients without traditional cardiovascular risk factors. INTERNATIONAL JOURNAL OF CARDIOLOGY. CARDIOVASCULAR RISK AND PREVENTION 2023; 19:200211. [PMID: 37719420 PMCID: PMC10502350 DOI: 10.1016/j.ijcrp.2023.200211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/06/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023]
Abstract
Background Obesity has been linked with alterations in hemodynamic, autonomic, and hormonal pathways in the body, leading to a spectrum of cardiovascular changes. We sought to evaluate the effects of obesity on structural and functional changes of the heart in the absence of cardiac disease and associated risk factors. Methods We identified healthy outpatients without any cardiovascular disease or risk factors from our institution's echocardiography database (2017-2020). Patients were stratified by body mass index (BMI; normal: 18.5-25 kg/m2; overweight: 25-30 kg/m2; class 1 obesity: 30-35 kg/m2; class 2 obesity: 35-40 kg/m2; class 3 obesity: >40 kg/m2). Traditional and advanced echocardiographic parameters of cardiac chamber size and function including left ventricular global longitudinal strain (LV-GLS), left atrial reservoir strain (LASr), and right ventricular free wall strain (RV-FWS) were examined. The optimal cut-off BMI for discriminating LV-GLS (>-17.5%), LASr (<23%), and RV-FWS (>-23%) impairment was calculated using ROC curves. Results 307 patients were assessed (41.5 ± 13.3yrs; 36.5%male; LVEF 61.3 ± 4.8%). No significant differences in indexed chamber volumes or LVEF were appreciated across BMI groups (p > 0.05 for all). LV-GLS, LASr, and RV-FWS were all significant on one-way ANOVA for differences from the group mean (all p < 0.01). Jonckheere-Terpstra test confirmed a significant trend of lower absolute LV-GLS, LASr and RV-FWS values across the rising BMI groups. On ROC curve analysis, a BMI value of 29.9 kg/m2, 35.1 kg/m2, and 37.3 kg/m2 were associated with LASr (AUC: 0.75), RV-FWS (AUC: 0.72), and LV-GLS (AUC: 0.75) impairment respectively. Conclusion Obesity is linked with subclinical reduction of cardiac function in otherwise healthy subjects without cardiovascular risk factors, with reduction of left atrial function occurring at lower BMI, followed by the right and left ventricular function.
Collapse
Affiliation(s)
- Henry H.L. Chen
- Department of Cardiology, Blacktown Hospital, Sydney, NSW, 2148, Australia
- University of Sydney, Camperdown, NSW, 2006, Australia
- Blacktown Clinical School, Western Sydney University, NSW, 2148, Australia
| | - Aditya Bhat
- Department of Cardiology, Blacktown Hospital, Sydney, NSW, 2148, Australia
- University of New South Wales, NSW, 2052, Australia
| | - Gary C.H. Gan
- Department of Cardiology, Blacktown Hospital, Sydney, NSW, 2148, Australia
- Blacktown Clinical School, Western Sydney University, NSW, 2148, Australia
- University of New South Wales, NSW, 2052, Australia
- Department of Cardiology, Westmead Hospital, Sydney, NSW, 2145, Australia
| | - Shaun Khanna
- Department of Cardiology, Blacktown Hospital, Sydney, NSW, 2148, Australia
- Blacktown Clinical School, Western Sydney University, NSW, 2148, Australia
| | - Golo Ahlenstiel
- Blacktown Clinical School, Western Sydney University, NSW, 2148, Australia
| | - Kazuaki Negishi
- University of Sydney, Camperdown, NSW, 2006, Australia
- Department of Cardiology, Nepean Hospital, Sydney, NSW, 2753, Australia
| | - Timothy C. Tan
- Department of Cardiology, Blacktown Hospital, Sydney, NSW, 2148, Australia
- University of Sydney, Camperdown, NSW, 2006, Australia
- Blacktown Clinical School, Western Sydney University, NSW, 2148, Australia
- University of New South Wales, NSW, 2052, Australia
- Department of Cardiology, Westmead Hospital, Sydney, NSW, 2145, Australia
| |
Collapse
|
20
|
Zhao F, He Y, Zhao Z, He J, Huang H, Ai K, Liu L, Cai X. The Notch signaling-regulated angiogenesis in rheumatoid arthritis: pathogenic mechanisms and therapeutic potentials. Front Immunol 2023; 14:1272133. [PMID: 38022508 PMCID: PMC10643158 DOI: 10.3389/fimmu.2023.1272133] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Angiogenesis plays a key role in the pathological process of inflammation and invasion of the synovium, and primarily drives the progression of rheumatoid arthritis (RA). Recent studies have demonstrated that the Notch signaling may represent a new therapeutic target of RA. Although the Notch signaling has been implicated in the M1 polarization of macrophages and the differentiation of lymphocytes, little is known about its role in angiogenesis in RA. In this review, we discourse the unique roles of stromal cells and adipokines in the angiogenic progression of RA, and investigate how epigenetic regulation of the Notch signaling influences angiogenesis in RA. We also discuss the interaction of the Notch-HIF signaling in RA's angiogenesis and the potential strategies targeting the Notch signaling to improve the treatment outcomes of RA. Taken together, we further suggest new insights into future research regarding the challenges in the therapeutic strategies of RA.
Collapse
Affiliation(s)
- Fang Zhao
- Department of Rheumatology of The First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Yini He
- Department of Rheumatology of The First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhihao Zhao
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Jiarong He
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong Huang
- Department of Rheumatology of The First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Liang Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiong Cai
- Department of Rheumatology of The First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
21
|
Barhoumi T, Todryk S. Role of monocytes/macrophages in renin-angiotensin system-induced hypertension and end organ damage. Front Physiol 2023; 14:1199934. [PMID: 37854465 PMCID: PMC10579565 DOI: 10.3389/fphys.2023.1199934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/12/2023] [Indexed: 10/20/2023] Open
Abstract
The renin-angiotensin system (RAS) is a central modulator of cardiovascular physiology. Pathophysiology of hypertension is commonly accompanied by hyper-activation of RAS. Angiotensin II receptor blockers (ARBs) and Angiotensin-converting enzyme (ACE) inhibitors are the gold standard treatment for hypertension. Recently, several studies highlighted the crucial role of immune system in hypertension. Angiotensin-II-induced hypertension is associated with low grade inflammation characterized by innate and adaptive immune system dysfunction. Throughout the progression of hypertension, monocyte/macrophage cells appear to have a crucial role in vascular inflammation and interaction with the arterial wall. Since myelomonocytic cells potentially play a key role in angiotensin-II-induced hypertension and organ damage, pharmacological targeting of RAS components in monocyte/macrophages may possibly present an innovative strategy for treatment of hypertension and related pathology.
Collapse
Affiliation(s)
- Tlili Barhoumi
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Stephen Todryk
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
22
|
Tutunchi H, Arefhosseini S, Nomi-Golzar S, Ebrahimi-Mameghani M. Effects of Hydroxycitric Acid Supplementation on Body Composition, Obesity Indices, Appetite, Leptin, and Adiponectin of Women with NAFLD on a Calorie-Restricted Diet. Int J Clin Pract 2023; 2023:6492478. [PMID: 37476001 PMCID: PMC10356186 DOI: 10.1155/2023/6492478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/25/2023] [Accepted: 06/23/2023] [Indexed: 07/22/2023] Open
Abstract
Background This trial assessed the effects of a calorie-restricted diet (CRD) with hydroxycitric acid (HCA) supplementation on appetite-regulating hormones, obesity indices, body composition, and appetite in women with nonalcoholic fatty liver disease (NAFLD). Methods This study was carried out on 44 overweight/obese women with NAFLD. The patients were randomly assigned into two groups, namely, "Intervention group" (receiving individual CRD plus HCA tablets per day) and "Control group" (receiving only CRD) for eight weeks. Obesity indices, body composition, appetite status, and serum levels of leptin and adiponectin were assessed before and after the intervention. Results Forty patients completed the trial. At the end of the trial, although significant reductions were found in most of the studied obesity indices in the intervention group, there was only a significant decrease in waist circumference and waist-to-height ratio in the control group. Fat mass and muscle mass significantly decreased in the intervention group (p=0.044 and p=0.024, respectively), and the reduction in visceral fat in the intervention group was significantly greater than that in the control group (-0.49 kg vs -0.37 kg, p=0.024). Intra- and intergroup differences in serum leptin and adiponectin levels and their ratios before and after the trial were not significant. We found a negative and marginally significant correlation between percent of changes in serum adiponectin level and percent of changes in visceral adipose tissue (VAT) (r = -0.429, p=0.067) and BMI (r = -0.440, p=0.059) as well as an inverse relationship between percent of changes in leptin/adiponectin with VAT (r = -0.724, p < 0.001) in the intervention group. Conclusion HCA plus weight loss diet could significantly reduce visceral adipose tissue without any significant changes in serum leptin and adiponectin levels.
Collapse
Affiliation(s)
- Helda Tutunchi
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Arefhosseini
- Student Research Committee, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Nomi-Golzar
- Student Research Committee, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrangiz Ebrahimi-Mameghani
- Nutrition Research Center, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
23
|
Baptista LC, Zumbro EL, Graham ZA, Hernandez AR, Buchanan T, Sun Y, Yang Y, Banerjee A, Verma A, Li Q, Carter CS, Buford TW. Multiomics profiling of the impact of an angiotensin (1-7)-expressing probiotic combined with exercise training in aged male rats. J Appl Physiol (1985) 2023; 134:1135-1153. [PMID: 36892893 PMCID: PMC10125028 DOI: 10.1152/japplphysiol.00508.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/10/2023] Open
Abstract
Angiotensin (1-7) [Ang (1-7)] is an active heptapeptide of the noncanonical arm of the renin-angiotensin system that modulates molecular signaling pathways associated with vascular and cellular inflammation, vasoconstriction, and fibrosis. Preclinical evidence suggests that Ang (1-7) is a promising therapeutic target that may ameliorate physical and cognitive function in late life. However, treatment pharmacodynamics limits its clinical applicability. Therefore, this study explored the underlying mechanisms altered by a genetically modified probiotic (GMP) that expresses Ang (1-7) combined with and without exercise training in an aging male rat model as a potential adjunct strategy to exercise training to counteract the decline of physical and cognitive function. We evaluated cross-tissue (prefrontal cortex, hippocampus, colon, liver, and skeletal muscle) multi-omics responses. After 12 wk of intervention, the 16S mRNA microbiome analysis revealed a main effect of probiotic treatment within- and between groups. The probiotic treatment enhanced α diversity (Inverse Simpson (F[2,56] = 4.44; P = 0.02); Shannon-Wiener (F[2,56] = 4.27; P = 0.02)) and β-diversity (F[2,56] = 2.66; P = 0.01) among rats receiving our GMP. The analysis of microbes' composition revealed three genera altered by our GMP (Enterorhabdus, Muribaculaceae unclassified, and Faecalitalea). The mRNA multi-tissue data analysis showed that our combined intervention upregulated neuroremodeling pathways on prefrontal cortex (i.e., 140 genes), inflammation gene expression in the liver (i.e., 63 genes), and circadian rhythm signaling on skeletal muscle. Finally, the integrative network analysis detected different communities of tightly (|r| > 0.8 and P < 0.05) correlated metabolites, genera, and genes in these tissues.NEW & NOTEWORTHY This manuscript uses a multiomics approach (i.e., microbiome, metabolomics, and transcriptomics) to explore the underlying mechanisms driven by a genetically modified probiotic (GMP) designed to express angiotensin (1-7) combined with moderate exercise training in an aged male rat model. After 12 wk of intervention, our findings suggest that our GMP enhanced gut microbial diversity while exercise training altered the transcriptional response in relevant neuroremodeling genes, inflammation, and circadian rhythm signaling pathways in an aging animal model.
Collapse
Affiliation(s)
- Liliana C Baptista
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Research Center for Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health, University of Porto, Porto, Portugal
| | - Emily L Zumbro
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Zachary A Graham
- Research Service, Birmingham Veterans Affair Medical Center, Birmingham, Alabama, United States
- Healthspan, Resilience and Performance, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Abbi R Hernandez
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Taylor Buchanan
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Yi Sun
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Life, Health, and Physical Sciences, Gordon College, Wenham, Massachusetts, United States
| | - YouFeng Yang
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Anisha Banerjee
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Amrisha Verma
- Department of Life, Health, and Physical Sciences, Gordon College, Wenham, Massachusetts, United States
| | - Qiuhong Li
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, United States
| | - Christy S Carter
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Thomas W Buford
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Geriatric Research Education and Clinical Center, Birmingham VA Medical Center, Birmingham, Alabama, United States
| |
Collapse
|
24
|
Cerri GC, Santos SHS, Bader M, Santos RAS. Brown adipose tissue transcriptome unveils an important role of the Beta-alanine/alamandine receptor, MrgD, in metabolism. J Nutr Biochem 2023; 114:109268. [PMID: 36641071 DOI: 10.1016/j.jnutbio.2023.109268] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 10/28/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
Alamandine is a recently described heptapeptide component of the renin-angiotensin system (RAS), and its effects are mediated by the receptor Mas-related G protein-coupled receptor D (MrgD) RAS represents an important link between obesity and its consequences by directly modulating the thermogenesis and brown adipose tissue (BAT) function. The alamandine/MrgD metabolic effects and signaling remain unexplored. In this context, the main goal of the present study was to assess the metabolic consequences of MrgD genetic ablation in C57BL6/J mice by evaluating brown adipose tissue RNA sequencing. The main results showed that MrgD-KO mice have diminished brown adipose tissue and that a high-glucose diet (HG) decreased both circulating alamandine levels and MrgD expression in BAT from wild-type mice (WT). BAT transcriptome reveals that MrgD-KO HG mice regulated 45 genes, while WT HG mice regulated 1,148 genes. MrgD-KO mice fed a standard diet (ST) compared with WT ST mice regulated 476 genes, of which 445 genes were downregulated. BAT uses the MrgD receptor to display a normal pattern of gene expression and to respond, like WT mice, to an HG diet. In conclusion, the MrgD signaling is important for the metabolic regulation and manutention of BAT functionality.
Collapse
Affiliation(s)
- Gabriela C Cerri
- Laboratory of Hypertension, Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Belo Horizonte, Minas Gerais, Brazil
| | - Sérgio H S Santos
- Institute of Agricultural Sciences, Food Engineering College, Federeal University of Minas Gerais, Montes Claros, Minas Gerais, Brazil
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine, Berlin-Buch, Germany; National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Belo Horizonte, Minas Gerais, Brazil
| | - Robson A S Santos
- Laboratory of Hypertension, Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
25
|
Farahmand M, Rahmati M, Azizi F, Ramezani Tehrani F. Lactation duration and lifetime progression to metabolic syndrome in women according to their history of gestational diabetes: a prospective longitudinal community-based cohort study. J Transl Med 2023; 21:177. [PMID: 36879241 PMCID: PMC9987076 DOI: 10.1186/s12967-023-04005-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Despite the many signs of progress in pharmacotherapies, metabolic syndrome (MetS) is one of the main public-health burdens worldwide. Our study aimed to compare the effect of breastfeeding (BF) in women with and without gestational diabetes mellitus (GDM) on MetS incidence. METHODS Of females who participated in the Tehran Lipid and glucose study, women who met our inclusion criteria were selected. The Cox proportional hazards regression model, with adjustment of potential confounders, was done to evaluate the relationship between duration of BF and incident of MetS in women with a GDM history compared to non-GDM. RESULTS Out of 1176 women, there were 1001 non-GDM and 175 GDM. The median follow-up was 16.3 (11.9, 19.3) years. Results of the adjusted model illustrated that the total BF duration was negatively associated with MetS incidence risk (hazard ratio (HR) 0.98, 95% CI 0.98-0.99) in total participants indicating that per one-month increase of BF duration, the hazard of MetS reduced by 2%. The HR of MetS in Comparison between GDM and non-GDM women demonstrated significantly more reduced MetS incidence with a longer duration of exclusive BF (HR 0.93, 95% CI 0.88-0.98). CONCLUSIONS Our findings illustrated the protective effect of BF, especially exclusive BF, on MetS incidence risk. BF is more effective in reducing the risk of MetS among women with a history of GDM than among women without such a history.
Collapse
Affiliation(s)
- Maryam Farahmand
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Rahmati
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fahimeh Ramezani Tehrani
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Boamah PO, Onumah J, Aduguba WO, Santo KG. Application of depolymerized chitosan in crop production: A review. Int J Biol Macromol 2023; 235:123858. [PMID: 36871686 DOI: 10.1016/j.ijbiomac.2023.123858] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/04/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023]
Abstract
Currently, chitosan (CHT) is well known for its uses, particularly in veterinary and agricultural fields. However, chitosan's uses suffer greatly due to its extremely solid crystalline structure, it is insoluble at pH levels above or equal to 7. This has sped up the process of derivatizing and depolymerizing it into low molecular weight chitosan (LMWCHT). As a result of its diverse physicochemical as well as biological features which include antibacterial activity, non-toxicity, and biodegradability, LMWCHT has evolved into new biomaterials with extremely complex functions. The most important physicochemical and biological property is antibacterial, which has some degree of industrialization today. CHT and LMWCHT have potential due to the antibacterial and plant resistance-inducing properties when applied in crop production. This study has highlighted the many advantages of chitosan derivatives as well as the most recent studies on low molecular weight chitosan applications in crop development.
Collapse
Affiliation(s)
- Peter Osei Boamah
- Department of Ecological Agriculture, Bolgatanga Technical University, Bolgatanga, Ghana.
| | - Jacqueline Onumah
- Department of Ecological Agriculture, Bolgatanga Technical University, Bolgatanga, Ghana
| | | | - Kwadwo Gyasi Santo
- Department of Horticulture and Crop Production, University of Energy and Natural Resources, Ghana
| |
Collapse
|
27
|
Darvish Damavandi R, Shidfar F, Najafi M, Janani L, Masoodi M, Heshmati J, Ziaei S. Effect of portulaca oleracea (purslane) extract on inflammatory factors in nonalcoholic fatty liver disease: A randomized, double-blind clinical trial. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023] Open
|
28
|
Huq AKMM, Roney M, Imran S, Khan SU, Uddin MN, Htar TT, Baig AA, Bhuiyan MA, Zakaria ZA, Aluwi MFFM, Tajuddin SN. Virtual screening of bioactive anti-SARS-CoV natural products and identification of 3β,12-diacetoxyabieta-6,8,11,13-tetraene as a potential inhibitor of SARS-CoV-2 virus and its infection related pathways by MD simulation and network pharmacology. J Biomol Struct Dyn 2023; 41:13923-13936. [PMID: 36786766 DOI: 10.1080/07391102.2023.2176926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/28/2023] [Indexed: 02/15/2023]
Abstract
Since the first prevalence of COVID-19 in 2019, it still remains the most devastating pandemic throughout the world. The current research aimed to find potential natural products to inhibit the novel coronavirus and associated infection by MD simulation and network pharmacology approach. Molecular docking was performed for 39 natural products having potent anti-SARS-CoV activity. Five natural products showed high binding interaction with the viral main protease for the SARS-CoV-2 virus, where 3β,12-diacetoxyabieta-6,8,11,13 tetraene showed stable binding in MD simulation until 100 ns. Both 3β,12-diacetoxyabieta-6,8,11,13 tetraene and tomentin A targeted 11 common genes that are related to COVID-19 and interact with each other. Gene ontology development analysis further showed that all these 11 genes are attached to various biological processes. The KEGG pathway analysis also showed that the proteins that are targeted by 3β,12-diacetoxyabieta-6,8,11,13 tetraene and tomentin A are associated with multiple pathways related to COVID-19 infection. Furthermore, the ADMET and MDS studies reveals 3β,12-diacetoxyabieta-6,8,11,13 as the best-suited compound for oral drug delivery.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- A K M Moyeenul Huq
- Bio Aromatic Research Centre, Universiti Malaysia Pahang, Kuantan, Pahang, Malaysia
- School of Medicine, Department of Pharmacy, University of Asia Pacific, Dhaka, Bangladesh
| | - Miah Roney
- Bio Aromatic Research Centre, Universiti Malaysia Pahang, Kuantan, Pahang, Malaysia
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Kuantan, Pahang, Malaysia
| | - Syahrul Imran
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Puncak Alam, Selangor, Malaysia
- Faculty of Applied Science, Universiti Teknologi MARA (UiTM), Shah Alam, Selangor, Malaysia
| | - Shafi Ullah Khan
- Product & Process Innovation Department, Qarshi Brands (Pvt) Ltd, Haripur, KPK, Pakistan
| | - Md Nazim Uddin
- Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research, Dhaka, Bangladesh
| | - Thet Thet Htar
- School of Pharmacy, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| | - Atif Amin Baig
- Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu, Terengannu, Malaysia
| | | | - Zainul Amiruddin Zakaria
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, Malaysia
| | - Mohd Fadhlizil Fasihi Mohd Aluwi
- Bio Aromatic Research Centre, Universiti Malaysia Pahang, Kuantan, Pahang, Malaysia
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Kuantan, Pahang, Malaysia
| | - Saiful Nizam Tajuddin
- Bio Aromatic Research Centre, Universiti Malaysia Pahang, Kuantan, Pahang, Malaysia
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Kuantan, Pahang, Malaysia
| |
Collapse
|
29
|
Kamisah Y, Che Hassan HH. Therapeutic Use and Molecular Aspects of Ivabradine in Cardiac Remodeling: A Review. Int J Mol Sci 2023; 24:ijms24032801. [PMID: 36769115 PMCID: PMC9917668 DOI: 10.3390/ijms24032801] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Cardiac remodeling can cause ventricular dysfunction and progress to heart failure, a cardiovascular disease that claims many lives globally. Ivabradine, a funny channel (If) inhibitor, is used in patients with chronic heart failure as an adjunct to other heart failure medications. This review aims to gather updated information regarding the therapeutic use and mechanism of action of ivabradine in heart failure. The drug reduces elevated resting heart rate, which is linked to increased morbidity and mortality in patients with heart failure. Its use is associated with improved cardiac function, structure, and quality of life in the patients. Ivabradine exerts several pleiotropic effects, including an antiremodeling property, which are independent of its principal heart-rate-reducing effects. Its suppressive effects on cardiac remodeling have been demonstrated in animal models of cardiac remodeling and heart failure. It reduces myocardial fibrosis, apoptosis, inflammation, and oxidative stress as well as increases autophagy in the animals. It also modulates myocardial calcium homeostasis, neurohumoral systems, and energy metabolism. However, its role in improving heart failure remains unclear. Therefore, elucidating its molecular mechanisms is imperative and would aid in the design of future studies.
Collapse
Affiliation(s)
- Yusof Kamisah
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Correspondence:
| | - Hamat H. Che Hassan
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
30
|
Dabidi Roshan V, Ahmadian M, Nasiri K, Akbari A, Ghasemi M, Nasrollahi Borujeni N, Zahedmanesh F, Nabavi Chashmi SM, Imani F. Exercise-induced expression of SARS-CoV-2 entry receptors: impact of mask modality, sex, and exercise intensity. J Sports Med Phys Fitness 2023; 63:319-328. [PMID: 35686871 DOI: 10.23736/s0022-4707.22.14093-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Wearing a facemask affects physiological responses to exercise. We explored how exercising with a facemask affects the expression of SARS-CoV-2 entry receptor (angiotensin-converting enzyme 2 [ACE2]) and some associated genes (angiotensin type-1 receptors [AT1R]; Mas receptor [MasR]; hypoxia-inducible factor 1α [HIF-1α]; endothelial nitric oxide synthase [eNOS]) among healthy males and females. METHODS One hundred forty-four apparently healthy individuals (72 females; age: 30±6) were allocated to three mask groups of 48 (N95, Surgical, No Mask) with two exercise subgroups for each mask for both sexes. Participants in each experimental group performed either a submaximal (walking with no grade) or maximal (a modified Bruce Protocol) treadmill exercise test. Blood samples were collected before and after each exercise test and used to analyze the mRNA expression of the genes studied. RESULTS The post-exercise expression of genes examined were comparable between Surgical, N95, and No Mask (P>0.05). ACE2 was significantly greater in Surgical and N95 against No Mask at baseline and following moderate-intensity exercise (P<0.05). Whilst similar expressions were noted for MasR and eNOS (P>0.05), AT1R was greater in N95 than Surgical following high-intensity exercise (P<0.05). HIF-1α following either exercise intensity was significantly lower in N95 than Surgical (P<0.05). AT1R and HIF-1α were similar between Surgical and N95 against No Mask (P>0.05). ACE2 and AT1R were significantly higher in either mask modality than No Mask in males at baseline and postexercise (P<0.05). HIF-1α, MasR, and eNOS expressions were comparable between all mask groups in either sex (P<0.05). CONCLUSIONS Our findings suggest that wearing a facemask does not differentiate the gene expression of SARS-CoV-2 entry receptor following exercise among both sexes.
Collapse
Affiliation(s)
- Valiollah Dabidi Roshan
- Department of Exercise Physiology, Faculty of Sport Science, University of Mazandaran, Babolsar, Iran -
- Athletic Performance and Health Research Center, Faculty of Sport Science, University of Mazandaran, Babolsar, Iran -
| | - Mehdi Ahmadian
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - Khadijeh Nasiri
- Department of Exercise Physiology, Faculty of Sport Science, University of Mazandaran, Babolsar, Iran
| | - Abolfazl Akbari
- School of Veterinary Medicine, Department of Physiology, Shiraz University, Shiraz, Iran
| | - Mohammad Ghasemi
- Department of Exercise Physiology, Faculty of Sport Science, University of Mazandaran, Babolsar, Iran
| | | | - Foruzan Zahedmanesh
- Department of Exercise Physiology, Faculty of Sport Science, University of Mazandaran, Babolsar, Iran
| | - Seyedeh M Nabavi Chashmi
- Department of Exercise Physiology, Faculty of Sport Science, University of Mazandaran, Babolsar, Iran
| | - Fattaneh Imani
- Department of Exercise Physiology, Faculty of Sport Science, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
31
|
Azithromycin Mitigates Cisplatin-Induced Lung Oxidative Stress, Inflammation and Necroptosis by Upregulating SIRT1, PPARγ, and Nrf2/HO-1 Signaling. Pharmaceuticals (Basel) 2022; 16:ph16010052. [PMID: 36678549 PMCID: PMC9861532 DOI: 10.3390/ph16010052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/26/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Acute lung injury (ALI) is one of the adverse effects of the antineoplastic agent cisplatin (CIS). Oxidative stress, inflammation, and necroptosis are linked to the emergence of lung injury in various disorders. This study evaluated the effect of the macrolide antibiotic azithromycin (AZM) on oxidative stress, inflammatory response, and necroptosis in the lungs of CIS-administered rats, pinpointing the involvement of PPARγ, SIRT1, and Nrf2/HO-1 signaling. The rats received AZM for 10 days and a single dose of CIS on the 7th day. CIS provoked bronchial and alveolar injury along with increased levels of ROS, MDA, NO, MPO, NF-κB p65, TNF-α, and IL-1β, and decreased levels of GSH, SOD, GST, and IL-10, denoting oxidative and inflammatory responses. The necroptosis-related proteins RIP1, RIP3, MLKL, and caspase-8 were upregulated in CIS-treated rats. AZM effectively prevented lung tissue injury, ameliorated oxidative stress and NF-κB p65 and pro-inflammatory markers levels, boosted antioxidants and IL-10, and downregulated necroptosis-related proteins in CIS-administered rats. AZM decreased the concentration of Ang II and increased those of Ang (1-7), cytoglobin, PPARγ, SIRT1, Nrf2, and HO-1 in the lungs of CIS-treated rats. In conclusion, AZM attenuated the lung injury provoked by CIS in rats through the suppression of inflammation, oxidative stress, and necroptosis. The protective effect of AZM was associated with the upregulation of Nrf2/HO-1 signaling, cytoglobin, PPARγ, and SIRT1.
Collapse
|
32
|
Giotis ES, Cil E, Brooke GN. Use of Antiandrogens as Therapeutic Agents in COVID-19 Patients. Viruses 2022; 14:2728. [PMID: 36560732 PMCID: PMC9788624 DOI: 10.3390/v14122728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
COVID-19, caused by the severe acute respiratory syndrome coronavirus 2 (SARS CoV-2), is estimated to have caused over 6.5 million deaths worldwide. The emergence of fast-evolving SARS-CoV-2 variants of concern alongside increased transmissibility and/or virulence, as well as immune and vaccine escape capabilities, highlight the urgent need for more effective antivirals to combat the disease in the long run along with regularly updated vaccine boosters. One of the early risk factors identified during the COVID-19 pandemic was that men are more likely to become infected by the virus, more likely to develop severe disease and exhibit a higher likelihood of hospitalisation and mortality rates compared to women. An association exists between SARS-CoV-2 infectiveness and disease severity with sex steroid hormones and, in particular, androgens. Several studies underlined the importance of the androgen-mediated regulation of the host protease TMPRSS2 and the cell entry protein ACE2, as well as the key role of these factors in the entry of the virus into target cells. In this context, modulating androgen signalling is a promising strategy to block viral infection, and antiandrogens could be used as a preventative measure at the pre- or early hospitalisation stage of COVID-19 disease. Different antiandrogens, including commercial drugs used to treat metastatic castration-sensitive prostate cancer and other conditions, have been tested as antivirals with varying success. In this review, we summarise the most recent updates concerning the use of antiandrogens as prophylactic and therapeutic options for COVID-19.
Collapse
Affiliation(s)
- Efstathios S. Giotis
- Department of Infectious Diseases, Imperial College London, London W2 1PG, UK
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Emine Cil
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Greg N. Brooke
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
| |
Collapse
|
33
|
Lu Y, Xing C, Lv X, Zhang C, Liu G, Chen F, Hou Z, Zhang D. Changes of ACE2 in different glucose metabolites and its relationship with COVID-19. Medicine (Baltimore) 2022; 101:e31102. [PMID: 36253996 PMCID: PMC9575400 DOI: 10.1097/md.0000000000031102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND To study the changes and effects of angiotensin-converting enzyme 2 (ACE2)/angiotensin 1-7 (Ang1-7) and ACE/AngII in people with different glucose metabolisms and to explore the possible mechanisms underlying the severity of COVID-19 infection in diabetic patients. METHODS A total of 88 patients with type 2 diabetes, 72 patients with prediabetes (impaired fasting glucose, 30 patients; impaired glucose regulation, 42 patients), and 50 controls were selected. Changes and correlations of ACE2, Ang1-7 and other indicators were detected among the three groups. Patients were divided into four groups according to the course of diabetes: <1 year, 1-5 years, 5-10 years, and >10 years. ACE2 and Ang1-7 levels were compared and analyzed. RESULTS ACE2 and Ang1-7 increased with the severity of diabetes (P0 < .05 or P < .01). The levels of ACE2 and Ang1-7 in the longer course group were lower than those in the shorter course group, whereas the levels of ACE, Ang II, and interleukin-6 (IL-6) gradually increased (P < .05). Pearson correlation analysis showed that ACE2 was positively correlated with IL-6, FBG, and 2hPBG levels in the prediabetes group. In the diabetic group, ACE2 was positively correlated with Ang1-7 and negatively correlated with ACE, AngII, IL-6, and C-reactive protein levels. Multiple linear regression analysis showed that IL-6 and ACE were the main factors influencing ACE2 in the diabetic group. CONCLUSION SUBSECTIONS ACE2/Ang1-7 and ACE/AngII systems are activated, and inflammatory cytokine release increases in prediabetes. With the prolongation of the disease course, the effect of ACE2/Ang1-7 decreased gradually, while the effect of ACE/AngII increased significantly. Dysfunctions of ACE2/Ang1-7 may be one of the important mechanisms underlying the severity of COVID-19 infection in patients with diabetes.
Collapse
Affiliation(s)
- Yamin Lu
- Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang, China
- *Correspondence: Yamin Lu, Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang 050051, China (e-mail: )
| | | | - Xiuqin Lv
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Cuigai Zhang
- Physical Examination Center, Hebei General Hospital, Shijiazhuang, China
| | - Guangxia Liu
- Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang, China
| | - Fang Chen
- Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang, China
| | - Zhan Hou
- Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang, China
| | - Donghui Zhang
- Clinical Research Center, Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
34
|
Salus M, Tillmann V, Remmel L, Unt E, Mäestu E, Parm Ü, Mägi A, Tali M, Jürimäe J. Effect of Sprint Interval Training on Cardiometabolic Biomarkers and Adipokine Levels in Adolescent Boys with Obesity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191912672. [PMID: 36231972 PMCID: PMC9564781 DOI: 10.3390/ijerph191912672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 06/01/2023]
Abstract
This study investigated the effect of supervised sprint interval training (SIT) on different cardiometabolic risk factors and adipokines in adolescent boys with obesity. Thirty-seven boys were allocated to either a SIT group (13.1 ± 0.3 years; body mass index [BMI]: 30.3 ± 0.9 kg·m-2) or a control group (CONT) (13.7 ± 0.4 years; BMI: 32.6 ± 1.6 kg·m-2). The SIT group performed 4-6 × 30 s all-out cycling sprints, interspersed with 4 min rest, for 3 sessions/week, during a 12-week period, while the non-exercising CONT group maintained a habitual lifestyle. Anthropometric measurements, triglycerides, fasting insulin and glucose, total cholesterol (TC), high- (HDLc) and low-density (LDLc) cholesterol, leptin and adiponectin in blood, cardiorespiratory fitness (CRF), and a metabolic syndrome severity risk score (MSSS) were calculated before and after the 12-week period. Compared to baseline values, a significant reduction in MSSS was seen in the SIT group after intervention. LDLc showed favorable changes in SIT compared to CONT (-0.06 ± 0.1 vs. 0.19 ± 0.01 mmol·L-1; p = 0.025). Additionally, CRF increased in the SIT group compared to the CONT group (5.2 ± 1.1 vs. -2.1 ± 1.1 mL·min-1·kg-1, p < 0.001). Moreover, a 12-week all-out SIT training effectively improves cardiometabolic health in adolescent boys with obesity.
Collapse
Affiliation(s)
- Marit Salus
- Institute of Sports Sciences and Physiotherapy, Faculty of Medicine, University of Tartu, Ujula 4, 51008 Tartu, Estonia
- Department of Physiotherapy and Environmental Health, Tartu Health Care College, Nooruse 5, 50411 Tartu, Estonia
| | - Vallo Tillmann
- Department of Pediatrics, Institute of Clinical Medicine, Faculty of Medicine, University of Tartu, Lunini 6, 50406 Tartu, Estonia
- Children’s Clinic of Tartu University Hospital, Lunini 6, 50406 Tartu, Estonia
| | - Liina Remmel
- Institute of Sports Sciences and Physiotherapy, Faculty of Medicine, University of Tartu, Ujula 4, 51008 Tartu, Estonia
| | - Eve Unt
- Department of Sports Medicine and Rehabilitation, Institute of Clinical Medicine, Faculty of Medicine, University of Tartu, Puusepa 8, 50406 Tartu, Estonia
- Sports Medicine and Rehabilitation Clinic, Tartu University Hospital, Puusepa 8, 50406 Tartu, Estonia
| | - Evelin Mäestu
- Institute of Sports Sciences and Physiotherapy, Faculty of Medicine, University of Tartu, Ujula 4, 51008 Tartu, Estonia
| | - Ülle Parm
- Department of Physiotherapy and Environmental Health, Tartu Health Care College, Nooruse 5, 50411 Tartu, Estonia
| | - Agnes Mägi
- Sports Medicine and Rehabilitation Clinic, Tartu University Hospital, Puusepa 8, 50406 Tartu, Estonia
| | - Maie Tali
- Department of Sports Medicine and Rehabilitation, Institute of Clinical Medicine, Faculty of Medicine, University of Tartu, Puusepa 8, 50406 Tartu, Estonia
- Sports Medicine and Rehabilitation Clinic, Tartu University Hospital, Puusepa 8, 50406 Tartu, Estonia
| | - Jaak Jürimäe
- Institute of Sports Sciences and Physiotherapy, Faculty of Medicine, University of Tartu, Ujula 4, 51008 Tartu, Estonia
| |
Collapse
|
35
|
Atwa AM, Abd El-Ghafar OAM, Hassanein EHM, Mahdi SE, Sayed GA, Alruhaimi RS, Alqhtani HA, Alotaibi MF, Mahmoud AM. Candesartan Attenuates Cisplatin-Induced Lung Injury by Modulating Oxidative Stress, Inflammation, and TLR-4/NF-κB, JAK1/STAT3, and Nrf2/HO-1 Signaling. Pharmaceuticals (Basel) 2022; 15:ph15101222. [PMID: 36297334 PMCID: PMC9612036 DOI: 10.3390/ph15101222] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
Cisplatin (CIS) is an effective chemotherapeutic agent against different cancers. The use of CIS is associated with acute lung injury (ALI) and other adverse effects, and oxidative stress and inflammation were implicated in its toxic effects. Candesartan (CAN), an angiotensin II (Ang II) receptor blocker, showed beneficial effects against oxidative stress and inflammation. Therefore, this study investigated the potential of CAN to prevent CIS-induced oxidative stress, inflammation, and lung injury in rats, pointing to the involvement of TLR4/NF-κB, JAK1/STAT3, PPARγ, and Nrf2/HO-1 signaling. The rats received CAN (5 mg/kg) for 10 days and were challenged with a single dose of CIS (7 mg/kg) on day 7. CIS caused injury to the alveoli and the bronchial tree, increased lipid peroxidation, nitric oxide, myeloperoxidase, TLR-4, NF-κB p65, iNOS, TNF-α, IL-6, IL-1β, and caspase-3, and decreased cellular antioxidants and IL-6 in the lungs of rats. CAN effectively prevented tissue injury, suppressed TLR-4/ NF-κB signaling, and ameliorated oxidative stress, inflammatory markers, and caspase-3 in CIS-administered rats. CAN enhanced antioxidants and IL-10, decreased Ang II, increased Ang (1–7), suppressed the phosphorylation of JAK1 and STAT3, and upregulated SOCS3 in CIS-administered rats. These effects were associated with the downregulation of Keap1 and enhanced Nrf2, GCLC, HO-1, and PPARγ. In conclusion, CAN prevented CIS-induced lung injury by attenuating oxidative stress, suppressing TLR-4/NF-κB and JAK1/STAT3 signaling, Ang II, and pro-inflammatory mediators, and upregulating PPARγ, and Nrf2/HO-1 signaling.
Collapse
Affiliation(s)
- Ahmed M. Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt
| | - Omnia A. M. Abd El-Ghafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt
| | - Emad H. M. Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Somya E. Mahdi
- Department of Physiology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Ghadir A. Sayed
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt
| | - Reem S. Alruhaimi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Haifa A. Alqhtani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Mohammed F. Alotaibi
- Physiology Department, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Ayman M. Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK
- Correspondence: or
| |
Collapse
|
36
|
Li J, Zhou L, Gong H. New insights and advances of sodium-glucose cotransporter 2 inhibitors in heart failure. Front Cardiovasc Med 2022; 9:903902. [PMID: 36186974 PMCID: PMC9520058 DOI: 10.3389/fcvm.2022.903902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022] Open
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2is) are newly emerging insulin-independent anti-hyperglycemic agents that work independently of β-cells. Quite a few large-scale clinical trials have proven the cardiovascular protective function of SGLT2is in both diabetic and non-diabetic patients. By searching all relevant terms related to our topics over the previous 3 years, including all the names of agents and their brands in PubMed, here we review the mechanisms underlying the improvement of heart failure. We also discuss the interaction of various mechanisms proposed by diverse works of literature, including corresponding and opposing viewpoints to support each subtopic. The regulation of diuresis, sodium excretion, weight loss, better blood pressure control, stimulation of hematocrit and erythropoietin, metabolism remodeling, protection from structural dysregulation, and other potential mechanisms of SGLT2i contributing to heart failure improvement have all been discussed in this manuscript. Although some remain debatable or even contradictory, those newly emerging agents hold great promise for the future in cardiology-related therapies, and more research needs to be conducted to confirm their functionality, particularly in metabolism, Na+-H+ exchange protein, and myeloid angiogenic cells.
Collapse
Affiliation(s)
- Juexing Li
- Department of Cardiology, Jinshan Hospital of Fudan University, Shanghai, China
- Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei Zhou
- Department of Cardiology, Jinshan Hospital of Fudan University, Shanghai, China
- Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hui Gong
- Department of Cardiology, Jinshan Hospital of Fudan University, Shanghai, China
- Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai, China
- *Correspondence: Hui Gong
| |
Collapse
|
37
|
Guo D, Lin C, Lu Y, Guan H, Qi W, Zhang H, Shao Y, Zeng C, Zhang R, Zhang H, Bai X, Cai D. FABP4 secreted by M1-polarized macrophages promotes synovitis and angiogenesis to exacerbate rheumatoid arthritis. Bone Res 2022; 10:45. [PMID: 35729106 PMCID: PMC9213409 DOI: 10.1038/s41413-022-00211-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 03/10/2022] [Accepted: 03/20/2022] [Indexed: 12/15/2022] Open
Abstract
Increasing evidence shows that adipokines play a vital role in the development of rheumatoid arthritis (RA). Fatty acid-binding protein 4 (FABP4), a novel adipokine that regulates inflammation and angiogenesis, has been extensively studied in a variety of organs and diseases. However, the effect of FABP4 on RA remains unclear. Here, we found that FABP4 expression was upregulated in synovial M1-polarized macrophages in RA. The increase in FABP4 promoted synovitis, angiogenesis, and cartilage degradation to exacerbate RA progression in vivo and in vitro, whereas BMS309403 (a FABP4 inhibitor) and anagliptin (dipeptidyl peptidase 4 inhibitor) inhibited FABP4 expression in serum and synovial M1-polarized macrophages in mice to alleviate RA progression. Further studies showed that constitutive activation of mammalian target of rapamycin complex 1 (mTORC1) by TSC1 deletion specifically in the myeloid lineage regulated FABP4 expression in macrophages to exacerbate RA progression in mice. In contrast, inhibition of mTORC1 by ras homolog enriched in brain (Rheb1) disruption specifically in the myeloid lineage reduced FABP4 expression in macrophages to attenuate RA development in mice. Our findings established an essential role of FABP4 that is secreted by M1-polarized macrophages in synovitis, angiogenesis, and cartilage degradation in RA. BMS309403 and anagliptin inhibited FABP4 expression in synovial M1-polarized macrophages to alleviate RA development. Hence, FABP4 may represent a potential target for RA therapy.
Collapse
Affiliation(s)
- Dong Guo
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Chuangxin Lin
- Department of Orthopedic Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, China
| | - Yuheng Lu
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Hong Guan
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Weizhong Qi
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Hongbo Zhang
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Yan Shao
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Chun Zeng
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Rongkai Zhang
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Haiyan Zhang
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China. .,Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China. .,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China.
| | - Xiaochun Bai
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China. .,State Key Laboratory of Organ Failure Research, Department of Cell Biology, Southern Medical University School of Basic Medical Sciences, Guangzhou, China.
| | - Daozhang Cai
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China. .,Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China. .,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China.
| |
Collapse
|
38
|
Biondi G, Marrano N, Borrelli A, Rella M, Palma G, Calderoni I, Siciliano E, Lops P, Giorgino F, Natalicchio A. Adipose Tissue Secretion Pattern Influences β-Cell Wellness in the Transition from Obesity to Type 2 Diabetes. Int J Mol Sci 2022; 23:ijms23105522. [PMID: 35628332 PMCID: PMC9143684 DOI: 10.3390/ijms23105522] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 12/10/2022] Open
Abstract
The dysregulation of the β-cell functional mass, which is a reduction in the number of β-cells and their ability to secure adequate insulin secretion, represents a key mechanistic factor leading to the onset of type 2 diabetes (T2D). Obesity is recognised as a leading cause of β-cell loss and dysfunction and a risk factor for T2D. The natural history of β-cell failure in obesity-induced T2D can be divided into three steps: (1) β-cell compensatory hyperplasia and insulin hypersecretion, (2) insulin secretory dysfunction, and (3) loss of β-cell mass. Adipose tissue (AT) secretes many hormones/cytokines (adipokines) and fatty acids that can directly influence β-cell function and viability. As this secretory pattern is altered in obese and diabetic patients, it is expected that the cross-talk between AT and pancreatic β-cells could drive the maintenance of the β-cell integrity under physiological conditions and contribute to the reduction in the β-cell functional mass in a dysmetabolic state. In the current review, we summarise the evidence of the ability of the AT secretome to influence each step of β-cell failure, and attempt to draw a timeline of the alterations in the adipokine secretion pattern in the transition from obesity to T2D that reflects the progressive deterioration of the β-cell functional mass.
Collapse
|
39
|
Rajapaksha IG, Gunarathne LS, Asadi K, Laybutt R, Andrikopoulous S, Alexander IE, Watt MJ, Angus PW, Herath CB. Angiotensin Converting Enzyme-2 Therapy Improves Liver Fibrosis and Glycemic Control in Diabetic Mice With Fatty Liver. Hepatol Commun 2022; 6:1056-1072. [PMID: 34951153 PMCID: PMC9035567 DOI: 10.1002/hep4.1884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 12/26/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease and is frequently associated with type 2 diabetes. However, there is no specific medical therapy to treat this condition. Angiotensin-converting enzyme 2 (ACE2) of the protective renin angiotensin system generates the antifibrotic peptide angiotensin-(1-7) from profibrotic angiotensin II peptide. In this study, we investigated the therapeutic potential of ACE2 in diabetic NAFLD mice fed a high-fat (20%), high-cholesterol (2%) diet for 40 weeks. Mice were given a single intraperitoneal injection of ACE2 using an adeno-associated viral vector at 30 weeks of high-fat, high-cholesterol diet (15 weeks after induction of diabetes) and sacrificed 10 weeks later. ACE2 significantly reduced liver injury and fibrosis in diabetic NAFLD mice compared with the control vector injected mice. This was accompanied by reductions in proinflammatory cytokine expressions, hepatic stellate cell activation, and collagen 1 expression. Moreover, ACE2 therapy significantly increased islet numbers, leading to an increased insulin protein content in β-cells and plasma insulin levels with subsequent reduction in plasma glucose levels compared with controls. Conclusion: We conclude that ACE2 gene therapy reduces liver fibrosis and hyperglycemia in diabetic NAFLD mice and has potential as a therapy for patients with NAFLD with diabetes.
Collapse
Affiliation(s)
- Indu G Rajapaksha
- Department of MedicineThe University of MelbourneAustin HealthHeidelbergVICAustralia
| | - Lakmie S Gunarathne
- Department of MedicineThe University of MelbourneAustin HealthHeidelbergVICAustralia
| | | | - Ross Laybutt
- Garvan Institute of Medical ResearchSydneyNSWAustralia.,St. Vincent's Clinical SchoolUniversity of New South WalesSydneyNSWAustralia
| | - Sof Andrikopoulous
- Department of MedicineThe University of MelbourneAustin HealthHeidelbergVICAustralia
| | - Ian E Alexander
- School of MedicineUniversity of SydneyChildren's Medical Research InstituteSydneyNSWAustralia
| | - Mathew J Watt
- Department Anatomy and PhysiologyThe University of MelbourneMelbourneVICAustralia
| | - Peter W Angus
- Department of MedicineThe University of MelbourneAustin HealthHeidelbergVICAustralia.,Department GastroenterologyAustin HealthHeidelbergVICAustralia
| | - Chandana B Herath
- Department of MedicineThe University of MelbourneAustin HealthHeidelbergVICAustralia.,South Western Sydney Clinical SchoolFaculty of MedicineUniversity of New South WalesSydneyNSWAustralia.,Ingham Institute for Applied Medical ResearchLiverpoolNSWAustralia
| |
Collapse
|
40
|
Liu J, Li X, Wang X, Peng L, Song G, He J. Angiotensin(1-7) Improves Islet Function in Diabetes Through Reducing JNK/Caspase-3 Signaling. Horm Metab Res 2022; 54:250-258. [PMID: 35413746 DOI: 10.1055/a-1796-9286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The aim of this study is to investigate whether Angiotensin (1-7), the physiological antagonist of Angiotensin II (AngII), has antidiabetic activity and the possible mechanism. Male Wistar rats were randomly divided into 3 groups: control group fed the normal diet, DM group fed high-fat diet and injected with STZ, and Angiotensin (1-7) group receiving injection of STZ followed by Angiotensin (1-7) treatment. Serum Ang II, fasting blood glucose, insulin, HOMA-IR, and HOMA-beta were determined in control, diabetes and Angiotensin (1-7) groups. The increased AngII and insulin resistance in diabetes group were accompanied by changes in islet histopathology. However, Angiotensin (1-7) improved the islet function and histopathology in diabetes without affecting the level of AngII. Western blot confirmed that Angiotensin (1-7) decreased the cleaved caspase 3 levels in pancreas of DM. The increased expression of JNK, Bax, and Bcl2 genes under diabetic conditions were partially reversed after Angiotensin (1-7) administration in pancreas. Immunofluorescence analysis showed that p-JNK was markedly increased in islet of DM rats, which was markedly alleviated after Angiotensin (1-7) treatment. Furthermore, Angiotensin (1-7) reversed high glucose(HG) induced mitochondrial apoptosis augments. Finally, Angiotensin (1-7) attenuated the apoptosis of INS-1 cells through reducing JNK activation in diabetes, which was blocked by anisomycin (a potent agonist of JNK). Our findings provide supporting evidence that Angiotensin (1-7) improved the islet beta-cells apoptosis by JNK-mediated mitochondrial dysfunction, which might be a novel target for the treatment and prevention of beta-cells dysfunction in DM.
Collapse
Affiliation(s)
- Jing Liu
- Department of Endocrinology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xing Li
- Department of Endocrinology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaoyan Wang
- Department of Endocrinology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Lina Peng
- Department of Endocrinology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Guoning Song
- Department of Endocrinology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Junhua He
- Department of Endocrinology, Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
41
|
Perivascular Adipose Tissue Inflammation: The Anti-Inflammatory Role of Ghrelin in Atherosclerosis Progression. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Perivascular adipose tissue (PVAT) and its adipokines engage in bidirectional crosstalk with the vascular wall. Atherosclerosis disrupts this interaction through inflammation, rupture-prone plaques, and subsequent thrombosis. The cardioprotective effects of ghrelin are in contradiction to its adipogenic properties. The concurrent research of anti-/pro-atherogenic mechanisms of ghrelin and PVAT-derived adipokines provides a better understanding of atherosclerosis progression in metabolic disorders. In-depth coverage of the characteristic features of PVAT concerning vascular dysfunction, with a survey of ghrelin-induced anti-inflammatory effects on adipose tissue macrophage infiltration and the inhibitory activity of ghrelin on the proinflammatory adipokine secretion, show that the impact of ghrelin on the endothelial function should be studied in relation to PVAT.
Collapse
|
42
|
Evaluation of the Potential Risk of Mortality from SARS-CoV-2 Infection in Hospitalized Patients According to the Charlson Comorbidity Index. Healthcare (Basel) 2022; 10:healthcare10020362. [PMID: 35206976 PMCID: PMC8872141 DOI: 10.3390/healthcare10020362] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/25/2022] [Accepted: 02/10/2022] [Indexed: 12/15/2022] Open
Abstract
Background: The pandemic of COVID-19 has represented a major threat to global public health in the last century and therefore to identify predictors of mortality among COVID-19 hospitalized patients is widely justified. The aim of this study was to evaluate the possible usefulness of Charlson Comorbidity Index (CCI) as mortality predictor in patients hospitalized because COVID-19. Methods: This study was carried out in Zacatecas, Mexico, and it included 705 hospitalized patients with suspected of SARS-CoV-2 infection. Clinical data were collected, and the CCI score was calculated online using the calculator from the Sociedad Andaluza de Medicina Intensiva y Unidades Coronarias; the result was evaluated as mortality predictor among the patients with COVID-19. Results: 377 patients were positive for SARS-COV-2. Obesity increased the risk of intubation among the study population (odds ratio (OR) = 2.59; 95 CI: 1.36–4.92; p = 0.003). The CCI values were higher in patients who died because of COVID-19 complications than those observed in patients who survived (p < 0.001). Considering a CCI cutoff > 31.69, the area under the ROC curve was 0.75, with a sensitivity and a specificity of 63.6% and 87.7%, respectively. Having a CCI value > 31.69 increased the odds of death by 12.5 times among the study population (95% CI: 7.3–21.4; p < 0.001). Conclusions: The CCI is a suitable tool for the prediction of mortality in patients hospitalized for COVID-19. The presence of comorbidities in hospitalized patients with COVID-19 reflected as CCI > 31.69 increased the risk of death among the study population, so it is important to take precautionary measures in patients due to their condition and their increased vulnerability to SARS-CoV-2 infection.
Collapse
|
43
|
Kidney Damage Caused by Obesity and Its Feasible Treatment Drugs. Int J Mol Sci 2022; 23:ijms23020747. [PMID: 35054932 PMCID: PMC8775419 DOI: 10.3390/ijms23020747] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 02/07/2023] Open
Abstract
The rapid growth of obesity worldwide has made it a major health problem, while the dramatic increase in the prevalence of obesity has had a significant impact on the magnitude of chronic kidney disease (CKD), especially in developing countries. A vast amount of researchers have reported a strong relationship between obesity and chronic kidney disease, and obesity can serve as an independent risk factor for kidney disease. The histological changes of kidneys in obesity-induced renal injury include glomerular or tubular hypertrophy, focal segmental glomerulosclerosis or bulbous sclerosis. Furthermore, inflammation, renal hemodynamic changes, insulin resistance and lipid metabolism disorders are all involved in the development and progression of obesity-induced nephropathy. However, there is no targeted treatment for obesity-related kidney disease. In this review, RAS inhibitors, SGLT2 inhibitors and melatonin would be presented to treat obesity-induced kidney injury. Furthermore, we concluded that melatonin can protect the kidney damage caused by obesity by inhibiting inflammation and oxidative stress, revealing its therapeutic potential.
Collapse
|
44
|
Role of Human Antigen R (HuR) in the Regulation of Pulmonary ACE2 Expression. Cells 2021; 11:cells11010022. [PMID: 35011584 PMCID: PMC8750694 DOI: 10.3390/cells11010022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 12/12/2022] Open
Abstract
Patients with COPD may be at an increased risk for severe illness from COVID-19 because of ACE2 upregulation, the entry receptor for SARS-CoV-2. Chronic exposure to cigarette smoke, the main risk factor for COPD, increases pulmonary ACE2. How ACE2 expression is controlled is not known but may involve HuR, an RNA binding protein that increases protein expression by stabilizing mRNA. We hypothesized that HuR would increase ACE2 protein expression. We analyzed scRNA-seq data to profile ELAVL1 expression in distinct respiratory cell populations in COVID-19 and COPD patients. HuR expression and cellular localization was evaluated in COPD lung tissue by multiplex immunohistochemistry and in human lung cells by imaging flow cytometry. The regulation of ACE2 expression was evaluated using siRNA-mediated knockdown of HuR. There is a significant positive correlation between ELAVL1 and ACE2 in COPD cells. HuR cytoplasmic localization is higher in smoker and COPD lung tissue; there were also higher levels of cleaved HuR (CP-1). HuR binds to ACE2 mRNA but knockdown of HuR does not change ACE2 protein levels in primary human lung fibroblasts (HLFs). Our work is the first to investigate the association between ACE2 and HuR. Further investigation is needed to understand the mechanistic underpinning behind the regulation of ACE2 expression.
Collapse
|
45
|
Lu L, Cao L, Liu Y, Chen Y, Fan J, Yin Y. Angiotensin (ang) 1-7 inhibits ang II-induced atrial fibrosis through regulating the interaction of proto-oncogene tyrosine-protein kinase Src (c-Src) and Src homology region 2 domain-containing phosphatase-1 (SHP-1)). Bioengineered 2021; 12:10823-10836. [PMID: 34872449 PMCID: PMC8809921 DOI: 10.1080/21655979.2021.1967035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To verify whether Ang-(1-7) produces an antagonistic effect on Ang II-mediated atrial remodeling. Ang II–induced HL-1 cell model and a rat model of Ang II–induced atrial remodeling were constructed and intervened with Ang II Ang-(1-7), AngII +Ang-(1-7), Ang II+ c-Src specific inhibitor (SU6656), and Ang II + Ang-(1-7) + SSG (SHP-1/2 specific inhibitor, stibogluconate), respectively. The systolic blood pressure of the rat caudal artery was detected. And trial fibrosis was detected by Picrosirius red staining and Masson’s trichrome staining. Expressions of transforming growth factor-β (TGF-β), tissue inhibitor of metalloproteinases 1 (TIMP1), Matrix metalloproteinase 2 (MMP-2), connective tissue growth factor (CTGF), galectin-3, α-smooth muscle actin (α-SMA), and collagen I/III were subjected to qPCR and western blot. Furthermore, SHP-1 binding to c-Src was verified by co-immunoprecipitation (Co-IP). Results showed that the expressions of TGF-β, TIMP1, MMP-2, CTGF, α-SMA, galectin-3, and collagen I were increased markedly in the Ang II intervention group, and the expressions of p-ERK1/2, p-Akt, and p-p38MAPK were also increased dramatically. Ang-(1-7) or SU6656 addition could inhibit the action of Ang II factor, thereby minimizing the expressions of the previously described genes and proteins. Simultaneously, SSG supplement reversed the antagonistic effect of Ang-(1-7) on Ang II, and the latter elevated the blood pressure and induced atrial fibrosis in rats. Ang-(1-7) could reverse the changes related to Ang II–induced atrial fibrosis in rats. In conclusion, Ang-(1-7) antagonized Ang II–induced atrial remodeling by regulating SHP-1 and c-Src, thereby affecting the MAPKs/Akt signaling pathway.
Collapse
Affiliation(s)
- Li Lu
- Department of Critical Care Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Li Cao
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yihao Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunlin Chen
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinqi Fan
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuehui Yin
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
46
|
Involvement of the ACE2/Ang-(1-7)/MasR Axis in Pulmonary Fibrosis: Implications for COVID-19. Int J Mol Sci 2021; 22:ijms222312955. [PMID: 34884756 PMCID: PMC8657555 DOI: 10.3390/ijms222312955] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/11/2021] [Accepted: 11/19/2021] [Indexed: 01/18/2023] Open
Abstract
Pulmonary fibrosis is a chronic, fibrotic lung disease affecting 3 million people worldwide. The ACE2/Ang-(1–7)/MasR axis is of interest in pulmonary fibrosis due to evidence of its anti-fibrotic action. Current scientific evidence supports that inhibition of ACE2 causes enhanced fibrosis. ACE2 is also the primary receptor that facilitates the entry of SARS-CoV-2, the virus responsible for the current COVID-19 pandemic. COVID-19 is associated with a myriad of symptoms ranging from asymptomatic to severe pneumonia and acute respiratory distress syndrome (ARDS) leading to respiratory failure, mechanical ventilation, and often death. One of the potential complications in people who recover from COVID-19 is pulmonary fibrosis. Cigarette smoking is a risk factor for fibrotic lung diseases, including the idiopathic form of this disease (idiopathic pulmonary fibrosis), which has a prevalence of 41% to 83%. Cigarette smoke increases the expression of pulmonary ACE2 and is thought to alter susceptibility to COVID-19. Cannabis is another popular combustible product that shares some similarities with cigarette smoke, however, cannabis contains cannabinoids that may reduce inflammation and/or ACE2 levels. The role of cannabis smoke in the pathogenesis of pulmonary fibrosis remains unknown. This review aimed to characterize the ACE2-Ang-(1–7)-MasR Axis in the context of pulmonary fibrosis with an emphasis on risk factors, including the SARS-CoV-2 virus and exposure to environmental toxicants. In the context of the pandemic, there is a dire need for an understanding of pulmonary fibrotic events. More research is needed to understand the interplay between ACE2, pulmonary fibrosis, and susceptibility to coronavirus infection.
Collapse
|
47
|
The Receptor AT1 Appears to Be Important for the Maintenance of Bone Mass and AT2 Receptor Function in Periodontal Bone Loss Appears to Be Regulated by AT1 Receptor. Int J Mol Sci 2021; 22:ijms222312849. [PMID: 34884653 PMCID: PMC8657877 DOI: 10.3390/ijms222312849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/24/2022] Open
Abstract
A large number of experimental studies has demonstrated that angiotensin II (Ang II) is involved in key events of the inflammatory process. This study aimed to evaluate the role of Ang II type 1 (AT1) and Ang II type 2 (AT2) receptors on periodontitis. Methods: Experimental periodontitis was induced by placing a 5.0 nylon thread ligature around the second upper left molar of AT1 mice, no-ligature or ligature (AT1-NL and AT1-L), AT2 (AT2-NL or AT2-L) and wild type (WT-NL or L). Alveolar bone loss was scanned using Micro-CT. Cytokines, peptides and enzymes were analyzed from gingival tissues by Elisa and RT-PCR. Results: The blockade of AT1 receptor resulted in bone loss, even in healthy animals. Ang II receptor blockades did not prevent linear bone loss. Ang II and Ang 1-7 levels were significantly increased in the AT2-L (p < 0.01) group compared to AT2-NL and AT1-L. The genic expression of the Mas receptor was significantly increased in WT-L and AT2-L compared to (WT-NL and AT2-NL, respectively) and in AT1-L. Conclusions: Our data suggest that the receptor AT1 appears to be important for the maintenance of bone mass. AT2 receptor molecular function in periodontitis appears to be regulated by AT1.
Collapse
|
48
|
Khwatenge CN, Pate M, Miller LC, Sang Y. Immunometabolic Dysregulation at the Intersection of Obesity and COVID-19. Front Immunol 2021; 12:732913. [PMID: 34737743 PMCID: PMC8560738 DOI: 10.3389/fimmu.2021.732913] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/28/2021] [Indexed: 12/24/2022] Open
Abstract
Obesity prevails worldwide to an increasing effect. For example, up to 42% of American adults are considered obese. Obese individuals are prone to a variety of complications of metabolic disorders including diabetes mellitus, hypertension, cardiovascular disease, and chronic kidney disease. Recent meta-analyses of clinical studies in patient cohorts in the ongoing coronavirus-disease 2019 (COVID-19) pandemic indicate that the presence of obesity and relevant disorders is linked to a more severe prognosis of COVID-19. Given the significance of obesity in COVID-19 progression, we provide a review of host metabolic and immune responses in the immunometabolic dysregulation exaggerated by obesity and the viral infection that develops into a severe course of COVID-19. Moreover, sequela studies of individuals 6 months after having COVID-19 show a higher risk of metabolic comorbidities including obesity, diabetes, and kidney disease. These collectively implicate an inter-systemic dimension to understanding the association between obesity and COVID-19 and suggest an interdisciplinary intervention for relief of obesity-COVID-19 complications beyond the phase of acute infection.
Collapse
Affiliation(s)
- Collins N Khwatenge
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, United States
| | - Marquette Pate
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, United States
| | - Laura C Miller
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, IA, United States
| | - Yongming Sang
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, United States
| |
Collapse
|
49
|
Albini A, Calabrone L, Carlini V, Benedetto N, Lombardo M, Bruno A, Noonan DM. Preliminary Evidence for IL-10-Induced ACE2 mRNA Expression in Lung-Derived and Endothelial Cells: Implications for SARS-Cov-2 ARDS Pathogenesis. Front Immunol 2021; 12:718136. [PMID: 34646263 PMCID: PMC8503675 DOI: 10.3389/fimmu.2021.718136] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/07/2021] [Indexed: 01/17/2023] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is a receptor for the spike protein of SARS-COV-2 that allows viral binding and entry and is expressed on the surface of several pulmonary and non-pulmonary cell types, with induction of a “cytokine storm” upon binding. Other cell types present the receptor and can be infected, including cardiac, renal, intestinal, and endothelial cells. High ACE2 levels protect from inflammation. Despite the relevance of ACE2 levels in COVID-19 pathogenesis, experimental studies to comprehensively address the question of ACE2 regulations are still limited. A relevant observation from the clinic is that, besides the pro-inflammatory cytokines, such as IL-6 and IL-1β, the anti-inflammatory cytokine IL-10 is also elevated in worse prognosis patients. This could represent somehow a “danger signal”, an alarmin from the host organism, given the immuno-regulatory properties of the cytokine. Here, we investigated whether IL-10 could increase ACE2 expression in the lung-derived Calu-3 cell line. We provided preliminary evidence of ACE2 mRNA increase in cells of lung origin in vitro, following IL-10 treatment. Endothelial cell infection by SARS-COV-2 is associated with vasculitis, thromboembolism, and disseminated intravascular coagulation. We confirmed ACE2 expression enhancement by IL-10 treatment also on endothelial cells. The sartans (olmesartan and losartan) showed non-statistically significant ACE2 modulation in Calu-3 and endothelial cells, as compared to untreated control cells. We observed that the antidiabetic biguanide metformin, a putative anti-inflammatory agent, also upregulates ACE2 expression in Calu-3 and endothelial cells. We hypothesized that IL-10 could be a danger signal, and its elevation could possibly represent a feedback mechanism fighting inflammation. Although further confirmatory studies are required, inducing IL-10 upregulation could be clinically relevant in COVID-19-associated acute respiratory distress syndrome (ARDS) and vasculitis, by reinforcing ACE2 levels.
Collapse
Affiliation(s)
- Adriana Albini
- Laboratory of Vascular Biology and Angiogenesis, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - Luana Calabrone
- Laboratory of Vascular Biology and Angiogenesis, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - Valentina Carlini
- Unit of Molecular Pathology, Biochemistry and Immunology, IRCCS MultiMedica, Milan, Italy
| | - Nadia Benedetto
- Laboratory of Vascular Biology and Angiogenesis, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | | | - Antonino Bruno
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, IRCCS MultiMedica, Milan, Italy
| | - Douglas M Noonan
- Unit of Molecular Pathology, Biochemistry and Immunology, IRCCS MultiMedica, Milan, Italy.,Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
50
|
Zahradník J, Marciano S, Shemesh M, Zoler E, Harari D, Chiaravalli J, Meyer B, Rudich Y, Li C, Marton I, Dym O, Elad N, Lewis MG, Andersen H, Gagne M, Seder RA, Douek DC, Schreiber G. SARS-CoV-2 variant prediction and antiviral drug design are enabled by RBD in vitro evolution. Nat Microbiol 2021; 6:1188-1198. [PMID: 34400835 DOI: 10.1038/s41564-021-00954-4] [Citation(s) in RCA: 263] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2 variants of interest and concern will continue to emerge for the duration of the COVID-19 pandemic. To map mutations in the receptor-binding domain (RBD) of the spike protein that affect binding to angiotensin-converting enzyme 2 (ACE2), the receptor for SARS-CoV-2, we applied in vitro evolution to affinity-mature the RBD. Multiple rounds of random mutagenic libraries of the RBD were sorted against decreasing concentrations of ACE2, resulting in the selection of higher affinity RBD binders. We found that mutations present in more transmissible viruses (S477N, E484K and N501Y) were preferentially selected in our high-throughput screen. Evolved RBD mutants include prominently the amino acid substitutions found in the RBDs of B.1.620, B.1.1.7 (Alpha), B1.351 (Beta) and P.1 (Gamma) variants. Moreover, the incidence of RBD mutations in the population as presented in the GISAID database (April 2021) is positively correlated with increased binding affinity to ACE2. Further in vitro evolution increased binding by 1,000-fold and identified mutations that may be more infectious if they evolve in the circulating viral population, for example, Q498R is epistatic to N501Y. We show that our high-affinity variant RBD-62 can be used as a drug to inhibit infection with SARS-CoV-2 and variants Alpha, Beta and Gamma in vitro. In a model of SARS-CoV-2 challenge in hamster, RBD-62 significantly reduced clinical disease when administered before or after infection. A 2.9 Å cryo-electron microscopy structure of the high-affinity complex of RBD-62 and ACE2, including all rapidly spreading mutations, provides a structural basis for future drug and vaccine development and for in silico evaluation of known antibodies.
Collapse
Affiliation(s)
- Jiří Zahradník
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Shir Marciano
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Maya Shemesh
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal Zoler
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Daniel Harari
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Jeanne Chiaravalli
- Chemogenomic and Biological Screening Core Facility, Institut Pasteur, Paris, France
| | - Björn Meyer
- Viral Populations and Pathogenesis Unit CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Chunlin Li
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ira Marton
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.,Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Orly Dym
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Nadav Elad
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | | | | | - Matthew Gagne
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Gideon Schreiber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|