1
|
Szczuciński W, Salamon D, Sopel A, Gosiewski T. Celiac disease and human gut microbiota - how can we study the composition of microorganisms? PRZEGLAD GASTROENTEROLOGICZNY 2024; 20:17-30. [PMID: 40191515 PMCID: PMC11966506 DOI: 10.5114/pg.2024.139574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/27/2024] [Indexed: 04/09/2025]
Abstract
Celiac disease is an autoimmune disorder induced by consumption of gluten protein present in foods such as wheat and rye. In recent years there has been increasing evidence that changes in composition of gut microbiota may play a significant role in the pathogenesis of celiac disease. Multiple methods of bacterial identification may be used to find microbiota changes characteristic for celiac disease, and the latest methods such as next generation sequencing offer new possibilities of detecting previously unknown bacterial groups that may play a role in the occurrence of celiac disease. This review focuses on multiple methods of identifying bacterial gut microbiome and presents results of recent studies exploring the link between gut microbiota composition and celiac disease.
Collapse
Affiliation(s)
- Wiktor Szczuciński
- Students’ Scientific Group of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Dominika Salamon
- Department of Molecular Medical Microbiology, Division of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Sopel
- Students’ Scientific Group of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Tomasz Gosiewski
- Microbiome Research Laboratory, Department of Molecular Medical Microbiology, Division of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
2
|
Uceda S, Echeverry-Alzate V, Reiriz-Rojas M, Martínez-Miguel E, Pérez-Curiel A, Gómez-Senent S, Beltrán-Velasco AI. Gut Microbial Metabolome and Dysbiosis in Neurodegenerative Diseases: Psychobiotics and Fecal Microbiota Transplantation as a Therapeutic Approach-A Comprehensive Narrative Review. Int J Mol Sci 2023; 24:13294. [PMID: 37686104 PMCID: PMC10487945 DOI: 10.3390/ijms241713294] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The comprehensive narrative review conducted in this study delves into the mechanisms of communication and action at the molecular level in the human organism. The review addresses the complex mechanism involved in the microbiota-gut-brain axis as well as the implications of alterations in the microbial composition of patients with neurodegenerative diseases. The pathophysiology of neurodegenerative diseases with neuronal loss or death is analyzed, as well as the mechanisms of action of the main metabolites involved in the bidirectional communication through the microbiota-gut-brain axis. In addition, interventions targeting gut microbiota restructuring through fecal microbiota transplantation and the use of psychobiotics-pre- and pro-biotics-are evaluated as an opportunity to reduce the symptomatology associated with neurodegeneration in these pathologies. This review provides valuable information and facilitates a better understanding of the neurobiological mechanisms to be addressed in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sara Uceda
- BRABE Group, Psychology Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | - Víctor Echeverry-Alzate
- BRABE Group, Psychology Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | - Manuel Reiriz-Rojas
- BRABE Group, Psychology Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | - Esther Martínez-Miguel
- Health Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | - Ana Pérez-Curiel
- Health Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | - Silvia Gómez-Senent
- Health Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | | |
Collapse
|
3
|
Trujillo-Peralta C, Latorre JD, Chai J, Senas-Cuesta R, Forga A, Coles M, Zhao J, Hernandez-Velasco X, Tellez-Isaias G, Barta J, Bielke L, Hargis B, Graham D. Impact of Eimeria meleagrimitis and intermittent amprolium treatment on performance and the gut microbiome composition of Turkey poults. Front Vet Sci 2023; 10:1165317. [PMID: 37323844 PMCID: PMC10267373 DOI: 10.3389/fvets.2023.1165317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction Drug-sensitive live coccidiosis vaccines have been used to control coccidiosis and renew drug sensitivity in commercial chicken operations. However, only limited species coverage vaccines have been available for commercial turkey producers. This study aimed to assess the effect of an E. meleagrimitis vaccine candidate, with and without amprolium intervention, on performance and oocyst shedding. Additionally, the effect of vaccination, amprolium treatment, and E. meleagrimitis challenge on intestinal integrity and microbiome composition was evaluated. Methods Experimental groups included: (1) NC (non-vaccinated, non-challenged control); (2) PC (non-vaccinated, challenged control); (3) VX + Amprol (E. meleagrimitis candidate vaccine + amprolium); and 4) VX (E. meleagrimitis candidate vaccine). For VX groups, 50% of the direct poults were orally vaccinated at DOH with 50 sporulated E. meleagrimitis oocysts and were comingled with contact or non-vaccinated poults for the duration of the study. From d10-14, VX + Amprol group received amprolium (0.024%) in the drinking water. All groups except NC were orally challenged with 95K E. meleagrimitis sporulated oocysts/mL/poult at d23. At d29, ileal and cecal contents were collected for 16S rRNA gene-based microbiome analysis. Results and Discussion VX did not affect performance during the pre-challenge period. At d23-29 (post-challenge), VX groups had significantly (P < 0.05) higher BWG than the PC group. Contacts and directs of VX groups in LS had significantly reduced compared to PC. As anticipated, amprolium treatment markedly reduced fecal and litter OPG for the VX + Amprol group compared to the VX group which did not receive amprolium. The ileal and cecal content results showed that the PC group had different bacterial diversity and structure, including alpha and beta diversity, compared to NC. Linear discriminant analysis Effect Size (LEfSe) identified that Lactobacillus salivarius (ASV2) was enriched in PC's ileal and cecal content. Compared to NC and PC, the vaccinated groups showed no distinct clusters, but there were similarities in the ileal and cecal communities based on Bray-Curtis and Jaccard distances. In conclusion, these results indicate that vaccination with this strain of E. meleagrimitis, with or without amprolium intervention, caused a very mild infection that induced protective immunity and challenge markedly affected both the ileal and cecal microbiome.
Collapse
Affiliation(s)
- Carolina Trujillo-Peralta
- Department of Poultry Science, University of Arkansas Division of Agriculture, Fayetteville, AR, United States
| | - Juan David Latorre
- Department of Poultry Science, University of Arkansas Division of Agriculture, Fayetteville, AR, United States
| | - Jianmin Chai
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Roberto Senas-Cuesta
- Department of Poultry Science, University of Arkansas Division of Agriculture, Fayetteville, AR, United States
| | - Aaron Forga
- Department of Poultry Science, University of Arkansas Division of Agriculture, Fayetteville, AR, United States
| | - Makenly Coles
- Department of Poultry Science, University of Arkansas Division of Agriculture, Fayetteville, AR, United States
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, United States
| | - Xochitl Hernandez-Velasco
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, UNAM, Mexico City, Mexico
| | - Guillermo Tellez-Isaias
- Department of Poultry Science, University of Arkansas Division of Agriculture, Fayetteville, AR, United States
| | - John Barta
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Lisa Bielke
- Department of Animal Sciences, The Ohio State University, Wooster, OH, United States
| | - Billy Hargis
- Department of Poultry Science, University of Arkansas Division of Agriculture, Fayetteville, AR, United States
| | - Danielle Graham
- Department of Poultry Science, University of Arkansas Division of Agriculture, Fayetteville, AR, United States
| |
Collapse
|
4
|
Huang X, Lai S, Lu X, Wang Y, Zhang Y, Chen G, Chen P, Ye K, Duan M, Song K, Zhong S, Jia Y. Cognitive dysfunction and neurometabolic alternations in major depressive disorder with gastrointestinal symptoms. J Affect Disord 2023; 322:180-186. [PMID: 36372125 DOI: 10.1016/j.jad.2022.10.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Brain biochemical abnormalities have been associated with major depressive disorder (MDD) and cognitive impairments. However, the cognitive performance and neurometabolic alterations of MDD patients accompanied by gastrointestinal (GI) symptoms remain to be elucidated. We aimed to reveal the features and correlation between cognitive impairments and brain biochemical abnormalities of depressed patients with GI symptoms. METHODS Fifty MDD patients with GI symptoms (GI group), 46 patients without GI symptoms (NGI group) and 50 demographically matched healthy controls (HCs) underwent Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) Consensus Cognitive Battery (MCCB) assessments. In addition, proton magnetic resonance spectroscopy (1H-MRS) was used to obtain ratios of N-acetyl aspartate to creatine (NAA/Cr) and choline-containing compounds to creatine (Cho/Cr) in the thalamus, putamen and anterior cingulate cortex (ACC). Finally, association analysis was conducted to investigate the relationships of these measurements. RESULTS Compared to HCs, participants in both the GI and NGI groups had significantly reduced performance in the six MCCB cognitive domains (all p < 0.05), except for reasoning and problem solving. Higher Cho/Cr ratios in the right thalamus (p < 0.05) and lower NAA/Cr ratios in the left putamen (p < 0.05) were found in the NGI group than in the GI group. The severity of GI symptoms was negatively correlated with Cho/Cr ratios in the right ACC (r = -0.288, p = 0.037). In addition, the T-scores of visual learning were negatively correlated with NAA/Cr ratios in the right ACC (r = -0.443, p = 0.001) and right thalamus (r = -0.335, p = 0.015). CONCLUSION Our findings suggest that MDD patients with GI symptoms may exhibit greater neurometabolic alternations than those without GI symptoms, while both show similar cognitive dysfunction. In addition, neurometabolic alterations in the ACC and thalamus may underlie the neural basis of GI symptoms and cognitive impairment in MDD.
Collapse
Affiliation(s)
- Xiaosi Huang
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shunkai Lai
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Xiaodan Lu
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yiliang Zhang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Pan Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Kaiwei Ye
- School of Management, Jinan University, Guangzhou 510316, China
| | - Manying Duan
- School of Management, Jinan University, Guangzhou 510316, China
| | - Kailin Song
- School of Management, Jinan University, Guangzhou 510316, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| |
Collapse
|
5
|
Cheng YC, Kim SW. Use of Microorganisms as Nutritional and Functional Feedstuffs for Nursery Pigs and Broilers. Animals (Basel) 2022; 12:3141. [PMID: 36428369 PMCID: PMC9686830 DOI: 10.3390/ani12223141] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The objectives of this review paper are to introduce the structures and composition of various microorganisms, to show some applications of single cells as alternative protein supplements or energy feeds in swine and poultry diets, and to discuss the functional effects of microorganisms as feed additives on the growth performance and intestinal health of nursery pigs and broilers. Microorganisms, including bacteria, yeasts, and microalgae, have been commonly supplemented in animal diets because they are cost-effective, stable, and have quantitative production that provides nutritional and functional benefits to pigs and broilers. Microorganisms could be alternative antibiotics to enhance intestinal health due to bioactive components from cell wall components, which interact with receptors on epithelial and immune cells. In addition, bioactive components could be digested by intestinal microbiota to produce short-chain fatty acids and enhance energy utilization. Otherwise, microorganisms such as single-cell protein (SCP) and single-cell oils (SCOs) are sustainable and economic choices to replace conventional protein supplements and energy feeds. Supplementing microorganisms as feedstuffs and feed additives improved the average daily gain by 1.83%, the daily feed intake by 0.24%, and the feed efficiency by 1.46% in pigs and broilers. Based on the properties of each microorganism, traditional protein supplements, energy feeds, and functional feed additives could be replaced by microorganisms, which have shown benefits to animal's growth and health. Therefore, specific microorganisms could be promising alternatives as nutritional and functional feedstuffs in animal diets.
Collapse
Affiliation(s)
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
6
|
Su W, Gong T, Jiang Z, Lu Z, Wang Y. The Role of Probiotics in Alleviating Postweaning Diarrhea in Piglets From the Perspective of Intestinal Barriers. Front Cell Infect Microbiol 2022; 12:883107. [PMID: 35711653 PMCID: PMC9197122 DOI: 10.3389/fcimb.2022.883107] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/04/2022] [Indexed: 12/26/2022] Open
Abstract
Early weaning of piglets is an important strategy for improving the production efficiency of sows in modern intensive farming systems. However, due to multiple stressors such as physiological, environmental and social challenges, postweaning syndrome in piglets often occurs during early weaning period, and postweaning diarrhea (PWD) is a serious threat to piglet health, resulting in high mortality. Early weaning disrupts the intestinal barrier function of piglets, disturbs the homeostasis of gut microbiota, and destroys the intestinal chemical, mechanical and immunological barriers, which is one of the main causes of PWD in piglets. The traditional method of preventing PWD is to supplement piglet diet with antibiotics. However, the long-term overuse of antibiotics led to bacterial resistance, and antibiotics residues in animal products, threatening human health while causing dysbiosis of gut microbiota and superinfection of piglets. Antibiotic supplementation in livestock diets is prohibited in many countries and regions. Regarding this context, finding antibiotic alternatives to maintain piglet health at the critical weaning period becomes a real emergency. More and more studies showed that probiotics can prevent and treat PWD by regulating the intestinal barriers in recent years. Here, we review the research status of PWD-preventing and treating probiotics and discuss its potential mechanisms from the perspective of intestinal barriers (the intestinal microbial barrier, the intestinal chemical barrier, the intestinal mechanical barrier and the intestinal immunological barrier) in piglets.
Collapse
Affiliation(s)
- Weifa Su
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Tao Gong
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Zipeng Jiang
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Zeqing Lu
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Yizhen Wang
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, China
- *Correspondence: Yizhen Wang,
| |
Collapse
|
7
|
García‐Roa R, Domínguez‐Santos R, Pérez‐Brocal V, Moya A, Latorre A, Carazo P. Kin recognition in
Drosophila
: rearing environment and relatedness can modulate gut microbiota and cuticular hydrocarbon odour profiles. OIKOS 2022. [DOI: 10.1111/oik.08755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Roberto García‐Roa
- Ethology Lab, Cavanilles Inst. of Biodiversity and Evolutionary Biology, Univ. of Valencia Valencia Spain
| | | | - Vicente Pérez‐Brocal
- Foundation for the Promotion of Sanitary and Biomedical Research of Valencia Region (FISABIO) – Public Health Valencia Spain
- CIBER of Epidemiology and Public Health (CIBERESP) Madrid Spain
| | - Andrés Moya
- Inst. for Integrative Systems Biology, Univ. of Valencia – CSIC Valencia Spain
- Foundation for the Promotion of Sanitary and Biomedical Research of Valencia Region (FISABIO) – Public Health Valencia Spain
| | - Amparo Latorre
- Inst. for Integrative Systems Biology, Univ. of Valencia – CSIC Valencia Spain
- Foundation for the Promotion of Sanitary and Biomedical Research of Valencia Region (FISABIO) – Public Health Valencia Spain
| | - Pau Carazo
- Ethology Lab, Cavanilles Inst. of Biodiversity and Evolutionary Biology, Univ. of Valencia Valencia Spain
| |
Collapse
|
8
|
Gilani S, Chrystal PV, Barekatain R. Current experimental models, assessment and dietary modulations of intestinal permeability in broiler chickens. ACTA ACUST UNITED AC 2021; 7:801-811. [PMID: 34466684 PMCID: PMC8384772 DOI: 10.1016/j.aninu.2021.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/26/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022]
Abstract
Maintaining and optimising the intestinal barrier (IB) function in poultry has important implications for the health and performance of the birds. As a key aspect of the IB, intestinal permeability (IP) is mainly controlled by complex junctional proteins called tight junction proteins (TJ) that link enterocytes together. The disruption of TJ is associated with increased gut leakage with possible subsequent implications for bacterial translocation, intestinal inflammation, compromised health and performance of the birds. Despite considerable data being available for other species, research on IP in broiler chickens and in general avian species is still an understudied topic. This paper reviews the available literature with a specific focus on IP in broiler chickens with consideration given to practical factors affecting the IP, current assessment methods, markers and nutritional modulation of IP. Several experimental models to induce gut leakage are discussed including pathogens, rye-based diets, feed deprivation and stress-inducing agents such as exogenous glucocorticoids and heat stress. Although various markers including fluorescein isothiocyanate dextran, expression of TJ and bacterial translocation have been widely utilized to study IP, recent studies have identified a number of excreta biomarkers to evaluate intestinal integrity, in particular non-invasive IP. Although the research on various nutrients and feed additives to potentially modulate IP is still at an early stage, the most promising outcomes are anticipated for probiotics, prebiotics, amino acids and those feed ingredients, nutrients and additives with anti-inflammatory properties. Considerable research gaps are identified for the mechanistic mode of action of various nutrients to influence IP under different experimental models. The modulation of IP through various strategies (i.e. nutritional manipulation of diet) may be regarded as a new frontier for disease prevention and improving the health and performance of poultry particularly in an antibiotic-free production system.
Collapse
Affiliation(s)
- Saad Gilani
- Danisco Animal Nutrition (IFF), Oegstgeest, the Netherlands
| | | | - Reza Barekatain
- South Australian Research and Development Institute, Roseworthy Campus, Roseworthy, SA, Australia
- School of Animal and Veterinary Sciences, Roseworthy Campus, University of Adelaide, Roseworthy, SA, Australia
- Corresponding author. South Australian Research and Development Institute, Roseworthy Campus, Roseworthy, SA, Australia.
| |
Collapse
|
9
|
Pinheiro-Rosa N, Torres L, Oliveira MDA, Andrade-Oliveira MF, Guimarães MADF, Coelho MM, Alves JDL, Maioli TU, Faria AMC. Oral tolerance as antigen-specific immunotherapy. IMMUNOTHERAPY ADVANCES 2021; 1:ltab017. [PMID: 35919733 PMCID: PMC9327124 DOI: 10.1093/immadv/ltab017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/23/2021] [Accepted: 08/23/2021] [Indexed: 12/19/2022] Open
Abstract
Summary
Oral tolerance is a physiological phenomenon described more than a century ago as a suppressive immune response to antigens that gain access to the body by the oral route. It is a robust and long-lasting event with local and systemic effects in which the generation of mucosally induced regulatory T cells (iTreg) plays an essential role. The idea of using oral tolerance to inhibit autoimmune and allergic diseases by oral administration of target antigens was an important development that was successfully tested in 1980s. Since then, several studies have shown that feeding specific antigens can be used to prevent and control chronic inflammatory diseases in both animal models and clinically. Therefore, oral tolerance can be classified as an antigen-specific form of oral immunotherapy (OIT). In the light of novel findings on mechanisms, sites of induction and factors affecting oral tolerance, this review will focus on specific characteristics of oral tolerance induction and how they impact in its therapeutic application.
Collapse
Affiliation(s)
- Natália Pinheiro-Rosa
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lícia Torres
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mariana de Almeida Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marcos Felipe Andrade-Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mauro Andrade de Freitas Guimarães
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Monique Macedo Coelho
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Juliana de Lima Alves
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Tatiani Uceli Maioli
- Departamento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana M Caetano Faria
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
10
|
Oberman K, Hovens I, de Haan J, Falcao-Salles J, van Leeuwen B, Schoemaker R. Acute pre-operative ibuprofen improves cognition in a rat model for postoperative cognitive dysfunction. J Neuroinflammation 2021; 18:156. [PMID: 34238316 PMCID: PMC8265047 DOI: 10.1186/s12974-021-02206-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/23/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Inflammation is considered a key factor in the development of postoperative cognitive dysfunction (POCD). Therefore, we hypothesized that pre-operative anti-inflammatory treatment with ibuprofen would inhibit POCD in our rat-model. METHODS Male Wistar rats of 3 or 23 months old received a single injection of ibuprofen (15 mg/kg i.p.) or were control handled before abdominal surgery. Timed blood and fecal samples were collected for analyses of inflammation markers and gut microbiome changes. Behavioral testing was performed from 9 to 14 days after surgery, in the open field, novel object- and novel location-recognition tests and Morris water maze. Neuroinflammation and neurogenesis were assessed by immune histochemistry after sacrifice on postoperative day 14. RESULTS Ibuprofen improved short-term spatial memory in the novel location recognition test, and increased hippocampal neurogenesis. However, these effects were associated with increased hippocampal microglia activity. Whereas plasma cytokine levels (IL1-β, IL6, IL10, and TNFα) were not significantly affected, VEGF levels increased and IFABP levels decreased after ibuprofen. Long-term memory in the Morris water maze was not significantly improved by ibuprofen. The gut microbiome was neither significantly affected by surgery nor by ibuprofen treatment. In general, effects in aged rats appeared similar to those in young rats, though less pronounced. CONCLUSION A single injection of ibuprofen before surgery improved hippocampus-associated short-term memory after surgery and increased neurogenesis. However, this favorable outcome seemed not attributable to inhibition of (neuro)inflammation. Potential contributions of intestinal and blood-brain barrier integrity need further investigation. Although less pronounced compared to young rats, effects in aged rats indicate that even elderly individuals could benefit from ibuprofen treatment.
Collapse
Affiliation(s)
- Klaske Oberman
- Department of Neurobiology, GELIFES, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, The Netherlands
| | - Iris Hovens
- Department of Neurobiology, GELIFES, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, The Netherlands
| | - Jacco de Haan
- Department of Medical Oncology, University Medical Center Groningen, Groningen, The Netherlands
| | - Joana Falcao-Salles
- Department of Microbial Ecology, GELIFES, University of Groningen, Groningen, The Netherlands
| | - Barbara van Leeuwen
- Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Regien Schoemaker
- Department of Neurobiology, GELIFES, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, The Netherlands.
| |
Collapse
|
11
|
Donaldson J, Świątkiewicz S, Arczewka-Włosek A, Muszyński S, Szymańczyk S, Arciszewski MB, Siembida AZ, Kras K, Piedra JLV, Schwarz T, Tomaszewska E, Dobrowolski P. Modern Hybrid Rye, as an Alternative Energy Source for Broiler Chickens, Improves the Absorption Surface of the Small Intestine Depending on the Intestinal Part and Xylanase Supplementation. Animals (Basel) 2021; 11:1349. [PMID: 34068515 PMCID: PMC8151840 DOI: 10.3390/ani11051349] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 11/17/2022] Open
Abstract
The current study investigated the effects of the inclusion of modern hybrid rye (Brasetto variety) to a corn-wheat-based diet, with or without xylanase, on the absorptive surface of the small intestine of broilers. A total of 224 one-day-old male Ross 308 broiler chicks were randomly divided into four experimental groups with seven replicate cages of eight birds/replicate. A 2 × 2 factorial study design was used, with rye inclusion (0% or 20%) and xylanase supplementation (0 or 200 mg/kg of feed) as factors. Inclusion of rye increased duodenal and ileal crypt depth, villi height, the villus-to-crypt ratio and absorption surface area (p < 0.05), and ileal mucosa thickness and crypt width (p < 0.05). Xylanase supplementation attenuated the effects of rye in the duodenum and ileum and decreased the villi height and villus-to-crypt ratio in the jejunum (p < 0.05). Rye and xylanase had no effect on the spatial distribution of claudin 3 and ZO-1 protein, but xylanase supplementation reduced the amount of claudin 3 in the duodenum and jejunum (p < 0.05). The findings of this study indicate that 20% inclusion of modern hybrid rye to the diets of broilers improved the structure of the duodenum and ileum, but these effects were attenuated by xylanase supplementation.
Collapse
Affiliation(s)
- Janine Donaldson
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Sylwester Świątkiewicz
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, 1 Krakowska St., 32-083 Balice, Poland; (S.Ś.); (A.A.-W.)
| | - Anna Arczewka-Włosek
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, 1 Krakowska St., 32-083 Balice, Poland; (S.Ś.); (A.A.-W.)
| | - Siemowit Muszyński
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, 13 Akademicka St., 20-950 Lublin, Poland;
| | - Sylwia Szymańczyk
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 12 Akademicka St., 20-950 Lublin, Poland; (S.S.); (E.T.)
| | - Marcin Bartłomiej Arciszewski
- Department of Animal Anatomy and Histology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (M.B.A.); (A.Z.S.); (K.K.)
| | - Anna Zacharko Siembida
- Department of Animal Anatomy and Histology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (M.B.A.); (A.Z.S.); (K.K.)
| | - Katarzyna Kras
- Department of Animal Anatomy and Histology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (M.B.A.); (A.Z.S.); (K.K.)
| | - Jose Luis Valverde Piedra
- Department of Pharmacology, Toxicology and Environmental Protection, University of Life Sciences, Lublin, 13 Akademicka St., 20-950 Lublin, Poland;
| | - Tomasz Schwarz
- Department of Animal Genetics, Breeding and Ethology, Faculty of Animal Sciences, University of Agriculture in Kraków, 24/28 Mickiewicza Ave., 30-059 Cracow, Poland;
| | - Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 12 Akademicka St., 20-950 Lublin, Poland; (S.S.); (E.T.)
| | - Piotr Dobrowolski
- Department of Functional Anatomy and Cytobiology, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, 19 Akademicka St., 20-033 Lublin, Poland
| |
Collapse
|
12
|
Gut microbiota-derived metabolites in the regulation of host immune responses and immune-related inflammatory diseases. Cell Mol Immunol 2021; 18:866-877. [PMID: 33707689 PMCID: PMC8115644 DOI: 10.1038/s41423-021-00661-4] [Citation(s) in RCA: 292] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
The gut microbiota has a critical role in the maintenance of immune homeostasis. Alterations in the intestinal microbiota and gut microbiota-derived metabolites have been recognized in many immune-related inflammatory disorders. These metabolites can be produced by gut microbiota from dietary components or by the host and can be modified by gut bacteria or synthesized de novo by gut bacteria. Gut microbiota-derived metabolites influence a plethora of immune cell responses, including T cells, B cells, dendritic cells, and macrophages. Some of these metabolites are involved in the pathogenesis of immune-related inflammatory diseases, such as inflammatory bowel diseases, diabetes, rheumatoid arthritis, and systemic lupus erythematosus. Here, we review the role of microbiota-derived metabolites in regulating the functions of different immune cells and the pathogenesis of chronic immune-related inflammatory diseases.
Collapse
|
13
|
Ferrer M, Aguilera M, Martinez V. Effects of Rifaximin on Luminal and Wall-Adhered Gut Commensal Microbiota in Mice. Int J Mol Sci 2021; 22:E500. [PMID: 33419066 PMCID: PMC7825446 DOI: 10.3390/ijms22020500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/30/2020] [Accepted: 01/01/2021] [Indexed: 12/12/2022] Open
Abstract
Rifaximin is a broad-spectrum antibiotic that ameliorates symptomatology in inflammatory/functional gastrointestinal disorders. We assessed changes in gut commensal microbiota (GCM) and Toll-like receptors (TLRs) associated to rifaximin treatment in mice. Adult C57BL/6NCrl mice were treated (7/14 days) with rifaximin (50/150 mg/mouse/day, PO). Luminal and wall-adhered ceco-colonic GCM were characterized by fluorescent in situ hybridization (FISH) and microbial profiles determined by terminal restriction fragment length polymorphism (T-RFLP). Colonic expression of TLR2/3/4/5/7 and immune-related markers was assessed (RT-qPCR). Regardless the period of treatment or the dose, rifaximin did not alter total bacterial counts or bacterial biodiversity. Only a modest increase in Bacteroides spp. (150 mg/1-week treatment) was detected. In control conditions, only Clostridium spp. and Bifidobacterium spp. were found attached to the colonic epithelium. Rifaximin showed a tendency to favour their adherence after a 1-week, but not 2-week, treatment period. Minor up-regulation in TLRs expression was observed. Only the 50 mg dose for 1-week led to a significant increase (by 3-fold) in TLR-4 expression. No changes in the expression of immune-related markers were observed. Rifaximin, although its antibacterial properties, induces minor changes in luminal and wall-adhered GCM in healthy mice. Moreover, no modulation of TLRs or local immune systems was observed. These findings, in normal conditions, do not rule out a modulatory role of rifaximin in inflammatory and or dysbiotic states of the gut.
Collapse
Affiliation(s)
- Marina Ferrer
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (M.F.); (M.A.)
- Neuroscience Institute, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Mònica Aguilera
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (M.F.); (M.A.)
- Neuroscience Institute, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Vicente Martinez
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (M.F.); (M.A.)
- Neuroscience Institute, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Centro de Investigación Biomédicaen Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
14
|
Carlson TJ, Blasingame D, Gonzales-Luna AJ, Alnezary F, Garey KW. Clostridioides difficile ribotype 106: A systematic review of the antimicrobial susceptibility, genetics, and clinical outcomes of this common worldwide strain. Anaerobe 2020; 62:102142. [PMID: 32007682 PMCID: PMC7153973 DOI: 10.1016/j.anaerobe.2019.102142] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/18/2022]
Abstract
Clostridioides difficile typing is invaluable for the investigation of both institution-specific outbreaks as well as national surveillance. While the epidemic ribotype 027 (RT027) has received a significant amount of resources and attention, ribotype 106 (RT106) has become more prevalent throughout the past decade. The purpose of this systematic review was to comprehensively summarize the genetic determinants, antimicrobial susceptibility, epidemiology, and clinical outcomes of infection caused by RT106. A total of 68 articles published between 1999 and 2019 were identified as relevant to this review. Although initially identified in the United Kingdom in 1999, RT106 is now found worldwide and became the most prevalent strain in the United States in 2016. Current data indicate that RT106 harbors the tcdA and tcdB genes, lacks binary toxin genes, and does not contain any deletions in the tcdC gene, which differentiates it from other epidemic strains, including ribotypes 027 and 078. Interestingly, RT106 produces more spores than other strains, including RT027. Overall, RT106 is highly resistant to erythromycin, clindamycin, fluoroquinolones, and third-generation cephalosporins. However, the MIC90 in most studies are one to two fold dilutions below the epidemiologic cut-off values of metronidazole and vancomycin, suggesting both are acceptable treatment options from an in vitro perspective. The few clinical outcomes studies available concluded that RT106 causes less severe disease than RT027, but patients were significantly more likely to experience multiple CDI relapses when infected with a RT106 strain. Specific areas warranting future study include potential survival advantages provided by genetic elements as well as a more robust investigation of clinical outcomes associated with RT106.
Collapse
Affiliation(s)
- T J Carlson
- High Point University Fred Wilson School of Pharmacy, High Point, NC, USA
| | - D Blasingame
- The University of Houston College of Pharmacy, Houston, TX, USA
| | | | - F Alnezary
- The University of Houston College of Pharmacy, Houston, TX, USA; Department of Clinical and Hospital Pharmacy, College of Pharmacy, Taibah University, Medinah, Saudi Arabia
| | - K W Garey
- The University of Houston College of Pharmacy, Houston, TX, USA.
| |
Collapse
|
15
|
Ruff J, Barros TL, Tellez G, Blankenship J, Lester H, Graham BD, Selby CAM, Vuong CN, Dridi S, Greene ES, Hernandez-Velasco X, Hargis BM, Tellez-Isaias G. Research Note: Evaluation of a heat stress model to induce gastrointestinal leakage in broiler chickens. Poult Sci 2019; 99:1687-1692. [PMID: 32115037 PMCID: PMC7587818 DOI: 10.1016/j.psj.2019.10.075] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 12/16/2022] Open
Abstract
The purpose of this study was to evaluate heat stress as a model to induce gastrointestinal leakage in broiler chickens. On the day of hatch, 320 chicks were allocated into 8 environmental chambers, 4 thermoneutral (TN) and 4 continuous heat stress (HS). Each chamber was divided into 2 pens containing separate feeders and water jugs (8 replicates per treatment, 20 birds/pen). The environment was established to simulate production setting as best possible for the first 21 D. A gradual reduction of temperature from 32°C to 24°C with relative humidity at 55 ± 5% was adopted for the first 21 D. At the time of HS, the HS groups were exposed to 35°C from Day 21 to 42, while thermoneutral ones were maintained at 24°C from Day 21 to 42. Chickens were equipped with a Thermochron temperature logger for continuous monitoring of core body temperature. The environmental temperature and relative humidity were continuously recorded. Fluorescein isothiocyanate–dextran (FITC-d) was orally gavaged to 2 chickens/replicate (n = 16) randomly selected on days 21, 28, 35, and 42. After 1 h of oral gavage, blood samples were collected to determine the passage of FITC-d. Tibias were removed from all chickens to evaluate break strength only on 21 D and 42 D (before HS and at the end of the trial). Performance parameters were evaluated weekly from 21 D to the end of the trial. Body temperature was significantly (P < 0.05) increased after 2 h of starting HS and remained that way until the end of the study. Chronic HS caused an increase in core body temperature which decreased feed intake, body weight, and feed efficiency (28, 35, and 42 D) when compared with control TN chickens. Similarly, serum FITC-d was significantly increased in HS chickens at all points of evaluation. Chronic HS also caused a significant reduction of bone strength at 42 D when compared with the control chickens. The results from the present study suggest that HS can be a robust model to induce gut leakage in broiler chickens.
Collapse
Affiliation(s)
- Jared Ruff
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Thaina L Barros
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Guillermo Tellez
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Justin Blankenship
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Howard Lester
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Brittany D Graham
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Callie A M Selby
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Christine N Vuong
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Sami Dridi
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Elizabeth S Greene
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - X Hernandez-Velasco
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico 04510, Mexico
| | - Billy M Hargis
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | | |
Collapse
|
16
|
Latorre JD, Adhikari B, Park SH, Teague KD, Graham LE, Mahaffey BD, Baxter MFA, Hernandez-Velasco X, Kwon YM, Ricke SC, Bielke LR, Hargis BM, Tellez G. Evaluation of the Epithelial Barrier Function and Ileal Microbiome in an Established Necrotic Enteritis Challenge Model in Broiler Chickens. Front Vet Sci 2018; 5:199. [PMID: 30186844 PMCID: PMC6110846 DOI: 10.3389/fvets.2018.00199] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022] Open
Abstract
Necrotic enteritis (NE) is a recognized multifactorial disease that cost annually to the poultry industry around $2 billion. However, diverse aspects related to its presentation are not completely understood, requiring further studies using known induction experimental models. Therefore, the purpose of this study was to measure the changes occurring in performance, intestinal integrity and ileal microbiome using a previously established NE-challenge model. Chickens were assigned to a negative control group (NC) or a positive control group (PC). In the PC, broilers were orally gavaged with Salmonella Typhimurium (ST) (1 × 107 cfu/chick) at day 1, Eimeria maxima (EM) (2.5 × 104 oocyst/chick) at day 18 and Clostridium perfringens (CP) (1 × 108 cfu/chick/day) at 23-24 days of age. Weekly, body weight (BW), body weight gain (BWG), feed intake (FI) and feed conversion ratio (FCR) were evaluated. Morbidity and mortality were determined throughout the study, and NE lesion scores were recorded at day 25. Additionally, blood and liver samples were collected to measure gut permeability as determined by levels of serum fluorescein isothiocyanate-dextran (FITC-d) and bacterial translocation (BT). Ileal contents were processed for 16S rRNA gene-based microbiome analysis. Performance parameters and intestinal permeability measurements were negatively impacted in the PC resulting in elevated serum FITC-d and BT with a -6.4% difference in BWG. The NE lesion score in PC (1.97 vs. 0.00) was significantly higher in comparison to NC, although there was no difference in mortality. The microbiome analysis showed a dramatic shift of ileal microbiomes in PC groups as compared to NC (ANOSIM: R = 0.76, P = 0.001). The shift was characterized by reduced abundance of the phylum Actinobacteria (P < 0.01), and increased abundance of the genera Butyrivibrio, Lactobacillus, Prevotella and Ruminococcus in PC compared to NC (P < 0.05). Expectedly, Clostridium was found higher in PC (2.98 ± 0.71%) as compared to NC (1.84 ± 0.36%), yet the difference was not significant. In conclusion, results of the present study showed the different intestinal epithelial and microbiological alterations occurring in an established NE-challenge model that considers paratyphoid Salmonella infections in young chicks as an important predisposing factor for presentation of NE.
Collapse
Affiliation(s)
- Juan D. Latorre
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Bishnu Adhikari
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Si H. Park
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, United States
| | - Kyle D. Teague
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Lucas E. Graham
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Brittany D. Mahaffey
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Mikayla F. A. Baxter
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | | | - Young M. Kwon
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Steven C. Ricke
- Department of Food Science, Center of Food Safety, University of Arkansas, Fayetteville, AR, United States
| | - Lisa R. Bielke
- Department of Animal Science, The Ohio State University, Columbus, OH, United States
| | - Billy M. Hargis
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Guillermo Tellez
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
17
|
Zununi Vahed S, Moghaddas Sani H, Rahbar Saadat Y, Barzegari A, Omidi Y. Type 1 diabetes: Through the lens of human genome and metagenome interplay. Biomed Pharmacother 2018; 104:332-342. [PMID: 29775902 DOI: 10.1016/j.biopha.2018.05.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/09/2018] [Accepted: 05/09/2018] [Indexed: 02/07/2023] Open
Abstract
Diabetes is a genetic- and epigenetic-related disease from which a large population worldwide suffers. Some genetic factors along with various mutations related to the immune system for disease mechanism(s) have contrastively been determined. However, sometimes mechanisms have not been fully managed for the clarification of the initiation and/or progression of diseases to help patients. In the recent years, due to familiarity with the role of gut microbiota in the health, it has been found that the changes of the microbial balance in the industrialized societies can cause a battery of modern diseases, for which we have no specific definition of how they emerge. This work aims to explore the relationship between the human gut microbiota and the immune system along with their possible role in avoiding/emerging of type 1 diabetes (T1D) accompanied with the relation between genome and metagenome and their imbalance in causing T1D. Moreover, it provides novel view on how to balance the intestinal microbiota by lifestyle to hinder the mechanisms leading to T1D.
Collapse
Affiliation(s)
| | | | - Yalda Rahbar Saadat
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
18
|
Maguey-Gonzalez JA, Michel MA, Baxter MF, Tellez G, Moore PA, Solis-Cruz B, Hernández-Patlan D, Merino-Guzman R, Hernandez-Velasco X, Latorre JD, Hargis BM, Gomez-Rosales S, Tellez-Isaias G. Effect of humic acids on intestinal viscosity, leaky gut and ammonia excretion in a 24 hr feed restriction model to induce intestinal permeability in broiler chickens. Anim Sci J 2018; 89:1002-1010. [DOI: 10.1111/asj.13011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 02/16/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Jesús A. Maguey-Gonzalez
- Facultad de Estudios Superiores Cuautitlán; Universidad Nacional Autonoma de Mexico (UNAM); Mexico City Mexico
- National Center of Disciplinary Research in Animal Physiology; National Institute of Research in Forestry, Agriculture and Livestock; Ajuchitlan Queretaro Mexico
| | - Matias A. Michel
- Facultad de Ciencias Veterinarias; Universidad Nacional del Nordeste; Corrientes Argentina
| | | | - Guillermo Tellez
- Department of Poultry Science; University of Arkansas; Fayetteville AR USA
| | - Philip A. Moore
- USDA-ARS; Poultry Production and Product Safety Research Unit; Plant Science 115; University of Arkansas; Fayetteville AR USA
| | - Bruno Solis-Cruz
- Facultad de Estudios Superiores Cuautitlán; Universidad Nacional Autonoma de Mexico (UNAM); Mexico City Mexico
| | - Daniel Hernández-Patlan
- Facultad de Estudios Superiores Cuautitlán; Universidad Nacional Autonoma de Mexico (UNAM); Mexico City Mexico
| | - Rubén Merino-Guzman
- Departamento de Medicina y Zootecnia de Aves; Facultad de Medicina Veterinaria y Zootecnia; UNAM; Mexico City Mexico
| | - Xochitl Hernandez-Velasco
- Departamento de Medicina y Zootecnia de Aves; Facultad de Medicina Veterinaria y Zootecnia; UNAM; Mexico City Mexico
| | - Juan D. Latorre
- Department of Poultry Science; University of Arkansas; Fayetteville AR USA
| | - Billy M. Hargis
- Department of Poultry Science; University of Arkansas; Fayetteville AR USA
| | - Sergio Gomez-Rosales
- National Center of Disciplinary Research in Animal Physiology; National Institute of Research in Forestry, Agriculture and Livestock; Ajuchitlan Queretaro Mexico
| | | |
Collapse
|
19
|
Yang Y, Latorre J, Khatri B, Kwon Y, Kong B, Teague K, Graham L, Wolfenden A, Mahaffey B, Baxter M, Hernandez-Velasco X, Merino-Guzman R, Hargis B, Tellez G. Characterization and evaluation of lactic acid bacteria candidates for intestinal epithelial permeability and Salmonella Typhimurium colonization in neonatal turkey poults. Poult Sci 2018; 97:515-521. [DOI: 10.3382/ps/pex311] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 09/25/2017] [Indexed: 12/13/2022] Open
|
20
|
An Overview of the Roles of the Gut Microbiome in Obesity and Diabetes. NUTRITIONAL AND THERAPEUTIC INTERVENTIONS FOR DIABETES AND METABOLIC SYNDROME 2018. [DOI: 10.1016/b978-0-12-812019-4.00006-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
21
|
Yang Y, Tian J, Yang B. Targeting gut microbiome: A novel and potential therapy for autism. Life Sci 2017; 194:111-119. [PMID: 29277311 DOI: 10.1016/j.lfs.2017.12.027] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/12/2017] [Accepted: 12/21/2017] [Indexed: 02/06/2023]
Abstract
Autism spectrum disorder (ASD) is a severely neurodevelopmental disorder that impairs a child's ability to communicate and interact with others. Children with neurodevelopmental disorder, including ASD, are regularly affected by gastrointestinal problems and dysbiosis of gut microbiota. On the other hand, humans live in a co-evolutionary association with plenty of microorganisms that resident on the exposed and internal surfaces of our bodies. The microbiome, refers to the collection of microbes and their genetic material, confers a variety of physiologic benefits to the host in many key aspects of life as well as being responsible for some diseases. A large body of preclinical literature indicates that gut microbiome plays an important role in the bidirectional gut-brain axis that communicates between the gut and central nervous system. Moreover, accumulating evidences suggest that the gut microbiome is involved in the pathogenesis of ASD. The present review introduces the increasing evidence suggesting the reciprocal interaction network among microbiome, gut and brain. It also discusses the possible mechanisms by which gut microbiome influences the etiology of ASD via altering gut-brain axis. Most importantly, it highlights the new findings of targeting gut microbiome, including probiotic treatment and fecal microbiota transplant, as novel and potential therapeutics for ASD diseases.
Collapse
Affiliation(s)
- Yongshou Yang
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan.
| | - Jinhu Tian
- Department of Food Science and Nutrition, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang Province 310058, PR China
| | - Bo Yang
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| |
Collapse
|
22
|
Baxter MFA, Merino-Guzman R, Latorre JD, Mahaffey BD, Yang Y, Teague KD, Graham LE, Wolfenden AD, Hernandez-Velasco X, Bielke LR, Hargis BM, Tellez G. Optimizing Fluorescein Isothiocyanate Dextran Measurement As a Biomarker in a 24-h Feed Restriction Model to Induce Gut Permeability in Broiler Chickens. Front Vet Sci 2017; 4:56. [PMID: 28470003 PMCID: PMC5396023 DOI: 10.3389/fvets.2017.00056] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/03/2017] [Indexed: 12/12/2022] Open
Abstract
Fluorescein isothiocyanate dextran (FITC-d) is a 3–5 kDa marker used to measure tight junction permeability. We have previously shown that intestinal barrier function can be adversely affected by stress, poorly digested diets, or feed restriction (FR), resulting in increased intestinal inflammation-associated permeability. However, further optimization adjustments of the current FITC-d methodology are possible to enhance precision and efficacy of results in future. The objective of the present study was to optimize our current model to obtain a larger difference between control and treated groups, by optimizing the FITC-d measurement as a biomarker in a 24-h FR model to induce gut permeability in broiler chickens. One in vitro and four in vivo independent experiments were conducted. The results of the present study suggest that by increasing the dose of FITC-d (8.32 versus 4.16 mg/kg); shortening the collection time of blood samples (1 versus 2.5 h); using a pool of non-FITC-d serum as a blank, compared to previously used PBS; adding a standard curve to set a limit of detection and modifying the software’s optimal sensitivity value, it was possible to obtain more consistent and reliable results.
Collapse
Affiliation(s)
- Mikayla F A Baxter
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Ruben Merino-Guzman
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Juan D Latorre
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Brittany D Mahaffey
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Yichao Yang
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Kyle D Teague
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Lucas E Graham
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Amanda D Wolfenden
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Xochitl Hernandez-Velasco
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lisa R Bielke
- Department of Animal Science, The Ohio State University, Columbus, OH, USA
| | - Billy M Hargis
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Guillermo Tellez
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
23
|
Fehér C, Soriano A, Mensa J. A Review of Experimental and Off-Label Therapies for Clostridium difficile Infection. Infect Dis Ther 2017; 6:1-35. [PMID: 27910000 PMCID: PMC5336415 DOI: 10.1007/s40121-016-0140-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Indexed: 12/16/2022] Open
Abstract
In spite of increased awareness and the efforts taken to optimize Clostridium difficile infection (CDI) management, with the limited number of currently available antibiotics for C. difficile the halt of this increasing epidemic remains out of reach. There are, however, close to 80 alternative treatment methods with controversial anti-clostridial efficacy or in experimental phase today. Indeed, some of these therapies are expected to become acknowledged members of the recommended anti-CDI arsenal within the next few years. None of these alternative treatment methods can respond in itself to all the major challenges of CDI management, which are primary prophylaxis in the susceptible population, clinical cure of severe cases, prevention of recurrences, and forestallment of asymptomatic C. difficile carriage and in-hospital spread. Yet, the greater the variety of treatment choices on hand, the better combination strategies can be developed to reach these goals in the future. The aim of this article is to provide a comprehensive summary of these experimental and currently off-label therapeutic options.
Collapse
Affiliation(s)
- Csaba Fehér
- Department of Infectious Diseases, Hospital Clínic of Barcelona, Barcelona, Spain.
| | - Alex Soriano
- Department of Infectious Diseases, Hospital Clínic of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Josep Mensa
- Department of Infectious Diseases, Hospital Clínic of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| |
Collapse
|
24
|
Gianchecchi E, Fierabracci A. On the pathogenesis of insulin-dependent diabetes mellitus: the role of microbiota. Immunol Res 2017; 65:242-256. [PMID: 27421719 DOI: 10.1007/s12026-016-8832-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Type 1 diabetes (T1D) is an autoimmune disorder characterized by the selective destruction of insulin-producing β cells as result of a complex interplay between genetic, stochastic and environmental factors in genetically susceptible individuals. An increasing amount of experimental data from animal models and humans has supported the role played by imbalanced gut microbiome in T1D pathogenesis. The commensal intestinal microbiota is fundamental for several physiologic mechanisms, including the establishment of immune homeostasis. Alterations in its composition have been correlated to changes in the gut immune system, including defective tolerance to food antigens, intestinal inflammation and enhanced gut permeability. Early findings reported differences in the intestinal microbiome of subjects affected by prediabetes or overt disease compared to healthy individuals. The present review focuses on microbiota-host homeostasis, its alterations, factors that influence microbiome composition and discusses their putative correlation with T1D development. Further studies are necessary to clarify the role played by microbiota modifications in the processes that cause enhanced permeability and the autoimmune mechanisms responsible for T1D onset.
Collapse
Affiliation(s)
- Elena Gianchecchi
- Vismederi Srl, Siena, Italy
- Infectivology and Clinical Trials Area, Bambino Gesù Children's Hospital, IRCCS, Viale S. Paolo 15, 00146, Rome, Italy
| | - Alessandra Fierabracci
- Infectivology and Clinical Trials Area, Bambino Gesù Children's Hospital, IRCCS, Viale S. Paolo 15, 00146, Rome, Italy.
| |
Collapse
|
25
|
Impact of Enteric Health and Mucosal Permeability on Skeletal Health and Lameness in Poultry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1033:185-197. [PMID: 29101656 DOI: 10.1007/978-3-319-66653-2_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Intestinal barrier leakage and/or altered gut microbial composition has been shown to markedly impact both osteoblast and osteoclast activities, systemically through circulation of gut immune cells and cytokines and locally by causing inflammation of extraintestinal organs such as the liver and bone marrow. Mild cases of heightened intestinal inflammation can cause bone loss in male mice in the absence of any overt nutritional deficiencies or weight loss, which has also been shown in chickens that have been infected with Salmonella. For poultry, ingredients selected for feed formulation have also a significant impact on gut health, intestinal microbiota, bone quality, and performance parameters. Consumption of diets with a high content of soluble non-starch polysaccharides (NSP) can affect bone quality parameters by reducing the amount of conjugated bile acids in the intestine, therefore diminishing the absorption of fat-soluble vitamins such as vitamin D and minerals like calcium and phosphorus. Recent enteric inflammation studies have shown that high NSP-containing diets have effects on intestinal viscosity, bone mineral content, and breaking strength, along with increased fluorescein isothiocyanate-dextran (FITC-d) leakage. Other skeletal diseases, such as bacterial chondronecrosis with osteomyelitis and enterococcal spondylitis, have a microbial component that is associated with increased mucosal permeability of the gut. Probiotics targeted toward control of enteric inflammation, either created through infectious disease or poor diet, may serve as a strategy for control of predisposing factors that lead to bone disorders.
Collapse
|
26
|
The infant gut bacterial microbiota and risk of pediatric asthma and allergic diseases. Transl Res 2017; 179:60-70. [PMID: 27469270 PMCID: PMC5555614 DOI: 10.1016/j.trsl.2016.06.010] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/26/2016] [Accepted: 06/30/2016] [Indexed: 02/07/2023]
Abstract
Among the many areas being revolutionized by the recent introduction of culture-independent microbial identification techniques is investigation of the relationship between close contact with large animals, antibiotics, breast feeding, mode of birth, and other exposures during infancy as related to a reduced risk of asthma and allergic disease. These exposures were originally clustered under the "Hygiene Hypothesis" which has evolved into the "Microbiota Hypothesis". This review begins by summarizing epidemiologic studies suggesting that the common feature of these allergy risk-related exposures is their influence on the founding and early development of a child's gut microbiota. Next, studies using culture-independent techniques are presented showing that children who have experienced the exposures of interest have altered gut microbiota. Finally, selected mouse and human studies are presented which begin to corroborate the protective exposures identified in epidemiologic studies by elucidating mechanisms through which microbes can alter immune development and function. These microbially driven immune alterations demonstrate that microbial exposures in many cases could alter the risk of subsequent allergic disease and asthma. Hopefully, a better understanding of how microbes influence allergic disease will lead to safe and effective methods for reducing the prevalence of all forms of allergic disease.
Collapse
|
27
|
Khan N, Vidyarthi A, Nadeem S, Negi S, Nair G, Agrewala JN. Alteration in the Gut Microbiota Provokes Susceptibility to Tuberculosis. Front Immunol 2016; 7:529. [PMID: 27965663 PMCID: PMC5124573 DOI: 10.3389/fimmu.2016.00529] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 11/10/2016] [Indexed: 01/09/2023] Open
Abstract
The microbiota that resides in the gastrointestinal tract provides essential health benefits to the host. In particular, they regulate immune homeostasis. Recently, several evidences indicate that alteration in the gut microbial community can cause infectious and non-infectious diseases. Tuberculosis (TB) is the most devastating disease, inflicting mortality and morbidity. It remains unexplored, whether changes in the gut microbiota can provoke or prevent TB. In the current study, we have demonstrated the antibiotics driven changes in the gut microbial composition and their impact on the survival of Mycobacterium tuberculosis (Mtb) in the lungs, liver, and spleen of infected mice, compared to those with intact microbiota. Interestingly, dysbiosis of microbes showed significant increase in the bacterial burden in lungs and dissemination of Mtb to spleen and liver. Furthermore, elevation in the number of Tregs and decline in the pool of IFN-γ- and TNF-α-releasing CD4 T cells was noticed. Interestingly, fecal transplantation in the gut microbiota disrupted animals exhibited improved Th1 immunity and lesser Tregs population. Importantly, these animals displayed reduced severity to Mtb infection. This study for the first time demonstrated the novel role of gut microbes in the susceptibility to TB and its prevention by microbial implants. In future, microbial therapies may help in treating patients suffering from TB.
Collapse
Affiliation(s)
- Nargis Khan
- Immunology Division, CSIR-Institute of Microbial Technology , Chandigarh , India
| | - Aurobind Vidyarthi
- Immunology Division, CSIR-Institute of Microbial Technology , Chandigarh , India
| | - Sajid Nadeem
- Immunology Division, CSIR-Institute of Microbial Technology , Chandigarh , India
| | - Shikha Negi
- Immunology Division, CSIR-Institute of Microbial Technology , Chandigarh , India
| | - Girish Nair
- Immunology Division, CSIR-Institute of Microbial Technology , Chandigarh , India
| | - Javed N Agrewala
- Immunology Division, CSIR-Institute of Microbial Technology , Chandigarh , India
| |
Collapse
|
28
|
Vlachos C, Gaitanis G, Katsanos KH, Christodoulou DK, Tsianos E, Bassukas ID. Psoriasis and inflammatory bowel disease: links and risks. PSORIASIS-TARGETS AND THERAPY 2016; 6:73-92. [PMID: 29387596 PMCID: PMC5683131 DOI: 10.2147/ptt.s85194] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Psoriasis and the spectrum of inflammatory bowel diseases (IBD) are chronic, inflammatory, organotropic conditions. The epidemiologic coexistence of these diseases is corroborated by findings at the level of disease, biogeography, and intrafamilial and intrapatient coincidence. The identification of shared susceptibility loci and DNA polymorphisms has confirmed this correlation at a genetic level. The pathogenesis of both diseases implicates the innate and adaptive segments of the immune system. Increased permeability of the epidermal barrier in skin and intestine underlies the augmented interaction of allergens and pathogens with inflammatory receptors of immune cells. The immune response between psoriasis and IBD is similar and comprises phagocytic, dendritic, and natural killer cell, along with a milieu of cytokines and antimicrobial peptides that stimulate T-cells. The interplay between dendritic cells and Th17 cells appears to be the core dysregulated immune pathway in all these conditions. The distinct similarities in the pathogenesis are also reflected in the wide overlapping of their therapeutic approaches. Small-molecule pharmacologic immunomodulators have been applied, and more recently, biologic treatments that target proinflammatory interleukins have been introduced or are currently being evaluated. However, the fact that some treatments are quite selective for either skin or gut conditions also highlights their crucial pathophysiologic differences. In the present review, a comprehensive comparison of risk factors, pathogenesis links, and therapeutic strategies for psoriasis and IBD is presented. Specific emphasis is placed on the role of the immune cell species and inflammatory mediators participating in the pathogenesis of these diseases.
Collapse
Affiliation(s)
| | | | - Konstantinos H Katsanos
- Division of Gastroenterology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Dimitrios K Christodoulou
- Division of Gastroenterology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Epameinondas Tsianos
- Division of Gastroenterology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | | |
Collapse
|
29
|
Claassen-Weitz S, Wiysonge CS, Machingaidze S, Thabane L, Horsnell WGC, Zar HJ, Nicol MP, Kaba M. Current Knowledge and Future Research Directions on Fecal Bacterial Patterns and Their Association with Asthma. Front Microbiol 2016; 7:838. [PMID: 27445990 PMCID: PMC4925717 DOI: 10.3389/fmicb.2016.00838] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/18/2016] [Indexed: 12/25/2022] Open
Affiliation(s)
- Shantelle Claassen-Weitz
- Division of Medical Microbiology, Department of Pathology, Faculty of Health Sciences, University of Cape Town Cape Town, South Africa
| | - Charles S Wiysonge
- Centre for Evidence-based Health Care, Faculty of Medicine and Health Sciences, Stellenbosch UniversityCape Town, South Africa; Cochrane South Africa, South African Medical Research CouncilCape Town, South Africa
| | - Shingai Machingaidze
- Vaccines for Africa Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town Cape Town, South Africa
| | - Lehana Thabane
- Department of Clinical Epidemiology and Biostatistics, McMaster UniversityOntario, Canada; Biostatistics Unit, Father Sean O'SulliVan Research CentreOntario, Canada
| | - William G C Horsnell
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape TownCape Town, South Africa; Institute of Infectious Diseases and Molecular Medicine, University of Cape TownCape Town, South Africa; International Centre for Genetic Engineering and Biotechnology, University of Cape TownCape Town, South Africa
| | - Heather J Zar
- Department of Paediatrics and Child Health, University of Cape TownCape Town, South Africa; Red Cross War Memorial Children's HospitalCape Town, South Africa; Medical Research Council Unit on Child and Adolescent Health, University of Cape TownCape Town, South Africa
| | - Mark P Nicol
- Division of Medical Microbiology, Department of Pathology, Faculty of Health Sciences, University of Cape TownCape Town, South Africa; Institute of Infectious Diseases and Molecular Medicine, University of Cape TownCape Town, South Africa; National Health Laboratory Service, Groote Schuur HospitalCape Town, South Africa
| | - Mamadou Kaba
- Division of Medical Microbiology, Department of Pathology, Faculty of Health Sciences, University of Cape TownCape Town, South Africa; Institute of Infectious Diseases and Molecular Medicine, University of Cape TownCape Town, South Africa
| |
Collapse
|
30
|
Abstract
Obesity constitutes a significant and rapidly increasing public health challenge and is associated with significant co-morbidities and healthcare costs. Although undoubtedly multifactorial, research over the last decade has demonstrated that the microbes that colonize the human gut may contribute to the development of obesity through roles in polysaccharide breakdown, nutrient absorption, inflammatory responses and gut permeability. Studies have consistently shown that the Firmicutes to Bacteroidetes ratio, in particular, is increased in obesity and reduces with weight loss. In addition, we and others have shown that the methanogenic Archaea may also contribute to altered metabolism and weight gain in the host. However, much remains to be learned about the roles of different gut microbial populations in weight gain and obesity and the underlying mechanisms before we can begin to approach targeted treatments.
Collapse
Affiliation(s)
- Ruchi Mathur
- Division of Endocrine Diabetes and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | |
Collapse
|
31
|
Galarza-Seeber R, Latorre JD, Bielke LR, Kuttappan VA, Wolfenden AD, Hernandez-Velasco X, Merino-Guzman R, Vicente JL, Donoghue A, Cross D, Hargis BM, Tellez G. Leaky Gut and Mycotoxins: Aflatoxin B1 Does Not Increase Gut Permeability in Broiler Chickens. Front Vet Sci 2016; 3:10. [PMID: 26913286 PMCID: PMC4753465 DOI: 10.3389/fvets.2016.00010] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 02/01/2016] [Indexed: 12/12/2022] Open
Abstract
Previous studies conducted in our laboratory have demonstrated that intestinal barrier function can be adversely affected by diet ingredients or feed restriction, resulting in increased intestinal inflammation-associated permeability. Two experiments were conducted in broilers to evaluate the effect of three concentrations of Aflatoxin B1 (AFB1; 2, 1.5, or 1 ppm) on gastrointestinal leakage and liver bacterial translocation (BT). In experiment 1, 240 day-of-hatch male broilers were allocated in two groups, each group had six replicates of 20 chickens (n = 120/group): Control feed or feed + 2 ppm AFB1. In experiment 2, 240 day-of-hatch male broilers were allocated in three groups, each group had five replicates of 16 chickens (n = 80/group): Control feed; feed + 1 ppm AFB1; or feed + 1.5 ppm AFB1. In both experiments, chickens were fed starter (days 1-7) and grower diets (days 8-21) ad libitum and performance parameters were evaluated every week. At day 21, all chicks received an oral gavage dose of FITC-d (4.16 mg/kg) 2.5 h before collecting blood samples to evaluate gastrointestinal leakage of FITC-d. In experiment 2, a hematologic analysis was also performed. Liver sections were aseptically collected and cultured using TSA plates to determine BT. Cecal contents were collected to determine total colony-forming units per gram of Gram-negative bacteria, lactic acid bacteria (LAB), or anaerobes by plating on selective media. In experiment 2, liver, spleen, and bursa of Fabricius were removed to determine organ weight ratio, and also intestinal samples were obtained for morphometric analysis. Performance parameters, organ weight ratio, and morphometric measurements were significantly different between Control and AFB1 groups in both experiments. Gut leakage of FITC-d was not affected by the three concentrations of AFB1 evaluated (P > 0.05). Interestingly, a significant reduction in BT was observed in chickens that received 2 and 1 ppm AFB1. An increase (P < 0.05) in total aerobic bacteria, total Gram negatives, and total LAB were observed in chickens fed with 2 and 1.5 ppm of AFB1 when compared with Control and 1 ppm chickens. The integrity of gut epithelial barrier was not compromised after exposure to the mycotoxin.
Collapse
Affiliation(s)
| | - Juan D Latorre
- Department of Poultry Science, University of Arkansas , Fayetteville, AR , USA
| | - Lisa R Bielke
- Department of Animal Sciences, The Ohio State University , Columbus, OH , USA
| | - Vivek A Kuttappan
- Department of Poultry Science, University of Arkansas , Fayetteville, AR , USA
| | - Amanda D Wolfenden
- Department of Poultry Science, University of Arkansas , Fayetteville, AR , USA
| | - Xochitl Hernandez-Velasco
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México , Mexico City , Mexico
| | - Ruben Merino-Guzman
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México , Mexico City , Mexico
| | | | - Annie Donoghue
- Poultry Production and Product Safety Research Unit, USDA Agricultural Research Service, Poultry Science Center, University of Arkansas , Fayetteville, AR , USA
| | - David Cross
- Department of Poultry Science, University of Arkansas , Fayetteville, AR , USA
| | - Billy M Hargis
- Department of Poultry Science, University of Arkansas , Fayetteville, AR , USA
| | - Guillermo Tellez
- Department of Poultry Science, University of Arkansas , Fayetteville, AR , USA
| |
Collapse
|
32
|
Barros AF, Borges NA, Ferreira DC, Carmo FL, Rosado AS, Fouque D, Mafra D. Is there interaction between gut microbial profile and cardiovascular risk in chronic kidney disease patients? Future Microbiol 2016; 10:517-26. [PMID: 25865191 DOI: 10.2217/fmb.14.140] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
AIM To evaluate the gut microbial profile in chronic kidney disease (CKD) patients and evaluate the possible relationship with inflammation and cardiovascular risk. PATIENTS & METHODS Markers inflammation plasma and bacterial community profile (denaturing gradient gel electrophoresis) were analyzed. RESULTS The average number of bands was not different in healthy individuals and CKD patients. The number of bands was negatively associated with plasma levels of VCAM-1 in patients. Flavobacteriaceae bacterium and Listeria monocytogenes were found in patients and Lachnospiraceae bacterium and Butyrivibrio crossotus in healthy individuals. CONCLUSION Although CKD patients did not present altered gut microbial profile, the sequencing of bands suggested a different microbiota between groups. The result suggests a possible relationship between gut microbiota and cardiovascular risk in CKD patients.
Collapse
Affiliation(s)
- Amanda F Barros
- Cardiovascular Sciences Graduate Program, Federal University Fluminense (UFF), Niterói-RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|
33
|
Martelli S, Pender SLF, Larbi A. Compartmentalization of immunosenescence: a deeper look at the mucosa. Biogerontology 2015; 17:159-76. [PMID: 26689202 DOI: 10.1007/s10522-015-9628-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/09/2015] [Indexed: 12/30/2022]
Abstract
Developments in medical care and living conditions led to an astonishing increase in life-span perspective and subsequently a rise in the old population. This can be seen as a success for public health policies but it also challenges society to adapt, in order to cope with the potentially overwhelming cost for the healthcare system. A fast-growing number of older people lose their ability to live independently because of diseases and disabilities, frailty or cognitive impairment. Many require long-term care, including home-based nursing, communities and hospital-based care. Immunosenescence, an age-related deterioration in immune functions, is considered a major contributory factor for the higher prevalence and severity of infectious diseases and the poor efficacy of vaccination in the elderly. When compared with systemic immunosenescence, alterations in the mucosal immune system with age are less well understood. For this reason, this area deserves more extensive and intensive research and support. In this article, we provide an overview of age-associated changes occurring in systemic immunity and discuss the distinct features of mucosal immunosenescence.
Collapse
Affiliation(s)
- Serena Martelli
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,Singapore Immunology Network (SIgN), Aging and Immunity Program, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Sylvia L F Pender
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Aging and Immunity Program, Agency for Science Technology and Research (A*STAR), Singapore, Singapore.
| |
Collapse
|
34
|
Kisseleva EP. Innate immunity underlies symbiotic relationships. BIOCHEMISTRY (MOSCOW) 2015; 79:1273-85. [PMID: 25716721 DOI: 10.1134/s0006297914120013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Here, the modern data regarding interactions between normal microbiota and barrier tissues in plants, humans and animals are reviewed. The main homeostatic mechanisms responsible for interactions between epithelium and innate immune cells with symbiotic bacteria are described. A key step in this process is recognition of soluble microbial products by ligation to pattern-recognition receptors expressed on the host cells. As a result, epithelial cells secrete mucus, antibacterial peptides and immunoregulatory molecules. The main outcomes from immunological reactions towards symbiotic bacteria involve development of conditions for formation and maintenance of microbial biocenosis as well as providing safety for the host. Also, it is considered important to preserve and transfer beneficial bacteria to progeny.
Collapse
Affiliation(s)
- E P Kisseleva
- Institute of Experimental Medicine, Russian Academy of Medical Sciences, St. Petersburg, 197376, Russia.
| |
Collapse
|
35
|
Barlow GM, Yu A, Mathur R. Role of the Gut Microbiome in Obesity and Diabetes Mellitus. Nutr Clin Pract 2015; 30:787-97. [PMID: 26452391 DOI: 10.1177/0884533615609896] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) and obesity represent two of the biggest global health challenges of this century and are associated with significant comorbidities and healthcare costs. Although multiple factors undoubtedly contribute to the development and progression of DM and obesity, research over the last decade has demonstrated that the microbes that colonize the human gut may play key contributory roles. Gut microbes are now known to codevelop with the human host and are strongly influenced by mode of birth and early diet and nutrition, as well as environmental and other factors including antibiotic exposure. Gut microbes contribute to human health through roles in polysaccharide breakdown, nutrient absorption, inflammatory responses, gut permeability, and bile acid modification. Numerous studies have suggested that disruptions in the relative proportions of gut microbial populations may contribute to weight gain and insulin resistance, including alterations in Gammaproteobacteria and Verrucomicrobia and the ratios of Firmicutes to Bacteroidetes in weight gain and possible alterations in butyrate-producing bacteria such as Faecalibacterium prausnitzii in DM. In addition, it has been shown that the methanogenic Archaea may contribute to altered metabolism and weight gain in the host. However, the majority of studies are performed with stool or colonic samples and may not be representative of the metabolically active small intestine. Studies predominantly in rodent models are beginning to elucidate the mechanisms by which gut microbes contribute to DM and obesity, but much remains to be learned before we can begin to approach targeted treatments.
Collapse
Affiliation(s)
- Gillian M Barlow
- GI Motility Program, Cedars-Sinai Medical Center, Los Angeles, California
| | - Allen Yu
- GI Motility Program, Cedars-Sinai Medical Center, Los Angeles, California
| | - Ruchi Mathur
- Division of Endocrine Diabetes and Metabolism, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
36
|
Immune mediators in the brain and peripheral tissues in autism spectrum disorder. Nat Rev Neurosci 2015; 16:469-86. [PMID: 26189694 DOI: 10.1038/nrn3978] [Citation(s) in RCA: 343] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Increasing evidence points to a central role for immune dysregulation in autism spectrum disorder (ASD). Several ASD risk genes encode components of the immune system and many maternal immune system-related risk factors--including autoimmunity, infection and fetal reactive antibodies--are associated with ASD. In addition, there is evidence of ongoing immune dysregulation in individuals with ASD and in animal models of this disorder. Recently, several molecular signalling pathways--including pathways downstream of cytokines, the receptor MET, major histocompatibility complex class I molecules, microglia and complement factors--have been identified that link immune activation to ASD phenotypes. Together, these findings indicate that the immune system is a point of convergence for multiple ASD-related genetic and environmental risk factors.
Collapse
|
37
|
Saeedi P, Salimian J, Ahmadi A, Imani Fooladi AA. The transient but not resident (TBNR) microbiome: a Yin Yang model for lung immune system. Inhal Toxicol 2015; 27:451-61. [PMID: 26307905 DOI: 10.3109/08958378.2015.1070220] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The concept of microbial content of the lung is still controversial. What make this more complicated are controversial results obtaining from different methodologies about lung microbiome and the definition of "lung sterility". Lungs may have very low bacteria but are not completely germ-free. Bacteria are constantly entering from the upper respiratory tract, but are then quickly being cleared. We can find bacterial DNA in the lungs, but it is much harder to ask about living bacteria. Here, we propose that if there is any trafficking of the microorganisms in the lung, it should be a "Transient But Not Resident (TBNR)" model. So, we speculate a "Yin Yang model" for the lung immune system and TBNR. Despite beneficial roles of microbiome on the development of lung immune system, any disruption and alteration in the microbiota composition of upper and lower airways may trigger or lead to several diseases such as asthma, chronic obstructive pulmonary disease and mustard lung disease.
Collapse
Affiliation(s)
| | - Jafar Salimian
- b Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Ali Ahmadi
- a Applied Microbiology Research Center and
| | | |
Collapse
|
38
|
Tellez G, Latorre JD, Kuttappan VA, Hargis BM, Hernandez-Velasco X. Rye affects bacterial translocation, intestinal viscosity, microbiota composition and bone mineralization in Turkey poults. PLoS One 2015; 10:e0122390. [PMID: 25849537 PMCID: PMC4388489 DOI: 10.1371/journal.pone.0122390] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 02/24/2015] [Indexed: 12/18/2022] Open
Abstract
Previously, we have reported that rye significantly increased both viscosity and Clostridium perfringens proliferation when compared with corn in an in vitro digestive model. Two independent trials were conducted to evaluate the effect of rye as a source of energy on bacterial translocation, intestinal viscosity, gut microbiota composition, and bone mineralization, when compared with corn in turkey poults. In each experiment, day-of-hatch, turkey poults were randomly assigned to either a corn or a rye diet (n = 0 /group). At 10 d of age, in both experiments, 12 birds/group were given an oral gavage dose of fluorescein isothiocyanate dextran (FITC-d). After 2.5 h of oral gavage, blood and liver samples were collected to evaluate the passage of FITC-d and bacterial translocation (BT) respectively. Duodenum, ileum and cecum gut sections were collected to evaluate intestinal viscosity and to enumerate gut microbiota. Tibias were collected for observation of bone parameters. Broilers fed with a rye diet showed increased (p<0.05) intestinal viscosity, BT, and serum FITC-d. Bacterial enumeration revealed that turkey poults fed with rye had increased the number of total lactic acid bacteria (LAB) in all three sections of the gastrointestinal tract evaluated when compared to turkey poults fed with corn. Turkey poults fed with rye also had significantly higher coliforms in duodenum and ileum but not in the ceca, whereas the total number of anaerobes increased only in duodenum. A significant reduction in bone strength and bone mineralization was observed in turkey poults fed with rye when compared with corn fed turkey poults. In conclusion, rye evoked mucosal damage in turkey poults that increased intestinal viscosity, increased leakage through the intestinal tract, and altered the microbiota composition and bone mineralization. Studies to evaluate dietary inclusion of selected Direct-Fed Microbial (DFM) candidates that produce exogenous enzymes in rye fed turkey poults are currently being evaluated.
Collapse
Affiliation(s)
- Guillermo Tellez
- Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Juan D Latorre
- Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Vivek A Kuttappan
- Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Billy M Hargis
- Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Xochitl Hernandez-Velasco
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, México D.F., México
| |
Collapse
|
39
|
Téllez G, Lauková A, Latorre JD, Hernandez-Velasco X, Hargis BM, Callaway T. Food-producing animals and their health in relation to human health. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2015; 26:25876. [PMID: 25651994 PMCID: PMC4315780 DOI: 10.3402/mehd.v26.25876] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The fields of immunology, microbiology, and nutrition converge in an astonishing way. Dietary ingredients have a profound effect on the composition of the gut microflora, which in turn regulates the physiology of metazoans. As such, nutritional components of the diet are of critical importance not only for meeting the nutrient requirements of the host, but also for the microbiome. During their coevolution, bacterial microbiota has established multiple mechanisms to influence the eukaryotic host, generally in a beneficial fashion. The microbiome encrypts a variety of metabolic functions that complements the physiology of their hosts. Over a century ago Eli Metchnikoff proposed the revolutionary idea to consume viable bacteria to promote health by modulating the intestinal microflora. The idea is more applicable now than ever, since bacterial antimicrobial resistance has become a serious worldwide problem both in medical and agricultural fields. The impending ban of antibiotics in animal feed due to the current concern over the spread of antibiotic resistance genes makes a compelling case for the development of alternative prophylactics. Nutritional approaches to counteract the debilitating effects of stress and infection may provide producers with useful alternatives to antibiotics. Improving the disease resistance of animals grown without antibiotics will benefit the animals’ health, welfare, and production efficiency, and is also a key strategy in the effort to improve the microbiological safe status of animal-derived food products (e.g. by poultry, rabbits, ruminants, or pigs). This review presents some of the alternatives currently used in food-producing animals to influence their health in relation to human health.
Collapse
Affiliation(s)
- Guillermo Téllez
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA;
| | - Andrea Lauková
- Institute of Animal Physiology, Slovak Academy of Sciences, Košice, Slovakia
| | - Juan D Latorre
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Xochitl Hernandez-Velasco
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, México City, México
| | - Billy M Hargis
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | | |
Collapse
|
40
|
New role for human α-defensin 5 in the fight against hypervirulent Clostridium difficile strains. Infect Immun 2014; 83:986-95. [PMID: 25547793 DOI: 10.1128/iai.02955-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Clostridium difficile infection (CDI), one of the most common hospital-acquired infections, is increasing in incidence and severity with the emergence and diffusion of hypervirulent strains. CDI is precipitated by antibiotic treatment that destroys the equilibrium of the gut microbiota. Human α-defensin 5 (HD5), the most abundant enteric antimicrobial peptide, is a key regulator of gut microbiota homeostasis, yet it is still unknown if C. difficile, which successfully evades killing by other host microbicidal peptides, is susceptible to HD5. We evaluated, by means of viability assay, fluorescence-activated cell sorter (FACS) analysis, and electron microscopy, the antimicrobial activities of α-defensins 1 and 5 against a panel of C. difficile strains encompassing the most prevalent epidemic and hypervirulent PCR ribotypes in Europe (012, 014/020, 106, 018, 027, and 078). Here we show that (i) concentrations of HD5 within the intestinal physiological range produced massive C. difficile cell killing; (ii) HD5 bactericidal activity was mediated by membrane depolarization and bacterial fragmentation with a pattern of damage peculiar to C. difficile bacilli, compared to commensals like Escherichia coli and Enterococcus faecalis; and (iii) unexpectedly, hypervirulent ribotypes were among the most susceptible to both defensins. These results support the notion that HD5, naturally present at very high concentrations in the mucosa of the small intestine, could indeed control the very early steps of CDI by killing C. difficile bacilli at their germination site. As a consequence, HD5 can be regarded as a good candidate for the containment of hypervirulent C. difficile strains, and it could be exploited in the therapy of CDI and relapsing C. difficile-associated disease.
Collapse
|
41
|
Latorre JD, Hernandez-Velasco X, Kogut MH, Vicente JL, Wolfenden R, Wolfenden A, Hargis BM, Kuttappan VA, Tellez G. Role of a Bacillus subtilis Direct-Fed Microbial on Digesta Viscosity, Bacterial Translocation, and Bone Mineralization in Turkey Poults Fed with a Rye-Based Diet. Front Vet Sci 2014; 1:26. [PMID: 26664925 PMCID: PMC4668850 DOI: 10.3389/fvets.2014.00026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/01/2014] [Indexed: 12/21/2022] Open
Abstract
Rye contains high concentrations of non-starch polysaccharides (NSPs), leading to reduced digestibility. Since poultry have little or no endogenous enzymes capable of hydrolyzing these NSP, exogenous carbohydrases as feed additives are used in an attempt to reduce the anti-nutritional effects of these polysaccharides. Previously, an in vitro study conducted in our laboratory showed that inclusion of certain Bacillus direct-fed microbial (DFM) candidates that produce exogenous phytase, lipase, protease, cellulase, and xylanase in high-NSP diets significantly reduced both digesta viscosity and Clostridium perfringens proliferation. In the present study, rye-based turkey starter diets with or without Bacillus-DFM were administered ad libitum to day-of-hatch turkey poults in two independent experiments. In both experiments, day-of-hatch turkey poults were randomly assigned to either a control diet (CON) or a DFM treated diet (n = 25 birds/group). At 10 days-of-age, all turkey poults from experiments 1 and 2 were weighted and 12 turkey poults/group were randomly selected and humanely killed. Liver samples were aseptically collected to evaluate bacterial translocation, and intestinal digesta samples were individually collected to evaluate viscosity. Additionally, in experiment 2 both tibias were removed for assessment of bone parameters. In both experiments, the treated group showed a reduction in the total number of coliforms in the liver and a reduced digesta viscosity when compared to the CON group (P < 0.05). Turkey poults fed the Bacillus-DFM candidate had increased tibia diameter, breaking strength, ash content, calcium content, and phosphorus content when compared with CON turkey poults. In summary, turkey poults fed with a rye-based diet without DFM showed an increase in bacterial translocation and digesta viscosity, accompanied by a reduction in bone mineralization; however, these adverse effects can be prevented by the inclusion of selected a Bacillus-DFM candidate in high-NSP diets.
Collapse
Affiliation(s)
- Juan D Latorre
- Department of Poultry Science, University of Arkansas , Fayetteville, AR , USA
| | - Xochitl Hernandez-Velasco
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México , Mexico City , Mexico
| | - Michael H Kogut
- United States Department of Agriculture - Agricultural Research Service, Southern Plains Agricultural Research Center , College Station, TX , USA
| | | | | | - Amanda Wolfenden
- Department of Poultry Science, University of Arkansas , Fayetteville, AR , USA
| | - Billy M Hargis
- Department of Poultry Science, University of Arkansas , Fayetteville, AR , USA
| | - Vivek A Kuttappan
- Department of Poultry Science, University of Arkansas , Fayetteville, AR , USA
| | - Guillermo Tellez
- Department of Poultry Science, University of Arkansas , Fayetteville, AR , USA
| |
Collapse
|
42
|
Xiong W, Giannone RJ, Morowitz MJ, Banfield JF, Hettich RL. Development of an enhanced metaproteomic approach for deepening the microbiome characterization of the human infant gut. J Proteome Res 2014; 14:133-41. [PMID: 25350865 PMCID: PMC4286196 DOI: 10.1021/pr500936p] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
The establishment of early life microbiota
in the human infant
gut is highly variable and plays a crucial role in host nutrient availability/uptake
and maturation of immunity. Although high-performance mass spectrometry
(MS)-based metaproteomics is a powerful method for the functional
characterization of complex microbial communities, the acquisition
of comprehensive metaproteomic information in human fecal samples
is inhibited by the presence of abundant human proteins. To alleviate
this restriction, we have designed a novel metaproteomic strategy
based on double filtering (DF) the raw samples, a method that fractionates
microbial from human cells to enhance microbial protein identification
and characterization in complex fecal samples from healthy premature
infants. This method dramatically improved the overall depth of infant
gut proteome measurement, with an increase in the number of identified
low-abundance proteins and a greater than 2-fold improvement in microbial
protein identification and quantification. This enhancement of proteome
measurement depth enabled a more extensive microbiome comparison between
infants by not only increasing the confidence of identified microbial
functional categories but also revealing previously undetected categories.
Collapse
Affiliation(s)
- Weili Xiong
- Chemical Sciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | | | | | | | | |
Collapse
|
43
|
Bowcutt R, Forman R, Glymenaki M, Carding SR, Else KJ, Cruickshank SM. Heterogeneity across the murine small and large intestine. World J Gastroenterol 2014; 20:15216-15232. [PMID: 25386070 PMCID: PMC4223255 DOI: 10.3748/wjg.v20.i41.15216] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/18/2014] [Accepted: 06/17/2014] [Indexed: 02/06/2023] Open
Abstract
The small and large intestine of the gastrointestinal tract (GIT) have evolved to have discrete functions with distinct anatomies and immune cell composition. The importance of these differences is underlined when considering that different pathogens have uniquely adapted to live in each region of the gut. Furthermore, different regions of the GIT are also associated with differences in susceptibility to diseases such as cancer and chronic inflammation. The large and small intestine, given their anatomical and functional differences, should be seen as two separate immunological sites. However, this distinction is often ignored with findings from one area of the GIT being inappropriately extrapolated to the other. Focussing largely on the murine small and large intestine, this review addresses the literature relating to the immunology and biology of the two sites, drawing comparisons between them and clarifying similarities and differences. We also highlight the gaps in our understanding and where further research is needed.
Collapse
|
44
|
Mastroianni JR, Lu W, Selsted ME, Ouellette AJ. Differential Susceptibility of Bacteria to Mouse Paneth Cell α-Defensins under Anaerobic Conditions. Antibiotics (Basel) 2014; 3:493-508. [PMID: 25383215 PMCID: PMC4220453 DOI: 10.3390/antibiotics3040493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Small intestinal Paneth cells secrete α-defensin peptides, termed cryptdins (Crps) in mice, into the intestinal lumen, where they confer immunity to oral infections and define the composition of the ileal microbiota. In these studies, facultative bacteria maintained under aerobic or anaerobic conditions displayed differential sensitivities to mouse α-defensins under in vitro assay conditions. Regardless of oxygenation, Crps 2 and 3 had robust and similar bactericidal activities against S. typhimurium and S. flexneri, but Crp4 activity against S. flexneri was attenuated in the absence of oxygen. Anaerobic bacteria varied in their susceptibility to Crps 2-4, with Crp4 showing less activity than Crps 2 and 3 against Enterococcus faecalis, and Bacteroides fragilis in anaerobic assays, but Fusobacterium necrophorum was killed only by Crp4 and not by Crps 2 and 3. The influence of anaerobiosis in modulating Crp bactericidal activities in vitro suggests that α-defensin effects on the enteric microbiota may be subject to regulation by local oxygen tension.
Collapse
Affiliation(s)
- Jennifer R. Mastroianni
- Department of Pathology and Laboratory Medicine, Keck School of Medicine of the University of Southern California, USC Norris Cancer Center, Los Angeles, CA 90089-9601, USA; E-Mails: (J.R.M.); (M.E.S.)
| | - Wuyuan Lu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Institute of Human Virology, Baltimore, MD 21201, USA; E-Mail:
| | - Michael E. Selsted
- Department of Pathology and Laboratory Medicine, Keck School of Medicine of the University of Southern California, USC Norris Cancer Center, Los Angeles, CA 90089-9601, USA; E-Mails: (J.R.M.); (M.E.S.)
| | - André J. Ouellette
- Department of Pathology and Laboratory Medicine, Keck School of Medicine of the University of Southern California, USC Norris Cancer Center, Los Angeles, CA 90089-9601, USA; E-Mails: (J.R.M.); (M.E.S.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-323-442-7959
| |
Collapse
|
45
|
Tellez G. Prokaryotes Versus Eukaryotes: Who is Hosting Whom? Front Vet Sci 2014; 1:3. [PMID: 26664911 PMCID: PMC4668860 DOI: 10.3389/fvets.2014.00003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/23/2014] [Indexed: 01/22/2023] Open
Abstract
Microorganisms represent the largest component of biodiversity in our world. For millions of years, prokaryotic microorganisms have functioned as a major selective force shaping eukaryotic evolution. Microbes that live inside and on animals outnumber the animals' actual somatic and germ cells by an estimated 10-fold. Collectively, the intestinal microbiome represents a "forgotten organ," functioning as an organ inside another that can execute many physiological responsibilities. The nature of primitive eukaryotes was drastically changed due to the association with symbiotic prokaryotes facilitating mutual coevolution of host and microbe. Phytophagous insects have long been used to test theories of evolutionary diversification; moreover, the diversification of a number of phytophagous insect lineages has been linked to mutualisms with microbes. From termites and honey bees to ruminants and mammals, depending on novel biochemistries provided by the prokaryotic microbiome, the association helps to metabolize several nutrients that the host cannot digest and converting these into useful end products (such as short-chain fatty acids), a process, which has huge impact on the biology and homeostasis of metazoans. More importantly, in a direct and/or indirect way, the intestinal microbiota influences the assembly of gut-associated lymphoid tissue, helps to educate immune system, affects the integrity of the intestinal mucosal barrier, modulates proliferation and differentiation of its epithelial lineages, regulates angiogenesis, and modifies the activity of enteric as well as the central nervous system. Despite these important effects, the mechanisms by which the gut microbial community influences the host's biology remain almost entirely unknown. Our aim here is to encourage empirical inquiry into the relationship between mutualism and evolutionary diversification between prokaryotes and eukaryotes, which encourage us to postulate: who is hosting whom?
Collapse
Affiliation(s)
- Guillermo Tellez
- The John Kirkpatrick Skeeles Poultry Health Laboratory, Department of Poultry Science, The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
46
|
Tellez G, Latorre JD, Kuttappan VA, Kogut MH, Wolfenden A, Hernandez-Velasco X, Hargis BM, Bottje WG, Bielke LR, Faulkner OB. Utilization of rye as energy source affects bacterial translocation, intestinal viscosity, microbiota composition, and bone mineralization in broiler chickens. Front Genet 2014; 5:339. [PMID: 25309584 PMCID: PMC4174888 DOI: 10.3389/fgene.2014.00339] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 09/10/2014] [Indexed: 12/11/2022] Open
Abstract
Two independent trials were conducted to evaluate the utilization of rye as energy source on bacterial translocation (BT), intestinal viscosity, gut integrity, gut microbiota composition, and bone mineralization, when compared with a traditional cereal (corn) in broiler chickens. In each experiment, day-of-hatch, broiler chickens were randomly assigned to either a corn or a rye diet (n = 20 chickens/group). At 10 d of age, in both experiments, 12 chickens/group were randomly selected, and given an oral gavage dose of fluorescein isothiocyanate dextran (FITC-d). After 2.5 h of oral gavage, blood samples were collected to determine the passage of FITC-d. The liver was collected from each bird to evaluate BT. Duodenum, ileum, and cecum gut sections were collected to evaluate intestinal viscosity and to enumerate gut microbiota. Tibias were collected for observation of bone parameters. Broilers fed with rye showed increased (p < 0.05) intestinal viscosity, BT, and serum FITC-d. Bacterial enumeration revealed that chickens fed with rye had increased the number of total lactic acid bacteria in all three sections of the gastrointestinal tract evaluated when compared to chickens fed with corn. Chickens fed with rye also had significantly higher coliforms in duodenum and ileum, whereas the total number of anaerobes increased only in duodenum. A significant reduction in bone strength and bone mineralization was observed in chickens fed with rye when compared with corn fed chickens. In conclusion, rye evoked mucosal damage in chickens that alter the intestinal viscosity, increased leakage through the intestinal tract, and altered the microbiota composition as well as bone mineralization. Studies to evaluate dietary inclusion of selected DFM candidates that produce exogenous enzymes in rye fed chickens are currently being evaluated.
Collapse
Affiliation(s)
- Guillermo Tellez
- The John Kirkpatrick Skeeles Poultry Health Laboratory, Department of Poultry Science and The Center of Excellence for Poultry Science, University of Arkansas Fayetteville, AR, USA
| | - Juan D Latorre
- The John Kirkpatrick Skeeles Poultry Health Laboratory, Department of Poultry Science and The Center of Excellence for Poultry Science, University of Arkansas Fayetteville, AR, USA
| | - Vivek A Kuttappan
- The John Kirkpatrick Skeeles Poultry Health Laboratory, Department of Poultry Science and The Center of Excellence for Poultry Science, University of Arkansas Fayetteville, AR, USA
| | - Michael H Kogut
- Southern Plains Area Home, United States Department of Agriculture - Agricultural Research Service, College Station TX, USA
| | - Amanda Wolfenden
- The John Kirkpatrick Skeeles Poultry Health Laboratory, Department of Poultry Science and The Center of Excellence for Poultry Science, University of Arkansas Fayetteville, AR, USA
| | - Xochitl Hernandez-Velasco
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México Mexico City, México
| | - Billy M Hargis
- The John Kirkpatrick Skeeles Poultry Health Laboratory, Department of Poultry Science and The Center of Excellence for Poultry Science, University of Arkansas Fayetteville, AR, USA
| | - Walter G Bottje
- The John Kirkpatrick Skeeles Poultry Health Laboratory, Department of Poultry Science and The Center of Excellence for Poultry Science, University of Arkansas Fayetteville, AR, USA
| | - Lisa R Bielke
- The John Kirkpatrick Skeeles Poultry Health Laboratory, Department of Poultry Science and The Center of Excellence for Poultry Science, University of Arkansas Fayetteville, AR, USA
| | - Olivia B Faulkner
- The John Kirkpatrick Skeeles Poultry Health Laboratory, Department of Poultry Science and The Center of Excellence for Poultry Science, University of Arkansas Fayetteville, AR, USA
| |
Collapse
|
47
|
Delgado R, Latorre J, Vicuña E, Hernandez-Velasco X, Vicente J, Menconi A, Kallapura G, Layton S, Hargis B, Téllez G. Glycerol supplementation enhances the protective effect of dietary FloraMax-B11 against Salmonella Enteritidis colonization in neonate broiler chickens. Poult Sci 2014; 93:2363-9. [DOI: 10.3382/ps.2014-03927] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
48
|
Terán-Ventura E, Aguilera M, Vergara P, Martínez V. Specific changes of gut commensal microbiota and TLRs during indomethacin-induced acute intestinal inflammation in rats. J Crohns Colitis 2014; 8:1043-54. [PMID: 24566169 DOI: 10.1016/j.crohns.2014.02.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 01/21/2014] [Accepted: 02/04/2014] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Gut microbiota is a contributing factor in the development and maintenance of intestinal inflammation, although precise cause-effect relationships have not been established. We assessed spontaneous changes of gut commensal microbiota and toll-like receptors (TLRs)-mediated host-bacterial interactions in a model of indomethacin-induced acute enteritis in rats. METHODS Male Spague-Dawley rats, maintained under conventional conditions, were used. Enteritis was induced by systemic indomethacin administration. During the acute phase of inflammation, animals were euthanized and ileal and ceco-colonic changes evaluated. Inflammation was assessed through disease activity parameters (clinical signs, macroscopic/microscopic scores and tissue levels of inflammatory markers). Microbiota (ileal and ceco-colonic) was characterized using fluorescent in situ hybridization (FISH) and analysis of 16s rDNA polymorphism. Host-bacterial interactions were assessed evaluating the ratio of bacterial adherence to the intestinal wall (FISH) and expression of TLRs 2 and 4 (RT-PCR). RESULTS After indomethacin, disease activity parameters increased, suggesting an active inflammation. Total bacterial counts were similar in vehicle- or indomethacin-treated animals. However, during inflammation the relative composition of the microbiota was altered. This dysbiotic state was characterized by an increase in the counts of Bacteroides spp., Enterobacteriaceae (in ileum and cecum-colon) and Clostridium spp. (in ileum). Bacterial wall adherence significantly increased during inflammation. In animals with enteritis, TLR-2 and -4 were up-regulated both in the ileum and the ceco-colonic region. CONCLUSIONS Gut inflammation implies qualitative changes in GCM, with simultaneous alterations in host-bacterial interactions. These observations further support a potential role for gut microbiota in the pathophysiology of intestinal inflammation.
Collapse
Affiliation(s)
- Evangelina Terán-Ventura
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mònica Aguilera
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain; Neuroscience Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Patri Vergara
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain; Neuroscience Institute, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Spain
| | - Vicente Martínez
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain; Neuroscience Institute, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Spain.
| |
Collapse
|
49
|
Venkatesh M, Mukherjee S, Wang H, Li H, Sun K, Benechet AP, Qiu Z, Maher L, Redinbo MR, Phillips RS, Fleet JC, Kortagere S, Mukherjee P, Fasano A, Le Ven J, Nicholson JK, Dumas ME, Khanna KM, Mani S. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity 2014; 41:296-310. [PMID: 25065623 DOI: 10.1016/j.immuni.2014.06.014] [Citation(s) in RCA: 723] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 05/30/2014] [Indexed: 02/07/2023]
Abstract
Intestinal microbial metabolites are conjectured to affect mucosal integrity through an incompletely characterized mechanism. Here we showed that microbial-specific indoles regulated intestinal barrier function through the xenobiotic sensor, pregnane X receptor (PXR). Indole 3-propionic acid (IPA), in the context of indole, is a ligand for PXR in vivo, and IPA downregulated enterocyte TNF-α while it upregulated junctional protein-coding mRNAs. PXR-deficient (Nr1i2(-/-)) mice showed a distinctly "leaky" gut physiology coupled with upregulation of the Toll-like receptor (TLR) signaling pathway. These defects in the epithelial barrier were corrected in Nr1i2(-/-)Tlr4(-/-) mice. Our results demonstrate that a direct chemical communication between the intestinal symbionts and PXR regulates mucosal integrity through a pathway that involves luminal sensing and signaling by TLR4.
Collapse
Affiliation(s)
- Madhukumar Venkatesh
- Departments of Genetics and Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Subhajit Mukherjee
- Departments of Genetics and Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Hongwei Wang
- Departments of Genetics and Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Hao Li
- Departments of Genetics and Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Katherine Sun
- Department of Pathology, Montefiore Medical Center, Bronx, NY 10467, USA
| | - Alexandre P Benechet
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Zhijuan Qiu
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Leigh Maher
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Matthew R Redinbo
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Robert S Phillips
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - James C Fleet
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Sandhya Kortagere
- Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Paromita Mukherjee
- Departments of Genetics and Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Alessio Fasano
- Department of Pediatrics, MassGeneral Hospital for Children, Harvard Medical School, Boston, MA 02114, USA
| | - Jessica Le Ven
- Section of Biomolecular Medicine, Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, UK
| | - Jeremy K Nicholson
- Section of Biomolecular Medicine, Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, UK
| | - Marc E Dumas
- Section of Biomolecular Medicine, Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, UK
| | - Kamal M Khanna
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Sridhar Mani
- Departments of Genetics and Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
50
|
Abstract
Humans are host to trillions of microbial colonizers that contribute significantly to human health and disease. Advances in sequencing and other technologies have facilitated dramatic advances in our knowledge of the types and number of organisms colonizing different areas of the body, and while our knowledge of the roles played by the different bacteria, fungi, and archaea has increased dramatically, there remains much to uncover. The microbes that colonize the human gut contribute to vitamin biosynthesis, immune modulation, and the breakdown of otherwise indigestible foods for nutrient harvest. Bacteria and archaea produce various gases as by-products of fermentation, and it is becoming increasingly understood that these gases have both direct and indirect effects on the gut, and may also be used as diagnostic markers, e.g., hydrogen production as measured by breath testing can be used to diagnose bacterial overgrowth. In this article, we review the roles and effects of hydrogen (H2), methane (CH4) and hydrogen sulfide (H2S) in the human gut.
Collapse
|