1
|
Luo C, Zhang L, Cao M, Zhang L, Xu Y, Liu Z. Trade-off between pathogen control and seed viability: Engineering hydrothermal wastewater towards agricultural sustainable development and food security. WATER RESEARCH 2025; 281:123567. [PMID: 40174567 DOI: 10.1016/j.watres.2025.123567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/13/2025] [Accepted: 03/27/2025] [Indexed: 04/04/2025]
Abstract
Ensuring the balance between pathogen control and seed viability is critical for advancing sustainable agricultural practices. Hydrothermal liquefaction aqueous phase (HTL-AP), a renewable byproduct of biomass processing, exhibits promising antifungal properties but poses challenges due to its concentration-dependent phytotoxicity. Here we report trade-off and tailored protocol for simultaneously efficient antifungal and seed growth via engineering HTL-AP based disinfectant. Employing wheat and cabbage seeds contaminated with pathogenic fungi as representative crop seeds, HTL-AP achieved complete inhibition of fungal growth at a concentration of 4.8 %, whereas seed viability was negatively impacted by HTL-AP at low dilution ratios (i.e., × 1, × 2). Customized disinfection protocols were developed tailored to different seeds, involving adjustments of HTL-AP concentration, exposure time, and wash post-treatment, in order to achieve the optimal trade off, comparable to that of conventional disinfectants. The multifaceted disinfection mechanisms of HTL-AP were discussed, including cell membrane disruption, metabolic pathways interference, and enzyme system damage. This study underscores the significance for a customized strategy in both pathogen reduction and the promotion of plant health. By engineering a renewable HTL-AP reagent, this research advances sustainable agricultural practices and bolsters global food security.
Collapse
Affiliation(s)
- Cheng Luo
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, PR China
| | - Leli Zhang
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, PR China
| | - Maojiong Cao
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, PR China
| | - Linyan Zhang
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yongdong Xu
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, PR China; State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100083, PR China.
| | - Zhidan Liu
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, PR China; State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100083, PR China.
| |
Collapse
|
2
|
Bhowmick S, Viveros RP, Latoscha A, Commichau FM, Wrede C, Al-Bassam MM, Tschowri N. Cell shape and division septa positioning in filamentous Streptomyces require a functional cell wall glycopolymer ligase CglA. mBio 2024; 15:e0149224. [PMID: 39248520 PMCID: PMC11481543 DOI: 10.1128/mbio.01492-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024] Open
Abstract
The cell wall of monoderm bacteria consists of peptidoglycan and glycopolymers in roughly equal proportions and is crucial for cellular integrity, cell shape, and bacterial vitality. Despite the immense value of Streptomyces in biotechnology and medicine as antibiotic producers, we know very little about their cell wall biogenesis, composition, and functions. Here, we have identified the LCP-LytR_C domain protein CglA (Vnz_13690) as a key glycopolymer ligase, which specifically localizes in zones of cell wall biosynthesis in S. venezuelae. Reduced amount of glycopolymers in the cglA mutant results in enlarged vegetative hyphae and failures in FtsZ-rings formation and positioning. Consequently, division septa are misplaced leading to the formation of aberrant cell compartments, misshaped spores, and reduced cell vitality. In addition, we report our discovery that c-di-AMP signaling and decoration of the cell wall with glycopolymers are physiologically linked in Streptomyces since the deletion of cglA restores growth of the S. venezuelae disA mutant at high salt. Altogether, we have identified and characterized CglA as a novel component of cell wall biogenesis in Streptomyces, which is required for cell shape maintenance and cellular vitality in filamentous, multicellular bacteria.IMPORTANCEStreptomyces are our key producers of antibitiotics and other bioactive molecules and are, therefore, of high value for medicine and biotechnology. They proliferate by apical extension and branching of hyphae and undergo complex cell differentiation from filaments to spores during their life cycle. For both, growth and sporulation, coordinated cell wall biogenesis is crucial. However, our knowledge about cell wall biosynthesis, functions, and architecture in Streptomyces and in other Actinomycetota is still very limited. Here, we identify CglA as the key enzyme needed for the attachment of glycopolymers to the cell wall of S. venezuelae. We demonstrate that defects in the cell wall glycopolymer content result in loss of cell shape in these filamentous bacteria and show that division-competent FtsZ-rings cannot assemble properly and fail to be positioned correctly. As a consequence, cell septa placement is disturbed leading to the formation of misshaped spores with reduced viability.
Collapse
Affiliation(s)
- Sukanya Bhowmick
- Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany
| | - Ruth P. Viveros
- Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany
| | - Andreas Latoscha
- Institute of Biology/Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Fabian M. Commichau
- Institute of Biology, FG Molecular Microbiology 190 h, Universität Hohenheim, Stuttgart, Germany
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy, Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| | | | - Natalia Tschowri
- Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany
| |
Collapse
|
3
|
Shepherdson EMF, Elliot MA. Redefining development in Streptomyces venezuelae: integrating exploration into the classical sporulating life cycle. mBio 2024; 15:e0242423. [PMID: 38470267 PMCID: PMC11005364 DOI: 10.1128/mbio.02424-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/23/2024] [Indexed: 03/13/2024] Open
Abstract
Two growth modes have been described for the filamentous Streptomyces bacteria. Their classic developmental life cycle culminates in the formation of dormant spores, where movement to new environments is mediated through spore dispersal. In contrast, exploratory growth proceeds as a rapidly expanding vegetative mycelium that leads to extensive surface colonization and is associated with the release of volatile compounds that promote alkalinization (and reduced iron bioavailability) of its surrounding environment. Here, we report that exploratory growth in Streptomyces venezuelae can proceed in tandem with classic sporulating development in response to specific nutritional cues. Sporulating exploration is not accompanied by a rise in environmental pH but has the same iron acquisition requirements as conventional exploration. We found that mutants that were defective in their ability to sporulate were unaffected in exploration, but mutants undergoing precocious sporulation were compromised in their exploratory growth and this appeared to be mediated through premature activation of the developmental regulator WhiI. Cell envelope integrity was also found to be critical for exploration, as mutations in the cell envelope stress-responsive extracytoplasmic function sigma factor SigE led to a failure to explore robustly under all exploration-promoting conditions. Finally, in expanding the known exploration-promoting conditions, we discovered that the model species Streptomyces lividans exhibited exploration capabilities, supporting the proposal that exploration is conserved across diverse streptomycetes. IMPORTANCE Streptomyces bacteria have evolved diverse developmental and metabolic strategies to thrive in dynamic environmental niches. Here, we report the amalgamation of previously disparate developmental pathways, showing that colony expansion via exploration can proceed in tandem with colony sporulation. This developmental integration extends beyond phenotype to include shared genetic elements, with sporulation-specific repressors being required for successful exploration. Comparing this new exploration mode with previously identified strategies has revealed key differences (e.g., no need for environmental alkalinization), and simultaneously allowed us to define unifying requirements for Streptomyces exploration. The "reproductive exploration" phenomenon reported here represents a unique bet-hedging strategy, with the Streptomyces colony engaging in an aggressive colonization strategy while transporting a protected genetic repository.
Collapse
Affiliation(s)
- Evan M. F. Shepherdson
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Marie A. Elliot
- Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
4
|
Pląskowska K, Zakrzewska-Czerwińska J. Chromosome structure and DNA replication dynamics during the life cycle of the predatory bacterium Bdellovibrio bacteriovorus. FEMS Microbiol Rev 2023; 47:fuad057. [PMID: 37791401 PMCID: PMC11318664 DOI: 10.1093/femsre/fuad057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/05/2023] Open
Abstract
Bdellovibrio bacteriovorus, an obligate predatory Gram-negative bacterium that proliferates inside and kills other Gram-negative bacteria, was discovered more than 60 years ago. However, we have only recently begun to understand the detailed cell biology of this proficient bacterial killer. Bdellovibrio bacteriovorus exhibits a peculiar life cycle and bimodal proliferation, and thus represents an attractive model for studying novel aspects of bacterial cell biology. The life cycle of B. bacteriovorus consists of two phases: a free-living nonreplicative attack phase and an intracellular reproductive phase. During the reproductive phase, B. bacteriovorus grows as an elongated cell and undergoes binary or nonbinary fission, depending on the prey size. In this review, we discuss: (1) how the chromosome structure of B. bacteriovorus is remodeled during its life cycle; (2) how its chromosome replication dynamics depends on the proliferation mode; (3) how the initiation of chromosome replication is controlled during the life cycle, and (4) how chromosome replication is spatiotemporally coordinated with the proliferation program.
Collapse
Affiliation(s)
- Karolina Pląskowska
- Department of Molecular Microbiology, Faculty of Biotechnology, University
of Wrocław, ul. Joliot-Curie 14A, Wrocław,
Poland
| | - Jolanta Zakrzewska-Czerwińska
- Department of Molecular Microbiology, Faculty of Biotechnology, University
of Wrocław, ul. Joliot-Curie 14A, Wrocław,
Poland
| |
Collapse
|
5
|
Velázquez-Suárez C, Springstein BL, Nieves-Morión M, Helbig AO, Kieninger AK, Maldener I, Nürnberg DJ, Stucken K, Luque I, Dagan T, Herrero A. SepT, a novel protein specific to multicellular cyanobacteria, influences peptidoglycan growth and septal nanopore formation in Anabaena sp. PCC 7120. mBio 2023; 14:e0098323. [PMID: 37650636 PMCID: PMC10653889 DOI: 10.1128/mbio.00983-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/27/2023] [Indexed: 09/01/2023] Open
Abstract
IMPORTANCE Multicellular organization is a requirement for the development of complex organisms, and filamentous cyanobacteria such as Anabaena represent a paradigmatic case of bacterial multicellularity. The Anabaena filament can include hundreds of communicated cells that exchange nutrients and regulators and, depending on environmental conditions, can include different cell types specialized in distinct biological functions. Hence, the specific features of the Anabaena filament and how they are propagated during cell division represent outstanding biological issues. Here, we studied SepT, a novel coiled-coil-rich protein of Anabaena that is located in the intercellular septa and influences the formation of the septal specialized structures that allow communication between neighboring cells along the filament, a fundamental trait for the performance of Anabaena as a multicellular organism.
Collapse
Affiliation(s)
| | | | - Mercedes Nieves-Morión
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville, Spain
| | - Andreas O. Helbig
- AG Proteomics & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Ann-Katrin Kieninger
- Department of Microbiology/Organismic Interactions, University of Tübingen, Tübingen, Germany
| | - Iris Maldener
- Department of Microbiology/Organismic Interactions, University of Tübingen, Tübingen, Germany
| | - Dennis J. Nürnberg
- Institute of Experimental Physics and Dahlem Centre of Plant Sciences, Free University of Berlin, Berlin, Germany
| | - Karina Stucken
- Department of Food Engineering, Universidad de La Serena, La Serena, Chile
| | - Ignacio Luque
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville, Spain
| | - Tal Dagan
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Antonia Herrero
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville, Spain
| |
Collapse
|
6
|
Martinez M, Petit J, Leyva A, Sogues A, Megrian D, Rodriguez A, Gaday Q, Ben Assaya M, Portela MM, Haouz A, Ducret A, Grangeasse C, Alzari PM, Durán R, Wehenkel AM. Eukaryotic-like gephyrin and cognate membrane receptor coordinate corynebacterial cell division and polar elongation. Nat Microbiol 2023; 8:1896-1910. [PMID: 37679597 PMCID: PMC10522489 DOI: 10.1038/s41564-023-01473-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 08/11/2023] [Indexed: 09/09/2023]
Abstract
The order Corynebacteriales includes major industrial and pathogenic Actinobacteria such as Corynebacterium glutamicum or Mycobacterium tuberculosis. These bacteria have multi-layered cell walls composed of the mycolyl-arabinogalactan-peptidoglycan complex and a polar growth mode, thus requiring tight coordination between the septal divisome, organized around the tubulin-like protein FtsZ, and the polar elongasome, assembled around the coiled-coil protein Wag31. Here, using C. glutamicum, we report the discovery of two divisome members: a gephyrin-like repurposed molybdotransferase (Glp) and its membrane receptor (GlpR). Our results show how cell cycle progression requires interplay between Glp/GlpR, FtsZ and Wag31, showcasing a crucial crosstalk between the divisome and elongasome machineries that might be targeted for anti-mycobacterial drug discovery. Further, our work reveals that Corynebacteriales have evolved a protein scaffold to control cell division and morphogenesis, similar to the gephyrin/GlyR system that mediates synaptic signalling in higher eukaryotes through network organization of membrane receptors and the microtubule cytoskeleton.
Collapse
Affiliation(s)
- Mariano Martinez
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| | - Julienne Petit
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| | - Alejandro Leyva
- Analytical Biochemistry and Proteomics Unit, Institut Pasteur de Montevideo, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Adrià Sogues
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, VIB, Vrije Universiteit Brussel, Brussels, Belgium
| | - Daniela Megrian
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| | - Azalia Rodriguez
- Analytical Biochemistry and Proteomics Unit, Institut Pasteur de Montevideo, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Quentin Gaday
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| | - Mathildeb Ben Assaya
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| | - Maria Magdalena Portela
- Analytical Biochemistry and Proteomics Unit, Institut Pasteur de Montevideo, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Ahmed Haouz
- Plate-forme de cristallographie, C2RT-Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| | - Adrien Ducret
- Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086, Université de Lyon, Lyon, France
| | - Christophe Grangeasse
- Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086, Université de Lyon, Lyon, France
| | - Pedro M Alzari
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| | - Rosario Durán
- Analytical Biochemistry and Proteomics Unit, Institut Pasteur de Montevideo, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| | - Anne Marie Wehenkel
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France.
| |
Collapse
|
7
|
Avramova MM, Stevenson CEM, Chandra G, Holmes NA, Bush MJ, Findlay KC, Buttner MJ. Global Effects of the Developmental Regulator BldB in Streptomyces venezuelae. J Bacteriol 2023; 205:e0013523. [PMID: 37249447 PMCID: PMC10294661 DOI: 10.1128/jb.00135-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
In Streptomyces, the Bld (Bald) regulators control formation of the reproductive aerial hyphae. The functions of some of these regulators have been well characterized, but BldB has remained enigmatic. In addition to the bldB gene itself, Streptomyces venezuelae has 10 paralogs of bldB that sit next to paralogs of whiJ and abaA. Transcriptome sequencing (RNA-seq) revealed that loss of BldB function causes the dramatic transcriptional upregulation of the abaA paralogs and a novel inhibitor of sporulation, iosA, and that cooverexpression of just two of these genes, iosA and abaA6, was sufficient to recapitulate the bldB mutant phenotype. Further RNA-seq analysis showed that the transcription factor WhiJ9 is required for the activation of iosA seen in the bldB mutant, and biochemical studies showed that WhiJ9 mediates the activation of iosA expression by binding to direct repeats in the iosA-whiJ9 intergenic region. BldB and BldB9 hetero-oligomerize, providing a potential link between BldB and the iosA-whiJ9-bldB9 locus. This work greatly expands our overall understanding of the global effects of the BldB developmental regulator. IMPORTANCE To reproduce and disperse, the filamentous bacterium Streptomyces develops specialized reproductive structures called aerial hyphae. The formation of these structures is controlled by the bld (bald) genes, many of which encode transcription factors whose functions have been characterized. An exception is BldB, a protein whose biochemical function is unknown. In this study, we gain insight into the global effects of BldB function by examining the genome-wide transcriptional effects of deleting bldB. We identify a small set of genes that are dramatically upregulated in the absence of BldB. We show that their overexpression causes the bldB phenotype and characterize a transcription factor that mediates the upregulation of one of these target genes. Our results provide new insight into how BldB influences Streptomyces development.
Collapse
Affiliation(s)
- Marieta M. Avramova
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Clare E. M. Stevenson
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, United Kingdom
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Neil A. Holmes
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Matthew J. Bush
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Kim C. Findlay
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Mark J. Buttner
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| |
Collapse
|
8
|
Pląskowska K, Makowski Ł, Strzałka A, Zakrzewska-Czerwińska J. Binary or Nonbinary Fission? Reproductive Mode of a Predatory Bacterium Depends on Prey Size. mBio 2023:e0077223. [PMID: 37162334 DOI: 10.1128/mbio.00772-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Most bacteria, including model organisms such as Escherichia coli, Bacillus subtilis, and Caulobacter crescentus, reproduce by binary fission. However, some bacteria belonging to various lineages, including antibiotic-producing Streptomyces and predatory Bdellovibrio, proliferate by nonbinary fission, wherein three or more chromosome copies are synthesized and the resulting multinucleoid filamentous cell subdivides into progeny cells. Here, we demonstrate for the first time that the predatory bacterium Bdellovibrio bacteriovorus reproduces through both binary and nonbinary fission inside different prey bacteria. Switching between the two modes correlates with the prey size. In relatively small prey cells, B. bacteriovorus undergoes binary fission; the FtsZ ring assembles in the midcell, and the mother cell splits into two daughter cells. In larger prey cells, B. bacteriovorus switches to nonbinary fission and creates multiple asynchronously assembled FtsZ rings to produce three or more daughter cells. Completion of bacterial cell cycle critically depends on precise spatiotemporal coordination of chromosome replication with other cell cycle events, including cell division. We show that B. bacteriovorus always initiates chromosome replication at the invasive pole of the cell, but the spatiotemporal choreography of subsequent steps depends on the fission mode and/or the number of progeny cells. In nonbinary dividing filaments producing five or more progeny cells, the last round(s) of replication may also be initiated at the noninvasive pole. Altogether, we find that B. bacteriovorus reproduces through bimodal fission and that extracellular factors, such as the prey size, can shape replication choreography, providing new insights about bacterial life cycles. IMPORTANCE Most eukaryotic and bacterial cells divide by binary fission, where one mother cell produces two progeny cells, or, rarely, by nonbinary fission. All bacteria studied to date use only one of these two reproduction modes. We demonstrate for the first time that a predatory bacterium, Bdellovibrio bacteriovorus, exhibits bimodal fission and the mode of division depends on the size of the prey bacterium inside which B. bacteriovorus grows. This work provides key insights into the mode and dynamics of B. bacteriovorus proliferation in different pathogens that pose a major threat to human health due to their emerging antibiotic resistance (Proteus mirabilis, Salmonella enterica, and Shigella flexneri). The use of predatory bacteria such as B. bacteriovorus is currently regarded as a promising strategy to kill antibiotic-resistant pathogens. We find that B. bacteriovorus employs different chromosome replication choreographies and division modes when preying on those pathogens. Our findings may facilitate the design of efficient pathogen elimination strategies.
Collapse
Affiliation(s)
- Karolina Pląskowska
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Łukasz Makowski
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Agnieszka Strzałka
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | | |
Collapse
|
9
|
Bhowmick S, Shenouda ML, Tschowri N. Osmotic stress responses and the biology of the second messenger c-di-AMP in Streptomyces. MICROLIFE 2023; 4:uqad020. [PMID: 37223731 PMCID: PMC10117811 DOI: 10.1093/femsml/uqad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/02/2023] [Accepted: 04/10/2023] [Indexed: 05/25/2023]
Abstract
Streptomyces are prolific antibiotic producers that thrive in soil, where they encounter diverse environmental cues, including osmotic challenges caused by rainfall and drought. Despite their enormous value in the biotechnology sector, which often relies on ideal growth conditions, how Streptomyces react and adapt to osmotic stress is heavily understudied. This is likely due to their complex developmental biology and an exceptionally broad number of signal transduction systems. With this review, we provide an overview of Streptomyces' responses to osmotic stress signals and draw attention to open questions in this research area. We discuss putative osmolyte transport systems that are likely involved in ion balance control and osmoadaptation and the role of alternative sigma factors and two-component systems (TCS) in osmoregulation. Finally, we highlight the current view on the role of the second messenger c-di-AMP in cell differentiation and the osmotic stress responses with specific emphasis on the two models, S. coelicolor and S. venezuelae.
Collapse
Affiliation(s)
- Sukanya Bhowmick
- Institute of Microbiology, Leibniz Universität Hannover, 30419 Hannover, Germany
| | - Mary L Shenouda
- Institute of Microbiology, Leibniz Universität Hannover, 30419 Hannover, Germany
| | - Natalia Tschowri
- Corresponding author. Institute of Microbiology, Leibniz Universität Hannover, 30419 Hannover, Germany. E-mail:
| |
Collapse
|
10
|
Lilic M, Holmes NA, Bush MJ, Marti AK, Widdick DA, Findlay KC, Choi YJ, Froom R, Koh S, Buttner MJ, Campbell EA. Structural basis of dual activation of cell division by the actinobacterial transcription factors WhiA and WhiB. Proc Natl Acad Sci U S A 2023; 120:e2220785120. [PMID: 36888660 PMCID: PMC10243135 DOI: 10.1073/pnas.2220785120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/26/2023] [Indexed: 03/09/2023] Open
Abstract
Studies of transcriptional initiation in different bacterial clades reveal diverse molecular mechanisms regulating this first step in gene expression. The WhiA and WhiB factors are both required to express cell division genes in Actinobacteria and are essential in notable pathogens such as Mycobacterium tuberculosis. The WhiA/B regulons and binding sites have been elucidated in Streptomyces venezuelae (Sven), where they coordinate to activate sporulation septation. However, how these factors cooperate at the molecular level is not understood. Here we present cryoelectron microscopy structures of Sven transcriptional regulatory complexes comprising RNA polymerase (RNAP) σA-holoenzyme and WhiA and WhiB, in complex with the WhiA/B target promoter sepX. These structures reveal that WhiB binds to domain 4 of σA (σA4) of the σA-holoenzyme, bridging an interaction with WhiA while making non-specific contacts with the DNA upstream of the -35 core promoter element. The N-terminal homing endonuclease-like domain of WhiA interacts with WhiB, while the WhiA C-terminal domain (WhiA-CTD) makes base-specific contacts with the conserved WhiA GACAC motif. Notably, the structure of the WhiA-CTD and its interactions with the WhiA motif are strikingly similar to those observed between σA4 housekeeping σ-factors and the -35 promoter element, suggesting an evolutionary relationship. Structure-guided mutagenesis designed to disrupt these protein-DNA interactions reduces or abolishes developmental cell division in Sven, confirming their significance. Finally, we compare the architecture of the WhiA/B σA-holoenzyme promoter complex with the unrelated but model CAP Class I and Class II complexes, showing that WhiA/WhiB represent a new mechanism in bacterial transcriptional activation.
Collapse
Affiliation(s)
- Mirjana Lilic
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY10065
| | - Neil A. Holmes
- Department of Molecular Microbiology, John Innes Centre, NorwichNR4 7UH, UK
| | - Matthew J. Bush
- Department of Molecular Microbiology, John Innes Centre, NorwichNR4 7UH, UK
| | - Alexandra K. Marti
- Department of Molecular Microbiology, John Innes Centre, NorwichNR4 7UH, UK
| | - David A. Widdick
- Department of Molecular Microbiology, John Innes Centre, NorwichNR4 7UH, UK
| | - Kim C. Findlay
- Department of Cell and Developmental Biology, John Innes Centre, NorwichNR4 7UH, UK
| | - Young Joo Choi
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY10065
| | - Ruby Froom
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY10065
| | - Steven Koh
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY10065
| | - Mark J. Buttner
- Department of Molecular Microbiology, John Innes Centre, NorwichNR4 7UH, UK
| | | |
Collapse
|
11
|
Martinez M, Petit J, Leyva A, Sogues A, Megrian D, Rodriguez A, Gaday Q, Ben Assaya M, Portela M, Haouz A, Ducret A, Grangeasse C, Alzari PM, Durán R, Wehenkel A. Eukaryotic-like gephyrin and cognate membrane receptor coordinate corynebacterial cell division and polar elongation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.01.526586. [PMID: 36778425 PMCID: PMC9915583 DOI: 10.1101/2023.02.01.526586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The order Corynebacteriales includes major industrial and pathogenic actinobacteria such as Corynebacterium glutamicum or Mycobacterium tuberculosis . Their elaborate multi-layered cell wall, composed primarily of the mycolyl-arabinogalactan-peptidoglycan complex, and their polar growth mode impose a stringent coordination between the septal divisome, organized around the tubulin-like protein FtsZ, and the polar elongasome, assembled around the tropomyosin-like protein Wag31. Here, we report the identification of two new divisome members, a gephyrin-like repurposed molybdotransferase (GLP) and its membrane receptor (GLPR). We show that the interplay between the GLPR/GLP module, FtsZ and Wag31 is crucial for orchestrating cell cycle progression. Our results provide a detailed molecular understanding of the crosstalk between two essential machineries, the divisome and elongasome, and reveal that Corynebacteriales have evolved a protein scaffold to control cell division and morphogenesis similar to the gephyrin/GlyR system that in higher eukaryotes mediates synaptic signaling through network organization of membrane receptors and the microtubule cytoskeleton.
Collapse
Affiliation(s)
- M. Martinez
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, F-75015 Paris, France
| | - J. Petit
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, F-75015 Paris, France
| | - A. Leyva
- Analytical Biochemistry and Proteomics Unit, Institut Pasteur de Montevideo, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - A. Sogues
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, F-75015 Paris, France
| | - D. Megrian
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, F-75015 Paris, France
| | - A. Rodriguez
- Analytical Biochemistry and Proteomics Unit, Institut Pasteur de Montevideo, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Q. Gaday
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, F-75015 Paris, France
| | - M. Ben Assaya
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, F-75015 Paris, France
| | - M. Portela
- Analytical Biochemistry and Proteomics Unit, Institut Pasteur de Montevideo, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - A. Haouz
- Plate-forme de cristallographie, C2RT-Institut Pasteur, CNRS, UMR 3528, Université Paris Cité, F-75015 Paris, France
| | - A. Ducret
- Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086, Université de Lyon, 7 passage du Vercors, 69367 Lyon, France
| | - C. Grangeasse
- Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086, Université de Lyon, 7 passage du Vercors, 69367 Lyon, France
| | - P. M. Alzari
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, F-75015 Paris, France
| | - R. Durán
- Analytical Biochemistry and Proteomics Unit, Institut Pasteur de Montevideo, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - A. Wehenkel
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, F-75015 Paris, France
| |
Collapse
|
12
|
Quintanilla SY, Arejan NH, Patel PB, Boutte CC. PlrA (MSMEG_5223) is an essential polar growth regulator in Mycobacterium smegmatis. PLoS One 2023; 18:e0280336. [PMID: 36634117 PMCID: PMC9836265 DOI: 10.1371/journal.pone.0280336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/27/2022] [Indexed: 01/13/2023] Open
Abstract
Mycobacteria expand their cell walls at the cell poles in a manner that is not well described at the molecular level. In this study, we identify a new polar factor, PlrA, that is involved in restricting peptidoglycan metabolism to the cell poles in Mycobacterium smegmatis. We establish that only the N-terminal membrane domain of PlrA is essential. We show that depletion of plrA pheno-copies depletion of polar growth factor Wag31, and that PlrA is involved in regulating the Wag31 polar foci.
Collapse
Affiliation(s)
- Samantha Y. Quintanilla
- Department of Biology, University of Texas Arlington, Arlington, TX, United States of America
| | - Neda Habibi Arejan
- Department of Biology, University of Texas Arlington, Arlington, TX, United States of America
| | - Parthvi B. Patel
- Department of Biology, University of Texas Arlington, Arlington, TX, United States of America
| | - Cara C. Boutte
- Department of Biology, University of Texas Arlington, Arlington, TX, United States of America
- * E-mail:
| |
Collapse
|
13
|
Werten S, Waack P, Palm GJ, Virolle MJ, Hinrichs W. Crystal structures of free and ligand-bound forms of the TetR/AcrR-like regulator SCO3201 from Streptomyces coelicolor suggest a novel allosteric mechanism. FEBS J 2023; 290:521-532. [PMID: 36017630 PMCID: PMC10087246 DOI: 10.1111/febs.16606] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/14/2022] [Accepted: 08/25/2022] [Indexed: 02/05/2023]
Abstract
TetR/AcrR-like transcription regulators enable bacteria to sense a wide variety of chemical compounds and to dynamically adapt the expression levels of specific genes in response to changing growth conditions. Here, we describe the structural characterisation of SCO3201, an atypical TetR/AcrR family member from Streptomyces coelicolor that strongly represses antibiotic production and morphological development under conditions of overexpression. We present crystal structures of SCO3201 in its ligand-free state as well as in complex with an unknown inducer, potentially a polyamine. In the ligand-free state, the DNA-binding domains of the SCO3201 dimer are held together in an unusually compact conformation and, as a result, the regulator cannot span the distance between the two half-sites of its operator. Interaction with the ligand coincides with a major structural rearrangement and partial conversion of the so-called hinge helix (α4) to a 310 -conformation, markedly increasing the distance between the DNA-binding domains. In sharp contrast to what was observed for other TetR/AcrR-like regulators, the increased interdomain distance might facilitate rather than abrogate interaction of the dimer with the operator. Such a 'reverse' induction mechanism could expand the regulatory repertoire of the TetR/AcrR family and may explain the dramatic impact of SCO3201 overexpression on the ability of S. coelicolor to generate antibiotics and sporulate.
Collapse
Affiliation(s)
- Sebastiaan Werten
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Austria
| | - Paul Waack
- Institute of Biochemistry, University of Greifswald, Germany
| | | | - Marie-Joëlle Virolle
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | | |
Collapse
|
14
|
Zambri MP, Williams MA, Elliot MA. How Streptomyces thrive: Advancing our understanding of classical development and uncovering new behaviors. Adv Microb Physiol 2022; 80:203-236. [PMID: 35489792 DOI: 10.1016/bs.ampbs.2022.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Streptomyces are soil- and marine-dwelling microbes that need to survive dramatic fluctuations in nutrient levels and environmental conditions. Here, we explore the advances made in understanding how Streptomyces bacteria can thrive in their natural environments. We examine their classical developmental cycle, and the intricate regulatory cascades that govern it. We discuss alternative growth strategies and behaviors, like the rapid expansion and colonization properties associated with exploratory growth, the release of membrane vesicles and S-cells from hyphal tips, and the acquisition of exogenous DNA along the lateral walls. We further investigate Streptomyces interactions with other organisms through the release of volatile compounds that impact nutrient levels, microbial growth, and insect behavior. Finally, we explore the increasingly diverse strategies employed by Streptomyces species in escaping and thwarting phage infections.
Collapse
Affiliation(s)
- Matthew P Zambri
- Department of Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Michelle A Williams
- Department of Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Marie A Elliot
- Department of Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
15
|
Ramos-León F, Ramamurthi K. Cytoskeletal proteins: Lessons learned from bacteria. Phys Biol 2022; 19. [PMID: 35081523 DOI: 10.1088/1478-3975/ac4ef0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 01/26/2022] [Indexed: 11/11/2022]
Abstract
Cytoskeletal proteins are classified as a group that is defined functionally, whose members are capable of polymerizing into higher order structures, either dynamically or statically, to perform structural roles during a variety of cellular processes. In eukaryotes, the most well-studied cytoskeletal proteins are actin, tubulin, and intermediate filaments, and are essential for cell shape and movement, chromosome segregation, and intracellular cargo transport. Prokaryotes often harbor homologs of these proteins, but in bacterial cells, these homologs are usually not employed in roles that can be strictly defined as "cytoskeletal". However, several bacteria encode other proteins capable of polymerizing which, although they do not appear to have a eukaryotic counterpart, nonetheless appear to perform a more traditional "cytoskeletal" function. In this review, we discuss recent reports that cover the structure and functions of prokaryotic proteins that are broadly termed as cytoskeletal, either by sequence homology or by function, to highlight how the enzymatic properties of traditionally studied cytoskeletal proteins may be used for other types of cellular functions; and to demonstrate how truly "cytoskeletal" functions may be performed by uniquely bacterial proteins that do not display homology to eukaryotic proteins.
Collapse
Affiliation(s)
- Félix Ramos-León
- National Institutes of Health, 37 Convent Dr., Bldg 37, Room 5132, Bethesda, Maryland, 20892, UNITED STATES
| | - Kumaran Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, 37 Convent Dr, Bldg 37, Room 5132, Bethesda, Maryland, 20892, UNITED STATES
| |
Collapse
|
16
|
Hulst MB, Grocholski T, Neefjes JJC, van Wezel GP, Metsä-Ketelä M. Anthracyclines: biosynthesis, engineering and clinical applications. Nat Prod Rep 2021; 39:814-841. [PMID: 34951423 DOI: 10.1039/d1np00059d] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Covering: January 1995 to June 2021Anthracyclines are glycosylated microbial natural products that harbour potent antiproliferative activities. Doxorubicin has been widely used as an anticancer agent in the clinic for several decades, but its use is restricted due to severe side-effects such as cardiotoxicity. Recent studies into the mode-of-action of anthracyclines have revealed that effective cardiotoxicity-free anthracyclines can be generated by focusing on histone eviction activity, instead of canonical topoisomerase II poisoning leading to double strand breaks in DNA. These developments have coincided with an increased understanding of the biosynthesis of anthracyclines, which has allowed generation of novel compound libraries by metabolic engineering and combinatorial biosynthesis. Coupled to the continued discovery of new congeners from rare Actinobacteria, a better understanding of the biology of Streptomyces and improved production methodologies, the stage is set for the development of novel anthracyclines that can finally surpass doxorubicin at the forefront of cancer chemotherapy.
Collapse
Affiliation(s)
- Mandy B Hulst
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.
| | - Thadee Grocholski
- Department of Life Technologies, University of Turku, FIN-20014 Turku, Finland
| | - Jacques J C Neefjes
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Centre, Leiden, The Netherlands
| | - Gilles P van Wezel
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.
| | - Mikko Metsä-Ketelä
- Department of Life Technologies, University of Turku, FIN-20014 Turku, Finland
| |
Collapse
|
17
|
Passot FM, Cantlay S, Flärdh K. Protein phosphatase SppA regulates apical growth and dephosphorylates cell polarity determinant DivIVA in Streptomyces coelicolor. Mol Microbiol 2021; 117:411-428. [PMID: 34862689 DOI: 10.1111/mmi.14856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/23/2021] [Accepted: 12/02/2021] [Indexed: 11/27/2022]
Abstract
Members of the Actinobacteria, including mycobacteria and streptomycetes, exhibit a distinctive mode of polar growth, with cell wall synthesis occurring in zones at cell poles and directed by the essential cell polarity determinant DivIVA. Streptomyces coelicolor modulates polar growth via the Ser/Thr protein kinase AfsK, which phosphorylates DivIVA. Here, we show that the phosphoprotein phosphatase SppA has strong effects on polar growth and cell shape and that it reverses the AfsK-mediated phosphorylation of DivIVA. SppA affects hyphal branching and the rate of tip extension. The sppA mutant hyphae also exhibit a high frequency of spontaneous growth arrests, indicating problems with maintenance of tip extension. The phenotypic effects are partially suppressed in an afsK sppA double mutant, indicating that AfsK and SppA to some extent share target proteins. Strains with a nonphosphorylatable mutant DivIVA confirm that the effect of afsK on hyphal branching during normal growth is mediated by DivIVA phosphorylation. However, the phenotypic effects of sppA deletion are independent of DivIVA phosphorylation and must be mediated via other substrates. This study adds a PPP-family protein phosphatase to the proteins involved in the control of polar growth and cell shape determination in S. coelicolor.
Collapse
Affiliation(s)
| | | | - Klas Flärdh
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
18
|
6S-Like scr3559 RNA Affects Development and Antibiotic Production in Streptomyces coelicolor. Microorganisms 2021; 9:microorganisms9102004. [PMID: 34683325 PMCID: PMC8539372 DOI: 10.3390/microorganisms9102004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022] Open
Abstract
Regulatory RNAs control a number of physiological processes in bacterial cells. Here we report on a 6S-like RNA transcript (scr3559) that affects both development and antibiotic production in Streptomyces coelicolor. Its expression is enhanced during the transition to stationary phase. Strains that over-expressed the scr3559 gene region exhibited a shortened exponential growth phase in comparison with a control strain; accelerated aerial mycelium formation and spore maturation; alongside an elevated production of actinorhodin and undecylprodigiosin. These observations were supported by LC-MS analyses of other produced metabolites, including: germicidins, desferrioxamines, and coelimycin. A subsequent microarray differential analysis revealed increased expression of genes associated with the described morphological and physiological changes. Structural and functional similarities between the scr3559 transcript and 6S RNA, and its possible employment in regulating secondary metabolite production are discussed.
Collapse
|
19
|
Abstract
Diverse bacterial lifestyle transitions are controlled by the nucleotide second messenger c-di-GMP, including virulence, motility, and biofilm formation. To control such fundamentally distinct processes, the set of genes under c-di-GMP control must have gone through several shifts during bacterial evolution. Here we show that the same σ–(c-di-GMP)–anti-σ switch has been co-opted during evolution to regulate distinct biological functions in unicellular and filamentous bacteria, controlling type IV pilus production in the genus Rubrobacter and the differentiation of reproductive hyphae into spores in Streptomyces. Moreover, we show that the anti-σ likely originated as a homodimer and evolved to become a monomer through an intragenic duplication event. This study thus describes the structural and functional evolution of a c-di-GMP regulatory switch. Filamentous actinobacteria of the genus Streptomyces have a complex lifecycle involving the differentiation of reproductive aerial hyphae into spores. We recently showed c-di-GMP controls this transition by arming a unique anti-σ, RsiG, to bind the sporulation-specific σ, WhiG. The Streptomyces venezuelae RsiG–(c-di-GMP)2–WhiG structure revealed that a monomeric RsiG binds c-di-GMP via two E(X)3S(X)2R(X)3Q(X)3D repeat motifs, one on each helix of an antiparallel coiled-coil. Here we show that RsiG homologs are found scattered throughout the Actinobacteria. Strikingly, RsiGs from unicellular bacteria descending from the most basal branch of the Actinobacteria are small proteins containing only one c-di-GMP binding motif, yet still bind their WhiG partners. Our structure of a Rubrobacter radiotolerans (RsiG)2–(c-di-GMP)2–WhiG complex revealed that these single-motif RsiGs are able to form an antiparallel coiled-coil through homodimerization, thereby allowing them to bind c-di-GMP similar to the monomeric twin-motif RsiGs. Further data show that in the unicellular actinobacterium R. radiotolerans, the (RsiG)2–(c-di-GMP)2–WhiG regulatory switch controls type IV pilus expression. Phylogenetic analysis indicates the single-motif RsiGs likely represent the ancestral state and an internal gene-duplication event gave rise to the twin-motif RsiGs inherited elsewhere in the Actinobacteria. Thus, these studies show how the anti-σ RsiG has evolved through an intragenic duplication event from a small protein carrying a single c-di-GMP binding motif, which functions as a homodimer, to a larger protein carrying two c-di-GMP binding motifs, which functions as a monomer. Consistent with this, our structures reveal potential selective advantages of the monomeric twin-motif anti-σ factors.
Collapse
|
20
|
Szafran MJ, Jakimowicz D, Elliot MA. Compaction and control-the role of chromosome-organizing proteins in Streptomyces. FEMS Microbiol Rev 2021; 44:725-739. [PMID: 32658291 DOI: 10.1093/femsre/fuaa028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022] Open
Abstract
Chromosomes are dynamic entities, whose organization and structure depend on the concerted activity of DNA-binding proteins and DNA-processing enzymes. In bacteria, chromosome replication, segregation, compaction and transcription are all occurring simultaneously, and to ensure that these processes are appropriately coordinated, all bacteria employ a mix of well-conserved and species-specific proteins. Unusually, Streptomyces bacteria have large, linear chromosomes and life cycle stages that include multigenomic filamentous hyphae and unigenomic spores. Moreover, their prolific secondary metabolism yields a wealth of bioactive natural products. These different life cycle stages are associated with profound changes in nucleoid structure and chromosome compaction, and require distinct repertoires of architectural-and regulatory-proteins. To date, chromosome organization is best understood during Streptomyces sporulation, when chromosome segregation and condensation are most evident, and these processes are coordinated with synchronous rounds of cell division. Advances are, however, now being made in understanding how chromosome organization is achieved in multigenomic hyphal compartments, in defining the functional and regulatory interplay between different architectural elements, and in appreciating the transcriptional control exerted by these 'structural' proteins.
Collapse
Affiliation(s)
- Marcin J Szafran
- Laboratory of Molecular Microbiology, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Dagmara Jakimowicz
- Laboratory of Molecular Microbiology, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Marie A Elliot
- Department of Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
21
|
Ultee E, Zhong X, Shitut S, Briegel A, Claessen D. Formation of wall-less cells in Kitasatospora viridifaciens requires cytoskeletal protein FilP in oxygen-limiting conditions. Mol Microbiol 2020; 115:1181-1190. [PMID: 33278050 PMCID: PMC8359286 DOI: 10.1111/mmi.14662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023]
Abstract
The cell wall is considered an essential component for bacterial survival, providing structural support, and protection from environmental insults. Under normal growth conditions, filamentous actinobacteria insert new cell wall material at the hyphal tips regulated by the coordinated activity of cytoskeletal proteins and cell wall biosynthetic enzymes. Despite the importance of the cell wall, some filamentous actinobacteria can produce wall‐deficient S‐cells upon prolonged exposure to hyperosmotic stress. Here, we performed cryo‐electron tomography and live cell imaging to further characterize S‐cell extrusion in Kitasatospora viridifaciens. We show that exposure to hyperosmotic stress leads to DNA compaction, membrane and S‐cell extrusion, and thinning of the cell wall at hyphal tips. Additionally, we find that the extrusion of S‐cells is abolished in a cytoskeletal mutant strain that lacks the intermediate filament‐like protein FilP. Furthermore, micro‐aerobic culturing promotes the formation of S‐cells in the wild type, but the limited oxygen still impedes S‐cell formation in the ΔfilP mutant. These results demonstrate that S‐cell formation is stimulated by oxygen‐limiting conditions and dependent on functional cytoskeleton remodeling.
Collapse
Affiliation(s)
- Eveline Ultee
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands.,Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - Xiaobo Zhong
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands.,Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - Shraddha Shitut
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands.,Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - Ariane Briegel
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands.,Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - Dennis Claessen
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands.,Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
22
|
Springstein BL, Nürnberg DJ, Woehle C, Weissenbach J, Theune ML, Helbig AO, Maldener I, Dagan T, Stucken K. Two novel heteropolymer-forming proteins maintain the multicellular shape of the cyanobacterium Anabaena sp. PCC 7120. FEBS J 2020; 288:3197-3216. [PMID: 33205554 DOI: 10.1111/febs.15630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/29/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022]
Abstract
Polymerizing and filament-forming proteins are instrumental for numerous cellular processes such as cell division and growth. Their function in stabilization and localization of protein complexes and replicons is achieved by a filamentous structure. Known filamentous proteins assemble into homopolymers consisting of single subunits - for example, MreB and FtsZ in bacteria - or heteropolymers that are composed of two subunits, for example, keratin and α/β tubulin in eukaryotes. Here, we describe two novel coiled-coil-rich proteins (CCRPs) in the filament-forming cyanobacterium Anabaena sp. PCC 7120 (hereafter Anabaena) that assemble into a heteropolymer and function in the maintenance of the Anabaena multicellular shape (termed trichome). The two CCRPs - Alr4504 and Alr4505 (named ZicK and ZacK) - are strictly interdependent for the assembly of protein filaments in vivo and polymerize nucleotide independently in vitro, similar to known intermediate filament (IF) proteins. A ΔzicKΔzacK double mutant is characterized by a zigzagged cell arrangement and hence a loss of the typical linear Anabaena trichome shape. ZicK and ZacK interact with themselves, with each other, with the elongasome protein MreB, the septal junction protein SepJ and the divisome associate septal protein SepI. Our results suggest that ZicK and ZacK function in cooperation with SepJ and MreB to stabilize the Anabaena trichome and are likely essential for the manifestation of the multicellular shape in Anabaena. Our study reveals the presence of filament-forming IF-like proteins whose function is achieved through the formation of heteropolymers in cyanobacteria.
Collapse
Affiliation(s)
| | | | | | | | - Marius L Theune
- Institute of General Microbiology, University of Kiel, Germany
| | - Andreas O Helbig
- AG Proteomics & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Germany
| | - Iris Maldener
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen/Organismic Interactions, University of Tübingen, Germany
| | - Tal Dagan
- Institute of General Microbiology, University of Kiel, Germany
| | - Karina Stucken
- Department of Food Engineering, University of La Serena, Chile
| |
Collapse
|
23
|
Springstein BL, Weissenbach J, Koch R, Stücker F, Stucken K. The role of the cytoskeletal proteins MreB and FtsZ in multicellular cyanobacteria. FEBS Open Bio 2020; 10:2510-2531. [PMID: 33112491 PMCID: PMC7714070 DOI: 10.1002/2211-5463.13016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/17/2020] [Accepted: 10/26/2020] [Indexed: 01/28/2023] Open
Abstract
Multiseriate and true‐branching cyanobacteria are at the peak of prokaryotic morphological complexity. However, little is known about the mechanisms governing multiplanar cell division and morphogenesis. Here, we study the function of the prokaryotic cytoskeletal proteins, MreB and FtsZ in Fischerella muscicola PCC 7414 and Chlorogloeopsis fritschii PCC 6912. Vancomycin and HADA labeling revealed a mixed apical, septal, and lateral trichome growth mode in F. muscicola, whereas C. fritschii exhibits septal growth. In all morphotypes from both species, MreB forms either linear filaments or filamentous strings and can interact with FtsZ. Furthermore, multiplanar cell division in F. muscicola likely depends on FtsZ dosage. Our results lay the groundwork for future studies on cytoskeletal proteins in morphologically complex cyanobacteria.
Collapse
Affiliation(s)
| | - Julia Weissenbach
- Institute of General Microbiology, Christian-Albrechts University of Kiel, Germany
| | - Robin Koch
- Institute of General Microbiology, Christian-Albrechts University of Kiel, Germany
| | - Fenna Stücker
- Institute of General Microbiology, Christian-Albrechts University of Kiel, Germany
| | - Karina Stucken
- Institute of General Microbiology, Christian-Albrechts University of Kiel, Germany
| |
Collapse
|
24
|
Caccamo PD, Jacq M, VanNieuwenhze MS, Brun YV. A Division of Labor in the Recruitment and Topological Organization of a Bacterial Morphogenic Complex. Curr Biol 2020; 30:3908-3922.e4. [PMID: 32795444 DOI: 10.1016/j.cub.2020.07.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 05/22/2020] [Accepted: 07/20/2020] [Indexed: 12/31/2022]
Abstract
Bacteria come in an array of shapes and sizes, but the mechanisms underlying diverse morphologies are poorly understood. The peptidoglycan (PG) cell wall is the primary determinant of cell shape. At the molecular level, morphological variation often results from the regulation of enzymes involved in cell elongation and division. These enzymes are spatially controlled by cytoskeletal scaffolding proteins, which both recruit and organize the PG synthesis complex. How then do cells define alternative morphogenic processes that are distinct from cell elongation and division? To address this, we have turned to the specific morphotype of Alphaproteobacterial stalks. Stalk synthesis is a specialized form of zonal growth, which requires PG synthesis in a spatially constrained zone to extend a thin cylindrical projection of the cell envelope. The morphogen SpmX defines the site of stalk PG synthesis, but SpmX is a PG hydrolase. How then does a non-cytoskeletal protein, SpmX, define and constrain PG synthesis to form stalks? Here, we report that SpmX and the bactofilin BacA act in concert to regulate stalk synthesis in Asticcacaulis biprosthecum. We show that SpmX recruits BacA to the site of stalk synthesis. BacA then serves as a stalk-specific topological organizer for PG synthesis activity, including its recruiter SpmX, at the base of the stalk. In the absence of BacA, cells produce "pseudostalks" that are the result of unconstrained PG synthesis. Therefore, the protein responsible for recruitment of a morphogenic PG remodeling complex, SpmX, is distinct from the protein that topologically organizes the complex, BacA.
Collapse
Affiliation(s)
- Paul D Caccamo
- Department of Biology, Indiana University, 1001 E. 3rd Street, Bloomington, IN 47405, USA; School of Life Sciences, Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ, USA
| | - Maxime Jacq
- Department of Biology, Indiana University, 1001 E. 3rd Street, Bloomington, IN 47405, USA; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Pavillon Roger-Gaudry, C.P. 6128, Succursale Centreville, Montréal, Canada
| | - Michael S VanNieuwenhze
- Department of Molecular and Cellular Biochemistry, 212 S. Hawthorne Drive, Indiana University, Bloomington, IN 47405, USA; Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN 47405, USA
| | - Yves V Brun
- Department of Biology, Indiana University, 1001 E. 3rd Street, Bloomington, IN 47405, USA; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Pavillon Roger-Gaudry, C.P. 6128, Succursale Centreville, Montréal, Canada.
| |
Collapse
|
25
|
Ultee E, van der Aart LT, Zhang L, van Dissel D, Diebolder CA, van Wezel GP, Claessen D, Briegel A. Teichoic acids anchor distinct cell wall lamellae in an apically growing bacterium. Commun Biol 2020; 3:314. [PMID: 32555532 PMCID: PMC7300013 DOI: 10.1038/s42003-020-1038-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 05/28/2020] [Indexed: 11/17/2022] Open
Abstract
The bacterial cell wall is a multicomponent structure that provides structural support and protection. In monoderm species, the cell wall is made up predominantly of peptidoglycan, teichoic acids and capsular glycans. Filamentous monoderm Actinobacteria incorporate new cell-wall material at their tips. Here we use cryo-electron tomography to reveal the architecture of the actinobacterial cell wall of Streptomyces coelicolor. Our data shows a density difference between the apex and subapical regions. Removal of teichoic acids results in a patchy cell wall and distinct lamellae. Knock-down of tagO expression using CRISPR-dCas9 interference leads to growth retardation, presumably because build-in of teichoic acids had become rate-limiting. Absence of extracellular glycans produced by MatAB and CslA proteins results in a thinner wall lacking lamellae and patches. We propose that the Streptomyces cell wall is composed of layers of peptidoglycan and extracellular polymers that are structurally supported by teichoic acids.
Collapse
Affiliation(s)
- Eveline Ultee
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - Lizah T van der Aart
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - Le Zhang
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - Dino van Dissel
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - Christoph A Diebolder
- Netherlands Centre for Electron Nanoscopy (NeCEN), Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Gilles P van Wezel
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - Dennis Claessen
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - Ariane Briegel
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
26
|
Milner DS, Ray LJ, Saxon EB, Lambert C, Till R, Fenton AK, Sockett RE. DivIVA Controls Progeny Morphology and Diverse ParA Proteins Regulate Cell Division or Gliding Motility in Bdellovibrio bacteriovorus. Front Microbiol 2020; 11:542. [PMID: 32373080 PMCID: PMC7186360 DOI: 10.3389/fmicb.2020.00542] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/12/2020] [Indexed: 01/12/2023] Open
Abstract
The predatory bacterium B. bacteriovorus grows and divides inside the periplasm of Gram-negative bacteria, forming a structure known as a bdelloplast. Cell division of predators inside the dead prey cell is not by binary fission but instead by synchronous division of a single elongated filamentous cell into odd or even numbers of progeny cells. Bdellovibrio replication and cell division processes are dependent on the finite level of nutrients available from inside the prey bacterium. The filamentous growth and division process of the predator maximizes the number of progeny produced by the finite nutrients in a way that binary fission could not. To learn more about such an unusual growth profile, we studied the role of DivIVA in the growing Bdellovibrio cell. This protein is well known for its link to polar cell growth and spore formation in Gram-positive bacteria, but little is known about its function in a predatory growth context. We show that DivIVA is expressed in the growing B. bacteriovorus cell and controls cell morphology during filamentous cell division, but not the number of progeny produced. Bacterial Two Hybrid (BTH) analysis shows DivIVA may interact with proteins that respond to metabolic indicators of amino-acid biosynthesis or changes in redox state. Such changes may be relevant signals to the predator, indicating the consumption of prey nutrients within the sealed bdelloplast environment. ParA, a chromosome segregation protein, also contributes to bacterial septation in many species. The B. bacteriovorus genome contains three ParA homologs; we identify a canonical ParAB pair required for predatory cell division and show a BTH interaction between a gene product encoded from the same operon as DivIVA with the canonical ParA. The remaining ParA proteins are both expressed in Bdellovibrio but are not required for predator cell division. Instead, one of these ParA proteins coordinates gliding motility, changing the frequency at which the cells reverse direction. Our work will prime further studies into how one bacterium can co-ordinate its cell division with the destruction of another bacterium that it dwells within.
Collapse
Affiliation(s)
- David S Milner
- Laboratory C15, Division of Infections, Immunity and Microbes, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Luke J Ray
- Laboratory C15, Division of Infections, Immunity and Microbes, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Emma B Saxon
- Laboratory C15, Division of Infections, Immunity and Microbes, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Carey Lambert
- Laboratory C15, Division of Infections, Immunity and Microbes, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Rob Till
- Laboratory C15, Division of Infections, Immunity and Microbes, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Andrew K Fenton
- Laboratory C15, Division of Infections, Immunity and Microbes, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Renee Elizabeth Sockett
- Laboratory C15, Division of Infections, Immunity and Microbes, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
27
|
Gallagher KA, Schumacher MA, Bush MJ, Bibb MJ, Chandra G, Holmes NA, Zeng W, Henderson M, Zhang H, Findlay KC, Brennan RG, Buttner MJ. c-di-GMP Arms an Anti-σ to Control Progression of Multicellular Differentiation in Streptomyces. Mol Cell 2020; 77:586-599.e6. [PMID: 31810759 PMCID: PMC7005675 DOI: 10.1016/j.molcel.2019.11.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/22/2019] [Accepted: 11/04/2019] [Indexed: 12/31/2022]
Abstract
Streptomyces are our primary source of antibiotics, produced concomitantly with the transition from vegetative growth to sporulation in a complex developmental life cycle. We previously showed that the signaling molecule c-di-GMP binds BldD, a master repressor, to control initiation of development. Here we demonstrate that c-di-GMP also intervenes later in development to control differentiation of the reproductive hyphae into spores by arming a novel anti-σ (RsiG) to bind and sequester a sporulation-specific σ factor (σWhiG). We present the structure of the RsiG-(c-di-GMP)2-σWhiG complex, revealing an unusual, partially intercalated c-di-GMP dimer bound at the RsiG-σWhiG interface. RsiG binds c-di-GMP in the absence of σWhiG, employing a novel E(X)3S(X)2R(X)3Q(X)3D motif repeated on each helix of a coiled coil. Further studies demonstrate that c-di-GMP is essential for RsiG to inhibit σWhiG. These findings reveal a newly described control mechanism for σ-anti-σ complex formation and establish c-di-GMP as the central integrator of Streptomyces development.
Collapse
Affiliation(s)
- Kelley A. Gallagher
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Maria A. Schumacher
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA,Corresponding author
| | - Matthew J. Bush
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Maureen J. Bibb
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Neil A. Holmes
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Wenjie Zeng
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Max Henderson
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hengshan Zhang
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kim C. Findlay
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Richard G. Brennan
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mark J. Buttner
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK,Corresponding author
| |
Collapse
|
28
|
Springstein BL, Woehle C, Weissenbach J, Helbig AO, Dagan T, Stucken K. Identification and characterization of novel filament-forming proteins in cyanobacteria. Sci Rep 2020; 10:1894. [PMID: 32024928 PMCID: PMC7002697 DOI: 10.1038/s41598-020-58726-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/17/2020] [Indexed: 11/09/2022] Open
Abstract
Filament-forming proteins in bacteria function in stabilization and localization of proteinaceous complexes and replicons; hence they are instrumental for myriad cellular processes such as cell division and growth. Here we present two novel filament-forming proteins in cyanobacteria. Surveying cyanobacterial genomes for coiled-coil-rich proteins (CCRPs) that are predicted as putative filament-forming proteins, we observed a higher proportion of CCRPs in filamentous cyanobacteria in comparison to unicellular cyanobacteria. Using our predictions, we identified nine protein families with putative intermediate filament (IF) properties. Polymerization assays revealed four proteins that formed polymers in vitro and three proteins that formed polymers in vivo. Fm7001 from Fischerella muscicola PCC 7414 polymerized in vitro and formed filaments in vivo in several organisms. Additionally, we identified a tetratricopeptide repeat protein - All4981 - in Anabaena sp. PCC 7120 that polymerized into filaments in vitro and in vivo. All4981 interacts with known cytoskeletal proteins and is indispensable for Anabaena viability. Although it did not form filaments in vitro, Syc2039 from Synechococcus elongatus PCC 7942 assembled into filaments in vivo and a Δsyc2039 mutant was characterized by an impaired cytokinesis. Our results expand the repertoire of known prokaryotic filament-forming CCRPs and demonstrate that cyanobacterial CCRPs are involved in cell morphology, motility, cytokinesis and colony integrity.
Collapse
Affiliation(s)
- Benjamin L Springstein
- Institute of General Microbiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
- Department of Microbiology, Blavatnick Institute, Harvard Medical School, Boston, MA, USA.
| | - Christian Woehle
- Institute of General Microbiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
- Max Planck Institute for Plant Breeding Research, Max Planck-Genome-centre Cologne, Cologne, Germany
| | - Julia Weissenbach
- Institute of General Microbiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Andreas O Helbig
- Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Tal Dagan
- Institute of General Microbiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Karina Stucken
- Department of Food Engineering, Universidad de La Serena, La Serena, Chile.
| |
Collapse
|
29
|
Awuni E. Status of Targeting MreB for the Development of Antibiotics. Front Chem 2020; 7:884. [PMID: 31998684 PMCID: PMC6965359 DOI: 10.3389/fchem.2019.00884] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/06/2019] [Indexed: 12/15/2022] Open
Abstract
Although many prospective antibiotic targets are known, bacterial infections and resistance to antibiotics remain a threat to public health partly because the druggable potentials of most of these targets have yet to be fully tapped for the development of a new generation of therapeutics. The prokaryotic actin homolog MreB is one of the important antibiotic targets that are yet to be significantly exploited. MreB is a bacterial cytoskeleton protein that has been widely studied and is associated with the determination of rod shape as well as important subcellular processes including cell division, chromosome segregation, cell wall morphogenesis, and cell polarity. Notwithstanding that MreB is vital and conserved in most rod-shaped bacteria, no approved antibiotics targeting it are presently available. Here, the status of targeting MreB for the development of antibiotics is concisely summarized. Expressly, the known therapeutic targets and inhibitors of MreB are presented, and the way forward in the search for a new generation of potent inhibitors of MreB briefly discussed.
Collapse
Affiliation(s)
- Elvis Awuni
- Department of Biochemistry, School of Biological Sciences, CANS, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
30
|
AfsK-Mediated Site-Specific Phosphorylation Regulates DnaA Initiator Protein Activity in Streptomyces coelicolor. J Bacteriol 2020; 202:JB.00597-19. [PMID: 31712280 DOI: 10.1128/jb.00597-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/05/2019] [Indexed: 11/20/2022] Open
Abstract
In all organisms, chromosome replication is regulated mainly at the initiation step. Most of the knowledge about the mechanisms that regulate replication initiation in bacteria has come from studies on rod-shaped bacteria, such as Escherichia coli and Bacillus subtilis Streptomyces is a bacterial genus that is characterized by distinctive features and a complex life cycle that shares some properties with the developmental cycle of filamentous fungi. The unusual lifestyle of streptomycetes suggests that these bacteria use various mechanisms to control key cellular processes. Here, we provide the first insights into the phosphorylation of the bacterial replication initiator protein, DnaA, from Streptomyces coelicolor We suggest that phosphorylation of DnaA triggers a conformational change that increases its ATPase activity and decreases its affinity for the replication origin, thereby blocking the formation of a functional orisome. We suggest that the phosphorylation of DnaA is catalyzed by Ser/Thr kinase AfsK, which was shown to regulate the polar growth of S. coelicolor Together, our results reveal that phosphorylation of the DnaA initiator protein functions as a negative regulatory mechanism to control the initiation of chromosome replication in a manner that presumably depends on the cellular localization of the protein.IMPORTANCE This work provides insights into the phosphorylation of the DnaA initiator protein in Streptomyces coelicolor and suggests a novel bacterial regulatory mechanism for initiation of chromosome replication. Although phosphorylation of DnaA has been reported earlier, its biological role was unknown. This work shows that upon phosphorylation, the cooperative binding of the replication origin by DnaA may be disturbed. We found that AfsK kinase is responsible for phosphorylation of DnaA. Upon upregulation of AfsK, chromosome replication occurred further from the hyphal tip. Orthologs of AfsK are exclusively found in mycelial actinomycetes that are related to Streptomyces and exhibit a complex life cycle. We propose that the AfsK-mediated regulatory pathway serves as a nonessential, energy-saving mechanism in S. coelicolor.
Collapse
|
31
|
Fröjd MJ, Flärdh K. Extrusion of extracellular membrane vesicles from hyphal tips of Streptomyces venezuelae coupled to cell-wall stress. Microbiology (Reading) 2019; 165:1295-1305. [DOI: 10.1099/mic.0.000836] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Markus J. Fröjd
- Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden
| | | |
Collapse
|
32
|
Kerr L, Hoskisson PA. Reconciling DNA replication and transcription in a hyphal organism: visualizing transcription complexes in live Streptomyces coelicolor. MICROBIOLOGY-SGM 2019; 165:1086-1094. [PMID: 31429818 DOI: 10.1099/mic.0.000834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Reconciling transcription and DNA replication in the growing hyphae of the filamentous bacterium Streptomyces presents several physical constraints on growth due to their apically extending and branching, multigenomic cells and chromosome replication being independent of cell division. Using a GFP translational fusion to the β'-subunit of RNA polymerase (rpoC-egfp), in its native chromosomal location, we observed growing Streptomyces hyphae using time-lapse microscopy throughout the lifecycle and under different growth conditions. The RpoC-eGFP fusion co-localized with DNA around 1.8 µm behind the extending tip, whereas replisomes localize around 4-5 µm behind the tip, indicating that at the growing tip, transcription and chromosome replication are to some degree spatially separated. Dual-labelled RpoC-egfp/DnaN-mCherry strains also indicate that there is limited co-localization of transcription and chromosome replication at the extending hyphal tip. This likely facilitates the use of the same DNA molecule for active transcription and chromosome replication in growing cells, independent of cell division. This represents a novel, but hitherto unknown mechanism for reconciling two fundamental processes that utilize the same macromolecular template that allows for rapid growth without compromising chromosome replication in filamentous bacteria and may have implications for evolution of filamentous growth in micro-organisms, where uncoupling of DNA replication from cell division is required.
Collapse
Affiliation(s)
- Leena Kerr
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
- School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Riccarton, Edinburgh, UK
| | - Paul A Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
33
|
Vollmer B, Steblau N, Ladwig N, Mayer C, Macek B, Mitousis L, Sigle S, Walter A, Wohlleben W, Muth G. Role of the Streptomyces spore wall synthesizing complex SSSC in differentiation of Streptomyces coelicolor A3(2). Int J Med Microbiol 2019; 309:151327. [PMID: 31324525 DOI: 10.1016/j.ijmm.2019.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 07/02/2019] [Accepted: 07/07/2019] [Indexed: 10/26/2022] Open
Abstract
A crucial stage of the Streptomyces life cycle is the sporulation septation, a process were dozens of cross walls are synchronously formed in the aerial hyphae in a highly coordinated manner. This process includes the remodeling of the spore envelopes to make Streptomyces spores resistant to detrimental environmental conditions. Sporulation septation and the synthesis of the thickened spore envelope in S. coelicolor A3(2) involves the Streptomyces spore wall synthesizing complex SSSC. The SSSC is a multi-protein complex including proteins directing peptidoglycan synthesis (MreBCD, PBP2, Sfr, RodZ) and cell wall glycopolymer synthesis (PdtA). It also includes two eukaryotic like serin/threonine protein kinases (eSTPK), PkaI and PkaH, which were shown to phosphorylate MreC. Since unbalancing phosphorylation activity by either deleting eSTPK genes or by expressing a second copy of an eSTPK gene affected proper sporulation, a model was developed, in which the activity of the SSSC is controlled by protein phosphorylation.
Collapse
Affiliation(s)
- B Vollmer
- Interfakultaeres Institut für Mikrobiologie und Infektionsmedizin Tuebingen IMIT, Mikrobiologie/Biotechnologie, Eberhard Karls Universitaet Tuebingen, Auf der Morgenstelle 28, 72076, Tuebingen, Germany
| | - N Steblau
- Interfakultaeres Institut für Mikrobiologie und Infektionsmedizin Tuebingen IMIT, Mikrobiologie/Biotechnologie, Eberhard Karls Universitaet Tuebingen, Auf der Morgenstelle 28, 72076, Tuebingen, Germany
| | - N Ladwig
- Interfakultaeres Institut für Mikrobiologie und Infektionsmedizin Tuebingen IMIT, Mikrobiologie/Biotechnologie, Eberhard Karls Universitaet Tuebingen, Auf der Morgenstelle 28, 72076, Tuebingen, Germany
| | - C Mayer
- Interfakultaeres Institut für Mikrobiologie und Infektionsmedizin Tuebingen IMIT, Mikrobiologie/Biotechnologie, Eberhard Karls Universitaet Tuebingen, Auf der Morgenstelle 28, 72076, Tuebingen, Germany
| | - B Macek
- Proteome Center Tuebingen, Interfakultaeres Institut für Zellbiologie, Eberhard Karls Universitaet Tuebingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - L Mitousis
- Interfakultaeres Institut für Mikrobiologie und Infektionsmedizin Tuebingen IMIT, Mikrobiologie/Biotechnologie, Eberhard Karls Universitaet Tuebingen, Auf der Morgenstelle 28, 72076, Tuebingen, Germany
| | - S Sigle
- Interfakultaeres Institut für Mikrobiologie und Infektionsmedizin Tuebingen IMIT, Mikrobiologie/Biotechnologie, Eberhard Karls Universitaet Tuebingen, Auf der Morgenstelle 28, 72076, Tuebingen, Germany
| | - A Walter
- Interfakultaeres Institut für Mikrobiologie und Infektionsmedizin Tuebingen IMIT, Mikrobiologie/Biotechnologie, Eberhard Karls Universitaet Tuebingen, Auf der Morgenstelle 28, 72076, Tuebingen, Germany
| | - W Wohlleben
- Interfakultaeres Institut für Mikrobiologie und Infektionsmedizin Tuebingen IMIT, Mikrobiologie/Biotechnologie, Eberhard Karls Universitaet Tuebingen, Auf der Morgenstelle 28, 72076, Tuebingen, Germany
| | - G Muth
- Interfakultaeres Institut für Mikrobiologie und Infektionsmedizin Tuebingen IMIT, Mikrobiologie/Biotechnologie, Eberhard Karls Universitaet Tuebingen, Auf der Morgenstelle 28, 72076, Tuebingen, Germany.
| |
Collapse
|
34
|
Millet LJ, Aufrecht J, Labbé J, Uehling J, Vilgalys R, Estes ML, Miquel Guennoc C, Deveau A, Olsson S, Bonito G, Doktycz MJ, Retterer ST. Increasing access to microfluidics for studying fungi and other branched biological structures. Fungal Biol Biotechnol 2019; 6:1. [PMID: 31198578 PMCID: PMC6556955 DOI: 10.1186/s40694-019-0071-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/15/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Microfluidic systems are well-suited for studying mixed biological communities for improving industrial processes of fermentation, biofuel production, and pharmaceutical production. The results of which have the potential to resolve the underlying mechanisms of growth and transport in these complex branched living systems. Microfluidics provide controlled environments and improved optical access for real-time and high-resolution imaging studies that allow high-content and quantitative analyses. Studying growing branched structures and the dynamics of cellular interactions with both biotic and abiotic cues provides context for molecule production and genetic manipulations. To make progress in this arena, technical and logistical barriers must be overcome to more effectively deploy microfluidics in biological disciplines. A principle technical barrier is the process of assembling, sterilizing, and hydrating the microfluidic system; the lack of the necessary equipment for the preparatory process is a contributing factor to this barrier. To improve access to microfluidic systems, we present the development, characterization, and implementation of a microfluidics assembly and packaging process that builds on self-priming point-of-care principles to achieve "ready-to-use microfluidics." RESULTS We present results from domestic and international collaborations using novel microfluidic architectures prepared with a unique packaging protocol. We implement this approach by focusing primarily on filamentous fungi; we also demonstrate the utility of this approach for collaborations on plants and neurons. In this work we (1) determine the shelf-life of ready-to-use microfluidics, (2) demonstrate biofilm-like colonization on fungi, (3) describe bacterial motility on fungal hyphae (fungal highway), (4) report material-dependent bacterial-fungal colonization, (5) demonstrate germination of vacuum-sealed Arabidopsis seeds in microfluidics stored for up to 2 weeks, and (6) observe bidirectional cytoplasmic streaming in fungi. CONCLUSIONS This pre-packaging approach provides a simple, one step process to initiate microfluidics in any setting for fungal studies, bacteria-fungal interactions, and other biological inquiries. This process improves access to microfluidics for controlling biological microenvironments, and further enabling visual and quantitative analysis of fungal cultures.
Collapse
Affiliation(s)
- Larry J. Millet
- Biosciences Division, Oak Ridge National Laboratory, PO Box 2008, MS 6445, Oak Ridge, TN 37831 USA
- The Bredesen Center, University of Tennessee-Knoxville, Knoxville, TN 37996 USA
| | - Jayde Aufrecht
- The Bredesen Center, University of Tennessee-Knoxville, Knoxville, TN 37996 USA
- The Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, PO Box 2008, MS 6445, Oak Ridge, TN 37831 USA
| | - Jessy Labbé
- Biosciences Division, Oak Ridge National Laboratory, PO Box 2008, MS 6445, Oak Ridge, TN 37831 USA
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996 USA
| | - Jessie Uehling
- Biology Department, Duke University, Box 90338, Durham, NC 27708 USA
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, CA 94703 USA
| | - Rytas Vilgalys
- Biology Department, Duke University, Box 90338, Durham, NC 27708 USA
| | - Myka L. Estes
- The Center for Neuroscience, University of California Davis, One Shields Avenue, Davis, CA 95618 USA
| | - Cora Miquel Guennoc
- Biosciences Division, Oak Ridge National Laboratory, PO Box 2008, MS 6445, Oak Ridge, TN 37831 USA
- Institut national de la recherche agronomique (INRA), Centre INRA-Lorraine, 54280 Champenoux, France
| | - Aurélie Deveau
- Institut national de la recherche agronomique (INRA), Centre INRA-Lorraine, 54280 Champenoux, France
| | - Stefan Olsson
- Fujian Agricultural and Forestry University, Fuzhou City, 350002 Fujian Province China
| | - Gregory Bonito
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824 USA
| | - Mitchel J. Doktycz
- Biosciences Division, Oak Ridge National Laboratory, PO Box 2008, MS 6445, Oak Ridge, TN 37831 USA
- The Bredesen Center, University of Tennessee-Knoxville, Knoxville, TN 37996 USA
| | - Scott T. Retterer
- Biosciences Division, Oak Ridge National Laboratory, PO Box 2008, MS 6445, Oak Ridge, TN 37831 USA
- The Bredesen Center, University of Tennessee-Knoxville, Knoxville, TN 37996 USA
- The Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, PO Box 2008, MS 6445, Oak Ridge, TN 37831 USA
| |
Collapse
|
35
|
Zhang H, Söderholm N, Sandblad L, Wiklund K, Andersson M. DSeg: A Dynamic Image Segmentation Program to Extract Backbone Patterns for Filamentous Bacteria and Hyphae Structures. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2019; 25:711-719. [PMID: 30894244 DOI: 10.1017/s1431927619000308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Analysis of numerous filamentous structures in an image is often limited by the ability of algorithms to accurately segment complex structures or structures within a dense population. It is even more problematic if these structures continuously grow when recording a time-series of images. To overcome these issues we present DSeg; an image analysis program designed to process time-series image data, as well as single images, to segment filamentous structures. The program includes a robust binary level-set algorithm modified to use size constraints, edge intensity, and past information. We verify our algorithms using synthetic data, differential interference contrast images of filamentous prokaryotes, and transmission electron microscopy images of bacterial adhesion fimbriae. DSeg includes automatic segmentation, tools for analysis, and drift correction, and outputs statistical data such as persistence length, growth rate, and growth direction. The program is available at Sourceforge.
Collapse
Affiliation(s)
- Hanqing Zhang
- Department of Physics,Umeå University,901 87 Umeå,Sweden
| | - Niklas Söderholm
- Department of Molecular Biology,Umeå University,901 87 Umeå,Sweden
| | - Linda Sandblad
- Department of Molecular Biology,Umeå University,901 87 Umeå,Sweden
| | | | | |
Collapse
|
36
|
Thoma L, Vollmer B, Oesterhelt F, Muth G. Live-cell imaging of Streptomyces conjugation. Int J Med Microbiol 2019; 309:338-343. [PMID: 31175019 DOI: 10.1016/j.ijmm.2019.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 05/06/2019] [Accepted: 05/26/2019] [Indexed: 11/19/2022] Open
Abstract
Time-lapse imaging of conjugative plasmid transfer in Streptomyces revealed intriguing insights into the unique two-step conjugation process of this Gram+ mycelial soil bacterium. Differentially labelling of donor and recipient strains with distinct fluorescent proteins allowed the visualization of plasmid transfer in living mycelium. In nearly all observed matings, plasmid transfer occurred when donor and recipient hyphae made intimate contact at the lateral walls. Plasmid transfer does not involve a complete fusion of donor and recipient hyphae, but depends on a pore formed by the FtsK-like DNA translocase TraB. Following the initial transfer at the contact site of donor and recipient, the plasmids spread within the recipient mycelium by invading neighboring compartments, separated by cross walls. Intra-mycelial plasmid spreading depends on a septal cross wall localized multi-protein DNA translocation apparatus consisting of TraB and several Spd proteins and is abolished in a spd mutant. The ability to spread within the recipient mycelium is a crucial adaptation to the mycelial life style of Streptomyces, potentiating the efficiency of plasmid transfer.
Collapse
Affiliation(s)
- L Thoma
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen IMIT, Mikrobiologie/Biotechnologie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tuebingen, Germany
| | - B Vollmer
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen IMIT, Mikrobiologie/Biotechnologie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tuebingen, Germany
| | - F Oesterhelt
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen IMIT, Mikrobielle Wirkstoffe, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - G Muth
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen IMIT, Mikrobiologie/Biotechnologie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tuebingen, Germany.
| |
Collapse
|
37
|
Abstract
Actinobacteria is a group of diverse bacteria. Most species in this class of bacteria are filamentous aerobes found in soil, including the genus Streptomyces perhaps best known for their fascinating capabilities of producing antibiotics. These bacteria typically have a Gram-positive cell envelope, comprised of a plasma membrane and a thick peptidoglycan layer. However, there is a notable exception of the Corynebacteriales order, which has evolved a unique type of outer membrane likely as a consequence of convergent evolution. In this chapter, we will focus on the unique cell envelope of this order. This cell envelope features the peptidoglycan layer that is covalently modified by an additional layer of arabinogalactan . Furthermore, the arabinogalactan layer provides the platform for the covalent attachment of mycolic acids , some of the longest natural fatty acids that can contain ~100 carbon atoms per molecule. Mycolic acids are thought to be the main component of the outer membrane, which is composed of many additional lipids including trehalose dimycolate, also known as the cord factor. Importantly, a subset of bacteria in the Corynebacteriales order are pathogens of human and domestic animals, including Mycobacterium tuberculosis. The surface coat of these pathogens are the first point of contact with the host immune system, and we now know a number of host receptors specific to molecular patterns exposed on the pathogen's surface, highlighting the importance of understanding how the cell envelope of Actinobacteria is structured and constructed. This chapter describes the main structural and biosynthetic features of major components found in the actinobacterial cell envelopes and highlights the key differences between them.
Collapse
Affiliation(s)
- Kathryn C Rahlwes
- Department of Microbiology, University of Massachusetts, 639 North Pleasant Street, Amherst, MA, 01003, USA
| | - Ian L Sparks
- Department of Microbiology, University of Massachusetts, 639 North Pleasant Street, Amherst, MA, 01003, USA
| | - Yasu S Morita
- Department of Microbiology, University of Massachusetts, 639 North Pleasant Street, Amherst, MA, 01003, USA.
| |
Collapse
|
38
|
Trojanowski D, Hołówka J, Zakrzewska-Czerwińska J. Where and When Bacterial Chromosome Replication Starts: A Single Cell Perspective. Front Microbiol 2018; 9:2819. [PMID: 30534115 PMCID: PMC6275241 DOI: 10.3389/fmicb.2018.02819] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 11/02/2018] [Indexed: 12/18/2022] Open
Abstract
Bacterial chromosomes have a single, unique replication origin (named oriC), from which DNA synthesis starts. This study describes methods of visualizing oriC regions and the chromosome replication in single living bacterial cells in real-time. This review also discusses the impact of live cell imaging techniques on understanding of chromosome replication dynamics, particularly at the initiation step, in different species of bacteria.
Collapse
Affiliation(s)
- Damian Trojanowski
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Joanna Hołówka
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | | |
Collapse
|
39
|
Fungal spores: Highly variable and stress-resistant vehicles for distribution and spoilage. Food Microbiol 2018; 81:2-11. [PMID: 30910084 DOI: 10.1016/j.fm.2018.11.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 11/21/2022]
Abstract
This review highlights the variability of fungal spores with respect to cell type, mode of formation and stress resistance. The function of spores is to disperse fungi to new areas and to get them through difficult periods. This also makes them important vehicles for food contamination. Formation of spores is a complex process that is regulated by the cooperation of different transcription factors. The discussion of the biology of spore formation, with the genus Aspergillus as an example, points to possible novel ways to eradicate fungal spore production in food. Fungi can produce different types of spores, sexual and asexually, within the same colony. The absence or presence of sexual spore formation has led to a dual nomenclature for fungi. Molecular techniques have led to a revision of this nomenclature. A number of fungal species form sexual spores, which are exceptionally stress-resistant and survive pasteurization and other treatments. A meta-analysis is provided of numerous D-values of heat-resistant ascospores generated during the years. The relevance of fungal spores for food microbiology has been discussed.
Collapse
|
40
|
Bush MJ. The actinobacterial WhiB-like (Wbl) family of transcription factors. Mol Microbiol 2018; 110:663-676. [PMID: 30179278 PMCID: PMC6282962 DOI: 10.1111/mmi.14117] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 02/06/2023]
Abstract
The WhiB‐like (Wbl) family of proteins are exclusively found in Actinobacteria. Wbls have been shown to play key roles in virulence and antibiotic resistance in Mycobacteria and Corynebacteria, reflecting their importance during infection by the human pathogens Mycobacterium tuberculosis, Mycobacterium leprae and Corynebacterium diphtheriae. In the antibiotic‐producing Streptomyces, several Wbls have important roles in the regulation of morphological differentiation, including WhiB, a protein that controls the initiation of sporulation septation and the founding member of the Wbl family. In recent years, genome sequencing has revealed the prevalence of Wbl paralogues in species throughout the Actinobacteria. Wbl proteins are small (generally ~80–140 residues) and each contains four invariant cysteine residues that bind an O2‐ and NO‐sensitive [4Fe–4S] cluster, raising the question as to how they can maintain distinct cellular functions within a given species. Despite their discovery over 25 years ago, the Wbl protein family has largely remained enigmatic. Here I summarise recent research in Mycobacteria, Corynebacteria and Streptomyces that sheds light on the biochemical function of Wbls as transcription factors and as potential sensors of O2 and NO. I suggest that Wbl evolution has created diversity in protein–protein interactions, [4Fe–4S] cluster‐sensitivity and the ability to bind DNA.
Collapse
Affiliation(s)
- Matthew J Bush
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
41
|
AdpAsd, a Positive Regulator for Morphological Development and Toyocamycin Biosynthesis in Streptomyces diastatochromogenes 1628. Curr Microbiol 2018; 75:1345-1351. [DOI: 10.1007/s00284-018-1529-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 06/14/2018] [Indexed: 10/28/2022]
|
42
|
Bobek J, Šmídová K, Čihák M. A Waking Review: Old and Novel Insights into the Spore Germination in Streptomyces. Front Microbiol 2017; 8:2205. [PMID: 29180988 PMCID: PMC5693915 DOI: 10.3389/fmicb.2017.02205] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 10/26/2017] [Indexed: 01/02/2023] Open
Abstract
The complex development undergone by Streptomyces encompasses transitions from vegetative mycelial forms to reproductive aerial hyphae that differentiate into chains of single-celled spores. Whereas their mycelial life – connected with spore formation and antibiotic production – is deeply investigated, spore germination as the counterpoint in their life cycle has received much less attention. Still, germination represents a system of transformation from metabolic zero point to a new living lap. There are several aspects of germination that may attract our attention: (1) Dormant spores are strikingly well-prepared for the future metabolic restart; they possess stable transcriptome, hydrolytic enzymes, chaperones, and other required macromolecules stabilized in a trehalose milieu; (2) Germination itself is a specific sequence of events leading to a complete morphological remodeling that include spore swelling, cell wall reconstruction, and eventually germ tube emergences; (3) Still not fully unveiled are the strategies that enable the process, including a single cell’s signal transduction and gene expression control, as well as intercellular communication and the probability of germination across the whole population. This review summarizes our current knowledge about the germination process in Streptomyces, while focusing on the aforementioned points.
Collapse
Affiliation(s)
- Jan Bobek
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czechia.,Chemistry Department, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Ústí nad Labem, Czechia.,Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Klára Šmídová
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czechia.,Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Matouš Čihák
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
43
|
Schumacher MA, Zeng W, Findlay KC, Buttner MJ, Brennan RG, Tschowri N. The Streptomyces master regulator BldD binds c-di-GMP sequentially to create a functional BldD2-(c-di-GMP)4 complex. Nucleic Acids Res 2017; 45:6923-6933. [PMID: 28449057 PMCID: PMC5499655 DOI: 10.1093/nar/gkx287] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/12/2017] [Indexed: 01/05/2023] Open
Abstract
Streptomyces are ubiquitous soil bacteria that undergo a complex developmental transition coinciding with their production of antibiotics. This transition is controlled by binding of a novel tetrameric form of the second messenger, 3΄-5΄ cyclic diguanylic acid (c-di-GMP) to the master repressor, BldD. In all domains of life, nucleotide-based second messengers allow a rapid integration of external and internal signals into regulatory pathways that control cellular responses to changing conditions. c-di-GMP can assume alternative oligomeric states to effect different functions, binding to effector proteins as monomers, intercalated dimers or, uniquely in the case of BldD, as a tetramer. However, at physiological concentrations c-di-GMP is a monomer and little is known about how higher oligomeric complexes assemble on effector proteins and if intermediates in assembly pathways have regulatory significance. Here, we show that c-di-GMP binds BldD using an ordered, sequential mechanism and that BldD function necessitates the assembly of the BldD2-(c-di-GMP)4 complex.
Collapse
Affiliation(s)
- Maria A Schumacher
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27701, USA
| | - Wenjie Zeng
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27701, USA
| | - Kim C Findlay
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Mark J Buttner
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Richard G Brennan
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27701, USA
| | - Natalia Tschowri
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| |
Collapse
|
44
|
Caccamo PD, Brun YV. The Molecular Basis of Noncanonical Bacterial Morphology. Trends Microbiol 2017; 26:191-208. [PMID: 29056293 DOI: 10.1016/j.tim.2017.09.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/08/2017] [Accepted: 09/28/2017] [Indexed: 01/04/2023]
Abstract
Bacteria come in a wide variety of shapes and sizes. The true picture of bacterial morphological diversity is likely skewed due to an experimental focus on pathogens and industrially relevant organisms. Indeed, most of the work elucidating the genes and molecular processes involved in maintaining bacterial morphology has been limited to rod- or coccal-shaped model systems. The mechanisms of shape evolution, the molecular processes underlying diverse shapes and growth modes, and how individual cells can dynamically modulate their shape are just beginning to be revealed. Here we discuss recent work aimed at advancing our knowledge of shape diversity and uncovering the molecular basis for shape generation in noncanonical and morphologically complex bacteria.
Collapse
Affiliation(s)
- Paul D Caccamo
- Department of Biology, Indiana University, 1001 E. 3rd St, Bloomington, IN 47405, USA
| | - Yves V Brun
- Department of Biology, Indiana University, 1001 E. 3rd St, Bloomington, IN 47405, USA.
| |
Collapse
|
45
|
Absence of the Polar Organizing Protein PopZ Results in Reduced and Asymmetric Cell Division in Agrobacterium tumefaciens. J Bacteriol 2017. [PMID: 28630123 DOI: 10.1128/jb.00101-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Agrobacterium tumefaciens is a rod-shaped bacterium that grows by polar insertion of new peptidoglycan during cell elongation. As the cell cycle progresses, peptidoglycan synthesis at the pole ceases prior to insertion of new peptidoglycan at midcell to enable cell division. The A. tumefaciens homolog of the Caulobacter crescentus polar organelle development protein PopZ has been identified as a growth pole marker and a candidate polar growth-promoting factor. Here, we characterize the function of PopZ in cell growth and division of A. tumefaciens Consistent with previous observations, we observe that PopZ localizes specifically to the growth pole in wild-type cells. Despite the striking localization pattern of PopZ, we find the absence of the protein does not impair polar elongation or cause major changes in the peptidoglycan composition. Instead, we observe an atypical cell length distribution, including minicells, elongated cells, and cells with ectopic poles. Most minicells lack DNA, suggesting a defect in chromosome segregation. Furthermore, the canonical cell division proteins FtsZ and FtsA are misplaced, leading to asymmetric sites of cell constriction. Together, these data suggest that PopZ plays an important role in the regulation of chromosome segregation and cell division.IMPORTANCEA. tumefaciens is a bacterial plant pathogen and a natural genetic engineer. However, very little is known about the spatial and temporal regulation of cell wall biogenesis that leads to polar growth in this bacterium. Understanding the molecular basis of A. tumefaciens growth may allow for the development of innovations to prevent disease or to promote growth during biotechnology applications. Finally, since many closely related plant and animal pathogens exhibit polar growth, discoveries in A. tumefaciens may be broadly applicable for devising antimicrobial strategies.
Collapse
|
46
|
Abstract
The bacterial cytoplasmic membrane is composed of roughly equal proportions of lipids and proteins. The main lipid components are phospholipids, which vary in acyl chain length, saturation, and branching and carry head groups that vary in size and charge. Phospholipid variants determine membrane properties such as fluidity and charge that in turn modulate interactions with membrane-associated proteins. We summarize recent advances in understanding bacterial membrane structure and function, focusing particularly on the possible existence and significance of specialized membrane domains. We review the role of membrane curvature as a spatial cue for recruitment and regulation of proteins involved in morphogenic functions, especially elongation and division. Finally, we examine the role of the membrane, especially regulation of synthesis and fluid properties, in the life cycle of cell wall-deficient L-form bacteria.
Collapse
Affiliation(s)
- Henrik Strahl
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, NE2 4AX United Kingdom; ,
| | - Jeff Errington
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, NE2 4AX United Kingdom; ,
| |
Collapse
|
47
|
Jones SE, Elliot MA. Streptomyces Exploration: Competition, Volatile Communication and New Bacterial Behaviours. Trends Microbiol 2017; 25:522-531. [DOI: 10.1016/j.tim.2017.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/01/2017] [Accepted: 02/03/2017] [Indexed: 10/20/2022]
|
48
|
Bush MJ, Chandra G, Findlay KC, Buttner MJ. Multi-layered inhibition of Streptomyces development: BldO is a dedicated repressor of whiB. Mol Microbiol 2017; 104:700-711. [PMID: 28271577 PMCID: PMC5485038 DOI: 10.1111/mmi.13663] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2017] [Indexed: 02/07/2023]
Abstract
BldD‐(c‐di‐GMP) sits on top of the regulatory network that controls differentiation in Streptomyces, repressing a large regulon of developmental genes when the bacteria are growing vegetatively. In this way, BldD functions as an inhibitor that blocks the initiation of sporulation. Here, we report the identification and characterisation of BldO, an additional developmental repressor that acts to sustain vegetative growth and prevent entry into sporulation. However, unlike the pleiotropic regulator BldD, we show that BldO functions as the dedicated repressor of a single key target gene, whiB, and that deletion of bldO or constitutive expression of whiB is sufficient to induce precocious hypersporulation.
Collapse
Affiliation(s)
- Matthew J Bush
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Kim C Findlay
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Mark J Buttner
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
49
|
Abstract
Members of the genus Mycobacterium are the most prevalent cause of infectious diseases. Mycobacteria have a complex cell envelope containing a peptidoglycan layer and an additional arabinogalactan polymer to which a mycolic acid bilayer is linked; this complex, multilayered cell wall composition (mAGP) is conserved among all CMN group bacteria. The arabinogalactan and mycolic acid synthesis pathways constitute effective drug targets for tuberculosis treatment. Ethambutol (EMB), a classical antituberculosis drug, inhibits the synthesis of the arabinose polymer. Although EMB acts bacteriostatically, its underlying molecular mechanism remains unclear. Here, we used Corynebacterium glutamicum and Mycobacterium phlei as model organisms to study the effects of EMB at the single-cell level. Our results demonstrate that EMB specifically blocks apical cell wall synthesis, but not cell division, explaining the bacteriostatic effect of EMB. Furthermore, the data suggest that members of the family Corynebacterineae have two dedicated machineries for cell elongation (elongasome) and cytokinesis (divisome). Antibiotic treatment of bacterial pathogens has contributed enormously to the increase in human health. Despite the apparent importance of antibiotic treatment of bacterial infections, surprisingly little is known about the molecular functions of antibiotic actions in the bacterial cell. Here, we analyzed the molecular effects of ethambutol, a first-line antibiotic against infections caused by members of the genus Mycobacterium. We find that this drug selectively blocks apical cell growth but still allows for effective cytokinesis. As a consequence, cells survive ethambutol treatment and adopt a pneumococcal cell growth mode with cell wall synthesis only at the site of cell division. However, combined treatment of ethambutol and beta-lactam antibiotics acts synergistically and effectively stops cell proliferation.
Collapse
|
50
|
Abstract
For years intermediate filaments (IF), belonging to the third class of filamentous cytoskeletal proteins alongside microtubules and actin filaments, were thought to be exclusive to metazoan cells. Structurally these eukaryote IFs are very well defined, consisting of globular head and tail domains, which flank the central rod-domain. This central domain is dominated by an α-helical secondary structure predisposed to form the characteristic coiled-coil, parallel homo-dimer. These elementary dimers can further associate, both laterally and longitudinally, generating a variety of filament-networks built from filaments in the range of 10 nm in diameter. The general role of these filaments with their characteristic mechano-elastic properties both in the cytoplasm and in the nucleus of eukaryote cells is to provide mechanical strength and a scaffold supporting diverse shapes and cellular functions.Since 2003, after the first bacterial IF-like protein, crescentin was identified, it has been evident that bacteria also employ filamentous networks, other than those built from bacterial tubulin or actin homologues, in order to support their cell shape, growth and, in some cases, division. Intriguingly, compared to their eukaryote counterparts, the group of bacterial IF-like proteins shows much wider structural diversity. The sizes of both the head and tail domains are markedly reduced and there is great variation in the length of the central rod-domain. Furthermore, bacterial rod-domains often lack the sub-domain organisation of eukaryote IFs that is the defining feature of the IF-family. However, the fascinating display of filamentous assemblies, including rope, striated cables and hexagonal laces together with the conditions required for their formation both in vitro and in vivo strongly resemble that of eukaryote IFs suggesting that these bacterial proteins are deservedly classified as part of the IF-family and that the current definition should be relaxed slightly to allow their inclusion. The lack of extensive head and tail domains may well make the bacterial proteins more amenable for structural characterisation, which will be essential for establishing the mechanism for their association into filaments. What is more, the well-developed tools for bacterial manipulations provide an excellent opportunity of studying the bacterial systems with the prospect of making significant progress in our understanding of the general underlying principles of intermediate filament assemblies.
Collapse
Affiliation(s)
- Gabriella H Kelemen
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|