1
|
McPeek MK, Martin JR, Gomez JC, Li Y, Dang H, Earp HS, Doerschuk CM. Host responses to S. pneumoniae in wild type and Mertk mutant mice. PLoS One 2025; 20:e0320660. [PMID: 40238852 PMCID: PMC12002534 DOI: 10.1371/journal.pone.0320660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 02/23/2025] [Indexed: 04/18/2025] Open
Abstract
Streptococcus pneumoniae is the leading cause of community-acquired pneumonia. Mertk is a receptor tyrosine kinase and a member of the TAM family. It serves as an efferocytosis receptor involved in the recognition and removal of apoptotic debris by phagocytic cells, dampening the inflammatory response. Here we show that at 24h post-inoculation with S. pneumoniae, Mertk-/- mice generated through homologous recombination and backcrossed (HRB-Mertk-/- mice) have fewer bacteria present in their pneumonic lung than wild type mice. This enhanced clearance was not observed in Mertk-/- mice generated by CRISPR technology. The enhanced clearance of HRB-Mertk-/- mice was associated with fewer neutrophils and more IFNγ in the bronchoalveolar lavage, but was not prevented by a neutralizing IFNγ antibody. Mertk is highly expressed on alveolar macrophages. Transcriptomic changes observed in HRB-Mertk-/- alveolar macrophages were associated with leukocyte activation, cellular motility, and response to stimulus, suggesting that they are primed for an inflammatory response. HRB-Mertk-/- mice similarly had enhanced host defense pathways in S. pneumoniae-stimulated alveolar macrophages in vitro and in pneumonic lung tissue. However, HRB-Mertk-/- alveolar macrophages demonstrated no defect in phagocytosis and acidification in vivo, and genes and gene sets describing phagocytic pathways were not enriched, suggesting that the enhanced clearance may be through alterations in the lung microenvironment. HRB-Mertk-/- mice are reported to have a long 129P2 DNA insert (~645 genes) in chromosome 2 adjacent to Mertk, as well as other alterations at multiple sites. Thus, while Mertk deficiency may contribute to the enhanced bacterial clearance, it is not solely responsible, because the phenotype is not seen in the CRISPR-Mertk-/- mice. The 129P2 DNA insert in the HRB-Mertk-/- mice must be mediating at least some of this phenotype. Understanding the mechanistic differences and the means by which this 129P2 DNA insert enhances bacterial clearance remains critically important.
Collapse
Affiliation(s)
- Matthew K. McPeek
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jessica R. Martin
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - John C. Gomez
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Yitong Li
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Hong Dang
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - H. Shelton Earp
- Lineberger Comprehensive Cancer Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Claire M. Doerschuk
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
2
|
Fiocca Vernengo F, Röwekamp I, Boillot L, Caesar S, Dörner PJ, Tarnowski B, Gutbier B, Nouailles G, Fatykhova D, Hellwig K, Witzenrath M, Hocke AC, Klatt AB, Opitz B. Diabetes impairs IFNγ-dependent antibacterial defense in the lungs. Mucosal Immunol 2025; 18:431-440. [PMID: 39746547 DOI: 10.1016/j.mucimm.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/21/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Diabetes mellitus is associated with an increased risk of pneumonia, often caused by so-called typical and atypical pathogens including Streptoccocus pneumoniae and Legionella pneumophila, respectively. Here, we employed a variety of mouse models to investigate how diabetes influences pulmonary antibacterial immunity. Following intranasal infection with S. pneumoniae or L. pneumophila, type 2 diabetic and prediabetic mice exhibited higher bacterial loads in their lungs compared to control animals. Single cell RNA sequencing, flow cytometry, and functional analyses revealed a compromised IFNγ production by natural killer cells in diabetic and prediabetic mice, which was associated with reduced IL-12 production by CD103+ dendritic cells. Blocking IFNγ enhanced susceptibility of non-diabetic mice to L. pneumophila, while IFNγ treatment restored defense against this intracellular pathogen in diabetic animals. In contrast, IFNγ treatment did not increase resistance of diabetic mice to S. pneumoniae, suggesting that impaired IFNγ production is not the sole mechanism underlying the heightened susceptibility of these animals to pneumococcal infection. Thus, our findings uncover a mechanism that could help to explain how type 2 diabetes predisposes to pneumonia. We establish proof of concept for host-directed treatment strategies to reinforce compromised IFNγ-mediated antibacterial defense against atypical lung pathogens.
Collapse
Affiliation(s)
- Facundo Fiocca Vernengo
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Ivo Röwekamp
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Léa Boillot
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Sandra Caesar
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Patrick Johann Dörner
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Benjamin Tarnowski
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Birgitt Gutbier
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Geraldine Nouailles
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Diana Fatykhova
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Katharina Hellwig
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Martin Witzenrath
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; German center for lung research (DZL), Augustenburger Platz 1, 13353 Berlin, Germany
| | - Andreas C Hocke
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Ann-Brit Klatt
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Bastian Opitz
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; German center for lung research (DZL), Augustenburger Platz 1, 13353 Berlin, Germany.
| |
Collapse
|
3
|
Hayashizaki K, Kamii Y, Kinjo Y. Glycolipid antigen recognition by invariant natural killer T cells and its role in homeostasis and antimicrobial responses. Front Immunol 2024; 15:1402412. [PMID: 38863694 PMCID: PMC11165115 DOI: 10.3389/fimmu.2024.1402412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
Due to the COVID-19 pandemic, the importance of developing effective vaccines has received more attention than ever before. To maximize the effects of vaccines, it is important to select adjuvants that induce strong and rapid innate and acquired immune responses. Invariant natural killer T (iNKT) cells, which constitute a small population among lymphocytes, bypass the innate and acquired immune systems through the rapid production of cytokines after glycolipid recognition; hence, their activation could be used as a vaccine strategy against emerging infectious diseases. Additionally, the diverse functions of iNKT cells, including enhancing antibody production, are becoming more understood in recent years. In this review, we briefly describe the functional subset of iNKT cells and introduce the glycolipid antigens recognized by them. Furthermore, we also introduce novel vaccine development taking advantages of iNKT cell activation against infectious diseases.
Collapse
Affiliation(s)
- Koji Hayashizaki
- Department of Bacteriology, The Jikei University School of Medicine, Tokyo, Japan
- Jikei Center for Biofilm Science and Technology, The Jikei University School of Medicine, Tokyo, Japan
| | - Yasuhiro Kamii
- Department of Bacteriology, The Jikei University School of Medicine, Tokyo, Japan
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuki Kinjo
- Department of Bacteriology, The Jikei University School of Medicine, Tokyo, Japan
- Jikei Center for Biofilm Science and Technology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
4
|
Akhmatova NK, Kurbatova EA, Zaytsev AE, Akhmatova EA, Yastrebova NE, Sukhova EV, Yashunsky DV, Tsvetkov YE, Nifantiev NE. Synthetic BSA-conjugated disaccharide related to the Streptococcus pneumoniae serotype 3 capsular polysaccharide increases IL-17A Levels, γδ T cells, and B1 cells in mice. Front Immunol 2024; 15:1388721. [PMID: 38840926 PMCID: PMC11150546 DOI: 10.3389/fimmu.2024.1388721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
The disaccharide (β-D-glucopyranosyluronic acid)-(1→4)-β-D-glucopyranoside represents a repeating unit of the capsular polysaccharide of Streptococcus pneumoniae serotype 3. A conjugate of the disaccharide with BSA (di-BSA conjugate) adjuvanted with aluminum hydroxide induced - in contrast to the non-adjuvanted conjugate - IgG1 antibody production and protected mice against S. pneumoniae serotype 3 infection after intraperitoneal prime-boost immunization. Adjuvanted and non-adjuvanted conjugates induced production of Th1 (IFNγ, TNFα); Th2 (IL-5, IL-13); Th17 (IL-17A), Th1/Th17 (IL-22), and Th2/Th17 cytokines (IL-21) after immunization. The concentration of cytokines in mice sera was higher in response to the adjuvanted conjugate, with the highest level of IL-17A production after the prime and boost immunizations. In contrast, the non-adjuvanted conjugate elicited only weak production of IL-17A, which gradually decreased after the second immunization. After boost immunization of mice with the adjuvanted di-BSA conjugate, there was a significant increase in the number of CD45+/CD19+ B cells, TCR+ γδ T cell, CD5+ В1 cells, and activated cells with MHC II+ expression in the spleens of the mice. IL-17A, TCR+ γδ T cells, and CD5+ В1 cells play a crucial role in preventing pneumococcal infection, but can also contribute to autoimmune diseases. Immunization with the adjuvanted and non-adjuvanted di-BSA conjugate did not elicit autoantibodies against double-stranded DNA targeting cell nuclei in mice. Thus, the molecular and cellular markers associated with antibody production and protective activity in response to immunization with the di-BSA conjugate adjuvanted with aluminum hydroxide are IL-17A, TCR+ γδ T cells, and CD5+ В1 cells against the background of increasing MHC II+ expression.
Collapse
MESH Headings
- Polysaccharides, Bacterial/administration & dosage
- Polysaccharides, Bacterial/chemical synthesis
- Polysaccharides, Bacterial/chemistry
- Polysaccharides, Bacterial/immunology
- Antigens, Bacterial/administration & dosage
- Antigens, Bacterial/chemistry
- Antigens, Bacterial/immunology
- Streptococcus pneumoniae/chemistry
- Streptococcus pneumoniae/immunology
- Aluminum Hydroxide/administration & dosage
- Serum Albumin, Bovine/administration & dosage
- Serum Albumin, Bovine/chemistry
- Vaccines, Conjugate/administration & dosage
- Vaccines, Conjugate/chemistry
- Streptococcal Vaccines/administration & dosage
- Streptococcal Vaccines/chemical synthesis
- Streptococcal Vaccines/chemistry
- Streptococcal Vaccines/immunology
- Adjuvants, Vaccine/administration & dosage
- Immunogenicity, Vaccine
- Animals
- Mice
- Pneumococcal Infections/immunology
- Pneumococcal Infections/microbiology
- Pneumococcal Infections/prevention & control
- Interleukin-17/blood
- Interleukin-17/immunology
- Antibodies, Bacterial/blood
- Antibodies, Bacterial/immunology
- Intraepithelial Lymphocytes/immunology
- Serogroup
- Mice, Inbred BALB C
- Male
- Bacterial Capsules/chemistry
- Bacterial Capsules/immunology
- B-Lymphocyte Subsets/immunology
Collapse
Affiliation(s)
- Nelli K. Akhmatova
- Laboratory of Therapeutic Vaccines, Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia
| | - Ekaterina A. Kurbatova
- Laboratory of Therapeutic Vaccines, Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia
| | - Anton E. Zaytsev
- Laboratory of Therapeutic Vaccines, Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia
| | - Elina A. Akhmatova
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Natalya E. Yastrebova
- Laboratory of Therapeutic Vaccines, Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia
| | - Elena V. Sukhova
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Dmitriy V. Yashunsky
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Yury E. Tsvetkov
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Moscow, Russia
| |
Collapse
|
5
|
Furuta A, Coleman M, Casares R, Seepersaud R, Orvis A, Brokaw A, Quach P, Nguyen S, Sweeney E, Sharma K, Wallen G, Sanghavi R, Mateos-Gil J, Cuerva JM, Millán A, Rajagopal L. CD1 and iNKT cells mediate immune responses against the GBS hemolytic lipid toxin induced by a non-toxic analog. PLoS Pathog 2023; 19:e1011490. [PMID: 37384812 DOI: 10.1371/journal.ppat.1011490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 06/14/2023] [Indexed: 07/01/2023] Open
Abstract
Although hemolytic lipids have been discovered from many human pathogens including Group B Streptococcus (GBS), strategies that neutralize their function are lacking. GBS is a leading cause of pregnancy-associated neonatal infections, and adult GBS infections are on the rise. The GBS hemolytic lipid toxin or granadaene, is cytotoxic to many immune cells including T and B cells. We previously showed that mice immunized with a synthetic nontoxic analog of granadaene known as R-P4 had reduced bacterial dissemination during systemic infection. However, mechanisms important for R-P4 mediated immune protection was not understood. Here, we show that immune serum from R-P4-immunized mice facilitate GBS opsonophagocytic killing and protect naïve mice from GBS infection. Further, CD4+ T cells isolated from R-P4-immunized mice proliferated in response to R-P4 stimulation in a CD1d- and iNKT cell-dependent manner. Consistent with these observations, R-P4 immunized mice lacking CD1d or CD1d-restricted iNKT cells exhibit elevated bacterial burden. Additionally, adoptive transfer of iNKT cells from R-P4 vaccinated mice significantly reduced GBS dissemination compared to adjuvant controls. Finally, maternal R-P4 vaccination provided protection against ascending GBS infection during pregnancy. These findings are relevant in the development of therapeutic strategies targeting lipid cytotoxins.
Collapse
Affiliation(s)
- Anna Furuta
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Michelle Coleman
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Raquel Casares
- Department of Organic Chemistry, University of Granada, Granada, Spain
| | - Ravin Seepersaud
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Austyn Orvis
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Alyssa Brokaw
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Phoenicia Quach
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Shayla Nguyen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Erin Sweeney
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Kavita Sharma
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Grace Wallen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Rhea Sanghavi
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Jaime Mateos-Gil
- Department of Organic Chemistry, University of Granada, Granada, Spain
| | | | - Alba Millán
- Department of Organic Chemistry, University of Granada, Granada, Spain
| | - Lakshmi Rajagopal
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
6
|
Rabaan AA, Alfaraj AH, Alshengeti A, Alawfi A, Alwarthan S, Alhajri M, Al-Najjar AH, Al Fares MA, Najim MA, Almuthree SA, AlShurbaji ST, Alofi FS, AlShehail BM, AlYuosof B, Alynbiawi A, Alzayer SA, Al Kaabi N, Abduljabbar WA, Bukhary ZA, Bueid AS. Antibodies to Combat Fungal Infections: Development Strategies and Progress. Microorganisms 2023; 11:microorganisms11030671. [PMID: 36985244 PMCID: PMC10051215 DOI: 10.3390/microorganisms11030671] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
The finding that some mAbs are antifungal suggests that antibody immunity may play a key role in the defense of the host against mycotic infections. The discovery of antibodies that guard against fungi is a significant advancement because it gives rise to the possibility of developing vaccinations that trigger protective antibody immunity. These vaccines might work by inducing antibody opsonins that improve the function of non-specific (such as neutrophils, macrophages, and NK cells) and specific (such as lymphocyte) cell-mediated immunity and stop or aid in eradicating fungus infections. The ability of antibodies to defend against fungi has been demonstrated by using monoclonal antibody technology to reconsider the function of antibody immunity. The next step is to develop vaccines that induce protective antibody immunity and to comprehend the mechanisms through which antibodies mediate protective effects against fungus.
Collapse
Affiliation(s)
- Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
- Correspondence:
| | - Amal H. Alfaraj
- Pediatric Department, Abqaiq General Hospital, First Eastern Health Cluster, Abqaiq 33261, Saudi Arabia
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah 41491, Saudi Arabia
| | - Abdulsalam Alawfi
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
| | - Sara Alwarthan
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Mashael Alhajri
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Amal H. Al-Najjar
- Drug & Poison Information Center, Pharmacy Department, Security Forces Hospital Program, Riyadh 11481, Saudi Arabia
| | - Mona A. Al Fares
- Department of Internal Medicine, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia
| | - Mustafa A. Najim
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Madinah 41411, Saudi Arabia
| | - Souad A. Almuthree
- Department of Infectious Disease, King Abdullah Medical City, Makkah 43442, Saudi Arabia
| | - Sultan T. AlShurbaji
- Outpatient Pharmacy, Dr. Sulaiman Alhabib Medical Group, Diplomatic Quarter, Riyadh 91877, Saudi Arabia
| | - Fadwa S. Alofi
- Department of Infectious Diseases, King Fahad Hospital, Madinah 42351, Saudi Arabia
| | - Bashayer M. AlShehail
- Pharmacy Practice Department, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Buthina AlYuosof
- Directorate of Public Health, Dammam Network, Eastern Health Cluster, Dammam 31444, Saudi Arabia
| | - Ahlam Alynbiawi
- Infectious Diseases Section, Medical Specialties Department, King Fahad Medical City, Riyadh 12231, Saudi Arabia
| | - Suha A. Alzayer
- Parasitology Laboratory Department, Qatif Comprehensive Inspection Center, Qatif 31911, Saudi Arabia
| | - Nawal Al Kaabi
- Department of Pediatric Infectious Disease, Sheikh Khalifa Medical City, Abu Dhabi 51900, United Arab Emirates
| | - Wesam A. Abduljabbar
- Department of Medical Laboratory Sciences, Fakeeh College for Medical Science, Jeddah 21134, Saudi Arabia
| | - Zakiyah A. Bukhary
- Department of Internal Medicine, King Fahad General Hospital, Jeddah 23325, Saudi Arabia
| | - Ahmed S. Bueid
- Microbiology Laboratory, King Faisal General Hospital, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
7
|
Lu H, Liu Z, Deng X, Chen S, Zhou R, Zhao R, Parandaman R, Thind A, Henley J, Tian L, Yu J, Comai L, Feng P, Yuan W. Potent NKT cell ligands overcome SARS-CoV-2 immune evasion to mitigate viral pathogenesis in mouse models. PLoS Pathog 2023; 19:e1011240. [PMID: 36961850 PMCID: PMC10128965 DOI: 10.1371/journal.ppat.1011240] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 04/25/2023] [Accepted: 02/24/2023] [Indexed: 03/25/2023] Open
Abstract
One of the major pathogenesis mechanisms of SARS-CoV-2 is its potent suppression of innate immunity, including blocking the production of type I interferons. However, it is unknown whether and how the virus interacts with different innate-like T cells, including NKT, MAIT and γδ T cells. Here we reported that upon SARS-CoV-2 infection, invariant NKT (iNKT) cells rapidly trafficked to infected lung tissues from the periphery. We discovered that the envelope (E) protein of SARS-CoV-2 efficiently down-regulated the cell surface expression of the antigen-presenting molecule, CD1d, to suppress the function of iNKT cells. E protein is a small membrane protein and a viroporin that plays important roles in virion packaging and envelopment during viral morphogenesis. We showed that the transmembrane domain of E protein was responsible for suppressing CD1d expression by specifically reducing the level of mature, post-ER forms of CD1d, suggesting that it suppressed the trafficking of CD1d proteins and led to their degradation. Point mutations demonstrated that the putative ion channel function was required for suppression of CD1d expression and inhibition of the ion channel function using small chemicals rescued the CD1d expression. Importantly, we discovered that among seven human coronaviruses, only E proteins from highly pathogenic coronaviruses including SARS-CoV-2, SARS-CoV and MERS suppressed CD1d expression, whereas the E proteins of human common cold coronaviruses, HCoV-OC43, HCoV-229E, HCoV-NL63 and HCoV-HKU1, did not. These results suggested that E protein-mediated evasion of NKT cell function was likely an important pathogenesis factor, enhancing the virulence of these highly pathogenic coronaviruses. Remarkably, activation of iNKT cells with their glycolipid ligands, both prophylactically and therapeutically, overcame the putative viral immune evasion, significantly mitigated viral pathogenesis and improved host survival in mice. Our results suggested a novel NKT cell-based anti-SARS-CoV-2 therapeutic approach.
Collapse
Affiliation(s)
- Hongjia Lu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Graduate Programs in Biomedical and Biological Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Zhewei Liu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Xiangxue Deng
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Siyang Chen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Ruiting Zhou
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Rongqi Zhao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Ramya Parandaman
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Amarjot Thind
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Jill Henley
- The Hastings and Wright Laboratories, Keck School of Medicine, University Southern California, California, United States of America
| | - Lei Tian
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California, United States of America
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California, United States of America
| | - Lucio Comai
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- The Hastings and Wright Laboratories, Keck School of Medicine, University Southern California, California, United States of America
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Weiming Yuan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
8
|
Shenoy AT, De Ana CL, Barker KA, Arafa EI, Martin IM, Mizgerd JP, Belkina AC. CPHEN-011: Comprehensive phenotyping of murine lung resident lymphocytes after recovery from pneumococcal pneumonia. Cytometry A 2022; 101:892-902. [PMID: 34854229 PMCID: PMC9160214 DOI: 10.1002/cyto.a.24522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 01/27/2023]
Abstract
Recovery from pneumococcal (Spn) pneumonia induces development of tissue resident memory CD4+ TRM cells, BRM cells, and antibody secreting plasma cells in experienced lungs. These tissue resident lymphocytes confer protection against subsequent lethal challenge by serotype mismatched Spn (termed as heterotypic immunity). While traditional flow cytometry and gating strategies support premeditated identification of cells using a limited set of markers, discovery of novel tissue resident lymphocytes necessitates stable platforms that can handle larger sets of phenotypic markers and lends itself to unbiased clustering approaches. In this report, we leverage the power of full spectrum flow cytometry (FSFC) to develop a comprehensive panel of phenotypic markers that allows identification of multiple subsets of tissue resident lymphocytes in Spn-experienced murine lungs. Using Phenograph algorithm on this multidimensional data, we identify unforeseen heterogeneity in lung resident adaptive immune landscape which includes unexpected subsets of TRM and BRM cells. Further, using conventional gating strategy informed by our unsupervised clustering data, we confirm their presence exquisitely in Spn-experienced lungs as potentially relevant to heterotypic immunity and define CD73 as a highly expressed marker on TRM cells. Thus, our study emphasizes the utility of FSFC for confirmatory and discovery studies relating to tissue resident adaptive immunity.
Collapse
Affiliation(s)
- Anukul T. Shenoy
- Pulmonary Center, Boston University School of Medicine, Boston, MA 02118, USA
| | - Carolina Lyon De Ana
- Pulmonary Center, Boston University School of Medicine, Boston, MA 02118, USA
- Dept. of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Kimberly A. Barker
- Pulmonary Center, Boston University School of Medicine, Boston, MA 02118, USA
- Dept. of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Emad I. Arafa
- Pulmonary Center, Boston University School of Medicine, Boston, MA 02118, USA
- Dept. of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Ian M.C. Martin
- Pulmonary Center, Boston University School of Medicine, Boston, MA 02118, USA
| | - Joseph P. Mizgerd
- Pulmonary Center, Boston University School of Medicine, Boston, MA 02118, USA
- Dept. of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
- Dept. of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
- Dept. of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Anna C. Belkina
- Pulmonary Center, Boston University School of Medicine, Boston, MA 02118, USA
- Flow Cytometry Core Facility, Boston University School of Medicine, Boston, MA, 02118, USA
- Dept. of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
9
|
Loureiro JP, Cruz MS, Cardoso AP, Oliveira MJ, Macedo MF. Human iNKT Cells Modulate Macrophage Survival and Phenotype. Biomedicines 2022; 10:1723. [PMID: 35885028 PMCID: PMC9313099 DOI: 10.3390/biomedicines10071723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
CD1d-restricted invariant Natural Killer T (iNKT) cells are unconventional innate-like T cells whose functions highly depend on the interactions they establish with other immune cells. Although extensive studies have been reported on the communication between iNKT cells and macrophages in mice, less data is available regarding the relevance of this crosstalk in humans. Here, we dove into the human macrophage-iNKT cell axis by exploring how iNKT cells impact the survival and polarization of pro-inflammatory M1-like and anti-inflammatory M2-like monocyte-derived macrophages. By performing in vitro iNKT cell-macrophage co-cultures followed by flow cytometry analysis, we demonstrated that antigen-stimulated iNKT cells induce a generalized activated state on all macrophage subsets, leading to upregulation of CD40 and CD86 expression. CD40L blocking with a specific monoclonal antibody prior to co-cultures abrogated CD40 and CD86 upregulation, thus indicating that iNKT cells required CD40-CD40L co-stimulation to trigger macrophage activation. In addition, activated iNKT cells were cytotoxic towards macrophages in a CD1d-dependent manner, killing M1-like macrophages more efficiently than their naïve M0 or anti-inflammatory M2-like counterparts. Hence, this work highlighted the role of human iNKT cells as modulators of macrophage survival and phenotype, untangling key features of the human macrophage-iNKT cell axis and opening perspectives for future therapeutic modulation.
Collapse
Affiliation(s)
- J. Pedro Loureiro
- Cell Activation and Gene Expression Group, Institute for Molecular and Cell Biology (IBMC), Institute for Research and Innovation in Health (i3S), University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (J.P.L.); (M.S.C.)
- Experimental Immunology Group, Department of Biomedicine (DBM), University Hospital Basel, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Mariana S. Cruz
- Cell Activation and Gene Expression Group, Institute for Molecular and Cell Biology (IBMC), Institute for Research and Innovation in Health (i3S), University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (J.P.L.); (M.S.C.)
- Department of Medical Sciences, University of Aveiro (UA), 3810-193 Aveiro, Portugal
| | - Ana P. Cardoso
- Tumour and Microenvironment Interactions Group, Institute of Biomedical Engineering (INEB), Institute for Research and Innovation in Health (i3S), University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.C.); (M.J.O.)
| | - Maria J. Oliveira
- Tumour and Microenvironment Interactions Group, Institute of Biomedical Engineering (INEB), Institute for Research and Innovation in Health (i3S), University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.C.); (M.J.O.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - M. Fátima Macedo
- Cell Activation and Gene Expression Group, Institute for Molecular and Cell Biology (IBMC), Institute for Research and Innovation in Health (i3S), University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (J.P.L.); (M.S.C.)
- Department of Medical Sciences, University of Aveiro (UA), 3810-193 Aveiro, Portugal
| |
Collapse
|
10
|
Murray MP, Crosby CM, Marcovecchio P, Hartmann N, Chandra S, Zhao M, Khurana A, Zahner SP, Clausen BE, Coleman FT, Mizgerd JP, Mikulski Z, Kronenberg M. Stimulation of a subset of natural killer T cells by CD103 + DC is required for GM-CSF and protection from pneumococcal infection. Cell Rep 2022; 38:110209. [PMID: 35021099 DOI: 10.1016/j.celrep.2021.110209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/17/2021] [Accepted: 12/13/2021] [Indexed: 11/18/2022] Open
Abstract
Innate-like T cells, including invariant natural killer T cells, mucosal-associated invariant T cells, and γδ T cells, are present in various barrier tissues, including the lung, where they carry out protective responses during infections. Here, we investigate their roles during pulmonary pneumococcal infection. Following infection, innate-like T cells rapidly increase in lung tissue, in part through recruitment, but T cell antigen receptor activation and cytokine production occur mostly in interleukin-17-producing NKT17 and γδ T cells. NKT17 cells are preferentially located within lung tissue prior to infection, as are CD103+ dendritic cells, which are important both for antigen presentation to NKT17 cells and γδ T cell activation. Whereas interleukin-17-producing γδ T cells are numerous, granulocyte-macrophage colony-stimulating factor is exclusive to NKT17 cells and is required for optimal protection. These studies demonstrate how particular cellular interactions and responses of functional subsets of innate-like T cells contribute to protection from pathogenic lung infection.
Collapse
Affiliation(s)
- Mallory Paynich Murray
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Catherine M Crosby
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Paola Marcovecchio
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Nadine Hartmann
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Shilpi Chandra
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Meng Zhao
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Archana Khurana
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Sonja P Zahner
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Björn E Clausen
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz 55131, Germany
| | - Fadie T Coleman
- Pulmonary Center, Boston University School of Medicine, Boston, MA 02118, USA
| | - Joseph P Mizgerd
- Pulmonary Center, Boston University School of Medicine, Boston, MA 02118, USA
| | - Zbigniew Mikulski
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
11
|
Muruganandah V, Kupz A. Immune responses to bacterial lung infections and their implications for vaccination. Int Immunol 2021; 34:231-248. [PMID: 34850883 DOI: 10.1093/intimm/dxab109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/28/2021] [Indexed: 11/14/2022] Open
Abstract
The pulmonary immune system plays a vital role in protecting the delicate structures of gaseous exchange against invasion from bacterial pathogens. With antimicrobial resistance becoming an increasing concern, finding novel strategies to develop vaccines against bacterial lung diseases remains a top priority. In order to do so, a continued expansion of our understanding of the pulmonary immune response is warranted. Whilst some aspects are well characterised, emerging paradigms such as the importance of innate cells and inducible immune structures in mediating protection provide avenues of potential to rethink our approach to vaccine development. In this review, we aim to provide a broad overview of both the innate and adaptive immune mechanisms in place to protect the pulmonary tissue from invading bacterial organisms. We use specific examples from several infection models and human studies to depict the varying functions of the pulmonary immune system that may be manipulated in future vaccine development. Particular emphasis has been placed on emerging themes that are less reviewed and underappreciated in vaccine development studies.
Collapse
Affiliation(s)
- Visai Muruganandah
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Andreas Kupz
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| |
Collapse
|
12
|
Vogt S, Mattner J. NKT Cells Contribute to the Control of Microbial Infections. Front Cell Infect Microbiol 2021; 11:718350. [PMID: 34595131 PMCID: PMC8477047 DOI: 10.3389/fcimb.2021.718350] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022] Open
Abstract
Innate (-like) T lymphocytes such as natural killer T (NKT) cells play a pivotal role in the recognition of microbial infections and their subsequent elimination. They frequently localize to potential sites of pathogen entry at which they survey extracellular and intracellular tissue spaces for microbial antigens. Engagement of their T cell receptors (TCRs) induces an explosive release of different cytokines and chemokines, which often pre-exist as constitutively expressed gene transcripts in NKT cells and underlie their poised effector state. Thus, NKT cells regulate immune cell migration and activation and subsequently, bridge innate and adaptive immune responses. In contrast to conventional T cells, which react to peptide antigens, NKT cells recognize lipids presented by the MHC class I like CD1d molecule on antigen presenting cells (APCs). Furthermore, each NKT cell TCR can recognize various antigen specificities, whereas a conventional T lymphocyte TCR reacts mostly only to one single antigen. These lipid antigens are either intermediates of the intracellular APC`s-own metabolism or originate from the cell wall of different bacteria, fungi or protozoan parasites. The best-characterized subset, the type 1 NKT cell subset expresses a semi-invariant TCR. In contrast, the TCR repertoire of type 2 NKT cells is diverse. Furthermore, NKT cells express a panoply of inhibitory and activating NK cell receptors (NKRs) that contribute to their primarily TCR-mediated rapid, innate like immune activation and even allow an adaption of their immune response in an adoptive like manner. Dueto their primary localization at host-environment interfaces, NKT cells are one of the first immune cells that interact with signals from different microbial pathogens. Vice versa, the mutual exchange with local commensal microbiota shapes also the biology of NKT cells, predominantly in the gastrointestinal tract. Following infection, two main signals drive the activation of NKT cells: first, cognate activation upon TCR ligation by microbial or endogenous lipid antigens; and second, bystander activation due to cytokines. Here we will discuss the role of NKT cells in the control of different microbial infections comparing pathogens expressing lipid ligands in their cell walls to infectious agents inducing endogenous lipid antigen presentation by APCs.
Collapse
Affiliation(s)
- Stefan Vogt
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Jochen Mattner
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
13
|
Sencio V, Barthelemy A, Tavares LP, Machado MG, Soulard D, Cuinat C, Queiroz-Junior CM, Noordine ML, Salomé-Desnoulez S, Deryuter L, Foligné B, Wahl C, Frisch B, Vieira AT, Paget C, Milligan G, Ulven T, Wolowczuk I, Faveeuw C, Le Goffic R, Thomas M, Ferreira S, Teixeira MM, Trottein F. Gut Dysbiosis during Influenza Contributes to Pulmonary Pneumococcal Superinfection through Altered Short-Chain Fatty Acid Production. Cell Rep 2021; 30:2934-2947.e6. [PMID: 32130898 DOI: 10.1016/j.celrep.2020.02.013] [Citation(s) in RCA: 232] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/13/2019] [Accepted: 02/04/2020] [Indexed: 02/07/2023] Open
Abstract
Secondary bacterial infections often complicate viral respiratory infections. We hypothesize that perturbation of the gut microbiota during influenza A virus (IAV) infection might favor respiratory bacterial superinfection. Sublethal infection with influenza transiently alters the composition and fermentative activity of the gut microbiota in mice. These changes are attributed in part to reduced food consumption. Fecal transfer experiments demonstrate that the IAV-conditioned microbiota compromises lung defenses against pneumococcal infection. In mechanistic terms, reduced production of the predominant short-chain fatty acid (SCFA) acetate affects the bactericidal activity of alveolar macrophages. Following treatment with acetate, mice colonized with the IAV-conditioned microbiota display reduced bacterial loads. In the context of influenza infection, acetate supplementation reduces, in a free fatty acid receptor 2 (FFAR2)-dependent manner, local and systemic bacterial loads. This translates into reduced lung pathology and improved survival rates of double-infected mice. Lastly, pharmacological activation of the SCFA receptor FFAR2 during influenza reduces bacterial superinfection.
Collapse
Affiliation(s)
- Valentin Sencio
- Université de Lille, U1019 UMR 9017, Centre d'Infection et d'Immunité de Lille (CIIL), 59000 Lille, France; Centre National de la Recherche Scientifique, UMR 9017, 59000 Lille, France; Institut National de la Santé et de la Recherche Médicale, U1019, 59000 Lille, France; Centre Hospitalier Universitaire de Lille, 59000 Lille, France; Institut Pasteur de Lille, 59000 Lille, France
| | - Adeline Barthelemy
- Université de Lille, U1019 UMR 9017, Centre d'Infection et d'Immunité de Lille (CIIL), 59000 Lille, France; Centre National de la Recherche Scientifique, UMR 9017, 59000 Lille, France; Institut National de la Santé et de la Recherche Médicale, U1019, 59000 Lille, France; Centre Hospitalier Universitaire de Lille, 59000 Lille, France; Institut Pasteur de Lille, 59000 Lille, France
| | - Luciana P Tavares
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marina G Machado
- Université de Lille, U1019 UMR 9017, Centre d'Infection et d'Immunité de Lille (CIIL), 59000 Lille, France; Centre National de la Recherche Scientifique, UMR 9017, 59000 Lille, France; Institut National de la Santé et de la Recherche Médicale, U1019, 59000 Lille, France; Centre Hospitalier Universitaire de Lille, 59000 Lille, France; Institut Pasteur de Lille, 59000 Lille, France; Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daphnée Soulard
- Université de Lille, U1019 UMR 9017, Centre d'Infection et d'Immunité de Lille (CIIL), 59000 Lille, France; Centre National de la Recherche Scientifique, UMR 9017, 59000 Lille, France; Institut National de la Santé et de la Recherche Médicale, U1019, 59000 Lille, France; Centre Hospitalier Universitaire de Lille, 59000 Lille, France; Institut Pasteur de Lille, 59000 Lille, France
| | - Céline Cuinat
- Micalis Institute, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | | | - Marie-Louise Noordine
- Micalis Institute, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Sophie Salomé-Desnoulez
- Université de Lille, U1019 UMR 9017, Centre d'Infection et d'Immunité de Lille (CIIL), 59000 Lille, France; Centre National de la Recherche Scientifique, UMR 9017, 59000 Lille, France; Institut National de la Santé et de la Recherche Médicale, U1019, 59000 Lille, France; Centre Hospitalier Universitaire de Lille, 59000 Lille, France; Institut Pasteur de Lille, 59000 Lille, France
| | - Lucie Deryuter
- Université de Lille, U1019 UMR 9017, Centre d'Infection et d'Immunité de Lille (CIIL), 59000 Lille, France; Centre National de la Recherche Scientifique, UMR 9017, 59000 Lille, France; Institut National de la Santé et de la Recherche Médicale, U1019, 59000 Lille, France; Centre Hospitalier Universitaire de Lille, 59000 Lille, France; Institut Pasteur de Lille, 59000 Lille, France
| | - Benoit Foligné
- Université de Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), CHU Lille, U995, Lille Inflammation Research International Center (LIRIC), 59000 Lille, France
| | | | - Benoit Frisch
- Centre National de la Recherche Scientifique, Université de Strasbourg, Faculté de Pharmacie, 67400 Illkirch, France
| | - Angelica T Vieira
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Christophe Paget
- Université de Lille, U1019 UMR 9017, Centre d'Infection et d'Immunité de Lille (CIIL), 59000 Lille, France; Centre National de la Recherche Scientifique, UMR 9017, 59000 Lille, France; Institut National de la Santé et de la Recherche Médicale, U1019, 59000 Lille, France; Centre Hospitalier Universitaire de Lille, 59000 Lille, France; Institut Pasteur de Lille, 59000 Lille, France
| | - Graeme Milligan
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, University of Glasgow, G12 8QQ Glasgow, Scotland, UK
| | - Trond Ulven
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Isabelle Wolowczuk
- Université de Lille, U1019 UMR 9017, Centre d'Infection et d'Immunité de Lille (CIIL), 59000 Lille, France; Centre National de la Recherche Scientifique, UMR 9017, 59000 Lille, France; Institut National de la Santé et de la Recherche Médicale, U1019, 59000 Lille, France; Centre Hospitalier Universitaire de Lille, 59000 Lille, France; Institut Pasteur de Lille, 59000 Lille, France
| | - Christelle Faveeuw
- Université de Lille, U1019 UMR 9017, Centre d'Infection et d'Immunité de Lille (CIIL), 59000 Lille, France; Centre National de la Recherche Scientifique, UMR 9017, 59000 Lille, France; Institut National de la Santé et de la Recherche Médicale, U1019, 59000 Lille, France; Centre Hospitalier Universitaire de Lille, 59000 Lille, France; Institut Pasteur de Lille, 59000 Lille, France
| | - Ronan Le Goffic
- Molecular Virology and Immunology, Institut National de la Recherche Agronomique, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Muriel Thomas
- Micalis Institute, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | | | - Mauro M Teixeira
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - François Trottein
- Université de Lille, U1019 UMR 9017, Centre d'Infection et d'Immunité de Lille (CIIL), 59000 Lille, France; Centre National de la Recherche Scientifique, UMR 9017, 59000 Lille, France; Institut National de la Santé et de la Recherche Médicale, U1019, 59000 Lille, France; Centre Hospitalier Universitaire de Lille, 59000 Lille, France; Institut Pasteur de Lille, 59000 Lille, France.
| |
Collapse
|
14
|
Gálvez NMS, Bohmwald K, Pacheco GA, Andrade CA, Carreño LJ, Kalergis AM. Type I Natural Killer T Cells as Key Regulators of the Immune Response to Infectious Diseases. Clin Microbiol Rev 2021; 34:e00232-20. [PMID: 33361143 PMCID: PMC7950362 DOI: 10.1128/cmr.00232-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The immune system must work in an orchestrated way to achieve an optimal response upon detection of antigens. The cells comprising the immune response are traditionally divided into two major subsets, innate and adaptive, with particular characteristics for each type. Type I natural killer T (iNKT) cells are defined as innate-like T cells sharing features with both traditional adaptive and innate cells, such as the expression of an invariant T cell receptor (TCR) and several NK receptors. The invariant TCR in iNKT cells interacts with CD1d, a major histocompatibility complex class I (MHC-I)-like molecule. CD1d can bind and present antigens of lipid nature and induce the activation of iNKT cells, leading to the secretion of various cytokines, such as gamma interferon (IFN-γ) and interleukin 4 (IL-4). These cytokines will aid in the activation of other immune cells following stimulation of iNKT cells. Several molecules with the capacity to bind to CD1d have been discovered, including α-galactosylceramide. Likewise, several molecules have been synthesized that are capable of polarizing iNKT cells into different profiles, either pro- or anti-inflammatory. This versatility allows NKT cells to either aid or impair the clearance of pathogens or to even control or increase the symptoms associated with pathogenic infections. Such diverse contributions of NKT cells to infectious diseases are supported by several publications showing either a beneficial or detrimental role of these cells during diseases. In this article, we discuss current data relative to iNKT cells and their features, with an emphasis on their driving role in diseases produced by pathogenic agents in an organ-oriented fashion.
Collapse
Affiliation(s)
- Nicolás M S Gálvez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karen Bohmwald
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gaspar A Pacheco
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina A Andrade
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Leandro J Carreño
- Millennium Institute on Immunology and Immunotherapy, Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
15
|
Leadbetter EA, Karlsson MCI. Invariant natural killer T cells balance B cell immunity. Immunol Rev 2021; 299:93-107. [PMID: 33438287 DOI: 10.1111/imr.12938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/21/2020] [Accepted: 12/04/2020] [Indexed: 12/21/2022]
Abstract
Invariant natural killer T (iNKT) cells mediate rapid immune responses which bridge the gap between innate and adaptive responses to pathogens while also providing key regulation to maintain immune homeostasis. Both types of important iNKT immune responses are mediated through interactions with innate and adaptive B cells. As such, iNKT cells sit at the decision-making fulcrum between regulating inflammatory or autoreactive B cells and supporting protective or regulatory B cell populations. iNKT cells interpret the signals in their environment to set the tone for subsequent adaptive responses, with outcomes ranging from getting licensed to maintain homeostasis as an iNKT regulatory cell (iNKTreg ) or being activated to become an iNKT follicular helper (iNKTFH ) cell supporting pathogen-specific effector B cells. Here we review iNKT and B cell cooperation across the spectrum of immune outcomes, including during allergy and autoimmune disease, tumor surveillance and immunotherapy, or pathogen defense and vaccine responses. Because of their key role as influencers, iNKT cells provide a valuable target for therapeutic interventions. Understanding the nature of the interactions between iNKT and B cells will enable the development of clinical interventions to strategically target regulatory iNKT and B cell populations or inflammatory ones, depending on the circumstance.
Collapse
Affiliation(s)
- Elizabeth A Leadbetter
- Department of Microbiology, Immunology and Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA
| | - Mikael C I Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
Leborgne NGF, Taddeo A, Freigang S, Benarafa C. Serpinb1a Is Dispensable for the Development and Cytokine Response of Invariant Natural Killer T Cell Subsets. Front Immunol 2020; 11:562587. [PMID: 33262755 PMCID: PMC7686238 DOI: 10.3389/fimmu.2020.562587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/13/2020] [Indexed: 11/16/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are innate-like T lymphocytes. They quickly respond to antigenic stimulation by producing copious amounts of cytokines and chemokines. iNKT precursors differentiate into three subsets iNKT1, iNKT2, and iNKT17 with specific cytokine production signatures. While key transcription factors drive subset differentiation, factors that regulate iNKT subset homeostasis remain incompletely defined. Transcriptomic analyses of thymic iNKT subsets indicate that Serpinb1a is one of the most specific transcripts for iNKT17 cells suggesting that iNKT cell maintenance and function may be regulated by Serpinb1a. Serpinb1a is a major survival factor in neutrophils and prevents cell death in a cell-autonomous manner. It also controls inflammation in models of bacterial and viral infection as well as in LPS-driven inflammation. Here, we examined the iNKT subsets in neutropenic Serpinb1a−/− mice as well as in Serpinb1a−/− mice with normal neutrophil counts due to transgenic re-expression of SERPINB1 in neutrophils. In steady state, we found no significant effect of Serpinb1a-deficiency on the proliferation and numbers of iNKT subsets in thymus, lymph nodes, lung, liver and spleen. Following systemic activation with α-galactosylceramide, the prototypic glycolipid agonist of iNKT cells, we observed similar serum levels of IFN-γ and IL-4 between genotypes. Moreover, splenic dendritic cells showed normal upregulation of maturation markers following iNKT cell activation with α-galactosylceramide. Finally, lung instillation of α-galactosylceramide induced a similar recruitment of neutrophils and production of iNKT-derived cytokines IL-17, IFN-γ, and IL-4 in wild-type and Serpinb1a−/− mice. Taken together, our results indicate that Serpinb1a, while dominantly expressed in iNKT17 cells, is not essential for iNKT cell homeostasis, subset differentiation and cytokine release.
Collapse
Affiliation(s)
- Nathan G F Leborgne
- Institute of Virology and Immunology, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Adriano Taddeo
- Institute of Virology and Immunology, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Stefan Freigang
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Charaf Benarafa
- Institute of Virology and Immunology, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
17
|
Abstract
Invariant natural killer T cells (iNKT cells) are an innate-like T cell subset that expresses an invariant T cell receptor (TCR) α-chain and recognizes lipids presented on CD1d. They secrete diverse cytokines and can influence many types of immune responses. Despite having highly similar TCR specificities, iNKT cells differentiate in the thymus into distinct subsets that are analogous to T helper 1 (TH1), TH2 and TH17 cell subsets. Additional iNKT cell subsets that may require peripheral activation have also been described, including one that produces IL-10. In general, iNKT cells are non-circulating, tissue-resident lymphocytes, but the prevalence of different iNKT cell subsets differs markedly between tissues. Here, we summarize the functions of iNKT cells in four tissues in which they are prevalent, namely, the liver, the lungs, adipose tissue and the intestine. Importantly, we explain how local iNKT cell responses at each site contribute to tissue homeostasis and protection from infection but can also contribute to tissue inflammation and damage.
Collapse
|
18
|
Humeniuk P, Geiselhart S, Battin C, Webb T, Steinberger P, Paster W, Hoffmann-Sommergruber K. Generation of a Jurkat-based fluorescent reporter cell line to evaluate lipid antigen interaction with the human iNKT cell receptor. Sci Rep 2019; 9:7426. [PMID: 31092850 PMCID: PMC6520406 DOI: 10.1038/s41598-019-43529-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 04/23/2019] [Indexed: 12/27/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are a specialized subset of T cells contributing to both, the innate and adaptive immune responses. In contrast to conventional T lymphocytes they recognize lipid antigens. The aim of the project is to establish a novel model system, to study iNKT-TCR - ligand interaction. An iNKT reporter cell line (JE6-1REP-iNKT) was engineered by introducing the human iNKT-TCR into a human leukemic T cell line carrying an NF-κB-driven fluorescent transcriptional reporter construct. Antigen presenting BWSTIM cells expressing human CD1d and CD80 were generated. Reporter induction in JE6-1REP-iNKT cells was assessed by flow cytometry. CRISPR/Cas9 was used for β2M knock out in JE6-1REP-iNKT cells to abrogate CD1d expression and thus excluding antigen self-presentation. Reporter cells were shown to specifically react with iNKT antigens presented via CD1d. Their sensitivity towards α-GalCer was comparable to a murine iNKT hybridoma cell line. In conclusion, we created a novel iNKT reporter platform which, compared to traditional iNKT cell assays, is characterized by a shorter turnaround time and lower costs. It thus facilitates the identification of antigenic structures that drive the activation of iNKT cells in health and disease.
Collapse
Affiliation(s)
- Piotr Humeniuk
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Sabine Geiselhart
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Claire Battin
- Institute of Immunology, Division of Immune Receptors and T cell Activation, Medical University of Vienna, Vienna, Austria
| | - Tonya Webb
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, USA
| | - Peter Steinberger
- Institute of Immunology, Division of Immune Receptors and T cell Activation, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Paster
- Institute of Immunology, Division of Immune Receptors and T cell Activation, Medical University of Vienna, Vienna, Austria.
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria.
| | | |
Collapse
|
19
|
Paget C, Trottein F. Mechanisms of Bacterial Superinfection Post-influenza: A Role for Unconventional T Cells. Front Immunol 2019; 10:336. [PMID: 30881357 PMCID: PMC6405625 DOI: 10.3389/fimmu.2019.00336] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/08/2019] [Indexed: 12/24/2022] Open
Abstract
Despite the widespread application of vaccination programs and antiviral drug treatments, influenza viruses are still among the most harmful human pathogens. Indeed, influenza results in significant seasonal and pandemic morbidity and mortality. Furthermore, severe bacterial infections can occur in the aftermath of influenza virus infection, and contribute substantially to the excess morbidity and mortality associated with influenza. Here, we review the main features of influenza viruses and current knowledge about the mechanical and immune mechanisms that underlie post-influenza secondary bacterial infections. We present the emerging literature describing the role of "innate-like" unconventional T cells in post-influenza bacterial superinfection. Unconventional T cell populations span the border between the innate and adaptive arms of the immune system, and are prevalent in mucosal tissues (including the airways). They mainly comprise Natural Killer T cells, mucosal-associated invariant T cells and γδ T cells. We provide an overview of the principal functions that these cells play in pulmonary barrier functions and immunity, highlighting their unique ability to sense environmental factors and promote protection against respiratory bacterial infections. We focus on two major opportunistic pathogens involved in superinfections, namely Streptococcus pneumoniae and Staphylococcus aureus. We discuss mechanisms through which influenza viruses alter the antibacterial activity of unconventional T cells. Lastly, we discuss recent fundamental advances and possible therapeutic approaches in which unconventional T cells would be targeted to prevent post-influenza bacterial superinfections.
Collapse
Affiliation(s)
- Christophe Paget
- Centre d'Etude des Pathologies Respiratoires, Institut National de la Santé et de la Recherche Médicale U1100, Tours, France.,Faculty of Medicine, Université de Tours, Tours, France
| | - François Trottein
- U1019-UMR 8204-CIIL-Centre d'Infection et d'Immunité de Lille, Université de Lille, Lille, France.,Centre National de la Recherche Scientifique, UMR 8204, Lille, France.,Institut National de la Santé et de la Recherche Médicale U1019, Lille, France.,Centre Hospitalier, Universitaire de Lille, Lille, France.,Institut Pasteur de Lille, Lille, France
| |
Collapse
|
20
|
Mrp1 is involved in lipid presentation and iNKT cell activation by Streptococcus pneumoniae. Nat Commun 2018; 9:4279. [PMID: 30323255 PMCID: PMC6189046 DOI: 10.1038/s41467-018-06646-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 09/17/2018] [Indexed: 01/17/2023] Open
Abstract
Invariant natural killer T cells (iNKT cells) are activated by lipid antigens presented by CD1d, but the pathway leading to lipid antigen presentation remains incompletely characterized. Here we show a whole-genome siRNA screen to elucidate the CD1d presentation pathway. A majority of gene knockdowns that diminish antigen presentation reduced formation of glycolipid-CD1d complexes on the cell surface, including members of the HOPS and ESCRT complexes, genes affecting cytoskeletal rearrangement, and ABC family transporters. We validated the role in vivo for the multidrug resistance protein 1 (Mrp1) in CD1d antigen presentation. Mrp1 deficiency reduces surface clustering of CD1d, which decreased iNKT cell activation. Infected Mrp1 knockout mice show decreased iNKT cell responses to antigens from Streptococcus pneumoniae and were associated with increased mortality. Our results highlight the unique cellular events involved in lipid antigen presentation and show how modification of this pathway can lead to lethal infection. The CD1d pathway present lipid antigens resulting in the activation of iNKT cells but the complete pathway remains to be fully elucidated. Here, Chandra et al. use an siRNA screen and identify Mrp1 as crucial for CD1d lipid presentation and activation of iNKT in the context of Streptococcus pneumoniae infection.
Collapse
|
21
|
Trottein F, Paget C. Natural Killer T Cells and Mucosal-Associated Invariant T Cells in Lung Infections. Front Immunol 2018; 9:1750. [PMID: 30116242 PMCID: PMC6082944 DOI: 10.3389/fimmu.2018.01750] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/16/2018] [Indexed: 12/13/2022] Open
Abstract
The immune system has been traditionally divided into two arms called innate and adaptive immunity. Typically, innate immunity refers to rapid defense mechanisms that set in motion within minutes to hours following an insult. Conversely, the adaptive immune response emerges after several days and relies on the innate immune response for its initiation and subsequent outcome. However, the recent discovery of immune cells displaying merged properties indicates that this distinction is not mutually exclusive. These populations that span the innate-adaptive border of immunity comprise, among others, CD1d-restricted natural killer T cells and MR1-restricted mucosal-associated invariant T cells. These cells have the unique ability to swiftly activate in response to non-peptidic antigens through their T cell receptor and/or to activating cytokines in order to modulate many aspects of the immune response. Despite they recirculate all through the body via the bloodstream, these cells mainly establish residency at barrier sites including lungs. Here, we discuss the current knowledge into the biology of these cells during lung (viral and bacterial) infections including activation mechanisms and functions. We also discuss future strategies targeting these cell types to optimize immune responses against respiratory pathogens.
Collapse
Affiliation(s)
- François Trottein
- Univ. Lille, U1019 – UMR 8204 – CIIL – Centre d’Infection et d’Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Christophe Paget
- Institut National de la Santé et de la Recherche Médicale U1100, Centre d’Etude des Pathologies Respiratoires (CEPR), Tours, France
- Université de Tours, Tours, France
| |
Collapse
|
22
|
González-Miró M, Radecker AM, Rodríguez-Noda LM, Fariñas-Medina M, Zayas-Vignier C, Hernández-Cedeño M, Serrano Y, Cardoso F, Santana-Mederos D, García-Rivera D, Valdés-Balbín Y, Vérez-Bencomo V, Rehm BHA. Design and Biological Assembly of Polyester Beads Displaying Pneumococcal Antigens as Particulate Vaccine. ACS Biomater Sci Eng 2018; 4:3413-3424. [DOI: 10.1021/acsbiomaterials.8b00579] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Majela González-Miró
- Finlay Vaccine Institute, 27th Avenue, No. 19805 between 198 and 202, La Lisa, Havana 11600, Cuba
- Institute of Fundamental Sciences, Massey University, Colombo Road, Palmerston North 4422, New Zealand
| | - Anna-Maria Radecker
- Institute of Fundamental Sciences, Massey University, Colombo Road, Palmerston North 4422, New Zealand
| | - Laura M. Rodríguez-Noda
- Finlay Vaccine Institute, 27th Avenue, No. 19805 between 198 and 202, La Lisa, Havana 11600, Cuba
| | - Mildrey Fariñas-Medina
- Finlay Vaccine Institute, 27th Avenue, No. 19805 between 198 and 202, La Lisa, Havana 11600, Cuba
| | - Caridad Zayas-Vignier
- Finlay Vaccine Institute, 27th Avenue, No. 19805 between 198 and 202, La Lisa, Havana 11600, Cuba
| | - Mabel Hernández-Cedeño
- Finlay Vaccine Institute, 27th Avenue, No. 19805 between 198 and 202, La Lisa, Havana 11600, Cuba
| | - Yohana Serrano
- Finlay Vaccine Institute, 27th Avenue, No. 19805 between 198 and 202, La Lisa, Havana 11600, Cuba
| | - Félix Cardoso
- Finlay Vaccine Institute, 27th Avenue, No. 19805 between 198 and 202, La Lisa, Havana 11600, Cuba
| | - Darielys Santana-Mederos
- Finlay Vaccine Institute, 27th Avenue, No. 19805 between 198 and 202, La Lisa, Havana 11600, Cuba
| | - Dagmar García-Rivera
- Finlay Vaccine Institute, 27th Avenue, No. 19805 between 198 and 202, La Lisa, Havana 11600, Cuba
| | - Yury Valdés-Balbín
- Finlay Vaccine Institute, 27th Avenue, No. 19805 between 198 and 202, La Lisa, Havana 11600, Cuba
| | - Vicente Vérez-Bencomo
- Finlay Vaccine Institute, 27th Avenue, No. 19805 between 198 and 202, La Lisa, Havana 11600, Cuba
| | - Bernd H. A. Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan Campus, Nathan, Queensland 4111, Australia
| |
Collapse
|
23
|
Kinjo Y, Takatsuka S, Kitano N, Kawakubo S, Abe M, Ueno K, Miyazaki Y. Functions of CD1d-Restricted Invariant Natural Killer T Cells in Antimicrobial Immunity and Potential Applications for Infection Control. Front Immunol 2018; 9:1266. [PMID: 29928278 PMCID: PMC5997780 DOI: 10.3389/fimmu.2018.01266] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
CD1d-restricted invariant natural killer T (iNKT) cells are innate-type lymphocytes that express a T-cell receptor (TCR) containing an invariant α chain encoded by the Vα14 gene in mice and Vα24 gene in humans. These iNKT cells recognize endogenous, microbial, and synthetic glycolipid antigens presented by the major histocompatibility complex (MHC) class I-like molecule CD1d. Upon TCR stimulation by glycolipid antigens, iNKT cells rapidly produce large amounts of cytokines, including interferon-γ (IFNγ) and interleukin-4 (IL-4). Activated iNKT cells contribute to host protection against a broad spectrum of microbial pathogens, and glycolipid-mediated stimulation of iNKT cells ameliorates many microbial infections by augmenting innate and acquired immunity. In some cases, however, antigen-activated iNKT cells exacerbate microbial infections by promoting pathogenic inflammation. Therefore, it is important to identify appropriate microbial targets for the application of iNKT cell activation as a treatment or vaccine adjuvant. Many studies have found that iNKT cell activation induces potent adjuvant activities promoting protective vaccine effects. In this review, we summarize the functions of CD1d-restricted iNKT cells in immune responses against microbial pathogens and describe the potential applications of glycolipid-mediated iNKT cell activation for preventing and controlling microbial infections.
Collapse
Affiliation(s)
- Yuki Kinjo
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shogo Takatsuka
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Naoki Kitano
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shun Kawakubo
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masahiro Abe
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Keigo Ueno
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshitsugu Miyazaki
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
24
|
IL-36γ is a crucial proximal component of protective type-1-mediated lung mucosal immunity in Gram-positive and -negative bacterial pneumonia. Mucosal Immunol 2017; 10:1320-1334. [PMID: 28176791 PMCID: PMC5548659 DOI: 10.1038/mi.2016.130] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 12/01/2016] [Indexed: 02/04/2023]
Abstract
Interleukin-36γ (IL-36γ) is a member of novel IL-1-like proinflammatory cytokine family that are highly expressed in epithelial tissues and several myeloid-derived cell types. Little is known about the role of the IL-36 family in mucosal immunity, including lung anti-bacterial responses. We used murine models of IL-36γ deficiency to assess the contribution of IL-36γ in the lung during experimental pneumonia. Induction of IL-36γ was observed in the lung in response to Streptococcus pneumoniae (Sp) infection, and mature IL-36γ protein was secreted primarily in microparticles. IL-36γ-deficient mice challenged with Sp demonstrated increased mortality, decreased lung bacterial clearance and increased bacterial dissemination, in association with reduced local expression of type-1 cytokines, and impaired lung macrophage M1 polarization. IL-36γ directly stimulated type-1 cytokine induction from dendritic cells in vitro in a MyD88-dependent manner. Similar protective effects of IL-36γ were observed in a Gram-negative pneumonia model (Klebsiella pneumoniae). Intrapulmonary delivery of IL-36γ-containing microparticles reconstituted immunity in IL-36γ-/- mice. Enhanced expression of IL-36γ was also observed in plasma and bronchoalveolar lavage fluid of patients with acute respiratory distress syndrome because of pneumonia. These studies indicate that IL-36γ assumes a vital proximal role in the lung innate mucosal immunity during bacterial pneumonia by driving protective type-1 responses and classical macrophage activation.
Collapse
|
25
|
Activation of invariant natural killer T cells stimulated with microbial α-mannosyl glycolipids. Sci Rep 2017; 7:9703. [PMID: 28852174 PMCID: PMC5574887 DOI: 10.1038/s41598-017-10309-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 08/08/2017] [Indexed: 12/21/2022] Open
Abstract
Some synthetic and bacterial glycolipids presented by CD1d specifically activate invariant NKT (iNKT) cells bearing an invariant Vα14-Jα18 (mouse) or Vα24-Jα18 (human) TCR. The antigenic glycolipids identified to date consist of two hydrophobic chains and an α-glycoside in which the 2′-OH group is in the cis orientation toward the anomeric group, namely, either an α-galactoside or an α-glucoside. Several microbial α-mannosyl glycolipids, in which the 2′-OH group is in the trans orientation, were herein examined to establish whether they have potential to activate iNKT cells. We found that α-mannnosyl1-3 (6′-O-acyl α-mannosyl)-1-1 monoacylglycerol and cholesteryl 6′-O-acyl α-mannoside, found in Saccharopolyspora and Candida albicans, respectively, induced the activation of iNKT cells, dependent on CD1d. In contrast, α-mannosyldiacylglycerol found in Streptococcus suis or α-mannosylceramide demonstrated markedly less antigenicity for iNKT cells. The potentially antigenic α-mannosyl glycolipids contributed to the protection of mice against infection with S. pneumoniae in which iNKT cells have previously been found to participate. Furthermore, these glycolipids induced the production of proinflammatory cytokines by macrophages, thereby suggesting their recognition by specific pattern recognition receptors (PRRs). Collectively, these results suggest that these microbial α-mannosyl glycolipids are capable of being recognized by both the invariant TCR and PRRs and inducing immune responses.
Collapse
|
26
|
Barbieri N, Herrera M, Salva S, Villena J, Alvarez S. Lactobacillus rhamnosus CRL1505 nasal administration improves recovery of T-cell mediated immunity against pneumococcal infection in malnourished mice. Benef Microbes 2017; 8:393-405. [DOI: 10.3920/bm2016.0152] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Immunobiotic lactic acid bacteria have become an interesting alternative for the prevention of respiratory infections. Previously, we demonstrated that the nasal administration of Lactobacillus rhamnosus CRL1505, during repletion of malnourished mice, resulted in diminished susceptibility to the challenge with the respiratory pathogen Streptococcus pneumoniae. Considering the known alterations induced by malnutrition on T lymphocytes and the importance of this cell population on the protection against respiratory pathogens, we aimed to study the effect of L. rhamnosus CRL1505 nasal administration on the recovery of T cell-mediated defences against pneumococcal infection in malnourished mice under nutritional recovery. Malnourished mice received a balanced conventional diet (BCD) for seven days or BCD for seven days with nasal L. rhamnosus CRL1505 supplementation during last two days of the treatment. After the treatments mice were infected with S. pneumoniae. Flow cytometry studies were carried out in bone marrow, thymus, spleen and lung to study T cells, and Th1/Th2 cytokine profiles were determined in broncho-alveolar lavages and serum. The administration of CRL1505 strain to malnourished mice under recovery reduced quantitative and qualitative alterations of CD4+ T cells in the bone marrow, thymus, spleen and lung induced by malnutrition. In addition, CRL1505 treatment augmented Th2-cytokines (interleukin 10 and 4) in respiratory and systemic compartments after pneumococcal infection. These results show that modulation of CD4+ T lymphocytes induced by L. rhamnosus CRL1505 has an important role in the beneficial effect induced by this strain on the recovery of malnourished mice. These data also indicate that nasally administered L. rhamnosus CRL1505 may represent a non-invasive alternative to modulate and improve the T cell-mediated immunity against respiratory pathogens in immunocompromised malnourished hosts.
Collapse
Affiliation(s)
- N. Barbieri
- Laboratorio de Inmunobiotecnología, Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, Tucumán (CP 4000), Argentina
- Departamento de Ciencias Básicas y Tecnológicas, Universidad Nacional de Chilecito, 9 de Julio 22, Chilecito (F5360CKB), La Rioja, Argentina
| | - M. Herrera
- Laboratorio de Inmunobiotecnología, Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, Tucumán (CP 4000), Argentina
| | - S. Salva
- Laboratorio de Inmunobiotecnología, Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, Tucumán (CP 4000), Argentina
| | - J. Villena
- Laboratorio de Inmunobiotecnología, Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, Tucumán (CP 4000), Argentina
| | - S. Alvarez
- Laboratorio de Inmunobiotecnología, Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, Tucumán (CP 4000), Argentina
- Instituto de Bioquímica Aplicada, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Balcarce 747, Tucumán (CP 4000), Argentina
| |
Collapse
|
27
|
Wang J, Feng Y, Wang C, Zheng F, Hassan B, Zhi L, Li W, Yao Y, He E, Jiang S, Tang J. Genome-wide analysis of an avirulent strain that induces protective immunity against challenge with virulent Streptococcus suis serotype 2. BMC Microbiol 2017; 17:67. [PMID: 28292261 PMCID: PMC5351164 DOI: 10.1186/s12866-017-0971-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 03/03/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND It was previously reported in China that two recent large-scale outbreaks of Streptococcus suis serotype 2 (S. suis 2) infections in human were caused by two highly virulent S. suis 2 strains, from which a novel genomic island (GEI), associated with disease onset and progression and designated 89 K, was identified. Here, an avirulent strain, 05HAS68, was isolated from a clinically healthy pig. RESULTS By comparing the genomes of this avirulent strain with virulent strains, it was found that massive genomic rearrangements occurred, resulting in alterations in gene expression that caused enormous single gene gain and loss. Important virulent genes were lost, such as extracellular protein factor (ef) and suilysin (sly) and larger mutants, such as muramidase-released protein (mrp). Piglets vaccinated with the avirulent strain, 05HAS68, had increased TNF-α and IFN-γ levels in the peripheral blood and were fully protected from challenge infection with the most virulent S. suis 2 strain, 05ZYH33. Transfusion of T cells and plasma from vaccinated pigs resulted in protection of recipient animals against the 05ZYH33 challenge. CONCLUSION These results suggest that analysis genome of the avirulent strains are instrumental in the development of vaccines and for the functional characterization of important of genetic determinants.
Collapse
Affiliation(s)
- Jing Wang
- Translational Medicine Center, PLA Hospital No. 454, Nanjing, 210002, China.
| | - Youjun Feng
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Changjun Wang
- Department of Epidemiology, Medicinal Research Institute, Nanjing Military Command, Nanjing, 210002, China
| | - Feng Zheng
- Department of Epidemiology, Medicinal Research Institute, Nanjing Military Command, Nanjing, 210002, China
| | | | - Liming Zhi
- Translational Medicine Center, PLA Hospital No. 454, Nanjing, 210002, China
| | - Wenjuan Li
- Translational Medicine Center, PLA Hospital No. 454, Nanjing, 210002, China
| | - Yi Yao
- Translational Medicine Center, PLA Hospital No. 454, Nanjing, 210002, China
| | - Elaine He
- The Warren Alpert Medical School of Brown University, Providence, RI02912, USA
| | - Shibo Jiang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, 10065, USA
| | - Jiaqi Tang
- PLA Research Institute of Clinical Laboratory Medicine, Nanjing General Hospital, Nanjing Military Command, Nanjing, 210002, China.
| |
Collapse
|
28
|
Influenza A virus-induced release of interleukin-10 inhibits the anti-microbial activities of invariant natural killer T cells during invasive pneumococcal superinfection. Mucosal Immunol 2017; 10:460-469. [PMID: 27220813 DOI: 10.1038/mi.2016.49] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/07/2016] [Indexed: 02/04/2023]
Abstract
During influenza A virus (IAV) infection, changes in the lung's physical and immunological defenses predispose the host to bacterial superinfections. Invariant natural killer T (iNKT) cells are innate-like T lymphocytes that have beneficial or harmful functions during infection. We investigated the iNKT cells' role in a model of invasive pneumococcal superinfection. The use of Jα18-/- mice indicated that iNKT cells limited susceptibility to influenza-pneumococcal infection and reduced the lethal synergism. This role did not depend on immune-based anti-bacterial mechanisms. At the time of bacterial exposure, iNKT cells from IAV-experienced mice failed to produce antipneumococcal interferon-γ and adoptive transfer of fresh iNKT cells before Streptococcus pneumoniae challenge did not restore anti-bacterial host defenses. Impaired iNKT cell activation in superinfected animals was related to the IAV-induced immunosuppressive cytokine interleukin-10 (IL-10), rather than to an intrinsic functional defect. IL-10 dampened the activation of iNKT cells in response to pneumococci by inhibiting the production of IL-12 by pulmonary monocyte-derived dendritic cells. Neutralization of IL-10 restored iNKT cell activation and tends to increase resistance to secondary bacterial infection. Overall, iNKT cells have a beneficial role (upstream of bacterial colonization) in controlling influenza-pneumococcal superinfection, although they represent novel targets of immunosuppression at the time of bacterial challenge.
Collapse
|
29
|
Littwitz-Salomon E, Schimmer S, Dittmer U. Natural killer T cells contribute to the control of acute retroviral infection. Retrovirology 2017; 14:5. [PMID: 28122574 PMCID: PMC5267384 DOI: 10.1186/s12977-017-0327-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 01/03/2017] [Indexed: 01/12/2023] Open
Abstract
Background Natural killer T cells (NKT cells) play an important role in the immunity against viral infections. They produce cytokines or have direct cytolytic effects that can restrict virus replication. However, the exact function of NKT cells in retroviral immunity is not fully elucidated. Therefore, we analyzed the antiretroviral functions of NKT cells in mice infected with the Friend retrovirus (FV). Results After FV infection numbers of NKT cells remained unchanged but activation as well as improved effector functions of NKT cells were found. While the release of pro-inflammatory cytokines was not changed after infection, activated NKT cells revealed an elevated cytotoxic potential. Stimulation with α-Galactosylceramide significantly increased not only total NKT cell numbers and activation but also the anti-retroviral capacity of NKT cells. Conclusion We demonstrate a strong activation and a potent cytolytic function of NKT cells during acute retroviral infection. Therapeutic treatment with α-Galactosylceramide could further improve the reduction of early retroviral replication by NKT cells, which could be utilized for future treatment against viral infections. Electronic supplementary material The online version of this article (doi:10.1186/s12977-017-0327-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elisabeth Littwitz-Salomon
- Institute for Virology of the University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany.
| | - Simone Schimmer
- Institute for Virology of the University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology of the University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| |
Collapse
|
30
|
Wang Y, Jiang B, Guo Y, Li W, Tian Y, Sonnenberg GF, Weiser JN, Ni X, Shen H. Cross-protective mucosal immunity mediated by memory Th17 cells against Streptococcus pneumoniae lung infection. Mucosal Immunol 2017; 10:250-259. [PMID: 27118490 PMCID: PMC5083242 DOI: 10.1038/mi.2016.41] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 03/22/2016] [Indexed: 02/04/2023]
Abstract
Pneumonia caused by Streptococcus pneumoniae (Sp) remains a leading cause of serious illness and death worldwide. Immunization with conjugated pneumococcal vaccine has lowered the colonization rate and consequently invasive diseases by inducing serotype-specific antibodies. However, many of the current pneumonia cases result from infection by serotype strains not included in the vaccine. In this study, we asked if cross-protection against lung infection by heterologous strains can be induced, and investigated the underlying immune mechanism. We found that immune mice recovered from a prior infection were protected against heterologous Sp strains in the pneumonia challenge model, as evident by accelerated bacterial clearance, reduced pathology, and apoptosis of lung epithelial cells. Sp infection in the lung induced strong T-helper type 17 (Th17) responses at the lung mucosal site. Transfer of CD4+ T cells from immune mice provided heterologous protection against pneumonia, and this protection was abrogated by interleukin-17A (IL-17A) blockade. Transfer of memory CD4+ T cells from IL-17A-knockout mice failed to provide protection. These results indicate that memory Th17 cells had a key role in providing protection against pneumonia in a serotype-independent manner and suggest the feasibility of developing a broadly protective vaccine against bacterial pneumonia by targeting mucosal Th17 T cells.
Collapse
Affiliation(s)
- Yan Wang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA 19104, USA
| | - Bin Jiang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA 19104, USA
| | - Yongli Guo
- Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
| | - Wenchao Li
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA 19104, USA
| | - Ying Tian
- Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Gregory F Sonnenberg
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Department of Microbiology & Immunology, and The Jill Robert’s Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medical College, New York, NY, USA
| | - Jeffery N. Weiser
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA 19104, USA
,Department of Microbiology, NYU School of Medicine, New York, NY 10016, USA
| | - Xin Ni
- Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
| | - Hao Shen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA 19104, USA
,Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
| |
Collapse
|
31
|
Exogenous Activation of Invariant Natural Killer T Cells by α-Galactosylceramide Reduces Pneumococcal Outgrowth and Dissemination Postinfluenza. mBio 2016; 7:mBio.01440-16. [PMID: 27803187 PMCID: PMC5090038 DOI: 10.1128/mbio.01440-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Influenza A virus infection can predispose to potentially devastating secondary bacterial infections. Invariant natural killer T (iNKT) cells are unconventional, lipid-reactive T lymphocytes that exert potent immunostimulatory functions. Using a mouse model of postinfluenza invasive secondary pneumococcal infection, we sought to establish whether α-galactosylceramide (α-GalCer [a potent iNKT cell agonist that is currently in clinical development]) could limit bacterial superinfection. Our results highlighted the presence of a critical time window during which α-GalCer treatment can trigger iNKT cell activation and influence resistance to postinfluenza secondary pneumococcal infection. Intranasal treatment with α-GalCer during the acute phase (on day 7) of influenza virus H3N2 and H1N1 infection failed to activate (gamma interferon [IFN-γ] and interleukin-17A [IL-17A]) iNKT cells; this effect was associated with a strongly reduced number of conventional CD103+ dendritic cells in the respiratory tract. In contrast, α-GalCer treatment during the early phase (on day 4) or during the resolution phase (day 14) of influenza was associated with lower pneumococcal outgrowth and dissemination. Less intense viral-bacterial pneumonia and a lower morbidity rate were observed in superinfected mice treated with both α-GalCer (day 14) and the corticosteroid dexamethasone. Our results open the way to alternative (nonantiviral/nonantibiotic) iNKT-cell-based approaches for limiting postinfluenza secondary bacterial infections. IMPORTANCE Despite the application of vaccination programs and antiviral drugs, influenza A virus (IAV) infection is responsible for widespread morbidity and mortality (500,000 deaths/year). Influenza infections can also result in sporadic pandemics that can be devastating: the 1918 pandemic led to the death of 50 million people. Severe bacterial infections are commonly associated with influenza and are significant contributors to the excess morbidity and mortality of influenza. Today's treatments of secondary bacterial (pneumococcal) infections are still not effective enough, and antibiotic resistance is a major issue. Hence, there is an urgent need for novel therapies. In the present study, we set out to evaluate the efficacy of α-galactosylceramide (α-GalCer)-a potent agonist of invariant NKT cells that is currently in clinical development-in a mouse model of postinfluenza, highly invasive pneumococcal pneumonia. Our data indicate that treatment with α-GalCer reduces susceptibility to superinfections and, when combined with the corticosteroid dexamethasone, reduces viral-bacterial pneumonia.
Collapse
|
32
|
Wu Y, Cui J, Zhang X, Gao S, Ma F, Yao H, Sun X, He Y, Yin Y, Xu W. Pneumococcal DnaJ modulates dendritic cell-mediated Th1 and Th17 immune responses through Toll-like receptor 4 signaling pathway. Immunobiology 2016; 222:384-393. [PMID: 27594384 DOI: 10.1016/j.imbio.2016.08.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/11/2016] [Accepted: 08/29/2016] [Indexed: 02/02/2023]
Abstract
Pneumococcal DnaJ was recently shown to be a potential protein vaccine antigen that induces strong Th1 and Th17 immune response against streptococcus pneumoniae infection in mice. However, how DnaJ mediates T cell immune response against S. pneumoniae infection has not been addressed. Here, we investigate whether DnaJ contributes to the development of T cell immunity through the activation of bone marrow-derived dendritic cells (BMDCs). We found that endotoxin-free recombinant DnaJ (rDnaJ) induced activation and maturation of BMDCs via recognition of Toll-like receptor 4 (TLR4) and activation of MAPKs, NF-κB and PI3K-Akt pathways. rDnaJ-treated BMDCs effectively stimulated naïve CD4+ T cells to secrete IFN-γ and IL-17A. Splenocytes from mice that were adoptively transferred with rDnaJ-pulsed BMDCs secreted higher levels of IFN-γ and IL-17A compared with those that received PBS-activated BMDCs. Splenocytes from TLR4-/- mice immunized with rDnaJ produced lower levels of IFN-γ and IL-17A compared with those from wild type mice. Our findings indicate that DnaJ can induce Th1 and Th17 immune responses against S. pneumoniae through activation of BMDCs in a TLR4-dependent manner.
Collapse
Affiliation(s)
- Yingying Wu
- College of Laboratory Medicine, Chongqing Medical University, Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing 400016, China; Department of Laboratory Medicine, Affiliated Hospital of Southwest Medical University, Luzhou 646000,China
| | - Jingjing Cui
- College of Laboratory Medicine, Chongqing Medical University, Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing 400016, China
| | - Xuemei Zhang
- College of Laboratory Medicine, Chongqing Medical University, Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing 400016, China
| | - Song Gao
- College of Laboratory Medicine, Chongqing Medical University, Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing 400016, China
| | - Feng Ma
- College of Laboratory Medicine, Chongqing Medical University, Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing 400016, China
| | - Hua Yao
- College of Laboratory Medicine, Chongqing Medical University, Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing 400016, China
| | - Xiaoyu Sun
- College of Laboratory Medicine, Chongqing Medical University, Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing 400016, China
| | - Yujuan He
- College of Laboratory Medicine, Chongqing Medical University, Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing 400016, China
| | - Yibing Yin
- College of Laboratory Medicine, Chongqing Medical University, Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing 400016, China
| | - Wenchun Xu
- College of Laboratory Medicine, Chongqing Medical University, Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing 400016, China.
| |
Collapse
|
33
|
Kohlgruber AC, Donado CA, LaMarche NM, Brenner MB, Brennan PJ. Activation strategies for invariant natural killer T cells. Immunogenetics 2016; 68:649-63. [PMID: 27457886 PMCID: PMC5745583 DOI: 10.1007/s00251-016-0944-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/15/2016] [Indexed: 12/17/2022]
Abstract
Invariant natural killer T (iNKT) cells are a specialized T cell subset that plays an important role in host defense, orchestrating both innate and adaptive immune effector responses against a variety of microbes. Specific microbial lipids and mammalian self lipids displayed by the antigen-presenting molecule CD1d can activate iNKT cells through their semi-invariant αβ T cell receptors (TCRs). iNKT cells also constitutively express receptors for inflammatory cytokines typically secreted by antigen-presenting cells (APCs) after recognition of pathogen-associated molecular patterns (PAMPs), and they can be activated through these cytokine receptors either in combination with TCR signals, or in some cases even in the absence of TCR signaling. During infection, experimental evidence suggests that both TCR-driven and cytokine-driven mechanisms contribute to iNKT cell activation. While the relative contributions of these two signaling mechanisms can vary widely depending on the infectious context, both lipid antigens and PAMPs mediate reciprocal activation of iNKT cells and APCs, leading to downstream activation of multiple other immune cell types to promote pathogen clearance. In this review, we discuss the mechanisms involved in iNKT cell activation during infection, focusing on the central contributions of both lipid antigens and PAMP-induced inflammatory cytokines, and highlight in vivo examples of activation during bacterial, viral, and fungal infections.
Collapse
Affiliation(s)
- Ayano C Kohlgruber
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Carlos A Donado
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nelson M LaMarche
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael B Brenner
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Patrick J Brennan
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
34
|
Invariant natural killer T cells: front line fighters in the war against pathogenic microbes. Immunogenetics 2016; 68:639-48. [PMID: 27368411 DOI: 10.1007/s00251-016-0933-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 04/21/2016] [Indexed: 12/22/2022]
Abstract
Invariant natural killer T (iNKT) cells constitute a unique subset of innate-like T cells that have been shown to have crucial roles in a variety of immune responses. iNKT cells are characterized by their expression of both NK cell markers and an invariant T cell receptor (TCR) α chain, which recognizes glycolipids presented by the MHC class I-like molecule CD1d. Despite having a limited antigen repertoire, the iNKT cell response can be very complex, and participate in both protective and harmful immune responses. The protective role of these cells against a variety of pathogens has been particularly well documented. Through the use of these pathogen models, our knowledge of the breadth of the iNKT cell response has been expanded. Specific iNKT cell antigens have been isolated from several different bacteria, from which iNKT cells are critical for protection in mouse models. These responses can be generated by direct, CD1d-mediated activation, or indirect, cytokine-mediated activation, or a combination of the two. This can lead to secretion of a variety of different Th1, Th2, or Th17 cytokines, which differentially impact the downstream immune response against these pathogens. This critical role is emphasized by the conservation of these cells between mice and humans, warranting further investigation into how iNKT cells participate in protective immune responses, with the ultimate goal of harnessing their potential for treatment.
Collapse
|
35
|
Qin Z, Yang Y, Wang H, Luo J, Huang X, You J, Wang B, Li M. Role of Autophagy and Apoptosis in the Postinfluenza Bacterial Pneumonia. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3801026. [PMID: 27376082 PMCID: PMC4916274 DOI: 10.1155/2016/3801026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/05/2016] [Accepted: 05/16/2016] [Indexed: 12/19/2022]
Abstract
The risk of influenza A virus (IAV) is more likely caused by secondary bacterial infections. During the past decades, a great amount of studies have been conducted on increased morbidity from secondary bacterial infections following influenza and provide an increasing number of explanations for the mechanisms underlying the infections. In this paper, we first review the recent research progress that IAV infection increased susceptibility to bacterial infection. We then propose an assumption that autophagy and apoptosis manipulation are beneficial to antagonize post-IAV bacterial infection and discuss the clinical significance.
Collapse
Affiliation(s)
- Zhen Qin
- Department of Microbiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuan Yang
- Department of Microbiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongren Wang
- Department of Microbiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jun Luo
- Department of Microbiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaojun Huang
- Department of Microbiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiangzhou You
- Department of Microbiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Baoning Wang
- Department of Microbiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Mingyuan Li
- Department of Microbiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
36
|
Tanno H, Kawakami K, Ritsu M, Kanno E, Suzuki A, Kamimatsuno R, Takagi N, Miyasaka T, Ishii K, Imai Y, Maruyama R, Tachi M. Contribution of Invariant Natural Killer T Cells to Skin Wound Healing. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 185:3248-57. [PMID: 26468976 DOI: 10.1016/j.ajpath.2015.08.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 07/24/2015] [Accepted: 08/28/2015] [Indexed: 01/03/2023]
Abstract
In the present study, we determined the contribution of invariant natural killer T (iNKT) cells to the skin wound healing process. In iNKT cell-deficient (Jα18KO) mice lacking iNKT cells, wound closure was significantly delayed compared with wild-type mice. Collagen deposition, expression of α-smooth muscle actin and CD31, and wound breaking strength were significantly attenuated in Jα18KO mice. The adoptive transfer of liver mononuclear cells from wild-type but not from Jα18KO or interferon (IFN)-γ gene-disrupted (IFN-γKO) mice resulted in the reversal of this impaired wound healing in Jα18KO mice. IFN-γ expression was induced in the wounded tissues, which was significantly decreased at 6, 12, and 24 hours, but increased on day 3 after wounding in Jα18KO mice. The main source of the late-phase IFN-γ production in Jα18KO mice were neutrophils rather than NK cells and T cells. Administration of α-galactosylceramide, an activator of iNKT cells, resulted in the acceleration of wound healing on day 3 in wild-type mice. This effect was not observed in IFN-γKO mice. These results indicate that iNKT cells play important roles in wound healing. The iNKT cell-induced IFN-γ production may regulate the wound healing process in the early phase.
Collapse
Affiliation(s)
- Hiromasa Tanno
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Kazuyoshi Kawakami
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Masae Ritsu
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Emi Kanno
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Aiko Suzuki
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Rina Kamimatsuno
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Naoyuki Takagi
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Tomomitsu Miyasaka
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Keiko Ishii
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Yoshimichi Imai
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Ryoko Maruyama
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Masahiro Tachi
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan.
| |
Collapse
|
37
|
Huang E, Liu R, Lu Z, Liu J, Liu X, Zhang D, Chu Y. NKT cells mediate the recruitment of neutrophils by stimulating epithelial chemokine secretion during colitis. Biochem Biophys Res Commun 2016; 474:252-258. [PMID: 27063801 DOI: 10.1016/j.bbrc.2016.04.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 04/07/2016] [Indexed: 12/12/2022]
Abstract
Ulcerative colitis (UC) is a kind of inflammatory bowel diseases characterized by chronic inflammation and ulcer in colon, and UC patients have increased risk of getting colorectal cancer. NKT cells are cells that express both NK cell markers and semi-invariant CD1d-restricted TCRs, can regulate immune responses via secreting a variety of cytokines upon activation. In our research, we found that the NKT cell-deficient CD1d(-/-) mice had relieved colitis in the DSS-induced colitis model. Further investigations revealed that the colon of CD1d(-/-) mice expressed less neutrophil-attracting chemokine CXCL 1, 2 and 3, and had decreased neutrophil infiltration. Infiltrated neutrophils also produced less reactive oxygen species (ROS) and TNF-α, indicating they may cause less epithelial damage. In addition, colitis-associated colorectal cancer was also relieved in CD1d(-/-) mice. During colitis, NKT cells strongly expressed TNF-α, which could stimulate CXCL 1, 2, 3 expressions by the epithelium. In conclusion, NKT cells can regulate colitis via the NKT cell-epithelium-neutrophil axis. Targeting this mechanism may help to improve the therapy of UC and prevent colitis-associated colorectal cancer.
Collapse
Affiliation(s)
- Enyu Huang
- Department of Immunology and Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Ronghua Liu
- Department of Immunology and Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Zhou Lu
- Department of Immunology and Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jiajing Liu
- Department of Immunology and Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xiaoming Liu
- Department of Dermatology, Shenzhen Hospital, Peking University, Shenzhen, Guangdong, 518036, China
| | - Dan Zhang
- Department of Immunology and Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yiwei Chu
- Department of Immunology and Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China; Biotherapy Research Center, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
38
|
Birkholz AM, Kronenberg M. Antigen specificity of invariant natural killer T-cells. Biomed J 2016; 38:470-83. [PMID: 27013447 PMCID: PMC6138764 DOI: 10.1016/j.bj.2016.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 11/16/2015] [Indexed: 12/16/2022] Open
Abstract
Natural killer T-cells, with an invariant T-cell antigen receptor α-chain (iNKT cells), are unique and conserved subset of lymphocytes capable of altering the immune system through their rapid and potent cytokine responses. They are reactive to lipid antigens presented by the CD1d molecule, an antigen-presenting molecule that is not highly polymorphic. iNKT cell responses frequently involve mixtures of cytokines that work against each other, and therefore attempts are underway to develop synthetic antigens that elicit only strong interferon-gamma (IFNγ) or only strong interleukin-4 responses but not both. Strong IFNγ responses may correlate with tighter binding to CD1d and prolonged stimulation of iNKT cells, and this may be useful for vaccine adjuvants and for stimulating anti-tumor responses. iNKT cells are self-reactive although the structure of the endogenous antigen is controversial. By contrast, bacterial and fungal lipids that engage the T-cell receptor and activate IFNγ from iNKT cells have been identified from both pathogenic and commensal organisms and the responses are in some cases highly protective from pathogens in mice. It is possible that the expanding knowledge of iNKT cell antigens and iNKT cell activation will provide the basis for therapies for patients suffering from infectious and immune diseases and cancer.
Collapse
Affiliation(s)
- Alysia M Birkholz
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, USA
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, USA.
| |
Collapse
|
39
|
Yau B, Mitchell AJ, Too LK, Ball HJ, Hunt NH. Interferon-γ-Induced Nitric Oxide Synthase-2 Contributes to Blood/Brain Barrier Dysfunction and Acute Mortality in Experimental Streptococcus pneumoniae Meningitis. J Interferon Cytokine Res 2015; 36:86-99. [PMID: 26418460 DOI: 10.1089/jir.2015.0078] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The proinflammatory cytokine interferon-gamma (IFNγ) recently was shown to play a crucial role in experimental pneumococcal meningitis (PM) pathogenesis, and we aimed in this study to investigate IFNγ-driven nitric oxide synthase-2 (NOS2)-mediated pathogenesis of murine PM. We demonstrate that costimulation of toll-like receptors and IFNγ receptors was synergistic for NOS2 expression in cultured murine microglia. Using an experimental PM model, wild-type mice treated with anti-IFNγ antibody, as well as IFNγ and NOS2 gene knockout (GKO) mice, were inoculated intracerebroventricularly with 10(3) colony-forming units of Streptococcus pneumoniae (WU2 strain). Mice were monitored daily during a 200-h disease course to assess survival rate and blood-brain barrier (BBB) permeability measured at 48 h. IFNγ deficiency was protective in PM, with an approximate 3-fold increase in survival rates in both antibody-treated and IFNγ GKO mice compared to controls (P < 0.01). At 48 h postinoculation, brain NOS2 mRNA expression was significantly increased in an IFNγ-dependent manner. Mortality was significantly delayed in NOS2 GKO mice compared to controls (P < 0.01), and BBB dysfunction was reduced by 54% in IFNγ GKO mice and abolished in NOS2 GKO. These data suggest that IFNγ-dependent expression of NOS2 in the brain contributes to BBB breakdown and early mortality in murine PM.
Collapse
Affiliation(s)
- Belinda Yau
- 1 Molecular Immunopathology Unit, School of Medical Sciences, Sydney Medical School, University of Sydney , Sydney, New South Wales, Australia
| | - Andrew J Mitchell
- 1 Molecular Immunopathology Unit, School of Medical Sciences, Sydney Medical School, University of Sydney , Sydney, New South Wales, Australia .,2 Centenary Institute for Cancer Medicine and Cell Biology , Newtown, New South Wales, Australia
| | - Lay Khoon Too
- 1 Molecular Immunopathology Unit, School of Medical Sciences, Sydney Medical School, University of Sydney , Sydney, New South Wales, Australia
| | - Helen J Ball
- 1 Molecular Immunopathology Unit, School of Medical Sciences, Sydney Medical School, University of Sydney , Sydney, New South Wales, Australia
| | - Nicholas H Hunt
- 1 Molecular Immunopathology Unit, School of Medical Sciences, Sydney Medical School, University of Sydney , Sydney, New South Wales, Australia
| |
Collapse
|
40
|
Slauenwhite D, Johnston B. Regulation of NKT Cell Localization in Homeostasis and Infection. Front Immunol 2015; 6:255. [PMID: 26074921 PMCID: PMC4445310 DOI: 10.3389/fimmu.2015.00255] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/07/2015] [Indexed: 01/23/2023] Open
Abstract
Natural killer T (NKT) cells are a specialized subset of T lymphocytes that regulate immune responses in the context of autoimmunity, cancer, and microbial infection. Lipid antigens derived from bacteria, parasites, and fungi can be presented by CD1d molecules and recognized by the canonical T cell receptors on NKT cells. Alternatively, NKT cells can be activated through recognition of self-lipids and/or pro-inflammatory cytokines generated during infection. Unlike conventional T cells, only a small subset of NKT cells traffic through the lymph nodes under homeostatic conditions, with the largest NKT cell populations localizing to the liver, lungs, spleen, and bone marrow. This is thought to be mediated by differences in chemokine receptor expression profiles. However, the impact of infection on the tissue localization and function of NKT remains largely unstudied. This review focuses on the mechanisms mediating the establishment of peripheral NKT cell populations during homeostasis and how tissue localization of NKT cells is affected during infection.
Collapse
Affiliation(s)
- Drew Slauenwhite
- Department of Microbiology and Immunology, Dalhousie University , Halifax, NS , Canada
| | - Brent Johnston
- Department of Microbiology and Immunology, Dalhousie University , Halifax, NS , Canada ; Department of Pediatrics, Dalhousie University , Halifax, NS , Canada ; Department of Pathology, Dalhousie University , Halifax, NS , Canada ; Beatrice Hunter Cancer Research Institute , Halifax, NS , Canada
| |
Collapse
|
41
|
Obata F, Subrahmanyam PB, Vozenilek AE, Hippler LM, Jeffers T, Tongsuk M, Tiper I, Saha P, Jandhyala DM, Kolling GL, Latinovic O, Webb TJ. Natural killer T (NKT) cells accelerate Shiga toxin type 2 (Stx2) pathology in mice. Front Microbiol 2015; 6:262. [PMID: 25904903 PMCID: PMC4389548 DOI: 10.3389/fmicb.2015.00262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 03/16/2015] [Indexed: 01/08/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a leading cause of childhood renal disease Hemolytic Uremic Syndrome (HUS). The involvement of renal cytokines and chemokines is suspected to play a critical role in disease progression. In current article, we tested the hypothesis that NKT cells are involved in Stx2-induced pathology in vivo. To address this hypothesis we compared Stx2 toxicity in WT and CD1 knockout (KO) mice. In CD1KO mice, which lack natural killer T (NKT) cells, Stx2-induced pathologies such as weight loss, renal failure, and death were delayed. In WT mice, Stx2-specific selective increase in urinary albumin occurs in later time points, and this was also delayed in NKT cell deficient mice. NKT cell-associated cytokines such as IL-2, IL-4, IFN-γ, and IL-17 were detected in kidney lysates of Stx2-injected WT mice with the peak around 36 h after Stx2 injection. In CD1KO, there was a delay in the kinetics, and increases in these cytokines were observed 60 h post Stx2 injection. These data suggest that NKT cells accelerate Stx2-induced pathology in mouse kidneys. To determine the mechanism by which NKT cells promote Stx2-associated disease, in vitro studies were performed using murine renal cells. We found that murine glomerular endothelial cells and podocytes express functional CD1d molecules and can present exogenous antigen to NKT cells. Moreover, we observed the direct interaction between Stx2 and the receptor Gb3 on the surface of mouse renal cells by 3D STORM-TIRF which provides single molecule imaging. Collectively, these data suggest that Stx2 binds to Gb3 on renal cells and leads to aberrant CD1d-mediated NKT cell activation. Therefore, strategies targeting NKT cells could have a significant impact on Stx2-associated renal pathology in STEC disease.
Collapse
Affiliation(s)
- Fumiko Obata
- Department of Microbiology and Immunology, University of Maryland School of Medicine Baltimore, MD, USA ; Department of Molecular Pathology, University of Yamanashi Graduate School of Medicine Chuo, Japan
| | - Priyanka B Subrahmanyam
- Department of Microbiology and Immunology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Aimee E Vozenilek
- Department of Microbiology and Immunology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Lauren M Hippler
- Department of Microbiology and Immunology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Tynae Jeffers
- Department of Microbiology and Immunology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Methinee Tongsuk
- Department of Microbiology and Immunology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Irina Tiper
- Department of Microbiology and Immunology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Progyaparamita Saha
- Department of Microbiology and Immunology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Dakshina M Jandhyala
- Department of Molecular Biology and Microbiology, Tufts University Boston, MA, USA
| | - Glynis L Kolling
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Charlottesville, VA, USA
| | - Olga Latinovic
- Department of Microbiology and Immunology, University of Maryland School of Medicine Baltimore, MD, USA ; Institute of Human Virology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Tonya J Webb
- Department of Microbiology and Immunology, University of Maryland School of Medicine Baltimore, MD, USA
| |
Collapse
|
42
|
Chen L, Guo S, Wu L, Hao C, Xu W, Zhang J. Effects of recombinant IL-17F intranasal inoculation againstStreptococcus pneumoniaeinfection in a murine model. Biotechnol Appl Biochem 2014; 62:393-400. [PMID: 25196250 DOI: 10.1002/bab.1286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 08/30/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Ling Chen
- Department of Pediatrics; Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University; Shanghai 200233 People's Republic of China
| | - Sheng Guo
- Department of Pediatrics; Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University; Shanghai 200233 People's Republic of China
| | - Liangxia Wu
- Department of Pediatrics; Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University; Shanghai 200233 People's Republic of China
| | - Chunli Hao
- Department of Pediatrics; Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University; Shanghai 200233 People's Republic of China
| | - Wanting Xu
- Department of Pediatrics; Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University; Shanghai 200233 People's Republic of China
| | - Jianhua Zhang
- Department of Pediatrics; Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University; Shanghai 200233 People's Republic of China
| |
Collapse
|
43
|
Ivanov S, Paget C, Trottein F. Role of non-conventional T lymphocytes in respiratory infections: the case of the pneumococcus. PLoS Pathog 2014; 10:e1004300. [PMID: 25299581 PMCID: PMC4192596 DOI: 10.1371/journal.ppat.1004300] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Non-conventional T lymphocytes constitute a special arm of the immune system and act as sentinels against pathogens at mucosal surfaces. These non-conventional T cells (including mucosal-associated invariant T [MAIT] cells, gamma delta [γδ] T cells, and natural killer T [NKT] cells) display several innate cell-like features and are rapidly activated by the recognition of conserved, stress-induced, self, and microbial ligands. Here, we review the role of non-conventional T cells during respiratory infections, with a particular focus on the encapsulated extracellular pathogen Streptococcus pneumoniae, the leading cause of bacterial pneumonia worldwide. We consider whether MAIT cells, γδ T cells, and NKT cells might offer opportunities for preventing and/or treating human pneumococcus infections.
Collapse
Affiliation(s)
- Stoyan Ivanov
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Université Lille Nord de France, Lille, France
| | - Christophe Paget
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Université Lille Nord de France, Lille, France
| | - François Trottein
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Université Lille Nord de France, Lille, France
- * E-mail:
| |
Collapse
|
44
|
Adjuvant effects of therapeutic glycolipids administered to a cohort of NKT cell-diverse pigs. Vet Immunol Immunopathol 2014; 162:1-13. [PMID: 25441499 DOI: 10.1016/j.vetimm.2014.09.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/17/2014] [Accepted: 09/25/2014] [Indexed: 02/08/2023]
Abstract
CD1d-restricted natural killer T (NKT) cells are a unique lymphocyte population that makes important contributions to host defense against numerous microbial pathogens. The powerful immunomodulatory effects of these cells can be exploited in mice by cognate antigens for multiple therapeutic purposes, including for protection from infectious diseases and as adjuvants to improve vaccines against microbial organisms. These applications have potential to treat and prevent infectious diseases in livestock species that express NKT cells, including pigs. In this study, immune tissues from commercial swine of mixed genetic background were compared for NKT cell frequency, cytokine secretion and subset ratios. Pigs were also injected with the model antigen hen-egg lysozyme (HEL) in conjunction with one of three glycosphingolipids, alpha-galactosylceramide (αGC), OCH and C-glycoside that selectively activate NKT cells, to assess the adjuvant potential of each. There was significant variation between individual pigs for all NKT cell parameters measured. The NKT cell agonists elicited HEL-specific immune responses of different quality, but only αGC increased the systemic concentration of NKT cells. Peripheral blood NKT cell frequency measured prior to treatment was a poor predictor of how individual animals responded to NKT cell therapy. However, our results show that although NKT cells vary considerably between pigs, there exists considerable potential to harness these cells to protect swine from infectious diseases.
Collapse
|
45
|
Tarumoto N, Kinjo Y, Kitano N, Shibuya K, Maesaki S, Miyazaki Y. [iNKT cells participate in the exacerbation of systemic candidal infection]. Med Mycol J 2014; 55:J115-22. [PMID: 25231226 DOI: 10.3314/mmj.55.j115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Candida species are one major causal microorganism of hospital acquired bloodstream infections associated with high mortality. Phagocytes like neutrophils in innate immunity and CD4 T cells in acquired immunity have a major role in host defense immune response. It has been recently found that a type of innate-like lymphocyte called NKT cells respond against various organisms but its role in candidal infection remained unknown. Thus, we analyzed the role of NKT cells in the immune response against systemic candidiasis using mice deficient of NKT cells. In vivo studies revealed that invariant NKT cells play a limited role for controlling systemic candidal infection. On the other hand, studies looking at the role of glycolipid-activated NKT cells during candidal infection revealed that candida-infected mice injected with glycolipid had shorter survival period and greater number of fungal colonies in the kidney accompanied with reduced number of neutrophils in the blood and bone marrow. Surprisingly, glycolipid-mediated exacerbation of candidal infection was absent in IFNγ deficient mice. Co-infection of candida with intestinal commensals caused exacerbated infection in which IFNγ played a critical role in impairing fungal elimination. These results suggest that the excessive IFNγ released from candida and bacterial co-infection is a critical factor in worsening candidal infection.
Collapse
Affiliation(s)
- Norihito Tarumoto
- Department of Infectious Disease and Infection Control, Saitama Medical University
| | | | | | | | | | | |
Collapse
|
46
|
Rothchild AC, Jayaraman P, Nunes-Alves C, Behar SM. iNKT cell production of GM-CSF controls Mycobacterium tuberculosis. PLoS Pathog 2014; 10:e1003805. [PMID: 24391492 PMCID: PMC3879349 DOI: 10.1371/journal.ppat.1003805] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 10/15/2013] [Indexed: 02/08/2023] Open
Abstract
Invariant natural killer T (iNKT) cells are activated during infection, but how they limit microbial growth is unknown in most cases. We investigated how iNKT cells suppress intracellular Mycobacterium tuberculosis (Mtb) replication. When co-cultured with infected macrophages, iNKT cell activation, as measured by CD25 upregulation and IFNγ production, was primarily driven by IL-12 and IL-18. In contrast, iNKT cell control of Mtb growth was CD1d-dependent, and did not require IL-12, IL-18, or IFNγ. This demonstrated that conventional activation markers did not correlate with iNKT cell effector function during Mtb infection. iNKT cell control of Mtb replication was also independent of TNF and cell-mediated cytotoxicity. By dissociating cytokine-driven activation and CD1d-restricted effector function, we uncovered a novel mediator of iNKT cell antimicrobial activity: GM-CSF. iNKT cells produced GM-CSF in vitro and in vivo in a CD1d-dependent manner during Mtb infection, and GM-CSF was both necessary and sufficient to control Mtb growth. Here, we have identified GM-CSF production as a novel iNKT cell antimicrobial effector function and uncovered a potential role for GM-CSF in T cell immunity against Mtb. Mycobacterium tuberculosis (Mtb) is the cause of tuberculosis, a leading cause of sickness and death worldwide. Although much is known about CD4+ and CD8+ T cell responses to Mtb, the role of other T cell subsets is poorly understood. Invariant natural killer T (iNKT) cells are innate lymphocytes that express a semi-invariant T cell receptor and recognize lipid antigens presented by CD1d. Although iNKT cells participate in the immune response to many different pathogens, little is known about how iNKT cells directly kill microbes. We previously showed that when co-cultured with Mtb-infected macrophages, iNKT cells inhibit intracellular Mtb replication. Now, we used this model to dissociate the signals that induce iNKT cell activation markers including IFNγ production, from the signals that activate iNKT cell antimicrobial activity. This allowed us to uncover a novel antimicrobial effector function produced by iNKT cells: GM-CSF. GM-CSF is essential for immunity to Mtb, but its role has never been defined. This study is the first report to demonstrate a protective function of GM-CSF production by any T cell subset during Mtb infection. T cell production of GM-CSF should be considered as a potential mechanism of antimicrobial immunity.
Collapse
Affiliation(s)
- Alissa C. Rothchild
- Program in Immunology, Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Pushpa Jayaraman
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Cláudio Nunes-Alves
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Samuel M. Behar
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
47
|
Nakahara H, Kamide Y, Hamano Y, Hosokawa T, Nishide M, Lin Y, Kawamoto K, Fusama M, Higa S, Kuroiwa T, Igarashi T, Kuritani T, Maeda K. A case report of a patient with rheumatoid arthritis complicated withMycobacterium aviumduring tocilizumab treatment. Mod Rheumatol 2014. [DOI: 10.3109/s10165-011-0448-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
48
|
Paget C, Trottein F. Role of type 1 natural killer T cells in pulmonary immunity. Mucosal Immunol 2013; 6:1054-67. [PMID: 24104457 DOI: 10.1038/mi.2013.59] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 07/18/2013] [Indexed: 02/04/2023]
Abstract
Mucosal sites are populated by a multitude of innate lymphoid cells and "innate-like" T lymphocytes expressing semiconserved T-cell receptors. Among the latter group, interest in type I natural killer T (NKT) cells has gained considerable momentum over the last decade. Exposure to NKT cell antigens is likely to occur continuously at mucosal sites. For this reason, and as they rapidly respond to stress-induced environmental cytokines, NKT cells are important contributors to immune and inflammatory responses. Here, we review the dual role of mucosal NKT cells during immune responses and pathologies with a particular focus on the lungs. Their role during pulmonary acute and chronic inflammation and respiratory infections is outlined. Whether NKT cells might provide a future attractive therapeutic target for treating human respiratory diseases is discussed.
Collapse
Affiliation(s)
- C Paget
- 1] Cancer Immunology Program, Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, Victoria, Australia [2] Sir Peter MacCallum Department of Oncology and Department of Pathology, University of Melbourne, Parkville, Victoria, Australia [3] Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France [4] Institut National de la Santé et de la Recherche Médicale, Lille, France [5] Centre National de la Recherche Scientifique, UMR 8204, Lille, France [6] Université Lille Nord de France, Lille, France [7] Institut Fédératif de Recherche 142, Lille, France
| | | |
Collapse
|
49
|
Miyasaka T, Akahori Y, Toyama M, Miyamura N, Ishii K, Saijo S, Iwakura Y, Kinjo Y, Miyazaki Y, Oishi K, Kawakami K. Dectin-2-dependent NKT cell activation and serotype-specific antibody production in mice immunized with pneumococcal polysaccharide vaccine. PLoS One 2013; 8:e78611. [PMID: 24205278 PMCID: PMC3808275 DOI: 10.1371/journal.pone.0078611] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 09/14/2013] [Indexed: 01/26/2023] Open
Abstract
Although thymus-independent type 2 antigens generally do not undergo Ig class switching from IgM to IgG, pneumococcal polysaccharide vaccine (PPV) induces the production of serotype-specific IgG. How this happens remains unclear, however. In the present study, PPV immunization induced production of IgG as well as IgM specific for a serotype 3-pneumococcal polysaccharide in the sera of wild-type (WT) mice, but this phenomenon was significantly reduced in Dectin-2 knockout (KO) mice. Immunization with PPV caused IL-12p40 production in WT mice, but this response was significantly reduced in Dectin-2KO mice. Likewise, immunization with PPV activated natural killer T (NKT) cells in WT mice but not in Dectin-2KO mice. Furthermore, administration of α-galactosylceramide, recombinant (r)IL-12 or rIFN-γ improved the reduced IgG levels in Dectin-2KO mice, and treatment with neutralizing anti-IFN-γ mAb resulted in the reduction of IgG synthesis in PPV-immunized WT mice. Transfer of spleen cells from PPV-immunized WT mice conferred protection against pneumococcal infection on recipient mice, whereas this effect was cancelled when the transferred spleen cells were harvested from PPV-immunized Dectin-2KO mice. These results suggest that the detection of PPV antigens via Dectin-2 triggers IL-12 production, which induces IFN-γ synthesis by NKT cells and subsequently the production of serotype-specific IgG.
Collapse
Affiliation(s)
- Tomomitsu Miyasaka
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukiko Akahori
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masahiko Toyama
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Namiko Miyamura
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keiko Ishii
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shinobu Saijo
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Yoichiro Iwakura
- Division of Laboratory Animal, Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Yuki Kinjo
- Laboratory of Immune Regulation, Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshitsugu Miyazaki
- Laboratory of Immune Regulation, Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazunori Oishi
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazuyoshi Kawakami
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
- * E-mail:
| |
Collapse
|
50
|
Kinjo Y, Kitano N, Kronenberg M. The role of invariant natural killer T cells in microbial immunity. J Infect Chemother 2013; 19:560-70. [PMID: 23846426 PMCID: PMC3822041 DOI: 10.1007/s10156-013-0638-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Indexed: 10/26/2022]
Abstract
Invariant natural killer T cells (iNKT cells) are unique lymphocytes with characteristic features, such as expression of an invariant T-cell antigen receptor (TCR) α-chain, recognition of glycolipid antigens presented by CD1d molecules, and ability to rapidly produce large amounts of cytokines, including interferon-γ (IFN-γ) and interleukin 4 (IL-4) upon TCR stimulation. Many studies have demonstrated that iNKT cells participate in immune response against diverse microbes, including bacteria, fungi, protozoan parasites, and viruses. Generally, these cells play protective roles in host defense against infections. However, in some contexts they play pathogenic roles, by inducing or augmenting inflammation. Recent reports show that iNKT cells recognize glycolipid antigens from pathogenic bacteria including Streptococcus pneumoniae, and they contribute to host defense against infection. iNKT cell responses to these microbial glycolipid antigens are highly conserved between rodents and humans, suggesting that iNKT cells are evolutionally conserved because their invariant TCR is useful in detecting certain pathogens. Furthermore, glycolipid-mediated iNKT cell activation during immunization has adjuvant activity, enhancing humoral and cell-mediated responses. Therefore, iNKT cell activation is an attractive target for developing new vaccines for infectious diseases.
Collapse
Affiliation(s)
- Yuki Kinjo
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo, 162-8640, Japan.
| | | | | |
Collapse
|