1
|
de Oliveira PC, Ribeiro KDP, Ferrari LP, Tomiotto-Pellissier F, Reason IJDM. Serum nitric oxide in chronic Chagas disease: a scoping review. Acta Trop 2025; 267:107673. [PMID: 40436307 DOI: 10.1016/j.actatropica.2025.107673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 05/22/2025] [Accepted: 05/24/2025] [Indexed: 06/02/2025]
Abstract
Nitric oxide (NO) plays a complex role in the pathophysiology of chronic Chagas disease (CD), contributing to both host defense and tissue damage. Thus, understanding its clinical implications may support therapeutic strategies. The objective of this scoping review was to map and synthesize the available evidence on the clinical impact of serum NO levels in individuals with chronic CD. A scoping review was conducted following PRISMA-ScR guidelines, in which a systematic search of PubMed, Scopus, and Web of Science was performed. The inclusion criteria were studies that quantified NO or its synthetizing enzymes (NOS) in individuals with chronic CD irrespective of the publication year or the language. Studies that did not assess the levels of NO, its metabolites or NOS, in addition to in vivo and in vitro experimental studies, were excluded. The findings from this scoping review showed that individuals with chronic CD have high serum NO levels, suggesting that excessive production of this marker may lead to oxidative stress and play a role in the pathophysiological process associated with cardiac and digestive complications. Combined therapies using antiparasitic drugs with antioxidants have shown a greater reduction in NO levels compared to conventional drug therapy, indicating a potential to reduce oxidative damage and consequently slow disease progression. Nonetheless, additional studies at various disease stages are necessary to confirm the effectiveness of this approach.
Collapse
|
2
|
Cerdeira CD, Brigagão MRPL. Targeting Macrophage Polarization in Infectious Diseases: M1/M2 Functional Profiles, Immune Signaling and Microbial Virulence Factors. Immunol Invest 2024; 53:1030-1091. [PMID: 38913937 DOI: 10.1080/08820139.2024.2367682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
INTRODUCTION An event of increasing interest during host-pathogen interactions is the polarization of patrolling/naive monocytes (MOs) into macrophage subsets (MФs). Therapeutic strategies aimed at modulating this event are under investigation. METHODS This review focuses on the mechanisms of induction/development and profile of MФs polarized toward classically proinflammatory (M1) or alternatively anti-inflammatory (M2) phenotypes in response to bacteria, fungi, parasites, and viruses. RESULTS AND DISCUSSION It highlights nuclear, cytoplasmic, and cell surface receptors (pattern recognition receptors/PPRs), microenvironmental mediators, and immune signaling. MФs polarize into phenotypes: M1 MФs, activated by IFN-γ, pathogen-associated molecular patterns (PAMPs, e.g. lipopolysaccharide) and membrane-bound PPRs ligands (TLRs/CLRs ligands); or M2 MФs, induced by interleukins (ILs-4, -10 and -13), antigen-antibody complexes, and helminth PAMPs. Polarization toward M1 and M2 profiles evolve in a pathogen-specific manner, with or without canonicity, and can vary widely. Ultimately, this can result in varying degrees of host protection or more severe disease outcome. On the one hand, the host is driving effective MФs polarization (M1 or M2); but on the other hand, microorganisms may skew the polarization through virulence factors to increase pathogenicity. Cellular/genomic reprogramming also ensures plasticity of M1/M2 phenotypes. Because modulation of polarization can occur at multiple points, new insights and emerging perspectives may have clinical implications during the inflammation-to-resolution transition; translated into practical applications as for therapeutic/vaccine design target to boost microbicidal response (M1, e.g. triggering oxidative burst) with specifics PAMPs/IFN-γ or promote tissue repair (M2, increasing arginase activity) via immunotherapy.
Collapse
|
3
|
Celik C, Lee STT, Tanoto FR, Veleba M, Kline K, Thibault G. Decoding the complexity of delayed wound healing following Enterococcus faecalis infection. eLife 2024; 13:RP95113. [PMID: 38767331 PMCID: PMC11105157 DOI: 10.7554/elife.95113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Wound infections are highly prevalent and can lead to delayed or failed healing, causing significant morbidity and adverse economic impacts. These infections occur in various contexts, including diabetic foot ulcers, burns, and surgical sites. Enterococcus faecalis is often found in persistent non-healing wounds, but its contribution to chronic wounds remains understudied. To address this, we employed single-cell RNA sequencing (scRNA-seq) on infected wounds in comparison to uninfected wounds in a mouse model. Examining over 23,000 cells, we created a comprehensive single-cell atlas that captures the cellular and transcriptomic landscape of these wounds. Our analysis revealed unique transcriptional and metabolic alterations in infected wounds, elucidating the distinct molecular changes associated with bacterial infection compared to the normal wound healing process. We identified dysregulated keratinocyte and fibroblast transcriptomes in response to infection, jointly contributing to an anti-inflammatory environment. Notably, E. faecalis infection prompted a premature, incomplete epithelial-mesenchymal transition in keratinocytes. Additionally, E. faecalis infection modulated M2-like macrophage polarization by inhibiting pro-inflammatory resolution in vitro, in vivo, and in our scRNA-seq atlas. Furthermore, we discovered macrophage crosstalk with neutrophils, which regulates chemokine signaling pathways, while promoting anti-inflammatory interactions with endothelial cells. Overall, our findings offer new insights into the immunosuppressive role of E. faecalis in wound infections.
Collapse
Affiliation(s)
- Cenk Celik
- School of Biological Sciences, Nanyang Technological UniversitySingaporeSingapore
| | - Stella Tue Ting Lee
- School of Biological Sciences, Nanyang Technological UniversitySingaporeSingapore
| | - Frederick Reinhart Tanoto
- Singapore Centre for Environmental Life Science Engineering, Nanyang Technological UniversitySingaporeSingapore
| | - Mark Veleba
- Singapore Centre for Environmental Life Science Engineering, Nanyang Technological UniversitySingaporeSingapore
| | - Kimberly Kline
- School of Biological Sciences, Nanyang Technological UniversitySingaporeSingapore
- Singapore Centre for Environmental Life Science Engineering, Nanyang Technological UniversitySingaporeSingapore
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of GenevaGenevaSwitzerland
| | - Guillaume Thibault
- School of Biological Sciences, Nanyang Technological UniversitySingaporeSingapore
- Mechanobiology Institute, National University of SingaporeSingaporeSingapore
| |
Collapse
|
4
|
Huang L, Xu Z, Lei X, Huang Y, Tu S, Xu L, Xia J, Liu D. Paneth cell-derived iNOS is required to maintain homeostasis in the intestinal stem cell niche. J Transl Med 2023; 21:852. [PMID: 38007452 PMCID: PMC10675917 DOI: 10.1186/s12967-023-04744-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND Mammalian intestinal epithelium constantly undergoes rapid self-renewal and regeneration sustained by intestinal stem cells (ISCs) within crypts. Inducible nitric oxide synthase (iNOS) is an important regulator in tissue homeostasis and inflammation. However, the functions of iNOS on ISCs have not been clarified. Here, we aimed to investigate the expression pattern of inducible nitric oxide synthase (iNOS) within crypts and explore its function in the homeostatic maintenance of the ISC niche. METHODS Expression of iNOS was determined by tissue staining and qPCR. iNOS-/- and Lgr5 transgenic mice were used to explore the influence of iNOS ablation on ISC proliferation and differentiation. Enteroids were cultured to study the effect of iNOS on ISCs in vitro. Ileum samples from wild-type and iNOS-/- mice were collected for RNA-Seq to explore the molecular mechanisms by which iNOS regulates ISCs. RESULTS iNOS was physiologically expressed in Paneth cells. Knockout of iNOS led to apparent morphological changes in the intestine, including a decrease in the small intestine length and in the heights of both villi and crypts. Knockout of iNOS decreased the number of Ki67+ or BrdU+ proliferative cells in crypts. Loss of iNOS increased the number of Olfm4+ ISCs but inhibited the differentiation and migration of Lgr5+ ISCs in vivo. iNOS depletion also inhibited enteroid formation and the budding efficiency of crypts in vitro. Moreover, iNOS deficiency altered gluconeogenesis and the adaptive immune response in the ileum transcriptome. CONCLUSION Paneth cell-derived iNOS is required to maintain a healthy ISC niche, and Knockout of iNOS hinders ISC function in mice. Therefore, iNOS represents a potential target for the development of new drugs and other therapeutic interventions for intestinal disorders.
Collapse
Affiliation(s)
- Lingxiao Huang
- Radiation Oncology Key Laboratory of Sichuan Province, Department of Experimental Research, Sichuan Cancer Hospital & Institute, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Zhenni Xu
- Radiation Oncology Key Laboratory of Sichuan Province, Department of Experimental Research, Sichuan Cancer Hospital & Institute, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Xudan Lei
- Radiation Oncology Key Laboratory of Sichuan Province, Department of Experimental Research, Sichuan Cancer Hospital & Institute, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Yujun Huang
- Radiation Oncology Key Laboratory of Sichuan Province, Department of Experimental Research, Sichuan Cancer Hospital & Institute, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Siyu Tu
- Radiation Oncology Key Laboratory of Sichuan Province, Department of Experimental Research, Sichuan Cancer Hospital & Institute, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Lu Xu
- Radiation Oncology Key Laboratory of Sichuan Province, Department of Experimental Research, Sichuan Cancer Hospital & Institute, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Jieying Xia
- Animal Experiment Center of Sichuan Academy of Traditional Chinese Medicine Sciences, Chengdu, 610041, China
| | - Dengqun Liu
- Radiation Oncology Key Laboratory of Sichuan Province, Department of Experimental Research, Sichuan Cancer Hospital & Institute, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China.
| |
Collapse
|
5
|
Magierowska K, Wójcik-Grzybek D, Korbut E, Bakalarz D, Ginter G, Danielak A, Kwiecień S, Chmura A, Torregrossa R, Whiteman M, Magierowski M. The mitochondria-targeted sulfide delivery molecule attenuates drugs-induced gastropathy. Involvement of heme oxygenase pathway. Redox Biol 2023; 66:102847. [PMID: 37597422 PMCID: PMC10458696 DOI: 10.1016/j.redox.2023.102847] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 08/21/2023] Open
Abstract
Hydrogen sulfide (H2S) signaling and H2S-prodrugs maintain redox balance in gastrointestinal (GI) tract. Predominant effect of any H2S-donor is mitochondrial. Non-targeted H2S-moieties were shown to decrease the non-steroidal anti-inflammatory drugs (NSAIDs)-induced gastrotoxicity but in high doses. However, direct, controlled delivery of H2S to gastric mucosal mitochondria as a molecular target improving NSAIDs-pharmacology remains overlooked. Thus, we treated Wistar rats, i.g. with vehicle, mitochondria-targeted H2S-releasing AP39 (0.004-0.5 mg/kg), AP219 (0.02 mg/kg) as structural control without H2S-releasing ability, or AP39 + SnPP (10 mg/kg) as a heme oxygenase (HMOX) inhibitor. Next, animals were administered i.g. with acetylsalicylic acid (ASA, 125 mg/kg) as NSAIDs representative or comparatively with 75% ethanol to induce translational hemorrhagic or necrotic gastric lesions, that were assessed micro-/macroscopically. Activity of mitochondrial complex IV/V, and DNA oxidation were assessed biochemically. Gastric mucosal/serum content of IL-1β, IL-10, TNF-α, TGF-β1/2, ARG1, GST-α, or phosphorylation of mTOR, NF-κB, ERK, Akt, JNK, STAT3/5 were evaluated by microbeads-fluorescent xMAP®-assay; gastric mucosal mRNA level of HMOX-1/2, COX-1/2, SOD-1/2 by real-time PCR. AP39 (but not AP219) dose-dependently (0.02 and 0.1 mg/kg) diminished NSAID- (and ethanol)-induced gastric lesions and DNA oxidation, restoring mitochondrial complexes activity, ARG1, GST-α protein levels and increasing HMOX-1 and SOD-2 expression. AP39 decreased proteins levels or phosphorylation of gastric mucosal inflammation/oxidation-sensitive markers and restored mTOR phosphorylation. Pharmacological inhibition of HMOX-1 attenuated AP39-gastroprotection. We showed that mitochondria-targeted H2S released from very low i.g. doses of AP39 improved gastric mucosal capacity to cope with NSAIDs-induced mitochondrial dysfunction and redox imbalance, mechanistically requiring the activity of HMOX-1.
Collapse
Affiliation(s)
| | | | - Edyta Korbut
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| | - Dominik Bakalarz
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland; Department of Forensic Toxicology, Institute of Forensic Research, Cracow, Poland
| | - Grzegorz Ginter
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| | - Aleksandra Danielak
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| | - Sławomir Kwiecień
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| | - Anna Chmura
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| | - Roberta Torregrossa
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Matthew Whiteman
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Marcin Magierowski
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland.
| |
Collapse
|
6
|
McGregor BA, Razmjou E, Hooshyar H, Seeger DR, Golovko SA, Golovko MY, Singer SM, Hur J, Solaymani-Mohammadi S. A shotgun metagenomic analysis of the fecal microbiome in humans infected with Giardia duodenalis. Parasit Vectors 2023; 16:239. [PMID: 37464386 PMCID: PMC10354925 DOI: 10.1186/s13071-023-05821-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/28/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND The mechanisms underlying the clinical outcome disparity during human infection with Giardia duodenalis are still unclear. In recent years, evidence has pointed to the roles of host factors as well as parasite's genetic heterogeneity as major contributing factors in the development of symptomatic human giardiasis. However, it remains contested as to how only a small fraction of individuals infected with G. duodenalis develop clinical gastrointestinal manifestations, whereas the majority of infected individuals remain asymptomatic. Here, we demonstrate that diversity in the fecal microbiome correlates with the clinical outcome of human giardiasis. METHODS The genetic heterogeneity of G. duodenalis clinical isolates from human subjects with asymptomatic and symptomatic giardiasis was determined using a multilocus analysis approach. We also assessed the genetic proximity of G. duodenalis isolates by constructing phylogenetic trees using the maximum likelihood. Total genomic DNA (gDNA) from fecal specimens was utilized to construct DNA libraries, followed by performing paired-end sequencing using the HiSeq X platform. The Kraken2-generated, filtered FASTQ files were assigned to microbial metabolic pathways and functions using HUMAnN 3.04 and the UniRef90 diamond annotated full reference database (version 201901b). Results from HUMAnN for each sample were evaluated for differences among the biological groups using the Kruskal-Wallis non-parametric test with a post hoc Dunn test. RESULTS We found that a total of 8/11 (72.73%) human subjects were infected with assemblage A (sub-assemblage AII) of G. duodenalis, whereas 3/11 (27.27%) human subjects in the current study were infected with assemblage B of the parasite. We also found that the parasite's genetic diversity was not associated with the clinical outcome of the infection. Further phylogenetic analysis based on the tpi and gdh loci indicated that those clinical isolates belonging to assemblage A of G. duodenalis subjects clustered compactly together in a monophyletic clade despite being isolated from human subjects with asymptomatic and symptomatic human giardiasis. Using a metagenomic shotgun sequencing approach, we observed that infected individuals with asymptomatic and symptomatic giardiasis represented distinctive microbial diversity profiles, and that both were distinguishable from the profiles of healthy volunteers. CONCLUSIONS These findings identify a potential association between host microbiome disparity with the development of clinical disease during human giardiasis, and may provide insights into the mechanisms by which the parasite induces pathological changes in the gut. These observations may also lead to the development of novel selective therapeutic targets for preventing human enteric microbial infections.
Collapse
Affiliation(s)
- Brett A. McGregor
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND USA
| | - Elham Razmjou
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Hooshyar
- Department of Medical Parasitology and Mycology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Drew R. Seeger
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND USA
| | - Svetlana A. Golovko
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND USA
| | - Mikhail Y. Golovko
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND USA
| | - Steven M. Singer
- Department of Biology, Georgetown University, Washington, DC USA
| | - Junguk Hur
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND USA
| | - Shahram Solaymani-Mohammadi
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND USA
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND USA
| |
Collapse
|
7
|
Xaplanteri P, Rodis N, Potsios C. Gut Microbiota Crosstalk with Resident Macrophages and Their Role in Invasive Amebic Colitis and Giardiasis-Review. Microorganisms 2023; 11:1203. [PMID: 37317178 DOI: 10.3390/microorganisms11051203] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/29/2023] [Accepted: 05/03/2023] [Indexed: 06/16/2023] Open
Abstract
The innate immune response is highly dependent on the action of macrophages. They are abundant in the intestine subepithelial lamina propria of the mucosa, where they deploy multiple tasks and play a critical role. The balance between the gut microbiota and M2 macrophages is critical for gut health and homeostasis. Gut microbiota has the power to change macrophage phenotype and replenish the resident macrophage niche during and post infection. As far as the extracellular enteric parasitic infections invasive amebic colitis and giardiasis are concerned, a change of macrophages phenotype to a pro-inflammatory state is dependent on direct contact of the protozoan parasites with host cells. Macrophages induce strong pro-inflammatory response by inflammasome activation and secretion of interleukin IL-1β. Inflammasomes play a key role in the response to cellular stress and microbe attacks. The balance between gut mucosal homeostasis and infection is dependent on the crosstalk between microbiota and resident macrophages. Parasitic infections involve NLRP1 and NLRP3 inflammasome activation. For Entamoeba histolytica and Giardia duodenalis infections, inflammasome NLRP3 activation is crucial to promote the host defenses. More studies are needed to further elucidate possible therapeutic and protective strategies against these protozoan enteric parasites' invasive infections in humans.
Collapse
Affiliation(s)
- Panagiota Xaplanteri
- Department of Microbiology, General Hospital of Eastern Achaia, 25001 Kalavrita, Greece
| | - Nikiforos Rodis
- Department of Surgery, University General Hospital of Patras, 26332 Patras, Greece
| | - Charalampos Potsios
- Department of Internal Medicine, University General Hospital of Patras, 26504 Patras, Greece
| |
Collapse
|
8
|
Tanito K, Nii T, Yokoyama Y, Oishi H, Shibata M, Hijii S, Kaneko R, Tateishi C, Ito S, Kishimura A, Mori T, Katayama Y. Engineered macrophages acting as a trigger to induce inflammation only in tumor tissues based on arginase 1-responsive TNF-α accelerated release. J Control Release 2023:S0168-3659(23)00260-2. [PMID: 37080897 DOI: 10.1016/j.jconrel.2023.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/23/2023] [Accepted: 04/05/2023] [Indexed: 04/22/2023]
Abstract
Herein, we report engineered macrophages, termed "MacTrigger," acting as a trigger to induce an inflammatory environment only in tumor tissues. This led to intensive anti-tumor effects based on the removal potential of foreign substances. The strength of this study is the utilization of two unique functions of macrophages: (1) their ability to migrate to tumor tissues and (2) polarization into the anti-inflammatory M2 phenotype in the presence of tumor tissues. The MacTrigger accelerated the release of inflammatory cytokines, tumor necrosis factor-alpha (TNF-α), when it was polarized to the M2 phenotype. When the MacTrigger was administered to tumor-bearing mice, tumor growth was significantly inhibited compared with the non-treatment group, the un-transfected macrophages group, and the group with engineered macrophages capable of randomly releasing TNF-α. Additionally, the ratio of the M1 phenotype to the M2 phenotype in tumor tissues was >1 only in the MacTrigger group. Moreover, the ratios of natural killer cells and CD8+T cells in tumor tissues were increased compared with other groups. These results indicate that MacTrigger can induce inflammation in tumor tissues, leading to effective anti-tumor effects. In normal tissues, especially the liver, notable side effects were not observed. This is because, in the liver, the MacTrigger was not polarized to the M2 phenotype and could not induce inflammation. These results suggest that the MacTrigger is a "trigger" that can induce inflammation only in tumor tissues, then allowing the body to attack tumor tissues through the innate immunity system.
Collapse
Affiliation(s)
- Kenta Tanito
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Teruki Nii
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Yuta Yokoyama
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Haruka Oishi
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Mayuka Shibata
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shoichi Hijii
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ryosuke Kaneko
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Chuya Tateishi
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shoko Ito
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Akihiro Kishimura
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; International Research Center for Molecular Systems, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takeshi Mori
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshiki Katayama
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; International Research Center for Molecular Systems, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Department of Biomedical Engineering, Chung Yuan Christian University, 200 Chung Pei Road, Chung Li 32023, Taiwan, ROC.
| |
Collapse
|
9
|
Nüse B, Holland T, Rauh M, Gerlach RG, Mattner J. L-arginine metabolism as pivotal interface of mutual host-microbe interactions in the gut. Gut Microbes 2023; 15:2222961. [PMID: 37358082 PMCID: PMC10294761 DOI: 10.1080/19490976.2023.2222961] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 06/05/2023] [Indexed: 06/27/2023] Open
Abstract
L-arginine (L-arg) is a versatile amino acid and a central intestinal metabolite in mammalian and microbial organisms. Thus, L-arg participates as precursor of multiple metabolic pathways in the regulation of cell division and growth. It also serves as a source of carbon, nitrogen, and energy or as a substrate for protein synthesis. Consequently, L-arg can simultaneously modify mammalian immune functions, intraluminal metabolism, intestinal microbiota, and microbial pathogenesis. While dietary intake, protein turnover or de novo synthesis usually supply L-arg in sufficient amounts, the expression of several key enzymes of L-arg metabolism can change rapidly and dramatically following inflammation, sepsis, or injury. Consequently, the availability of L-arg can be restricted due to increased catabolism, transforming L-arg into an essential amino acid. Here, we review the enzymatic pathways of L-arg metabolism in microbial and mammalian cells and their role in immune function, intraluminal metabolism, colonization resistance, and microbial pathogenesis in the gut.
Collapse
Affiliation(s)
- Björn Nüse
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Tim Holland
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Manfred Rauh
- Department of Pediatrics and Adolescent Medicine, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Roman G. Gerlach
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Jochen Mattner
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Medical Immunology Campus Erlangen, FAUErlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
10
|
Omar M, Abdelal HO. Nitric oxide in parasitic infections: a friend or foe? J Parasit Dis 2022; 46:1147-1163. [PMID: 36457767 PMCID: PMC9606182 DOI: 10.1007/s12639-022-01518-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/20/2022] [Indexed: 11/28/2022] Open
Abstract
The complex interaction between the host and the parasite remains a puzzling question. Control of parasitic infections requires an efficient immune response that must be balanced against destructive pathological consequences. Nitric oxide is a nitrogenous free radical which has many molecular targets and serves diverse functions. Apart from being a signaling messenger, nitric oxide is critical for controlling numerous infections. There is still controversy surrounding the exact role of nitric oxide in the immune response against different parasitic species. It proved protective against intracellular protozoa, as well as extracellular helminths. At the same time, it plays a pivotal role in stimulating detrimental pathological changes in the infected hosts. Several reports have discussed the anti-parasitic and immunoregulatory functions of nitric oxide, which could directly influence the control of the infection. Nevertheless, there is scarce literature addressing the harmful cytotoxic impacts of this mediator. Thus, this review provides insights into the most updated concepts and controversies regarding the dual nature and opposing sides of nitric oxide during the course of different parasitic infections.
Collapse
Affiliation(s)
- Marwa Omar
- Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Gameyet Almohafza St. 1, Menya Al-Kamh, City of Zagazig, 44511 Sharkia Governorate Egypt
| | - Heba O. Abdelal
- LIS: Cross-National Data Center, Maison des Sciences Humaines - 5e étage, 11- porte des Sciences, L-4366 Esch-Belval, Luxembourg
| |
Collapse
|
11
|
Nguyen HTT, Radwanska M, Magez S. Tipping the balance between erythroid cell differentiation and induction of anemia in response to the inflammatory pathology associated with chronic trypanosome infections. Front Immunol 2022; 13:1051647. [PMID: 36420267 PMCID: PMC9676970 DOI: 10.3389/fimmu.2022.1051647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
Infection caused by extracellular single-celled trypanosomes triggers a lethal chronic wasting disease in livestock and game animals. Through screening of 10 Trypanosoma evansi field isolates, exhibiting different levels of virulence in mice, the current study identifies an experimental disease model in which infection can last well over 100 days, mimicking the major features of chronic animal trypanosomosis. In this model, despite the well-controlled parasitemia, infection is hallmarked by severe trypanosomosis-associated pathology. An in-depth scRNA-seq analysis of the latter revealed the complexity of the spleen macrophage activation status, highlighting the crucial role of tissue resident macrophages (TRMs) in regulating splenic extramedullary erythropoiesis. These new data show that in the field of experimental trypanosomosis, macrophage activation profiles have so far been oversimplified into a bi-polar paradigm (M1 vs M2). Interestingly, TRMs exert a double-sided effect on erythroid cells. On one hand, these cells express an erythrophagocytosis associated signature. On another hand, TRMs show high levels of Vcam1 expression, known to support their interaction with hematopoietic stem and progenitor cells (HSPCs). During chronic infection, the latter exhibit upregulated expression of Klf1, E2f8, and Gfi1b genes, involved in erythroid differentiation and extramedullary erythropoiesis. This process gives rise to differentiation of stem cells to BFU-e/CFU-e, Pro E, and Baso E subpopulations. However, infection truncates progressing differentiation at the orthochromatic erythrocytes level, as demonstrated by scRNAseq and flow cytometry. As such, these cells are unable to pass to the reticulocyte stage, resulting in reduced number of mature circulating RBCs and the occurrence of chronic anemia. The physiological consequence of these events is the prolonged poor delivery of oxygen to various tissues, triggering lactic acid acidosis and the catabolic breakdown of muscle tissue, reminiscent of the wasting syndrome that is characteristic for the lethal stage of animal trypanosomosis.
Collapse
Affiliation(s)
- Hang Thi Thu Nguyen
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Magdalena Radwanska
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Stefan Magez
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
12
|
Zoghroban HS, Ibrahim FMK, Nasef NA, Saad AE. The impact of L-citrulline on murine intestinal cell integrity, immune response, and arginine metabolism in the face of Giardia lamblia infection. Acta Trop 2022; 237:106748. [DOI: 10.1016/j.actatropica.2022.106748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
|
13
|
Lee S, Park J, Kim S, Ok J, Yoo JI, Kim YS, Ahn Y, Kim TI, Ko HC, Lee JY. High-Performance Implantable Bioelectrodes with Immunocompatible Topography for Modulation of Macrophage Responses. ACS NANO 2022; 16:7471-7485. [PMID: 35438981 DOI: 10.1021/acsnano.1c10506] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Implantable bioelectrodes enable precise recording or stimulation of electrical signals with living tissues in close contact. However, their performance is frequently compromised owing to inflammatory tissue reactions, which macrophages either induce or resolve by polarizing to an inflammatory (M1) or noninflammatory (M2) phenotype, respectively. Thus, we aimed to fabricate biocompatible and functional implantable conductive polymer bioelectrodes with optimal topography for the modulation of macrophage responses. To this end, we produced heparin-doped polypyrrole (PPy/Hep) electrodes of different surface roughness, with Ra values from 5.5 to 17.6 nm, by varying the charge densities during electrochemical synthesis. In vitro culture revealed that macrophages on rough PPy/Hep electrodes preferentially polarized to noninflammatory phenotypes. In particular, PPy/Hep-900 (Ra = 14 nm) was optimal with respect to electrochemical properties and the suppression of inflammatory M1 polarization. In vivo implantation indicated that PPy/Hep-900 significantly reduced macrophage recruitment, suppressed inflammatory polarization, and mitigated fibrotic tissue formation. In addition, the implanted PPy/Hep-900 electrodes could successfully record electrocardiographic signals for up to 10 days without substantial decreases in sensitivity, while other electrodes substantially lost their signal sensitivity during implantation. Altogether, we demonstrate that modulating the surface features of PPy/Hep can benefit the design and applications of high-performance and high-biocompatibility bioelectrodes.
Collapse
Affiliation(s)
- Sanghun Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Junggeon Park
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Semin Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Jehyung Ok
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jung Il Yoo
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Yong Sook Kim
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju, 61469, Republic of Korea
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, 61469, Republic of Korea
| | - Youngkeun Ahn
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju, 61469, Republic of Korea
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, 61469, Republic of Korea
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Heung Cho Ko
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Jae Young Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| |
Collapse
|
14
|
Jin L, Xiao L, Ding M, Pan A, Balian G, Sung SSJ, Li XJ. Heterogeneous macrophages contribute to the pathology of disc herniation induced radiculopathy. Spine J 2022; 22:677-689. [PMID: 34718176 PMCID: PMC8957503 DOI: 10.1016/j.spinee.2021.10.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Macrophages play important roles in the progression of intervertebral disc herniation and radiculopathy. PURPOSE To better understand the roles of macrophages in this process, we developed a new mouse model that mimics human radiculopathy. STUDY DESIGN/SETTING A preclinical randomized animal study. METHODS Three types of surgeries were performed in randomly assigned Balb/c mice. These were spinal nerve exposure, traditional anterior disc puncture, and lateral disc puncture with nerve exposure (n=16/group). For the nerve exposure group, the left L5 spinal nerve was exposed without disc injury. For the traditional anterior puncture, L5/6 disc was punctured by an anterior approach as previously established. For lateral puncture with nerve exposure, the left L5 spinal nerve was exposed by removing the psoas major muscle fibers, and the L5/6 disc was punctured laterally on the left side with a 30G needle, allowing the nucleus to protrude toward the L5 spinal nerve. Mechanical hyperalgesia (pain sensitivity) of hind paws was assessed with electronic von Frey assay on alternative day for up to 2 weeks. MRI, histology, and immunostaining were performed to confirm disc herniation and inflammation. RESULTS Ipsilateral pain in the lateral puncture with nerve exposure group was significantly greater than the other groups. Pro-inflammatory cytokines IL-1β and IL-6 were markedly elevated at the hernia sites of both puncture groups and the spinal nerve of lateral puncture with never exposure group on postoperative day 7. Heterogeneous populations of macrophages were detected in the infiltration tissue of this mouse model and in tissue from patients undergone discectomy. CONCLUSIONS We have established a new mouse model that mimics human radiculopathy and demonstrated that a mixed phenotype of macrophages contribute to the pathogenesis of acute discogenic radiculopathy. CLINICAL SIGNIFICANCE This study provides a clinically relevant in vivo animal model to elucidate complex interactions of disc herniation and radicular pain, which may present opportunities for the development of macrophage-anchored therapeutics to manage radiculopathy.
Collapse
Affiliation(s)
- Li Jin
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Li Xiao
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Mengmeng Ding
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA; Department of Anesthesiology, Shengjing hospital, China Medical University, Shenyang, China
| | - Aixing Pan
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA; Department of Orthopaedic Surgery, Chaoyang Hospital, Capital Medical School, Beijing, China
| | - Gary Balian
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | - Sun-Sang J Sung
- Department of Medicine and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Xudong Joshua Li
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA.
| |
Collapse
|
15
|
Zhao Y, Yang Y, Liu M, Qin X, Yu X, Zhao H, Li X, Li W. COX-2 is required to mediate crosstalk of ROS-dependent activation of MAPK/NF-κB signaling with pro-inflammatory response and defense-related NO enhancement during challenge of macrophage-like cell line with Giardia duodenalis. PLoS Negl Trop Dis 2022; 16:e0010402. [PMID: 35482821 PMCID: PMC9089906 DOI: 10.1371/journal.pntd.0010402] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 05/10/2022] [Accepted: 04/08/2022] [Indexed: 01/07/2023] Open
Abstract
Giardia duodenalis, the causative agent of giardiasis, is among the most important causes of waterborne diarrheal diseases around the world. Giardia infection may persist over extended periods with intestinal inflammation, although minimal. Cyclooxygenase (COX)-2 is well known as an important inducer of inflammatory response, while the role it played in noninvasive Giardia infection remains elusive. Here we investigated the regulatory function of COX-2 in Giardia-induced pro-inflammatory response and defense-related nitric oxide (NO) generation in macrophage-like cell line, and identified the potential regulators. We initially found that Giardia challenge induced up-regulation of IL-1β, IL-6, TNF-α, prostaglandin (PG) E2, and COX-2 in macrophages, and pretreatment of the cells with COX-2 inhibitor NS398 reduced expressions of those pro-inflammatory factors. It was also observed that COX-2 inhibition could attenuate the up-regulated NO release and inducible NO synthase (iNOS) expression induced by Giardia. We further confirmed that Giardia-induced COX-2 up-regulation was mediated by the phosphorylation of p38 and ERK1/2 MAPKs and NF-κB. In addition, inhibition of reactive oxygen species (ROS) by NAC was shown to repress Giardia-induced activation of MAPK/NF-κB signaling, up-regulation of COX-2 and iNOS, increased levels of PGE2 and NO release, and up-expressions of IL-1β, IL-6, and TNF-α. Collectively, in this study, we revealed a critical role of COX-2 in modulating pro-inflammatory response and defense-related NO production in Giardia-macrophage interactions, and this process was evident to be controlled by ROS-dependent activation of MAPK/NF-κB signaling. The results can deepen our knowledge of anti-Giardia inflammatory response and host defense mechanisms.
Collapse
Affiliation(s)
- Yudan Zhao
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yongwu Yang
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Min Liu
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xuening Qin
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiran Yu
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Huimin Zhao
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaoyun Li
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Wei Li
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- * E-mail:
| |
Collapse
|
16
|
Abo-Zaid MA, Hamdi AA. Evaluation of Immune Response and Haematological Parameters in Infected Male Albino Rats by Giardiasis. Parasite Immunol 2022; 44:e12908. [PMID: 35104007 DOI: 10.1111/pim.12908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 11/27/2022]
Abstract
The present work aimed to study the effects of G. lamblia infection on immunological, haematological studies and to evaluate immunoglobulins and some cytokines. Fifty male albino rats were divided into six groups. The control group including 20 rats and the infected group includes 30 rats. All the estimations were checked all over five checkpoints (CP) (7, 14, 21, 28, and 35 days post-infection). Serum levels of IgA, IgG, IgM and IgE. Cytokines INF-γ, TNF-alpha, IL-4, IL-10, and haematological parameters were determined. Cyst and trophozoite were counted. A considerable increase in the level of immunoglobulins and cytokines in all infected groups compared to the control group was documented. Furthermore, a significant decrease in red blood corpuscles, haemoglobin, and mean corpuscular haemoglobin concentration levels, whereas substantial increases in mean corpuscular volume, mean corpuscular haemoglobin and platelets were observed. Moreover, infected rats had a substantial rise in WBCs, lymphocytes, and eosinophil counts compared to the control group, whereas neutrophils and monocytes had a significant decrease. Number of trophozoites and cysts were significantly increased in infected groups before diminishing after day 28. The current results showed that Th1 and Th2 immune responses, which are characterized by the production of TNF-α, IFN-γ, IL-4 and IL-10, are important for protection against Giardia infections and also verified the balance between these cytokines and the timing of their production was crucial in G. lamblia immune response. Giardia lamblia, Immunity, Antibodies, cytokines, eosinophil.
Collapse
Affiliation(s)
- Mabrouk A Abo-Zaid
- Biology department faculty of science, Jazan University, Jazan, Saudi Arabia
| | - Aishah Ali Hamdi
- Biology department faculty of science, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
17
|
Abstract
Giardia duodenalis captured the attention of Leeuwenhoek in 1681 while he was examining his own diarrheal stool, but, ironically, it did not really gain attention as a human pathogen until the 1960s, when outbreaks were reported. Key technological advances, including in vitro cultivation, genomic and proteomic databases, and advances in microscopic and molecular approaches, have led to an understanding that this is a eukaryotic organism with a reduced genome rather than a truly premitochondriate eukaryote. This has included the discovery of mitosomes (vestiges of mitochondria), a transport system with many of the features of the Golgi apparatus, and even evidence for a sexual or parasexual cycle. Cell biology approaches have led to a better understanding of how Giardia survives with two nuclei and how it goes through its life cycle as a noninvasive organism in the hostile environment of the lumen of the host intestine. Studies of its immunology and pathogenesis have moved past the general understanding of the importance of the antibody response in controlling infection to determining the key role of the Th17 response. This work has led to understanding of the requirement for a balanced host immune response that avoids the extremes of an excessive response with collateral damage or one that is unable to clear the organism. This understanding is especially important in view of the remarkable ranges of early manifestations, which range from asymptomatic to persistent diarrhea and weight loss, and longer-term sequelae that include growth stunting in children who had no obvious symptoms and a high frequency of postinfectious irritable bowel syndrome (IBS).
Collapse
|
18
|
Pu X, Li X, Cao L, Yue K, Zhao P, Wang X, Li J, Zhang X, Zhang N, Zhao Z, Liang M, Gong P. Giardia duodenalis Induces Proinflammatory Cytokine Production in Mouse Macrophages via TLR9-Mediated p38 and ERK Signaling Pathways. Front Cell Dev Biol 2021; 9:694675. [PMID: 34336841 PMCID: PMC8319647 DOI: 10.3389/fcell.2021.694675] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Giardia duodenalis, also known as Giardia lamblia or Giardia intestinalis, is an important opportunistic, pathogenic, zoonotic, protozoan parasite that infects the small intestines of humans and animals, causing giardiasis. Several studies have demonstrated that innate immunity-associated Toll-like receptors (TLRs) are critical for the elimination of G. duodenalis; however, whether TLR9 has a role in innate immune responses against Giardia infection remains unknown. In the present study, various methods, including reverse transcriptase–quantitative polymerase chain reaction, Western blot, enzyme-linked immunosorbent assay, immunofluorescence, inhibitor assays, and small-interfering RNA interference, were utilized to probe the role of TLR9 in mouse macrophage-mediated defenses against G. lamblia virus (GLV)–free or GLV-containing Giardia trophozoites. The results revealed that in G. duodenalis–stimulated mouse macrophages, the secretion of proinflammatory cytokines, including interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), and IL-12 p40, was enhanced, concomitant with the significant activation of TLR9, whereas silencing TLR9 attenuated the host inflammatory response. Notably, the presence of GLV exacerbated the secretion of host proinflammatory cytokines. Moreover, G. duodenalis stimulation activated multiple signaling pathways, including the nuclear factor κB p65 (NF-κB p65), p38, ERK, and AKT pathways, the latter three in a TLR9-dependent manner. Additionally, inhibiting the p38 or ERK pathway downregulated the G. duodenalis–induced inflammatory response, whereas AKT inhibition aggravated this process. Taken together, these results indicated that G. duodenalis may induce the secretion of proinflammatory cytokines by activating the p38 and ERK signaling pathways in a TLR9-dependent manner in mouse macrophages. Our in vitro findings on the mechanism underlying the TLR9-mediated host inflammatory response may help establish the foundation for an in-depth investigation of the role of TLR9 in the pathogenicity of G. duodenalis.
Collapse
Affiliation(s)
- Xudong Pu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xin Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lili Cao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.,Department of Parasite, Jilin Academy of Animal Husbandry and Veterinary Medicine, Changchun, China
| | - Kaiming Yue
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Panpan Zhao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaocen Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianhua Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xichen Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Nan Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhiteng Zhao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Min Liang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Pengtao Gong
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
19
|
El-Kady AM, Abdel-Rahman IAM, Fouad SS, Allemailem KS, Istivan T, Ahmed SFM, Hasan AS, Osman HA, Elshabrawy HA. Pomegranate Peel Extract Is a Potential Alternative Therapeutic for Giardiasis. Antibiotics (Basel) 2021; 10:705. [PMID: 34208266 PMCID: PMC8230894 DOI: 10.3390/antibiotics10060705] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/30/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
Giardiasis is a major diarrheal disease affecting approximately 2.5 million children annually in developing countries. Several studies have reported the resistance of Giardia lamblia (G. lamblia) to multiple drugs. Therefore, identifying an effective drug for giardiasis is a necessity. This study examined the antiparasitic effect of Punica granatum (pomegranate) and evaluated its therapeutic efficacy in rats infected with G. lamblia. In vitro study showed high efficacy of pomegranate peel ethanolic extract in killing G. lamblia cysts as demonstrated by eosin vital staining. We showed that treating infected rats with pomegranate extract resulted in a marked reduction in the mean number of G. lamblia cysts and trophozoites in feces and intestine respectively. Interestingly, the number of G. lamblia trophozoites and cysts were significantly lower in the pomegranate extract-treated group compared to the metronidazole-positive control group. Moreover, pomegranate extract treatment significantly induced nitric oxide (NO) and reduced serum IL-6 and TNF-α, compared to infected untreated rats. Histological and scanning electron microscopy (SEM) examination of the jejunum and duodenum of pomegranate extract-treated animals confirmed the antiparasitic effect of the extract, and demonstrated the restoration of villi structure with reduction of villi atrophy, decreased infiltration of lymphocytes, and protection of intestinal cells from apoptotic cell death. In conclusion, our data show that the pomegranate peel extract is effective in controlling G. lamblia infections, which suggests that it could be a viable treatment option for giardiasis.
Collapse
Affiliation(s)
- Asmaa M. El-Kady
- Department of Medical Parasitology, Faculty of Medicine, South Valley University, Qena 83523, Egypt;
| | - Iman A. M. Abdel-Rahman
- Department of Pharmacognosy, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt;
| | - Samer S. Fouad
- Veterinary Clinical Pathology, Qena University Hospital, South Valley University, Qena 83523, Egypt;
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Taghrid Istivan
- Biosciences and Food Technology, School of Science, RMIT University, Melbourne, Bundoora, VIC 3083, Australia;
| | - Sheren F. M. Ahmed
- Department of Pathology, Faculty of Medicine, Sohag University, Sohag 82524, Egypt;
| | - Al Shaimaa Hasan
- Department of Medical Pharmacology, Faculty of Medicine, South Valley University, Qena 83523, Egypt;
| | - Heba A. Osman
- Tropical Medicine, Gastroenterology and Hepatology Department, Faculty of Medicine, South Valley University, Qena 83523, Egypt;
| | - Hatem A. Elshabrawy
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA
| |
Collapse
|
20
|
Abd-Elhamid TH, Abdel-Rahman IAM, Mahmoud AR, Allemailem KS, Almatroudi A, Fouad SS, Abdella OH, Elshabrawy HA, El-Kady AM. A Complementary Herbal Product for Controlling Giardiasis. Antibiotics (Basel) 2021; 10:477. [PMID: 33919165 PMCID: PMC8143091 DOI: 10.3390/antibiotics10050477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 01/18/2023] Open
Abstract
Giardiasis is an intestinal protozoal disease caused by Giardia lamblia. The disease became a global health issue due to development of resistance to commonly used drugs. Since many plant-derived products have been used to treat many parasitic infestations, we aimed to assess the therapeutic utility of Artemisia annua (A. annua) for giardiasis. We showed that NO production was significantly reduced whereas serum levels of IL-6, IFN-γ, and TNF-α were elevated in infected hamsters compared to uninfected ones. Additionally, infection resulted in increased numbers of intraepithelial lymphocytes and reduced villi heights, goblet cell numbers, and muscularis externa thickness. We also showed that inducible NO synthase (iNOS) and caspase-3 were elevated in the intestine of infected animals. However, treatment with A. annua significantly reduced the intestinal trophozoite counts and IEL numbers, serum IL-6, IFN-γ, and TNF-α, while increasing NO and restoring villi heights, GC numbers, and ME thickness. Moreover, A. annua treatment resulted in lower levels of caspase-3, which indicates a protective effect from apoptotic cell death. Interestingly, A. annua therapeutic effects are comparable to metronidazole. In conclusion, our results show that A. annua extract is effective in alleviating infection-induced intestinal inflammation and pathological effects, which implies its potential therapeutic utility in controlling giardiasis.
Collapse
Affiliation(s)
- Tarek Hamdy Abd-Elhamid
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
| | - Iman A. M. Abdel-Rahman
- Department of Pharmacognosy, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt;
| | - Amany Refaat Mahmoud
- Department of Human Anatomy and Embryology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
- Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah 51911, Saudi Arabia
| | - Khaled S. Allemailem
- Department of Medical laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (K.S.A.); (A.A.)
| | - Ahmad Almatroudi
- Department of Medical laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (K.S.A.); (A.A.)
| | - Samer S. Fouad
- Qena University Hospital, South Valley University, Qena 83523, Egypt;
| | - Osama H. Abdella
- Department of Medical Parasitology, Faculty of Medicine, South Valley University, Qena 83523, Egypt;
| | - Hatem A. Elshabrawy
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA
| | - Asmaa M. El-Kady
- Department of Medical Parasitology, Faculty of Medicine, South Valley University, Qena 83523, Egypt;
| |
Collapse
|
21
|
Zhao P, Cao L, Wang X, Dong J, Zhang N, Li X, Li J, Zhang X, Gong P. Extracellular vesicles secreted by Giardia duodenalis regulate host cell innate immunity via TLR2 and NLRP3 inflammasome signaling pathways. PLoS Negl Trop Dis 2021; 15:e0009304. [PMID: 33798196 PMCID: PMC8046354 DOI: 10.1371/journal.pntd.0009304] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/14/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
Giardia duodenalis, also known as G. intestinalis or G. lamblia, is the major cause of giardiasis leading to diarrheal disease with 280 million people infections annually worldwide. Extracellular vesicles (EVs) have emerged as a ubiquitous mechanism participating in cells communications. The aim of this study is to explore the roles of G. duodenalis EVs (GEVs) in host-pathogen interactions using primary mouse peritoneal macrophages as a model. Multiple methods of electron microscopy, nanoparticle tracking analysis, proteomic assays, flow cytometry, immunofluorescence, qPCR, western blot, ELISA, inhibition assays, were used to characterize GEVs, and explore its effects on the host cell innate immunity as well as the underlying mechanism using primary mouse peritoneal macrophages. Results showed that GEVs displayed typical cup-shaped structure with 150 nm in diameter. GEVs could be captured by macrophages and triggered immune response by increasing the production of inflammatory cytokines Il1β, Il6, Il10, Il12, Il17, Ifng, Tnf, Il18, Ccl20 and Cxcl2. Furthermore, activation of TLR2 and NLRP3 inflammasome signaling pathways involved in this process. In addition, CA-074 methyl ester (an inhibitor of cathepsin B) or zVAD-fmk (an inhibitor of pan-caspase) pretreatment entirely diminished these effects triggered by GEVs exposure. Taken together, these findings demonstrated that GEVs could be internalized into mouse peritoneal macrophages and regulate host cell innate immunity via TLR2 and NLRP3 inflammasome signaling pathways. G. duodenalis, one of the most common cause of diarrheal diseases, is widely existed in the contaminated water and threatening the public health especially in developing countries. Along with the increasing resistance to anti-G. duodenalis drugs occurs, new targets against giardiasis are of urgently needed. The innate immune system is the first defense line of organism to resist multiple pathogens invasion through recognizing pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs), termed Toll-like receptors (TLRs) on the surface of cell membrane and nucleotide oligomerization domain (Nod)-like receptors (NLRs) inside immune cells. Recently, extracellular vesicles have emerged as a ubiquitous mechanism participating in cells communications. In this study, EVs secreted by extracellular protozoan G. duodenalis were obtained and displayed typical cup-shaped structure with 150 nm in diameter. Moreover, GEVs could enter into primary mouse peritoneal macrophages and regulate host cell innate immunity by up-regulation of various inflammatory cytokines expression. Furthermore, TLR2 and NLRP3 inflammasome signaling pathways involved in this process. This study demonstrated that GEVs could be internalized into primary mouse peritoneal macrophages, regulate host cell innate immunity via TLR2 and NLRP3 inflammasome signaling pathways, and may provide new targets against giardiasis.
Collapse
Affiliation(s)
- Panpan Zhao
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Lili Cao
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
- Jilin Academy of Animal Husbandry and Veterinary Medicine, Changchun, China
| | - Xiaocen Wang
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Nan Zhang
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xin Li
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianhua Li
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xichen Zhang
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Pengtao Gong
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
- * E-mail:
| |
Collapse
|
22
|
Faria CP, Neves BM, Lourenço Á, Cruz MT, Martins JD, Silva A, Pereira S, Sousa MDC. Giardia lamblia Decreases NF-κB p65 RelA Protein Levels and Modulates LPS-Induced Pro-Inflammatory Response in Macrophages. Sci Rep 2020; 10:6234. [PMID: 32277133 PMCID: PMC7148380 DOI: 10.1038/s41598-020-63231-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/20/2020] [Indexed: 11/09/2022] Open
Abstract
The protozoan Giardia lamblia is the most common cause of parasitic gastrointestinal infection worldwide. The parasite developed sophisticated, yet not completely disclosed, mechanisms to escape immune system and growth in the intestine. To further understand the interaction of G. lamblia with host immune cells, we investigated the ability of parasites to modulate the canonical activation of mouse macrophages (Raw 264.7 cell line) and human monocyte-derived macrophages triggered by the TLR4 agonist, lipopolysaccharide (LPS). We observed that G. lamblia impairs LPS-evoked pro-inflammatory status in these macrophage-like cells through inhibition of cyclooxygenase-2 and inducible nitric oxide synthase expression and subsequent NO production. This effect was in part due to the activity of three G. lamblia proteases, a 135 kDa metalloprotease and two cysteine proteases with 75 and 63 kDa, that cleave the p65RelA subunit of the nuclear factor-kappa B (NF-κB). Moreover, Tnf and Ccl4 transcription was increased in the presence of the parasite. Overall, our data indicates that G. lamblia modulates macrophages inflammatory response through impairment of the NF-κB, thus silencing a crucial signaling pathway of the host innate immune response.
Collapse
Affiliation(s)
- Clarissa Perez Faria
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Bruno Miguel Neves
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ágata Lourenço
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Maria Teresa Cruz
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - João D Martins
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ana Silva
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Sónia Pereira
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Maria do Céu Sousa
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal. .,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
23
|
TSG-6 in extracellular vesicles from canine mesenchymal stem/stromal is a major factor in relieving DSS-induced colitis. PLoS One 2020; 15:e0220756. [PMID: 32040478 PMCID: PMC7010233 DOI: 10.1371/journal.pone.0220756] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023] Open
Abstract
Adipose tissue derived mesenchymal stem/stromal cell (ASC)-derived extracellular vesicles (EV) have been reported to be beneficial against dextran sulfate sodium (DSS)-induced colitis in mice. However, the underlying mechanisms have not been fully elucidated. We hypothesize that the tumor necrosis factor-α-stimulated gene/protein 6 (TSG-6) in EVs is a key factor influencing the alleviation of colitis symptoms. DSS-induced colitis mice (C57BL/6, male, Naïve = 6, Sham = 8, PBS = 8 EV = 8, CTL-EV = 8, TSG-6 depleted EV = 8) were intraperitoneally administered EVs (100 ug/mice) on day 1, 3, and 5; colon tissues were collected on day 10 for histopathological, RT-qPCR, western blot and immunofluorescence analyses. In mice injected with EV, inflammation was alleviated. Indeed, EVs regulated the levels of pro- and anti-inflammatory cytokines, such as TNF-α, IL-1β, IFN-γ, IL-6, and IL-10 in inflamed colons. However, when injected with TSG-6 depleted EV, the degree of inflammatory relief was reduced. Furthermore, TSG-6 in EVs plays a key role in increasing regulatory T cells (Tregs) and polarizing macrophage from M1 to M2 in the colon. In conclusion, this study shows that TSG-6 in EVs is a major factor in the relief of DSS-induced colitis, by increasing the number of Tregs and macrophage polarization from M1 to M2 in the colon.
Collapse
|
24
|
TNF-α and INF-γ primed canine stem cell-derived extracellular vesicles alleviate experimental murine colitis. Sci Rep 2020; 10:2115. [PMID: 32034203 PMCID: PMC7005871 DOI: 10.1038/s41598-020-58909-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022] Open
Abstract
The inflammatory bowel diseases (IBD) are characterized by relapsing inflammation and immune activation diseases of the gastrointestinal tract. Extracellular vesicles, which elicit similar biological activity to the stem cell themselves, have been used experimentally to treat dextran sulfate sodium (DSS)-induced colitis in murine models though immunosuppressive potential. In this study, we investigated whether the Extracellular vesicles (EVs) obtained by stimulating inflammatory cytokine on canine adipose mesenchymal stem cells (cASC) improved anti-inflammatory and/or immunosuppressive potential of EVs, and/or their ability to alleviate inflammation in colitis. We also explored the correlation between immune cells and the inflammatory repressive effect of primed EVs. Pro-inflammatory cytokines such as TNF-α and IFN-γ increased immunosuppressive protein such as HGF, TSG-6, PGE2 and TGF-β in EVs. Moreover, the anti-inflammatory effect of EVs was improved through pretreatment with inflammatory cytokines. Importantly, EVs obtained from primed stem cells effectively induced macrophage polarization toward an anti-inflammatory M2 phenotype and suppressed activated immunity by enhancing regulatory T cells in inflamed colon in mice. Our results provide a new and effective therapy for the EVs obtained from ASC stimulated with TNF-α and IFN-γ against not only IBD, but also immune-mediated disease.
Collapse
|
25
|
Fink MY, Maloney J, Keselman A, Li E, Menegas S, Staniorski C, Singer SM. Proliferation of Resident Macrophages Is Dispensable for Protection during Giardia duodenalis Infections. Immunohorizons 2019; 3:412-421. [PMID: 31455692 PMCID: PMC7033283 DOI: 10.4049/immunohorizons.1900041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/06/2019] [Indexed: 12/28/2022] Open
Abstract
Infection with the intestinal parasite Giardia duodenalis is one of the most common causes of diarrheal disease in the world. Previous work has demonstrated that the cells and mechanisms of the adaptive immune system are critical for clearance of this parasite. However, the innate system has not been as well studied in the context of Giardia infection. We have previously demonstrated that Giardia infection leads to the accumulation of a population of CD11b+, F4/80+, ARG1+, and NOS2+ macrophages in the small intestinal lamina propria. In this report, we sought to identify the accumulation mechanism of duodenal macrophages during Giardia infection and to determine if these cells were essential to the induction of protective Giardia immunity. We show that F4/80+, CD11b+, CD11cint, CX3CR1+, MHC class II+, Ly6C−, ARG1+, and NOS2+ macrophages accumulate in the small intestine during infections in mice. Consistent with this resident macrophage phenotype, macrophage accumulation does not require CCR2, and the macrophages incorporate EdU, indicating in situ proliferation rather than the recruitment of monocytes. Depletion of macrophages using anti-CSF1R did not impact parasite clearance nor development of regulatory T cell or Th17 cellular responses, suggesting that these macrophages are dispensable for protective Giardia immunity.
Collapse
Affiliation(s)
- Marc Y Fink
- Department of Biology, Georgetown University, Washington, DC 20057
| | - Jenny Maloney
- Department of Biology, Georgetown University, Washington, DC 20057
| | | | - Erqiu Li
- Department of Biology, Georgetown University, Washington, DC 20057
| | - Samantha Menegas
- Department of Biology, Georgetown University, Washington, DC 20057
| | | | - Steven M Singer
- Department of Biology, Georgetown University, Washington, DC 20057
| |
Collapse
|
26
|
Singer SM, Fink MY, Angelova VV. Recent insights into innate and adaptive immune responses to Giardia. ADVANCES IN PARASITOLOGY 2019; 106:171-208. [PMID: 31630758 DOI: 10.1016/bs.apar.2019.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Infection with Giardia produces a wide range of clinical outcomes. Acutely infected patients may have no overt symptoms or suffer from severe cramps, diarrhea, nausea and even urticaria. Recently, post-infectious irritable bowel syndrome and chronic fatigue syndrome have been identified as long-term sequelae of giardiasis. Frequently, recurrent and chronic Giardia infection is considered a major contributor to stunting in children from low and middle income countries. Perhaps the most unusual outcome of infection with Giardia is the apparent reduced risk of developing moderate-to-severe diarrhea due to other enteric infections which has been noted in several recent studies. The goal of understanding immune responses against Giardia is therefore to identify protective mechanisms which could become targets for vaccine development, but also to identify mechanisms whereby infections lead to these other diverse outcomes. Giardia induces a robust adaptive immune response in both humans and animals. It has been known for many years that there is production of large amounts of parasite-specific IgA following infection and that CD4+ T cell responses contribute to this IgA production and control of the infection. In the past decade, there have been advances in our understanding of the non-antibody effector mechanisms used by the host to fight Giardia infections, in particular the importance of the cytokine interleukin (IL)-17 in orchestrating these responses. There have also been major advances in understanding how the innate response to Giardia infection is initiated and how it contributes to the development of adaptive immunity. Finally, there here have been significant increases in our knowledge of how the resident microbial community influences the immune response and how these responses contribute to the development of some of the symptoms of giardiasis. In this article, we will focus on data generated in the last 10 years and how it has advanced our knowledge about this important parasitic disease.
Collapse
Affiliation(s)
- Steven M Singer
- Department of Biology, Georgetown University, Washington, DC, United States.
| | - Marc Y Fink
- Department of Biology, Georgetown University, Washington, DC, United States
| | - Vanessa V Angelova
- Department of Biology, Georgetown University, Washington, DC, United States
| |
Collapse
|
27
|
Immune response markers in sera of children infected with Giardia duodenalis AI and AII subassemblages. Immunobiology 2019; 224:595-603. [PMID: 30962033 DOI: 10.1016/j.imbio.2019.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 12/29/2022]
Abstract
In this study, we evaluated serum markers of immune responses in children infected with G. duodenalis and compared them with the characterized parasite isolates. The reactivity indexes (RI) of IgG (1.503 ± 0.819) and IgA (2.308 ± 1.935) antibodies were significantly higher (P < 0.001) in infected children than in non-infected children. There were also statistically significantly higher serum levels (P < 0.05) of IFN-γ (393.10 ± 983.90 pg/mL) as well as serum (30.03 ± 10.92 μmol/L) and saliva nitric oxid derivatives (NOx) (192.4 ± 151.2 μmol/L) in children infected with G. duodenalis compared to the group of non-parasitized children (127.4 ± 274.30 pg/mL; 25.82 ± 7.74 μmol/L and 122.5 ± 105.90 μmol/L, respectively). Regarding the characterized genetic variants of G. duodenalis and the immune response profiles, no differences were observed in terms of antibody reactivity or levels of serum cytokine and NOx among children infected with AI or AII subassemblages. The elevated levels of IFN-γ and NOx indicate that G. duodenalis intestinal infection in humans induces a cellular immune response detectable at the systemic level. Moreover, no significant differences in the antibody reactivity profile or the cytokine and NOx production in the sera of children infected with AI or AII G. duodenalis variants were observed, suggesting that subtypes of the parasite do not influence the immune response profile.
Collapse
|
28
|
Mould KJ, Jackson ND, Henson PM, Seibold M, Janssen WJ. Single cell RNA sequencing identifies unique inflammatory airspace macrophage subsets. JCI Insight 2019; 4:126556. [PMID: 30721157 DOI: 10.1172/jci.insight.126556] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/29/2019] [Indexed: 02/06/2023] Open
Abstract
Macrophages are well recognized for their dual roles in orchestrating inflammatory responses and regulating tissue repair. In almost all acutely inflamed tissues, 2 main subclasses of macrophages coexist. These include embryonically derived resident tissue macrophages and BM-derived recruited macrophages. While it is clear that macrophage subsets categorized in this fashion display distinct transcriptional and functional profiles, whether all cells within these categories and in the same inflammatory microenvironment share similar functions or whether further specialization exists has not been determined. To investigate inflammatory macrophage heterogeneity on a more granular level, we induced acute lung inflammation in mice and performed single cell RNA sequencing of macrophages isolated from the airspaces during health, peak inflammation, and resolution of inflammation. In doing so, we confirm that cell origin is the major determinant of alveolar macrophage (AM) programing, and, to our knowledge, we describe 2 previously uncharacterized, transcriptionally distinct subdivisions of AMs based on proliferative capacity and inflammatory programing.
Collapse
Affiliation(s)
- Kara J Mould
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado, USA.,Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Peter M Henson
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, Colorado, USA.,Program for Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Max Seibold
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, Colorado, USA.,Center for Genes, Environment, and Health and.,Program for Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - William J Janssen
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado, USA.,Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
29
|
Li X, Zhang X, Gong P, Xia F, Li L, Yang Z, Li J. TLR2 -/- Mice Display Decreased Severity of Giardiasis via Enhanced Proinflammatory Cytokines Production Dependent on AKT Signal Pathway. Front Immunol 2017; 8:1186. [PMID: 28979269 PMCID: PMC5611375 DOI: 10.3389/fimmu.2017.01186] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/07/2017] [Indexed: 02/05/2023] Open
Abstract
Giardia infection is one of the most common causes of waterborne diarrheal disease in a wide array of mammalian hosts, including humans globally. Although numerous studies have indicated that adaptive immune responses are important for Giardia defense, however, whether the host innate immune system such as TLRs recognizes Giardia remains poorly understood. TLR2 plays a crucial role in pathogen recognition, innate immunity activation, and the eventual pathogen elimination. In this study, we investigated the role of TLR2 as a non-protective inflammatory response on controlling the severity of giardiasis. RT-PCR analysis suggested that TLR2 expression was increased in vitro. We demonstrated that Giardia lamblia-induced cytokines expression by the activation of p38 and ERK pathways via TLR2. Interestingly, the expression of IL-12 p40, TNF-α, and IL-6, but not IFN-γ, was enhanced in TLR2-blocked and TLR2−/− mouse macrophages exposed to G. lamblia trophozoites compared with wild-type (WT) mouse macrophages. Further analysis demonstrated that G. lamblia trophozoites reduced cytokines secretion by activating AKT pathway in WT mouse macrophages. Immunohistochemical staining in G. lamblia cysts infected TLR2−/− and WT mice showed that TLR2 was highly expressed in duodenum in infected WT mice. Also, infected TLR2−/− and AKT-blocked mice showed an increased production of IL-12 p40 and IFN-γ compared with infected WT mice at the early stage during infection. Interestingly, infected TLR2−/− and AKT-blocked mice displayed a decreased parasite burden, an increased weight gain rate, and short parasite persistence. Histological morphometry showed shortened villus length, hyperplastic crypt and decreased ratio of villus height/crypt depth in infected WT mice compared with in infected TLR2−/− and AKT-blocked mice. Together, our results suggested that TLR2 deficiency leads to alleviation of giardiasis and reduction of parasite burden through the promotion of proinflammatory cytokines production. For the first time, our results demonstrated that TLR2 played a negative role in host defense against Giardia.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xichen Zhang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Pengtao Gong
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Feifei Xia
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ling Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhengtao Yang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianhua Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
30
|
Fink MY, Singer SM. The Intersection of Immune Responses, Microbiota, and Pathogenesis in Giardiasis. Trends Parasitol 2017; 33:901-913. [PMID: 28830665 DOI: 10.1016/j.pt.2017.08.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/18/2017] [Accepted: 08/01/2017] [Indexed: 02/07/2023]
Abstract
Giardia lamblia is one of the most common infectious protozoans in the world. Giardia rarely causes severe life-threatening diarrhea, and may even have a slight protective effect in this regard, but it is a major contributor to malnutrition and growth faltering in children in the developing world. Giardia infection also appears to be a significant risk factor for postinfectious irritable bowel and chronic fatigue syndromes. In this review we highlight recent work focused on the impact of giardiasis and the mechanisms that contribute to the various outcomes of this infection, including changes in the composition of the microbiota, activation of immune responses, and immunopathology.
Collapse
Affiliation(s)
- Marc Y Fink
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Steven M Singer
- Department of Biology, Georgetown University, Washington, DC, USA.
| |
Collapse
|
31
|
Interleukin-17 receptor A (IL-17RA) as a central regulator of the protective immune response against Giardia. Sci Rep 2017; 7:8520. [PMID: 28819174 PMCID: PMC5561107 DOI: 10.1038/s41598-017-08590-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/12/2017] [Indexed: 12/16/2022] Open
Abstract
The protozoan parasite Giardia is a highly prevalent intestinal pathogen with a wide host range. Data obtained in mice, cattle and humans revealed the importance of IL-17A in the development of a protective immune response against Giardia. The aim of this study was to further unravel the protective effector mechanisms triggered by IL-17A following G. muris infection in mice, by an RNA-sequencing approach. C57BL/6 WT and C57BL/6 IL-17RA KO mice were orally infected with G. muris cysts. Three weeks post infection, intestinal tissue samples were collected for RNA-sequencing, with samples from uninfected C57BL/6 WT and C57BL/6 IL-17RA KO animals serving as negative controls. Differential expression analysis showed that G. muris infection evoked the transcriptional upregulation of a wide array of genes, mainly in animals with competent IL-17RA signaling. IL-17RA signaling induced the production of various antimicrobial peptides, such as angiogenin 4 and α- and β-defensins and regulated complement activation through mannose-binding lectin 2. The expression of the receptor that regulates the secretion of IgA into the intestinal lumen, the polymeric immunoglobulin receptor, was also dependent on IL-17RA signaling. Interestingly, the transcriptome data showed for the first time the involvement of the circadian clock in the host response following Giardia infection.
Collapse
|
32
|
Bartelt LA, Bolick DT, Mayneris-Perxachs J, Kolling GL, Medlock GL, Zaenker EI, Donowitz J, Thomas-Beckett RV, Rogala A, Carroll IM, Singer SM, Papin J, Swann JR, Guerrant RL. Cross-modulation of pathogen-specific pathways enhances malnutrition during enteric co-infection with Giardia lamblia and enteroaggregative Escherichia coli. PLoS Pathog 2017; 13:e1006471. [PMID: 28750066 PMCID: PMC5549954 DOI: 10.1371/journal.ppat.1006471] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 06/14/2017] [Indexed: 12/17/2022] Open
Abstract
Diverse enteropathogen exposures associate with childhood malnutrition. To
elucidate mechanistic pathways whereby enteric microbes interact during
malnutrition, we used protein deficiency in mice to develop a new model of
co-enteropathogen enteropathy. Focusing on common enteropathogens in
malnourished children, Giardia lamblia and enteroaggregative
Escherichia coli (EAEC), we provide new insights into
intersecting pathogen-specific mechanisms that enhance malnutrition. We show for
the first time that during protein malnutrition, the intestinal microbiota
permits persistent Giardia colonization and simultaneously
contributes to growth impairment. Despite signals of intestinal injury, such as
IL1α, Giardia-infected mice lack pro-inflammatory intestinal
responses, similar to endemic pediatric Giardia infections.
Rather, Giardia perturbs microbial host co-metabolites of
proteolysis during growth impairment, whereas host nicotinamide utilization
adaptations that correspond with growth recovery increase. EAEC promotes
intestinal inflammation and markers of myeloid cell activation. During
co-infection, intestinal inflammatory signaling and cellular recruitment
responses to EAEC are preserved together with a
Giardia-mediated diminishment in myeloid cell activation.
Conversely, EAEC extinguishes markers of host energy expenditure regulatory
responses to Giardia, as host metabolic adaptations appear
exhausted. Integrating immunologic and metabolic profiles during co-pathogen
infection and malnutrition, we develop a working mechanistic model of how
cumulative diet-induced and pathogen-triggered microbial perturbations result in
an increasingly wasted host. Malnourished children are exposed to multiple sequential, and oftentimes,
persistent enteropathogens. Intestinal microbial disruption and inflammation are
known to contribute to the pathogenesis of malnutrition, but how co-pathogens
interact with each other, with the resident microbiota, or with the host to
alter these pathways is unknown. Using a new model of enteric co-infection with
Giardia lamblia and enteroaggregative Escherichia
coli in mice fed a protein deficient diet, we identify host growth
and intestinal immune responses that are differentially mediated by
pathogen-microbe interactions, including parasite-mediated changes in intestinal
microbial host co-metabolism, and altered immune responses during co-infection.
Our data model how early life cumulative enteropathogen exposures progressively
disrupt intestinal immunity and host metabolism during crucial developmental
periods. Furthermore, studies in this co-infection model reveal new insights
into environmental and microbial determinants of pathogenicity for presently
common, but poorly understood enteropathogens like Giardia
lamblia, that may not conform to existing paradigms of microbial
pathogenesis based on single pathogen-designed models.
Collapse
Affiliation(s)
- Luther A. Bartelt
- Division of Infectious Diseases, Department of Medicine, University of
North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of
America
- Center for Gastrointestinal Biology and Disease, Department of Medicine,
University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United
States of America
- * E-mail:
| | - David T. Bolick
- Division of Infectious Diseases and International Health, Department of
Medicine, University of Virginia, Charlottesville, Virginia, United States of
America
| | - Jordi Mayneris-Perxachs
- Division of Computational and Systems Medicine, Department of Surgery and
Cancer, Imperial College London, United Kingdom
| | - Glynis L. Kolling
- Division of Infectious Diseases and International Health, Department of
Medicine, University of Virginia, Charlottesville, Virginia, United States of
America
| | - Gregory L. Medlock
- Department of Biomedical Engineering, University of Virginia,
Charlottesville, Virginia, United States of America
| | - Edna I. Zaenker
- Division of Infectious Diseases and International Health, Department of
Medicine, University of Virginia, Charlottesville, Virginia, United States of
America
| | - Jeffery Donowitz
- Division of Pediatric Infectious Diseases, Children’s Hospital of
Richmond at Virginia Commonwealth University, Richmond, Virginia, United States
of America
| | - Rose Viguna Thomas-Beckett
- Division of Infectious Diseases, Department of Medicine, University of
North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of
America
| | - Allison Rogala
- Center for Gastrointestinal Biology and Disease, Department of Medicine,
University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United
States of America
| | - Ian M. Carroll
- Center for Gastrointestinal Biology and Disease, Department of Medicine,
University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United
States of America
| | - Steven M. Singer
- Department of Biology, Georgetown University, Washington, DC, United
States of America
| | - Jason Papin
- Department of Biomedical Engineering, University of Virginia,
Charlottesville, Virginia, United States of America
| | - Jonathan R. Swann
- Division of Computational and Systems Medicine, Department of Surgery and
Cancer, Imperial College London, United Kingdom
| | - Richard L. Guerrant
- Division of Infectious Diseases and International Health, Department of
Medicine, University of Virginia, Charlottesville, Virginia, United States of
America
| |
Collapse
|
33
|
Selber-Hnatiw S, Rukundo B, Ahmadi M, Akoubi H, Al-Bizri H, Aliu AF, Ambeaghen TU, Avetisyan L, Bahar I, Baird A, Begum F, Ben Soussan H, Blondeau-Éthier V, Bordaries R, Bramwell H, Briggs A, Bui R, Carnevale M, Chancharoen M, Chevassus T, Choi JH, Coulombe K, Couvrette F, D'Abreau S, Davies M, Desbiens MP, Di Maulo T, Di Paolo SA, Do Ponte S, Dos Santos Ribeiro P, Dubuc-Kanary LA, Duncan PK, Dupuis F, El-Nounou S, Eyangos CN, Ferguson NK, Flores-Chinchilla NR, Fotakis T, Gado Oumarou H D M, Georgiev M, Ghiassy S, Glibetic N, Grégoire Bouchard J, Hassan T, Huseen I, Ibuna Quilatan MF, Iozzo T, Islam S, Jaunky DB, Jeyasegaram A, Johnston MA, Kahler MR, Kaler K, Kamani C, Karimian Rad H, Konidis E, Konieczny F, Kurianowicz S, Lamothe P, Legros K, Leroux S, Li J, Lozano Rodriguez ME, Luponio-Yoffe S, Maalouf Y, Mantha J, McCormick M, Mondragon P, Narayana T, Neretin E, Nguyen TTT, Niu I, Nkemazem RB, O'Donovan M, Oueis M, Paquette S, Patel N, Pecsi E, Peters J, Pettorelli A, Poirier C, Pompa VR, Rajen H, Ralph RO, Rosales-Vasquez J, Rubinshtein D, Sakr S, Sebai MS, Serravalle L, Sidibe F, Sinnathurai A, Soho D, Sundarakrishnan A, Svistkova V, Ugbeye TE, Vasconcelos MS, Vincelli M, Voitovich O, Vrabel P, Wang L, et alSelber-Hnatiw S, Rukundo B, Ahmadi M, Akoubi H, Al-Bizri H, Aliu AF, Ambeaghen TU, Avetisyan L, Bahar I, Baird A, Begum F, Ben Soussan H, Blondeau-Éthier V, Bordaries R, Bramwell H, Briggs A, Bui R, Carnevale M, Chancharoen M, Chevassus T, Choi JH, Coulombe K, Couvrette F, D'Abreau S, Davies M, Desbiens MP, Di Maulo T, Di Paolo SA, Do Ponte S, Dos Santos Ribeiro P, Dubuc-Kanary LA, Duncan PK, Dupuis F, El-Nounou S, Eyangos CN, Ferguson NK, Flores-Chinchilla NR, Fotakis T, Gado Oumarou H D M, Georgiev M, Ghiassy S, Glibetic N, Grégoire Bouchard J, Hassan T, Huseen I, Ibuna Quilatan MF, Iozzo T, Islam S, Jaunky DB, Jeyasegaram A, Johnston MA, Kahler MR, Kaler K, Kamani C, Karimian Rad H, Konidis E, Konieczny F, Kurianowicz S, Lamothe P, Legros K, Leroux S, Li J, Lozano Rodriguez ME, Luponio-Yoffe S, Maalouf Y, Mantha J, McCormick M, Mondragon P, Narayana T, Neretin E, Nguyen TTT, Niu I, Nkemazem RB, O'Donovan M, Oueis M, Paquette S, Patel N, Pecsi E, Peters J, Pettorelli A, Poirier C, Pompa VR, Rajen H, Ralph RO, Rosales-Vasquez J, Rubinshtein D, Sakr S, Sebai MS, Serravalle L, Sidibe F, Sinnathurai A, Soho D, Sundarakrishnan A, Svistkova V, Ugbeye TE, Vasconcelos MS, Vincelli M, Voitovich O, Vrabel P, Wang L, Wasfi M, Zha CY, Gamberi C. Human Gut Microbiota: Toward an Ecology of Disease. Front Microbiol 2017; 8:1265. [PMID: 28769880 PMCID: PMC5511848 DOI: 10.3389/fmicb.2017.01265] [Show More Authors] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 06/23/2017] [Indexed: 12/17/2022] Open
Abstract
Composed of trillions of individual microbes, the human gut microbiota has adapted to the uniquely diverse environments found in the human intestine. Quickly responding to the variances in the ingested food, the microbiota interacts with the host via reciprocal biochemical signaling to coordinate the exchange of nutrients and proper immune function. Host and microbiota function as a unit which guards its balance against invasion by potential pathogens and which undergoes natural selection. Disturbance of the microbiota composition, or dysbiosis, is often associated with human disease, indicating that, while there seems to be no unique optimal composition of the gut microbiota, a balanced community is crucial for human health. Emerging knowledge of the ecology of the microbiota-host synergy will have an impact on how we implement antibiotic treatment in therapeutics and prophylaxis and how we will consider alternative strategies of global remodeling of the microbiota such as fecal transplants. Here we examine the microbiota-human host relationship from the perspective of the microbial community dynamics.
Collapse
Affiliation(s)
| | - Belise Rukundo
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Masoumeh Ahmadi
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Hayfa Akoubi
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Hend Al-Bizri
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Adelekan F Aliu
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Lilit Avetisyan
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Irmak Bahar
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Alexandra Baird
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Fatema Begum
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | | | - Helene Bramwell
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Alicia Briggs
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Richard Bui
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | - Talia Chevassus
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Jin H Choi
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Karyne Coulombe
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | - Meghan Davies
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Tamara Di Maulo
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | | | | | - Paola K Duncan
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Sara El-Nounou
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | | | - Tanya Fotakis
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Metodi Georgiev
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | | | - Tazkia Hassan
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Iman Huseen
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Tania Iozzo
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Safina Islam
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Dilan B Jaunky
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | | | | | - Cedric Kamani
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | - Filip Konieczny
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | - Karina Legros
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Jun Li
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | - Yara Maalouf
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Jessica Mantha
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | | | | | - Thi T T Nguyen
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Ian Niu
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | - Matthew Oueis
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Nehal Patel
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Emily Pecsi
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Jackie Peters
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | | | | | | | | | | | - Surya Sakr
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Lisa Serravalle
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Fily Sidibe
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Dominique Soho
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | | | | | | | - Olga Voitovich
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Pamela Vrabel
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Lu Wang
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Maryse Wasfi
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Cong Y Zha
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Chiara Gamberi
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| |
Collapse
|
34
|
Barash NR, Maloney JG, Singer SM, Dawson SC. Giardia Alters Commensal Microbial Diversity throughout the Murine Gut. Infect Immun 2017; 85:e00948-16. [PMID: 28396324 PMCID: PMC5442636 DOI: 10.1128/iai.00948-16] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 03/26/2017] [Indexed: 12/17/2022] Open
Abstract
Giardia lamblia is the most frequently identified protozoan cause of intestinal infection. Over 200 million people are estimated to have acute or chronic giardiasis, with infection rates approaching 90% in areas where Giardia is endemic. Despite its significance in global health, the mechanisms of pathogenesis associated with giardiasis remain unclear, as the parasite neither produces a known toxin nor induces a robust inflammatory response. Giardia colonization and proliferation in the small intestine of the host may, however, disrupt the ecological homeostasis of gastrointestinal commensal microbes and contribute to diarrheal disease associated with giardiasis. To evaluate the impact of Giardia infection on the host microbiota, we used culture-independent methods to quantify shifts in the diversity of commensal microbes throughout the gastrointestinal tract in mice infected with Giardia We discovered that Giardia's colonization of the small intestine causes a systemic dysbiosis of aerobic and anaerobic commensal bacteria. Specifically, Giardia colonization is typified by both expansions in aerobic Proteobacteria and decreases in anaerobic Firmicutes and Melainabacteria in the murine foregut and hindgut. Based on these shifts, we created a quantitative index of murine Giardia-induced microbial dysbiosis. This index increased at all gut regions during the duration of infection, including both the proximal small intestine and the colon. Giardiasis could be an ecological disease, and the observed dysbiosis may be mediated directly via the parasite's unique anaerobic fermentative metabolism or indirectly via parasite induction of gut inflammation. This systemic alteration of murine gut commensal diversity may be the cause or the consequence of inflammatory and metabolic changes throughout the gut. Shifts in the commensal microbiota may explain observed variations in giardiasis between hosts with respect to host pathology, degree of parasite colonization, infection initiation, and eventual clearance.
Collapse
Affiliation(s)
- N R Barash
- Department of Microbiology and Molecular Genetics, UC Davis, Davis, California, USA
| | - J G Maloney
- Departments of Biology and Microbiology & Immunology, Georgetown University, Washington, DC, USA
| | - S M Singer
- Departments of Biology and Microbiology & Immunology, Georgetown University, Washington, DC, USA
| | - S C Dawson
- Department of Microbiology and Molecular Genetics, UC Davis, Davis, California, USA
| |
Collapse
|
35
|
Li E, Tako EA, Singer SM. Complement Activation by Giardia duodenalis Parasites through the Lectin Pathway Contributes to Mast Cell Responses and Parasite Control. Infect Immun 2016; 84:1092-1099. [PMID: 26831470 PMCID: PMC4807472 DOI: 10.1128/iai.00074-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 01/26/2016] [Indexed: 11/20/2022] Open
Abstract
Infection with Giardia duodenalis is one of the most common causes of diarrheal disease in the world. While numerous studies have identified important contributions of adaptive immune responses to parasite control, much less work has examined innate immunity and its connections to the adaptive response during this infection. We explored the role of complement in immunity to Giardia using mice deficient in mannose-binding lectin (Mbl2) or complement factor 3a receptor (C3aR). Both strains exhibited delayed clearance of parasites and a reduced ability to recruit mast cells in the intestinal submucosa. C3aR-deficient mice had normal production of antiparasite IgA, butex vivo T cell recall responses were impaired. These data suggest that complement is a key factor in the innate recognition of Giardia and that recruitment of mast cells and activation of T cell immunity through C3a are important for parasite control.
Collapse
Affiliation(s)
- Erqiu Li
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Ernest A Tako
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Steven M Singer
- Department of Biology, Georgetown University, Washington, DC, USA
| |
Collapse
|
36
|
Gogoi M, Datey A, Wilson KT, Chakravortty D. Dual role of arginine metabolism in establishing pathogenesis. Curr Opin Microbiol 2016; 29:43-48. [PMID: 26610300 PMCID: PMC4755812 DOI: 10.1016/j.mib.2015.10.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 10/22/2015] [Accepted: 10/22/2015] [Indexed: 01/08/2023]
Abstract
Arginine is an integral part of host defense when invading pathogens are encountered. The arginine metabolite nitric oxide (NO) confers antimicrobial properties, whereas the metabolite ornithine is utilized for polyamine synthesis. Polyamines are crucial to tissue repair and anti-inflammatory responses. iNOS/arginase balance can determine Th1/Th2 response. Furthermore, the host arginine pool and its metabolites are utilized as energy sources by various pathogens. Apart from its role as an immune modulator, recent studies have also highlighted the therapeutic effects of arginine. This article sheds light upon the roles of arginine metabolism during pathological conditions and its therapeutic potential.
Collapse
Affiliation(s)
- Mayuri Gogoi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Akshay Datey
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India; Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Keith T Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, United States; Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, United States; Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, United States; Center for Mucosal Inflammation and Cancer, Vanderbilt University School of Medicine, Nashville, TN 37232, United States; Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, United States.
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India; Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
37
|
Cotton JA, Amat CB, Buret AG. Disruptions of Host Immunity and Inflammation by Giardia Duodenalis: Potential Consequences for Co-Infections in the Gastro-Intestinal Tract. Pathogens 2015; 4:764-92. [PMID: 26569316 PMCID: PMC4693164 DOI: 10.3390/pathogens4040764] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/04/2015] [Accepted: 11/05/2015] [Indexed: 12/11/2022] Open
Abstract
Giardia duodenalis (syn. G. intestinalis, or G. lamblia) is a leading cause of waterborne diarrheal disease that infects hundreds of millions of people annually. Research on Giardia has greatly expanded within the last few years, and our understanding of the pathophysiology and immunology on this parasite is ever increasing. At peak infection, Giardia trophozoites induce pathophysiological responses that culminate in the development of diarrheal disease. However, human data has suggested that the intestinal mucosa of Giardia-infected individuals is devoid of signs of overt intestinal inflammation, an observation that is reproduced in animal models. Thus, our understanding of host inflammatory responses to the parasite remain incompletely understood and human studies and experimental data have produced conflicting results. It is now also apparent that certain Giardia infections contain mechanisms capable of modulating their host's immune responses. As the oral route of Giardia infection is shared with many other gastrointestinal (GI) pathogens, co-infections may often occur, especially in places with poor sanitation and/or improper treatment of drinking water. Moreover, Giardia infections may modulate host immune responses and have been found to protect against the development of diarrheal disease in developing countries. The following review summarizes our current understanding of the immunomodulatory mechanisms of Giardia infections and their consequences for the host, and highlights areas for future research. Potential implications of these immunomodulatory effects during GI co-infection are also discussed.
Collapse
Affiliation(s)
- James A Cotton
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Christina B Amat
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada.
- Inflammation Research Network, University of Calgary, Calgary, AB T2N 1N4, Canada.
- Host-Parasite Interactions, University of Calgary, Calgary, AB T2N 1N4, Canada.
| | - Andre G Buret
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada.
- Inflammation Research Network, University of Calgary, Calgary, AB T2N 1N4, Canada.
- Host-Parasite Interactions, University of Calgary, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
38
|
|
39
|
Lopez-Romero G, Quintero J, Astiazarán-García H, Velazquez C. Host defences againstGiardia lamblia. Parasite Immunol 2015; 37:394-406. [DOI: 10.1111/pim.12210] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 06/08/2015] [Indexed: 02/06/2023]
Affiliation(s)
- G. Lopez-Romero
- Coordinación de Nutrición; Centro de Investigación en Alimentación y Desarrollo A.C.; Hermosillo Sonora México
| | - J. Quintero
- Department of Chemistry-Biology; University of Sonora; Hermosillo Sonora México
| | - H. Astiazarán-García
- Coordinación de Nutrición; Centro de Investigación en Alimentación y Desarrollo A.C.; Hermosillo Sonora México
| | - C. Velazquez
- Department of Chemistry-Biology; University of Sonora; Hermosillo Sonora México
| |
Collapse
|
40
|
Ansell BRE, McConville MJ, Ma'ayeh SY, Dagley MJ, Gasser RB, Svärd SG, Jex AR. Drug resistance in Giardia duodenalis. Biotechnol Adv 2015; 33:888-901. [PMID: 25922317 DOI: 10.1016/j.biotechadv.2015.04.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/21/2015] [Accepted: 04/21/2015] [Indexed: 02/07/2023]
Abstract
Giardia duodenalis is a microaerophilic parasite of the human gastrointestinal tract and a major contributor to diarrheal and post-infectious chronic gastrointestinal disease world-wide. Treatment of G. duodenalis infection currently relies on a small number of drug classes. Nitroheterocyclics, in particular metronidazole, have represented the front line treatment for the last 40 years. Nitroheterocyclic-resistant G. duodenalis have been isolated from patients and created in vitro, prompting considerable research into the biomolecular mechanisms of resistance. These compounds are redox-active and are believed to damage proteins and DNA after being activated by oxidoreductase enzymes in metabolically active cells. In this review, we explore the molecular phenotypes of nitroheterocyclic-resistant G. duodenalis described to date in the context of the protist's unusual glycolytic and antioxidant systems. We propose that resistance mechanisms are likely to extend well beyond currently described resistance-associated enzymes (i.e., pyruvate ferredoxin oxidoreductases and nitroreductases), to include NAD(P)H- and flavin-generating pathways, and possibly redox-sensitive epigenetic regulation. Mechanisms that allow G. duodenalis to tolerate oxidative stress may lead to resistance against both oxygen and nitroheterocyclics, with implications for clinical control. The present review highlights the potential for systems biology tools and advanced bioinformatics to further investigate the multifaceted mechanisms of nitroheterocyclic resistance in this important pathogen.
Collapse
Affiliation(s)
- Brendan R E Ansell
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Cnr Park Dr and Flemington Rd, Parkville, VIC 3010, Australia.
| | - Malcolm J McConville
- Bio21 Institute, University of Melbourne, 30 Flemington Rd, Parkville, VIC 3010, Australia
| | - Showgy Y Ma'ayeh
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Box 596, SE-751 24 Uppsala, Sweden
| | - Michael J Dagley
- Bio21 Institute, University of Melbourne, 30 Flemington Rd, Parkville, VIC 3010, Australia
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Cnr Park Dr and Flemington Rd, Parkville, VIC 3010, Australia
| | - Staffan G Svärd
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Box 596, SE-751 24 Uppsala, Sweden
| | - Aaron R Jex
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Cnr Park Dr and Flemington Rd, Parkville, VIC 3010, Australia
| |
Collapse
|