1
|
Evans DCS, Kristensen MF, Minero GAS, Palmén LG, Knap I, Tiwari MK, Schlafer S, Meyer RL. Dental biofilms contain DNase I-resistant Z-DNA and G-quadruplexes but alternative DNase overcomes this resistance. NPJ Biofilms Microbiomes 2025; 11:80. [PMID: 40389511 PMCID: PMC12089357 DOI: 10.1038/s41522-025-00694-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 04/04/2025] [Indexed: 05/21/2025] Open
Abstract
Extracellular DNA (eDNA) in bacterial biofilms can form non-canonical structures like Z-DNA and G-quadruplex (G4), which enhance biofilm resilience by providing protection against mammalian DNases. However, the conformation of eDNA in dental biofilms remains unexplored. Using fluorescence immunolabeling and confocal microscopy, we examined dental biofilms from healthy and caries-active subjects, revealing B-DNA, G4-, and Z-DNA structures surrounding clusters of bacteria, with some structures directly associated with the bacterial cell surface. We demonstrated that these non-canonical DNA structures were resistant to mammalian DNase I. Using a Streptococcus mutans biofilm model, we visualised fluorescently labelled eDNA during enzyme treatment and identified both an experimental nuclease and a DNase I-chloroquine combination capable of removing eDNA that was resistant to DNase I. These findings suggest that G4 and Z-DNA structures represent novel targets for improved enzyme formulations in controlling dental biofilms and potentially other biofilms containing these secondary DNA structures.
Collapse
Affiliation(s)
- Dominique C S Evans
- Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus, Denmark
- Novonesis A/S, Bagsværd, Denmark
| | - Mathilde F Kristensen
- Department of Dentistry and Oral Health, Section for Oral Ecology, Cariology, Aarhus University, Aarhus, Denmark
| | | | | | | | | | - Sebastian Schlafer
- Department of Dentistry and Oral Health, Section for Oral Ecology, Cariology, Aarhus University, Aarhus, Denmark
| | - Rikke L Meyer
- Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus, Denmark.
- Department of Biology, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
2
|
Geng F, Liu J, Liu J, Lu Z, Pan Y. Recent progress in understanding the role of bacterial extracellular DNA: focus on dental biofilm. Crit Rev Microbiol 2024:1-19. [PMID: 39648406 DOI: 10.1080/1040841x.2024.2438117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/11/2024] [Accepted: 11/30/2024] [Indexed: 12/10/2024]
Abstract
Dental biofilm is a highly complicated and dynamic structure comprising not only microbial communities but also the surrounding matrix of extracellular polymeric substances (EPS), including polysaccharides, proteins, extracellular DNA (eDNA) and other biopolymers. In recent years, the important role of bacterial eDNA in dental biofilms has gradually attracted attention. In this review, we present recent studies on the presence, dynamic conformation and release of oral bacterial eDNA. Moreover, updated information on functions associated with oral bacterial eDNA in biofilm formation, antibiotic resistance, activation of the immune system and immune evasion is highlighted. Finally, we summarize the role of oral bacterial eDNA as a promising target for the treatment of oral diseases. Increasing insight into the versatile roles of bacterial eDNA in dental biofilms will facilitate the prevention and treatment of biofilm-induced oral infections.
Collapse
Affiliation(s)
- Fengxue Geng
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Junchao Liu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Jinwen Liu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Ze Lu
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yaping Pan
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
3
|
Burke Ó, Zeden MS, O’Gara JP. The pathogenicity and virulence of the opportunistic pathogen Staphylococcus epidermidis. Virulence 2024; 15:2359483. [PMID: 38868991 PMCID: PMC11178275 DOI: 10.1080/21505594.2024.2359483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/19/2024] [Indexed: 06/14/2024] Open
Abstract
The pervasive presence of Staphylococcus epidermidis and other coagulase-negative staphylococci on the skin and mucous membranes has long underpinned a casual disregard for the infection risk that these organisms pose to vulnerable patients in healthcare settings. Prior to the recognition of biofilm as an important virulence determinant in S. epidermidis, isolation of this microorganism in diagnostic specimens was often overlooked as clinically insignificant with potential delays in diagnosis and onset of appropriate treatment, contributing to the establishment of chronic infection and increased morbidity or mortality. While impressive progress has been made in our understanding of biofilm mechanisms in this important opportunistic pathogen, research into other virulence determinants has lagged S. aureus. In this review, the broader virulence potential of S. epidermidis including biofilm, toxins, proteases, immune evasion strategies and antibiotic resistance mechanisms is surveyed, together with current and future approaches for improved therapeutic interventions.
Collapse
Affiliation(s)
- Órla Burke
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | | | - James P. O’Gara
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| |
Collapse
|
4
|
Soro O, Kigen C, Nyerere A, Gachoya M, Georges M, Odoyo E, Musila L. Characterization and Anti-Biofilm Activity of Lytic Enterococcus Phage vB_Efs8_KEN04 against Clinical Isolates of Multidrug-Resistant Enterococcus faecalis in Kenya. Viruses 2024; 16:1275. [PMID: 39205249 PMCID: PMC11360260 DOI: 10.3390/v16081275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Enterococcus faecalis (E. faecalis) is a growing cause of nosocomial and antibiotic-resistant infections. Treating drug-resistant E. faecalis requires novel approaches. The use of bacteriophages (phages) against multidrug-resistant (MDR) bacteria has recently garnered global attention. Biofilms play a vital role in E. faecalis pathogenesis as they enhance antibiotic resistance. Phages eliminate biofilms by producing lytic enzymes, including depolymerases. In this study, Enterococcus phage vB_Efs8_KEN04, isolated from a sewage treatment plant in Nairobi, Kenya, was tested against clinical strains of MDR E. faecalis. This phage had a broad host range against 100% (26/26) of MDR E. faecalis clinical isolates and cross-species activity against Enterococcus faecium. It was able to withstand acidic and alkaline conditions, from pH 3 to 11, as well as temperatures between -80 °C and 37 °C. It could inhibit and disrupt the biofilms of MDR E. faecalis. Its linear double-stranded DNA genome of 142,402 bp contains 238 coding sequences with a G + C content and coding gene density of 36.01% and 91.46%, respectively. Genomic analyses showed that phage vB_Efs8_KEN04 belongs to the genus Kochikohdavirus in the family Herelleviridae. It lacked antimicrobial resistance, virulence, and lysogeny genes, and its stability, broad host range, and cross-species lysis indicate strong potential for the treatment of Enterococcus infections.
Collapse
Affiliation(s)
- Oumarou Soro
- Department of Molecular Biology and Biotechnology, Pan African University Institute for Basic Sciences, Technology, and Innovation, Nairobi P.O. Box 62000-00200, Kenya;
| | - Collins Kigen
- Department of Emerging Infectious Diseases, Walter Reed Army Institute of Research-Africa, Nairobi P.O. Box 606-00621, Kenya; (C.K.); (M.G.); (M.G.); (E.O.)
- Center for Microbiology Research, Kenya Medical Research Institute, Nairobi P.O. Box 54840-00200, Kenya
| | - Andrew Nyerere
- Department of Medical Microbiology, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-00200, Kenya;
| | - Moses Gachoya
- Department of Emerging Infectious Diseases, Walter Reed Army Institute of Research-Africa, Nairobi P.O. Box 606-00621, Kenya; (C.K.); (M.G.); (M.G.); (E.O.)
- Center for Microbiology Research, Kenya Medical Research Institute, Nairobi P.O. Box 54840-00200, Kenya
| | - Martin Georges
- Department of Emerging Infectious Diseases, Walter Reed Army Institute of Research-Africa, Nairobi P.O. Box 606-00621, Kenya; (C.K.); (M.G.); (M.G.); (E.O.)
- Center for Microbiology Research, Kenya Medical Research Institute, Nairobi P.O. Box 54840-00200, Kenya
| | - Erick Odoyo
- Department of Emerging Infectious Diseases, Walter Reed Army Institute of Research-Africa, Nairobi P.O. Box 606-00621, Kenya; (C.K.); (M.G.); (M.G.); (E.O.)
- Center for Microbiology Research, Kenya Medical Research Institute, Nairobi P.O. Box 54840-00200, Kenya
| | - Lillian Musila
- Department of Emerging Infectious Diseases, Walter Reed Army Institute of Research-Africa, Nairobi P.O. Box 606-00621, Kenya; (C.K.); (M.G.); (M.G.); (E.O.)
- Center for Microbiology Research, Kenya Medical Research Institute, Nairobi P.O. Box 54840-00200, Kenya
| |
Collapse
|
5
|
Schlafer S, Johnsen KK, Kjærbølling I, Schramm A, Meyer RL, Jørgensen MR. The efficacy and safety of an enzyme-containing lozenge for dental biofilm control-a randomized controlled pilot trial. J Dent 2024; 147:105107. [PMID: 38830531 DOI: 10.1016/j.jdent.2024.105107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/21/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024] Open
Abstract
OBJECTIVES To evaluate the effect of daily use of a multiple-enzyme lozenge on de novo plaque formation, on gingivitis development, and on the oral microbiome composition. METHODS This trial with two parallel arms included 24 healthy adults allocated to the Active (n = 12) or Placebo (n = 12) group. Subjects consumed one lozenge three times daily for seven days, and no oral hygiene procedures were allowed. Differences in de novo plaque accumulation between a baseline period, and one and seven days of intervention were assessed by the Turesky-modification of the Quigley-and-Hein-Plaque-Index (TM-QHPI). The development of gingivitis after seven days of intervention was assessed by the Gingival Index (GI). Plaque and saliva samples were collected at baseline and after seven days of intervention, and evaluated by 16S rRNA gene sequencing. RESULTS All subjects completed the study, and no adverse events were reported. After one day, the average TM-QHPI was significantly lower in the Active than in the Placebo group, as compared to baseline (p = 0.012). After 7 days, average TM-QHPI values did not differ significantly between groups (p = 0.37). GI values did not increase during the intervention period, with no difference between groups (p = 0.62). Bacterial richness increased in both plaque and saliva samples over a seven-day oral hygiene-free period, with a statistically significant difference for the saliva samples (p = 0.0495) between groups. CONCLUSIONS A multiple-enzymes lozenge decreased the build-up of de novo plaque after one day and slowed down the process of species increment in saliva. The lozenge may be an adjunct to regular mechanical plaque removal. CLINICAL SIGNIFICANCE Dental plaque is the main cause of caries, gingivitis, and periodontitis. The search for therapeutic adjuncts to mechanical plaque removal that have no harmful effects on the oral microbiome is important. Treatment with multiple plaque-matrix degrading enzymes is a promising non-biocidal approach to plaque control.
Collapse
Affiliation(s)
- Sebastian Schlafer
- Department of Dentistry and Oral Health, Section for Oral Ecology, Cariology, Faculty of Health, Aarhus University, Aarhus, Denmark.
| | - Karina K Johnsen
- Department of Dentistry and Oral Health, Section for Oral Ecology, Cariology, Faculty of Health, Aarhus University, Aarhus, Denmark
| | | | - Andreas Schramm
- Department of Biology, Section for Microbiology, Aarhus University, Aarhus, Denmark
| | - Rikke L Meyer
- Interdisciplinary Nanoscience Center (iNANO), Faculty of Natural Sciences, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
6
|
Yaghmoor RB, Abdel-Hadi M, Petridis H, Allan E, Young AM. Effects of Novel Dental Composites on Streptococcus mutans Biofilms. J Funct Biomater 2023; 15:13. [PMID: 38248680 PMCID: PMC10817267 DOI: 10.3390/jfb15010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
With the phase-out of amalgam and the increase in minimally invasive dentistry, there is a growing need for high-strength composite materials that can kill residual bacteria and promote tooth remineralization. This study quantifies how antibacterial polylysine (PLS) and re-mineralizing monocalcium phosphate monohydrate (MCPM) affect Streptococcus mutans biofilms and the strength of dental composites. For antibacterial studies, the MCPM-PLS filler percentages were 0-0, 8-4, 12-6, and 16-8 wt% of the composite filler phase. Composite discs were immersed in 0.1% sucrose-supplemented broth containing Streptococcus mutans (UA159) and incubated in an anaerobic chamber for 48 h. Surface biomass was determined by crystal violet (CV) staining. Growth medium pH was measured at 24 and 48 h. Biofilm bacterial viability (CFU), exo-polysaccharide (water-soluble glucan (WSG) and water-insoluble glucan (WIG)), and extracellular DNA (eDNA) were quantified. This was by serial dilution plate counting, phenol-sulfuric acid microassay, and fluorometry, respectively. The biaxial flexural strengths were determined after water immersion for 1 week, 1 month, and 1 year. The MCPM-PLS wt% were 8-4, 8-8, 16-4 and 16-8. The normalized biomass, WSG, and WIG showed a linear decline of 66%, 64%, and 55%, respectively, as the PLS level increased up to 8%. The surrounding media pH (4.6) was all similar. A decrease in bacterial numbers with the 12-6 formula and a significant reduction with 16-8 compared to the 0-0 formulation was observed. The eDNA concentrations in biofilms formed on 12-6 and 16-8 formulations were significantly less than the 0-0 control and 8-4 formulations. Doubling MCPM and PLS caused a 14 and 19% reduction in strength in 1 week, respectively. Average results were lower at 1 month and 1 year but affected less upon doubling MCPM and PLS levels. Moreover, a 4% PLS may help to reduce total biomass and glucan levels in biofilms on the above composites. Higher levels are required to reduce eDNA and provide bactericidal action, but these can decrease early strength.
Collapse
Affiliation(s)
- Rayan B. Yaghmoor
- Department of Restorative Dentistry, College of Dental Medicine, Umm Al-Qura University, Makkah 24381, Saudi Arabia;
| | - Mohammad Abdel-Hadi
- Unit of Prosthodontics, Department of Restorative Dentistry, UCL Eastman Dental Institute, Rockefeller Building, London WC1E 6HX, UK; (M.A.-H.); (H.P.)
| | - Haralampos Petridis
- Unit of Prosthodontics, Department of Restorative Dentistry, UCL Eastman Dental Institute, Rockefeller Building, London WC1E 6HX, UK; (M.A.-H.); (H.P.)
| | - Elaine Allan
- Department of Microbial Diseases, UCL Eastman Dental Institute, Royal Free Hospital, London NW3 2QG, UK;
| | - Anne M. Young
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, Royal Free Hospital, London NW3 2QG, UK
| |
Collapse
|
7
|
Dukanovic Rikvold P, Skov Hansen LB, Meyer RL, Jørgensen MR, Tiwari MK, Schlafer S. The Effect of Enzymatic Treatment with Mutanase, Beta-Glucanase, and DNase on a Saliva-Derived Biofilm Model. Caries Res 2023; 58:68-76. [PMID: 38154453 PMCID: PMC10997270 DOI: 10.1159/000535980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/17/2023] [Indexed: 12/30/2023] Open
Abstract
INTRODUCTION The dental biofilm matrix is an important determinant of virulence for caries development and comprises a variety of extracellular polymeric substances that contribute to biofilm stability. Enzymes that break down matrix components may be a promising approach to caries control, and in light of the compositional complexity of the dental biofilm matrix, treatment with multiple enzymes may enhance the reduction of biofilm formation compared to single enzyme therapy. The present study investigated the effect of the three matrix-degrading enzymes mutanase, beta-glucanase, and DNase, applied separately or in combinations, on biofilm prevention and removal in a saliva-derived in vitro-grown model. METHODS Biofilms were treated during growth to assess biofilm prevention or after 24 h of growth to assess biofilm removal by the enzymes. Biofilms were quantified by crystal violet staining and impedance-based real-time cell analysis, and the biofilm structure was visualized by confocal microscopy and staining of extracellular DNA (eDNA) and polysaccharides. RESULTS The in vitro model was dominated by Streptococcus spp., as determined by 16S rRNA gene amplicon sequencing. All tested enzymes and combinations had a significant effect on biofilm prevention, with reductions of >90% for mutanase and all combinations including mutanase. Combined application of DNase and beta-glucanase resulted in an additive effect (81.0% ± 1.3% SD vs. 36.9% ± 21.9% SD and 48.2% ± 14.9% SD). For biofilm removal, significant reductions of up to 73.2% ± 5.5% SD were achieved for combinations including mutanase, whereas treatment with DNase had no effect. Glucans, but not eDNA decreased in abundance upon treatment with all three enzymes. CONCLUSION Multi-enzyme treatment is a promising approach to dental biofilm control that needs to be validated in more diverse biofilms.
Collapse
Affiliation(s)
- Pernille Dukanovic Rikvold
- Department of Dentistry and Oral Health, Section for Oral Ecology, Cariology, Faculty of Health, Aarhus University, Aarhus, Denmark
- Novozymes A/S, Lyngby, Denmark
| | | | - Rikke Louise Meyer
- Interdisciplinary Nanoscience Center (iNANO), Faculty of Natural Sciences, Aarhus University, Aarhus, Denmark
| | | | | | - Sebastian Schlafer
- Department of Dentistry and Oral Health, Section for Oral Ecology, Cariology, Faculty of Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
8
|
Biofilm ecology associated with dental caries: Understanding of microbial interactions in oral communities leads to development of therapeutic strategies targeting cariogenic biofilms. ADVANCES IN APPLIED MICROBIOLOGY 2023; 122:27-75. [PMID: 37085193 DOI: 10.1016/bs.aambs.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
A biofilm is a sessile community characterized by cells attached to the surface and organized into a complex structural arrangement. Dental caries is a biofilm-dependent oral disease caused by infection with cariogenic pathogens, such as Streptococcus mutans, and associated with frequent exposure to a sugar-rich diet and poor oral hygiene. The virulence of cariogenic biofilms is often associated with the spatial organization of S. mutans enmeshed with exopolysaccharides on tooth surfaces. However, in the oral cavity, S. mutans does not act alone, and several other microbes contribute to cariogenic biofilm formation. Microbial communities in cariogenic biofilms are spatially organized into complex structural arrangements of various microbes and extracellular matrices. The balance of microbiota diversity with reduced diversity and a high proportion of acidogenic-aciduric microbiota within the biofilm is closely related to the disease state. Understanding the characteristics of polymicrobial biofilms and the association of microbial interactions within the biofilm (e.g., symbiosis, cooperation, and competition) in terms of their potential role in the pathogenesis of oral disease would help develop new strategies for interventions in virulent biofilm formation.
Collapse
|
9
|
Kondo T, Okawa H, Hokugo A, Shokeen B, Sundberg O, Zheng Y, McKenna CE, Lux R, Nishimura I. Oral microbial extracellular DNA initiates periodontitis through gingival degradation by fibroblast-derived cathepsin K in mice. Commun Biol 2022; 5:962. [PMID: 36104423 PMCID: PMC9474870 DOI: 10.1038/s42003-022-03896-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 08/25/2022] [Indexed: 11/11/2022] Open
Abstract
Periodontitis is a highly prevalent disease leading to uncontrolled osteoclastic jawbone resorption and ultimately edentulism; however, the disease onset mechanism has not been fully elucidated. Here we propose a mechanism for initial pathology based on results obtained using a recently developed Osteoadsorptive Fluogenic Sentinel (OFS) probe that emits a fluorescent signal triggered by cathepsin K (Ctsk) activity. In a ligature-induced mouse model of periodontitis, a strong OFS signal is observed before the establishment of chronic inflammation and bone resorption. Single cell RNA sequencing shows gingival fibroblasts to be the primary cellular source of early Ctsk. The in vivo OFS signal is activated when Toll-Like Receptor 9 (TLR9) ligand or oral biofilm extracellular DNA (eDNA) is topically applied to the mouse palatal gingiva. This previously unrecognized interaction between oral microbial eDNA and Ctsk of gingival fibroblasts provides a pathological mechanism for disease initiation and a strategic basis for early diagnosis and treatment of periodontitis.
Collapse
Affiliation(s)
- Takeru Kondo
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative & Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA, 90095, USA
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, 980-8575, Japan
| | - Hiroko Okawa
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative & Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA, 90095, USA
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, 980-8575, Japan
| | - Akishige Hokugo
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative & Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA, 90095, USA
- Regenerative Bioengineering and Repair Laboratory, Division of Plastic and Reconstructive Surgery, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Bhumika Shokeen
- Section of Biosystems and Function, UCLA School of Dentistry, Los Angeles, CA, 90095, USA
| | - Oskar Sundberg
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Yiying Zheng
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Charles E McKenna
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Renate Lux
- Section of Biosystems and Function, UCLA School of Dentistry, Los Angeles, CA, 90095, USA
| | - Ichiro Nishimura
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative & Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA, 90095, USA.
| |
Collapse
|
10
|
Quantification of Extracellular DNA Network Abundance and Architecture within Streptococcus gordonii Biofilms Reveals Modulatory Factors. Appl Environ Microbiol 2022; 88:e0069822. [PMID: 35695569 PMCID: PMC9275248 DOI: 10.1128/aem.00698-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Extracellular DNA (eDNA) is an important component of biofilm matrix that serves to maintain biofilm structural integrity, promotes genetic exchange within the biofilm, and provides protection against antimicrobial compounds. Advances in microscopy techniques have provided evidence of the cobweb- or lattice-like structures of eDNA within biofilms from a range of environmental niches. However, methods to reliably assess the abundance and architecture of eDNA remain lacking. This study aimed to address this gap by development of a novel, high-throughput image acquisition and analysis platform for assessment of eDNA networks in situ within biofilms. Utilizing Streptococcus gordonii as the model, the capacity for this imaging system to reliably detect eDNA networks and monitor changes in abundance and architecture (e.g., strand length and branch number) was verified. Evidence was provided of a synergy between glucans and eDNA matrices, while it was revealed that surface-bound nuclease SsnA could modify these eDNA structures under conditions permissive for enzymatic activity. Moreover, cross talk between the competence and hexaheptapeptide permease systems was shown to regulate eDNA release by S. gordonii. This novel imaging system can be applied across the wider field of biofilm research, with potential to significantly advance interrogation of the mechanisms by which the eDNA network architecture develops, how it can influence biofilm properties, and how it may be targeted for therapeutic benefit. IMPORTANCE Extracellular DNA (eDNA) is critical for maintaining the structural integrity of many microbial biofilms, making it an attractive target for the management of biofilms. However, our knowledge and targeting of eDNA are currently hindered by a lack of tools for the quantitative assessment of eDNA networks within biofilms. Here, we demonstrate use of a novel image acquisition and analysis platform with the capacity to reliably monitor the abundance and architecture of eDNA networks. Application of this tool to Streptococcus gordonii biofilms has provided new insights into how eDNA networks are stabilized within the biofilm and the pathways that can regulate eDNA release. This highlights how exploitation of this novel imaging system across the wider field of biofilm research has potential to significantly advance interrogation of the mechanisms by which the eDNA network architecture develops, how it can influence biofilm properties, and how it may be targeted for therapeutic benefit.
Collapse
|
11
|
Ghosh S, Nag M, Lahiri D, Sarkar T, Pati S, Kari ZA, Nirmal NP, Edinur HA, Ray RR. Engineered Biofilm: Innovative Nextgen Strategy for Quality Enhancement of Fermented Foods. Front Nutr 2022; 9:808630. [PMID: 35479755 PMCID: PMC9036442 DOI: 10.3389/fnut.2022.808630] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/11/2022] [Indexed: 11/22/2022] Open
Abstract
Microbial communities within fermented food (beers, wines, distillates, meats, fishes, cheeses, breads) products remain within biofilm and are embedded in a complex extracellular polymeric matrix that provides favorable growth conditions to the indwelling species. Biofilm acts as the best ecological niche for the residing microbes by providing food ingredients that interact with the fermenting microorganisms' metabolites to boost their growth. This leads to the alterations in the biochemical and nutritional quality of the fermented food ingredients compared to the initial ingredients in terms of antioxidants, peptides, organoleptic and probiotic properties, and antimicrobial activity. Microbes within the biofilm have altered genetic expression that may lead to novel biochemical pathways influencing their chemical and organoleptic properties related to consumer acceptability. Although microbial biofilms have always been linked to pathogenicity owing to its enhanced antimicrobial resistance, biofilm could be favorable for the production of amino acids like l-proline and L-threonine by engineered bacteria. The unique characteristics of many traditional fermented foods are attributed by the biofilm formed by lactic acid bacteria and yeast and often, multispecies biofilm can be successfully used for repeated-batch fermentation. The present review will shed light on current research related to the role of biofilm in the fermentation process with special reference to the recent applications of NGS/WGS/omics for the improved biofilm forming ability of the genetically engineered and biotechnologically modified microorganisms to bring about the amelioration of the quality of fermented food.
Collapse
Affiliation(s)
- Sreejita Ghosh
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, India
| | - Moupriya Nag
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Dibyajit Lahiri
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, India
| | - Siddhartha Pati
- NatNov Bioscience Private Limited, Balasore, India
- Skills Innovation & Academic Network (SIAN) Institute, Association for Biodiversity Conservation and Research (ABC), Balasore, India
| | - Zulhisyam Abdul Kari
- Faculty of Agro Based Industry, Universiti Malaysia Kelantan, Kota Bharu, Malaysia
| | | | - Hisham Atan Edinur
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, India
| |
Collapse
|
12
|
Serrage HJ, Jepson MA, Rostami N, Jakubovics NS, Nobbs AH. Understanding the Matrix: The Role of Extracellular DNA in Oral Biofilms. FRONTIERS IN ORAL HEALTH 2022; 2:640129. [PMID: 35047995 PMCID: PMC8757797 DOI: 10.3389/froh.2021.640129] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/09/2021] [Indexed: 12/13/2022] Open
Abstract
Dental plaque is the key etiological agent in caries formation and the development of the prevalent chronic oral inflammatory disease, periodontitis. The dental plaque biofilm comprises a diverse range of microbial species encased within a rich extracellular matrix, of which extracellular DNA (eDNA) has been identified as an important component. The molecular mechanisms of eDNA release and the structure of eDNA have yet to be fully characterized. Nonetheless, key functions that have been proposed for eDNA include maintaining biofilm structural integrity, initiating adhesion to dental surfaces, acting as a nutrient source, and facilitating horizontal gene transfer. Thus, eDNA is a potential therapeutic target for the management of oral disease–associated biofilm. This review aims to summarize advances in the understanding of the mechanisms of eDNA release from oral microorganisms and in the methods of eDNA detection and quantification within oral biofilms.
Collapse
Affiliation(s)
- Hannah J Serrage
- Bristol Dental School, University of Bristol, Bristol, United Kingdom
| | - Mark A Jepson
- Wolfson Bioimaging Facility, University of Bristol, Bristol, United Kingdom
| | - Nadia Rostami
- School of Dental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Nicholas S Jakubovics
- School of Dental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Angela H Nobbs
- Bristol Dental School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
13
|
Rather MA, Gupta K, Mandal M. Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies. Braz J Microbiol 2021; 52:1701-1718. [PMID: 34558029 PMCID: PMC8578483 DOI: 10.1007/s42770-021-00624-x] [Citation(s) in RCA: 219] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 09/19/2021] [Indexed: 01/08/2023] Open
Abstract
The assembly of microorganisms over a surface and their ability to develop resistance against available antibiotics are major concerns of interest. To survive against harsh environmental conditions including known antibiotics, the microorganisms form a unique structure, referred to as biofilm. The mechanism of biofilm formation is triggered and regulated by quorum sensing, hostile environmental conditions, nutrient availability, hydrodynamic conditions, cell-to-cell communication, signaling cascades, and secondary messengers. Antibiotic resistance, escape of microbes from the body's immune system, recalcitrant infections, biofilm-associated deaths, and food spoilage are some of the problems associated with microbial biofilms which pose a threat to humans, veterinary, and food processing sectors. In this review, we focus in detail on biofilm formation, its architecture, composition, genes and signaling cascades involved, and multifold antibiotic resistance exhibited by microorganisms dwelling within biofilms. We also highlight different physical, chemical, and biological biofilm control strategies including those based on plant products. So, this review aims at providing researchers the knowledge regarding recent advances on the mechanisms involved in biofilm formation at the molecular level as well as the emergent method used to get rid of antibiotic-resistant and life-threatening biofilms.
Collapse
Affiliation(s)
- Muzamil Ahmad Rather
- Department of Molecular Biology and Biotechnology, Tezpur University (A Central University), Napaam, Tezpur, 784028, Assam, India
| | - Kuldeep Gupta
- Department of Molecular Biology and Biotechnology, Tezpur University (A Central University), Napaam, Tezpur, 784028, Assam, India
| | - Manabendra Mandal
- Department of Molecular Biology and Biotechnology, Tezpur University (A Central University), Napaam, Tezpur, 784028, Assam, India.
| |
Collapse
|
14
|
Fu J, Zhang Y, Lin S, Zhang W, Shu G, Lin J, Li H, Xu F, Tang H, Peng G, Zhao L, Chen S, Fu H. Strategies for Interfering With Bacterial Early Stage Biofilms. Front Microbiol 2021; 12:675843. [PMID: 34168632 PMCID: PMC8217469 DOI: 10.3389/fmicb.2021.675843] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/03/2021] [Indexed: 01/12/2023] Open
Abstract
Biofilm-related bacteria show high resistance to antimicrobial treatments, posing a remarkable challenge to human health. Given bacterial dormancy and high expression of efflux pumps, persistent infections caused by mature biofilms are not easy to treat, thereby driving researchers toward the discovery of many anti-biofilm molecules that can intervene in early stage biofilms formation to inhibit further development and maturity. Compared with mature biofilms, early stage biofilms have fragile structures, vigorous metabolisms, and early attached bacteria are higher susceptibility to antimicrobials. Thus, removing biofilms at the early stage has evident advantages. Many reviews on anti-biofilm compounds that prevent biofilms formation have already been done, but most of them are based on compound classifications to introduce anti-biofilm effects. This review discusses the inhibitory effects of anti-biofilm compounds on early stage biofilms formation from the perspective of the mechanisms of action, including hindering reversible adhesion, reducing extracellular polymeric substances production, interfering in the quorum sensing, and modifying cyclic di-GMP. This information can be exploited further to help researchers in designing new molecules with anti-biofilm activity.
Collapse
Affiliation(s)
- Jingyuan Fu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuning Zhang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shiyu Lin
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Wei Zhang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Gang Shu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juchun Lin
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Haohuan Li
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Funeng Xu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Huaqiao Tang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Guangneng Peng
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhao
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shiqi Chen
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hualin Fu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
15
|
Matthes R, Jablonowski L, Holtfreter B, Pink C, Kocher T. Enzymatic biofilm destabilisation to support mechanical cleansing of inserted dental implant surfaces: an in-vitro pilot study. Odontology 2021; 109:780-791. [PMID: 33740161 PMCID: PMC8387265 DOI: 10.1007/s10266-021-00599-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/27/2021] [Indexed: 12/14/2022]
Abstract
Peri-implantitis is caused by microbial contamination and biofilm formation on the implant surface. To achieve re-osseointegration, the microbes must be completely removed from the surface. Adjunctive to mechanical cleaning, chemical treatment with enzymes or other substances could optimise the treatment outcome. Therefore, we investigated the efficacy of different enzymes, a surfactant, and a chelator in destabilising dental polymicrobial biofilm. The biofilm destabilising effect of the glycosidases α-amylase, dextranase, DispersinB®, and lysozyme, as well as the proteinase subtilisin A, and the nuclease Benzonase®, the chelator EDTA, and the surfactant cocamidopropyl betaine were investigated on biofilms, inoculated with plaque on rough titanium discs. The test and the control solutions were incubated for 15 min at 36 °C on biofilms, and loosened biofilm mass was removed by shear stress with a shaker. Fluorescence-stained biofilms were microscopically analysed. Acceptable cell tolerability concentrations of test substances were determined by the MTT (tetrazolium dye) assay on the MG-63 cell line. A statistically significant biofilm destabilising effect of 10% was shown with lysozyme (2500 µg/ml).
Collapse
Affiliation(s)
- Rutger Matthes
- Department of Restorative Dentistry, Periodontology, Endodontology, Preventive and Pediatric Dentistry, Dental School, University Medicine, Greifswald Rotgerberstr. 8, 17475, Greifswald, Germany.
| | - Lukasz Jablonowski
- Department of Restorative Dentistry, Periodontology, Endodontology, Preventive and Pediatric Dentistry, Dental School, University Medicine, Greifswald Rotgerberstr. 8, 17475, Greifswald, Germany
| | - Birte Holtfreter
- Department of Restorative Dentistry, Periodontology, Endodontology, Preventive and Pediatric Dentistry, Dental School, University Medicine, Greifswald Rotgerberstr. 8, 17475, Greifswald, Germany
| | - Christiane Pink
- Department of Restorative Dentistry, Periodontology, Endodontology, Preventive and Pediatric Dentistry, Dental School, University Medicine, Greifswald Rotgerberstr. 8, 17475, Greifswald, Germany
| | - Thomas Kocher
- Department of Restorative Dentistry, Periodontology, Endodontology, Preventive and Pediatric Dentistry, Dental School, University Medicine, Greifswald Rotgerberstr. 8, 17475, Greifswald, Germany
| |
Collapse
|
16
|
Jakubovics NS, Goodman SD, Mashburn-Warren L, Stafford GP, Cieplik F. The dental plaque biofilm matrix. Periodontol 2000 2021; 86:32-56. [PMID: 33690911 PMCID: PMC9413593 DOI: 10.1111/prd.12361] [Citation(s) in RCA: 225] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | - Steven D Goodman
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Lauren Mashburn-Warren
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Graham P Stafford
- Integrated Biosciences, School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | - Fabian Cieplik
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
17
|
Guo H, Chen Y, Guo W, Chen J. Effects of extracellular DNA on dual-species biofilm formed by Streptococcus mutans and Candida albicans. Microb Pathog 2021; 154:104838. [PMID: 33691176 DOI: 10.1016/j.micpath.2021.104838] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/28/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022]
Abstract
Streptococcus mutans is the most important acid-producing pathogen that causes dental caries, while Candida albicans is an opportunistic fungal pathogen that is frequently detected in conjunction with heavy infection by S. mutans. Their interactions in dental plaque biofilms remain unclear. Extracellular DNA (eDNA) is found in oral biofilms, but its effects have not been thoroughly defined. In this study, the role of eDNA in dual-species biofilms formed by S. mutans and C. albicans was investigated. With eDNA removal, the growth of both strains was not affected, but the formation of dual-species biofilms obviously decreased. In addition, the removal of eDNA spatially disrupted the structure of the dual-species biofilm. It was also shown that eDNA mainly affected the initial attachment and development stages of the dual-species biofilms but not the well-developed biofilms. A similar phenomenon was also observed in the cell viability of dual-species biofilms after DNase I treatment. To further exploration, we analyzed the expression of genes associated with biofilm formation in both S. mutans and C. albicans. We determined that the co-cultivation of S. mutans and C. albicans promotes the expression of genes related to extracellular polysaccharide production (e.g., gtfC), adhesion (e.g., spaP, epa1), mycelial transformation (e.g., hwp1), and drug resistance (e.g., cdr2). However, these genes were significantly downregulated when the eDNA of the dual-species biofilm was removed by adding DNase I compared to those untreated groups. Altogether, eDNA removal, such as that by DNase I treatment, could be considered a promising strategy to control oral biofilms and biofilm-associated oral diseases.
Collapse
Affiliation(s)
- Haoran Guo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yitong Chen
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Wenjin Guo
- Beijing Chong Wen Stomatological Hospital, Beijing, 100062, China
| | - Jingyu Chen
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
18
|
Radaic A, Kapila YL. The oralome and its dysbiosis: New insights into oral microbiome-host interactions. Comput Struct Biotechnol J 2021; 19:1335-1360. [PMID: 33777334 PMCID: PMC7960681 DOI: 10.1016/j.csbj.2021.02.010] [Citation(s) in RCA: 223] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
The oralome is the summary of the dynamic interactions orchestrated between the ecological community of oral microorganisms (comprised of up to approximately 1000 species of bacteria, fungi, viruses, archaea and protozoa - the oral microbiome) that live in the oral cavity and the host. These microorganisms form a complex ecosystem that thrive in the dynamic oral environment in a symbiotic relationship with the human host. However, the microbial composition is significantly affected by interspecies and host-microbial interactions, which in turn, can impact the health and disease status of the host. In this review, we discuss the composition of the oralome and inter-species and host-microbial interactions that take place in the oral cavity and examine how these interactions change from healthy (eubiotic) to disease (dysbiotic) states. We further discuss the dysbiotic signatures associated with periodontitis and caries and their sequalae, (e.g., tooth/bone loss and pulpitis), and the systemic diseases associated with these oral diseases, such as infective endocarditis, atherosclerosis, diabetes, Alzheimer's disease and head and neck/oral cancer. We then discuss current computational techniques to assess dysbiotic oral microbiome changes. Lastly, we discuss current and novel techniques for modulation of the dysbiotic oral microbiome that may help in disease prevention and treatment, including standard hygiene methods, prebiotics, probiotics, use of nano-sized drug delivery systems (nano-DDS), extracellular polymeric matrix (EPM) disruption, and host response modulators.
Collapse
Affiliation(s)
- Allan Radaic
- Kapila Laboratory, Orofacial Sciences Department, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Yvonne L. Kapila
- Kapila Laboratory, Orofacial Sciences Department, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, USA
| |
Collapse
|
19
|
Xiong Y, Chen J, Sun X, Xu G, Li P, Deng Q, Yu Z, Chen Z, Zheng J. The Antibacterial and Antibiofilm Activity of Telithromycin Against Enterococcus spp. Isolated From Patients in China. Front Microbiol 2021; 11:616797. [PMID: 33519776 PMCID: PMC7841295 DOI: 10.3389/fmicb.2020.616797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/14/2020] [Indexed: 01/02/2023] Open
Abstract
Telithromycin has been reported to possess robust in vitro antibacterial activity against many species of gram-positive bacteria, and telithromycin is also effective against Staphylococcus aureus biofilms. However, the in vitro antimicrobial susceptibility of telithromycin against clinical enterococci isolates in China is rarely reported and the impacts of telithromycin on the biofilm formation and eradication of enterococci remain elusive. Therefore, this study aimed to explore the inhibitory effects of telithromycin on planktonic cells and biofilms of Enterococcus strains. A total of 280 Enterococcus faecalis and 122 Enterococcus faecium isolates were collected from individual inpatients in China. The 50% minimum inhibitory concentration (MIC50) values of telithromycin against the E. faecalis and E. faecium strains carrying erythromycin-resistant methylase (erm) genes such as the ermA, ermB, or ermC, were 2 and 4 μg/mL, respectively. In addition, these isolates were typed using multilocus sequence typing (MLST) based on housekeeping genes. The predominant sequence types (STs) of E. faecalis were ST16, ST30, and ST179, and the main STs of E. faecium isolates were ST18, ST78, and ST80. Among these major STs, 87.1% (135/158) of E. faecalis and 80.4% (41/51) of E. faecium carried erm genes. Furthermore, at the subinhibitory concentrations (1/4 and 1/8 × MIC) of telithromycin, the biofilm formation of 16 E. faecalis isolates were inhibited by approximately 35%. Moreover, treatment with 8 × MIC of telithromycin or ampicillin led to an almost 40% reduction in the established biofilms of E. faecalis isolates, whereas vancomycin or linezolid with 8 × MIC had minimal effects. The combination of telithromycin and ampicillin resulted in an almost 70% reduction in the established biofilms of E. faecalis. In conclusion, these results revealed that telithromycin significantly decreased the planktonic cells of both E. faecalis and E. faecium. In addition, the data further demonstrated that telithromycin has the robust ability to inhibit E. faecalis biofilms and the combination of telithromycin and ampicillin improved antibiofilm activity. These in vitro antibacterial and antibiofilm activities suggest that telithromycin could be a potential candidate for the treatment of enterococcal infections.
Collapse
Affiliation(s)
- Yanpeng Xiong
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People’s Hospital, Shenzhen University of School Medicine, Shenzhen, China
| | - Junwen Chen
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People’s Hospital, Shenzhen University of School Medicine, Shenzhen, China
| | - Xiang Sun
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People’s Hospital, Shenzhen University of School Medicine, Shenzhen, China
| | - Guangjian Xu
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People’s Hospital, Shenzhen University of School Medicine, Shenzhen, China
| | - Peiyu Li
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People’s Hospital, Shenzhen University of School Medicine, Shenzhen, China
| | - Qiwen Deng
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People’s Hospital, Shenzhen University of School Medicine, Shenzhen, China
- Quality Control Center of Hospital Infection Management of Shenzhen, Shenzhen Nanshan People’s Hospital of Guangdong Medical University, Shenzhen, China
| | - Zhijian Yu
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People’s Hospital, Shenzhen University of School Medicine, Shenzhen, China
- Quality Control Center of Hospital Infection Management of Shenzhen, Shenzhen Nanshan People’s Hospital of Guangdong Medical University, Shenzhen, China
| | - Zhong Chen
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People’s Hospital, Shenzhen University of School Medicine, Shenzhen, China
- Quality Control Center of Hospital Infection Management of Shenzhen, Shenzhen Nanshan People’s Hospital of Guangdong Medical University, Shenzhen, China
| | - Jinxin Zheng
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People’s Hospital, Shenzhen University of School Medicine, Shenzhen, China
- Quality Control Center of Hospital Infection Management of Shenzhen, Shenzhen Nanshan People’s Hospital of Guangdong Medical University, Shenzhen, China
| |
Collapse
|
20
|
Ren P, Chen T, Liu N, Sun W, Hu G, Yu Y, Yu B, Ouyang P, Liu D, Chen Y. Efficient Biofilm-Based Fermentation Strategies by eDNA Formation for l-Proline Production with Corynebacterium glutamicum. ACS OMEGA 2020; 5:33314-33322. [PMID: 33403293 PMCID: PMC7774248 DOI: 10.1021/acsomega.0c05095] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Biofilms could provide favorable conditions for the growth of cells during industrial fermentation. However, biofilm-immobilized fermentation has not yet been reported in Corynebacterium glutamicum (C. glutamicum), one of the main strains for amino acid production. This is mainly because C. glutamicum has a poor capability of adsorption onto materials or forming an extracellular polymeric substance (EPS). Here, an engineered strain, C. glutamicum Pro-ΔexeM, was created by removing the extracellular nuclease gene exeM, which effectively increased extracellular DNA (eDNA) in the EPS and cell adhesiveness onto carrier materials. In repeated-batch fermentation using the biofilm, l-proline production increased from 10.2 to 17.1 g/L. In summary, this research demonstrated that a synthetic C. glutamicum biofilm could be favorable for l-proline production, which could be extended to other industrial applications of C. glutamicum, and the strategy may also be applicable to the engineering of other strains.
Collapse
Affiliation(s)
- Peifang Ren
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Tianpeng Chen
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Na Liu
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Wenjun Sun
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Guang Hu
- Nanjing
Iaso Biotherapeutics Co., Ltd., Nanjing 210000, P.R. China
| | - Ying Yu
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Bin Yu
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Pingkai Ouyang
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
- National
Engineering Research Center for Biotechnology, College of Biotechnology
and Pharmaceutical Engineering, Nanjing
Tech University, Nanjing 211816, P.R. China
| | - Dong Liu
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
- National
Engineering Research Center for Biotechnology, College of Biotechnology
and Pharmaceutical Engineering, Nanjing
Tech University, Nanjing 211816, P.R. China
| | - Yong Chen
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
- National
Engineering Research Center for Biotechnology, College of Biotechnology
and Pharmaceutical Engineering, Nanjing
Tech University, Nanjing 211816, P.R. China
| |
Collapse
|
21
|
Inaba T, Obana N, Habe H, Nomura N. Biofilm Formation by Streptococcus mutans is Enhanced by Indole via the Quorum Sensing Pathway. Microbes Environ 2020; 35. [PMID: 32350164 PMCID: PMC7308578 DOI: 10.1264/jsme2.me19164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Interspecies interactions among oral microorganisms in the pathogenic biofilms causing dental caries have not yet been elucidated in detail. We herein demonstrated that indole and its derivatives induced biofilm formation by Streptococcus mutans. Indole is an intercellular signaling molecule that is produced by oral bacteria other than S. mutans. The amounts of biofilm and extracellular DNA were significantly increased by the addition of indole and 4-hydroxyindole (4-HI). An examination with quorum sensing mutants showed that the induction of biofilm formation by indole and 4-HI required a quorum sensing system. These results suggest that this intercellular signaling molecule plays a role in pathogenic biofilm formation.
Collapse
Affiliation(s)
- Tomohiro Inaba
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Nozomu Obana
- Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba
| | - Hiroshi Habe
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Nobuhiko Nomura
- Faculty of Life and Environmental Sciences, University of Tsukuba
| |
Collapse
|
22
|
Cheng JH, Lv X, Pan Y, Sun DW. Foodborne bacterial stress responses to exogenous reactive oxygen species (ROS) induced by cold plasma treatments. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.07.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
|
24
|
Rosier BT, Buetas E, Moya-Gonzalvez EM, Artacho A, Mira A. Nitrate as a potential prebiotic for the oral microbiome. Sci Rep 2020; 10:12895. [PMID: 32732931 PMCID: PMC7393384 DOI: 10.1038/s41598-020-69931-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
The salivary glands actively concentrate plasma nitrate, leading to high salivary nitrate concentrations (5–8 mM) after a nitrate-rich vegetable meal. Nitrate is an ecological factor that can induce rapid changes in structure and function of polymicrobial communities, but the effects on the oral microbiota have not been clarified. To test this, saliva of 12 healthy donors was collected to grow in vitro biofilms with and without 6.5 mM nitrate. Samples were taken at 5 h (most nitrate reduced) and 9 h (all nitrate reduced) of biofilm formation for ammonium, lactate and pH measurements, as well as 16S rRNA gene Illumina sequencing. Nitrate did not affect biofilm growth significantly, but reduced lactate production, while increasing the observed ammonium production and pH (all p < 0.01). Significantly higher levels of the oral health-associated nitrate-reducing genera Neisseria (3.1 ×) and Rothia (2.9 ×) were detected in the nitrate condition already after 5 h (both p < 0.01), while several caries-associated genera (Streptococcus, Veillonella and Oribacterium) and halitosis- and periodontitis-associated genera (Porphyromonas, Fusobacterium, Leptotrichia, Prevotella, and Alloprevotella) were significantly reduced (p < 0.05 at 5 h and/or 9 h). In conclusion, the addition of nitrate to oral communities led to rapid modulation of microbiome composition and activity that could be beneficial for the host (i.e., increasing eubiosis or decreasing dysbiosis). Nitrate should thus be investigated as a potential prebiotic for oral health.
Collapse
Affiliation(s)
- B T Rosier
- Department of Health and Genomics, Center for Advanced Research in Public Health, FISABIO Foundation, Avenida de Catalunya 21, 46020, Valencia, Spain
| | - E Buetas
- Department of Health and Genomics, Center for Advanced Research in Public Health, FISABIO Foundation, Avenida de Catalunya 21, 46020, Valencia, Spain
| | - E M Moya-Gonzalvez
- Department of Health and Genomics, Center for Advanced Research in Public Health, FISABIO Foundation, Avenida de Catalunya 21, 46020, Valencia, Spain
| | - A Artacho
- Department of Health and Genomics, Center for Advanced Research in Public Health, FISABIO Foundation, Avenida de Catalunya 21, 46020, Valencia, Spain
| | - Alex Mira
- Department of Health and Genomics, Center for Advanced Research in Public Health, FISABIO Foundation, Avenida de Catalunya 21, 46020, Valencia, Spain.
| |
Collapse
|
25
|
Bhardwaj SB, Mehta M, Sood S, Sharma J. Isolation of a Novel Phage and Targeting Biofilms of Drug-Resistant Oral Enterococci. J Glob Infect Dis 2020; 12:11-15. [PMID: 32165796 PMCID: PMC7045759 DOI: 10.4103/jgid.jgid_110_19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/03/2019] [Accepted: 12/19/2019] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Enterococci are now recognized as the second most cause of nosocomial infections worldwide. The emergence of multidrug-resistant strains in the organism has given rise to alternative strategies such as phage therapy. In this study, an Enterococcus faecalis infecting phage was isolated and its efficiency against biofilms formed by drug-resistant enterococci obtained from chronic periodontitis was evaluated. MATERIALS AND METHODS Bacteriophage against E. faecalis was isolated from sewage sample. The phage was propagated and identified using transmission electron microscope (TEM). In vitro biofilm formation was assessed. RESULTS TEM microscopy showed that the phage belonged to Siphoviridae family. In the presence of the novel phage, the metabolic activity of enterococci biofilm was reduced at 48 h of contact. A difference of at least 5 log CFU/ml was seen in the live cells of the control biofilm, and the phage treated biofilm of enterococci isolates. CONCLUSION The study shows that the novel phage inhibits biofilm production in oral enterococci isolates from periodontitis patients but has a narrow host range. The role of bacteriophages as strong biotechnological and natural therapeutic agents for E. faecalis in chronic periodontitis can be considered.
Collapse
Affiliation(s)
- Sonia Bhonchal Bhardwaj
- Departments of Microbiology, Dr. Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, India
| | - Manjula Mehta
- Departments of Microbiology, Dr. Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, India
| | - Shaveta Sood
- Department of Periodontics, Dr. Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, India
| | - Jyoti Sharma
- Departments of Microbiology, Dr. Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, India
| |
Collapse
|
26
|
Frias-Lopez J, Duran-Pinedo AE. The Function of the Oral Microbiome in Health and Disease. EMERGING THERAPIES IN PERIODONTICS 2020:141-173. [DOI: 10.1007/978-3-030-42990-4_10] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
27
|
The Pathogenic Factors from Oral Streptococci for Systemic Diseases. Int J Mol Sci 2019; 20:ijms20184571. [PMID: 31540175 PMCID: PMC6770522 DOI: 10.3390/ijms20184571] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/11/2019] [Accepted: 09/14/2019] [Indexed: 02/06/2023] Open
Abstract
The oral cavity is suggested as the reservoir of bacterial infection, and the oral and pharyngeal biofilms formed by oral bacterial flora, which is comprised of over 700 microbial species, have been found to be associated with systemic conditions. Almost all oral microorganisms are non-pathogenic opportunistic commensals to maintain oral health condition and defend against pathogenic microorganisms. However, oral Streptococci, the first microorganisms to colonize oral surfaces and the dominant microorganisms in the human mouth, has recently gained attention as the pathogens of various systemic diseases, such as infective endocarditis, purulent infections, brain hemorrhage, intestinal inflammation, and autoimmune diseases, as well as bacteremia. As pathogenic factors from oral Streptococci, extracellular polymeric substances, toxins, proteins and nucleic acids as well as vesicles, which secrete these components outside of bacterial cells in biofilm, have been reported. Therefore, it is necessary to consider that the relevance of these pathogenic factors to systemic diseases and also vaccine candidates to protect infectious diseases caused by Streptococci. This review article focuses on the mechanistic links among pathogenic factors from oral Streptococci, inflammation, and systemic diseases to provide the current understanding of oral biofilm infections based on biofilm and widespread systemic diseases.
Collapse
|
28
|
Marsh PD, Zaura E. Dental biofilm: ecological interactions in health and disease. J Clin Periodontol 2018; 44 Suppl 18:S12-S22. [PMID: 28266111 DOI: 10.1111/jcpe.12679] [Citation(s) in RCA: 272] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND The oral microbiome is diverse and exists as multispecies microbial communities on oral surfaces in structurally and functionally organized biofilms. AIM To describe the network of microbial interactions (both synergistic and antagonistic) occurring within these biofilms and assess their role in oral health and dental disease. METHODS PubMed database was searched for studies on microbial ecological interactions in dental biofilms. The search results did not lend themselves to systematic review and have been summarized in a narrative review instead. RESULTS Five hundred and forty-seven original research articles and 212 reviews were identified. The majority (86%) of research articles addressed bacterial-bacterial interactions, while inter-kingdom microbial interactions were the least studied. The interactions included physical and nutritional synergistic associations, antagonism, cell-to-cell communication and gene transfer. CONCLUSIONS Oral microbial communities display emergent properties that cannot be inferred from studies of single species. Individual organisms grow in environments they would not tolerate in pure culture. The networks of multiple synergistic and antagonistic interactions generate microbial inter-dependencies and give biofilms a resilience to minor environmental perturbations, and this contributes to oral health. If key environmental pressures exceed thresholds associated with health, then the competitiveness among oral microorganisms is altered and dysbiosis can occur, increasing the risk of dental disease.
Collapse
Affiliation(s)
- P D Marsh
- Department of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK
| | - Egija Zaura
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
29
|
Lin H, Wang C, Zhao H, Chen G, Chen X. Interaction between copper and extracellular nucleic acids in the EPS of unsaturated Pseudomonas putida CZ1 biofilm. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:24172-24180. [PMID: 29948696 DOI: 10.1007/s11356-018-2473-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/01/2018] [Indexed: 06/08/2023]
Abstract
The role of extracellular DNA (eDNA) in biofilm in heavy metal complexation has been little reported. In this study, the interaction between the extracellular fraction of unsaturated biofilms and Cu2+ was studied using random amplified polymorphic DNA (RAPD) and synchrotron-based X-ray absorption spectroscopy (XAS) analyses. Under Cu2+ stress, the amount of eDNA was about 10-fold higher than the treatment without Cu2+ stress, which was substantially more than the amount of intracellular DNA (iDNA) present in the biofilm. The eDNA content increased significantly under Cu2+ stress and higher eDNA contents were found in colloidal extracellular polymeric substances (EPS) than in capsular EPS in Luria-Bertani medium. It was found that the composition of eDNA was distinctly changed under conditions of Cu2+ stress compared with the treatments without Cu2+ treatments, with specific eDNA bands appearing under Cu2+ treatments as revealed by RAPD analyses. X-ray absorption fine structure (XAFS) analysis assessing the molecular speciation of copper showed that copper in the secreted eDNA mainly existed as species resembling Cu3(PO4)2, followed by Cu-citrate species. This study investigated the interaction between copper and eDNA in unsaturated Pseudomonas putida CZ1 biofilms. Potential function of eDNA in biofilms under Cu2+ stress was found.
Collapse
Affiliation(s)
- Huirong Lin
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian, China
| | - Chengyun Wang
- The First Affiliated Hospital of Xiamen University, Xiamen, 361003, People's Republic of China
| | - Hongmei Zhao
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, SEID, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, People's Republic of China
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Guangcun Chen
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, SEID, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, People's Republic of China.
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| | - Xincai Chen
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| |
Collapse
|
30
|
Nagler M, Insam H, Pietramellara G, Ascher-Jenull J. Extracellular DNA in natural environments: features, relevance and applications. Appl Microbiol Biotechnol 2018; 102:6343-6356. [PMID: 29858957 PMCID: PMC6061472 DOI: 10.1007/s00253-018-9120-4] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/15/2018] [Accepted: 05/19/2018] [Indexed: 01/13/2023]
Abstract
Extracellular DNA (exDNA) is abundant in many habitats, including soil, sediments, oceans and freshwater as well as the intercellular milieu of metazoa. For a long time, its origin has been assumed to be mainly lysed cells. Nowadays, research is collecting evidence that exDNA is often secreted actively and is used to perform a number of tasks, thereby offering an attractive target or tool for biotechnological, medical, environmental and general microbiological applications. The present review gives an overview on the main research areas dealing with exDNA, depicts its inherent origins and functions and deduces the potential of existing and emerging exDNA-based applications. Furthermore, it provides an overview on existing extraction methods and indicates common pitfalls that should be avoided whilst working with exDNA.
Collapse
Affiliation(s)
- Magdalena Nagler
- Universität Innsbruck, Institute of Microbiology, Technikerstr. 25d, 6020, Innsbruck, Austria.
| | - Heribert Insam
- Universität Innsbruck, Institute of Microbiology, Technikerstr. 25d, 6020, Innsbruck, Austria
| | - Giacomo Pietramellara
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente, Università degli Studi di Firenze, Piazzale delle Cascine 18, 50144, Florence, Italy
| | - Judith Ascher-Jenull
- Universität Innsbruck, Institute of Microbiology, Technikerstr. 25d, 6020, Innsbruck, Austria
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente, Università degli Studi di Firenze, Piazzale delle Cascine 18, 50144, Florence, Italy
| |
Collapse
|
31
|
Cooper PR, Chicca IJ, Holder MJ, Milward MR. Inflammation and Regeneration in the Dentin-pulp Complex: Net Gain or Net Loss? J Endod 2018; 43:S87-S94. [PMID: 28844308 DOI: 10.1016/j.joen.2017.06.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The balance between the immune/inflammatory and regenerative responses in the diseased pulp is central to the clinical outcome, and this response is unique within the body because of its tissue site. Cariogenic bacteria invade the dentin and pulp tissues, triggering molecular and cellular events dependent on the disease stage. At the early onset, odontoblasts respond to bacterial components in an attempt to protect the tooth's hard and soft tissues and limit disease progression. However, as disease advances, the odontoblasts die, and cells central to the pulp core, including resident immune cells, pulpal fibroblasts, endothelial cells, and stem cells, respond to the bacterial challenge via their expression of a range of pattern recognition receptors that identify pathogen-associated molecular patterns. Subsequently, recruitment and activation occurs of a range of immune cell types, including neutrophils, macrophages, and T and B cells, which are attracted to the diseased site by cytokine/chemokine chemotactic gradients initially generated by resident pulpal cells. Although these cells aim to disinfect the tooth, their extravasation, migration, and antibacterial activity (eg, release of reactive oxygen species [ROS]) along with the bacterial toxins cause pulp damage and impede tissue regeneration processes. Recently, a novel bacterial killing mechanism termed neutrophil extracellular traps (NETs) has also been described that uses ROS signaling and results in cellular DNA extrusion. The NETs are decorated with antimicrobial peptides (AMPs), and their interaction with bacteria results in microbial entrapment and death. Recent data show that NETs can be stimulated by bacteria associated with endodontic infections, and they may be present in inflamed pulp tissue. Interestingly, some bacteria associated with pulpal infections express deoxyribonuclease enzymes, which may enable their evasion of NETs. Furthermore, although NETs aim to localize and kill invading bacteria using AMPs and histones, limiting the spread of the infection, data also indicate that NETs can exacerbate inflammation and their components are cytotoxic. This review considers the potential role of NETs within pulpal infections and how these structures may influence the pulp's vitality and regenerative responses.
Collapse
Affiliation(s)
- Paul R Cooper
- Oral Biology, School of Dentistry, College of Medical and Dental Sciences, Edgbaston, Birmingham, UK.
| | - Ilaria J Chicca
- Oral Biology, School of Dentistry, College of Medical and Dental Sciences, Edgbaston, Birmingham, UK
| | - Michael J Holder
- Oral Biology, School of Dentistry, College of Medical and Dental Sciences, Edgbaston, Birmingham, UK
| | - Michael R Milward
- Oral Biology, School of Dentistry, College of Medical and Dental Sciences, Edgbaston, Birmingham, UK
| |
Collapse
|
32
|
Helicobacter pylori Biofilm Formation and Its Potential Role in Pathogenesis. Microbiol Mol Biol Rev 2018; 82:82/2/e00001-18. [PMID: 29743338 DOI: 10.1128/mmbr.00001-18] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Despite decades of effort, Helicobacter pylori infections remain difficult to treat. Over half of the world's population is infected by H. pylori, which is a major cause of duodenal and gastric ulcers as well as gastric cancer. During chronic infection, H. pylori localizes within the gastric mucosal layer, including deep within invaginations called glands; thanks to its impressive ability to survive despite the harsh acidic environment, it can persist for the host's lifetime. This ability to survive and persist in the stomach is associated with urease production, chemotactic motility, and the ability to adapt to the fluctuating environment. Additionally, biofilm formation has recently been suggested to play a role in colonization. Biofilms are surface-associated communities of bacteria that are embedded in a hydrated matrix of extracellular polymeric substances. Biofilms pose a substantial health risk and are key contributors to many chronic and recurrent infections. This link between biofilm-associated bacteria and chronic infections likely results from an increased tolerance to conventional antibiotic treatments as well as immune system action. The role of this biofilm mode in antimicrobial treatment failure and H. pylori survival has yet to be determined. Furthermore, relatively little is known about the H. pylori biofilm structure or the genes associated with this mode of growth. In this review, therefore, we aim to highlight recent findings concerning H. pylori biofilms and the molecular mechanism of their formation. Additionally, we discuss the potential roles of biofilms in the failure of antibiotic treatment and in infection recurrence.
Collapse
|
33
|
Yoshimasu Y, Ikeda T, Sakai N, Yagi A, Hirayama S, Morinaga Y, Furukawa S, Nakao R. Rapid Bactericidal Action of Propolis against Porphyromonas gingivalis. J Dent Res 2018; 97:928-936. [PMID: 29494308 DOI: 10.1177/0022034518758034] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Propolis, a resinous substance produced by bees, is used as a folk medicine for treatment of periodontal diseases. However, its mode of the action and the compounds responsible for its activities remain obscure. In the present study, we comprehensively investigated the antibacterial activities of ethanol-extracted propolis (EEP) and EEP-derived compounds toward Porphyromonas gingivalis, a keystone pathogen for periodontal diseases. Broth microdilution and agar dilution assays were used to determine the minimum inhibitory concentrations of EEP against a range of oral bacterial species, of which P. gingivalis showed a higher level of sensitivity than oral commensals such as streptococci. Its antibacterial activity toward P. gingivalis was maintained even after extensive heat treatment, demonstrating a high level of thermostability. EEP also induced death of P. gingivalis cells by increasing membrane permeability within 30 min. Spatiotemporal analysis based on high-speed atomic force microscopy revealed that EEP immediately triggered development of aberrant membrane blebs, followed by bleb fusion events on the bacterial surface. Furthermore, we isolated artepillin C, baccharin, and ursolic acid from EEP as antibacterial compounds against P. gingivalis. Of those, artepillin C and baccharin showed bacteriostatic activities with membrane blebbing, while ursolic acid showed bactericidal activity with membrane rupture. In particular, ursolic acid demonstrated a greater ability to affect bacterial membrane potential with increased membrane permeability, probably because of its highly lipophilic nature as compared with other compounds. Taken together, these findings provide mechanistic insight into the antibacterial activities of EEP and its exquisite membrane-targeting antibacterial compounds and imply the applicability of narrow-spectrum therapeutics with EEP for treatment of periodontitis. In addition, the advanced technology utilized in the present study to visualize the nanometer-scale dynamics of microorganisms will contribute to expanding our understanding of the activities of antimicrobials and the mechanism of drug resistance in bacteria.
Collapse
Affiliation(s)
- Y Yoshimasu
- 1 Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan.,2 Department of Food Bioscience and Biotechnology, College of Bioresource Science, Nihon University, Kanagawa, Japan
| | - T Ikeda
- 3 Department of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - N Sakai
- 4 Division of Medical Elemental Technology Development, Department of Micro System Technology, Olympus Corporation, Tokyo, Japan
| | - A Yagi
- 4 Division of Medical Elemental Technology Development, Department of Micro System Technology, Olympus Corporation, Tokyo, Japan
| | - S Hirayama
- 1 Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan.,5 Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| | - Y Morinaga
- 2 Department of Food Bioscience and Biotechnology, College of Bioresource Science, Nihon University, Kanagawa, Japan
| | - S Furukawa
- 2 Department of Food Bioscience and Biotechnology, College of Bioresource Science, Nihon University, Kanagawa, Japan.,Deceased
| | - R Nakao
- 1 Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
34
|
Keke Z, Xuedong Z, Xin X. [The origin of hydrogen peroxide in oral cavity and its role in oral microecology balance]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2017; 35:215-220. [PMID: 28682556 DOI: 10.7518/hxkq.2017.02.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hydrogen peroxide, an important antimicrobial agent in oral cavity, plays a significant role in the balance of oral microecology. At the early stage of biofilm formation, about 80% of the detected initial colonizers belong to the genus Streptococcus. These oral streptococci use different oxidase to produce hydrogen peroxide. Recent studies showed that the produced hydrogen peroxide plays a critical role in modulating oral microecology. Hydrogen peroxide modulates biofilm development attributed to its growth inhibitory nature. Hydrogen peroxide production is closely associated with extracellular DNA(eDNA) release from microbe and the development of its competent cell which are critical for biofilm development and also serves as source for horizontal gene transfer. Microbe also can reduce the damage to themselves through several detoxification mechanisms. Moreover, hydrogen peroxide is also involved in the regulation of interactions between oral microorganisms and host. Taken together, hydrogen peroxide is an imperative ecological factor that contributes to the microbial equilibrium in the oral cavity. Here we will give a brief review of both the origin and the function in the oral microecology balance of hydrogen peroxide.
Collapse
Affiliation(s)
- Zhang Keke
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhou Xuedong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xu Xin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
35
|
Schlafer S, Meyer RL, Dige I, Regina VR. Extracellular DNA Contributes to Dental Biofilm Stability. Caries Res 2017; 51:436-442. [PMID: 28728145 DOI: 10.1159/000477447] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 05/08/2017] [Indexed: 02/05/2023] Open
Abstract
Extracellular DNA (eDNA) is a major matrix component of many bacterial biofilms. While the presence of eDNA and its role in biofilm stability have been demonstrated for several laboratory biofilms of oral bacteria, there is no data available on the presence and function of eDNA in in vivo grown dental biofilms. This study aimed to determine whether eDNA was part of the matrix in biofilms grown in situ in the absence of sucrose and whether treatment with DNase dispersed biofilms grown for 2.5, 5, 7.5, 16.5, or 24 h. Three hundred biofilms from 10 study participants were collected and treated with either DNase or heat-inactivated DNase for 1 h. The bacterial biovolume was determined with digital image analysis. Staining with TOTO®-1 allowed visualization of eDNA both on bacterial cell surfaces and, with a cloud-like appearance, in the intercellular space. DNase treatment strongly reduced the amount of biofilm in very early stages of growth (up to 7.5 h), but the treatment effect decreased with increasing biofilm age. This study proves the involvement of eDNA in dental biofilm formation and its importance for biofilm stability in the earliest stages. Further research is required to uncover the interplay of eDNA and other matrix components and to explore the therapeutic potential of DNase treatment for biofilm control.
Collapse
Affiliation(s)
- Sebastian Schlafer
- Department of Dentistry and Oral Health,y, Aarhus University, Aarhus, Denmark
| | | | | | | |
Collapse
|
36
|
Larsen T, Fiehn NE. Dental biofilm infections - an update. APMIS 2017; 125:376-384. [PMID: 28407420 DOI: 10.1111/apm.12688] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 02/03/2017] [Indexed: 11/30/2022]
Abstract
Teeth are colonized by oral bacteria from saliva containing more than 700 different bacterial species. If removed regularly, the dental biofilm mainly comprises oral streptococci and is regarded as resident microflora. But if left undisturbed, a complex biofilm containing up to 100 bacterial species at a site will build up and may eventually cause development of disease. Depending on local ecological factors, the composition of the dental biofilm may vary considerably. With access to excess carbohydrates, the dental biofilm will be dominated by mainly gram-positive carbohydrate-fermenting bacteria causing demineralization of teeth, dental caries, which may further lead to inflammation and necrosis in the pulp and periapical region, i.e., pulpitis and periapical periodontitis. In supra- and subgingival biofilms, predominantly gram-negative, anaerobic proteolytic bacteria will colonize and cause gingival inflammation and breakdown of supporting periodontal fibers and bone and ultimately tooth loss, i.e., gingivitis, chronic or aggressive periodontitis, and around dental implants, peri-implantitis. Furthermore, bacteria from the dental biofilm may spread to other parts of the body by bacteremia and cause systemic disease. Basically, prevention and treatment of dental biofilm infections are achieved by regular personal and professional removal of the dental biofilm.
Collapse
Affiliation(s)
- Tove Larsen
- Department of Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nils-Erik Fiehn
- Department of Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
37
|
Bhardwaj SB, Mehta M, Sood S, Sharma J. Biofilm Formation by Drug Resistant Enterococci Isolates Obtained from Chronic Periodontitis Patients. J Clin Diagn Res 2017; 11:DC01-DC03. [PMID: 28273964 DOI: 10.7860/jcdr/2017/24472.9152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/10/2016] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Enterococci are an important cause of opportunistic nosocomial infections and several multidrug resistant strains have emerged. The severity of periodontal diseases is managed by reduction in the pathogenic bacteria. There is a need to assess the prevalence and antibiotic susceptibility of enterococci colonizing the periodontal pocket and correlate its biofilm formation ability because oral biofilms provide a protective environment and are a reservoir of bacterial colonization of the gingival crevice. AIM To investigate possible association between antibiotic susceptibility and biofilm formation in enterococci isolates from chronic periodontitis patients. MATERIALS AND METHODS This retrospective study was conducted at Dr. Harvansh Singh Judge Institute of Dental Sciences and Hospital, Punjab University, Chandigarh from January 2015 to October 2015. Sterile paper points were inserted in the periodontal pocket of 100 subjects and put in a transport media. Forty -six isolates were identified as enterococci. The isolates were further examined for their ability to form biofilm by microtitre plate assay and antimicrobial susceptibility testing was done by disc diffusion method for clinically relevant antibiotics. RESULTS Significant relationship (p<0.001) was found between biofilm production with antibiotic resistance to Vancomycin, Erythromycin, Ciprofloxacin, Tiecoplanin, Amoxycillin and Gentamycin. CONCLUSION The study demonstrates a high propensity among the isolates of Enterococci to form biofilm and a significant association of biofilm with multiple drug resistance.
Collapse
Affiliation(s)
- Sonia Bhonchal Bhardwaj
- Assistant Professor, Department of Microbiology, Dr. Harvansh Singh Judge Institute of Dental Sciences and Hospital , Chandigarh, India
| | - Manjula Mehta
- Associate Professor, Department of Microbiology, Dr. Harvansh Singh Judge Institute of Dental Sciences and Hospital , Chandigarh, India
| | - Shaveta Sood
- Assistant Professor, Department of Periodontics, Dr. Harvansh Singh Judge Institute of Dental Sciences and Hospital , Chandigarh, India
| | - Jyoti Sharma
- Assistant Professor, Department of Microbiology, Dr. Harvansh Singh Judge Institute of Dental Sciences and Hospital , Chandigarh, India
| |
Collapse
|
38
|
Kaplan JB, Sampathkumar V, Bendaoud M, Giannakakis AK, Lally ET, Balashova NV. In vitro characterization of biofilms formed by Kingella kingae. Mol Oral Microbiol 2016; 32:341-353. [PMID: 27714987 DOI: 10.1111/omi.12176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2016] [Indexed: 01/29/2023]
Abstract
The Gram-negative bacterium Kingella kingae is part of the normal oropharyngeal mucosal flora of children <4 years old. K. kingae can enter the submucosa and cause infections of the skeletal system in children, including septic arthritis and osteomyelitis. The organism is also associated with infective endocarditis in children and adults. Although biofilm formation has been coupled with pharyngeal colonization, osteoarticular infections, and infective endocarditis, no studies have investigated biofilm formation in K. kingae. In this study we measured biofilm formation by 79 K. kingae clinical isolates using a 96-well microtiter plate crystal violet binding assay. We found that 37 of 79 strains (47%) formed biofilms. All strains that formed biofilms produced corroding colonies on agar. Biofilm formation was inhibited by proteinase K and DNase I. DNase I also caused the detachment of pre-formed K. kingae biofilm colonies. A mutant strain carrying a deletion of the pilus gene cluster pilA1pilA2fimB did not produce corroding colonies on agar, autoaggregate in broth, or form biofilms. Biofilm forming strains have higher levels of pilA1 expression. The extracellular components of biofilms contained 490 μg cm-2 of protein, 0.68 μg cm-2 of DNA, and 0.4 μg cm-2 of total carbohydrates. We concluded that biofilm formation is common among K. kingae clinical isolates, and that biofilm formation is dependent on the production of proteinaceous pili and extracellular DNA. Biofilm development may have relevance to the colonization, transmission, and pathogenesis of this bacterium. Extracellular DNA production by K. kingae may facilitate horizontal gene transfer within the oral microbial community.
Collapse
Affiliation(s)
- J B Kaplan
- Department of Biology, American University, Washington, DC, USA
| | - V Sampathkumar
- Department of Oral Biology, Rutgers School of Dental Medicine, Rutgers University, Newark, NJ, USA
| | - M Bendaoud
- Department of Oral Biology, Rutgers School of Dental Medicine, Rutgers University, Newark, NJ, USA
| | - A K Giannakakis
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - E T Lally
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - N V Balashova
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
39
|
Doke M, Fukamachi H, Morisaki H, Arimoto T, Kataoka H, Kuwata H. Nucleases from Prevotella intermedia can degrade neutrophil extracellular traps. Mol Oral Microbiol 2016; 32:288-300. [PMID: 27476978 PMCID: PMC5516193 DOI: 10.1111/omi.12171] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2016] [Indexed: 01/19/2023]
Abstract
Periodontitis is an inflammatory disease caused by periodontal bacteria in subgingival plaque. These bacteria are able to colonize the periodontal region by evading the host immune response. Neutrophils, the host's first line of defense against infection, use various strategies to kill invading pathogens, including neutrophil extracellular traps (NETs). These are extracellular net‐like fibers comprising DNA and antimicrobial components such as histones, LL‐37, defensins, myeloperoxidase, and neutrophil elastase from neutrophils that disarm and kill bacteria extracellularly. Bacterial nuclease degrades the NETs to escape NET killing. It has now been shown that extracellular nucleases enable bacteria to evade this host antimicrobial mechanism, leading to increased pathogenicity. Here, we compared the DNA degradation activity of major Gram‐negative periodontopathogenic bacteria, Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum, and Aggregatibacter actinomycetemcomitans. We found that Pr. intermedia showed the highest DNA degradation activity. A genome search of Pr. intermedia revealed the presence of two genes, nucA and nucD, putatively encoding secreted nucleases, although their enzymatic and biological activities are unknown. We cloned nucA‐ and nucD‐encoding nucleases from Pr. intermedia ATCC 25611 and characterized their gene products. Recombinant NucA and NucD digested DNA and RNA, which required both Mg2+ and Ca2+ for optimal activity. In addition, NucA and NucD were able to degrade the DNA matrix comprising NETs.
Collapse
Affiliation(s)
- M Doke
- Department of Oral Microbiology and Immunology, Showa University School of Dentistry, Shinagawa, Tokyo, Japan
| | - H Fukamachi
- Department of Oral Microbiology and Immunology, Showa University School of Dentistry, Shinagawa, Tokyo, Japan
| | - H Morisaki
- Department of Oral Microbiology and Immunology, Showa University School of Dentistry, Shinagawa, Tokyo, Japan
| | - T Arimoto
- Department of Oral Microbiology and Immunology, Showa University School of Dentistry, Shinagawa, Tokyo, Japan
| | - H Kataoka
- Department of Oral Microbiology and Immunology, Showa University School of Dentistry, Shinagawa, Tokyo, Japan
| | - H Kuwata
- Department of Oral Microbiology and Immunology, Showa University School of Dentistry, Shinagawa, Tokyo, Japan
| |
Collapse
|
40
|
Holliday R, Preshaw PM, Bowen L, Jakubovics NS. The ultrastructure of subgingival dental plaque, revealed by high-resolution field emission scanning electron microscopy. BDJ Open 2015; 1:15003. [PMID: 29607057 PMCID: PMC5842838 DOI: 10.1038/bdjopen.2015.3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/29/2015] [Accepted: 09/22/2015] [Indexed: 11/09/2022] Open
Abstract
Objectives/Aims To explore the ultrastructure of subgingival dental plaque using high-resolution field emission scanning electron microscopy (FE-SEM) and to investigate whether extracellular DNA (eDNA) could be visualised in ex vivo samples. Materials and Methods Ten patients were recruited who fulfilled the inclusion criteria (teeth requiring extraction with radiographic horizontal bone loss of over 50% and grade II/III mobility). In total, 12 teeth were extracted using a minimally traumatic technique. Roots were sectioned using a dental air turbine handpiece, under water cooling to produce 21 samples. Standard fixation and dehydration protocols were followed. For some samples, gold-labelled anti-DNA antibodies were applied before visualising biofilms by FE-SEM. Results High-resolution FE-SEMs of subgingival biofilm were obtained in 90% of the samples. The sectioning technique left dental plaque biofilms undisturbed. Copious amounts of extracellular material were observed in the plaque, which may have been eDNA as they had a similar appearance to labelled eDNA from in vitro studies. There was also evidence of membrane vesicles and open-ended tubular structures. Efforts to label eDNA with immune-gold antibodies were unsuccessful and eDNA was not clearly labelled. Conclusions High-resolution FE-SEM images were obtained of undisturbed subgingival ex vivo dental plaque biofilms. Important structural features were observed including extracellular polymeric material, vesicles and unusual open tubule structures that may be remnants of lysed cells. The application of an eDNA immune-gold-labelling technique, previously used successfully in in vitro samples, did not clearly identify eDNA in ex vivo samples. Further studies are needed to characterise the molecular composition of the observed extracellular matrix material.
Collapse
Affiliation(s)
- Richard Holliday
- School of Dental Sciences, Centre for Oral Health Research, Newcastle University, Newcastle upon Tyne, UK.,Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Philip M Preshaw
- School of Dental Sciences, Centre for Oral Health Research, Newcastle University, Newcastle upon Tyne, UK.,Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Leon Bowen
- Department of Physics, Durham University, Durham, UK
| | - Nicholas S Jakubovics
- School of Dental Sciences, Centre for Oral Health Research, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
41
|
Yilmaz Ö, Ojcius DM. A new frontier: oral microbes without borders. Microbes Infect 2015; 17:469-70. [PMID: 26002119 DOI: 10.1016/j.micinf.2015.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 05/11/2015] [Accepted: 05/13/2015] [Indexed: 10/23/2022]
Affiliation(s)
- Özlem Yilmaz
- Department of Periodontology, University of Florida, Gainesville, FL 32610, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA.
| | - David M Ojcius
- Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA 94103, USA
| |
Collapse
|