1
|
Žuštra A, Leonard VR, Holland LA, Hu JC, Mu T, Holland SC, Wu LI, Begnel ER, Ojee E, Chohan BH, Richardson BA, Kinuthia J, Wamalwa D, Slyker J, Lehman DA, Gantt S, Lim ES. Longitudinal dynamics of the nasopharyngeal microbiome in response to SARS-CoV-2 Omicron variant and HIV infection in Kenyan women and their children. mSystems 2025; 10:e0156824. [PMID: 40261064 DOI: 10.1128/msystems.01568-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/28/2025] [Indexed: 04/24/2025] Open
Abstract
The nasopharynx and its microbiota are implicated in respiratory health and disease. The interplay between viral infection and the nasopharyngeal microbiome is an area of increased interest. The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of the coronavirus disease 2019 pandemic, on the nasopharyngeal microbiome among individuals living with HIV is not fully characterized. Here, we describe the nasopharyngeal microbiome before, during, and after SARS-CoV-2 infection in a longitudinal cohort of Kenyan women (21 living with HIV and 14 HIV-uninfected) and their children (18 HIV-exposed, uninfected and 7 HIV-unexposed, uninfected) between September 2021 and March 2022. We show using genomic epidemiology that mother and child dyads were infected with the same strain of the SARS-CoV-2 Omicron variant that spread rapidly across Kenya. We used metagenomic sequencing to characterize the nasopharyngeal microbiome of 20 women and children infected with SARS-CoV-2, six children negative for SARS-CoV-2 but experiencing respiratory symptoms, and 34 timepoint-matched SARS-CoV-2-negative mothers and children. Since individuals were sampled longitudinally before and after SARS-CoV-2 infection, we could characterize the short- (within a week of infection) and longer- (average of 38 days post-infection) term impact of SARS-CoV-2 infection on the nasopharyngeal microbiome. We found that mothers and children had significantly different microbiome composition and bacterial load (P-values < 0.0001). In both mothers and children, the nasopharyngeal microbiome did not differ before and after SARS-CoV-2 infection, regardless of HIV exposure status. Our results indicate that the nasopharyngeal microbiome is resilient to SARS-CoV-2 infection and was not significantly modified by HIV. IMPORTANCE The nasopharyngeal microbiome plays an important role in human health. The degree of impact that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has on the nasopharyngeal microbiome varies among studies and may be influenced by diverse SARS-CoV-2 variants and variations in the microbiome between individuals. Our results show that the nasopharyngeal microbiome was not altered substantially by SARS-CoV-2 infection nor by HIV infection in mothers or HIV exposure in children. Our findings highlight the resilience of the nasopharyngeal microbiome after SARS-CoV-2 infection. These findings advance our understanding of the nasopharyngeal microbiome and its interactions with viral infections.
Collapse
Affiliation(s)
- Ayla Žuštra
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Victoria R Leonard
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - LaRinda A Holland
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - James C Hu
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Tianchen Mu
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Steven C Holland
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Lily I Wu
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Emily R Begnel
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Ednah Ojee
- Department of Paediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - Bhavna H Chohan
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Kenya Medical Research Institute, Nairobi, Kenya
| | - Barbra A Richardson
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - John Kinuthia
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Research and Programs, Kenyatta National Hospital, Nairobi, Kenya
| | - Dalton Wamalwa
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Research and Programs, Kenyatta National Hospital, Nairobi, Kenya
| | - Jennifer Slyker
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Dara A Lehman
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Soren Gantt
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Centre de Recherche du CHU St-Justine, Montréal, Québec, Canada
| | - Efrem S Lim
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- National Centre for Infectious Diseases, Singapore, Singapore
| |
Collapse
|
2
|
Wang Z, Gao X, Ji H, Shao M, Ni B, Fei S, Sun L, Chen H, Tan R, Du M, Gu M. Characterization of gut microbiota and metabolites in renal transplant recipients during COVID-19 and prediction of one-year allograft function. J Transl Med 2025; 23:420. [PMID: 40211390 PMCID: PMC11987245 DOI: 10.1186/s12967-025-06090-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/06/2025] [Indexed: 04/13/2025] Open
Abstract
BACKGROUND The gut-lung-kidney axis is pivotal in immune-related kidney diseases, with gut dysbiosis potentially exacerbating the severity of Coronavirus disease 2019 (COVID-19) in recipients of kidney transplant. This study aimed to characterize the gut microbiome and metabolome in renal transplant recipients with COVID-19 pneumonia over a one-year follow-up period. METHODS A total of 30 renal transplant recipients were enrolled, comprising 17 with COVID-19 pneumonia, six with mild COVID-19, and seven without COVID-19. Fecal samples were collected at the onset of infection for gut microbiome and metabolome analysis. Generalized Estimating Equations (GEE) model and Latent Class Growth Mixed Model (LCGMM) were employed to dissect the relationships among clinical characteristics, laboratory tests, and gut microbiota and metabolites. RESULTS Four microbial phyla (Deferribacteres, TM7, Fusobacteria, and Gemmatimonadetes) and 13 genera were significantly enriched across three recipients groups, correlating with baseline inflammatory response and allograft function. Additionally, 52 differentially expressed metabolites were identified, with seven significantly correlating with eight altered microbiota genera. LCGMM revealed two distinct classes of recipients, with those suffering from COVID-19 pneumonia exhibiting significantly elevated serum creatinine (Scr) trajectories over the one-year period. GEE further identified 12 genera and 181 metabolites closely associated with these trajectories; a multivariable model incorporating gut metabolites of 1-Caffeoylquinic Acid and PMK was found to effectively predict one-year allograft function. CONCLUSIONS Our study indicates a possible interaction between the composition of the gut microbiota and metabolites community and COVID-19 in renal transplant recipients, particularly in relation to disease severity and the prediction of one-year allograft function.
Collapse
Affiliation(s)
- Zijie Wang
- Department of Urology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, China
| | - Xiang Gao
- Department of Urology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, China
| | - Hongsheng Ji
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- Departments of Environmental Genomics and Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Ming Shao
- Departments of Environmental Genomics and Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Bin Ni
- Department of Urology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, China
| | - Shuang Fei
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Li Sun
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hao Chen
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ruoyun Tan
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Mulong Du
- Department of Urology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, China.
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
- Departments of Environmental Genomics and Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Min Gu
- Department of Urology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, China.
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
3
|
Jiya N, Sanap A, Srivastava S, Kheur S, Sharma A. Microbial Signatures in Oral Submucous Fibrosis and Oral Squamous Cell Carcinoma: Implications of Tobacco and Betel Quid Consumption. J Oral Biosci 2025:100656. [PMID: 40127779 DOI: 10.1016/j.job.2025.100656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/18/2025] [Accepted: 03/22/2025] [Indexed: 03/26/2025]
Abstract
OBJECTIVES We compared the oral bacteriome and mycobiome of patients with oral submucosal fibrosis (OSMF) and oral squamous cell carcinoma (OSCC) who consumed tobacco/betel quid with those of healthy individuals. METHODS Targeted amplicon sequencing coupled with bioinformatics analysis was performed to assess the bacterial and fungal communities in the oral cavity. RESULTS Distinct variations in the microbial communities were observed among the healthy, OSMF, and OSCC samples. Firmicutes was dominant at the phylum level: 21.71%, 21.73%, and 24.56% in the healthy control, OSMF, and OSCC samples, respectively. Lactobacillus (9.6%, 9.04%, and 8.9%) and Streptococcus (7.3%, 7.55%, and 6.1%) showed minimal variation among the healthy, OSMF, and OSCC samples, respectively, at the genus level. Rothia (2.73%) and Veillonella (1.52%) were prominent in those with OSMF, and Gemella (2.2%) and Fusobacterium (1.5%) were prominent in the OSCC samples. The oral mycobiome was dominated by Ascomycota and Basidiomycota in all samples, with Ascomycota accounting for 18.95%, 16.05%, and 15.87%, and Basidiomycota for 13.55%, 15.79%, and 15.96% in the OSCC, OSMF, and healthy samples, respectively. PICRUSt2 analysis revealed the key metabolic pathways linked to disease and xenobiotic degradation, related to the harmful compounds from tobacco, highlighting the clinical relevance of tobacco and betel quid associated microbial communities as well as the differences between OSCC and OSMF. CONCLUSIONS Microbial signatures associated with OSCC and OSMF could serve as biomarkers for early cancer detection. These findings highlight how tobacco and betel quid consumption promote cancer and alter the oral microbome.
Collapse
Affiliation(s)
- Namrata Jiya
- National Centre for Microbial Resource, BRIC-National Centre for Cell Science-411007, Pune, India
| | - Avinash Sanap
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| | - Shruti Srivastava
- National Centre for Microbial Resource, BRIC-National Centre for Cell Science-411007, Pune, India
| | - Supriya Kheur
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India.
| | - Avinash Sharma
- National Centre for Microbial Resource, BRIC-National Centre for Cell Science-411007, Pune, India.
| |
Collapse
|
4
|
Pérez-Sanz F, Tyrkalska SD, Álvarez-Santacruz C, Moreno-Docón A, Mulero V, Cayuela ML, Candel S. Age- and disease severity-associated changes in the nasopharyngeal microbiota of COVID-19 patients. iScience 2025; 28:112091. [PMID: 40124494 PMCID: PMC11930106 DOI: 10.1016/j.isci.2025.112091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/14/2025] [Accepted: 02/19/2025] [Indexed: 03/25/2025] Open
Abstract
Although many studies have associated changes in the nasopharyngeal microbiota to patient's susceptibility to COVID-19, their results are highly variable and contradictory. Addressing the limitations in previous research responsible for that variability, this study uses 16S rRNA gene sequencing to analyze the nasopharyngeal microbiota of 395 subjects, 117 controls, and 278 COVID-19 patients, of different age groups that cover the entire lifespan and across varying disease severities. This revealed that bacterial alpha diversity decreases progressively throughout life but only in severely ill COVID-19 patients, in whose nasopharynx, moreover, several opportunistic pathogen bacterial genera are overrepresented. Notably, Scardovia wiggsiae appears only in severe COVID-19 patients over 60 years of age, suggesting its potential utility as a COVID-19 severity biomarker in the elderly, who are the most susceptible individuals to suffer from serious forms of the disease. Thus, our results provide valuable insights into age-associated dynamics within nasopharyngeal microbiota during severe COVID-19.
Collapse
Affiliation(s)
- Fernando Pérez-Sanz
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, Murcia 30120, Spain
| | - Sylwia D. Tyrkalska
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, Murcia 30120, Spain
- Grupo de Inmunidad, Inflamación y Cáncer, Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Murcia 30100, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Carmen Álvarez-Santacruz
- Servicio de Otorrinolaringología, Hospital de la Vega Lorenzo Guirao, Cieza 30530, Murcia, Spain
| | - Antonio Moreno-Docón
- Servicio de Microbiología, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia 30120, Spain
| | - Victoriano Mulero
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, Murcia 30120, Spain
- Grupo de Inmunidad, Inflamación y Cáncer, Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Murcia 30100, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - María L. Cayuela
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, Murcia 30120, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid 28029, Spain
- Grupo de Telomerasa, Cáncer y Envejecimiento, Servicio de Cirugía, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia 30120, Spain
| | - Sergio Candel
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, Murcia 30120, Spain
- Grupo de Inmunidad, Inflamación y Cáncer, Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Murcia 30100, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid 28029, Spain
| |
Collapse
|
5
|
Martin-Castaño B, Diez-Echave P, García-García J, Hidalgo-García L, Ruiz-Malagon AJ, Molina-Tijeras JA, Rodríguez-Sojo MJ, Redruello-Romero A, Martínez-Zaldívar M, Mota E, Cobo F, Díaz-Villamarin X, Alvarez-Estevez M, García F, Morales-García C, Merlos S, Garcia-Flores P, Colmenero-Ruiz M, Hernández-Quero J, Nuñez M, Rodriguez-Cabezas ME, Carazo A, Martin J, Moron R, Rodríguez Nogales A, Galvez J. The relationship between gut and nasopharyngeal microbiome composition can predict the severity of COVID-19. eLife 2025; 13:RP95292. [PMID: 39963971 PMCID: PMC11835386 DOI: 10.7554/elife.95292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a respiratory illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that displays great variability in clinical phenotype. Many factors have been described to be correlated with its severity, and microbiota could play a key role in the infection, progression, and outcome of the disease. SARS-CoV-2 infection has been associated with nasopharyngeal and gut dysbiosis and higher abundance of opportunistic pathogens. To identify new prognostic markers for the disease, a multicentre prospective observational cohort study was carried out in COVID-19 patients divided into three cohorts based on symptomatology: mild (n = 24), moderate (n = 51), and severe/critical (n = 31). Faecal and nasopharyngeal samples were taken, and the microbiota was analysed. Linear discriminant analysis identified Mycoplasma salivarium, Prevotella dentalis, and Haemophilus parainfluenzae as biomarkers of severe COVID-19 in nasopharyngeal microbiota, while Prevotella bivia and Prevotella timonensis were defined in faecal microbiota. Additionally, a connection between faecal and nasopharyngeal microbiota was identified, with a significant ratio between P. timonensis (faeces) and P. dentalis and M. salivarium (nasopharyngeal) abundances found in critically ill patients. This ratio could serve as a novel prognostic tool for identifying severe COVID-19 cases.
Collapse
Affiliation(s)
- Benita Martin-Castaño
- Centro de Salud Las Gabias, Distrito Granada-MetropolitanoGranadaSpain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
| | - Patricia Diez-Echave
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of GranadaGranadaSpain
| | - Jorge García-García
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of GranadaGranadaSpain
- Servicio Microbiología, Hospital Universitario Clínico San CecilioGranadaSpain
| | - Laura Hidalgo-García
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of GranadaGranadaSpain
| | - Antonio Jesús Ruiz-Malagon
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of GranadaGranadaSpain
| | - José Alberto Molina-Tijeras
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of GranadaGranadaSpain
| | - María Jesús Rodríguez-Sojo
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of GranadaGranadaSpain
| | | | - Margarita Martínez-Zaldívar
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
- Centro de Salud “Salvador Caballero”, Distrito Granada-MetropolitanoGranadaSpain
| | - Emilio Mota
- Centro de Salud “Salvador Caballero”, Distrito Granada-MetropolitanoGranadaSpain
| | - Fernando Cobo
- Servicio Microbiología, Hospital Universitario Virgen de las NievesGranadaSpain
| | | | - Marta Alvarez-Estevez
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
- Servicio Microbiología, Hospital Universitario Clínico San CecilioGranadaSpain
- CIBER de Enfermedades Infecciosas (CIBER-Infecc), Instituto de Salud Carlos IIIMadridSpain
| | - Federico García
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
- Servicio Microbiología, Hospital Universitario Clínico San CecilioGranadaSpain
- CIBER de Enfermedades Infecciosas (CIBER-Infecc), Instituto de Salud Carlos IIIMadridSpain
| | | | - Silvia Merlos
- Respiratory Medicine Department, Hospital Universitario Virgen de las NievesGranadaSpain
| | - Paula Garcia-Flores
- Respiratory Medicine Department, Hospital Universitario Virgen de las NievesGranadaSpain
| | - Manuel Colmenero-Ruiz
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
- Servicio de Medicina Intensiva, Hospital Universitario Clínico San CecilioGranadaSpain
| | - José Hernández-Quero
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
- Servicio de Enfermedades Infecciosas, Hospital Universitario Clínico San CecilioGranadaSpain
| | - Maria Nuñez
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
- Servicio Farmacia Hospitalaria, Hospital Universitario Clínico San CecilioGranadaSpain
- CIBER de Epidemiología y Salud Pública (CIBER-ESP), Instituto de Salud Carlos IIIMadridSpain
| | - Maria Elena Rodriguez-Cabezas
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of GranadaGranadaSpain
| | - Angel Carazo
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
- Servicio Microbiología, Hospital Universitario Clínico San CecilioGranadaSpain
| | - Javier Martin
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra, CSICGranadaSpain
| | - Rocio Moron
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
- Servicio Farmacia Hospitalaria, Hospital Universitario Clínico San CecilioGranadaSpain
| | - Alba Rodríguez Nogales
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of GranadaGranadaSpain
| | - Julio Galvez
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of GranadaGranadaSpain
- CIBER de Enfermedades Hepáticas y Digestivas (CIBER-EHD), Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
6
|
Madroñero LJ, Calvo EP, Coronel-Ruiz C, Velandia-Romero ML, Calderón-Peláez MA, Arturo JA, Franco-Rodríguez AP, Gutiérrez-Pérez R, López LS, Delgado FG, Camacho-Ortega SJ, Bernal-Cepeda LJ, Bohórquez SP, Castellanos JE. Pathogenic and periodontal bacteria may contribute to the fatal outcome of critically ill elderly COVID-19 patients. Sci Rep 2025; 15:4490. [PMID: 39915668 PMCID: PMC11802917 DOI: 10.1038/s41598-025-88518-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 01/28/2025] [Indexed: 02/09/2025] Open
Abstract
Some studies suggest that the respiratory microbiome of COVID-19 patients differs from that of healthy individuals, infected patients may have reduced diversity and increased levels of opportunistic bacteria, however, the role of the microbiome in fatal SARS-CoV-2 infection remains poorly understood. Our study aimed to determine whether there are differences in the respiratory microbiome between patients who recovered from COVID-19 and those who died, by characterizing the bacterial communities of both groups. A total of 24 patients who recovered from COVID-19 and 24 who died were included in the study, patient data were analyzed for signs, symptoms and clinical variables. Airway samples were collected and the 16 S rRNA variable regions V3-V4 were amplified and sequenced using the Illumina MiSeq platform. Elevated levels of blood urea nitrogen, creatinine and lactate dehydrogenase, and higher frequencies of cardiovascular disease, diabetes mellitus and renal disease were observed in patients with a fatal outcome. Compared to patients who recovered from COVID-19, patients who died exhibited a microbiome enriched in periodontal and pathogenic bacteria such as Klebsiella pneumoniae. Our results highlighted a dual relationship between SARS CoV-2 infection and an exacerbated periodontopathogen-induced immune response.
Collapse
Affiliation(s)
- L Johana Madroñero
- Grupo de Virología, Vicerrectoría de Investigaciones, Universidad El Bosque, Bogotá, Colombia
| | - Eliana P Calvo
- Grupo de Virología, Vicerrectoría de Investigaciones, Universidad El Bosque, Bogotá, Colombia.
| | - Carolina Coronel-Ruiz
- Grupo de Virología, Vicerrectoría de Investigaciones, Universidad El Bosque, Bogotá, Colombia
| | | | | | - Jhann A Arturo
- Grupo de Virología, Vicerrectoría de Investigaciones, Universidad El Bosque, Bogotá, Colombia
| | | | | | - Lady S López
- Grupo de Virología, Vicerrectoría de Investigaciones, Universidad El Bosque, Bogotá, Colombia
| | - Félix G Delgado
- Grupo de Virología, Vicerrectoría de Investigaciones, Universidad El Bosque, Bogotá, Colombia
| | - Sigrid J Camacho-Ortega
- Grupo de Virología, Vicerrectoría de Investigaciones, Universidad El Bosque, Bogotá, Colombia
| | - Lilia J Bernal-Cepeda
- Grupo de Virología, Vicerrectoría de Investigaciones, Universidad El Bosque, Bogotá, Colombia
| | - Sonia P Bohórquez
- Grupo de Virología, Vicerrectoría de Investigaciones, Universidad El Bosque, Bogotá, Colombia
| | - Jaime E Castellanos
- Grupo de Virología, Vicerrectoría de Investigaciones, Universidad El Bosque, Bogotá, Colombia
| |
Collapse
|
7
|
Hao Y, Lee YJ, Yap K, Samuel M, Chow VT. Comparison of Respiratory Microbiomes in Influenza Versus Other Respiratory Infections: Systematic Review and Analysis. Int J Mol Sci 2025; 26:778. [PMID: 39859492 PMCID: PMC11765715 DOI: 10.3390/ijms26020778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Studies have indicated the potential importance of the human nasal and respiratory microbiomes in health and disease. However, the roles of these microbiomes in the pathogenesis of influenza and its complications are not fully understood. Therefore, the objective of this systematic review and analysis is to identify the patterns of nasal and respiratory microbiome dysbiosis and to define the unique signature bacteria associated with influenza compared with other respiratory tract infections. We compared the respiratory microbiome composition between influenza patients and healthy controls; across different influenza severities; in adult versus pediatric influenza patients; as well as influenza versus other respiratory infections. The desired outcomes include the signature bacteria in each cohort and the Shannon index to reflect the alpha diversity. Of the 2269 articles identified, 31 studies fulfilled the inclusion criteria. These studies investigated the respiratory tract microbiomes of patients with influenza, COVID-19, pneumonia, other respiratory infections, and chronic rhinosinusitis (CRS). Our review revealed that the phylum Firmicutes and Actinobacteria, genus Actinomyces, Streptococcus and Granulicatella, and species Neisseria are more prominent in severe influenza than mild to moderate influenza. Reduced microbiome alpha diversity is noted in influenza patients compared to healthy controls. There are some similarities and differences between the signature bacteria in pediatric and adult influenza patients, e.g., Streptococcus is common in both age groups, whereas Pseudomonas is associated with adults. Intriguingly, there is a common predominance of Streptococcus and Firmicutes among influenza and pneumonia patients. COVID-19 patients exhibit an increased abundance of Firmicutes as well as Pseudomonas. In CRS patients, Proteobacteria and Haemophilus are found in high abundance. This review highlights some similarities and differences in the respiratory microbiomes and their signature organisms in influenza of varying severity and in different age groups compared with other respiratory infections. The dysbiosis of the respiratory microbiomes in these respiratory infections enhances our understanding of their underlying pathogenic mechanisms.
Collapse
Affiliation(s)
- Yunrui Hao
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; (Y.H.); (Y.-J.L.); (K.Y.); (M.S.)
| | - Ying-Jou Lee
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; (Y.H.); (Y.-J.L.); (K.Y.); (M.S.)
| | - Kihan Yap
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; (Y.H.); (Y.-J.L.); (K.Y.); (M.S.)
| | - Miny Samuel
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; (Y.H.); (Y.-J.L.); (K.Y.); (M.S.)
| | - Vincent T. Chow
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| |
Collapse
|
8
|
Li H, Wen J, Zhang X, Dai Z, Liu M, Zhang H, Zhang N, Lei R, Luo P, Zhang J. Large-scale genetic correlation studies explore the causal relationship and potential mechanism between gut microbiota and COVID-19-associated risks. BMC Microbiol 2024; 24:292. [PMID: 39103761 PMCID: PMC11299294 DOI: 10.1186/s12866-024-03423-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/10/2024] [Indexed: 08/07/2024] Open
Abstract
Recent observational studies suggest that gut microorganisms are involved in the onset and development of coronavirus disease 2019 (COVID-19), but the potential causal relationship behind them remains unclear. Exposure data were derived from the MiBioGen consortium, encompassing 211 gut microbiota (n = 18,340). The outcome data were sourced from the COVID-19 host genetics initiative (round 7), including COVID-19 severity (n = 1,086,211), hospitalization (n = 2,095,324), and susceptibility (n = 2,597,856). First, a two-sample Mendelian randomization (TSMR) was performed to investigate the causal effect between gut microbiota and COVID-19 outcomes. Second, a two-step MR was used to explore the potential mediators and underlying mechanisms. Third, several sensitivity analyses were performed to verify the robustness of the results. Five gut microbes were found to have a potential causality with COVID-19 severity, namely Betaproteobacteria (beta = 0.096, p = 0.034), Christensenellaceae (beta = -0.092, p = 0.023), Adlercreutzia (beta = 0.072, p = 0.048), Coprococcus 1 (beta = 0.089, p = 0.032), Eisenbergiella (beta = 0.064, p = 0.024). Seven gut microbes were found to have a potential causality with COVID-19 hospitalization, namely Victivallaceae (beta = 0.037, p = 0.028), Actinomyces (beta = 0.047, p = 0.046), Coprococcus 2 (beta = -0.061, p = 0.031), Dorea (beta = 0.067, p = 0.016), Peptococcus (beta = -0.035, p = 0.049), Rikenellaceae RC9 gut group (beta = 0.034, p = 0.018), and Proteobacteria (beta = -0.069, p = 0.035). Two gut microbes were found to have a potential causality with COVID-19 susceptibility, namely Holdemanella (beta = -0.024, p = 0.023) and Lachnospiraceae FCS020 group (beta = 0.026, p = 0.027). Multi-omics mediation analyses indicate that numerous plasma proteins, metabolites, and immune factors are critical mediators linking gut microbiota with COVID-19 outcomes. Sensitivity analysis suggested no significant heterogeneity or pleiotropy. These findings revealed the causal correlation and potential mechanism between gut microbiota and COVID-19 outcomes, which may improve our understanding of the gut-lung axis in the etiology and pathology of COVID-19 in the future.
Collapse
Affiliation(s)
- He Li
- The Animal Laboratory Center, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jie Wen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hypothalamic Pituitary Research Centre, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiangbin Zhang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hypothalamic Pituitary Research Centre, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Mingren Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hypothalamic Pituitary Research Centre, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Ruoyan Lei
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Jingwei Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- Hypothalamic Pituitary Research Centre, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
9
|
Atencio LA, Quintero IJ, Almanza A, Eskildsen G, Sánchez-Gallego J, Herrera M, Fernández-Marín H, Loaiza JR, Mejía LC. Insights into the Naso-Oropharyngeal Bacterial Composition in Suspected SARS-CoV-2 Cases. Pathogens 2024; 13:615. [PMID: 39204216 PMCID: PMC11357247 DOI: 10.3390/pathogens13080615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 09/03/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was the causative agent of the coronavirus disease 2019 (COVID-19) pandemic. While research on COVID-19 has mainly focused on its epidemiology, pathogenesis, and treatment, studies on the naso-oropharyngeal microbiota have emerged in the last few years as an overlooked area of research. Here, we analyzed the bacterial community composition of the naso-oropharynx in 50 suspected SARS-CoV-2 cases (43 detected, 7 not detected) from Veraguas province (Panama) distributed across five age categories. Statistical analysis revealed no significant differences (p < 0.05) in bacterial alpha and beta diversities between the groups categorized by SARS-CoV-2 test results, age, or patient status. The genera Corynebacterium, Staphylococcus, Prevotella, Streptococcus, and Tepidiphilus were the most abundant in both detected and not-detected SARS-CoV-2 group. The linear discriminant analysis effect size (LEfSe) for biomarker exploration indicated that Veillonella and Prevotella were enriched in detected and hospitalized patients with SARS-CoV-2 relative to non-detected patients, while Thermoanaerobacterium and Haemophilus were enriched in non-detected patients with SARS-CoV-2. The results also indicated that the genus Corynebacterium was found to decrease in patients with detected SARS-CoV-2 relative to those with non-detected SARS-CoV-2. Understanding the naso-oropharyngeal microbiota provides insights into the diversity, composition, and resilience of the microbial community in patients with SARS-CoV-2.
Collapse
Affiliation(s)
- Librada A. Atencio
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT), Clayton, Panama City 0843-01103, Panama; (L.A.A.); (I.J.Q.); (A.A.); (H.F.-M.)
| | - Indira J. Quintero
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT), Clayton, Panama City 0843-01103, Panama; (L.A.A.); (I.J.Q.); (A.A.); (H.F.-M.)
| | - Alejandro Almanza
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT), Clayton, Panama City 0843-01103, Panama; (L.A.A.); (I.J.Q.); (A.A.); (H.F.-M.)
| | - Gilberto Eskildsen
- Departamento de Microbiología Humana, Facultad de Medicina, Universidad de Panamá, Panama City 0819-07289, Panama;
| | - Joel Sánchez-Gallego
- Department of Marine Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695, USA;
- Coiba Scientific Station (COIBA AIP), Gustavo Lara Street, Bld. 145B, City of Knowledge, Clayton, Panama City 0843-01853, Panama
| | | | - Hermógenes Fernández-Marín
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT), Clayton, Panama City 0843-01103, Panama; (L.A.A.); (I.J.Q.); (A.A.); (H.F.-M.)
- Sistema Nacional de Investigación (SNI), Secretaría Nacional de Ciencia, Tecnología, e Innovación (SENACYT), Panama City 0816-02852, Panama
| | - José R. Loaiza
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT), Clayton, Panama City 0843-01103, Panama; (L.A.A.); (I.J.Q.); (A.A.); (H.F.-M.)
- Sistema Nacional de Investigación (SNI), Secretaría Nacional de Ciencia, Tecnología, e Innovación (SENACYT), Panama City 0816-02852, Panama
- Smithsonian Tropical Research Institute, Panama City 0843-03092, Panama
| | - Luis C. Mejía
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT), Clayton, Panama City 0843-01103, Panama; (L.A.A.); (I.J.Q.); (A.A.); (H.F.-M.)
- Sistema Nacional de Investigación (SNI), Secretaría Nacional de Ciencia, Tecnología, e Innovación (SENACYT), Panama City 0816-02852, Panama
- Smithsonian Tropical Research Institute, Panama City 0843-03092, Panama
- Departamento de Genética y Biología Molecular, Universidad de Panamá, Estafeta Universitaria Apartado 3366, Zona 4, Panama City 0819-07289, Panama
| |
Collapse
|
10
|
Aljabr W, Dandachi I, Abbas B, Karkashan A, Al-Amari A, AlShahrani D. Metagenomic next-generation sequencing of nasopharyngeal microbiota in COVID-19 patients with different disease severities. Microbiol Spectr 2024; 12:e0416623. [PMID: 38557102 PMCID: PMC11237758 DOI: 10.1128/spectrum.04166-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/24/2024] [Indexed: 04/04/2024] Open
Abstract
Throughout the COVID-19 pandemic, extensive research has been conducted on SARS-COV-2 to elucidate its genome, prognosis, and possible treatments. However, few looked at the microbial markers that could be explored in infected patients and that could predict possible disease severity. The aim of this study is to compare the nasopharyngeal microbiota of healthy subjects, moderate, under medication, and recovered SARS-COV-2 patients. In 2020, 38 nasopharyngeal swabs were collected from 6 healthy subjects, 14 moderates, 10 under medication and 8 recovered SARS-COV-2 patients at the Prince Mohammed Bin Abdulaziz Hospital Riyadh. Metatranscriptomic sequencing was performed using Minion Oxford nanopore sequencing. No significant difference in alpha as well as beta diversity was observed among all four categories. Nevertheless, we have found that Streptococcus spp including Streptococcus pneumoniae and Streptococcus thermophilus were among the top 15 most abundant species detected in COVID-19 patients but not in healthy subjects. The genus Staphylococcus was found to be associated with COVID-19 patients compared to healthy subjects. Furthermore, the abundance of Leptotrichia was significantly higher in healthy subjects compared to recovered patients. Corynebacterium on the other hand, was associated with under-medication patients. Taken together, our study revealed no differences in the overall microbial composition between healthy subjects and COVID-19 patients. Significant differences were seen only at specific taxonomic level. Future studies should explore the nasopharyngeal microbiota between controls and COVID-19 patients while controlling for confounders including age, gender, and comorbidities; since these latter could affect the results and accordingly the interpretation.IMPORTANCEIn this work, no significant difference in the microbial diversity was seen between healthy subjects and COVID-19 patients. Changes in specific taxa including Leptotrichia, Staphylococcus, and Corynebacterium were only observed. Leptotrichia was significantly higher in healthy subjects, whereas Staphylococcus and Corynebacterium were mostly associated with COVID-19, and specifically with under-medication SARS-COV-2 patients, respectively. Although the COVID-19 pandemic has ended, the SARS-COV-2 virus is continuously evolving and the emergence of new variants causing more severe disease should be always kept in mind. Microbial markers in SARS-COV-2 infected patients can be useful in the early suspicion of the disease, predicting clinical outcomes, framing hospital and intensive care unit admission as well as, risk stratification. Data on which microbial marker to tackle is still controversial and more work is needed, hence the importance of this study.
Collapse
Affiliation(s)
- Waleed Aljabr
- Research Center, King Fahad Medical City, Riyadh, Saudi Arabia
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Iman Dandachi
- Research Center, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Basma Abbas
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Alaa Karkashan
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Ahod Al-Amari
- Department of Basic Medical Sciences, College of Medicine, Dar Al-Uloom University, Riyadh, Saudi Arabia
| | - Dayel AlShahrani
- Pediatric infectious diseases, King Fahad Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Quinn-Bohmann N, Freixas-Coutin JA, Seo J, Simmons R, Diener C, Gibbons SM. Meta-analysis of the human upper respiratory tract microbiome reveals robust taxonomic associations with health and disease. BMC Biol 2024; 22:93. [PMID: 38654335 PMCID: PMC11040984 DOI: 10.1186/s12915-024-01887-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND The human upper respiratory tract (URT) microbiome, like the gut microbiome, varies across individuals and between health and disease states. However, study-to-study heterogeneity in reported case-control results has made the identification of consistent and generalizable URT-disease associations difficult. RESULTS In order to address this issue, we assembled 26 independent 16S rRNA gene amplicon sequencing data sets from case-control URT studies, with approximately 2-3 studies per respiratory condition and ten distinct conditions covering common chronic and acute respiratory diseases. We leveraged the healthy control data across studies to investigate URT associations with age, sex, and geographic location, in order to isolate these associations from health and disease states. CONCLUSIONS We found several robust genus-level associations, across multiple independent studies, with either health or disease status. We identified disease associations specific to a particular respiratory condition and associations general to all conditions. Ultimately, we reveal robust associations between the URT microbiome, health, and disease, which hold across multiple studies and can help guide follow-up work on potential URT microbiome diagnostics and therapeutics.
Collapse
Affiliation(s)
- Nick Quinn-Bohmann
- Institute for Systems Biology, Seattle, WA, 98109, USA.
- Molecular Engineering Graduate Program, University of Washington, Seattle, WA, 98195, USA.
| | | | - Jin Seo
- Reckitt Health US LLC, 1 Philips Pkwy, Montvale, NJ, 07645, USA
| | - Ruth Simmons
- Reckitt Benckiser Healthcare Ltd, 105 Bath Road, Slough, Berkshire, SL1 3UH, UK
| | | | - Sean M Gibbons
- Institute for Systems Biology, Seattle, WA, 98109, USA.
- Molecular Engineering Graduate Program, University of Washington, Seattle, WA, 98195, USA.
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA.
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA.
- eScience Institute, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
12
|
Žuštra A, Leonard VR, Holland LA, Hu JC, Mu T, Holland SC, Wu LI, Begnel ER, Ojee E, Chohan BH, Richardson BA, Kinuthia J, Wamalwa D, Slyker J, Lehman DA, Gantt S, Lim ES. Longitudinal dynamics of the nasopharyngal microbiome in response to SARS-CoV-2 Omicron variant and HIV infection in Kenyan women and their infants. RESEARCH SQUARE 2024:rs.3.rs-4257641. [PMID: 38699359 PMCID: PMC11065085 DOI: 10.21203/rs.3.rs-4257641/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
The nasopharynx and its microbiota are implicated in respiratory health and disease. The interplay between viral infection and the nasopharyngeal microbiome is an area of increased interest and of clinical relevance. The impact of SARS-CoV-2, the etiological agent of the Coronavirus Disease 2019 (COVID-19) pandemic, on the nasopharyngeal microbiome, particularly among individuals living with HIV, is not fully characterized. Here we describe the nasopharyngeal microbiome before, during and after SARS-CoV-2 infection in a longitudinal cohort of Kenyan women (21 living with HIV and 14 HIV-uninfected) and their infants (18 HIV-exposed, uninfected and 18 HIV-unexposed, uninfected), followed between September 2021 through March 2022. We show using genomic epidemiology that mother and infant dyads were infected with the same strain of the SARS-CoV-2 Omicron variant that spread rapidly across Kenya. Additionally, we used metagenomic sequencing to characterize the nasopharyngeal microbiome of 20 women and infants infected with SARS-CoV-2, 6 infants negative for SARS-CoV-2 but experiencing respiratory symptoms, and 34 timepoint matched SARS-CoV-2 negative mothers and infants. Since individuals were sampled longitudinally before and after SARS-CoV-2 infection, we could characterize the short- and long-term impact of SARS-CoV-2 infection on the nasopharyngeal microbiome. We found that mothers and infants had significantly different microbiome composition and bacterial load (p-values <.0001). However, in both mothers and infants, the nasopharyngeal microbiome did not differ before and after SARS-CoV-2 infection, regardless of HIV-exposure status. Our results indicate that the nasopharyngeal microbiome is resilient to SARS-CoV-2 infection and was not significantly modified by HIV.
Collapse
|
13
|
Alqedari H, Altabtbaei K, Espinoza JL, Bin-Hasan S, Alghounaim M, Alawady A, Altabtabae A, AlJamaan S, Devarajan S, AlShammari T, Ben Eid M, Matsuoka M, Jang H, Dupont CL, Freire M. Host-microbiome associations in saliva predict COVID-19 severity. PNAS NEXUS 2024; 3:pgae126. [PMID: 38617584 PMCID: PMC11010653 DOI: 10.1093/pnasnexus/pgae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/07/2024] [Indexed: 04/16/2024]
Abstract
Established evidence indicates that oral microbiota plays a crucial role in modulating host immune responses to viral infection. Following severe acute respiratory syndrome coronavirus 2, there are coordinated microbiome and inflammatory responses within the mucosal and systemic compartments that are unknown. The specific roles the oral microbiota and inflammatory cytokines play in the pathogenesis of coronavirus disease 2019 (COVID-19) are yet to be explored. Here, we evaluated the relationships between the salivary microbiome and host parameters in different groups of COVID-19 severity based on their oxygen requirement. Saliva and blood samples (n = 80) were collected from COVID-19 and from noninfected individuals. We characterized the oral microbiomes using 16S ribosomal RNA gene sequencing and evaluated saliva and serum cytokines and chemokines using multiplex analysis. Alpha diversity of the salivary microbial community was negatively associated with COVID-19 severity, while diversity increased with health. Integrated cytokine evaluations of saliva and serum showed that the oral host response was distinct from the systemic response. The hierarchical classification of COVID-19 status and respiratory severity using multiple modalities separately (i.e. microbiome, salivary cytokines, and systemic cytokines) and simultaneously (i.e. multimodal perturbation analyses) revealed that the microbiome perturbation analysis was the most informative for predicting COVID-19 status and severity, followed by the multimodal. Our findings suggest that oral microbiome and salivary cytokines may be predictive of COVID-19 status and severity, whereas atypical local mucosal immune suppression and systemic hyperinflammation provide new cues to understand the pathogenesis in immunologically compromised populations.
Collapse
Affiliation(s)
- Hend Alqedari
- Department of Public Health and Community Service, Tufts University School of Dental Medicine, 1 Kneeland Street, Boston, MA 02111, USA
- Dasman Diabetes Institute, 1180 Dasman, 9XQV+V9 Kuwait City, Kuwait
| | - Khaled Altabtbaei
- Faculty of Medicine and Dentistry, School of Dentistry, University of Alberta, Edmonton, AB T6G 2L7, Canada
| | - Josh L Espinoza
- Department of Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Saadoun Bin-Hasan
- Department of Pediatrics, Farwaniyah Hospital, Ministry of Health, 7XF4+WPJ Al Farwaniyah, Kuwait
| | - Mohammad Alghounaim
- Department of Pediatrics, Amiri Hospital, Ministry of Health, 9XQQ+42 Kuwait City, Kuwait
| | - Abdullah Alawady
- Department of Pediatrics, Farwaniyah Hospital, Ministry of Health, 7XF4+WPJ Al Farwaniyah, Kuwait
| | - Abdullah Altabtabae
- Department of Pediatrics, Farwaniyah Hospital, Ministry of Health, 7XF4+WPJ Al Farwaniyah, Kuwait
| | - Sarah AlJamaan
- Department of Pediatrics, Farwaniyah Hospital, Ministry of Health, 7XF4+WPJ Al Farwaniyah, Kuwait
| | | | | | - Mohammed Ben Eid
- Department of Pediatrics, Farwaniyah Hospital, Ministry of Health, 7XF4+WPJ Al Farwaniyah, Kuwait
| | - Michele Matsuoka
- Department of Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Hyesun Jang
- Department of Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Christopher L Dupont
- Department of Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Marcelo Freire
- Department of Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA 92037, USA
- Division of Infectious Diseases and Global Public Health Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
14
|
Romani L, Del Chierico F, Pane S, Ristori MV, Pirona I, Guarrasi V, Cotugno N, Bernardi S, Lancella L, Perno CF, Rossi P, Villani A, Campana A, Palma P, Putignani L. Exploring nasopharyngeal microbiota profile in children affected by SARS-CoV-2 infection. Microbiol Spectr 2024; 12:e0300923. [PMID: 38289047 PMCID: PMC10913489 DOI: 10.1128/spectrum.03009-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/12/2023] [Indexed: 03/06/2024] Open
Abstract
The relationship between COVID-19 and nasopharyngeal (NP) microbiota has been investigated mainly in the adult population. We explored the NP profile of children affected by COVID-19, compared to healthy controls (CTRLs). NP swabs of children with COVID-19, collected between March and September 2020, were investigated at the admission (T0), 72 h to 7 days (T1), and at the discharge (T2) of the patients. NP microbiota was analyzed by 16S rRNA targeted-metagenomics. Data from sequencing were investigated by QIIME 2.0 and PICRUSt 2. Multiple machine learning (ML) models were exploited to classify patients compared to CTRLs. The NP microbiota of COVID-19 patients (N = 71) was characterized by reduction of α-diversity compared to CTRLs (N = 59). The NP microbiota of COVID-19 cohort appeared significantly enriched in Streptococcus, Haemophilus, Staphylococcus, Veillonella, Enterococcus, Neisseria, Moraxella, Enterobacteriaceae, Gemella, Bacillus, and reduced in Faecalibacterium, Akkermansia, Blautia, Bifidobacterium, Ruminococcus, and Bacteroides, compared to CTRLs (FDR < 0.001). Exploiting ML models, Enterococcus, Pseudomonas, Streptococcus, Capnocytopagha, Tepidiphilus, Porphyromonas, Staphylococcus, and Veillonella resulted as NP microbiota biomarkers, in COVID-19 patients. No statistically significant differences were found comparing the NP microbiota profile of COVID-19 patients during the time-points or grouping patients on the basis of high, medium, and low viral load (VL). This evidence provides specific pathobiont signatures of the NP microbiota in pediatric COVID-19 patients, and the reduction of anaerobic protective commensals. Our data suggest that the NP microbiota may have a specific disease-related signature since infection onset without changes during disease progression, regardless of the SARS-CoV-2 VL. IMPORTANCE Since the beginning of pandemic, we know that children are less susceptible to severe COVID-19 disease. A potential role of the nasopharyngeal (NP) microbiota has been hypothesized but to date, most of the studies have been focused on adults. We studied the NP microbiota modifications in children affected by SARS-CoV-2 infection showing a specific NP microbiome profile, mainly composed by pathobionts and almost missing protective anaerobic commensals. Moreover, in our study, specific microbial signatures appear since the first days of infection independently from SARS-CoV-2 viral load.
Collapse
Affiliation(s)
- L. Romani
- Infectious Disease Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - F. Del Chierico
- Research Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - S. Pane
- Unit of Microbiomics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - M. V. Ristori
- Research Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - I. Pirona
- GenomeUp SRL, Viale Pasteur, Rome, Italy
| | | | - N. Cotugno
- Research Unit of Congenital and Perinatal Infections, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Systems Medicine, University of Rome ‘‘Tor Vergata’’, Rome, Italy
| | - S. Bernardi
- Infectious Disease Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - L. Lancella
- Infectious Disease Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - C. F. Perno
- Unit of Microbiology and Diagnostic Immunology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - P. Rossi
- Department of Systems Medicine, University of Rome ‘‘Tor Vergata’’, Rome, Italy
- Academic Department of Pediatrics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - A. Villani
- Pediatric Emergency Department and General Pediatrics, Bambino Gesù Children's Hospital Bambino Gesù, IRCCS, Rome, Italy
| | - A. Campana
- Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - P. Palma
- Research Unit of Congenital and Perinatal Infections, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Systems Medicine, University of Rome ‘‘Tor Vergata’’, Rome, Italy
| | - L. Putignani
- Unit of Microbiomics and Research Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - the CACTUS Study TeamCarducciFrancesca CalòCancriniCaterinaChiurchiùSaradegli AttiMarta CiofiCursiLauraCutreraRenatoD’AmoreCarmenD’ArgenioPatriziaDe IorisMaria A.De LucaMaiaFinocchiAndreaMannoEmma ConcettaMorrocchiElenaPansaPaolaSessaLiberaZangariPaola
- Infectious Disease Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Research Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Unit of Microbiomics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- GenomeUp SRL, Viale Pasteur, Rome, Italy
- Research Unit of Congenital and Perinatal Infections, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Systems Medicine, University of Rome ‘‘Tor Vergata’’, Rome, Italy
- Unit of Microbiology and Diagnostic Immunology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Academic Department of Pediatrics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Pediatric Emergency Department and General Pediatrics, Bambino Gesù Children's Hospital Bambino Gesù, IRCCS, Rome, Italy
- Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Unit of Microbiomics and Research Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
15
|
Patel P, Bhattacharjee M. Microbiome and the COVID-19 pandemic. MICROBES, MICROBIAL METABOLISM, AND MUCOSAL IMMUNITY 2024:287-348. [DOI: 10.1016/b978-0-323-90144-4.00008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
16
|
Abstract
The development of novel culture-independent techniques of microbial identification has allowed a rapid progress in the knowledge of the nasopharyngeal microbiota and its role in health and disease. Thus, it has been demonstrated that the nasopharyngeal microbiota defends the host from invading pathogens that enter the body through the upper airways by participating in the modulation of innate and adaptive immune responses. The current COVID-19 pandemic has created an urgent need for fast-track research, especially to identify and characterize biomarkers to predict the disease severity and outcome. Since the nasopharyngeal microbiota diversity and composition could potentially be used as a prognosis biomarker for COVID-19 patients, which would pave the way for strategies aiming to reduce the disease severity by modifying such microbiota, dozens of research articles have already explored the possible associations between changes in the nasopharyngeal microbiota and the severity or outcome of COVID-19 patients. Unfortunately, results are controversial, as many studies with apparently similar experimental designs have reported contradictory data. Herein we put together, compare, and discuss all the relevant results on this issue reported to date. Even more interesting, we discuss in detail which are the limitations of these studies, that probably are the main sources of the high variability observed. Therefore, this work is useful not only for people interested in current knowledge about the relationship between the nasopharyngeal microbiota and COVID-19, but also for researchers who want to go further in this field while avoiding the limitations and variability of previous works.
Collapse
Affiliation(s)
- Sergio Candel
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Murcia, Spain,Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, Murcia, Spain,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Sylwia D. Tyrkalska
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Murcia, Spain,Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, Murcia, Spain,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Victoriano Mulero
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Murcia, Spain,Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, Murcia, Spain,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain, Victoriano Mulero ; Sergio Candel ; Sylwia D. Tyrkalska Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, 30120, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| |
Collapse
|
17
|
Zhou J, Yang X, Yang Y, Wei Y, Lu D, Xie Y, Liang H, Cui P, Ye L, Huang J. Human microbiota dysbiosis after SARS-CoV-2 infection have the potential to predict disease prognosis. BMC Infect Dis 2023; 23:841. [PMID: 38031010 PMCID: PMC10685584 DOI: 10.1186/s12879-023-08784-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND The studies on SARS-CoV-2 and human microbiota have yielded inconsistent results regarding microbiota α-diversity and key microbiota. To address these issues and explore the predictive ability of human microbiota for the prognosis of SARS-CoV-2 infection, we conducted a reanalysis of existing studies. METHODS We reviewed the existing studies on SARS-CoV-2 and human microbiota in the Pubmed and Bioproject databases (from inception through October 29, 2021) and extracted the available raw 16S rRNA sequencing data of human microbiota. Firstly, we used meta-analysis and bioinformatics methods to reanalyze the raw data and evaluate the impact of SARS-CoV-2 on human microbial α-diversity. Secondly, machine learning (ML) was employed to assess the ability of microbiota to predict the prognosis of SARS-CoV-2 infection. Finally, we aimed to identify the key microbiota associated with SARS-CoV-2 infection. RESULTS A total of 20 studies related to SARS-CoV-2 and human microbiota were included, involving gut (n = 9), respiratory (n = 11), oral (n = 3), and skin (n = 1) microbiota. Meta-analysis showed that in gut studies, when limiting factors were studies ruled out the effect of antibiotics, cross-sectional and case-control studies, Chinese studies, American studies, and Illumina MiSeq sequencing studies, SARS-CoV-2 infection was associated with down-regulation of microbiota α-diversity (P < 0.05). In respiratory studies, SARS-CoV-2 infection was associated with down-regulation of α-diversity when the limiting factor was V4 sequencing region (P < 0.05). Additionally, the α-diversity of skin microbiota was down-regulated at multiple time points following SARS-CoV-2 infection (P < 0.05). However, no significant difference in oral microbiota α-diversity was observed after SARS-CoV-2 infection. ML models based on baseline respiratory (oropharynx) microbiota profiles exhibited the ability to predict outcomes (survival and death, Random Forest, AUC = 0.847, Sensitivity = 0.833, Specificity = 0.750) after SARS-CoV-2 infection. The shared differential Prevotella and Streptococcus in the gut, respiratory tract, and oral cavity was associated with the severity and recovery of SARS-CoV-2 infection. CONCLUSIONS SARS-CoV-2 infection was related to the down-regulation of α-diversity in the human gut and respiratory microbiota. The respiratory microbiota had the potential to predict the prognosis of individuals infected with SARS-CoV-2. Prevotella and Streptococcus might be key microbiota in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jie Zhou
- Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, Guangxi, China
| | - Xiping Yang
- Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, Guangxi, China
| | - Yuecong Yang
- Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, Guangxi, China
| | - Yiru Wei
- Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, Guangxi, China
| | - Dongjia Lu
- Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, Guangxi, China
| | - Yulan Xie
- Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, Guangxi, China
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, Guangxi, China
- Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Nanning, Guangxi, China
| | - Ping Cui
- Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Li Ye
- Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.
- Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, Guangxi, China.
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Nanning, Guangxi, China.
| | - Jiegang Huang
- Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.
- Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, Guangxi, China.
| |
Collapse
|
18
|
Lushington GH, Linde A, Melgarejo T. Bacterial Proteases as Potentially Exploitable Modulators of SARS-CoV-2 Infection: Logic from the Literature, Informatics, and Inspiration from the Dog. BIOTECH 2023; 12:61. [PMID: 37987478 PMCID: PMC10660736 DOI: 10.3390/biotech12040061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/19/2023] [Accepted: 10/18/2023] [Indexed: 11/22/2023] Open
Abstract
(1) Background: The COVID-19 pandemic left many intriguing mysteries. Retrospective vulnerability trends tie as strongly to odd demographics as to exposure profiles, genetics, health, or prior medical history. This article documents the importance of nasal microbiome profiles in distinguishing infection rate trends among differentially affected subgroups. (2) Hypothesis: From a detailed literature survey, microbiome profiling experiments, bioinformatics, and molecular simulations, we propose that specific commensal bacterial species in the Pseudomonadales genus confer protection against SARS-CoV-2 infections by expressing proteases that may interfere with the proteolytic priming of the Spike protein. (3) Evidence: Various reports have found elevated Moraxella fractions in the nasal microbiomes of subpopulations with higher resistance to COVID-19 (e.g., adolescents, COVID-19-resistant children, people with strong dietary diversity, and omnivorous canines) and less abundant ones in vulnerable subsets (the elderly, people with narrower diets, carnivorous cats and foxes), along with bioinformatic evidence that Moraxella bacteria express proteases with notable homology to human TMPRSS2. Simulations suggest that these proteases may proteolyze the SARS-CoV-2 spike protein in a manner that interferes with TMPRSS2 priming.
Collapse
Affiliation(s)
| | - Annika Linde
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Tonatiuh Melgarejo
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| |
Collapse
|
19
|
Haldar S, Jadhav SR, Gulati V, Beale DJ, Balkrishna A, Varshney A, Palombo EA, Karpe AV, Shah RM. Unravelling the gut-lung axis: insights into microbiome interactions and Traditional Indian Medicine's perspective on optimal health. FEMS Microbiol Ecol 2023; 99:fiad103. [PMID: 37656879 PMCID: PMC10508358 DOI: 10.1093/femsec/fiad103] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 07/05/2023] [Accepted: 08/30/2023] [Indexed: 09/03/2023] Open
Abstract
The microbiome of the human gut is a complex assemblage of microorganisms that are in a symbiotic relationship with one another and profoundly influence every aspect of human health. According to converging evidence, the human gut is a nodal point for the physiological performance matrixes of the vital organs on several axes (i.e. gut-brain, gut-lung, etc). As a result of COVID-19, the importance of gut-lung dysbiosis (balance or imbalance) has been realised. In view of this, it is of utmost importance to develop a comprehensive understanding of the microbiome, as well as its dysbiosis. In this review, we provide an overview of the gut-lung axial microbiome and its importance in maintaining optimal health. Human populations have successfully adapted to geophysical conditions through traditional dietary practices from around the world. In this context, a section has been devoted to the traditional Indian system of medicine and its theories and practices regarding the maintenance of optimally customized gut health.
Collapse
Affiliation(s)
- Swati Haldar
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar 249405, Uttarakhand, India
| | - Snehal R Jadhav
- Consumer-Analytical-Safety-Sensory (CASS) Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia
| | - Vandana Gulati
- Biomedical Science, School of Science and Technology Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW 2351, Australia
| | - David J Beale
- Environment, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Ecosciences Precinct, Dutton Park, QLD 4102, Australia
| | - Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar 249405, Uttarakhand, India
- Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Roorkee-Haridwar Road, Haridwar 249405, Uttarakhand, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar 249405, Uttarakhand, India
- Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Roorkee-Haridwar Road, Haridwar 249405, Uttarakhand, India
| | - Enzo A Palombo
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Avinash V Karpe
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- Socio-Eternal Thinking for Unity (SETU), Melbourne, VIC 3805, Australia
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Acton, ACT 2601, Australia
| | - Rohan M Shah
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora West, VIC 3083, Australia
| |
Collapse
|
20
|
Bose T, Wasimuddin, Acharya V, Pinna NK, Kaur H, Ranjan M, SaiKrishna J, Nagabandi T, Varma B, Tallapaka KB, Sowpati DT, Haque MM, Dutta A, Siva AB, Mande SS. A cross-sectional study on the nasopharyngeal microbiota of individuals with SARS-CoV-2 infection across three COVID-19 waves in India. Front Microbiol 2023; 14:1238829. [PMID: 37744900 PMCID: PMC10511876 DOI: 10.3389/fmicb.2023.1238829] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/09/2023] [Indexed: 09/26/2023] Open
Abstract
Background Multiple variants of the SARS-CoV-2 virus have plagued the world through successive waves of infection over the past three years. Independent research groups across geographies have shown that the microbiome composition in COVID-19 positive patients (CP) differs from that of COVID-19 negative individuals (CN). However, these observations were based on limited-sized sample-sets collected primarily from the early days of the pandemic. Here, we study the nasopharyngeal microbiota in COVID-19 patients, wherein the samples have been collected across the three COVID-19 waves witnessed in India, which were driven by different variants of concern. Methods The nasopharyngeal swabs were collected from 589 subjects providing samples for diagnostics purposes at the Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India and subjected to 16s rRNA gene amplicon - based sequencing. Findings We found variations in the microbiota of symptomatic vs. asymptomatic COVID-19 patients. CP showed a marked shift in the microbial diversity and composition compared to CN, in a wave-dependent manner. Rickettsiaceae was the only family that was noted to be consistently depleted in CP samples across the waves. The genera Staphylococcus, Anhydrobacter, Thermus, and Aerococcus were observed to be highly abundant in the symptomatic CP patients when compared to the asymptomatic group. In general, we observed a decrease in the burden of opportunistic pathogens in the host microbiota during the later waves of infection. Interpretation To our knowledge, this is the first analytical cross-sectional study of this scale, which was designed to understand the relation between the evolving nature of the virus and the changes in the human nasopharyngeal microbiota. Although no clear signatures were observed, this study shall pave the way for a better understanding of the disease pathophysiology and help gather preliminary evidence on whether interventions to the host microbiota can help in better protection or faster recovery.
Collapse
Affiliation(s)
- Tungadri Bose
- TCS Research, Tata Consultancy Services Limited, Pune, Maharashtra, India
| | - Wasimuddin
- Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, Telangana, India
| | - Varnali Acharya
- Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, Telangana, India
| | - Nishal Kumar Pinna
- TCS Research, Tata Consultancy Services Limited, Pune, Maharashtra, India
| | - Harrisham Kaur
- TCS Research, Tata Consultancy Services Limited, Pune, Maharashtra, India
| | - Manish Ranjan
- Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, Telangana, India
| | - Jandhyala SaiKrishna
- Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, Telangana, India
| | - Tulasi Nagabandi
- Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, Telangana, India
| | - Binuja Varma
- TCS Genomics Lab, Tata Consultancy Services Limited, Noida, Uttar Pradesh, India
| | | | - Divya Tej Sowpati
- Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, Telangana, India
| | | | - Anirban Dutta
- TCS Research, Tata Consultancy Services Limited, Pune, Maharashtra, India
| | | | - Sharmila S. Mande
- TCS Research, Tata Consultancy Services Limited, Pune, Maharashtra, India
| |
Collapse
|
21
|
Alqedari H, Altabtbaei K, Espinoza JL, Bin-Hasan S, Alghounaim M, Alawady A, Altabtabae A, AlJamaan S, Devarajan S, AlShammari T, Eid MB, Matsuoka M, Jang H, Dupont CL, Freire M. Host-Microbiome Associations in Saliva Predict COVID-19 Severity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539155. [PMID: 37205528 PMCID: PMC10187185 DOI: 10.1101/2023.05.02.539155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Established evidence indicates that oral microbiota plays a crucial role in modulating host immune responses to viral infection. Following Severe Acute Respiratory Syndrome Coronavirus 2 - SARS-CoV-2 - there are coordinated microbiome and inflammatory responses within the mucosal and systemic compartments that are unknown. The specific roles that the oral microbiota and inflammatory cytokines play in the pathogenesis of COVID-19 are yet to be explored. We evaluated the relationships between the salivary microbiome and host parameters in different groups of COVID-19 severity based on their Oxygen requirement. Saliva and blood samples (n = 80) were collected from COVID-19 and from non-infected individuals. We characterized the oral microbiomes using 16S ribosomal RNA gene sequencing and evaluated saliva and serum cytokines using Luminex multiplex analysis. Alpha diversity of the salivary microbial community was negatively associated with COVID-19 severity. Integrated cytokine evaluations of saliva and serum showed that the oral host response was distinct from the systemic response. The hierarchical classification of COVID-19 status and respiratory severity using multiple modalities separately (i.e., microbiome, salivary cytokines, and systemic cytokines) and simultaneously (i.e., multi-modal perturbation analyses) revealed that the microbiome perturbation analysis was the most informative for predicting COVID-19 status and severity, followed by the multi-modal. Our findings suggest that oral microbiome and salivary cytokines may be predictive of COVID-19 status and severity, whereas atypical local mucosal immune suppression and systemic hyperinflammation provide new cues to understand the pathogenesis in immunologically naïve populations.
Collapse
Affiliation(s)
- Hend Alqedari
- Department of Oral Health Policy and Epidemiology, Harvard School of Dental Medicine, Boston, MA, 02115, USA; Dasman Diabetes Institute, Kuwait
- Dasman Diabetes Institute, 1180, Dasman, Kuwait
| | - Khaled Altabtbaei
- School of Dentistry, Faculty of Medicine and Dentistry. University of Alberta. Edmonton AB, T6G 2L7, Canada
| | - Josh L. Espinoza
- Department of Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Saadoun Bin-Hasan
- Department of Pediatrics, Farwaniyah Hospital, Ministry of Health, Kuwait
| | | | - Abdullah Alawady
- Department of Pediatrics, Farwaniyah Hospital, Ministry of Health, Kuwait
| | | | - Sarah AlJamaan
- Department of Pediatrics, Farwaniyah Hospital, Ministry of Health, Kuwait
| | | | | | - Mohammed Ben Eid
- Department of Pediatrics, Farwaniyah Hospital, Ministry of Health, Kuwait
| | - Michele Matsuoka
- Department of Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Hyesun Jang
- Department of Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Christopher L. Dupont
- Department of Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Marcelo Freire
- Department of Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA 92037, USA
- Division of Infectious Diseases and Global Public Health Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
22
|
Yasir M, Al-Sharif HA, Al-Subhi T, Sindi AA, Bokhary DH, El-Daly MM, Alosaimi B, Hamed ME, Karim AM, Hassan AM, AlShawdari MM, Alawi M, El-Kafrawy SA, Azhar EI. Analysis of the nasopharyngeal microbiome and respiratory pathogens in COVID-19 patients from Saudi Arabia. J Infect Public Health 2023; 16:680-688. [PMID: 36934642 PMCID: PMC9984237 DOI: 10.1016/j.jiph.2023.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/11/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Infection with SARS-CoV-2 may perturb normal microbiota, leading to secondary infections that can complicate the viral disease. The aim of this study was to probe the alteration of nasopharyngeal (NP) microbiota in the context of SARS-CoV-2 infection and obesity and to identify other respiratory pathogens among COVID-19 cases that may affect patients' health. METHODS A total of 107 NP swabs, including 22 from control subjects and 85 from COVID-19 patients, were processed for 6S amplicon sequencing. The respiratory pathogens causing secondary infections were identified by RT-PCR assay, using a kit that contained specific primers and probes combinations to amplify 33 known respiratory pathogens. RESULTS No significant (p > 0.05) difference was observed in the alpha and beta diversity analysis, but specific taxa differed significantly between the control and COVID-19 patient groups. Genera of Sphingomonas, Kurthia, Microbacterium, Methylobacterium, Brevibacillus, Bacillus, Acinetobacter, Lactococcus, and Haemophilus was significantly abundant (p < 0.05) in COVID-19 patients compared with a healthy control group. Staphylococcus was found in relatively high abundance (35.7 %) in the COVID-19 patient groups, mainly those treated with antibiotics. A relatively high percentage of Streptococcus was detected in COVID-19 patient groups with obesity or other comorbidities. Respiratory pathogens, including Staphylococcus aureus, Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, and Salmonella species, along with Pneumocystis jirovecii fungal species were detected by RT-PCR mainly in the COVID-19 patients. Klebsiella pneumoniae was commonly found in most of the samples from the control and COVID-19 patients. Four COVID-19 patients had viral coinfections with human adenovirus, human rhinovirus, enterovirus, and human parainfluenza virus 1. CONCLUSIONS Overall, no substantial difference was observed in the predominant NP bacterial community, but specific taxa were significantly changed between the healthy control and COVID-19 patients. Comparatively, an increased number of respiratory pathogens were identified in COVID-19 patients, and NP colonization by K. pneumoniae was probably occurring in the local population.
Collapse
Affiliation(s)
- Muhammad Yasir
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Hessa A Al-Sharif
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Tagreed Al-Subhi
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Anees A Sindi
- Department of Anesthesia and Critical Care, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Pulmonary & Critical Care Consultant, International Medical Center, Jeddah 21589, Saudi Arabia
| | - Diyaa H Bokhary
- Emergency Medicine Department, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mai M El-Daly
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Bandar Alosaimi
- Research Center, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Maaweya E Hamed
- Research Center, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Asad Mustafa Karim
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, the Republic of Korea
| | - Ahmed M Hassan
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mustafa M AlShawdari
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maha Alawi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Infection Control & Environmental Health Unit, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sherif A El-Kafrawy
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Esam I Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
23
|
SeyedAlinaghi S, Afzalian A, Pashaei Z, Varshochi S, Karimi A, Mojdeganlou H, Mojdeganlou P, Razi A, Ghanadinezhad F, Shojaei A, Amiri A, Dashti M, Ghasemzadeh A, Dadras O, Mehraeen E, Afsahi AM. Gut microbiota and COVID-19: A systematic review. Health Sci Rep 2023; 6:e1080. [PMID: 36721396 PMCID: PMC9881458 DOI: 10.1002/hsr2.1080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/24/2022] [Accepted: 01/11/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND AND AIMS Alteration in humans' gut microbiota was reported in patients infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The gut and upper respiratory tract (URT) microbiota harbor a dynamic and complex population of microorganisms and have strong interaction with host immune system homeostasis. However, our knowledge about microbiota and its association with SARS-CoV-2 is still limited. We aimed to systematically review the effects of gut microbiota on the SARS-CoV-2 infection and its severity and the impact that SARS-CoV-2 could have on the gut microbiota. METHODS We searched the keywords in the online databases of Web of Science, Scopus, PubMed, and Cochrane on December 31, 2021. After duplicate removal, we performed the screening process in two stages; title/abstract and then full-text screening. The data of the eligible studies were extracted into a pre-designed word table. This study adhered to the PRISMA checklist and Newcastle-Ottawa Scale Bias Assessment tool. RESULTS Sixty-three publications were included in this review. Our study shows that among COVID-19 patients, particularly moderate to severe cases, the gut and lung microbiota was different compared to healthy individuals. In addition, the severity, and viral load of COVID-19 disease would probably also be influenced by the gut, and lung microbiota's composition. CONCLUSION Our study concludes that there was a significant difference in the composition of the URT, and gut microbiota in COVID-19 patients compared to the general healthy individuals, with an increase in opportunistic pathogens. Further, research is needed to investigate the probable bidirectional association of COVID-19 and human microbiome.
Collapse
Affiliation(s)
- SeyedAhmad SeyedAlinaghi
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk BehaviorsTehran University of Medical SciencesTehranIran
| | - Arian Afzalian
- School of MedicineTehran University of Medical SciencesTehranIran
| | - Zahra Pashaei
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk BehaviorsTehran University of Medical SciencesTehranIran
| | - Sanaz Varshochi
- School of MedicineTehran University of Medical SciencesTehranIran
| | - Amirali Karimi
- School of MedicineTehran University of Medical SciencesTehranIran
| | | | | | - Armin Razi
- School of MedicineTehran University of Medical SciencesTehranIran
| | | | - Alireza Shojaei
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk BehaviorsTehran University of Medical SciencesTehranIran
| | - Ava Amiri
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk BehaviorsTehran University of Medical SciencesTehranIran
| | - Mohsen Dashti
- Department of RadiologyTabriz University of Medical SciencesTabrizIran
| | | | - Omid Dadras
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk BehaviorsTehran University of Medical SciencesTehranIran
- Department of Global Public Health and Primary CareUniversity of BergenBergenNorway
| | - Esmaeil Mehraeen
- Department of Health Information TechnologyKhalkhal University of Medical SciencesKhalkhalIran
| | - Amir Masoud Afsahi
- Department of RadiologyUniversity of California, San Diego (UCSD)CaliforniaUSA
| |
Collapse
|
24
|
Everett MJ, Davies DT, Leiris S, Sprynski N, Llanos A, Castandet J, Lozano C, LaRock CN, LaRock DL, Corsica G, Docquier JD, Pallin TD, Cridland A, Blench T, Zalacain M, Lemonnier M. Chemical Optimization of Selective Pseudomonas aeruginosa LasB Elastase Inhibitors and Their Impact on LasB-Mediated Activation of IL-1β in Cellular and Animal Infection Models. ACS Infect Dis 2023; 9:270-282. [PMID: 36669138 PMCID: PMC9926489 DOI: 10.1021/acsinfecdis.2c00418] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
LasB elastase is a broad-spectrum exoprotease and a key virulence factor of Pseudomonas aeruginosa, a major pathogen causing lung damage and inflammation in acute and chronic respiratory infections. Here, we describe the chemical optimization of specific LasB inhibitors with druglike properties and investigate their impact in cellular and animal models of P. aeruginosa infection. Competitive inhibition of LasB was demonstrated through structural and kinetic studies. In vitro LasB inhibition was confirmed with respect to several host target proteins, namely, elastin, IgG, and pro-IL-1β. Furthermore, inhibition of LasB-mediated IL-1β activation was demonstrated in macrophage and mouse lung infection models. In mice, intravenous administration of inhibitors also resulted in reduced bacterial numbers at 24 h. These highly potent, selective, and soluble LasB inhibitors constitute valuable tools to study the proinflammatory impact of LasB in P. aeruginosa infections and, most importantly, show clear potential for the clinical development of a novel therapy for life-threatening respiratory infections caused by this opportunistic pathogen.
Collapse
Affiliation(s)
- Martin J. Everett
- Antabio
SAS, Biostep, 436 rue Pierre et Marie Curie, 31670 Labège, France,
| | - David T. Davies
- Antabio
SAS, Biostep, 436 rue Pierre et Marie Curie, 31670 Labège, France
| | - Simon Leiris
- Antabio
SAS, Biostep, 436 rue Pierre et Marie Curie, 31670 Labège, France
| | - Nicolas Sprynski
- Antabio
SAS, Biostep, 436 rue Pierre et Marie Curie, 31670 Labège, France
| | - Agustina Llanos
- Antabio
SAS, Biostep, 436 rue Pierre et Marie Curie, 31670 Labège, France
| | | | - Clarisse Lozano
- Antabio
SAS, Biostep, 436 rue Pierre et Marie Curie, 31670 Labège, France
| | - Christopher N. LaRock
- Department
of Microbiology and Immunology, Rollins
Research Center, 1510
Clifton Rd, Atlanta, Georgia 30322, United States
| | - Doris L. LaRock
- Department
of Microbiology and Immunology, Rollins
Research Center, 1510
Clifton Rd, Atlanta, Georgia 30322, United States
| | - Giuseppina Corsica
- Dipartimento
di Biotecnologie Mediche, Università
degli Studi di Siena, Viale Bracci 16, 53100 Siena, Italy
| | - Jean-Denis Docquier
- Dipartimento
di Biotecnologie Mediche, Università
degli Studi di Siena, Viale Bracci 16, 53100 Siena, Italy,Centre
d’Ingénierie des Protéines - InBioS, University of Liège, Allée du six Août 11, 4000 Liège, Belgium
| | - Thomas D. Pallin
- Charles
River Laboratories, 8-9 The Spire Green Centre, Harlow, Essex CM19 5TR, U.K.
| | - Andrew Cridland
- Charles
River Laboratories, 8-9 The Spire Green Centre, Harlow, Essex CM19 5TR, U.K.
| | - Toby Blench
- Charles
River Laboratories, 8-9 The Spire Green Centre, Harlow, Essex CM19 5TR, U.K.
| | - Magdalena Zalacain
- Antabio
SAS, Biostep, 436 rue Pierre et Marie Curie, 31670 Labège, France
| | - Marc Lemonnier
- Antabio
SAS, Biostep, 436 rue Pierre et Marie Curie, 31670 Labège, France
| |
Collapse
|
25
|
Viana MC, Curty G, Furtado C, Singh B, Bendall ML, Viola JPB, de Melo AC, Soares MA, Moreira MAM. Naso-oropharyngeal microbiome from breast cancer patients diagnosed with COVID-19. Front Microbiol 2023; 13:1074382. [PMID: 36713167 PMCID: PMC9874304 DOI: 10.3389/fmicb.2022.1074382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Due to immunosuppressive cancer therapies, cancer patients diagnosed with COVID-19 have a higher chance of developing severe symptoms and present a higher mortality rate in comparison to the general population. Here we show a comparative analysis of the microbiome from naso-oropharyngeal samples of breast cancer patients with respect to SARS-CoV-2 status and identified bacteria associated with symptom severity. Total DNA of naso-oropharyngeal swabs from 74 women with or without breast cancer, positive or negative for SARS-CoV-2 were PCR-amplified for 16S-rDNA V3 and V4 regions and submitted to massive parallel sequencing. Sequencing data were analyzed with QIIME2 and taxonomic identification was performed using the q2-feature-classifier QIIME2 plugin, the Greengenes Database, and amplicon sequence variants (ASV) analysis. A total of 486 different bacteria were identified. No difference was found in taxa diversity between sample groups. Cluster analysis did not group the samples concerning SARS-CoV-2 status, breast cancer diagnosis, or symptom severity. Three taxa (Pseudomonas, Moraxella, and Klebsiella,) showed to be overrepresented in women with breast cancer and positive for SARS-CoV-2 when compared to the other women groups, and five bacterial groups were associated with COVID-19 severity among breast cancer patients: Staphylococcus, Staphylococcus epidermidis, Scardovia, Parasegitibacter luogiensis, and Thermomonas. The presence of Staphylococcus in COVID-19 breast cancer patients may possibly be a consequence of nosocomial infection.
Collapse
Affiliation(s)
- Maria Carolina Viana
- Tumor Genetics and Virology Program, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Gislaine Curty
- Tumor Genetics and Virology Program, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Carolina Furtado
- Tumor Genetics and Virology Program, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Bhavya Singh
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Matthew L. Bendall
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - João P. B. Viola
- Program of Immunology and Tumor Biology, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Andreia Cristina de Melo
- Division of Clinical Research and Technological Development, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Marcelo A. Soares
- Tumor Genetics and Virology Program, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Miguel A. M. Moreira
- Tumor Genetics and Virology Program, Instituto Nacional de Câncer, Rio de Janeiro, Brazil,*Correspondence: Miguel A. M. Moreira,
| |
Collapse
|
26
|
Mycobiome profiling of nasopharyngeal region of SARS-CoV-2 infected individuals. Microbes Infect 2023; 25:105059. [PMID: 36241143 PMCID: PMC9553963 DOI: 10.1016/j.micinf.2022.105059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 02/07/2023]
Abstract
The present cross-sectional study aims to understand the fungal community composition of the nasopharyngeal region of SARS-CoV-2 infected individuals and how the infection influences the mycobiome therein. The infection significantly (p < 0.05) influenced the alpha diversity. Interestingly, a higher abundance of Cladosporium and Alternaria was noted in the infected individuals and inter-individual variation in mycobiome composition was well supported by beta dispersion analysis (p < 0.05). Moreover, decrease in Aspergillus abundance was observed in infected patients across the four age groups. This study provides insight into the alteration in mycobiome during the viral disease progression and demands continuous investigation to monitor fungal infections.
Collapse
|
27
|
Lai CKC, Cheung MK, Lui GCY, Ling L, Chan JYK, Ng RWY, Chan HC, Yeung ACM, Ho WCS, Boon SS, Chan PKS, Chen Z. Limited Impact of SARS-CoV-2 on the Human Naso-Oropharyngeal Microbiota in Hospitalized Patients. Microbiol Spectr 2022; 10:e0219622. [PMID: 36350127 PMCID: PMC9769582 DOI: 10.1128/spectrum.02196-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2022] Open
Abstract
Numerous studies have reported dysbiosis in the naso- and/or oro-pharyngeal microbiota of COVID-19 patients compared with healthy individuals; however, only a few small-scale studies have also included a disease control group. In this study, we characterized and compared the bacterial communities of pooled nasopharyngeal and throat swabs from hospitalized COVID-19 patients (n = 76), hospitalized non-COVID-19 patients with respiratory symptoms or related illnesses (n = 69), and local community controls (n = 76) using 16S rRNA gene V3-V4 amplicon sequencing. None of the subjects received antimicrobial therapy within 2 weeks prior to sample collection. Both COVID-19 and non-COVID-19 hospitalized patients differed in the composition, alpha and beta diversity, and metabolic potential of the naso-oropharyngeal microbiota compared with local controls. However, the microbial communities in the two hospitalized patient groups did not differ significantly from each other. Differential abundance analysis revealed the enrichment of nine bacterial genera in the COVID-19 patients compared with local controls; however, six of them were also enriched in the non-COVID-19 patients. Bacterial genera uniquely enriched in the COVID-19 patients included Alloprevotella and Solobacterium. In contrast, Mogibacterium and Lactococcus were dramatically decreased in COVID-19 patients only. Association analysis revealed that Alloprevotella in COVID-19 patients was positively correlated with the level of the inflammation biomarker C-reactive protein. Our findings reveal a limited impact of SARS-CoV-2 on the naso-oropharyngeal microbiota in hospitalized patients and suggest that Alloprevotella and Solobacterium are more specific biomarkers for COVID-19 detection. IMPORTANCE Our results showed that while both COVID-19 and non-COVID-19 hospitalized patients differed in the composition, alpha and beta diversity, and metabolic potential of the naso-oropharyngeal microbiota compared with local controls, the microbial communities in the two hospitalized patient groups did not differ significantly from each other, indicating a limited impact of SARS-CoV-2 on the naso-oropharyngeal microbiota in hospitalized patients. Besides, we identified Alloprevotella and Solobacterium as bacterial genera uniquely enriched in COVID-19 patients, which may serve as more specific biomarkers for COVID-19 detection.
Collapse
Affiliation(s)
- Christopher K. C. Lai
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Man Kit Cheung
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Grace C. Y. Lui
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lowell Ling
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jason Y. K. Chan
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR China
| | - Rita W. Y. Ng
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hiu Ching Chan
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Apple C. M. Yeung
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wendy C. S. Ho
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Siaw Shi Boon
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Paul K. S. Chan
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Stanley Ho Centre for Emerging Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zigui Chen
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
28
|
Kumar D, Pandit R, Sharma S, Raval J, Patel Z, Joshi M, Joshi CG. Nasopharyngeal microbiome of COVID-19 patients revealed a distinct bacterial profile in deceased and recovered individuals. Microb Pathog 2022; 173:105829. [PMID: 36252893 PMCID: PMC9568276 DOI: 10.1016/j.micpath.2022.105829] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/20/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
The bacterial co-infections in SARS-CoV-2 patients remained the least explored subject of clinical manifestations that may also determine the disease severity. Nasopharyngeal microbial community structure within SARS-CoV-2 infected patients could reveal interesting microbiome dynamics that may influence the disease outcomes. Here, in this research study, we analyzed distinct nasopharyngeal microbiome profile in the deceased (n = 48) and recovered (n = 29) COVID-19 patients and compared it with control SARS-CoV-2 negative individuals (control) (n = 33). The nasal microbiome composition of the three groups varies significantly (PERMANOVA, p-value <0.001), where deceased patients showed higher species richness compared to the recovered and control groups. Pathogenic genera, including Corynebacterium (LDA score 5.51), Staphylococcus, Serratia, Klebsiella and their corresponding species were determined as biomarkers (p-value <0.05, LDA cutoff 4.0) in the deceased COVID-19 patients. Ochrobactrum (LDA score 5.79), and Burkholderia (LDA 5.29), were found in the recovered group which harbors ordinal bacteria (p-value <0.05, LDA-4.0) as biomarkers. Similarly, Pseudomonas (LDA score 6.19), and several healthy nasal cavity commensals including Veillonella, and Porphyromonas, were biomarkers for the control individuals. Healthy commensal bacteria may trigger the immune response and alter the viral infection susceptibility and thus, may play important role and possible recovery that needs to be further explored. This research finding provide vital information and have significant implications for understanding the microbial diversity of COVID-19 patients. However, additional studies are needed to address the microbiome-based therapeutics and diagnostics interventions.
Collapse
Affiliation(s)
- Dinesh Kumar
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, 6th Floor, MS Building, Gandhinagar, 382011, India
| | - Ramesh Pandit
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, 6th Floor, MS Building, Gandhinagar, 382011, India
| | - Sonal Sharma
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, 6th Floor, MS Building, Gandhinagar, 382011, India
| | - Janvi Raval
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, 6th Floor, MS Building, Gandhinagar, 382011, India
| | - Zarna Patel
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, 6th Floor, MS Building, Gandhinagar, 382011, India
| | - Madhvi Joshi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, 6th Floor, MS Building, Gandhinagar, 382011, India
| | - Chaitanya G Joshi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, 6th Floor, MS Building, Gandhinagar, 382011, India.
| |
Collapse
|
29
|
Upper Respiratory Microbiome in Pregnant Women: Characterization and Influence of Parity. Microorganisms 2022; 10:microorganisms10112189. [DOI: 10.3390/microorganisms10112189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
During pregnancy, the woman’s immune system changes to support fetal development. These immunological modifications can increase the risk of respiratory diseases. Because the respiratory microbiome is involved in airway homeostasis, it is important to investigate how it changes during pregnancy. Additionally, since parity is associated with immune system alterations and cohabitants shared a similar microbiome, we investigated whether having a child may influence the respiratory microbiome of pregnant women. We compared the microbiome of 55 pregnant with 26 non-pregnant women using 16S rRNA gene sequencing and analyzed taxonomy, diversity, and metabolic pathways to evaluate the differences among nulliparous, primiparous, and multiparous women. The microbiome was similar in pregnant and non-pregnant women, but pregnant women had higher alpha diversity (Chao1 p-value = 0.001; Fisher p-value = 0.005) and a lower abundance of several metabolic pathways. Multiparous pregnant women had a higher relative abundance of Moraxella (p-value = 0.003) and a lower abundance of Corynebacterium (p-value = 0.002) compared with primiparous women. Both multiparous (pregnant) and primiparous/multiparous (non-pregnant) women reported a higher abundance of Moraxella compared with primiparous (pregnant) or nulliparous ones (p-value = 0.001). In conclusion, we characterized for the first time the upper airway microbiome of pregnant women and observed the influence of parity on its composition.
Collapse
|
30
|
Higgins E, Gupta A, Cummins NW. Polymicrobial Infections in the Immunocompromised Host: The COVID-19 Realm and Beyond. Med Sci (Basel) 2022; 10:medsci10040060. [PMID: 36278530 PMCID: PMC9589947 DOI: 10.3390/medsci10040060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
Immunosuppression changes both susceptibility to and presentation of infection. Infection with one pathogen can also alter host response to a different, unrelated pathogen. These interactions have been seen across multiple infection domains where bacteria, viruses or fungi act synergistically with a deleterious impact on the host. This phenomenon has been well described with bacterial and fungal infections complicating influenza and is of particular interest in the context of the COVID-19 pandemic. Modulation of the immune system is a crucial part of successful solid organ and hematopoietic stem cell transplantation. Herein, we present three cases of polymicrobial infection in transplant recipients. These case examples highlight complex host–pathogen interactions and the resultant clinical syndromes.
Collapse
|
31
|
Merenstein C, Bushman FD, Collman RG. Alterations in the respiratory tract microbiome in COVID-19: current observations and potential significance. MICROBIOME 2022; 10:165. [PMID: 36195943 PMCID: PMC9532226 DOI: 10.1186/s40168-022-01342-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/02/2022] [Indexed: 06/16/2023]
Abstract
SARS-CoV-2 infection causes COVID-19 disease, which can result in consequences ranging from undetectable to fatal, focusing attention on the modulators of outcomes. The respiratory tract microbiome is thought to modulate the outcomes of infections such as influenza as well as acute lung injury, raising the question to what degree does the airway microbiome influence COVID-19? Here, we review the results of 56 studies examining COVID-19 and the respiratory tract microbiome, summarize the main generalizations, and point to useful avenues for further research. Although the results vary among studies, a few consistent findings stand out. The diversity of bacterial communities in the oropharynx typically declined with increasing disease severity. The relative abundance of Haemophilus and Neisseria also declined with severity. Multiple microbiome measures tracked with measures of systemic immune responses and COVID outcomes. For many of the conclusions drawn in these studies, the direction of causality is unknown-did an alteration in the microbiome result in increased COVID severity, did COVID severity alter the microbiome, or was some third factor the primary driver, such as medication use. Follow-up mechanistic studies can help answer these questions. Video Abstract.
Collapse
Affiliation(s)
- Carter Merenstein
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Ronald G. Collman
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 USA
| |
Collapse
|
32
|
Ke S, Weiss ST, Liu YY. Dissecting the role of the human microbiome in COVID-19 via metagenome-assembled genomes. Nat Commun 2022; 13:5235. [PMID: 36068270 PMCID: PMC9446638 DOI: 10.1038/s41467-022-32991-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/24/2022] [Indexed: 11/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), primarily a respiratory disease caused by infection with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is often accompanied by gastrointestinal symptoms. However, little is known about the relation between the human microbiome and COVID-19, largely due to the fact that most previous studies fail to provide high taxonomic resolution to identify microbes that likely interact with SARS-CoV-2 infection. Here we used whole-metagenome shotgun sequencing data together with assembly and binning strategies to reconstruct metagenome-assembled genomes (MAGs) from 514 COVID-19 related nasopharyngeal and fecal samples in six independent cohorts. We reconstructed a total of 11,584 medium-and high-quality microbial MAGs and obtained 5403 non-redundant MAGs (nrMAGs) with strain-level resolution. We found that there is a significant reduction of strain richness for many species in the gut microbiome of COVID-19 patients. The gut microbiome signatures can accurately distinguish COVID-19 cases from healthy controls and predict the progression of COVID-19. Moreover, we identified a set of nrMAGs with a putative causal role in the clinical manifestations of COVID-19 and revealed their functional pathways that potentially interact with SARS-CoV-2 infection. Finally, we demonstrated that the main findings of our study can be largely validated in three independent cohorts. The presented results highlight the importance of incorporating the human gut microbiome in our understanding of SARS-CoV-2 infection and disease progression.
Collapse
Affiliation(s)
- Shanlin Ke
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Yang-Yu Liu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
33
|
Callahan N, Hattar M, Barbour T, Adami GR, Kawar N. Oral microbial taxa associated with risk for SARS-CoV-2 infection. FRONTIERS IN ORAL HEALTH 2022; 3:886341. [PMID: 36118052 PMCID: PMC9478458 DOI: 10.3389/froh.2022.886341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Hypothesis and objective The oral and digestive tract microbial ecosystem has sparked interest because of its impact on various systemic diseases and conditions. The oral cavity serves not only as a reservoir for many potentially virulent microbiota but also as an important entry point and portal to the human body system. This is especially significant in the transmissibility of the virulent current pandemic virus SARS-CoV-2. The oral and digestive microbiome influences the inflammatory burden and effectiveness of the immune system and serves as a marker of activity of these host processes. The host immune response plays a role in infection susceptibility, including SARS-CoV-2. The purpose of this study is to investigate the role of specific salivary oral microbiome in susceptibility to SARS-CoV-2 infection. Methods and results One hundred six subjects of known medical and dental history who consented to provide saliva samples between January 2017 and December 2019 were included in this study. Sixteen had become COVID-19 positive based on the PCR test by 3/01/2021. A comparison of oral microbiome bacteria taxa profiles based on 16S rRNA sequencing revealed differences between the two groups in this pilot study. Conclusions These bacteria taxa may be markers of increased susceptibility to SARS-CoV-2 infection in the unvaccinated population.
Collapse
Affiliation(s)
- Nicholas Callahan
- Department of Oral and Maxillofacial Surgery, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Meryana Hattar
- Department of Oral Medicine and Diagnostics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Thawab Barbour
- Department of Oral Medicine and Diagnostics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Guy R. Adami
- Department of Oral Medicine and Diagnostics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
- *Correspondence: Guy R. Adami
| | - Nadia Kawar
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
34
|
Varshney S, Kajale S, Khatri S, Gupta D, Sharma A, Sharma S. Temporal variation in bacterial community profile on patients' bedsheets in a primary healthcare unit. Arch Microbiol 2022; 204:308. [PMID: 35534776 DOI: 10.1007/s00203-022-02921-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/10/2022] [Accepted: 04/13/2022] [Indexed: 11/26/2022]
Abstract
Fabrics serve as fomites in spreading nosocomial infections. As a patient is in close contact with bedsheets, it is important to assess the seasonal variation in bacterial diversity on these in healthcare units. The study was conducted to characterise the bacterial diversity on patients' bedsheets across 7 months in a primary healthcare unit. Polyester-cotton blend fabric was stitched on bedsheets, and temporal dynamics of bacterial communities was assessed from May to November 2019. qPCR and amplicon sequencing of 16S rRNA gene was performed for profiling of bacterial community. Results revealed the dominance of Bacillota followed by Pseudomonadota, and Actinomycetota. A seasonal variation was observed in the bacterial load, with maximum values in June. This indicates the impact of environmental conditions on bacterial abundance and composition on fabrics in healthcare unit. The presence of priority pathogens on the patient bedsheets is a human health concern reiterating the need for season-specific laundering protocol.
Collapse
Affiliation(s)
- Swati Varshney
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Swapnil Kajale
- DBT-National Centre for Cell Science, Pune, Maharashtra, 411007, India
| | - Shivani Khatri
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Deepti Gupta
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Avinash Sharma
- DBT-National Centre for Cell Science, Pune, Maharashtra, 411007, India.
| | - Shilpi Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
35
|
Ortega-Peña S, Rodríguez-Martínez S, Cancino-Diaz ME, Cancino-Diaz JC. Staphylococcus epidermidis Controls Opportunistic Pathogens in the Nose, Could It Help to Regulate SARS-CoV-2 (COVID-19) Infection? Life (Basel) 2022; 12:341. [PMID: 35330092 PMCID: PMC8954679 DOI: 10.3390/life12030341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
Staphylococcus epidermidis is more abundant in the anterior nares than internal parts of the nose, but its relative abundance changes along with age; it is more abundant in adolescents than in children and adults. Various studies have shown that S. epidermidis is the guardian of the nasal cavity because it prevents the colonization and infection of respiratory pathogens (bacteria and viruses) through the secretion of antimicrobial molecules and inhibitors of biofilm formation, occupying the space of the membrane mucosa and through the stimulation of the host's innate and adaptive immunity. There is a strong relationship between the low number of S. epidermidis in the nasal cavity and the increased risk of serious respiratory infections. The direct application of S. epidermidis into the nasal cavity could be an effective therapeutic strategy to prevent respiratory infections and to restore nasal cavity homeostasis. This review shows the mechanisms that S. epidermidis uses to eliminate respiratory pathogens from the nasal cavity, also S. epidermidis is proposed to be used as a probiotic to prevent the development of COVID-19 because S. epidermidis induces the production of interferon type I and III and decreases the expression of the entry receptors of SARS-CoV-2 (ACE2 and TMPRSS2) in the nasal epithelial cells.
Collapse
Affiliation(s)
- Silvestre Ortega-Peña
- Laboratorio Tejido Conjuntivo, Centro Nacional de Investigación y Atención de Quemados, Instituto Nacional de Rehabilitación “Luís Guillermo Ibarra Ibarra”, Ciudad de México 14389, Mexico
| | - Sandra Rodríguez-Martínez
- Laboratorio de Inmunidad Innata, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico; (S.R.-M.); (M.E.C.-D.)
| | - Mario E. Cancino-Diaz
- Laboratorio de Inmunidad Innata, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico; (S.R.-M.); (M.E.C.-D.)
| | - Juan C. Cancino-Diaz
- Laboratorio de Inmunomicrobiología, Departamento Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| |
Collapse
|
36
|
Jochems SP, Ferreira DM, Smits HH. Microbiota and compartment matter in the COVID-19 response. Nat Immunol 2021; 22:1350-1352. [PMID: 34675388 DOI: 10.1038/s41590-021-01041-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Simon P Jochems
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Daniela M Ferreira
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Hermelijn H Smits
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|