1
|
Nowacki JS, Jones GS, D'Orazio SEF. Listeria monocytogenes use multiple mechanisms to disseminate from the intestinal lamina propria to the mesenteric lymph nodes. Microbiol Spectr 2025; 13:e0259524. [PMID: 39714174 PMCID: PMC11792513 DOI: 10.1128/spectrum.02595-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/23/2024] [Indexed: 12/24/2024] Open
Abstract
Listeria monocytogenes are facultative intracellular bacterial pathogens that cause foodborne disease in humans. The bacteria can use the surface protein InlA to invade intestinal epithelial cells or transcytose across M cells in the gut, but it is not well understood how the bacteria traffic from the underlying lamina propria to the draining mesenteric lymph nodes (MLN). Previous studies indicated that L. monocytogenes associated with both monocytes and dendritic cells in the intestinal lamina propria. We show here that CCR2-/- mice had a significant reduction in Ly6Chi monocytes in the MLN but no change in bacterial burden following foodborne infection; thus, dissemination of L. monocytogenes associated with monocytes is not required for colonization of the MLN. To block CCR7-mediated trafficking of dendritic cells from the lamina propria, we treated mice with anti-VEGFR3 antibody (clone AFL4) prior to and during infection but did not see a change in dendritic numbers in the MLN as had been previously reported with other anti-VEGFR3-specific antibodies. However, increasing the number of circulating dendritic cells by treating mice with rFlt3L resulted in a significant increase in L. monocytogenes in the lymph nodes that drain the small intestine and the spleen. Whole-mount fluorescent microscopy of lymphatic vessels following ligated loop infection revealed both free-floating L. monocytogenes and cell-associated bacteria within lymphatic vessels. Together, these results suggest that L. monocytogenes can use multiple, redundant mechanisms to disseminate from the gut tissue to the MLN. IMPORTANCE Consumption of the foodborne bacterial pathogen Listeria monocytogenes results in a wide spectrum of human disease from mild self-limiting gastroenteritis to life-threatening infections of the bloodstream, brain, and placenta. It is not well understood how the bacteria migrate from the intestines to the draining mesenteric lymph nodes, which are thought to serve as the last barrier to prevent systemic infections. Results presented here reveal multiple redundant mechanisms L. monocytogenes can use to disseminate from the ileum or colon to the mesenteric lymph nodes.
Collapse
Affiliation(s)
- Joshua S. Nowacki
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Grant S. Jones
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Sarah E. F. D'Orazio
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
2
|
Sousa M, Magalhães R, Ferreira V, Teixeira P. Current methodologies available to evaluate the virulence potential among Listeria monocytogenes clonal complexes. Front Microbiol 2024; 15:1425437. [PMID: 39493856 PMCID: PMC11528214 DOI: 10.3389/fmicb.2024.1425437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/26/2024] [Indexed: 11/05/2024] Open
Abstract
Listeria monocytogenes is a foodborne pathogen that causes listeriosis in humans, the severity of which depends on multiple factors, including intrinsic characteristics of the affected individuals and the pathogen itself. Additionally, emerging evidence suggests that epigenetic modifications may also modulate host susceptibility to infection. Therefore, different clinical outcomes can be expected, ranging from self-limiting gastroenteritis to severe central nervous system and maternal-neonatal infections, and bacteremia. Furthermore, L. monocytogenes is a genetically and phenotypically diverse species, resulting in a large variation in virulence potential between strains. Multilocus sequence typing (MLST) has been widely used to categorize the clonal structure of bacterial species and to define clonal complexes (CCs) of genetically related isolates. The combination of MLST and epidemiological data allows to distinguish hypervirulent CCs, which are notably more prevalent in clinical cases and typically associated with severe forms of the disease. Conversely, other CCs, termed hypovirulent, are predominantly isolated from food and food processing environments and are associated with the occurrence of listeriosis in immunosuppressed individuals. Reports of genetic traits associated with this diversity have been described. The Food and Agriculture Organization (FAO) is encouraging the search for virulence biomarkers to rapidly identify the main strains of concern to reduce food waste and economical losses. The aim of this review is to comprehensively collect, describe and discuss the methodologies used to discriminate the virulence potential of L. monocytogenes CCs. From the exploration of in vitro and in vivo models to the study of expression of virulence genes, each approach is critically explored to better understand its applicability and efficiency in distinguishing the virulence potential of the pathogen.
Collapse
Affiliation(s)
| | | | | | - Paula Teixeira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto, Portugal
| |
Collapse
|
3
|
Park JI, Cho SW, Kang JH, Park TE. Intestinal Peyer's Patches: Structure, Function, and In Vitro Modeling. Tissue Eng Regen Med 2023; 20:341-353. [PMID: 37079198 PMCID: PMC10117255 DOI: 10.1007/s13770-023-00543-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/21/2023] [Accepted: 04/06/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGOUND Considering the important role of the Peyer's patches (PPs) in gut immune balance, understanding of the detailed mechanisms that control and regulate the antigens in PPs can facilitate the development of immune therapeutic strategies against the gut inflammatory diseases. METHODS In this review, we summarize the unique structure and function of intestinal PPs and current technologies to establish in vitro intestinal PP system focusing on M cell within the follicle-associated epithelium and IgA+ B cell models for studying mucosal immune networks. Furthermore, multidisciplinary approaches to establish more physiologically relevant PP model were proposed. RESULTS PPs are surrounded by follicle-associated epithelium containing microfold (M) cells, which serve as special gateways for luminal antigen transport across the gut epithelium. The transported antigens are processed by immune cells within PPs and then, antigen-specific mucosal immune response or mucosal tolerance is initiated, depending on the response of underlying mucosal immune cells. So far, there is no high fidelity (patho)physiological model of PPs; however, there have been several efforts to recapitulate the key steps of mucosal immunity in PPs such as antigen transport through M cells and mucosal IgA responses. CONCLUSION Current in vitro PP models are not sufficient to recapitulate how mucosal immune system works in PPs. Advanced three-dimensional cell culture technologies would enable to recapitulate the function of PPs, and bridge the gap between animal models and human.
Collapse
Affiliation(s)
- Jung In Park
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Seung Woo Cho
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Joo H Kang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Tae-Eun Park
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea.
| |
Collapse
|
4
|
Complexification of In Vitro Models of Intestinal Barriers, A True Challenge for a More Accurate Alternative Approach. Int J Mol Sci 2023; 24:ijms24043595. [PMID: 36835003 PMCID: PMC9958734 DOI: 10.3390/ijms24043595] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/15/2023] Open
Abstract
The use of cell models is common to mimic cellular and molecular events in interaction with their environment. In the case of the gut, the existing models are of particular interest to evaluate food, toxicants, or drug effects on the mucosa. To have the most accurate model, cell diversity and the complexity of the interactions must be considered. Existing models range from single-cell cultures of absorptive cells to more complex combinations of two or more cell types. This work describes the existing solutions and the challenges that remain to be solved.
Collapse
|
5
|
Lactobacilli, a Weapon to Counteract Pathogens through the Inhibition of Their Virulence Factors. J Bacteriol 2022; 204:e0027222. [PMID: 36286515 PMCID: PMC9664955 DOI: 10.1128/jb.00272-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To date, several studies have reported an alarming increase in pathogen resistance to current antibiotic therapies and treatments. Therefore, the search for effective alternatives to counter their spread and the onset of infections is becoming increasingly important.
Collapse
|
6
|
Sibanda T, Buys EM. Listeria monocytogenes Pathogenesis: The Role of Stress Adaptation. Microorganisms 2022; 10:microorganisms10081522. [PMID: 36013940 PMCID: PMC9416357 DOI: 10.3390/microorganisms10081522] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 12/13/2022] Open
Abstract
Adaptive stress tolerance responses are the driving force behind the survival ability of Listeria monocytogenes in different environmental niches, within foods, and ultimately, the ability to cause human infections. Although the bacterial stress adaptive responses are primarily a necessity for survival in foods and the environment, some aspects of the stress responses are linked to bacterial pathogenesis. Food stress-induced adaptive tolerance responses to acid and osmotic stresses can protect the pathogen against similar stresses in the gastrointestinal tract (GIT) and, thus, directly aid its virulence potential. Moreover, once in the GIT, the reprogramming of gene expression from the stress survival-related genes to virulence-related genes allows L. monocytogenes to switch from an avirulent to a virulent state. This transition is controlled by two overlapping and interlinked transcriptional networks for general stress response (regulated by Sigma factor B, (SigB)) and virulence (regulated by the positive regulatory factor A (PrfA)). This review explores the current knowledge on the molecular basis of the connection between stress tolerance responses and the pathogenesis of L. monocytogenes. The review gives a detailed background on the currently known mechanisms of pathogenesis and stress adaptation. Furthermore, the paper looks at the current literature and theories on the overlaps and connections between the regulatory networks for SigB and PrfA.
Collapse
Affiliation(s)
- Thulani Sibanda
- Department of Consumer and Food Sciences, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa;
- Department of Applied Biology and Biochemistry, National University of Science and Technology, Bulawayo P.O. Box AC939, Zimbabwe
| | - Elna M. Buys
- Department of Consumer and Food Sciences, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa;
- Correspondence:
| |
Collapse
|
7
|
Mancinelli AM, Vichich JM, Zinnen AD, Hugon AM, Bondarenko V, Metzger JM, Simmons HA, Golos TG, Emborg ME. Acute Exposure to the Food-Borne Pathogen Listeria monocytogenes Does Not Induce α-Synuclein Pathology in the Colonic ENS of Nonhuman Primates. J Inflamm Res 2021; 14:7265-7279. [PMID: 34992416 PMCID: PMC8710837 DOI: 10.2147/jir.s337549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/01/2021] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Gastrointestinal (GI) inflammation elicited by environmental factors is proposed to trigger Parkinson's disease (PD) by stimulating accumulation of pathological α-synuclein (α-syn) in the enteric nervous system (ENS), which then propagates to the central nervous system via the vagus nerve. The goal of this study was to model, in nonhuman primates, an acute exposure to a common food-borne pathogen in order to assess whether the related acute GI inflammation could initiate persistent α-syn pathology in the ENS, ultimately leading to PD. METHODS Adult female cynomolgus macaques were inoculated by oral gavage with 1×108 colony-forming units (CFUs) Listeria monocytogenes (LM, n=10) or vehicle (mock, n=3) and euthanized 2 weeks later. Evaluations included clinical monitoring, blood and fecal shedding of LM, and postmortem pathological analysis of colonic and cecal tissues. RESULTS LM inoculation of healthy adult cynomolgus macaques induced minimal to mild clinical signs of infection; LM shedding in feces was not seen in any of the animals nor was bacteremia detected. Colitis varied from none to moderate in LM-treated subjects and none to minimal in mock-treated subjects. Expression of inflammatory markers (HLA-DR, CD3, CD20), oxidative stress (8-OHDG), α-syn, and phosphorylated-α-syn in the enteric ganglia was not significantly different between treatment groups. DISCUSSION Our results demonstrate that cynomolgus macaques orally inoculated with LM present with a clinical response that resembles human LM exposure. They also suggest that acute exposure to food-borne pathogens is not sufficient to induce significant and persistent α-syn changes in healthy adult female subjects. Based on the results of this limited experimental setting, we propose that, if LM has a role in PD pathology, other underlying factors or conditions, such as male sex, inflammatory bowel disease, exposure to toxins, dysbiosis, and/or aging, are needed to be present.
Collapse
Affiliation(s)
- Anthony M Mancinelli
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Jonathan M Vichich
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Alexandra D Zinnen
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Anna Marie Hugon
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Viktoriya Bondarenko
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Jeanette M Metzger
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Heather A Simmons
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Thaddeus G Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, USA
| | - Marina E Emborg
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
8
|
Iacob S, Iacob DG. Infectious Threats, the Intestinal Barrier, and Its Trojan Horse: Dysbiosis. Front Microbiol 2019; 10:1676. [PMID: 31447793 PMCID: PMC6692454 DOI: 10.3389/fmicb.2019.01676] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023] Open
Abstract
The ecosystem of the gut microbiota consists of diverse intestinal species with multiple metabolic and immunologic activities and it is closely connected with the intestinal epithelia and mucosal immune response, with which it builds a complex barrier against intestinal pathogenic bacteria. The microbiota ensures the integrity of the gut barrier through multiple mechanisms, either by releasing antibacterial molecules (bacteriocins) and anti-inflammatory short-chain fatty acids or by activating essential cell receptors for the immune response. Experimental studies have confirmed the role of the intestinal microbiota in the epigenetic modulation of the gut barrier through posttranslational histone modifications and regulatory mechanisms induced by epithelial miRNA in the epithelial lumen. Any quantitative or functional changes of the intestinal microbiota, referred to as dysbiosis, alter the immune response, decrease epithelial permeability and destabilize intestinal homeostasis. Consequently, the overgrowth of pathobionts (Staphylococcus, Pseudomonas, and Escherichia coli) favors intestinal translocations with Gram negative bacteria or their endotoxins and could trigger sepsis, septic shock, secondary peritonitis, or various intestinal infections. Intestinal infections also induce epithelial lesions and perpetuate the risk of bacterial translocation and dysbiosis through epithelial ischemia and pro-inflammatory cytokines. Furthermore, the decline of protective anaerobic bacteria (Bifidobacterium and Lactobacillus) and inadequate release of immune modulators (such as butyrate) affects the release of antimicrobial peptides, de-represses microbial virulence factors and alters the innate immune response. As a result, intestinal germs modulate liver pathology and represent a common etiology of infections in HIV immunosuppressed patients. Antibiotic and antiretroviral treatments also promote intestinal dysbiosis, followed by the selection of resistant germs which could later become a source of infections. The current article addresses the strong correlations between the intestinal barrier and the microbiota and discusses the role of dysbiosis in destabilizing the intestinal barrier and promoting infectious diseases.
Collapse
Affiliation(s)
- Simona Iacob
- Infectious Diseases Department, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,National Institute of Infectious Diseases "Prof. Dr. Matei Balş", Bucharest, Romania
| | - Diana Gabriela Iacob
- Infectious Diseases Department, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
9
|
Harter E, Lassnig C, Wagner EM, Zaiser A, Wagner M, Rychli K. The Novel Internalins InlP1 and InlP4 and the Internalin-Like Protein InlP3 Enhance the Pathogenicity of Listeria monocytogenes. Front Microbiol 2019; 10:1644. [PMID: 31396177 PMCID: PMC6664051 DOI: 10.3389/fmicb.2019.01644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/03/2019] [Indexed: 01/08/2023] Open
Abstract
The pathogenicity of the human foodborne pathogen Listeria monocytogenes relies on virulence factors such as internalins. In 2009/2010 two L. monocytogenes strains were responsible for a serious listeriosis outbreak in Austria, Germany, and the Czech Republic. One of these clones, QOC1, which caused 14 cases including five fatalities, encodes the novel internalins inlP1, inlPq and inlP4, and the novel internalin-like protein inlP3 in the genomic region of hypervariable genetic hotspot 9 in addition to the standard set of virulence genes. The in silico prevalence study revealed that these genes rarely occur in L. monocytogenes, mainly in minor clonal complexes. To obtain first insights of the role of these genes in the pathogenicity of L. monocytogenes, we studied the gene expression under conditions mimicking the ingestion in the host. Expression of inlP1, inlP3, inlPq and inlP4 was increased under gastric stress and in intracellular bacteria grown in intestinal epithelial cells. Furthermore, colonization of the liver and the spleen was slightly, but significantly reduced 72 h post infection in an oral mouse infection model when inlP1 or inlP4 was deleted. Moreover, the impact of InlP1 and InlP3 in virulence was shown in vitro in human intestinal epithelial cells. In this study we conclusively demonstrate a potential contribution of uncommon novel internalins and an internalin-like protein to the pathogenicity of L. monocytogenes.
Collapse
Affiliation(s)
- Eva Harter
- Department for Farm Animals and Public Health in Veterinary Medicine, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Caroline Lassnig
- Department of Biomedical Sciences, Institute of Animal Breeding and Genetics and Biomodels Austria, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Eva Maria Wagner
- Department for Farm Animals and Public Health in Veterinary Medicine, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
- Austrian Competence Centre for Feed and Food Quality, Safety and Innovation – FFoQSI GmbH, Tulln, Austria
| | - Andreas Zaiser
- Department for Farm Animals and Public Health in Veterinary Medicine, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Martin Wagner
- Department for Farm Animals and Public Health in Veterinary Medicine, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
- Austrian Competence Centre for Feed and Food Quality, Safety and Innovation – FFoQSI GmbH, Tulln, Austria
| | - Kathrin Rychli
- Department for Farm Animals and Public Health in Veterinary Medicine, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
10
|
Drolia R, Bhunia AK. Crossing the Intestinal Barrier via Listeria Adhesion Protein and Internalin A. Trends Microbiol 2019; 27:408-425. [PMID: 30661918 DOI: 10.1016/j.tim.2018.12.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/11/2018] [Accepted: 12/14/2018] [Indexed: 12/24/2022]
Abstract
The intestinal epithelial cell lining provides the first line of defense, yet foodborne pathogens such as Listeria monocytogenes can overcome this barrier; however, the underlying mechanism is not well understood. Though the host M cells in Peyer's patch and the bacterial invasion protein internalin A (InlA) are involved, L. monocytogenes can cross the gut barrier in their absence. The interaction of Listeria adhesion protein (LAP) with the host cell receptor (heat shock protein 60) disrupts the epithelial barrier, promoting bacterial translocation. InlA aids L. monocytogenes transcytosis via interaction with the E-cadherin receptor, which is facilitated by epithelial cell extrusion and goblet cell exocytosis; however, LAP-induced cell junction opening may be an alternative bacterial strategy for InlA access to E-cadherin and its translocation. Here, we summarize the strategies that L. monocytogenes employs to circumvent the intestinal epithelial barrier and compare and contrast these strategies with other enteric bacterial pathogens. Additionally, we provide implications of recent findings for food safety regulations.
Collapse
Affiliation(s)
- Rishi Drolia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Arun K Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
11
|
Drolia R, Tenguria S, Durkes AC, Turner JR, Bhunia AK. Listeria Adhesion Protein Induces Intestinal Epithelial Barrier Dysfunction for Bacterial Translocation. Cell Host Microbe 2018; 23:470-484.e7. [PMID: 29606495 PMCID: PMC6750208 DOI: 10.1016/j.chom.2018.03.004] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 12/30/2017] [Accepted: 03/09/2018] [Indexed: 12/24/2022]
Abstract
Intestinal epithelial cells are the first line of defense against enteric pathogens, yet bacterial pathogens, such as Listeria monocytogenes, can breach this barrier. We show that Listeria adhesion protein (LAP) induces intestinal epithelial barrier dysfunction to promote bacterial translocation. These disruptions are attributed to the production of pro-inflammatory cytokines TNF-α and IL-6, which is observed in mice challenged with WT and isogenic strains lacking the surface invasion protein Internalin A (ΔinlA), but not a lap- mutant. Additionally, upon engagement of its surface receptor Hsp60, LAP activates canonical NF-κB signaling, facilitating myosin light-chain kinase (MLCK)-mediated opening of the epithelial barrier via cellular redistribution of the epithelial junctional proteins claudin-1, occludin, and E-cadherin. Pharmacological inhibition of MLCK or NF-κB in cells or genetic ablation of MLCK in mice prevents mislocalization of junctional proteins and L. monocytogenes translocation. Thus, L. monocytogenes uses LAP to exploit epithelial defenses and cross the intestinal epithelial barrier.
Collapse
Affiliation(s)
- Rishi Drolia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Shivendra Tenguria
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Abigail C Durkes
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Jerrold R Turner
- Departments of Pathology and Medicine (Gastroenterology), Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Arun K Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
12
|
Multifaceted Defense against Listeria monocytogenes in the Gastro-Intestinal Lumen. Pathogens 2017; 7:pathogens7010001. [PMID: 29271903 PMCID: PMC5874727 DOI: 10.3390/pathogens7010001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 02/07/2023] Open
Abstract
Listeria monocytogenes is a foodborne pathogen that can cause febrile gastroenteritis in healthy subjects and systemic infections in immunocompromised individuals. Despite the high prevalence of L. monocytogenes in the environment and frequent contamination of uncooked meat and poultry products, infections with this pathogen are relatively uncommon, suggesting that protective defenses in the general population are effective. In the mammalian gastrointestinal tract, a variety of defense mechanisms prevent L. monocytogenes growth, epithelial penetration and systemic dissemination. Among these defenses, colonization resistance mediated by the gut microbiota is crucial in protection against a range of intestinal pathogens, including L. monocytogenes. Here we review defined mechanisms of defense against L. monocytogenes in the lumen of the gastro-intestinal tract, with particular emphasis on protection conferred by the autochthonous microbiota. We suggest that selected probiotic species derived from the microbiota may be developed for eventual clinical use to enhance resistance against L. monocytogenes infections.
Collapse
|
13
|
Ye Y, Zhang X, Zhang M, Ling N, Zeng H, Gao J, Jiao R, Wu Q, Zhang J. Potential factors involved in virulence of Cronobacter sakazakii isolates by comparative transcriptome analysis. J Dairy Sci 2017; 100:8826-8837. [PMID: 28888603 DOI: 10.3168/jds.2017-12801] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 07/11/2017] [Indexed: 01/15/2023]
Abstract
Cronobacter species are important foodborne pathogens causing severe infections in neonates through consumption of contaminated powdered infant formula. However, the virulence-associated factors in Cronobacter are largely unknown. In this study, the transcriptome analysis between highly virulent Cronobacter sakazakii G362 and attenuated L3101 strains was used to reveal the potential factors involved in virulence. The total transcripts were grouped into 20 clusters of orthologous group categories and summarized in 3 gene ontology categories (biological process, cellular component, and molecular function). In addition, the differentially expressed genes (DEG) between these isolates were analyzed using Volcano plots and gene ontology enrichment. The predominant DEG were flagella-associated genes such as flhD, motA, flgM, flgB, and fliC. Furthermore, the expression abundance of outer membrane protein or lipoprotein genes (ompW, slyB, blc, tolC, and lolA), potential virulence-related factors (hlyIII and hha), and regulation factors (sdiA, cheY, Bss, fliZ) was also significantly different between G362 and L3101. Interestingly, 3 hypothetical protein genes (ESA_01022, ESA_01609, and ESA_00609) were found to be expressed only in G362. Our findings provide valuable transcriptomic information about potential virulence factor genes, which will be needed in future molecular biology studies designed to understand the pathogenic mechanism of Cronobacter.
Collapse
Affiliation(s)
- Yingwang Ye
- School of Food Science and Technology, Hefei University of Technology, Hefei, 230009, China; State Key Laboratory of Applied Microbiology, South China (the Ministry-Province Joint Development), Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, 510070, China.
| | - Xiyan Zhang
- School of Food Science and Technology, Hefei University of Technology, Hefei, 230009, China
| | - Maofeng Zhang
- School of Food Science and Technology, Hefei University of Technology, Hefei, 230009, China
| | - Na Ling
- State Key Laboratory of Applied Microbiology, South China (the Ministry-Province Joint Development), Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, 510070, China
| | - Haiyan Zeng
- State Key Laboratory of Applied Microbiology, South China (the Ministry-Province Joint Development), Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, 510070, China
| | - Jina Gao
- School of Food Science and Technology, Hefei University of Technology, Hefei, 230009, China
| | - Rui Jiao
- School of Food Science and Technology, Hefei University of Technology, Hefei, 230009, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology, South China (the Ministry-Province Joint Development), Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, 510070, China
| | - Jumei Zhang
- State Key Laboratory of Applied Microbiology, South China (the Ministry-Province Joint Development), Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, 510070, China
| |
Collapse
|
14
|
Becattini S, Littmann ER, Carter RA, Kim SG, Morjaria SM, Ling L, Gyaltshen Y, Fontana E, Taur Y, Leiner IM, Pamer EG. Commensal microbes provide first line defense against Listeria monocytogenes infection. J Exp Med 2017; 214:1973-1989. [PMID: 28588016 PMCID: PMC5502438 DOI: 10.1084/jem.20170495] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/06/2017] [Accepted: 04/19/2017] [Indexed: 01/22/2023] Open
Abstract
Becattini et al. provide evidence that a diverse gut microbiota antagonizes the foodborne pathogen Listeria monocytogenes in the intestinal lumen, thereby reducing bloodstream invasion. Microbiota perturbation by antibiotic treatment increases susceptibility to listeriosis, with dramatic effects in immunocompromised hosts. Listeria monocytogenes is a foodborne pathogen that causes septicemia, meningitis and chorioamnionitis and is associated with high mortality. Immunocompetent humans and animals, however, can tolerate high doses of L. monocytogenes without developing systemic disease. The intestinal microbiota provides colonization resistance against many orally acquired pathogens, and antibiotic-mediated depletion of the microbiota reduces host resistance to infection. Here we show that a diverse microbiota markedly reduces Listeria monocytogenes colonization of the gut lumen and prevents systemic dissemination. Antibiotic administration to mice before low dose oral inoculation increases L. monocytogenes growth in the intestine. In immunodeficient or chemotherapy-treated mice, the intestinal microbiota provides nonredundant defense against lethal, disseminated infection. We have assembled a consortium of commensal bacteria belonging to the Clostridiales order, which exerts in vitro antilisterial activity and confers in vivo resistance upon transfer into germ free mice. Thus, we demonstrate a defensive role of the gut microbiota against Listeria monocytogenes infection and identify intestinal commensal species that, by enhancing resistance against this pathogen, represent potential probiotics.
Collapse
Affiliation(s)
- Simone Becattini
- Immunology Program, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Eric R Littmann
- Lucille Castori Center for Microbes Inflammation and Cancer, Molecular Microbiology Core Facility, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Rebecca A Carter
- Immunology Program, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Sohn G Kim
- Immunology Program, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Sejal M Morjaria
- Infectious Diseases Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Lilan Ling
- Lucille Castori Center for Microbes Inflammation and Cancer, Molecular Microbiology Core Facility, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Yangtsho Gyaltshen
- Lucille Castori Center for Microbes Inflammation and Cancer, Molecular Microbiology Core Facility, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Emily Fontana
- Lucille Castori Center for Microbes Inflammation and Cancer, Molecular Microbiology Core Facility, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Ying Taur
- Lucille Castori Center for Microbes Inflammation and Cancer, Molecular Microbiology Core Facility, Memorial Sloan-Kettering Cancer Center, New York, NY.,Infectious Diseases Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Ingrid M Leiner
- Immunology Program, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Eric G Pamer
- Immunology Program, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY .,Lucille Castori Center for Microbes Inflammation and Cancer, Molecular Microbiology Core Facility, Memorial Sloan-Kettering Cancer Center, New York, NY.,Infectious Diseases Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY
| |
Collapse
|
15
|
Abstract
Nucleotide-binding oligomerization domain 2 (NOD2) is an intracellular pattern recognition receptor that senses bacterial peptidoglycan (PGN)-conserved motifs in cytosol and stimulates host immune response. The association of NOD2 mutations with a number of inflammatory pathologies, including Crohn disease (CD), Graft-versus-host disease (GVHD), and Blau syndrome, highlights its pivotal role in host–pathogen interactions and inflammatory response. Stimulation of NOD2 by its ligand (muramyl dipeptide) activates pro-inflammatory pathways such as nuclear factor-κB (NF-κB), mitogen-activated protein kinases (MAPKs), and Caspase-1. A loss of NOD2 function may result in a failure in the control of microbial infection, thereby initiating systemic responses and aberrant inflammation. Because the ligand of Nod2 is conserved in both gram-positive and gram-negative bacteria, NOD2 detects a wide variety of microorganisms. Furthermore, current literature evidences that NOD2 is also able to control viruses’ and parasites’ infections. In this review, we present and discuss recent developments about the role of NOD2 in shaping the gut commensal microbiota and pathogens, including bacteria, viruses, and parasites, and the mechanisms by which Nod2 mutations participate in disease occurrence.
Collapse
Affiliation(s)
- Ziad Al Nabhani
- Laboratoire Inflamex, Université Paris-Diderot Sorbonne Paris-Cité, Paris, France
- INSERM, UMR 1149, Paris, France
| | - Gilles Dietrich
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Jean-Pierre Hugot
- Laboratoire Inflamex, Université Paris-Diderot Sorbonne Paris-Cité, Paris, France
- INSERM, UMR 1149, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpital Robert Debré, Paris, France
- * E-mail: (JPH); (FB)
| | - Frederick Barreau
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
- * E-mail: (JPH); (FB)
| |
Collapse
|
16
|
Alam MS, Costales M, Cavanaugh C, Pereira M, Gaines D, Williams K. Oral exposure to Listeria monocytogenes in aged IL-17RKO mice: A possible murine model to study listeriosis in susceptible populations. Microb Pathog 2016; 99:236-246. [PMID: 27574777 DOI: 10.1016/j.micpath.2016.08.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 07/07/2016] [Accepted: 08/25/2016] [Indexed: 11/18/2022]
Abstract
Foodborne Listeria monocytogenes (LM) is a cause of serious illness and death in the US. The case-fatality rate of invasive LM infection in the elderly population is >50%. The goal of this study is to establish a murine model of oral LM infection that can be used as a surrogate for human foodborne listeriosis in the geriatric population. Adult C57BL/6 (wild-type, WT) and adult or old IL17R-KO (knock-out) mice were gavaged with a murinized LM strain (Lmo-InlAm) and monitored for body-weight loss and survivability. Tissues were collected and assayed for bacterial burden, histology, and cytokine responses. When compared to WT mice, adult IL17R-KO mice are more susceptible to LM infection and showed increased LM burden and tissue pathology and a higher mortality rate. Older LM-infected KO-mice lost significantly (p < 0.02, ANOVA) more body-weight and had a higher bacterial burden in the liver (p = 0.03) and spleen as compared to adult mice. Uninfected, aged KO-mice showed a higher baseline pro-inflammatory response when compared to uninfected adult-KO mice. After infection, the pro-inflammatory cytokine, IFN-γ, mRNA in the liver was higher in the adult mice as compared to the old mice. The anti-inflammatory cytokine, IL-10, mRNA and regulatory T-cells (CD4+CD25+h or CD4+Foxp3+) cells in the aged mice increased significantly after infection as compared to adult mice. Expression of the T-cell activation marker, CD25 (IL-2Rα) in the aged mice did not increase significantly over baseline. These data suggest that aged IL17R-KO mice can be used as an in vivo model to study oral listeriosis and that aged mice are more susceptible to LM infection due to dysregulation of pro- and anti-inflammatory responses compared to adult mice, resulting in a protracted clearance of the infection.
Collapse
Affiliation(s)
- Mohammad S Alam
- Immunobiology Branch, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration (FDA), Laurel, MD 20708, USA.
| | - Matthew Costales
- Immunobiology Branch, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration (FDA), Laurel, MD 20708, USA
| | - Christopher Cavanaugh
- Immunobiology Branch, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration (FDA), Laurel, MD 20708, USA
| | - Marion Pereira
- Immunobiology Branch, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration (FDA), Laurel, MD 20708, USA
| | - Dennis Gaines
- Immunobiology Branch, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration (FDA), Laurel, MD 20708, USA
| | - Kristina Williams
- Immunobiology Branch, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration (FDA), Laurel, MD 20708, USA
| |
Collapse
|
17
|
Upadhyay A, Upadhyaya I, Mooyottu S, Venkitanarayanan K. Eugenol in combination with lactic acid bacteria attenuates Listeria monocytogenes virulence in vitro and in invertebrate model Galleria mellonella. J Med Microbiol 2016; 65:443-455. [DOI: 10.1099/jmm.0.000251] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Abhinav Upadhyay
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
| | - Indu Upadhyaya
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
| | - Shankumar Mooyottu
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
| | | |
Collapse
|
18
|
Zhang T, Bae D, Wang C. LMOh7858_0369, a gene encoding a putative leucine-rich repeat-containing protein, is required for virulence of Listeria monocytogenes. FEMS Microbiol Lett 2016; 363:fnw060. [PMID: 26976852 DOI: 10.1093/femsle/fnw060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2016] [Indexed: 11/13/2022] Open
Abstract
Listeria monocytogenes possesses the highest number of leucine-rich repeat (LRR)-containing proteins among all Gram-positive bacteria; these LRR-containing molecules are known as the 'internalin' family. To understand the functions of largely uncharacterized LRR-containing molecules, we constructed seven deletion mutants in the L. monocytogenes H7858 strain targeting genes in this family and tested their virulence. Among the seven mutants, the ΔLMOh7858_0369 strain and the ΔLMOh7858_2546 strain showed significantly impaired invasiveness of HepG2 cells. We further tested the virulence of these two strains in the intravascular sepsis model using BALB/c mice. Interestingly, the ΔLMOh7858_0369 strain showed significant reduction in organ colonization, bacteremia and invasion of the brain compared with the parental wild-type strain. Host immune responses to listerial intravascular infection were measured at 24 and 72 h post-infection. Transcript levels of several proinflammatory cytokines and chemokines were significantly lower when induced by the ΔlmOh7858_0369 strain than when induced by the wild type. These results suggest that the putative LRR-containing protein encoded by LMOh7858_0369 might be a novel virulence factor of the L. monocytogenes H7858 strain.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Dongryeoul Bae
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Chinling Wang
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| |
Collapse
|
19
|
Pseudomonas fluorescens alters the intestinal barrier function by modulating IL-1β expression through hematopoietic NOD2 signaling. Inflamm Bowel Dis 2015; 21:543-55. [PMID: 25659087 DOI: 10.1097/mib.0000000000000291] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Ileal Crohn's disease is related to NOD2 mutations and to a gut barrier dysfunction. Pseudomonas fluorescens has also been associated with ileal Crohn's disease. The aim of this study was to determine the impact of P. fluorescens on the paracellular permeability in ileum and Peyer's patches. METHODS To explore this question, in vivo and ex vivo experiments were performed in wild-type, Nod2, Nod2, and IL-1R mice together with in vitro analyses using the Caco-2 (epithelial) and the THP-1 (monocyte) human cell lines. RESULTS Pseudomonas fluorescens increased the paracellular permeability of the intestinal mucosa through the secretion of IL-1β by the immune cell populations and the activation of myosin light chain kinase in the epithelial cells. Induction of the IL-1β pathway required the expression of Nod2 in the hematopoietic compartment, and muramyl dipeptide (a Nod2 ligand) had an inhibitory effect. CONCLUSIONS Pseudomonas fluorescens thus alters the homeostasis of the epithelial barrier function by a mechanism similar to that previously observed for Yersinia pseudotuberculosis. This work further documents a putative role of psychrotrophic bacteria in Crohn's disease.
Collapse
|
20
|
Metal ion homeostasis in Listeria monocytogenes and importance in host-pathogen interactions. Adv Microb Physiol 2014; 65:83-123. [PMID: 25476765 DOI: 10.1016/bs.ampbs.2014.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Listeria monocytogenes is responsible for one of the most life-threatening food-borne infections and the leading cause of food-poisoning associated deaths in the UK. Infection may be of the unborn/newly born infant where disease may manifest as listeric abortion, stillbirth or late-onset neonatal listeriosis, while in adults, infection usually affects the central nervous system causing meningitis. Crucial to the survival of L. monocytogenes, both inside and outside the host, is its ability to acquire metals which act as cofactors for a broad range of its cellular proteins. However, L. monocytogenes must also protect itself against the innate toxicity of metals. The importance of metals in host-pathogen interactions is illustrated by the restriction of metals (including zinc and iron) in vertebrates in response to infection and the use of high levels of metals (copper and zinc) as part of the antimicrobial defences within host phagocytes. As such, L. monocytogenes is equipped with various mechanisms to tightly control its cellular metal pools and avoid metal poisoning. These include multiple DNA-binding metal-responsive transcription factors, metal-acquisition, metal-detoxification and metal-storage systems, some of which represent key L. monocytogenes virulence determinants. This review discusses current knowledge of the role of metals in L. monocytogenes infections, with a focus on the mechanisms that contribute to zinc and copper homeostasis in this organism. The requirement to precisely control cellular metal levels may impose a vulnerability to L. monocytogenes which can be exploited in antimicrobials and therapeutics.
Collapse
|
21
|
Chen LH, Köseoğlu VK, Güvener ZT, Myers-Morales T, Reed JM, D'Orazio SEF, Miller KW, Gomelsky M. Cyclic di-GMP-dependent signaling pathways in the pathogenic Firmicute Listeria monocytogenes. PLoS Pathog 2014; 10:e1004301. [PMID: 25101646 PMCID: PMC4125290 DOI: 10.1371/journal.ppat.1004301] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 06/27/2014] [Indexed: 12/21/2022] Open
Abstract
We characterized key components and major targets of the c-di-GMP signaling pathways in the foodborne pathogen Listeria monocytogenes, identified a new c-di-GMP-inducible exopolysaccharide responsible for motility inhibition, cell aggregation, and enhanced tolerance to disinfectants and desiccation, and provided first insights into the role of c-di-GMP signaling in listerial virulence. Genome-wide genetic and biochemical analyses of c-di-GMP signaling pathways revealed that L. monocytogenes has three GGDEF domain proteins, DgcA (Lmo1911), DgcB (Lmo1912) and DgcC (Lmo2174), that possess diguanylate cyclase activity, and three EAL domain proteins, PdeB (Lmo0131), PdeC (Lmo1914) and PdeD (Lmo0111), that possess c-di-GMP phosphodiesterase activity. Deletion of all phosphodiesterase genes (ΔpdeB/C/D) or expression of a heterologous diguanylate cyclase stimulated production of a previously unknown exopolysaccharide. The synthesis of this exopolysaccharide was attributed to the pssA-E (lmo0527-0531) gene cluster. The last gene of the cluster encodes the fourth listerial GGDEF domain protein, PssE, that functions as an I-site c-di-GMP receptor essential for exopolysaccharide synthesis. The c-di-GMP-inducible exopolysaccharide causes cell aggregation in minimal medium and impairs bacterial migration in semi-solid agar, however, it does not promote biofilm formation on abiotic surfaces. The exopolysaccharide also greatly enhances bacterial tolerance to commonly used disinfectants as well as desiccation, which may contribute to survival of L. monocytogenes on contaminated food products and in food-processing facilities. The exopolysaccharide and another, as yet unknown c-di-GMP-dependent target, drastically decrease listerial invasiveness in enterocytes in vitro, and lower pathogen load in the liver and gallbladder of mice infected via an oral route, which suggests that elevated c-di-GMP levels play an overall negative role in listerial virulence. Listeria monocytogenes is ubiquitously present in the environment, highly adaptable and tolerant to various stresses. L. monocytogenes is also a foodborne pathogen associated with the largest foodborne outbreaks in recent US history. Signaling pathways involving the second messenger c-di-GMP play important roles in increased stress survival of proteobacteria and mycobacteria, yet roles of c-di-GMP signaling pathways in L. monocytogenes have remained unexplored. Here, we identified and systematically characterized functions of the proteins involved in c-di-GMP synthesis, degradation and sensing. We show that elevated c-di-GMP levels in L. monocytogenes result in synthesis of a previously unknown exopolysaccharide that promotes cell aggregation, inhibits motility in semi-solid media, and importantly, enhances bacterial tolerance to commonly used disinfectants as well as desiccation. These properties of the exopolysaccharide may increase listerial survival in food processing plants as well as on produce during transportation and storage. Elevated c-di-GMP levels also grossly diminish listerial invasiveness in enterocytes in vitro, and impair bacterial accumulation in selected mouse organs during oral infection.
Collapse
Affiliation(s)
- Li-Hong Chen
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, United States of America
| | - Volkan K. Köseoğlu
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, United States of America
| | - Zehra T. Güvener
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, United States of America
| | - Tanya Myers-Morales
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, United States of America
| | - Joseph M. Reed
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, United States of America
| | - Sarah E. F. D'Orazio
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, United States of America
| | - Kurt W. Miller
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, United States of America
| | - Mark Gomelsky
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, United States of America
- * E-mail:
| |
Collapse
|
22
|
Pathogenesis of human enterovirulent bacteria: lessons from cultured, fully differentiated human colon cancer cell lines. Microbiol Mol Biol Rev 2014; 77:380-439. [PMID: 24006470 DOI: 10.1128/mmbr.00064-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hosts are protected from attack by potentially harmful enteric microorganisms, viruses, and parasites by the polarized fully differentiated epithelial cells that make up the epithelium, providing a physical and functional barrier. Enterovirulent bacteria interact with the epithelial polarized cells lining the intestinal barrier, and some invade the cells. A better understanding of the cross talk between enterovirulent bacteria and the polarized intestinal cells has resulted in the identification of essential enterovirulent bacterial structures and virulence gene products playing pivotal roles in pathogenesis. Cultured animal cell lines and cultured human nonintestinal, undifferentiated epithelial cells have been extensively used for understanding the mechanisms by which some human enterovirulent bacteria induce intestinal disorders. Human colon carcinoma cell lines which are able to express in culture the functional and structural characteristics of mature enterocytes and goblet cells have been established, mimicking structurally and functionally an intestinal epithelial barrier. Moreover, Caco-2-derived M-like cells have been established, mimicking the bacterial capture property of M cells of Peyer's patches. This review intends to analyze the cellular and molecular mechanisms of pathogenesis of human enterovirulent bacteria observed in infected cultured human colon carcinoma enterocyte-like HT-29 subpopulations, enterocyte-like Caco-2 and clone cells, the colonic T84 cell line, HT-29 mucus-secreting cell subpopulations, and Caco-2-derived M-like cells, including cell association, cell entry, intracellular lifestyle, structural lesions at the brush border, functional lesions in enterocytes and goblet cells, functional and structural lesions at the junctional domain, and host cellular defense responses.
Collapse
|
23
|
Barreau F, Hugot JP. Intestinal barrier dysfunction triggered by invasive bacteria. Curr Opin Microbiol 2014; 17:91-8. [PMID: 24440560 DOI: 10.1016/j.mib.2013.12.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 12/16/2013] [Accepted: 12/17/2013] [Indexed: 12/31/2022]
Abstract
The ability to control uptake across the mucosa and to protect the gut from harmful substances present in the lumen is defined as intestinal barrier function. Two routes are usually distinguished for transepithelial transport. The paracellular route allows the passage of ions and small molecules and is mainly regulated by tight junctions (TJ). The transcellular route concerns large molecules or small particles (including bacteria) and is mediated by cell endocytosis and intracellular vesicular traffic. Enteropathogenic bacteria increase the transcellular permeability, especially in the follicle-associated epithelium. They also modulate TJ opening via the redistribution of TJ proteins and the activation of the myosin light chain kinase (MLCK). This review focuses on the molecular mechanisms involved in the bacteria-induced barrier defect and briefly discusses their consequences in human diseases.
Collapse
Affiliation(s)
- F Barreau
- Université Paris-Diderot Sorbonne Paris-Cité, UMR 843, F-75018 Paris, France; INSERM, UMR 843, F-75018 Paris, France; Labex inflamex, F-75018 Paris, France; INSERM, UMR 1043, Centre de Physiopathologie de Toulouse, Université de Toulouse, France.
| | - J P Hugot
- Université Paris-Diderot Sorbonne Paris-Cité, UMR 843, F-75018 Paris, France; INSERM, UMR 843, F-75018 Paris, France; Labex inflamex, F-75018 Paris, France; Assistance Publique Hôpitaux de Paris, Hôpital Robert Debré, F-75019 Paris, France.
| |
Collapse
|
24
|
Ammendolia MG, Iosi F, De Berardis B, Guccione G, Superti F, Conte MP, Longhi C. Listeria monocytogenes behaviour in presence of non-UV-irradiated titanium dioxide nanoparticles. PLoS One 2014; 9:e84986. [PMID: 24416327 PMCID: PMC3887020 DOI: 10.1371/journal.pone.0084986] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 11/27/2013] [Indexed: 01/04/2023] Open
Abstract
Listeria monocytogenes is the agent of listeriosis, a food-borne disease. It represents a serious problem for the food industry because of its environmental persistence mainly due to its ability to form biofilm on a variety of surfaces. Microrganisms attached on the surfaces are a potential source of contamination for environment and animals and humans. Titanium dioxide nanoparticles (TiO2 NPs) are used in food industry in a variety of products and it was reported that daily exposure to these nanomaterials is very high. Anti-listerial activity of TiO2 NPs was investigated only with UV-irradiated nanomaterials, based on generation of reactive oxigen species (ROS) with antibacterial effect after UV exposure. Since both Listeria monocytogenes and TiO2 NPs are veicolated with foods, this study explores the interaction between Listeria monocytogenes and non UV-irradiated TiO2 NPs, with special focus on biofilm formation and intestinal cell interaction. Scanning electron microscopy and quantitative measurements of biofilm mass indicate that NPs influence both production and structural architecture of listerial biofilm. Moreover, TiO2 NPs show to interfere with bacterial interaction to intestinal cells. Increased biofilm production due to TiO2 NPs exposure may favour bacterial survival in environment and its transmission to animal and human hosts.
Collapse
Affiliation(s)
| | - Francesca Iosi
- Department of Technology and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Barbara De Berardis
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | - Giuliana Guccione
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, Rome, Italy
| | - Fabiana Superti
- Department of Technology and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Pia Conte
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, Rome, Italy
| | - Catia Longhi
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, Rome, Italy
| |
Collapse
|
25
|
Kim H, Bhunia AK. Secreted Listeria adhesion protein (Lap) influences Lap-mediated Listeria monocytogenes paracellular translocation through epithelial barrier. Gut Pathog 2013; 5:16. [PMID: 23799938 PMCID: PMC3716925 DOI: 10.1186/1757-4749-5-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 06/14/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Listeria adhesion protein (Lap), an alcohol acetaldehyde dehydrogenase (lmo1634) promotes bacterial paracellular translocation through epithelial cell junctions during gastrointestinal phase of infection. Secreted Lap is critical for pathogenesis and is mediated by SecA2 system; however, if strain dependent variation in Lap secretion would affect L. monocytogenes paracellular translocation through epithelial barrier is unknown. METHODS Amounts of Lap secretion were examined in clinical isolates of L. monocytogenes by cell fractionation analysis using Western blot. Quantitative reverse transcriptase PCR (qRT-PCR) was used to verify protein expression profiles. Adhesion and invasion of isolates were analyzed by in vitro Caco-2 cell culture model and paracellular translocation was determined using a trans-well model pre-seeded with Caco-2 cells. RESULTS Western blot revealed that expression of Lap in whole cell preparation of isolates was very similar; however, cell fractionation analysis indicated variable Lap secretion among isolates. The strains showing high Lap secretion in supernatant exhibited significantly higher adhesion (3.4 - 4.8% vs 1.5 - 2.3%, P < 0.05), invasion and paracellular translocation in Caco-2 cells than the low secreting isolates. In cell wall fraction, Lap level was mostly uniform for both groups, while Lap accumulated in cytosol in low secreting strains indicating that Lap distribution in cellular compartments is a strain-dependent phenomenon, which may be controlled by the protein transport system, SecA2. ΔsecA2 mutants showed significantly reduced paracellular translocation through epithelial barrier (0.48 ± 0.01 vs 0.24 ± 0.02, P < 0.05). qRT-PCR did not show any discernible variation in lap transcript levels in either high or low secreting isolates. CONCLUSION This study revealed that secreted Lap is an important determinant in Lap-mediated L. monocytogenes translocation through paracellular route and may serve as an indicator for pathogenic potential of an isolate.
Collapse
Affiliation(s)
- Hyochin Kim
- Department of Food Science, Molecular Food Microbiology Laboratory, West Lafayette, USA
| | - Arun K Bhunia
- Department of Food Science, Molecular Food Microbiology Laboratory, West Lafayette, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
26
|
Bergmann S, Beard PM, Pasche B, Lienenklaus S, Weiss S, Gahan CGM, Schughart K, Lengeling A. Influence of internalin A murinisation on host resistance to orally acquired listeriosis in mice. BMC Microbiol 2013; 13:90. [PMID: 23617550 PMCID: PMC3640945 DOI: 10.1186/1471-2180-13-90] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 04/15/2013] [Indexed: 12/24/2022] Open
Abstract
Background The bacterial surface protein internalin (InlA) is a major virulence factor of the food-born pathogen Listeria monocytogenes. It plays a critical role in the bacteria crossing the host intestinal barrier by a species-specific interaction with the cell adhesion molecule E-cadherin. In mice, the interaction of InlA with murine E-cadherin is impaired due to sequence-specific binding incompatibilities. We have previously used the approach of ‘murinisation’ to establish an oral listeriosis infection model in mice by exchanging two amino acid residues in InlA. This dramatically increases binding to mouse E-cadherin. In the present study, we have used bioluminescent murinised and non-murinised Listeria strains to examine the spatiotemporal dissemination of Listeria in four diverse mouse genetic backgrounds after oral inoculation. Results The murinised Listeria monocytogenes strain showed enhanced invasiveness and induced more severe infections in all four investigated mouse inbred strains compared to the non-murinised Listeria strain. We identified C57BL/6J mice as being most resistant to orally acquired listeriosis whereas C3HeB/FeJ, A/J and BALB/cJ mice were found to be most susceptible to infection. This was reflected in faster kinetics of Listeria dissemination, higher bacterial loads in internal organs, and elevated serum levels of IL-6, IFN-γ, TNF-α and CCL2 in the susceptible strains as compared to the resistant C57BL/6J strain. Importantly, murinisation of InlA did not cause enhanced invasion of Listeria monocytogenes into the brain. Conclusion Murinised Listeria are able to efficiently cross the intestinal barrier in mice from diverse genetic backgrounds. However, expression of murinized InlA does not enhance listerial brain invasion suggesting that crossing of the blood brain barrier and crossing of the intestinal epithelium are achieved by Listeria monocytogenes through different molecular mechanisms.
Collapse
Affiliation(s)
- Silke Bergmann
- Department of Infection Genetics, Helmholtz Centre for Infection Research & University of Veterinary Medicine Hannover, Braunschweig D-38124, Germany
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Bou Ghanem EN, Jones GS, Myers-Morales T, Patil PD, Hidayatullah AN, D'Orazio SEF. InlA promotes dissemination of Listeria monocytogenes to the mesenteric lymph nodes during food borne infection of mice. PLoS Pathog 2012; 8:e1003015. [PMID: 23166492 PMCID: PMC3499570 DOI: 10.1371/journal.ppat.1003015] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 09/21/2012] [Indexed: 12/15/2022] Open
Abstract
Intestinal Listeria monocytogenes infection is not efficient in mice and this has been attributed to a low affinity interaction between the bacterial surface protein InlA and E-cadherin on murine intestinal epithelial cells. Previous studies using either transgenic mice expressing human E-cadherin or mouse-adapted L. monocytogenes expressing a modified InlA protein (InlA(m)) with high affinity for murine E-cadherin showed increased efficiency of intragastric infection. However, the large inocula used in these studies disseminated to the spleen and liver rapidly, resulting in a lethal systemic infection that made it difficult to define the natural course of intestinal infection. We describe here a novel mouse model of oral listeriosis that closely mimics all phases of human disease: (1) ingestion of contaminated food, (2) a distinct period of time during which L. monocytogenes colonize only the intestines, (3) varying degrees of systemic spread in susceptible vs. resistant mice, and (4) late stage spread to the brain. Using this natural feeding model, we showed that the type of food, the time of day when feeding occurred, and mouse gender each affected susceptibility to L. monocytogenes infection. Co-infection studies using L. monocytogenes strains that expressed either a high affinity ligand for E-cadherin (InlA(m)), a low affinity ligand (wild type InlA from Lm EGDe), or no InlA (ΔinlA) showed that InlA was not required to establish intestinal infection in mice. However, expression of InlA(m) significantly increased bacterial persistence in the underlying lamina propria and greatly enhanced dissemination to the mesenteric lymph nodes. Thus, these studies revealed a previously uncharacterized role for InlA in facilitating systemic spread via the lymphatic system after invasion of the gut mucosa.
Collapse
Affiliation(s)
| | | | | | | | | | - Sarah E. F. D'Orazio
- Department of Microbiology, Immunology, & Molecular Genetics, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
28
|
Pizarro-Cerdá J, Kühbacher A, Cossart P. Entry of Listeria monocytogenes in mammalian epithelial cells: an updated view. Cold Spring Harb Perspect Med 2012; 2:2/11/a010009. [PMID: 23125201 DOI: 10.1101/cshperspect.a010009] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Listeria monocytogenes is a bacterial pathogen that promotes its internalization into host epithelial cells. Interaction between the bacterial surface molecules InlA and InlB and their cellular receptors E-cadherin and Met, respectively, triggers the recruitment of endocytic effectors, the subversion of the phosphoinositide metabolism, and the remodeling of the actin cytoskeleton that lead to bacterial engulfment. Additional bacterial surface and secreted virulence factors also contribute to entry, albeit to a lesser extent. Here we review the increasing number of signaling effectors that are reported as being subverted by L. monocytogenes during invasion of cultured cell lines. We also update the current knowledge of the early steps of in vivo cellular infection, which, as shown recently, challenges previous concepts generated from in vitro data.
Collapse
|
29
|
Nikitas G, Deschamps C, Disson O, Niault T, Cossart P, Lecuit M. Transcytosis of Listeria monocytogenes across the intestinal barrier upon specific targeting of goblet cell accessible E-cadherin. ACTA ACUST UNITED AC 2011; 208:2263-77. [PMID: 21967767 PMCID: PMC3201198 DOI: 10.1084/jem.20110560] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Listeria monocytogenes targets accessible E-cadherin expressed on mucus-producing goblet cells to invade the intestinal tissue. Listeria monocytogenes (Lm) is a foodborne pathogen that crosses the intestinal barrier upon interaction between its surface protein InlA and its species-specific host receptor E-cadherin (Ecad). Ecad, the key constituent of adherens junctions, is typically situated below tight junctions and therefore considered inaccessible from the intestinal lumen. In this study, we investigated how Lm specifically targets its receptor on intestinal villi and crosses the intestinal epithelium to disseminate systemically. We demonstrate that Ecad is luminally accessible around mucus-expelling goblet cells (GCs), around extruding enterocytes at the tip and lateral sides of villi, and in villus epithelial folds. We show that upon preferential adherence to accessible Ecad on GCs, Lm is internalized, rapidly transcytosed across the intestinal epithelium, and released in the lamina propria by exocytosis from where it disseminates systemically. Together, these results show that Lm exploits intrinsic tissue heterogeneity to access its receptor and reveal transcytosis as a novel and unanticipated pathway that is hijacked by Lm to breach the intestinal epithelium and cause systemic infection.
Collapse
Affiliation(s)
- Georgios Nikitas
- Microbes and Host Barriers Group, French National Reference Center and World Health Organization Collaborating Center on Listeria, Institut Pasteur, Paris, France
| | | | | | | | | | | |
Collapse
|
30
|
Karanis P, Aldeyarbi HM. Evolution of Cryptosporidium in vitro culture. Int J Parasitol 2011; 41:1231-42. [PMID: 21889507 DOI: 10.1016/j.ijpara.2011.08.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/03/2011] [Accepted: 08/04/2011] [Indexed: 02/07/2023]
Abstract
This overview discusses findings from culturing Cryptosporidium spp. in cell and axenic cultures as well as factors limiting the development of this parasite in cultivation systems during recent years. A systematic review is undertaken of findings regarding the life cycle of the parasite, taking into account physiological, biochemical and genetic aspects, in the hope that this attempt will facilitate future approaches to research and developments in the understanding of Cryptosporidium biology.
Collapse
Affiliation(s)
- P Karanis
- University of Cologne, Center for Anatomy, Institute II, Molecular and Medical Parasitology, Joseph-Stelzmann-Street 9, Geb.35, 50937 Köln, Germany.
| | | |
Collapse
|
31
|
Masuda K, Kajikawa A, Igimi S. Establishment and Evaluation of an in vitro M Cell Model using C2BBe1 Cells and Raji Cells. Biosci Microflora 2011; 30:37-44. [PMID: 25045312 PMCID: PMC4103634 DOI: 10.12938/bifidus.30.37] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 12/08/2010] [Indexed: 12/16/2022] Open
Abstract
In vitro M cell models, consisting of co-cultures of Caco-2 cells and
lymphoid cells, were developed and examined to observe bacterial transport. However, under
our experimental conditions, the differentiation of Caco-2 cells into M cell-like cells
could not be induced efficiently. To obtain a functionally stable M cell model based on
human cells, C2BBe1 cells were screened and co-cultured with human Raji cells. In our
co-cultures, increased sialyl Lewis A antigen expression and decreased Ulex
europeaus agglutinin 1 binding were observed. Regarding the functional
properties of the model, microsphere and lactic acid bacteria transport across the C2BBe1
co-cultures were increased compared with the levels seen in monocultures. The C2BBe1
monolayers that were co-cultured with Raji cells exhibited some M cell features;
therefore, we consider our M cell model to be useful for investigating the interactions of
bacteria with M cells.
Collapse
Affiliation(s)
- Kazuya Masuda
- United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan ; Division of Biomedical Food Research, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Akinobu Kajikawa
- Department of Food, Bioprocessing, Nutrition Sciences, North Carolina State University, Box 7624, Raleigh, NC27695, USA
| | - Shizunobu Igimi
- United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan ; Division of Biomedical Food Research, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| |
Collapse
|
32
|
Chiba S, Nagai T, Hayashi T, Baba Y, Nagai S, Koyasu S. Listerial invasion protein internalin B promotes entry into ileal Peyer's patches in vivo. Microbiol Immunol 2011; 55:123-9. [DOI: 10.1111/j.1348-0421.2010.00292.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
33
|
Barrila J, Radtke AL, Crabbé A, Sarker SF, Herbst-Kralovetz MM, Ott CM, Nickerson CA. Organotypic 3D cell culture models: using the rotating wall vessel to study host-pathogen interactions. Nat Rev Microbiol 2010; 8:791-801. [PMID: 20948552 DOI: 10.1038/nrmicro2423] [Citation(s) in RCA: 213] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Appropriately simulating the three-dimensional (3D) environment in which tissues normally develop and function is crucial for engineering in vitro models that can be used for the meaningful dissection of host-pathogen interactions. This Review highlights how the rotating wall vessel bioreactor has been used to establish 3D hierarchical models that range in complexity from a single cell type to multicellular co-culture models that recapitulate the 3D architecture of tissues observed in vivo. The application of these models to the study of infectious diseases is discussed.
Collapse
Affiliation(s)
- Jennifer Barrila
- Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85287, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Listeria monocytogenes uses Listeria adhesion protein (LAP) to promote bacterial transepithelial translocation and induces expression of LAP receptor Hsp60. Infect Immun 2010; 78:5062-73. [PMID: 20876294 DOI: 10.1128/iai.00516-10] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Listeria monocytogenes interaction with the intestinal epithelium is a key step in the infection process. We demonstrated that Listeria adhesion protein (LAP) promotes adhesion to intestinal epithelial cells and facilitates extraintestinal dissemination in vivo. The LAP receptor is a stress response protein, Hsp60, but the precise role for the LAP-Hsp60 interaction during Listeria infection is unknown. Here we investigated the influence of physiological stressors and Listeria infection on host Hsp60 expression and LAP-mediated bacterial adhesion, invasion, and transepithelial translocation in an enterocyte-like Caco-2 cell model. Stressors such as heat (41°C), tumor necrosis factor alpha (TNF-α) (100 U), and L. monocytogenes infection (10(4) to 10(6) CFU/ml) significantly (P < 0.05) increased plasma membrane and intracellular Hsp60 levels in Caco-2 cells and consequently enhanced LAP-mediated L. monocytogenes adhesion but not invasion of Caco-2 cells. In transepithelial translocation experiments, the wild type (WT) exhibited 2.7-fold more translocation through Caco-2 monolayers than a lap mutant, suggesting that LAP is involved in transepithelial translocation, potentially via a paracellular route. Short hairpin RNA (shRNA) suppression of Hsp60 in Caco-2 cells reduced WT adhesion and translocation 4.5- and 3-fold, respectively, while adhesion remained unchanged for the lap mutant. Conversely, overexpression of Hsp60 in Caco-2 cells enhanced WT adhesion and transepithelial translocation, but not those of the lap mutant. Furthermore, initial infection with a low dosage (10(6) CFU/ml) of L. monocytogenes increased plasma membrane and intracellular expression of Hsp60 significantly, which rendered Caco-2 cells more susceptible to subsequent LAP-mediated adhesion and translocation. These data provide insight into the role of LAP as a virulence factor during intestinal epithelial infection and pose new questions regarding the dynamics between the host stress response and pathogen infection.
Collapse
|
35
|
Jung C, Hugot JP, Barreau F. Peyer's Patches: The Immune Sensors of the Intestine. Int J Inflam 2010; 2010:823710. [PMID: 21188221 PMCID: PMC3004000 DOI: 10.4061/2010/823710] [Citation(s) in RCA: 278] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Accepted: 07/11/2010] [Indexed: 12/13/2022] Open
Abstract
The gut-associated lymphoid tissue (GALT) consists of isolated or aggregated lymphoid follicles forming Peyer's patches (PPs). By their ability to transport luminal antigens and bacteria, PPs can be considered as the immune sensors of the intestine. PPs functions like induction of immune tolerance or defense against pathogens result from the complex interplay between immune cells located in the lymphoid follicles and the follicle-associated epithelium. This crosstalk seems to be regulated by pathogen recognition receptors, especially Nod2. Although TLR exerts a limited role in PP homeotasis, Nod2 regulates the number, size, and T-cell composition of PPs, in response to the gut flora. In turn, CD4+ T-cells present in the PP are able to modulate the paracellular and transcellular permeabilities. Two human disorders, Crohn's disease and graft-versus-host disease are thought to be driven by an abnormal response toward the commensal flora. They have been associated with NOD2 mutations and PP dysfunction.
Collapse
Affiliation(s)
- Camille Jung
- UMR843 INSERM, Université Sorbonne Paris Cité-Diderot, Hôpital Robert Debré, 75019 Paris, France
| | | | | |
Collapse
|
36
|
Schuppler M, Loessner MJ. The Opportunistic Pathogen Listeria monocytogenes: Pathogenicity and Interaction with the Mucosal Immune System. Int J Inflam 2010; 2010:704321. [PMID: 21188219 PMCID: PMC3003996 DOI: 10.4061/2010/704321] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 06/01/2010] [Indexed: 12/22/2022] Open
Abstract
Listeria monocytogenes is an opportunistic foodborne pathogen causing listeriosis, an often fatal infection leading to meningitis, sepsis, or infection of the fetus and abortion in susceptible individuals. It was recently found that the bacterium can also cause acute, self-limiting febrile gastroenteritis in healthy individuals. In the intestinal tract, L. monocytogenes penetrates the mucosa directly via enterocytes, or indirectly via invasion of Peyer's patches. Animal models for L. monocytogenes infection have provided many insights into the mechanisms of pathogenesis, and the development of new model systems has allowed the investigation of factors that influence adaptation to the gastrointestinal environment as well as adhesion to and invasion of the intestinal mucosa. The mucosal surfaces of the gastrointestinal tract are permanently exposed to an enormous antigenic load derived from the gastrointestinal microbiota present in the human bowel. The integrity of the important epithelial barrier is maintained by the mucosal immune system and its interaction with the commensal flora via pattern recognition receptors (PRRs). Here, we discuss recent advances in our understanding of the interaction of L. monocytogenes with the host immune system that triggers the antibacterial immune responses on the mucosal surfaces of the human gastrointestinal tract.
Collapse
Affiliation(s)
- Markus Schuppler
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstraße 7, 8092 Zurich, Switzerland
| | | |
Collapse
|
37
|
Wang D, Xu J, Feng Y, Liu Y, Mchenga SS, Shan F, Sasaki JI, Lu C. Liposomal oral DNA vaccine (mycobacterium DNA) elicits immune response. Vaccine 2010; 28:3134-42. [DOI: 10.1016/j.vaccine.2010.02.058] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 01/29/2010] [Accepted: 02/15/2010] [Indexed: 10/19/2022]
|
38
|
The stress-induced virulence protein InlH controls interleukin-6 production during murine listeriosis. Infect Immun 2010; 78:1979-89. [PMID: 20176794 DOI: 10.1128/iai.01096-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of the pathogenic bacterium Listeria monocytogenes contains a family of genes encoding proteins with a leucine-rich repeat domain. One of these genes, inlH, is a sigma(B)-dependent virulence gene of unknown function. Previously, inlH was proposed to be coexpressed with two adjacent internalin genes, inlG and inlE. Using tiling arrays, we showed that inlH expression is monocistronic and specifically induced in stationary phase as well as in the intestinal lumen of mice, independent of inlG and inlE expression. Consistent with inlH sigma(B)-dependent regulation, surface expression of the InlH protein is induced when bacteria are subjected to thermal, acidic, osmotic, or oxidative stress. Disruption of inlH increases the amount of the invasion protein InlA without changing inlA transcript level, suggesting that there is a link between inlH expression and inlA posttranscriptional regulation. However, in contrast to InlA, InlH does not contribute to bacterial invasion of cultured cells in vitro or of intestinal cells in vivo. Strikingly, the reduced virulence of inlH-deficient L. monocytogenes strains is accompanied by enhanced production of interleukin-6 (IL-6) in infected tissues during the systemic phase of murine listeriosis but not by enhanced production of any other inflammatory cytokine tested. Since InlH does not modulate IL-6 secretion in macrophages at least in vitro, it may play a role in other immune cells or contribute to a pathway that modulates survival or activation of IL-6-secreting cells. These results strongly suggest that InlH is a stress-induced surface protein that facilitates pathogen survival in tissues by tempering the inflammatory response.
Collapse
|
39
|
Burkholder KM, Kim KP, Mishra KK, Medina S, Hahm BK, Kim H, Bhunia AK. Expression of LAP, a SecA2-dependent secretory protein, is induced under anaerobic environment. Microbes Infect 2009; 11:859-67. [DOI: 10.1016/j.micinf.2009.05.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 05/06/2009] [Accepted: 05/07/2009] [Indexed: 10/20/2022]
|
40
|
Kyd JM, Cripps AW. Functional differences between M cells and enterocytes in sampling luminal antigens. Vaccine 2008; 26:6221-4. [DOI: 10.1016/j.vaccine.2008.09.061] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 09/15/2008] [Indexed: 01/14/2023]
|
41
|
Fisher OZ, Kim T, Dietz SR, Peppas NA. Enhanced core hydrophobicity, functionalization and cell penetration of polybasic nanomatrices. Pharm Res 2008; 26:51-60. [PMID: 18751960 DOI: 10.1007/s11095-008-9704-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 08/05/2008] [Indexed: 12/21/2022]
Abstract
PURPOSE In this work a novel pH-responsive nanoscale polymer network was investigated for potential applications in nanomedicine. These consisted of a polybasic core surface stabilized with poly(ethylene glycol) grafts. The ability to control swelling properties via changes in core hydrophobicity and crosslinking feed density was assessed. The nanomatrices were also evaluated in vitro as nanocarriers for targeted intracellular delivery of macromolecules. MATERIALS AND METHODS Photo-emulsion polymerization was used to synthesize poly[2-(diethylamino)ethyl methacrylate-co-t-butyl methacrylate-g-poly(ethylene glycol)] (PDBP) nanomatrices. These were characterized using NMR, dynamic and electrophoretic light scattering, electron microscopy. The cytocompatibility and cellular uptake of nanomatrices was measured using the NIH/3T3 and A549 cell lines. RESULTS PDBP nanomatrices had a dry diameter of 40-60 nm and a hydrodynamic diameter of 70-90 nm in the collapsed state. Maximum volume swelling ratios from 6-22 were obtained depending on crosslinking feed density. Controlling the hydrophobicity of the networks allowed for control over the critical swelling pH without a significant loss in maximal volume swelling. The effect of PDBP nanomatrices on cell viability and cell membrane integrity depended on crosslinking feed density. Cell uptake and cytosolic delivery of FITC-albumin was enhanced from clathrin-targeting nanocarriers. The uptake resulted in nuclear localization of the dye in a cell type dependent fashion. CONCLUSIONS The results of this work indicate that PDBP nanomatrices have tunable swelling properties. The networks were cytocompatible and proved to be suitable agents for intracellular delivery.
Collapse
Affiliation(s)
- Omar Z Fisher
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78752, USA
| | | | | | | |
Collapse
|
42
|
Screening of rationally designed oligopeptides for Listeria monocytogenes detection by means of a high density colorimetric microarray. Mikrochim Acta 2008. [DOI: 10.1007/s00604-008-0035-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Corr SC, Gahan CCGM, Hill C. M-cells: origin, morphology and role in mucosal immunity and microbial pathogenesis. ACTA ACUST UNITED AC 2007; 52:2-12. [PMID: 18081850 DOI: 10.1111/j.1574-695x.2007.00359.x] [Citation(s) in RCA: 189] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
M-cells are specialized cells found in the follicle-associated epithelium of intestinal Peyer's patches of gut-associated lymphoid tissue and in isolated lymphoid follicles, appendix and in mucosal-associated lymphoid tissue sites outside the gastrointestinal tract. In the gastrointestinal tract, M-cells play an important role in transport of antigen from the lumen of the small intestine to mucosal lymphoid tissues, where processing and initiation of immune responses occur. Thus, M-cells act as gateways to the mucosal immune system and this function has been exploited by many invading pathogens. Understanding the mechanism by which M-cells sample antigen will inform the design of oral vaccines with improved efficacy in priming mucosal and systemic immune responses. In this review, the origin and morphology of M-cells, and their role in mucosal immunity and pathogenesis of infections are discussed.
Collapse
Affiliation(s)
- Sinead C Corr
- Department of Microbiology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.
| | | | | |
Collapse
|