1
|
Zhang D, Feng Y, Chu M, Dai Y, Jiang L, Li H. Anti-vibriosis bioactive molecules from marine-derived variant Streptomyces sp. ZZ741A. Nat Prod Res 2025; 39:3031-3042. [PMID: 38486398 DOI: 10.1080/14786419.2024.2321487] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 02/03/2024] [Accepted: 02/13/2024] [Indexed: 05/31/2025]
Abstract
The infection of vibrio is an important cause of huge economic losses in aquaculture industry. At present, antibiotics are mainly used to prevent and reduce the infection of the vibrio, which has accelerated the emergence of multi-drug-resistant strains. New generation alternative anti-vibrio drugs were in urgent to solve this problem. In this study, six compounds (1-6) were isolated from the Streptomyces sp. ZZ741A, a marine-derived Streptomyces variant, including one new compound, 2-carbamoylphenyl isobutyrate (1), five known ones, nocardamine (2), dehydroxynocardamine (3), phenylacetic acid (4), thiophenol (5) and 2,3-dihydroxybenzoic acid (6). The anti-vibriosis assay showed that compounds 2 and 3 had specific inhibition activity against Vibrio vulnificus, Vibrio alginolyticus, and Vibrio parahaemolyticus with the MIC values ranging from 8 to 128 μg/mL. The molecular docking study of their possible mechanism of anti-vibriosis activity showed that the activity might come from the inhibition of Outer membrane protein U (OmpU).
Collapse
Affiliation(s)
- Di Zhang
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, PR China
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang, PR China
| | - Yao Feng
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, PR China
| | - Mingyi Chu
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, PR China
| | - Yujiang Dai
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, PR China
| | - Lu Jiang
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, PR China
| | - Huifang Li
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, PR China
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang, PR China
| |
Collapse
|
2
|
Fu H, Sun W, Cao Y, Li Q, Wang X, Zhou Z, Meng Q, Luo T, Gu W, Meng Q. Prevalence of antibiotic resistance genes, heavy metal, and bacterial community composition in sea sediments influenced by Eriocheir sinensis breeding aquaculture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:58599-58608. [PMID: 39312117 DOI: 10.1007/s11356-024-35039-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/16/2024] [Indexed: 10/11/2024]
Abstract
Eriocheir sinensis is the main aquaculture species in China. With the continuous expansion of the aquaculture scale, the demand for E. sinensis seedlings was also increased. The water used in breeding has well-nourished and its discharge into the sea posed significant risks. This study sampled the wastewater discharge points of the E. sinensis seedlings in Sheyang County, Jiangsu Province, and the areas far from the discharge points that were not affected in March and May 2023, respectively. A large number of antibiotic resistance genes (ARGs) were found in the sediment of the wastewater discharge area, and the highest ARG was sulfonamide ARG-sul1 using qPCR analysis, while ARGs were almost undetectable in the areas not affected by wastewater discharge. The 16S rRNA sequence analysis results showed that the main bacterial phyla at the wastewater discharge point were Bacteroidetes, Proteobacteria, and Thermodesulfobacteria. In the control point, the main bacterial phyla were Proteobacteria, Chlorobacterium, and Thermodesulfobacteria. There were significant differences in the composition of microbial communities between the two points, and the samples at the wastewater discharge point were more clustered and had higher similarity. The correlation network and redundancy analysis indicated that the phyla Bacteroidetes, Firmicutes, and Proteobacteria at the wastewater discharge points were positively correlated with most ARGs. The wastewater discharge had no effect on heavy metals from the two points. This study sets a foundation for future research by identifying key microbial taxa as potential ARG carriers and examining the interactions between microbial communities, ARGs, and heavy metals.
Collapse
Affiliation(s)
- Hui Fu
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, China
| | - Wei Sun
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, Jiangsu, China
| | - Yawei Cao
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, China
| | - Qing Li
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, China
| | - Xiaotong Wang
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, China
| | - Zijie Zhou
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, China
| | - Qian Meng
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, China
| | - Tingyi Luo
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, China
| | - Wei Gu
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, China
| | - Qingguo Meng
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, China.
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, China.
| |
Collapse
|
3
|
Xuan P, Gu J, Cui H, Wang S, Toshiya N, Liu C, Zhang T. Multi-scale topology and position feature learning and relationship-aware graph reasoning for prediction of drug-related microbes. Bioinformatics 2024; 40:btae025. [PMID: 38269610 PMCID: PMC10868329 DOI: 10.1093/bioinformatics/btae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/26/2023] [Accepted: 01/22/2024] [Indexed: 01/26/2024] Open
Abstract
MOTIVATION The human microbiome may impact the effectiveness of drugs by modulating their activities and toxicities. Predicting candidate microbes for drugs can facilitate the exploration of the therapeutic effects of drugs. Most recent methods concentrate on constructing of the prediction models based on graph reasoning. They fail to sufficiently exploit the topology and position information, the heterogeneity of multiple types of nodes and connections, and the long-distance correlations among nodes in microbe-drug heterogeneous graph. RESULTS We propose a new microbe-drug association prediction model, NGMDA, to encode the position and topological features of microbe (drug) nodes, and fuse the different types of features from neighbors and the whole heterogeneous graph. First, we formulate the position and topology features of microbe (drug) nodes by t-step random walks, and the features reveal the topological neighborhoods at multiple scales and the position of each node. Second, as the features of nodes are high-dimensional and sparse, we designed an embedding enhancement strategy based on supervised fully connected autoencoders to form the embeddings with representative features and the more discriminative node distributions. Third, we propose an adaptive neighbor feature fusion module, which fuses features of neighbors by the constructed position- and topology-sensitive heterogeneous graph neural networks. A novel self-attention mechanism is developed to estimate the importance of the position and topology of each neighbor to a target node. Finally, a heterogeneous graph feature fusion module is constructed to learn the long-distance correlations among the nodes in the whole heterogeneous graph by a relationship-aware graph transformer. Relationship-aware graph transformer contains the strategy for encoding the connection relationship types among the nodes, which is helpful for integrating the diverse semantics of these connections. The extensive comparison experimental results demonstrate NGMDA's superior performance over five state-of-the-art prediction methods. The ablation experiment shows the contributions of the multi-scale topology and position feature learning, the embedding enhancement strategy, the neighbor feature fusion, and the heterogeneous graph feature fusion. Case studies over three drugs further indicate that NGMDA has ability in discovering the potential drug-related microbes. AVAILABILITY AND IMPLEMENTATION Source codes and Supplementary Material are available at https://github.com/pingxuan-hlju/NGMDA.
Collapse
Affiliation(s)
- Ping Xuan
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
- Department of Computer Science, Shantou University, Shantou 515063, China
| | - Jing Gu
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
| | - Hui Cui
- Department of Computer Science and Information Technology, La Trobe University, Melbourne, VIC 3083, Australia
| | - Shuai Wang
- School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Nakaguchi Toshiya
- Center for Frontier Medical Engineering, Chiba University, Chiba 2638522, Japan
| | - Cheng Liu
- Department of Computer Science, Shantou University, Shantou 515063, China
| | - Tiangang Zhang
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
- School of Mathematical Science, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
4
|
Malik H, Singh R, Kaur S, Dhaka P, Bedi JS, Gill JPS, Gongal G. Review of antibiotic use and resistance in food animal production in WHO South-East Asia Region. J Infect Public Health 2023; 16 Suppl 1:172-182. [PMID: 37977981 DOI: 10.1016/j.jiph.2023.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
Antimicrobial resistance is an emerging global threat to public health. The resistant bacteria in food animals can be transferred to humans through the food chain. Limited information on antimicrobial usage and resistance in food animals is available in Southeast Asia due to inadequate monitoring or surveillance systems. A literature review was conducted on antimicrobial use and resistance in food animal production in Southeast Asia for the period 2011-2020, to assess the scope and extent of antibiotic use and resistance. The countries included in the study were Bangladesh, Bhutan, Democratic People's Republic of Korea, India, Indonesia, Maldives, Myanmar, Nepal, Sri Lanka, Thailand and Timor-Leste. The information was categorised by country, production type and findings regarding antibiotic use and resistance. A total of 108 publications were included in the review. Results showed widespread use of critically and highly important antibiotics in livestock, poultry and aquacultured fish and their products. To curb the growing threat of antibiotic resistance, Southeast Asian countries need to strengthen surveillance and regulatory controls of antimicrobial use in food animal production through "One Health" approach.
Collapse
Affiliation(s)
- Hina Malik
- Centre for One Health, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 141004, India
| | - Randhir Singh
- Centre for One Health, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 141004, India
| | - Simranpreet Kaur
- Centre for One Health, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 141004, India
| | - Pankaj Dhaka
- Centre for One Health, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 141004, India
| | - Jasbir Singh Bedi
- Centre for One Health, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 141004, India
| | - J P S Gill
- Directorate of Research, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 141004, India
| | - Gyanendra Gongal
- World Health Organization, Regional Office for South-East Asia, New Delhi 110002, India.
| |
Collapse
|
5
|
Sivakumar K, Kannappan S, Vijayakumar B. Docking Studies on Biomolecules from Marine Microalga Skeletonema costatum Against Hemolysin Protein of Bioluminescence Disease-Causing Vibrio harveyi. Curr Microbiol 2023; 80:290. [PMID: 37462776 DOI: 10.1007/s00284-023-03372-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 06/11/2023] [Indexed: 07/21/2023]
Abstract
Grow-out and hatchery units of shrimps are being impacted by disease-causing bacterial pathogens and predominantly marine Vibrios. The use of chemicals for governing bacterial pathogens in the aquaculture practices is developing resistance to bacteria. Henceforth, the application of bio-therapeutic agents from marine resources for controlling pathogens is most vital to be considered. Molecular docking is computer-assisted drug design tool to detect and counteract for drug-receptor interaction for known target protein of diseases. Therefore, an effort was made with the extract of the marine micro alga Skeletonema costatum against hemolysin protein of pathogenic bacteria Vibrio harveyi. The extract of S. costatum was tested against growth and virulence produced by V. harveyi during larviculture of Penaeus monodon. The extract was analyzed for phyto-constituents through GC-MS and used them as ligand molecule in docking. S. costatum extract at 200 µg mL-1 was found to decrease 35.20% of cumulative percentage mortality (CPM) in postlarvae of P. monodon against V. harveyi infections. The biomolecule Docasane, an alkane from the extract of S. costatum, exposed highest binding interaction than other compounds during docking analysis. The level of significance (P < 0.05) was found in CPM, growth, and virulence factors of V. harveyi studies. Thus, the present finding predicts that extract of S. costatum containing biomolecules can be recommended for use in the shrimp culture-based grow-out and hatchery units for eliminating bioluminescent V. harveyi.
Collapse
Affiliation(s)
- Krishnamoorthy Sivakumar
- ICAR - Krishi Vigyan Kendra, Tamil Nadu Veterinary and Animal Sciences University (TANUVAS), Kattupakkam, Chennai, Tamil Nadu, 603 203, India.
| | - Sudalayandi Kannappan
- Crustacean Culture Division, ICAR - Central Institute of Brackishwater Aquaculture (CIBA), Chennai, Tamil Nadu, 600 028, India
| | - Balakrishnan Vijayakumar
- Centre of Advance Study in Crystallography and Biophysics, University of Madras, Chennai, Tamil Nadu, 600 025, India
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin at Madison, Madison, WI, 53705, USA
- Sao Carlos Institute of Physics (IFSC), University of Sao Paulo, Av. Joao Dagnone, 1100 - Jardim Santa Angelina, Sao Carlos, 13563-120, Brazil
| |
Collapse
|
6
|
Cai L, Tian Y, Li Z, Yang Y, Ai C, Zhang R. A broad-host-range lytic phage vB_VhaS-R18L as a candidate against vibriosis. Front Microbiol 2023; 14:1191157. [PMID: 37333633 PMCID: PMC10272388 DOI: 10.3389/fmicb.2023.1191157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Vibriosis is one of the most common bacterial diseases that cause high rates of mortality and considerable economic losses in aquaculture. Phage therapy has been considered as a promising alternative method to antibiotics in the biocontrol of infectious diseases. Genome sequencing and characterization of the phage candidates are prerequisites before field applications to ensure environmental safety. In this study, a lytic phage, named vB_VhaS-R18L (R18L), was isolated from the coastal seawater of Dongshan Island, China. The phage was characterized in terms of morphology, genetic content, infection kinetics, lytic profile, and virion stability. Transmission electronic microscopy indicated that R18L is siphovirus-like, comprising an icosahedral head (diameter 88.6 ± 2.2 nm) and a long noncontractile tail (225 × 11 nm). Genome analysis indicated R18L to be a double-stranded DNA virus with a genome size of 80,965 bp and a G + C content of 44.96%. No genes that encode known toxins or genes implicated in lysogeny control were found in R18L. A one-step growth experiment showed that R18L had a latent period of approximately 40 min and a burst size of 54 phage particles per infected cell. R18L showed lytic activity against a wide range of at least five Vibrio species (V. alginolyticus, V. cholerae, V. harveyi, V. parahemolyticus, and V. proteolyticus). R18L was relatively stable at pH 6-11 and at temperatures ranging from 4°C to 50°C. The broad lytic activity across Vibrio species and the stability in the environment make R18L a potential candidate for phage therapy in controlling vibriosis in aquaculture systems.
Collapse
Affiliation(s)
- Lanlan Cai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Yuan Tian
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Ziqiang Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yunlan Yang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Chunxiang Ai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| |
Collapse
|
7
|
Mancini ME, Alessiani A, Donatiello A, Didonna A, D’Attoli L, Faleo S, Occhiochiuso G, Carella F, Di Taranto P, Pace L, Rondinone V, Damato AM, Coppola R, Pedarra C, Goffredo E. Systematic Survey of Vibrio spp. and Salmonella spp. in Bivalve Shellfish in Apulia Region (Italy): Prevalence and Antimicrobial Resistance. Microorganisms 2023; 11:microorganisms11020450. [PMID: 36838415 PMCID: PMC9966029 DOI: 10.3390/microorganisms11020450] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
The emergence of antimicrobial resistance (AMR) is increasingly common across the globe and aquatic ecosystems could be considered a reservoir of antibiotic-resistant bacteria. This study aimed to determine prevalence and antibiotic susceptibility of the potential pathogenic bacteria Salmonella spp. and Vibrio spp. in bivalve molluscs intended for human consumption, collected over a period of 19 months along the northern coast of Apulia region. The AMR profile was also determined in non-pathogenic Vibrio species, common natural inhabitants of seawater and a useful indicator for the surveillance of AMR in the environment. The current study presents data on the AMR of 5 Salmonella and 126 Vibrio isolates by broth microdilution MIC. Multidrug resistance (MDR) was observed in one S. Typhimurium strain towards sulfamethoxazole, trimethoprim, tetracycline, gentamicin, and ampicillin and in 41.3% of the Vibrio strains, mostly towards sulphonamides, penicillin, and cephems. All Vibrio isolates were sensitive to azithromycin, chloramphenicol, tetracycline, amoxicillin/clavulanic acid, gentamicin, streptomycin, amikacin, and levofloxacin. The AMR phenomenon in the investigated area is not highly worrying but not entirely negligible; therefore, in-depth continuous monitoring is suggested. Results concerning the antibiotic agents without available specific clinical breakpoints could be useful to upgrade the MIC distribution for Vibrio spp. but, also, the establishment of interpretative criteria for environmental species is necessary to obtain a more complete view of this issue.
Collapse
|
8
|
Thillaichidambaram M, Narayanan K, Selvaraj S, Sundararaju S, Chockalingam Muthiah R, Figge MJ. Isolation and characterization of Vibrio owensii from Palk Bay and its infection study against post larvae of Litopenaeus vannamei. Microb Pathog 2022; 172:105751. [PMID: 36084904 DOI: 10.1016/j.micpath.2022.105751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022]
Abstract
Vibrio is heterotrophic ubiquitous marine bacteria that plays dual role as putative halobiont and potential pathogen. Environment and diseases are inextricable hence the role of vibrio as a potential pathogen in the natural environment must be comprehended. Hence the present study aims at investigating the pathogenicity of Vibrio owensii on the post larvae of Litopenaeus vannamei. V. owensii isolated from the marine natural habitat of the Palk Bay province in India was highly resistant to ampicillin, methicillin, tetracycline and vancomycin. The strain also lacked pathogenicity against the post larvae of L. vannamei due to the absence of major virulence factors viz. Chitinase, phospholipase and hemolytic activity. Presumably this is the first report on the occurrence of V. owensii in the Indian waters therefore there arises a need to carry out more serious research on the pathogenicity of this species on other commercial crustaceans reared in the Indian aquaculture settings in order to apprehend its role as potential pathogen or the contrary.
Collapse
Affiliation(s)
- Muneeswaran Thillaichidambaram
- Department of Marine and Coastal Studies, School of Energy, Environment and Natural Resources, Madurai Kamaraj University, Madurai, 625 021, Tamil Nadu, India
| | - Kalyanaraman Narayanan
- Molecular Biology Lab., Meenakshi Mission Hospital and Research Centre (MMHRC), Madurai, 625107, Tamil Nadu, India
| | - Sureshkumar Selvaraj
- Department of Microbiology, Karpagam Academy of Higher Education, Coimbatore, 641 021, Tamil Nadu, India
| | | | - Ramakritinan Chockalingam Muthiah
- Department of Marine and Coastal Studies, School of Energy, Environment and Natural Resources, Madurai Kamaraj University, Madurai, 625 021, Tamil Nadu, India.
| | - Marian J Figge
- The Netherlands Culture Collection of Bacteria, Westerdijk Fungal Biodiversity Institute, KNAW Utrecht, Netherlands.
| |
Collapse
|
9
|
Isolation and Characterization of a Newly Discovered Phage, V-YDF132, for Lysing Vibrio harveyi. Viruses 2022; 14:v14081802. [PMID: 36016424 PMCID: PMC9413028 DOI: 10.3390/v14081802] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/30/2022] Open
Abstract
A newly discovered lytic bacteriophage, V-YDF132, which efficiently infects the pathogenic strain of Vibrio harveyi, was isolated from aquaculture water collected in Yangjiang, China. Electron microscopy studies revealed that V-YDF132 belonged to the Siphoviridae family, with an icosahedral head and a long noncontractile tail. The phage has a latent period of 25 min and a burst size of 298 pfu/infected bacterium. V-YDF132 was stable from 37 to 50 °C. It has a wide range of stability (pH 5-11) and can resist adverse external environments. In addition, in vitro the phage V-YDF132 has a strong lytic effect on the host. Genome sequencing results revealed that V-YDF132 has a DNA genome of 84,375 bp with a GC content of 46.97%. In total, 115 putative open reading frames (ORFs) were predicted in the phage V-YDF132 genome. Meanwhile, the phage genome does not contain any known bacterial virulence genes or antimicrobial resistance genes. Comparison of the genomic features of the phage V-YDF132 and phylogenetic analysis revealed that V-YDF132 is a newly discovered Vibrio phage. Multiple genome comparisons and comparative genomics showed that V-YDF132 is in the same genus as Vibrio phages vB_VpS_PG28 (MT735630.2) and VH2_2019 (MN794238.1). Overall, the results indicate that V-YDF132 is potentially applicable for biological control of vibriosis.
Collapse
|
10
|
Su H, Hu X, Xu W, Xu Y, Wen G, Cao Y. Metagenomic analysis of the abundances, diversity, and distribution of antibiotic resistance genes and their potential bacterial hosts in two types of shrimp-rearing farms in South China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113801. [PMID: 35751933 DOI: 10.1016/j.ecoenv.2022.113801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/15/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Antibiotic resistance genes (ARGs) are attracting increasing concern worldwide. Many previous studies have investigated the occurrence and concentrations of ARGs in aquaculture. However, the sources of ARGs and the links with their potential bacterial hosts have not yet been explored. This study investigated the abundances and diversity of ARGs in two types of shrimp farms in South China through metagenomic sequencing. In total, 14 ARG types were detected. Tetracycline was the dominant ARG type. The abundances of ARGs in samples decreased in the order of duck feces > water source > sediment > shrimp gut > pond water. The samples from the duck-shrimp integrated farm contained 1.29-3.81-fold more abundant ARGs than those from the shrimp monoculture farm (p < 0.05). Several ARGs, that were most predominant in the duck feces samples, were also the most predominant in the shrimp gut samples from the duck-shrimp integrated farm. Redundancy analysis indicated that the abundances and distribution of ARGs formed three clusters: duck feces, water samples, and sediment and shrimp gut samples. The dominant genera in duck feces known as human pathogenic bacteria were potential hosts of ARGs, and were also dominant in the shrimp gut samples in the duck-shrimp integrated farm. Additionally, the abundances of dominant genera in the shrimp gut samples of the duck-shrimp integrated farm were 1.74-35.07-fold higher than those in the shrimp monoculture farm (p < 0.01). The duck-shrimp integrated farm had 3.36-fold and 4.94-fold higher abundances of ARGs and mobile genetic elements in the shrimp gut samples than those from the shrimp monoculture farm, respectively (p < 0.05). The results indicate that duck feces may be a crucial source of diverse and abundant ARGs spreading to reared shrimps in duck-shrimp integrated farms, posing a severe risk to public health.
Collapse
Affiliation(s)
- Haochang Su
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, P.R.China, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Shenzhen Base South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China
| | - Xiaojuan Hu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, P.R.China, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Shenzhen Base South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China
| | - Wujie Xu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, P.R.China, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Shenzhen Base South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China
| | - Yu Xu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, P.R.China, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Shenzhen Base South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China
| | - Guoliang Wen
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, P.R.China, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Yucheng Cao
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, P.R.China, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Shenzhen Base South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China.
| |
Collapse
|
11
|
Kumarage PM, De Silva LADS, Heo GJ. Aquatic environments: A Potential Source of Antimicrobial-Resistant Vibrio spp. J Appl Microbiol 2022; 133:2267-2279. [PMID: 35797342 DOI: 10.1111/jam.15702] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 11/29/2022]
Abstract
Vibrio spp. are associated with water and seafood-related outbreaks worldwide. They are naturally present in aquatic environments such as seawater, brackish water and freshwater environments. These aquatic environments serve as the main reservoirs of antimicrobial-resistant genes and promote the transfer of antimicrobial-resistant bacterial species to aquatic animals and humans through the aquatic food chain. Vibrio spp. are known as etiological agents of cholera and non-cholera Vibrio infections in humans and animals. Antimicrobial-resistant Vibrio species have become a huge threat in regard to treating Vibrio infections in aquaculture and public health. Most of the Vibrio spp. possess resistance towards the commonly used antimicrobials, including β-lactams, aminoglycosides, tetracyclines, sulfonamides, quinolones and macrolides. The aim of this review is to summarize the antimicrobial resistance properties of Vibrio spp. isolated from aquatic environments to provide awareness about potential health risks related to Vibrio infections in aquaculture and public health.
Collapse
Affiliation(s)
- P M Kumarage
- Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
| | - L A D S De Silva
- Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
| | - Gang-Joon Heo
- Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
| |
Collapse
|
12
|
Fabrication of silver nanoparticles from marine macro algae Caulerpa sertularioides: Characterization, antioxidant and antimicrobial activity. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Yudiati E, Azhar N, Achmad MJ, Sunaryo S, Susanto A, Yulianto B, Alghazeer RO, Alansari WS, Shamlan G. Alginate poly and oligosaccharide (AOS) from Sargassum sp. as immunostimulant in gnotobiotic artemia challenge tests and antibacterial diffusion disc assay against pathogenic Vibrio parahaemolyticus, V. vulnificus and V. harveyi. MAIN GROUP CHEMISTRY 2022. [DOI: 10.3233/mgc-210116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alginate is a polysaccharide derived from Sargassum sp. and is a potent immunostimulant with antibacterial activity, including against Vibrio spp. This genus of bacteria is found in freshwater and marine environments and is a common infectious, pathogenic bacteria both for aquatic cultivans and humans. Here, we determined the ability of sodium alginate polysaccharides and oligosaccharides (AOS) to act as immunostimulants in Artemia challenge tests and antibacterial diffusion disc assays against Vibrio parahaemolyticus, V. vulnificus, and V. harveyi. The AOS was produced by thermal heating. Dry sodium alginates were weighed out from 4.21 to 6.47 grams with a yield varying from 21.05 to 32.35%. Alginate polysaccharides were challenged against V harveyi and showed 8 positive results. The highest inhibitor zone was 12.962±3.623 mm. Based on 18 tests, AOS showed 12 positive results, with the highest inhibitor zone being 10.250±0.09 mm. The encapsulated alginate against Vibrio parahaemolyticus, Vibrio harveyi, Vibrio vulnificus, and the non-challenged tests without any Vibrio spp. addition resulted in the best concentrations of 800 ppm (polysaccharide) and 600 ppm (oligosaccharide), respectively. The lower concentration of oligosaccharides alginate were more effective and has the potential to be superior as an antibacterial agent and immunestimulant, as opposed to alginate polysaccharide.
Collapse
Affiliation(s)
- Ervia Yudiati
- Department of Marine Science, Faculty of Fisheries and Marine Science, Diponegoro University, Tembalang, Semarang, Indonesia
| | - Nuril Azhar
- Department of Marine Science, Faculty of Fisheries and Marine Science, Diponegoro University, Tembalang, Semarang, Indonesia
| | - Muhammad Janib Achmad
- Faculty of Fisheries and Marine Science, Khairun University, Ternate City, North Maluku, Indonesia
| | - Sunaryo Sunaryo
- Department of Marine Science, Faculty of Fisheries and Marine Science, Diponegoro University, Tembalang, Semarang, Indonesia
| | - Adi Susanto
- Department of Marine Science, Faculty of Fisheries and Marine Science, Diponegoro University, Tembalang, Semarang, Indonesia
| | - Bambang Yulianto
- Department of Marine Science, Faculty of Fisheries and Marine Science, Diponegoro University, Tembalang, Semarang, Indonesia
| | - Rabia O. Alghazeer
- Department of Chemistry, Faculty of Sciences, University of Tripoli, Tripoli, Libya
| | - Wafa S. Alansari
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Ghalia Shamlan
- Department of Food Science and Nutrition, College of Food and agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
14
|
Yu G, Wang J, Zhang W, Yang Q, Liu G, Wang L, Bello BK, Zhang X, Zhang T, Fan H, Zhao P, Liang W, Dong J. NLRP3 inflammasome signal pathway involves in Vibrio harveyi-induced inflammatory response in murine peritoneal macrophages in vitro. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1590-1601. [PMID: 34569606 DOI: 10.1093/abbs/gmab137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Indexed: 12/14/2022] Open
Abstract
Vibrio harveyi, an important zoonotic pathogen, can infect wounds and cause inflammatory response. Understanding the inflammatory response pathways could facilitate the exploration of molecular mechanisms for treating V. harveyi infection. NLR family pyrin domain-containing 3 (NLRP3) inflammasome is involved in the interaction between hosts and pathogenic microorganisms and could be sensed by various pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs). Nonetheless, the function of NLRP3 inflammasome in V. harveyi infection remains unclear. In the present study, we established a V. harveyi infection model using murine peritoneal macrophages (PMs). Various techniques, including western blot analysis, enzyme-linked immunosorbent assay (ELISA), RT-qPCR, immunofluorescence, and inhibition assays, were used to explore the molecular mechanism of V. harveyi-induced inflammation. The results showed that many inflammatory cytokines participated in V. harveyi infection, with interleukin (IL)-1β being the most abundant. Pan-caspase inhibitor pretreatment significantly decreased the secretion of IL-1β in murine PMs. Moreover, the identification of V. harveyi involved a large number of NLR molecules, especially the NLRP3 receptor, and further studies revealed that NLPR3 inflammasome was activated by V. harveyi infection, as evidenced by puncta-like NLRP3 surrounding cell nuclear, ASC specks in the nucleus and cytoplasm, and ASC oligomerization. Inhibition of NLRP3 inflammasome impaired the release of mature IL-1β in V. harveyi-infected murine PMs. Furthermore, blocking the secretion of mature IL-1β could markedly decrease the release of other proinflammatory cytokines, including IL-6, IL-12, and tumor necrosis factor-α. Overall, these data indicated that NLRP3 inflammasome was activated in response to V. harveyi infection and enhanced inflammatory response by promoting IL-1β secretion in murine PMs.
Collapse
Affiliation(s)
- Guili Yu
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jinxin Wang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Wei Zhang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Qiankun Yang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Gang Liu
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Lei Wang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Babatunde Kazeem Bello
- Lianyungang Academy of Agricultural Sciences, State Key Laboratory of Rice Biology, Lianyungang 222006, China
| | - Xiao Zhang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Tianmeng Zhang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hui Fan
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Panpan Zhao
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Wei Liang
- Laboratory Department of Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo 315010, China
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
15
|
Lu J, Zhang X, Wang C, Li M, Chen J, Xiong J. Responses of sediment resistome, virulence factors and potential pathogens to decades of antibiotics pollution in a shrimp aquafarm. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148760. [PMID: 34323773 DOI: 10.1016/j.scitotenv.2021.148760] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/18/2021] [Accepted: 06/26/2021] [Indexed: 05/28/2023]
Abstract
Aquaculture ecosystem has become a hotspot of antibiotics resistance genes (ARGs) dissemination, owing to the abuse of prophylactic antibiotics. However, it is still unclear how and to what extent ARGs respond to the increasing antibiotic pollution, a trend as expected and as has occurred. Herein, a significant sediment antibiotic pollution gradient was detected along a drainage ditch after decades of shrimp aquaculture. The increasing antibiotic pollution evidently promoted the diversities and tailored the community structures of ARGs, mobile genetic elements (MGEs), virulence factors and pathogens. The profiles of ARGs and MGEs were directly altered by the concentrations of terramycin and sulphadimidine. By contrast, virulence factors were primarily affected by nutrient variables in sediment. The pathogens potentially hosted diverse virulence factors and ARGs. More than half of the detected ARGs subtypes non-linearly responded to increasing antibiotic pollution, as supported by significant tipping points. However, we screened seven antibiotic concentration discriminatory ARGs that could serve as independent variable for quantitatively diagnosing total antibiotic concentration. Co-occurrence analysis depicted that notorious aquaculture pathogens of Vibrio harveyi and V. parahaemolyticus potentially hosted ARGs that confer resistance to multiple antibiotics, while priority pathogens for humankind, e.g., Helicobacter pylori and Staphylococcus aureus, could have harbored redundant virulence factors. Collectively, the significant tipping points and antibiotic concentration-discriminatory ARGs may translate into warning index and diagnostic approach for diagnosing antibiotic pollution. Our findings provided novel insights into the interplay among ARGs, MGEs, pathogens, virulence factors and geochemical variables under the scenario of increasing antibiotic pollution.
Collapse
Affiliation(s)
- Jiaqi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xinxu Zhang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Chaohua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Meng Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jinbo Xiong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
16
|
Suyamud B, Lohwacharin J, Yang Y, Sharma VK. Antibiotic resistant bacteria and genes in shrimp aquaculture water: Identification and removal by ferrate(VI). JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126572. [PMID: 34252670 DOI: 10.1016/j.jhazmat.2021.126572] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Enclosed shrimp culturing ponds are breeding environments for the spread of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in the aquatic environment. This paper surveyed the presence of antibiotics, ARB, and ARGs in aquaculture waters and demonstrated their removal by ferrate (Fe(VI), FeO42-). Tetracyclines were the most prevalent antibiotics, followed by quinolones and β-lactam. The bacterial resistance rates to three antibiotics were ordered as follows: amoxicillin (AMX) > oxytetracycline (OTC) > enrofloxacin (ENR). Proteobacteria, Verrucomicrobia, and Bacteroidetes were the predominant phyla, while sul1 and sul2 were the predominant ARGs. sul2 was positively correlated with Proteobacteria. Water quality parameters significantly influenced the dissemination of tetracycline resistance genes in aquacultures due to high organic waste accumulation. The removal efficiency of antibiotics by Fe(VI) depended on the structural moieties of antibiotics, with phenol-containing antibiotics more thoroughly oxidized (i.e., OTC) than amine-containing (ENR and AMX) antibiotics. Greater removal of antibiotics in aquaculture waters suggested that the constituents of farming water enhances the efficacy of antibiotics removal by Fe(VI). An acidic pH environment enhanced Fe(VI) inactivation of ARB over the circumneutral pH. The presented results are intended to improve aquaculture managing practices to minimize the antibiotic proliferation in aquaculture waters and the environment.
Collapse
Affiliation(s)
- Bongkotrat Suyamud
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Jenyuk Lohwacharin
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand; Professor Aroon Sorathesn Center of Excellence in Environmental Engineering, Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Center of the Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Virender K Sharma
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, 112 Adriance Road, 1266 TAMU, College Station, TX 77843, USA.
| |
Collapse
|
17
|
De Silva LADS, Wickramanayake MVKS, Heo GJ. Occurrence of Virulence and Antimicrobial Resistance Determinants in Vibrio harveyi Isolated from Marine Food Fish Cultured in Korea. Microb Drug Resist 2021; 28:255-265. [PMID: 34569863 DOI: 10.1089/mdr.2020.0618] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Vibrio harveyi is a significant cause of infection in both marine animals and humans. It has been reported frequently in seafood-borne infections worldwide. This study was conducted to determine the potential health impact of the V. harveyi isolated from marine food fish cultured in Korea concerning their virulence and antimicrobial resistance. A total of 49 V. harveyi samples were isolated by biochemical tests and multiplex PCR. Phenotypic detection of virulence factors resulted DNase activity (81.63%), hemolysis (α = 75.51% and β = 12.25), gelatinase activity (71.43%), protease production (71.43%), phospholipase activity (65.31%), and lipase production (34.69%). Virulence genes, including VPI, tlh, tdh, toxR, VAC, and ctxAB, were detected in 57.14%, 44.90%, 36.73%, 22.45%, 12.24%, and 8.16% of the isolates, respectively. Resistance to ampicillin (77.55%), oxacillin (69.39%), nalidixic acid (53.06%), amoxicillin (46.94%), oxytetracycline (46.94%), colistin sulfate (34.69%), fosfomycin (34.69%), chloramphenicol (32.65%), streptomycin (32.65%), cephalothin (28.57%), oxytetracycline (26.53%), ceftriaxone (20.41%), erythromycin (14.29%), and cefoxitin (12.24%) was detected in disc diffusion assay. Most of the isolates were classified as multidrug resistant as they scored multiple antimicrobial resistance index ≥0.2. Furthermore, antimicrobial resistance genes tetB, qnrA, intI1 (Class 1 integron integrase), aac(6')-Ib, blaSHV, blaCTX-M, strA-strB, tetA, aphAI-IAB, qnrC, qnrS, and blaTEM were found in 81.63%, 67.35%, 61.22%, 46.94%, 44.90%, 44.90%, 36.73%, 18.37%, 10.20%, 10.20%, 8.16% and 6.12% of the isolates, respectively. In conclusion, the development of antimicrobial resistance among V. harveyi will ultimately reduce the efficacy of antimicrobials used for treating and can favor the development of more virulent V. harveyi strains.
Collapse
Affiliation(s)
- Liyana Arachchilage Dinithi S De Silva
- Laboratory of Aquatic Animal Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | | | - Gang-Joon Heo
- Laboratory of Aquatic Animal Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
18
|
Qiao Y, Feng L, Jia R, Luo Y, Yang Q. Motility, biofilm formation and associated gene expression in Vibrio parahaemolyticus impaired by co-culture with live Ulva fasciata. J Appl Microbiol 2021; 132:101-112. [PMID: 34091972 DOI: 10.1111/jam.15175] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 05/21/2021] [Accepted: 05/30/2021] [Indexed: 11/29/2022]
Abstract
AIMS Vibrio parahaemolyticus is one of the most frequently occurred pathogens in mariculture. This study aimed to explore the mechanism of the impact of Ulva fasciata on the motility and biofilm formation of V. parahaemolyticus. METHODS AND RESULTS The inhibitory effect of U. fasciata on a V. parahaemolyticus, isolated from clam maricultural sediment, was examined by co-culture of them. The live U. fasciata significantly inhibited the swimming behaviour, twitching behaviour and biofilm formation of V. parahaemolyticus JF, with inhibition rates range of 2.48%-20.26%, 1.59%-39.18% and 28.3%-94.7% under different nitrate and phosphate levels, respectively. The results of transcriptome sequencing showed that 210 significantly differentially expressed genes (DEGs) were found in strain JF between the presence and absence of U. fasciata, including 90 upregulated genes and 120 downregulated genes. According to GO (Gene Ontology) function enrichment and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis, the downregulated genes of JF were partially enriched in flagella assembly (fliC, fliK, fliG, fliN, fliH, fliI, fliJ and fliA), bacterial chemotaxis (mCP, cheB, cheW and cheY) and biofilm formation (fliA/σ28 and eps), which explained the suppressed motility and biofilm formation of V. parahaemolyticus JF under U. fasciata stress. CONCLUSIONS Live U. fasciata significantly impaired the motility and biofilm formation of V. parahaemolyticus, which could occur in niches with either sufficient or inadequate nutrient (nitrate and phosphate) concentrations. The DEGs of V. parahaemolyticus modulated by U. fasciata were enriched mainly in the flagellar assembly, bacterial chemotaxis and biofilm pathways. SIGNIFICANCE AND IMPACT OF THE STUDY New information on how V. parahaemolyticus respond to U. fasciata regarding motility and adhesion behaviours, and the mechanism of that was firstly explored in this study. The results suggested that the seaweed U. fasciata has promising prospects as an environmentally friendly preventive measure to treat vibriosis in mariculture.
Collapse
Affiliation(s)
- Yan Qiao
- Department of Environmental Science and Engineering, Zhejiang Ocean University, Zhoushan, People's Republic of China
| | - Lijuan Feng
- Department of Environmental Science and Engineering, Zhejiang Ocean University, Zhoushan, People's Republic of China
| | - Rong Jia
- Department of Environmental Science and Engineering, Zhejiang Ocean University, Zhoushan, People's Republic of China
| | - Yuqin Luo
- Department of Environmental Science and Engineering, Zhejiang Ocean University, Zhoushan, People's Republic of China
| | - Qiao Yang
- Department of Environmental Science and Engineering, Zhejiang Ocean University, Zhoushan, People's Republic of China
| |
Collapse
|
19
|
Qiao Y, Jia R, Luo Y, Feng L. The inhibitory effect of Ulva fasciata on culturability, motility, and biofilm formation of Vibrio parahaemolyticus ATCC17802. Int Microbiol 2021; 24:301-310. [DOI: 10.1007/s10123-021-00165-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/30/2020] [Accepted: 02/11/2021] [Indexed: 12/11/2022]
|
20
|
Efficacy of Whole Cell Inactivated Vibrio harveyi Vaccine against Vibriosis in a Marine Red Hybrid Tilapia ( Oreochromis niloticus × O. mossambicus) Model. Vaccines (Basel) 2020; 8:vaccines8040734. [PMID: 33291587 PMCID: PMC7761788 DOI: 10.3390/vaccines8040734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 01/22/2023] Open
Abstract
Vibrio harveyi causes vibriosis in various commercial marine fish species. The infection leads to significant economic losses for aquaculture farms, and vaccination is an alternative approach for the prevention and control of fish diseases for aquaculture sustainability. This study describes the use of formalin-killed Vibrio harveyi (FKVh) strain Vh1 as a vaccine candidate to stimulate innate and adaptive immunities against vibriosis in a marine red hybrid tilapia model. Tilapia are fast growing; cheap; resistant to diseases; and tolerant to adverse environmental conditions of fresh water, brackish water, and marine water and because of these advantages, marine red hybrid tilapia is a suitable candidate as a model to study fish diseases and vaccinations against vibriosis. A total of 180 healthy red hybrid tilapias were gradually adapted to the marine environment before being divided into two groups, with 90 fish in each group and were kept in triplicate with 30 fish per tank. Group 1 was vaccinated intraperitoneally with 100 µL of FKVh on week 0, and a booster dose was similarly administered on week 2. Group 2 was similarly injected with PBS. Skin mucus, serum, and gut lavage were collected weekly for enzyme-linked immunosorbent assay (ELISA) and a lysozyme activity assay from a total of 30 fish of each group. On week 4, the remaining 60 fish of Groups 1 and 2 were challenged with 108 cfu/fish of live Vibrio harveyi. The clinical signs were monitored while the survival rate was recorded for 48 h post-challenge. Vaccination with FKVh resulted in a significantly (p < 0.05) higher rate of survival (87%) compared to the control (20%). The IgM antibody titer and lysozyme activities of Group 1 were significantly (p < 0.05) higher than the unvaccinated Groups 2 in most weeks throughout the experiment. Therefore, the intraperitoneal exposure of marine red hybrid tilapia to killed V. harveyi enhanced the resistance and antibody response of the fish against vibriosis.
Collapse
|
21
|
Ji Q, Wang S, Ma J, Liu Q. A review: Progress in the development of fish Vibrio spp. vaccines. Immunol Lett 2020; 226:46-54. [DOI: 10.1016/j.imlet.2020.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/28/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022]
|
22
|
Chen J, Lu Y, Ye X, Emam M, Zhang H, Wang H. Current advances in Vibrio harveyi quorum sensing as drug discovery targets. Eur J Med Chem 2020; 207:112741. [PMID: 32871343 DOI: 10.1016/j.ejmech.2020.112741] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 07/16/2020] [Accepted: 07/26/2020] [Indexed: 12/25/2022]
Abstract
Vibrio harveyi is a marine bacterial pathogen which infects a wide range of marine organisms and results in severe loss. Antibiotics have been used for prophylaxis and treatment of V. harveyi infection. However, antibiotic resistance is a major public health threat to both human and animals. Therefore, there is an urgent need for novel antimicrobial agents with new modes of action. In V. harveyi, many virulence factors production and bioluminescence formation depend on its quorum sensing (QS) network. Therefore, the QS system has been widely investigated as an effective potential target for the treatment of V. harveyi infection. This perspective focuses on the quorum sensing inhibitors (QSIs) of V. harveyi QS systems (LuxM/N, LuxS/PQ, and CqsA/S) and evaluates medicinal chemistry strategies.
Collapse
Affiliation(s)
- Jianwei Chen
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yaojia Lu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xinyi Ye
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Mahmoud Emam
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China; Phytochemistry and Plant Systematics Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, 12622, Egypt
| | - Huawei Zhang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
23
|
Montánchez I, Kaberdin VR. Vibrio harveyi: A brief survey of general characteristics and recent epidemiological traits associated with climate change. MARINE ENVIRONMENTAL RESEARCH 2020; 154:104850. [PMID: 32056705 DOI: 10.1016/j.marenvres.2019.104850] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/30/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
Here we briefly review the major characteristics of the emerging pathogen Vibrio harveyi and discuss survival strategies and adaptation mechanisms underlying the capacity of this marine bacterium to thrive in natural and artificial aquatic settings. Recent studies suggest that some adaptation mechanisms can easily be acquired by V. harveyi and other members of the Vibrionaceae family owing to efficient horizontal gene transfer and elevated mutation rate. While discussing the main factors in charge of the expansion of Vibrio spp. habitats and concomitant spread of Vibrio-associated diseases under climate change, this review highlights the need for future studies able to address the joint impact of environmental and anthropogenic factors on the long-term dynamics and virulence of V. harveyi populations at the global scale.
Collapse
Affiliation(s)
- Itxaso Montánchez
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, 48940, Leioa, Spain
| | - Vladimir R Kaberdin
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, 48940, Leioa, Spain; IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013, Bilbao, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE-UPV/EHU), 48620, Plentzia, Spain.
| |
Collapse
|
24
|
Su H, Hu X, Wang L, Xu W, Xu Y, Wen G, Li Z, Cao Y. Contamination of antibiotic resistance genes (ARGs) in a typical marine aquaculture farm: source tracking of ARGs in reared aquatic organisms. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 55:220-229. [PMID: 31680622 DOI: 10.1080/03601234.2019.1684747] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Although the prevalence and concentrations of antibiotic resistance genes (ARGs) in aquaculture is receiving increasing scientific interest, there is little understanding of the direct sources and dissemination pathways of ARGs in marine aquaculture-reared organisms. This study investigated the dynamics of ARGs and the bacterial community throughout the rearing period in a typical marine aquaculture farm in South China. The results demonstrated that sul1 and qnrD were predominant in the sediment, and qnrD and qnrA were predominant in the intestinal tracts of shrimps. Network analysis showed that the chemical oxygen demand, total organic carbon, dissolved organic carbon, suspended solids, and total phosphorus were positively correlated with the predominant ARGs. The results of the network and source tracking analyses indicate that environmental factors and the bacterial community may drive the dissemination of ARGs dissemination in the environment and in shrimp reared by marine aquaculture, and sediment is the most direct and important medium in this dissemination. These results aid in improving our understanding of the sources, level, and dissemination of ARGs in marine aquaculture.
Collapse
Affiliation(s)
- Haochang Su
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Shenzhen Base South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, China
| | - Xiaojuan Hu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Shenzhen Base South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, China
| | - Linglong Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Shenzhen Base South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, China
| | - Wujie Xu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Shenzhen Base South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, China
| | - Yu Xu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Shenzhen Base South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, China
| | - Guoliang Wen
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Shenzhen Base South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, China
| | - Zhuojia Li
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yucheng Cao
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Shenzhen Base South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, China
| |
Collapse
|
25
|
Li Y, Wang L, Yang Y, Li X, Dai H, Chen S. Genetic analysis of disease resistance to Vibrio harveyi by challenge test in Chinese tongue sole (Cynoglossus semilaevis). AQUACULTURE 2019; 503:430-435. [DOI: 10.1016/j.aquaculture.2019.01.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
26
|
Zhu Z, Dong C, Weng S, He J. Identification of outer membrane protein TolC as the major adhesin and potential vaccine candidate for Vibrio harveyi in hybrid grouper, Epinephelus fuscoguttatus (♀) × E. lanceolatus (♂). FISH & SHELLFISH IMMUNOLOGY 2019; 86:143-151. [PMID: 30453046 DOI: 10.1016/j.fsi.2018.11.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/13/2018] [Accepted: 11/15/2018] [Indexed: 05/21/2023]
Abstract
Vibrio harveyi is a serious pathogen of scale drop and muscle necrosis disease in marine commercial fishes. Adhesion to and colonization of the host cells surfaces is the first and crucial step for pathogenic bacterial infection, which is usually mediated by outer membrane proteins (Omps). The objectives of this study were to identify the major adhesin in Omps that plays the essential role in adhesion of V. harveyi to the host cells, and to assess the potential of this adhesin as a vaccine candidate for V. harveyi infection. We observed that pathogenic V. harveyi adhered to the surface of grouper embryonic cells (GEM cells) and induced apoptosis of them. Native Omps were extracted from nine different V. harveyi strains, and five common Omp bands were isolated by SDS-PAGE analysis. Western blot analysis and an anti-native Omp antibodies blocking assay indicated that one strong and several weak immunoreactivity Omps bands presence. Next, a total of five Omps, including TolC, Agg (Agglutination protein), Omp47, Fla (Flagellin), and OmpW, were identified and their encoding genes were cloned, characterized, and expressed in E. coli. The purified recombinant TolC could competitively inhibit the invasion of V. harveyi to GEM cells in vitro, and anti-TolC antibody also could significantly block the adhesion of V. harveyi to GEM cells. When used to immunize hybrid groupers, the recombinant TolC could confer significant protection to fish against experimental V. harveyi challenge. These data suggested that outer membrane protein TolC functions as a major adhesin in V. harveyi and could be a potential vaccine candidate for V. harveyi infection.
Collapse
Affiliation(s)
- Zhiming Zhu
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China; State Key Laboratory of Biocontrol / MOE Key Laboratory of Aquatic Product Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China; Institute of Aquatic Economic Animals, and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Chuanfu Dong
- State Key Laboratory of Biocontrol / MOE Key Laboratory of Aquatic Product Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China; Institute of Aquatic Economic Animals, and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, 510275, PR China.
| | - Shaoping Weng
- State Key Laboratory of Biocontrol / MOE Key Laboratory of Aquatic Product Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China; Institute of Aquatic Economic Animals, and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Jianguo He
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China; State Key Laboratory of Biocontrol / MOE Key Laboratory of Aquatic Product Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China; Institute of Aquatic Economic Animals, and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
27
|
Zeng S, Hou D, Liu J, Ji P, Weng S, He J, Huang Z. Antibiotic supplement in feed can perturb the intestinal microbial composition and function in Pacific white shrimp. Appl Microbiol Biotechnol 2019; 103:3111-3122. [DOI: 10.1007/s00253-019-09671-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 01/20/2019] [Accepted: 01/27/2019] [Indexed: 01/16/2023]
|
28
|
Walia K, Sharma M, Vijay S, Shome BR. Understanding policy dilemmas around antibiotic use in food animals & offering potential solutions. Indian J Med Res 2019; 149:107-118. [PMID: 31219075 PMCID: PMC6563746 DOI: 10.4103/ijmr.ijmr_2_18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Indexed: 12/29/2022] Open
Abstract
The looming concern of antimicrobial resistance (AMR) has prompted the government of many countries of the world to act upon and come up with the guidelines, comprehensive recommendations and policies concerning prudent use of antibiotics and containment of AMR. However, such initiatives from countries with high incidence of antibiotic-resistant bacteria in food animals are still in infancy. This review highlights the existing global policies on antibiotics use in food animals along with details of the various Indian policies and guidelines. In India, in spite of availability of integrated policies for livestock, poultry and aquaculture sector, uniform regulations with coordinated initiative are needed to formulate strict policies regarding antimicrobial use both in humans and animals. In an attempt to create effective framework to tackle the AMR, the Indian Council of Medical Research initiated a series of dialogues with various stakeholders and suggested various action points for urgent implementation. This review summarizes the recommendations made during the various consultations. The overarching aim of this review is to clearly delineate the action points which need to be carried out urgently to regulate the antibiotic use in animals.
Collapse
Affiliation(s)
- Kamini Walia
- Division of Epidemiology & Communicable Diseases, Indian Council of Medical Research, New Delhi, India
| | - Monica Sharma
- Division of Epidemiology & Communicable Diseases, Indian Council of Medical Research, New Delhi, India
| | - Sonam Vijay
- Division of Epidemiology & Communicable Diseases, Indian Council of Medical Research, New Delhi, India
| | - Bibek R. Shome
- Microbial Pathogenesis and Pathogen Diversity Laboratory,Indian Council of Agricultural Research - National Institute of Veterinary Epidemiology & Disease Informatics, Bengaluru, India
| |
Collapse
|
29
|
Xu W, Jiao C, Bao P, Liu Q, Wang P, Zhang R, Liu X, Zhang Y. Efficacy of Montanide™ ISA 763 A VG as aquatic adjuvant administrated with an inactivated Vibrio harveyi vaccine in turbot (Scophthalmus maximus L.). FISH & SHELLFISH IMMUNOLOGY 2019; 84:56-61. [PMID: 30201447 DOI: 10.1016/j.fsi.2018.09.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 06/08/2023]
Abstract
Turbot (Scophthalmus maximus L.) is a commercially important fish species in China. Despite of its great economic potential, fish farms often suffer severe economic losses due to certain fish diseases. Vaccination has become a common strategy to prevent diseases caused by pathogens in aquaculture industry. However, no inactivated vaccine against Vibrio harveyi of turbot has been reported so far. In this study, we developed an inactivated vaccine using formalin-killed cells of V. harveyi and the efficacy of a commercial adjuvant Montanide™ ISA 763 A VG on the inactivated vaccine was evaluated. We found that with an optimum vaccine dosage at 1.0 × 108 CFU/fish, a high relative percent survival (RPS) more than 75% was observed at 4 weeks post vaccination (w.p.v.). Moreover, enhanced antibody titer, lysozyme activity, total serum protein and antibacterial property in sera of vaccinated fish were observed at 4, 8, 12 and 16 w.p.v. In conclusion, we developed an efficient inactivated vaccine against V. harveyi in turbot, which not only induced humoral immunity, but also enhanced initial innate immune response for long-term protection.
Collapse
Affiliation(s)
- Wenting Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Chenglong Jiao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Pengcheng Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Pengbo Wang
- Shanghai Wei Sheng Marine Biotechnology Co., Ltd., Shanghai, 200237, China
| | - Ruilin Zhang
- School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Xiaohong Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China.
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| |
Collapse
|
30
|
Su H, Hu X, Xu Y, Xu W, Huang X, Wen G, Yang K, Li Z, Cao Y. Persistence and spatial variation of antibiotic resistance genes and bacterial populations change in reared shrimp in South China. ENVIRONMENT INTERNATIONAL 2018; 119:327-333. [PMID: 29990953 DOI: 10.1016/j.envint.2018.07.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/04/2018] [Accepted: 07/04/2018] [Indexed: 06/08/2023]
Abstract
More attention has been paid to the abundance and diversity of antibiotic resistance genes (ARGs) in aquatic environments. However, few studies have investigated the persistence and spatial variation of ARGs in aquatic organisms. This study investigated the occurrence and abundance of ARGs and the bacterial populations in shrimp intestinal tracts during the rearing period in different regions of Guangdong, South China. The results showed that sul1, sul2, qnrD, and floR were the predominant ARGs. Compared with those of juvenile shrimp, the total concentrations of ARGs in the intestinal tract of adult shrimp in three shrimp farms were 2.45-3.92 times higher (p < 0.05), and the bacterial populations in the adult shrimp intestinal tract changed considerably. Redundancy analysis (RDA) showed that the abundance of Proteobacteria, Firmicutes, and Verrucomicrobia in Farms A, B, and C, respectively, were strongly positively correlated with the most abundant and predominant genes (sul1 and qnrD for Farm A; floR and sul2 for Farm B; floR and sul2 for Farm C) in the shrimp intestinal tract. The results of this study indicated that ARGs gained persistence in the developmental stages of the reared shrimp. Different phyla of predominant bacteria were responsible for the increase of ARGs abundance in the shrimp intestinal tract in different regions. This study represents a case study of the persistence and spatial variation of ARGs in aquaculture and can be a reference for the determination of harmful impacts of ARGs on food safety and human health.
Collapse
Affiliation(s)
- Haochang Su
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China; Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Xiaojuan Hu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China; Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yu Xu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China; Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Wujie Xu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China; Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Xiaoshuai Huang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China; Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Guoliang Wen
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China; Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Keng Yang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China; Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Zhuojia Li
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China; Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yucheng Cao
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China; Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.
| |
Collapse
|
31
|
Zhu ZM, Dong CF, Weng SP, He JG. The high prevalence of pathogenic Vibrio harveyi with multiple antibiotic resistance in scale drop and muscle necrosis disease of the hybrid grouper, Epinephelus fuscoguttatus (♀) × E. lanceolatus (♂), in China. JOURNAL OF FISH DISEASES 2018; 41:589-601. [PMID: 29193152 DOI: 10.1111/jfd.12758] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/28/2017] [Accepted: 10/29/2017] [Indexed: 06/07/2023]
Abstract
Scale drop and muscle necrosis disease with high mortality widely occurred recently in the hybrid grouper (Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂), a crucial cultured marine fish species in China. In this study, 30 Harveyi clade isolates of 27 Vibrio harveyi strains were isolated from diseased hybrid groupers in the south-east and north-east coastal areas of China. A total of 22 V. harveyi strains were determined to be pathogenic, and most challenged fish died within 2 days of infection; surviving individuals exhibited scale drop and deep dermal lesions as naturally diseased fish. Although five typical virulence genes, including luxR, toxRVh , chiA, serine protease and vhh widely existed in V. harveyi, no obvious correlation was established between virulent strains and virulence genes harboured in them. Furthermore, multiple antibiotic resistance was widely exhibited in Harveyi clade strains, particularly for penicillins, polypeptides, lincomycins, acetylspiramycin, streptomycin, metronidazole and bacitracin. And the multiple antibiotic resistance indices were gradually decreased from southern to northern areas of China. This study demonstrated that the pathogenic V. harveyi with multiple antibiotic resistance is highly prevalent in hybrid grouper in China, which requires particular attention.
Collapse
Affiliation(s)
- Z M Zhu
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Biocontrol/, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - C F Dong
- State Key Laboratory of Biocontrol/, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Institute of Aquatic Economic Animals, and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
| | - S P Weng
- State Key Laboratory of Biocontrol/, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Institute of Aquatic Economic Animals, and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
| | - J G He
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Biocontrol/, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Institute of Aquatic Economic Animals, and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
32
|
Hamza F, Kumar AR, Zinjarde S. Efficacy of cell free supernatant from Bacillus licheniformis in protecting Artemia salina against Vibrio alginolyticus and Pseudomonas gessardii. Microb Pathog 2018; 116:335-344. [PMID: 29408316 DOI: 10.1016/j.micpath.2018.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 10/18/2022]
Abstract
Bacterial diseases are widespread in aquaculture farms and causative agents often adapt to biofilm mode of growth. These biofilms are detrimental to aquaculture species as they resist antibiotics and other agents that are used to control them. Two bacterial pathogens isolated from infected prawn samples were identified as Vibrio alginolyticus and Pseudomonas gessardii on the basis of morphological features, biochemical characteristics, 16S r RNA gene sequencing and phylogenetic analysis. Their pathogenic nature was confirmed by performing in vivo challenge experiments using Artemia salina as a model system. Seven days post infection, the mortality observed with V. alginolyticus and P. gessardii was 97 ± 4.08% and 77.5 ± 5.24%, respectively. The isolates formed extensive biofilms on polystyrene and glass surfaces. These infections could be controlled in an effective manner by using the cell free supernatant (CFS) of a tropical marine epizoic strain of Bacillus licheniformis D1 that is earlier reported to contain an antimicrobial protein (BLDZ1). The CFS inhibited biofilms in an efficient manner (82.35 ± 1.69 and 82.52 ± 1.11% for V. alginolyticus and P. gessardii, respectively) on co-incubation. In addition, pre-formed biofilms of V. alginolyticus and P. gessardii were also removed (84.53 ± 1.26 and 67.08 ± 1.43%, respectively). Fluorescence and scanning electron microscopic studies confirmed the antibiofilm potential of this protein on glass surfaces. The antibiofilm nature was due to the anti-adhesion and antimicrobial properties exhibited by the CFS. Treatment of A. salina with CFS (6 h prior to infections) was effective in protecting larvae against infections by field isolates. This study highlights the significance of marine natural products in providing alternative biofilm controlling agents to tackle infections and decreasing the usage of antibiotics in aquaculture settings.
Collapse
Affiliation(s)
- Faseela Hamza
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, 411007, India
| | - Ameeta Ravi Kumar
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, 411007, India
| | - Smita Zinjarde
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, 411007, India; Department of Microbiology, Savitribai Phule Pune University, Pune, 411007, India.
| |
Collapse
|
33
|
Su H, Liu S, Hu X, Xu X, Xu W, Xu Y, Li Z, Wen G, Liu Y, Cao Y. Occurrence and temporal variation of antibiotic resistance genes (ARGs) in shrimp aquaculture: ARGs dissemination from farming source to reared organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 607-608:357-366. [PMID: 28704667 DOI: 10.1016/j.scitotenv.2017.07.040] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/04/2017] [Accepted: 07/04/2017] [Indexed: 06/07/2023]
Abstract
Considerable attention has been paid to the occurrence and abundance of antibiotic resistance genes (ARGs) in aquatic environments. However, the temporal variation and dissemination of ARGs in aquaculture environments and reared organisms need further study. This study investigated the abundance and diversity of ARGs and bacterial community in water source, shrimp pond water, sediment, and shrimps during the rearing period in Pearl River Delta region, South China. The results showed that sul1, qnrD, cmlA, and floR were the predominant ARGs in the aquaculture samples. A trend of decreasing abundance of ARGs was observed for pond water samples during the rearing period, whereas an increasing trend was observed in the sediment and shrimp samples. The total concentration of ARGs in water source was significantly higher than that in shrimp pond water (p<0.05). A significant negative correlation was found between the total concentrations of ARGs in pond waters and sediments (p<0.01). The total abundances of ARGs in intestinal tract of adult shrimps were 4.48-19.0 times higher than those in juvenile shrimps. Similar to water source and pond water, cmlA and sul1 were the predominant ARGs in shrimp intestinal tract. The bacterial community in the shrimp intestinal tract changed greatly from juvenile to adult. The results of the present study indicated that the abundances of ARGs in aquaculture varied temporally during the rearing period. Water source was an important medium disseminating ARGs to the aquaculture environments and reared organisms. Sul1 could be used as a potential indicator for ARGs in both water and sediment in aquaculture in the estuary of the Pearl River Delta, South China. This study represents a case study for the temporal variation of abundance and dissemination of ARGs in aquaculture and is a reference for potential risks to food safety and human health.
Collapse
Affiliation(s)
- Haochang Su
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Shan Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xiaojuan Hu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Xiangrong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Wujie Xu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Yu Xu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Zhuojia Li
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Guoliang Wen
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Yousheng Liu
- State Key Laboratory of Organic Geochemistry, CAS Centre for Pearl River Delta Environmental Pollution and Control Research, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yucheng Cao
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.
| |
Collapse
|
34
|
Efficacy of potential phage cocktails against Vibrio harveyi and closely related Vibrio species isolated from shrimp aquaculture environment in the south east coast of India. Vet Microbiol 2017; 207:83-96. [PMID: 28757045 DOI: 10.1016/j.vetmic.2017.06.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 06/06/2017] [Accepted: 06/07/2017] [Indexed: 12/22/2022]
Abstract
A diverse set of novel phages infecting the marine pathogenic Vibrio harveyi was isolated from shrimp aquaculture environments in the south east coast of India. Based on initial screening, three phages with a broad host range revealed that the growth inhibition of phage is relatively specific to V. harveyi. They were also able to infect V. alginolyticus and V. parahemolyticus that belonged to the Harveyi clade species from shrimp pond and sea coast environment samples. However, the impact of these phages on their host bacterium are well understood; a one-step growth curve experiment and transmission electron microscope (TEM) revealed three phages grouped under the Myoviridae (VHM1 and VHM2); Siphoviridae (VHS1) family. These phages were further molecular characterized with respect to phage genomic DNA isolates. The randomly amplified polymorphic DNA (RAPD), restriction fragment length polymorphism (RFLP) digestion with HindIII, and major structural proteins were distinguished by sodium-dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) clearly indicated that all the phage isolates were different, even when they came from the same source, giving an insight into the diversity of phages. Evaluation of microcosm studies of Penaeus monodon larvae infected with V. harveyi (105 CFU mL-1) showed that larvae survival after 96 h in the presence of phage treatment at 109 PFU mL-1 was enhanced when compared with the control. The resolution in over survival highly recommended that this study provides the phage-based therapy which could be an innovative and eco-friendly solution against Vibrio disease in shrimp aquaculture and in the natural environment.
Collapse
|
35
|
Lian Z, Pan R, Wang J. Microencapsulation of norfloxacin in chitosan/chitosan oligosaccharides and its application in shrimp culture. Int J Biol Macromol 2016; 92:587-592. [DOI: 10.1016/j.ijbiomac.2016.07.074] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 07/20/2016] [Accepted: 07/21/2016] [Indexed: 10/21/2022]
|