1
|
Bindhu A, Nair S A, Johnson AJ, Baby S. Plants used in Ayurveda for Jwara or fever: A review of their antiviral studies. J Ayurveda Integr Med 2025; 16:101085. [PMID: 40305981 DOI: 10.1016/j.jaim.2024.101085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/20/2024] [Accepted: 10/03/2024] [Indexed: 05/02/2025] Open
Abstract
Two of the earliest treatises in Ayurveda, the 'Charaka Samhita' and the 'Sushruta Samhita', describe numerous medicinal plants used in the treatment of Jwara (fever). Systematic studies carried out on these plants registered for 'Jwara' are of high significance in antiviral drug development. This article is a comprehensive review of the antiviral studies on medicinal plants listed for 'Jwara' in 'Charaka-Sushruta Samhitas', their antiviral entities and modes of action. The botanical names of the medicinal plants used for 'Jwara' were elucidated from their Sanskrit names in 'Charaka-Sushruta Samhitas' and their subsequent interpretations. Antiviral studies on these plant species and their constituents were compiled from the literature retrieved from Scopus, PubMed, Google Scholar and other databases. Antiviral activities against various viruses were evaluated based on EC50/IC50/LC50 values, high percent inhibitions and molecular docking parameters displayed by their extracts, secondary metabolites, short peptides, polyphenols, anthocyanins and polysaccharides. Their modes of action were also evaluated. Strikingly, in antiviral studies very low EC50/IC50/LC50 and high percent inhibitions were demonstrated by medicinal plants widely used as traditional medicines, vegetables, foods and flavours. Secondary metabolites (including essential oils), anthocyanins, polyphenols, short peptides and polysaccharides in these plants illustrated antiviral activities by hampering membrane permeability, cellular functions and replication cycle of harmful viruses. Medicinal plants used for fever in Ayurveda could be used as natural sources of lead molecules for antiviral drug development. Antiviral activities displayed by these plants are justifying the ancient wisdom traditionally demonstrated over centuries.
Collapse
Affiliation(s)
- Athira Bindhu
- Phytochemistry and Phytopharmacology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode, 695562, Thiruvananthapuram, Kerala, India
| | - Ajikumaran Nair S
- Phytochemistry and Phytopharmacology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode, 695562, Thiruvananthapuram, Kerala, India
| | - Anil John Johnson
- Phytochemistry and Phytopharmacology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode, 695562, Thiruvananthapuram, Kerala, India
| | - Sabulal Baby
- Phytochemistry and Phytopharmacology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode, 695562, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
2
|
Burkard M, Piotrowsky A, Leischner C, Detert K, Venturelli S, Marongiu L. The Antiviral Activity of Polyphenols. Mol Nutr Food Res 2025:e70042. [PMID: 40166854 DOI: 10.1002/mnfr.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/27/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025]
Abstract
Polyphenols are secondary metabolites produced by a large variety of plants. These compounds that comprise the class of phenolic acids, stilbenes, lignans, coumarins, flavonoids, and tannins have a wide range of employment, from food production to medical usages. Among the beneficial applications of polyphenols, their antiviral activity is gaining importance due to the increased prevalence of drug-resistant viruses such as herpes and hepatitis B viruses. In the present review, we provide an overview of the most promising or commonly used antiviral polyphenols and their mechanisms of action focusing on their effects on enveloped viruses of clinical importance (double-stranded linear or partially double-stranded circular DNA viruses, negative sense single-stranded RNA viruses with nonsegmented or segmented genomes, and positive sense single-stranded RNA viruses). The present work emphasizes the relevance of polyphenols, in particular epigallocatechin-3-gallate and resveratrol, as alternative or supportive antivirals. Polyphenols could interfere with virtually all steps of viral infection, from the adsorption to the release of viral particles. The activity of polyphenols against viruses is especially relevant given the risk of widespread outbreaks associated with viruses, remarked by the recent COVID-19 pandemic.
Collapse
Affiliation(s)
- Markus Burkard
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
| | - Alban Piotrowsky
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
| | - Christian Leischner
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
| | - Katja Detert
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
| | - Sascha Venturelli
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
- Department of Vegetative and Clinical Physiology, Institute of Physiology, University of Tuebingen, Tuebingen, Germany
| | - Luigi Marongiu
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
3
|
Fekadu M, Lulekal E, Tesfaye S, Ruelle M, Asfaw N, Awas T, Balemie K, Asres K, Guenther S, Asfaw Z, Demissew S. The potential of Ethiopian medicinal plants to treat emergent viral diseases. Phytother Res 2024; 38:925-938. [PMID: 38098253 DOI: 10.1002/ptr.8084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/02/2023] [Accepted: 11/16/2023] [Indexed: 02/15/2024]
Abstract
Ethiopians have deep-rooted traditions of using plants to treat ailments affecting humans and domesticated animals. Approximately 80% of the population continues to rely on traditional medicine, including for the prevention and treatment of viral diseases. Many antiviral plants are available to and widely used by communities in areas where access to conventional healthcare systems is limited. In some cases, pharmacological studies also confirm the potent antiviral properties of Ethiopian plants. Building on traditional knowledge of medicinal plants and testing their antiviral properties may help to expand options to address the global pandemic of COVID-19 including its recently isolated virulent variants and prepare for similar outbreaks in the future. Here, we provide an ethnobotanical and pharmacological inventory of Ethiopian medicinal plants that might contribute to the prevention and treatment of viral diseases. We identified 387 species, about 6% of Ethiopia's known flora, for which records of use by local communities and traditional herbalists have been documented for the treatment of viral diseases. We provide a framework for further investigation and development of this vital resource much anticipated to help combat emergent viral diseases along with existing ones in Ethiopia and elsewhere.
Collapse
Affiliation(s)
- Mekbib Fekadu
- Plant Ecology and Geobotany, Faculty of Biology, Philipps University of Marburg, Marburg, Germany
- Department of Plant Biology and Biodiversity Management, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ermias Lulekal
- Department of Plant Biology and Biodiversity Management, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Solomon Tesfaye
- Department of Pharmaceutical Biology, Institute of Pharmacy, Greifswald University, Greifswald, Germany
- School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Morgan Ruelle
- Department of International Development, Community and Environment, Clark University, Worcester, Massachusetts, USA
| | - Nigist Asfaw
- Department of Chemistry, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tesfaye Awas
- Ethiopian Biodiversity Institute, Addis Ababa, Ethiopia
| | - Kebu Balemie
- Ethiopian Biodiversity Institute, Addis Ababa, Ethiopia
| | - Kaleab Asres
- School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Sebastian Guenther
- Department of Pharmaceutical Biology, Institute of Pharmacy, Greifswald University, Greifswald, Germany
| | - Zemede Asfaw
- Department of Plant Biology and Biodiversity Management, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Sebsebe Demissew
- Department of Plant Biology and Biodiversity Management, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
4
|
Alexova R, Alexandrova S, Dragomanova S, Kalfin R, Solak A, Mehan S, Petralia MC, Fagone P, Mangano K, Nicoletti F, Tancheva L. Anti-COVID-19 Potential of Ellagic Acid and Polyphenols of Punica granatum L. Molecules 2023; 28:molecules28093772. [PMID: 37175181 PMCID: PMC10180134 DOI: 10.3390/molecules28093772] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Pomegranate (Punica granatum L.) is a rich source of polyphenols, including ellagitannins and ellagic acid. The plant is used in traditional medicine, and its purified components can provide anti-inflammatory and antioxidant activity and support of host defenses during viral infection and recovery from disease. Current data show that pomegranate polyphenol extract and its ellagitannin components and metabolites exert their beneficial effects by controlling immune cell infiltration, regulating the cytokine secretion and reactive oxygen and nitrogen species production, and by modulating the activity of the NFκB pathway. In vitro, pomegranate extracts and ellagitannins interact with and inhibit the infectivity of a range of viruses, including SARS-CoV-2. In silico docking studies show that ellagitannins bind to several SARS-CoV-2 and human proteins, including a number of proteases. This warrants further exploration of polyphenol-viral and polyphenol-host interactions in in vitro and in vivo studies. Pomegranate extracts, ellagitannins and ellagic acid are promising agents to target the SARS-CoV-2 virus and to restrict the host inflammatory response to viral infections, as well as to supplement the depleted host antioxidant levels during the stage of recovery from COVID-19.
Collapse
Affiliation(s)
- Ralitza Alexova
- Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University-Sofia, Zdrave Str. 2, 1431 Sofia, Bulgaria
| | - Simona Alexandrova
- Department of Biological Effects of Natural and Synthetic Substances, Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Block 23, 1113 Sofia, Bulgaria
| | - Stela Dragomanova
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University, Marin Drinov Str. 55, 9002 Varna, Bulgaria
| | - Reni Kalfin
- Department of Biological Effects of Natural and Synthetic Substances, Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Block 23, 1113 Sofia, Bulgaria
- Department of Healthcare, South-West University "Neofit Rilski", Ivan Mihailov Str. 66, 2700 Blagoevgrad, Bulgaria
| | - Ayten Solak
- Institute of Cryobiology and Food Technologies, Cherni Vrah Blvd. 5, 1407 Sofia, Bulgaria
| | - Sidharth Mehan
- Department of Pharmacology, Division of Neuroscience, ISF College of Pharmacy, Moga 142001, India
| | - Maria Cristina Petralia
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy
| | - Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy
| | - Lyubka Tancheva
- Department of Biological Effects of Natural and Synthetic Substances, Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Block 23, 1113 Sofia, Bulgaria
| |
Collapse
|
5
|
Giordano D, Facchiano A, Carbone V. Food Plant Secondary Metabolites Antiviral Activity and Their Possible Roles in SARS-CoV-2 Treatment: An Overview. Molecules 2023; 28:molecules28062470. [PMID: 36985442 PMCID: PMC10058909 DOI: 10.3390/molecules28062470] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Natural products and plant extracts exhibit many biological activities, including that related to the defense mechanisms against parasites. Many studies have investigated the biological functions of secondary metabolites and reported evidence of antiviral activities. The pandemic emergencies have further increased the interest in finding antiviral agents, and efforts are oriented to investigate possible activities of secondary plant metabolites against human viruses and their potential application in treating or preventing SARS-CoV-2 infection. In this review, we performed a comprehensive analysis of studies through in silico and in vitro investigations, also including in vivo applications and clinical trials, to evaluate the state of knowledge on the antiviral activities of secondary metabolites against human viruses and their potential application in treating or preventing SARS-CoV-2 infection, with a particular focus on natural compounds present in food plants. Although some of the food plant secondary metabolites seem to be useful in the prevention and as a possible therapeutic management against SARS-CoV-2, up to now, no molecules can be used as a potential treatment for COVID-19; however, more research is needed.
Collapse
Affiliation(s)
- Deborah Giordano
- Institute of Food Sciences, National Research Council, via Roma 64, 83100 Avellino, Italy
| | - Angelo Facchiano
- Institute of Food Sciences, National Research Council, via Roma 64, 83100 Avellino, Italy
| | - Virginia Carbone
- Institute of Food Sciences, National Research Council, via Roma 64, 83100 Avellino, Italy
| |
Collapse
|
6
|
Lince KC, DeMario VK, Yang GT, Tran RT, Nguyen DT, Sanderson JN, Pittman R, Sanchez RL. A Systematic Review of Second-Line Treatments in Antiviral Resistant Strains of HSV-1, HSV-2, and VZV. Cureus 2023; 15:e35958. [PMID: 37041924 PMCID: PMC10082683 DOI: 10.7759/cureus.35958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2023] [Indexed: 03/11/2023] Open
Abstract
Drug-resistant variants of herpes simplex viruses (HSV) have been reported that are not effectively treated with first-line antiviral agents. The objective of this study was to evaluate available literature on the possible efficacy of second-line treatments in HSV and the use of second-line treatments in HSV strains that are resistant to first-line treatments. Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, a final search was conducted in six databases on November 5, 2021 for all relevant literature using terms related to antiviral resistance, herpes, and HSV. Eligible manuscripts were required to report the presence of an existing or proposed second-line treatment for HSV-1, HSV-2, or varicella zoster virus (VZV); have full-text English-language access; and potentially reduce the rate of antiviral resistance. Following screening, 137 articles were included in qualitative synthesis. Of the included studies, articles that examined the relationship between viral resistance to first-line treatments and potential second-line treatments in HSV were included. The Cochrane risk-of-bias tool for randomized trials was used to assess risk of bias. Due to the heterogeneity of study designs, a meta-analysis of the studies was not performed. The dates in which accepted studies were published spanned from 2015-2021. In terms of sample characteristics, the majority (72.26%) of studies used Vero cells. When looking at the viruses on which the interventions were tested, the majority (84.67%) used HSV-1, with (34.31%) of these studies reporting testing on resistant HSV strains. Regarding the effectiveness of the proposed interventions, 91.97% were effective as potential managements for resistant strains of HSV. Of the papers reviewed, nectin in 2.19% of the reviews had efficacy as a second-line treatments in HSV, amenamevir in 2.19%, methanol extract in 2.19%, monoclonal antibodies in 1.46%, arbidol in 1.46%, siRNA swarms in 1.46%, Cucumis melo sulfated pectin in 1.46%, and components from Olea europeae in 1.46%. In addition to this griffithsin in 1.46% was effective, Morus alba L. in 1.46%, using nucleosides in 1.46%, botryosphaeran in 1.46%, monoterpenes in 1.46%, almond skin extracts in 1.46%, bortezomib in 1.46%, flavonoid compounds in 1.46%, andessential oils were effective in 1.46%, but not effective in 0.73%. The available literature reviewed consistently supports the existence and potentiality of second-line treatments for HSV strains that are resistant to first-line treatments. Immunocompromised patients have been noted to be the population most often affected by drug-resistant variants of HSV. Subsequently, we found that HSV infections in this patient population are challenging to manage clinically effectively. The goal of this systematic review is to provide additional information to patients on the potentiality of second-line treatment in HSV strains resistant to first-line treatments, especially those who are immunocompromised. All patients, whether they are immunocompromised or not, deserve to have their infections clinically managed in a manner supported by comprehensive research. This review provides necessary information about treatment options for patients with resistant HSV infections and their providers.
Collapse
Affiliation(s)
- Kimberly C Lince
- Department of Clinically Applied Science Education, University of the Incarnate Word School of Osteopathic Medicine, San Antonio, USA
| | - Virgil K DeMario
- Department of Clinically Applied Science Education, University of the Incarnate Word School of Osteopathic Medicine, San Antonio, USA
| | - George T Yang
- Department of Clinically Applied Science Education, University of the Incarnate Word School of Osteopathic Medicine, San Antonio, USA
| | - Rita T Tran
- Department of Clinically Applied Science Education, University of the Incarnate Word School of Osteopathic Medicine, San Antonio, USA
| | - Daniel T Nguyen
- Department of Clinically Applied Science Education, University of the Incarnate Word School of Osteopathic Medicine, San Antonio, USA
| | - Jacob N Sanderson
- Department of Clinically Applied Science Education, University of the Incarnate Word School of Osteopathic Medicine, San Antonio, USA
| | - Rachel Pittman
- Department of Clinically Applied Science Education, University of the Incarnate Word School of Osteopathic Medicine, San Antonio, USA
| | - Rebecca L Sanchez
- Department of Clinically Applied Science Education, University of the Incarnate Word School of Osteopathic Medicine, San Antonio, USA
| |
Collapse
|
7
|
Besharati M, Maggiolino A, Palangi V, Kaya A, Jabbar M, Eseceli H, De Palo P, Lorenzo JM. Tannin in Ruminant Nutrition: Review. Molecules 2022; 27:8273. [PMID: 36500366 PMCID: PMC9738529 DOI: 10.3390/molecules27238273] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Tannins are polyphenols characterized by different molecular weights that plants are able to synthetize during their secondary metabolism. Macromolecules (proteins, structural carbohydrates and starch) can link tannins and their digestion can decrease. Tannins can be classified into two groups: hydrolysable tannins and condensed tannins. Tannins are polyphenols, which can directly or indirectly affect intake and digestion. Their ability to bind molecules and form complexes depends on the structure of polyphenols and on the macromolecule involved. Tannins have long been known to be an "anti-nutritional agent" in monogastric and poultry animals. Using good tannins' proper application protocols helped the researchers observe positive effects on the intestinal microbial ecosystem, gut health, and animal production. Plant tannins are used as an alternative to in-feed antibiotics, and many factors have been described by researchers which contribute to the variability in their efficiencies. The objective of this study was to review the literature about tannins, their effects and use in ruminant nutrition.
Collapse
Affiliation(s)
- Maghsoud Besharati
- Department of Animal Science, Ahar Faculty of Agriculture and Natural Resources, University of Tabriz, Ahar 5451785354, Iran
| | - Aristide Maggiolino
- Department of Veterinary Medicine, University of Bari A. Moro, 70010 Valenzano, Italy
| | - Valiollah Palangi
- Department of Animal Science, Agricultural Faculty, Ataturk University, Erzurum 25240, Turkey
| | - Adem Kaya
- Department of Animal Science, Agricultural Faculty, Ataturk University, Erzurum 25240, Turkey
| | - Muhammad Jabbar
- Department of Zoology, Faculty of Biosciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan
| | - Hüseyin Eseceli
- Department of Nutrition Sciences, Faculty of Health Sciences, Bandirma Onyedi Eylul University, Balikesir 10200, Turkey
| | - Pasquale De Palo
- Department of Veterinary Medicine, University of Bari A. Moro, 70010 Valenzano, Italy
| | - Jose M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia 4, Parque Tecnológico de Galicia, 32900 Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidade de Vigo, 32004 Ourense, Spain
| |
Collapse
|
8
|
EL-Aguel A, Pennisi R, Smeriglio A, Kallel I, Tamburello MP, D’Arrigo M, Barreca D, Gargouri A, Trombetta D, Mandalari G, Sciortino MT. Punica granatum Peel and Leaf Extracts as Promising Strategies for HSV-1 Treatment. Viruses 2022; 14:v14122639. [PMID: 36560643 PMCID: PMC9782130 DOI: 10.3390/v14122639] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Punica granatum is a rich source of bioactive compounds which exhibit various biological effects. In this study, pomegranate peel and leaf ethanolic crude extracts (PPE and PLE, respectively) were phytochemically characterized and screened for antioxidant, antimicrobial and antiviral activity. LC-PDA-ESI-MS analysis led to the identification of different compounds, including ellagitannins, flavonoids and phenolic acids. The low IC50 values, obtained by DPPH and FRAP assays, showed a noticeable antioxidant effect of PPE and PLE comparable to the reference standards. Both crude extracts and their main compounds (gallic acid, ellagic acid and punicalagin) were not toxic on Vero cells and exhibited a remarkable inhibitory effect on herpes simplex type 1 (HSV-1) viral plaques formation. Specifically, PPE inhibited HSV-1 adsorption to the cell surface more than PLE. Indeed, the viral DNA accumulation, the transcription of viral genes and the expression of viral proteins were significantly affected by PPE treatment. Amongst the compounds, punicalagin, which is abundant in PPE crude extract, inhibited HSV-1 replication, reducing viral DNA and transcripts accumulation, as well as proteins of all three phases of the viral replication cascade. In contrast, no antibacterial activity was detected. In conclusion, our findings indicate that Punica granatum peel and leaf extracts, especially punicalagin, could be a promising therapeutic candidate against HSV-1.
Collapse
Affiliation(s)
- Asma EL-Aguel
- Research Laboratory Toxicology-Environmental Microbiology and Health (LR17ES06), Faculty of Sciences of Sfax, P.O. Box 1171, Sfax 3000, Tunisia
| | - Rosamaria Pennisi
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
- Correspondence: (R.P.); (G.M.)
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Imen Kallel
- Research Laboratory Toxicology-Environmental Microbiology and Health (LR17ES06), Faculty of Sciences of Sfax, P.O. Box 1171, Sfax 3000, Tunisia
| | - Maria Pia Tamburello
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Manuela D’Arrigo
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Ahmed Gargouri
- Research Laboratory Toxicology-Environmental Microbiology and Health (LR17ES06), Faculty of Sciences of Sfax, P.O. Box 1171, Sfax 3000, Tunisia
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Giuseppina Mandalari
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
- Correspondence: (R.P.); (G.M.)
| | - Maria Teresa Sciortino
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
9
|
Hassan STS, Šudomová M, Mazurakova A, Kubatka P. Insights into Antiviral Properties and Molecular Mechanisms of Non-Flavonoid Polyphenols against Human Herpesviruses. Int J Mol Sci 2022; 23:ijms232213891. [PMID: 36430369 PMCID: PMC9693824 DOI: 10.3390/ijms232213891] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/30/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Herpesviruses are one of the most contagious DNA viruses that threaten human health, causing severe diseases, including, but not limited to, certain types of cancer and neurological complications. The overuse and misuse of anti-herpesvirus drugs are key factors leading to drug resistance. Therefore, targeting human herpesviruses with natural products is an attractive form of therapy, as it might improve treatment efficacy in therapy-resistant herpesviruses. Plant polyphenols are major players in the health arena as they possess diverse bioactivities. Hence, in this article, we comprehensively summarize the recent advances that have been attained in employing plant non-flavonoid polyphenols, such as phenolic acids, tannins and their derivatives, stilbenes and their derivatives, lignans, neolignans, xanthones, anthraquinones and their derivatives, curcuminoids, coumarins, furanocoumarins, and other polyphenols (phloroglucinol) as promising anti-herpesvirus drugs against various types of herpesvirus such as alpha-herpesviruses (herpes simplex virus type 1 and 2 and varicella-zoster virus), beta-herpesviruses (human cytomegalovirus), and gamma-herpesviruses (Epstein-Barr virus and Kaposi sarcoma-associated herpesvirus). The molecular mechanisms of non-flavonoid polyphenols against the reviewed herpesviruses are also documented.
Collapse
Affiliation(s)
- Sherif T. S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
- Correspondence: ; Tel.: +420-774-630-604
| | - Miroslava Šudomová
- Museum of Literature in Moravia, Klášter 1, 664 61 Rajhrad, Czech Republic
| | - Alena Mazurakova
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4D, 03601 Martin, Slovakia
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| |
Collapse
|
10
|
Cheung LK, Yada RY. Predicting global diet-disease relationships at the atomic level: a COVID-19 case study. Curr Opin Food Sci 2022; 44:100804. [PMID: 35004187 PMCID: PMC8721929 DOI: 10.1016/j.cofs.2021.12.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the past few months, numerous studies harnessed in silico methods such as molecular docking to evaluate food compounds for inhibitory activity against coronavirus infection and replication. These studies capitalize on the efficiency of computational methods to quickly guide subsequent research and examine diet-disease relationships, and their sudden widespread utility may signal new opportunities for future antiviral and bioactive food research. Using Coronavirus Disease 2019 (COVID-19) research as a case study, we herein provide an overview of findings from studies using molecular docking to study food compounds as potential inhibitors of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), explore considerations for the critical interpretation of study findings, and discuss how these studies help shape larger conversations of diet and disease.
Collapse
Affiliation(s)
- Lennie Ky Cheung
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Rickey Y Yada
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
11
|
Tarachand SP, Thirumoorthy G, Lakshmaiah VV, Nagella P. In silico molecular docking study of Andrographis paniculata phytochemicals against TNF-α as a potent anti-rheumatoid drug. J Biomol Struct Dyn 2022; 41:2687-2697. [PMID: 35147481 DOI: 10.1080/07391102.2022.2037463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Tumor necrosis factor-α (TNF-α) is a proinflammatory cytokine which plays a crucial role in controlling inflammatory responses. The pathway of Rheumatoid arthritis (RA) leading to TNF-alpha is activated by macrophages and quite often by natural killer cells and lymphocytes. In the inflammatory phase, it is believed to be the main mediator and to be anchored with the progression of different diseases such as ankylosing spondylitis, Crohn's disease, and Rheumatoid arthritis (RA). The major goal of this study is to use in silico docking studies to investigate the anti-inflammatory potential of a bioactive molecule from the medicinal plant Andrographis paniculata. The three-dimensional structures of different phytochemicals of A. paniculata were obtained from PubChem database, and the receptor protein was derived from PDB database. Docking analysis was executed using AutoDock vina, and the binding energies were compared. Bisandrographolide A and Andrographidine C revealed the highest score of -8.6 Kcal/mol, followed by, Neoandrographolide (-8.5 Kcal/mol). ADME and toxicity parameters were evaluated for these high scoring ligands and results showed that Andrographidine C could be a potent drug, whereas Neoandrographolide and Bisandrographolide A can be modified in in vitro and can lead to a promising drug. Further, the top scorer (Andrographidine C) and control drug (Leflunomide) were subjected to 100 ns MD Simulation. The protein complex with Andrographidine C had more stable confirmation with lower RMSD (0.28 nm) and higher binding energy (-133.927 +/- 13.866 kJ/mol). In conclusion, Andrographidine C may be a potent surrogate to the disease-modifying anti-rheumatic drugs (DMARD's) & Non-steroidal anti-inflammatory drugs (NSAID's) that has fewer or minor adverse effects and can aid in RA management.
Collapse
Affiliation(s)
- Sharma Pooja Tarachand
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru, Karnataka, India
| | | | | | - Praveen Nagella
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru, Karnataka, India
| |
Collapse
|
12
|
Sanna C, Marengo A, Acquadro S, Caredda A, Lai R, Corona A, Tramontano E, Rubiolo P, Esposito F. In Vitro Anti-HIV-1 Reverse Transcriptase and Integrase Properties of Punica granatum L. Leaves, Bark, and Peel Extracts and Their Main Compounds. PLANTS (BASEL, SWITZERLAND) 2021; 10:2124. [PMID: 34685933 PMCID: PMC8539310 DOI: 10.3390/plants10102124] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 12/25/2022]
Abstract
In a search for natural compounds with anti-HIV-1 activity, we studied the effect of the ethanolic extract obtained from leaves, bark, and peels of Punica granatum L. for the inhibition of the HIV-1 reverse transcriptase (RT)-associated ribonuclease H (RNase H) and integrase (IN) LEDGF-dependent activities. The chemical analyses led to the detection of compounds belonging mainly to the phenolic and flavonoid chemical classes. Ellagic acid, flavones, and triterpenoid molecules were identified in leaves. The bark and peels were characterized by the presence of hydrolyzable tannins, such as punicalins and punicalagins, together with ellagic acid. Among the isolated compounds, the hydrolyzable tannins and ellagic acid showed a very high inhibition (IC50 values ranging from 0.12 to 1.4 µM and 0.065 to 0.09 µM of the RNase H and IN activities, respectively). Of the flavonoids, luteolin and apigenin were found to be able to inhibit RNase H and IN functions (IC50 values in the 3.7-22 μM range), whereas luteolin 7-O-glucoside showed selective activity for HIV-1 IN. In contrast, betulinic acid, ursolic acid, and oleanolic acid were selective for the HIV-1 RNase H activity. Our results strongly support the potential of non-edible P. granatum organs as a valuable source of anti-HIV-1 compounds.
Collapse
Affiliation(s)
- Cinzia Sanna
- Laboratory of Pharmaceutical Botany, Department of Life and Environmental Sciences, University of Cagliari, Via S. Ignazio da Laconi 13, 09123 Cagliari, Italy;
| | - Arianna Marengo
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (A.M.); (S.A.); (P.R.)
| | - Stefano Acquadro
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (A.M.); (S.A.); (P.R.)
| | - Alessia Caredda
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, ss554, km 4500, Monserrato, 09042 Cagliari, Italy; (A.C.); (A.C.); (E.T.); (F.E.)
| | - Roberta Lai
- Laboratory of Pharmaceutical Botany, Department of Life and Environmental Sciences, University of Cagliari, Via S. Ignazio da Laconi 13, 09123 Cagliari, Italy;
| | - Angela Corona
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, ss554, km 4500, Monserrato, 09042 Cagliari, Italy; (A.C.); (A.C.); (E.T.); (F.E.)
| | - Enzo Tramontano
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, ss554, km 4500, Monserrato, 09042 Cagliari, Italy; (A.C.); (A.C.); (E.T.); (F.E.)
| | - Patrizia Rubiolo
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (A.M.); (S.A.); (P.R.)
| | - Francesca Esposito
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, ss554, km 4500, Monserrato, 09042 Cagliari, Italy; (A.C.); (A.C.); (E.T.); (F.E.)
| |
Collapse
|
13
|
Edible fruit extracts and fruit juices as potential source of antiviral agents: a review. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [PMCID: PMC8328999 DOI: 10.1007/s11694-021-01090-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Fruits have been widely consumed since the beginning of human evolution and are important source of a healthy being and helpful in treating various diseases as immunity boosters with the presence of a rich amount of health-promoting bioactives. Therapeutic efficacies of fruit extracts are reported to have immune-modulatory properties and influence greatly on the immune system of human body. Given the facts of the efficacy of edible fruits in improving the immunity of body as immune-stimulants, we have tried to consolidate the previously published data on edible fruits and its juices with antiviral potential. The objective of this review was to gather information on edible fruits with antiviral properties and the efforts to obtain their efficient delivery. Online bibliographical databases like PubMed, Scopus, and Web of Science were used to search literature on the antiviral effect of edible fruit extracts and fruit juices. The edible fruits like almond, apple, bael, blackberry, black currants, crane berry, citrus, grapes, Japanese cherry, mango, mulberry, pistachios, pomegranate, and strawberry showed promising antiviral properties against the different pathogenic viruses. The review provided an overview of likely effects of the intake of edible fruit extracts/fruit juices to strengthen the immune cells by reducing the oxidative stress in host body system which in turn inhibits the viral attachment and replication on the host cell. Hence these fruits can also be exploited in combating COVID-19 in the current pandemic situation. To validate the present hypothesis, the proposed edible fruit extracts can be evaluated against the SARS-CoV-2 via in vitro and in vivo models to confirm the fact.
Collapse
|
14
|
Santhi VP, Masilamani P, Sriramavaratharajan V, Murugan R, Gurav SS, Sarasu VP, Parthiban S, Ayyanar M. Therapeutic potential of phytoconstituents of edible fruits in combating emerging viral infections. J Food Biochem 2021; 45:e13851. [PMID: 34236082 PMCID: PMC8420441 DOI: 10.1111/jfbc.13851] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 12/19/2022]
Abstract
Plant-derived bioactive molecules display potential antiviral activity against various viral targets including mode of viral entry and its replication in host cells. Considering the challenges and search for antiviral agents, this review provides substantiated data on chemical constituents of edible fruits with promising antiviral activity. The bioactive constituents like naringenin, mangiferin, α-mangostin, geraniin, punicalagin, and lectins of edible fruits exhibit antiviral effect by inhibiting viral replication against IFV, DENV, polio, CHIKV, Zika, HIV, HSV, HBV, HCV, and SARS-CoV. The significance of edible fruit phytochemicals to block the virulence of various deadly viruses through their inhibitory action against the entry and replication of viral genetic makeup and proteins are discussed. In view of the antiviral property of active constituents of edible fruits which can strengthen the immune system and reduce oxidative stress, they are suggested to be diet supplements to combat various viral diseases including COVID-19. PRACTICAL APPLICATIONS: Considering the increasing threat of COVID-19, it is suggested to examine the therapeutic efficacy of existing antiviral molecules of edible fruits which may provide prophylactic and adjuvant therapy with their potential antioxidant, anti-inflammatory, and immune-modulatory effects. Several active molecules like geraniin, naringenin, (2R,4R)-1,2,4-trihydroxyheptadec-16-one, betacyanins, mangiferin, punicalagin, isomangiferin, procyanidin B2, quercetin, marmelide, jacalin lectin, banana lectin, and α-mangostin isolated from various edible fruits have showed promising antiviral properties against different pathogenic viruses. Especially flavonoid compounds extracted from edible fruits possess potential antiviral activity against a wide array of viruses like HIV-1, HSV-1 and 2, HCV, INF, dengue, yellow fever, NSV, and Zika virus infection. Hence taking such fruits or edible fruits and their constituents/compounds as dietary supplements could deliver adequate plasma levels in the body to optimize the cell and tissue levels and could lead to possible benefits for the preventive measures for this pandemic COVID-19 situation.
Collapse
Affiliation(s)
- Veerasamy Pushparaj Santhi
- Department of Fruit Science, Horticultural College and Research Institute for WomenTamil Nadu Agricultural UniversityTiruchirappalliIndia
| | - Poomaruthai Masilamani
- Department of Fruit Science, Horticultural College and Research Institute for WomenTamil Nadu Agricultural UniversityTiruchirappalliIndia
- Anbil Dharmalingam Agricultural College and Research InstituteTamil Nadu Agricultural UniversityTiruchirappalliIndia
| | | | - Ramar Murugan
- Centre for Research and Postgraduate Studies in BotanyAyya Nadar Janaki Ammal College (Autonomous)SivakasiIndia
| | - Shailendra S. Gurav
- Department of Pharmacognosy and Phytochemistry, Goa College of PharmacyGoa UniversityPanajiIndia
| | | | - Subbaiyan Parthiban
- Department of Fruit Science, Horticultural College and Research Institute for WomenTamil Nadu Agricultural UniversityTiruchirappalliIndia
| | - Muniappan Ayyanar
- Department of Botany, A.V.V.M. Sri Pushpam College (Autonomous)Bharathidasan UniversityThanjavurIndia
| |
Collapse
|
15
|
Behl T, Rocchetti G, Chadha S, Zengin G, Bungau S, Kumar A, Mehta V, Uddin MS, Khullar G, Setia D, Arora S, Sinan KI, Ak G, Putnik P, Gallo M, Montesano D. Phytochemicals from Plant Foods as Potential Source of Antiviral Agents: An Overview. Pharmaceuticals (Basel) 2021; 14:381. [PMID: 33921724 PMCID: PMC8073840 DOI: 10.3390/ph14040381] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 12/11/2022] Open
Abstract
To date, the leading causes of mortality and morbidity worldwide include viral infections, such as Ebola, influenza virus, acquired immunodeficiency syndrome (AIDS), severe acute respiratory syndrome (SARS) and recently COVID-19 disease, caused by the SARS-CoV-2 virus. Currently, we can count on a narrow range of antiviral drugs, especially older generation ones like ribavirin and interferon which are effective against viruses in vitro but can often be ineffective in patients. In addition to these, we have antiviral agents for the treatment of herpes virus, influenza virus, HIV and hepatitis virus. Recently, drugs used in the past especially against ebolavirus, such as remdesivir and favipiravir, have been considered for the treatment of COVID-19 disease. However, even if these drugs represent important tools against viral diseases, they are certainly not sufficient to defend us from the multitude of viruses present in the environment. This represents a huge problem, especially considering the unprecedented global threat due to the advancement of COVID-19, which represents a potential risk to the health and life of millions of people. The demand, therefore, for new and effective antiviral drugs is very high. This review focuses on three fundamental points: (1) presents the main threats to human health, reviewing the most widespread viral diseases in the world, thus describing the scenario caused by the disease in question each time and evaluating the specific therapeutic remedies currently available. (2) It comprehensively describes main phytochemical classes, in particular from plant foods, with proven antiviral activities, the viruses potentially treated with the described phytochemicals. (3) Consideration of the various applications of drug delivery systems in order to improve the bioavailability of these compounds or extracts. A PRISMA flow diagram was used for the inclusion of the works. Taking into consideration the recent dramatic events caused by COVID-19 pandemic, the cry of alarm that denounces critical need for new antiviral drugs is extremely strong. For these reasons, a continuous systematic exploration of plant foods and their phytochemicals is necessary for the development of new antiviral agents capable of saving lives and improving their well-being.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (S.C.); (A.K.); (G.K.); (D.S.); (S.A.)
| | - Gabriele Rocchetti
- Department for Sustainable Food Process, University Cattolica del Sacro Cuore, 29122 Piacenza, Italy;
| | - Swati Chadha
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (S.C.); (A.K.); (G.K.); (D.S.); (S.A.)
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, Konya 42130, Turkey; (G.Z.); (K.I.S.); (G.A.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (S.C.); (A.K.); (G.K.); (D.S.); (S.A.)
| | - Vineet Mehta
- Department of Pharmacology, Government College of Pharmacy, Rohru, Distt. Shimla, Himachal Pradesh 171207, India;
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka 1213, Bangladesh;
- Pharmakon Neuroscience Research Network, Dhaka 1207, Bangladesh
| | - Gaurav Khullar
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (S.C.); (A.K.); (G.K.); (D.S.); (S.A.)
| | - Dhruv Setia
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (S.C.); (A.K.); (G.K.); (D.S.); (S.A.)
| | - Sandeep Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (S.C.); (A.K.); (G.K.); (D.S.); (S.A.)
| | - Kouadio Ibrahime Sinan
- Department of Biology, Faculty of Science, Selcuk University Campus, Konya 42130, Turkey; (G.Z.); (K.I.S.); (G.A.)
| | - Gunes Ak
- Department of Biology, Faculty of Science, Selcuk University Campus, Konya 42130, Turkey; (G.Z.); (K.I.S.); (G.A.)
| | - Predrag Putnik
- Department of Food Technology, University North, 48000 Koprivnica, Croatia;
| | - Monica Gallo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini, 5, 80131 Naples, Italy
| | - Domenico Montesano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
16
|
Ali SI, Sheikh WM, Rather MA, Venkatesalu V, Muzamil Bashir S, Nabi SU. Medicinal plants: Treasure for antiviral drug discovery. Phytother Res 2021; 35:3447-3483. [PMID: 33590931 PMCID: PMC8013762 DOI: 10.1002/ptr.7039] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 12/11/2022]
Abstract
The pandemic of viral diseases like novel coronavirus (2019-nCoV) prompted the scientific world to examine antiviral bioactive compounds rather than nucleic acid analogous, protease inhibitors, or other toxic synthetic molecules. The emerging viral infections significantly associated with 2019-nCoV have challenged humanity's survival. Further, there is a constant emergence of new resistant viral strains that demand novel antiviral agents with fewer side effects and cell toxicity. Despite significant progress made in immunization and regenerative medicine, numerous viruses still lack prophylactic vaccines and specific antiviral treatments that are so often influenced by the generation of viral escape mutants. Of importance, medicinal herbs offer a wide variety of therapeutic antiviral chemotypes that can inhibit viral replication by preventing viral adsorption, adhering to cell receptors, inhibiting virus penetration in the host cell, and competing for pathways of activation of intracellular signals. The present review will comprehensively summarize the promising antiviral activities of medicinal plants and their bioactive molecules. Furthermore, it will elucidate their mechanism of action and possible implications in the treatment/prevention of viral diseases even when their mechanism of action is not fully understood, which could serve as the base for the future development of novel or complementary antiviral treatments.
Collapse
Affiliation(s)
- Sofi Imtiyaz Ali
- Biochemistry & Molecular Biology Lab, Division of veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| | - Wajid Mohammad Sheikh
- Biochemistry & Molecular Biology Lab, Division of veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| | - Muzafar Ahmad Rather
- Biochemistry & Molecular Biology Lab, Division of veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| | | | - Showkeen Muzamil Bashir
- Biochemistry & Molecular Biology Lab, Division of veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| | - Showkat Ul Nabi
- Large Animal Diagnostic Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| |
Collapse
|
17
|
Fraga-Corral M, Otero P, Echave J, Garcia-Oliveira P, Carpena M, Jarboui A, Nuñez-Estevez B, Simal-Gandara J, Prieto MA. By-Products of Agri-Food Industry as Tannin-Rich Sources: A Review of Tannins' Biological Activities and Their Potential for Valorization. Foods 2021; 10:137. [PMID: 33440730 PMCID: PMC7827785 DOI: 10.3390/foods10010137] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/28/2020] [Accepted: 12/31/2020] [Indexed: 12/26/2022] Open
Abstract
During recent decades, consumers have been continuously moving towards the substitution of synthetic ingredients of the food industry by natural products, obtained from vegetal, animal or microbial sources. Additionally, a circular economy has been proposed as the most efficient production system since it allows for reducing and reutilizing different wastes. Current agriculture is responsible for producing high quantities of organic agricultural waste (e.g., discarded fruits and vegetables, peels, leaves, seeds or forestall residues), that usually ends up underutilized and accumulated, causing environmental problems. Interestingly, these agri-food by-products are potential sources of valuable bioactive molecules such as tannins. Tannins are phenolic compounds, secondary metabolites of plants widespread in terrestrial and aquatic natural environments. As they can be found in plenty of plants and herbs, they have been traditionally used for medicinal and other purposes, such as the leather industry. This fact is explained by the fact that they exert plenty of different biological activities and, thus, they entail a great potential to be used in the food, nutraceutical and pharmaceutical industry. Consequently, this review article is directed towards the description of the biological activities exerted by tannins as they could be further extracted from by-products of the agri-food industry to produce high-added-value products.
Collapse
Affiliation(s)
- María Fraga-Corral
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (J.E.); (P.G.-O.); (M.C.); (A.J.); (B.N.-E.)
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolonia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Paz Otero
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (J.E.); (P.G.-O.); (M.C.); (A.J.); (B.N.-E.)
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Veterinary, University of Santiago of Compostela, 27002 Lugo, Spain
| | - Javier Echave
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (J.E.); (P.G.-O.); (M.C.); (A.J.); (B.N.-E.)
| | - Paula Garcia-Oliveira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (J.E.); (P.G.-O.); (M.C.); (A.J.); (B.N.-E.)
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolonia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Maria Carpena
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (J.E.); (P.G.-O.); (M.C.); (A.J.); (B.N.-E.)
| | - Amira Jarboui
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (J.E.); (P.G.-O.); (M.C.); (A.J.); (B.N.-E.)
| | - Bernabé Nuñez-Estevez
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (J.E.); (P.G.-O.); (M.C.); (A.J.); (B.N.-E.)
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolonia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (J.E.); (P.G.-O.); (M.C.); (A.J.); (B.N.-E.)
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (J.E.); (P.G.-O.); (M.C.); (A.J.); (B.N.-E.)
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolonia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| |
Collapse
|
18
|
Melgarejo-Sánchez P, Núñez-Gómez D, Martínez-Nicolás JJ, Hernández F, Legua P, Melgarejo P. Pomegranate variety and pomegranate plant part, relevance from bioactive point of view: a review. BIORESOUR BIOPROCESS 2021; 8:2. [PMID: 38650225 PMCID: PMC10973758 DOI: 10.1186/s40643-020-00351-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/22/2020] [Indexed: 02/06/2023] Open
Abstract
Pomegranate (Punica granatum L.) belongs to the Punicaceae plant family. It is an important fruit due to its nutritional and medicinal properties. Pomegranates are widely distributed around the world and, therefore, have a broad genetic diversity, resulting in differences in their phytochemical composition. The scientific community has focused on the positive health effects of pomegranate as a whole, but the different varieties have rarely been compared according to their bioactive compounds and bioactivity. This review aims to provide a holistic overview of the current knowledge on the bioactivity of pomegranate trees, with an emphasis on differentiating both the varieties and the different plant parts. This review intends to provide a general and organized overview of the accumulated knowledge on pomegranates, the identification of the most bioactive varieties, their potential consumption pathways and seeks to provide knowledge on the present gaps to guide future research.
Collapse
Affiliation(s)
- Pablo Melgarejo-Sánchez
- Plant Production and Microbiology Department, Orihuela Polytechnical High School (EPSO), Miguel Hernandez University, Ctra. Beniel Km 3.2, 03312, Orihuela, Spain
| | - Dámaris Núñez-Gómez
- Plant Production and Microbiology Department, Orihuela Polytechnical High School (EPSO), Miguel Hernandez University, Ctra. Beniel Km 3.2, 03312, Orihuela, Spain.
| | - Juan J Martínez-Nicolás
- Plant Production and Microbiology Department, Orihuela Polytechnical High School (EPSO), Miguel Hernandez University, Ctra. Beniel Km 3.2, 03312, Orihuela, Spain
| | - Francisca Hernández
- Plant Production and Microbiology Department, Orihuela Polytechnical High School (EPSO), Miguel Hernandez University, Ctra. Beniel Km 3.2, 03312, Orihuela, Spain
| | - Pilar Legua
- Plant Production and Microbiology Department, Orihuela Polytechnical High School (EPSO), Miguel Hernandez University, Ctra. Beniel Km 3.2, 03312, Orihuela, Spain
| | - Pablo Melgarejo
- Plant Production and Microbiology Department, Orihuela Polytechnical High School (EPSO), Miguel Hernandez University, Ctra. Beniel Km 3.2, 03312, Orihuela, Spain
| |
Collapse
|
19
|
Jalali A, Kiafar M, Seddigh M, Zarshenas MM. Punica granatum as a Source of Natural Antioxidant and Antimicrobial Agent: A Comprehensive Review on Related Investigations. Curr Drug Discov Technol 2021; 18:207-224. [PMID: 32351184 DOI: 10.2174/1570163817666200430001822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/16/2020] [Accepted: 02/04/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The consumption of natural antioxidants is increasing due to the demand and tendency to natural foods. Punica granatum L. [Punicaceae] is a fruit with various bioactive ingredients. The effectiveness of this plant has been proved against various disorders such as hyperglycemia, hyperlipidemia, blood coagulation, infections, cancer, and dentistry. Among them, there are numerous researches on antimicrobial and antioxidant properties. Subsequently, the present study aimed to compile a review of those properties to outline this herb as a possible natural antioxidant and preservative. METHODS Synchronically, keywords "Punica granatum" with antimicrobial, or antibacterial, antifungal, antiviral, antioxidant and radical scavenging were searched through "Scopus" database up to 31st September 2019. Papers focusing on agriculture, genetics, chemistry, and environmental sciences were excluded, and also related papers were collected. RESULTS Among 201 papers focusing on related activities, 111 papers have dealt with antioxidant activities focusing based on DPPH assay, 59 with antibacterial, on both gram+ and gram- bacteria, 24 with antifungal effects, mostly on Aspergillus niger and Candida albicans, and 7 papers with antiviral activities. There were about 50 papers focusing on in-vivo antioxidant activities of this plant. CONCLUSION Taken together, botanical parts of P. granatum have possessed notable radical scavenging and antimicrobial activities that, with these properties, this plant can be introduced as a natural, safe source of preservative and antioxidant. Accordingly, P. granatum can be applied as excipient with the aforementioned properties in the pharmaceutical and food industries.
Collapse
Affiliation(s)
- Atefeh Jalali
- Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammadreza Kiafar
- Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masih Seddigh
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad M Zarshenas
- Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
20
|
Acquadro S, Civra A, Cagliero C, Marengo A, Rittà M, Francese R, Sanna C, Bertea C, Sgorbini B, Lembo D, Donalisio M, Rubiolo P. Punica granatum Leaf Ethanolic Extract and Ellagic Acid as Inhibitors of Zika Virus Infection. PLANTA MEDICA 2020; 86:1363-1374. [PMID: 32937663 DOI: 10.1055/a-1232-5705] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Zika virus, an arthropod-borne flavivirus, is an emerging healthcare threat worldwide. Zika virus is responsible for severe neurological effects, such as paralytic Guillain-Barrè syndrome, in adults, and also congenital malformations, especially microcephaly. No specific antiviral drugs and vaccines are currently available, and treatments are palliative, but medicinal plants show great potential as natural sources of anti-Zika phytochemicals. This study deals with the investigation of the composition, cytotoxicity, and anti-Zika activity of Punica granatum leaf ethanolic extract, fractions, and phytoconstituents. P. granatum leaves were collected from different areas in Italy and Greece in different seasons. Crude extracts were analyzed and fractionated, and the pure compounds were isolated. The phytochemical and biomolecular fingerprint of the pomegranate leaves was determined. The antiviral activities of the leaf extract, fractions, and compounds were investigated against the MR766 and HPF2013 Zika virus strains in vitro. Both the extract and its fractions were found to be active against Zika virus infection. Of the compounds isolated, ellagic acid showed particular anti-Zika activities, with EC50 values of 30.86 µM for MR766 and 46.23 µM for HPF2013. The mechanism of action was investigated using specific antiviral assays, and it was demonstrated that ellagic acid was primarily active as it prevented Zika virus infection and was able to significantly reduce Zika virus progeny production. Our data demonstrate the anti-Zika activity of pomegranate leaf extract and ellagic acid for the first time. These findings identify ellagic acid as a possible anti-Zika candidate compound that can be used for preventive and therapeutic interventions.
Collapse
Affiliation(s)
- Stefano Acquadro
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Andrea Civra
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Cecilia Cagliero
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Arianna Marengo
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Massimo Rittà
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Rachele Francese
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Cinzia Sanna
- Department of Environmental and Life Sciences University of Cagliari, Cagliari, Italy
| | - Cinzia Bertea
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Barbara Sgorbini
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - David Lembo
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Manuela Donalisio
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Patrizia Rubiolo
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| |
Collapse
|
21
|
Pomegranate: Nutraceutical with Promising Benefits on Human Health. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196915] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pomegranate is an old plant made up by flowers, roots, fruits and leaves, native to Central Asia and principally cultivated in the Mediterranean and California (although now widespread almost all over the globe). The current use of this precious plant regards not only the exteriority of the fruit (employed also for ornamental purpose) but especially the nutritional and, still potential, health benefits that come out from the various parts composing this one (carpellary membranes, arils, seeds and bark). Indeed, the phytochemical composition of the fruit abounds in compounds (flavonoids, ellagitannins, proanthocyanidins, mineral salts, vitamins, lipids, organic acids) presenting a significant biological and nutraceutical value. For these reasons, pomegranate interest is increased over the years as the object of study for many research groups, particularly in the pharmaceutical sector. Specifically, in-depth studies of its biological and functional properties and the research of new formulations could be applied to a wide spectrum of diseases including neoplastic, cardiovascular, viral, inflammatory, metabolic, microbial, intestinal, reproductive and skin diseases. In this review, considering the increasing scientific and commercial interest of nutraceuticals, we reported an update of the investigations concerning the health-promoting properties of pomegranate and its bioactive compounds against principal human pathologies.
Collapse
|
22
|
Bhuiyan FR, Howlader S, Raihan T, Hasan M. Plants Metabolites: Possibility of Natural Therapeutics Against the COVID-19 Pandemic. Front Med (Lausanne) 2020; 7:444. [PMID: 32850918 PMCID: PMC7427128 DOI: 10.3389/fmed.2020.00444] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022] Open
Abstract
COVID-19, a disease induced by SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus-2), has been the cause of a worldwide pandemic. Though extensive research works have been reported in recent days on the development of effective therapeutics against this global health crisis, there is still no approved therapy against SARS-CoV-2. In the present study, plant-synthesized secondary metabolites (PSMs) have been prioritized to make a review focusing on the efficacy of plant-originated therapeutics for the treatment of COVID-19. Plant metabolites are a source of countless medicinal compounds, while the diversity of multidimensional chemical structures has made them superior to treat serious diseases. Some have already been reported as promising alternative medicines and lead compounds for drug repurposing and discovery. The versatility of secondary metabolites may provide novel antibiotics to tackle MDR (Multi-Drug Resistant) microbes too. This review attempted to find out plant metabolites that have the therapeutic potential to treat a wide range of viral pathogens. The study includes the search of remedies belonging to plant families, susceptible viral candidates, antiviral assays, and the mode of therapeutic action; this attempt resulted in the collection of an enormous number of natural therapeutics that might be suggested for the treatment of COVID-19. About 219 plants from 83 families were found to have antiviral activity. Among them, 149 plants from 71 families were screened for the identification of the major plant secondary metabolites (PSMs) that might be effective for this pandemic. Our investigation revealed that the proposed plant metabolites can serve as potential anti- SARS-CoV-2 lead molecules for further optimization and drug development processes to combat COVID-19 and future pandemics caused by viruses. This review will stimulate further analysis by the scientific community and boost antiviral plant-based research followed by novel drug designing.
Collapse
Affiliation(s)
- Farhana Rumzum Bhuiyan
- Department of Botany, University of Chittagong, Chittagong, Bangladesh
- Laboratory of Biotechnology and Molecular Biology, Department of Botany, University of Chittagong, Chittagong, Bangladesh
| | - Sabbir Howlader
- Department of Applied Chemistry and Chemical Engineering, University of Chittagong, Chittagong, Bangladesh
| | - Topu Raihan
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Mahmudul Hasan
- Department of Pharmaceuticals and Industrial Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| |
Collapse
|
23
|
Sitarek P, Merecz-Sadowska A, Kowalczyk T, Wieczfinska J, Zajdel R, Śliwiński T. Potential Synergistic Action of Bioactive Compounds from Plant Extracts against Skin Infecting Microorganisms. Int J Mol Sci 2020; 21:ijms21145105. [PMID: 32707732 PMCID: PMC7403983 DOI: 10.3390/ijms21145105] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 01/16/2023] Open
Abstract
The skin is an important organ that acts as a physical barrier to the outer environment. It is rich in immune cells such as keratinocytes, Langerhans cells, mast cells, and T cells, which provide the first line of defense mechanisms against numerous pathogens by activating both the innate and adaptive response. Cutaneous immunological processes may be stimulated or suppressed by numerous plant extracts via their immunomodulatory properties. Several plants are rich in bioactive molecules; many of these exert antimicrobial, antiviral, and antifungal effects. The present study describes the impact of plant extracts on the modulation of skin immunity, and their antimicrobial effects against selected skin invaders. Plant products remain valuable counterparts to modern pharmaceuticals and may be used to alleviate numerous skin disorders, including infected wounds, herpes, and tineas.
Collapse
Affiliation(s)
- Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland
- Correspondence:
| | - Anna Merecz-Sadowska
- Department of Economic Informatics, University of Lodz, 90-214 Lodz, Poland; (A.M.-S.); (R.Z.)
| | - Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland;
| | - Joanna Wieczfinska
- Department of Immunopathology, Medical University of Lodz, 90-752 Lodz, Poland;
| | - Radosław Zajdel
- Department of Economic Informatics, University of Lodz, 90-214 Lodz, Poland; (A.M.-S.); (R.Z.)
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| |
Collapse
|
24
|
Pirzadeh M, Caporaso N, Rauf A, Shariati MA, Yessimbekov Z, Khan MU, Imran M, Mubarak MS. Pomegranate as a source of bioactive constituents: a review on their characterization, properties and applications. Crit Rev Food Sci Nutr 2020; 61:982-999. [PMID: 32314615 DOI: 10.1080/10408398.2020.1749825] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increasing awareness about the use of compounds obtained from natural sources exerting health-beneficial properties, including antimicrobial and antioxidant effects, led to increased number of research papers focusing on the study of functional properties of target compounds to be used as functional foods or in preventive medicine. Pomegranate has shown positive health properties due to the presence of bioactive constituents such as polyphenols, tannins, and anthocyanins. Punicalagin is the major antioxidant, abundantly found in pomegranate's peel. Research has shown that pomegranate polyphenols not only have a strong antioxidant capacity but they also inhibit the growth of pathogenic bacteria like V. cholera, P. aeruginosa and S. aureus, B. cereus, E. coli, and S. virulence factor, and inhibits fungi such as A. Ochraceus, and P. citrinum. Compounds of natural origin inhibit the growth of various pathogens by extending the shelf life of foodstuffs and assuring their safety. Therefore, the need to find compounds to be used in combination with antibiotics or as new antimicrobial sources, such as plant extracts. On the basis of the above discussion, this review focuses on the health benefits of pomegranate, by summarizing the current body of research focusing on pomegranate bioactive constituents and their therapeutic potential against some pathogenic microbes.
Collapse
Affiliation(s)
- Maryam Pirzadeh
- Department of Food Science and Technology, Faculty of Agriculture, Sarvestan Branch, Islamic Azad University, Sarvestan, Iran
| | - Nicola Caporaso
- Department of Food Science, School of Biosciences, University of Nottingham, Leicestershire, UK
- Department of Agricultural Sciences, University of Naples "Federico II", Portici, NA, Italy
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Mohammad Ali Shariati
- Laboratory of Biocontrol and Antimicrobial Resistance, Orel State, University Named After I.S. Turgenev, Orel, Russia
- Department of Technology of Food Products, K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), Moscow, Russian Federation
- Kazakh Research Institute of Processing and Food Industry (Semey Branch), Semey, Kazakhstan
| | - Zhanibek Yessimbekov
- Food Engineering Department, Shakarim State University of Semey, Semey, Kazakhstan
| | - Muhammad Usman Khan
- Bioproducts Sciences and Engineering Laboratory (BSEL), Washington State University, Richland, WA, USA
- Department of Energy Systems Engineering, Faculty of Agricultural Engineering and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | | |
Collapse
|
25
|
Motikar PD, More PR, Arya SS. A novel, green environment-friendly cloud point extraction of polyphenols from pomegranate peels: a comparative assessment with ultrasound and microwave-assisted extraction. SEP SCI TECHNOL 2020. [DOI: 10.1080/01496395.2020.1746969] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Pooja D. Motikar
- Bioprocess Technology Department, Institute of Chemical Technology, Mumbai, India
| | - Pavankumar R. More
- Food Engineering and Technology Department, Institute of Chemical Technology, Mumbai, India
| | - Shalini S. Arya
- Food Engineering and Technology Department, Institute of Chemical Technology, Mumbai, India
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, Sao Paulo, Brazil
| |
Collapse
|
26
|
Monteiro AFM, de Oliveira Viana J, Muratov E, Scotti MT, Scotti L. In Silico Studies against Viral Sexually Transmitted Diseases. Curr Protein Pept Sci 2020; 20:1135-1150. [PMID: 30854957 DOI: 10.2174/1389203720666190311142747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 01/02/2023]
Abstract
Sexually Transmitted Diseases (STDs) refer to a variety of clinical syndromes and infections caused by pathogens that can be acquired and transmitted through sexual activity. Among STDs widely reported in the literature, viral sexual diseases have been increasing in a number of cases globally. This emphasizes the need for prevention and treatment. Among the methods widely used in drug planning are Computer-Aided Drug Design (CADD) studies and molecular docking which have the objective of investigating molecular interactions between two molecules to better understand the three -dimensional structural characteristics of the compounds. This review will discuss molecular docking studies applied to viral STDs, such as Ebola virus, Herpes virus and HIV, and reveal promising new drug candidates with high levels of specificity to their respective targets.
Collapse
Affiliation(s)
- Alex F M Monteiro
- Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, Joao Pessoa-PB, Brazil
| | - Jessika de Oliveira Viana
- Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, Joao Pessoa-PB, Brazil
| | - Engene Muratov
- Laboratory for Molecular Modeling, Division of Medicinal Chemistry and Natural Products, Eshelman School of Pharmacy, University of North Carolina, Beard Hall 301, CB#7568, Chapel Hill, NC, 27599, United States
| | - Marcus T Scotti
- Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, Joao Pessoa-PB, Brazil
| | - Luciana Scotti
- Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, Joao Pessoa-PB, Brazil.,Teaching and Research Management - University Hospital, Federal University of Paraíba, Campus I, 58051-900, João Pessoa-PB, Brazil
| |
Collapse
|
27
|
Abstract
Fruits come in a wide variety of colors, shapes, and flavors. This chapter will cover selected fruits that are known to be healthy and highly nutritious. These fruits were chosen due to their common usage and availability. Since it is not possible to cover all health benefits or essential nutrients and important phytochemicals of the fruit composition, this chapter will focus on the key valuable constituents and their potential health effects.
Collapse
Affiliation(s)
- Sawsan G Mohammed
- Qatar Research Leadership Program (QRLP), Qatar Foundation, Doha, Qatar.
| | - M Walid Qoronfleh
- Research & Policy Department, World Innovation Summit for Health (WISH), Qatar Foundation, Doha, Qatar.
| |
Collapse
|
28
|
Denaro M, Smeriglio A, Barreca D, De Francesco C, Occhiuto C, Milano G, Trombetta D. Antiviral activity of plants and their isolated bioactive compounds: An update. Phytother Res 2019; 34:742-768. [DOI: 10.1002/ptr.6575] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 10/13/2019] [Accepted: 11/14/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Marcella Denaro
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of Messina Messina Italy
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of Messina Messina Italy
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of Messina Messina Italy
| | - Clara De Francesco
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of Messina Messina Italy
| | - Cristina Occhiuto
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of Messina Messina Italy
| | - Giada Milano
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of Messina Messina Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of Messina Messina Italy
| |
Collapse
|
29
|
Anti-HCV protease potential of endophytic fungi and cytotoxic activity. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|