1
|
Hamanishi T, Koga H, Nishimura T, Kobayashi K. Royal Jelly Induces Thin Hair Shaft Formation by Suppressing Proliferation of Hair Follicle Stem Cells in Mice. ACS OMEGA 2025; 10:17228-17236. [PMID: 40352556 PMCID: PMC12059908 DOI: 10.1021/acsomega.4c09123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 04/07/2025] [Accepted: 04/16/2025] [Indexed: 05/14/2025]
Abstract
Royal jelly (RJ), a honeybee product, is used as a cosmetic and food ingredient to improve skin condition. However, the influences of RJ on hair growth remain unclear. In this study, we investigated whether RJ regulates hair follicle development, hair shaft formation, and proliferation of hair follicle stem cells (HFSCs) using a gentle anagen induction model by shaving the back skin and a forced anagen induction model by depilating the back skin in mice. The results showed that topical application of RJ on depilated skin induced thinning of the hair shaft and smaller hair bulb formation during the anagen phase. In addition, RJ suppressed the proliferation of CK15-positive HFSCs in hair follicles at the early and middle anagen stages of shaved back skin. RJ suppressed the proliferation of cultured HFSCs in vitro. These findings suggested that RJ induces the formation of thin hair shafts by suppressing the HFSC proliferation.
Collapse
Affiliation(s)
- Takumi Hamanishi
- Laboratory of Cell and Tissue
Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589 Sapporo, Japan
| | - Haruta Koga
- Laboratory of Cell and Tissue
Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589 Sapporo, Japan
| | - Takanori Nishimura
- Laboratory of Cell and Tissue
Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589 Sapporo, Japan
| | - Ken Kobayashi
- Laboratory of Cell and Tissue
Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589 Sapporo, Japan
| |
Collapse
|
2
|
Yu H, Chen D, Lu W, Zhang C, Wang H, Peng Z, Jiang H, Xiao C. Characterization of polyvinyl alcohol/chitosan nanofibers loaded with royal jelly by blending electrospinning for potential wound dressings. Int J Biol Macromol 2025; 307:141977. [PMID: 40086322 DOI: 10.1016/j.ijbiomac.2025.141977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/03/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
This study aimed to fabricate a polyvinyl alcohol/chitosan (PVA/CS) nanofiber loaded with royal jelly (RJ) using blending electrospinning for potential wound dressings. The different PVA/CS ratios in electrospun nanofibers resulted in continuous nanofibers with an average diameter ranging from 219 to 299 nm. The FTIR spectra indicated that RJ was successfully incorporated into the nanofibers through hydrogen bonding with PVA/CS, which was further confirmed by the subsequent TGA experiments. Meanwhile, the RJ/PVA/CS nanofibers exhibited excellent water vapor permeability and hydrophilic properties. The encapsulation efficiency of RJ reached the maximum value of 89.00 %, while the cumulative release rate was up to 84.87 %. Furthermore, the RJ/PVA/CS nanofibers could inhibit the growth of Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli). The optimal PVA/CS ratio was determined to be 7:3, achieving inhibition rates of 97.83 % for S. aureus and 72.08 % for E. coli, demonstrating an excellent antibacterial performance. Therefore, this study successfully fabricated a wound dressing nanofiber with potential antibacterial efficacy.
Collapse
Affiliation(s)
- Hongying Yu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Di Chen
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wenjing Lu
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Cen Zhang
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Haiyan Wang
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhengju Peng
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Han Jiang
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China.
| | - Chaogeng Xiao
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
3
|
Topan C, Bilge S, Demirbas AE, Ağyüz G, Kara A. Royal Jelly as a Therapeutic Intervention in Medication-Related Osteonecrosis of the Jaw (MRONJ): An Animal Model Study. J Oral Pathol Med 2025; 54:232-240. [PMID: 40083273 DOI: 10.1111/jop.13627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 12/01/2024] [Accepted: 01/12/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND To evaluate the efficacy of royal jelly in managing experimentally created MRONJ model in rats. METHODS Sixty rats were randomly allocated into control, bisphosphonate (BP), royal jelly (RJ), Treatment, and Preventive groups. A defect was created in the alveolar socket following tooth extraction in the mandible as a surgical procedure in all groups. Before surgery, RJ was administered orally to the RJ group. Zoledronic acid was administered intraperitoneally to induce osteonecrosis in BP, treatment, and preventive group rats. Treatment group rats received RJ orally post-surgery, while preventive group rats received it pre-surgery. Histological and radiographic evaluations were performed post-study completion. RESULTS Micro-CT examinations demonstrated significantly improved values in RJ-received groups (RJ, treatment, and preventive) compared to BP and control groups (p < 0.001). Immunohistochemical analysis revealed higher mean IL-1β and TNF-α levels in the BP group. The highest IL-1β difference was between BP and preventive groups (p < 0.001). TNF-α expression levels in all RJ-received groups were comparatively close to those of the control group. CONCLUSION RJ enhances soft and hard tissue healing in MRONJ rat models, suggesting its potential as a therapeutic or preventive agent in osteonecrosis management.
Collapse
Affiliation(s)
- Cihan Topan
- Department of Oral and Maxillofacial Surgery, Erciyes University Faculty of Dentistry, Kayseri, Turkey
| | - Suheyb Bilge
- Department of Oral and Maxillofacial Surgery, Erciyes University Faculty of Dentistry, Kayseri, Turkey
| | - Ahmet Emin Demirbas
- Department of Oral and Maxillofacial Surgery, Erciyes University Faculty of Dentistry, Kayseri, Turkey
| | - Gürkan Ağyüz
- Department of Oral and Maxillofacial Surgery, Erciyes University Faculty of Dentistry, Kayseri, Turkey
| | - Ayça Kara
- Genom and Stem Cell Centre, Erciyes University, Kayseri, Turkey
| |
Collapse
|
4
|
Askari R, Rabani N, Marefati H, Azarnive MS, Pusceddu M, Migliaccio GM. Aerobic-Resistance Training with Royal Jelly Supplementation Has a Synergistic Effect on Paraoxonase 1 Changes and Liver Function in Women with MASLD. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:349. [PMID: 40005465 PMCID: PMC11857316 DOI: 10.3390/medicina61020349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025]
Abstract
Background and Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a clinical pathological syndrome characterized by steatosis and fat accumulation in liver parenchymal cells in patients without a history of excessive alcohol drinking. Currently, there is no definitive treatment for MASLD, and its prevalence increases with age and obesity, and after menopause. Among the ways to treat it, we can mention regular sports exercises and the use of natural supplements. Therefore, the aim of this research is to investigate and compare the effects of aerobic-resistance training with royal jelly supplementation on changes in paraoxonase 1, oxidized LDL, liver function, and lipid profile in postmenopausal women with Dysfunction-Associated Steatotic Liver Disease. Materials and Methods: This semi-experimental study involved 23 women with Dysfunction-Associated Steatotic Liver Disease with an average weight (71.34 ± 11.63 kg), age (48.54 ± 3.88 years), and body mass index (27.63 ± 4.20 kg/m2). They were randomly divided into two groups: exercise + supplement (n = 12) and exercise + placebo (n = 11). Both groups performed eight-station resistance exercises (8-12 repetitions in 2-4 sets) for 8 weeks, with three sessions per week (for 35-40 min, from 10-15 RPE), and then, for 10-15 min of active rest, they performed aerobic exercises with an intensity of 40-85% of the target heart rate, in two-minute intervals with 45 s of active rest. Royal jelly supplement (500 mg on training days, before each training session) was consumed. Blood sampling was done before and 48 h after the last training session. Statistical analysis was performed using a variance test with repeated measures (two groups × two stages of pre-test-post-test) in SPSS software (Version 26) with a significance level of p < 0.05. Results: The results of the statistical analysis show that the effects of eight weeks of exercise + supplement and exercise + placebo on PON1, oxLDL, lipid profiles (HDL, LDL, TC, and TG), and liver enzymes (ALT, AST) in women with non-alcoholic fatty liver showed a significant difference (p < 0.05). The results show a significant increase in PON1 (p = 0.008) and HDL (p = 0.005) in the exercise + supplement group compared to the exercise + placebo group. But significant decreases in oxLDL (p = 0.031), TC (p = 0.045), TG (p = 0.013), LDL (p = 0.027), ALT (p = 0.015) and AST (p = 0.009) were observed in the exercise + supplement group compared to the exercise + placebo group (<0.05). The results show a significant increase in PON1 (p = 0.008) and HDL (p = 0.005) in the exercise + supplement group compared to the exercise + placebo group. However, significant decreases in oxLDL (p = 0.031), TC (p = 0.045), TG (p = 0.013), LDL (p = 0.027), ALT (p = 0.015), and AST (p = 0.009) was observed in the exercise + supplement group compared to the exercise + placebo group. Conclusions: Based on the results, it can be concluded that aerobic-resistance exercises with the addition of royal jelly can probably be an efficient and recommended strategy to minimize the harmful effects of Dysfunction-Associated Steatotic Liver Disease by affecting the activity of liver enzymes, paraoxonase 1, LDL oxidation, and lipid profile. Although exercise alone also yielded favorable results, according to the findings of this research, it can be said that exercise, combined with the use of royal jelly supplements, may have more positive effects on reducing liver complications and improving body function. However, in order to obtain more accurate scientific evidence, it is necessary to investigate more doses and timing of royal jelly in future studies.
Collapse
Affiliation(s)
- Roya Askari
- Department of Exercise Physiology, Faculty of Sports Sciences, Hakim Sabzevari University, Sabzevar 9617976487, Iran;
| | - Nazanin Rabani
- Department of Sports Sciences, Faculty of Sports Sciences, Hakim Sabzevari University, Sabzevar 9617976487, Iran;
| | - Hamid Marefati
- Department of Exercise Physiology, Faculty of Sports Sciences, Hakim Sabzevari University, Sabzevar 9617976487, Iran;
| | - Marzie Sadat Azarnive
- Department of Sports Sciences, Faculty of Literature and Humanities, Zabol University, Zabol 9861615881, Iran;
| | - Matteo Pusceddu
- Department of Human Sciences and Promotion of Quality of Life, San Raffaele Open University, 00166 Rome, Italy;
| | - Gian Mario Migliaccio
- Department of Human Sciences and Promotion of Quality of Life, San Raffaele Open University, 00166 Rome, Italy;
- Athlete Physiology, Psychology and Nutrition Unit, Maxima Performa, 20126 Milan, Italy
| |
Collapse
|
5
|
Bava R, Puteo C, Lombardi R, Garcea G, Lupia C, Spano A, Liguori G, Palma E, Britti D, Castagna F. Antimicrobial Properties of Hive Products and Their Potential Applications in Human and Veterinary Medicine. Antibiotics (Basel) 2025; 14:172. [PMID: 40001416 PMCID: PMC11851452 DOI: 10.3390/antibiotics14020172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/30/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Hive products, encompassing honey, propolis, bee venom, royal jelly, and pollen, are recognized for their antimicrobial and therapeutic properties. This review examines their chemical composition, explores their mechanisms of action, and discusses their potential applications in both human and veterinary medicine, particularly in addressing the challenge of antimicrobial resistance. This study utilized a comprehensive literature search strategy, gathering data from Google Scholar, MEDLINE PubMed, SciELO, and SCOPUS databases. Relevant search terms were employed to ensure a thorough retrieval of the pertinent literature. Honey, rich in bioactive compounds such as hydrogen peroxide and methylglyoxal, effectively disrupts biofilms and combats multi-drug-resistant pathogens, showing promise in treating a range of infections. Propolis, with its flavonoids and phenolic acids, demonstrates synergistic effects when used in conjunction with antibiotics. Bee venom, particularly its component melittin, exhibits antibacterial and immunomodulatory properties, although further research is needed to address toxicity concerns. Pollen and royal jelly demonstrate broad-spectrum antimicrobial activity, which is particularly relevant to animal health. Existing pre-clinical and clinical data support the therapeutic potential of these hive products. Hive products represent a vast and largely untapped natural resource for combating antimicrobial resistance and developing sustainable therapies, particularly in the field of veterinary medicine. However, challenges remain due to the inherent variability in their composition and the lack of standardized protocols for their preparation and application. Further research is essential to fully elucidate their mechanisms of action, optimize formulations for enhanced efficacy, and establish standardized protocols to ensure their safe and effective clinical use.
Collapse
Affiliation(s)
- Roberto Bava
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88054 Catanzaro, Italy; (R.B.); (E.P.); (D.B.)
| | - Claudio Puteo
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy;
| | - Renato Lombardi
- Local Health Autorithy (ASL), 71121 Foggia, Italy; (R.L.); (G.L.)
| | - Giuseppe Garcea
- Catanzaro Veterinary Centre (CeVeCa), 88100 Catanzaro, Italy;
| | - Carmine Lupia
- Mediterranean Ethnobotanical Conservatory, 88054 Catanzaro, Italy;
| | - Angelica Spano
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, 70121 Bari, Italy;
| | - Giovanna Liguori
- Local Health Autorithy (ASL), 71121 Foggia, Italy; (R.L.); (G.L.)
| | - Ernesto Palma
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88054 Catanzaro, Italy; (R.B.); (E.P.); (D.B.)
| | - Domenico Britti
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88054 Catanzaro, Italy; (R.B.); (E.P.); (D.B.)
| | - Fabio Castagna
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88054 Catanzaro, Italy; (R.B.); (E.P.); (D.B.)
| |
Collapse
|
6
|
Basharat S, Zhai L, Jiang F, Asjad T, Khan A, Liao X. Screening and Comparative Genomics of Probiotic Lactic Acid Bacteria from Bee Bread of Apis Cerana: Influence of Stevia and Stevioside on Bacterial Cell Growth and the Potential of Fermented Stevia as an Antidiabetic, Antioxidant, and Antifungal Agent. Microorganisms 2025; 13:216. [PMID: 40005583 PMCID: PMC11857352 DOI: 10.3390/microorganisms13020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 02/27/2025] Open
Abstract
The purpose of this research is to identify and characterize lactic acid bacteria (LAB) species in bee bread produced by honey bees (Apis Cerana) in the east mountain area of Suzhou, China. We isolated three strains, Apilactobacillus kunkeei (S1), Lactiplantibacillus plantarum (S2), and Lacticaseibacillus pentosus (S3), with S2 producing the highest amount of lactic acid. Phylogenetic analysis indicated that these isolates, along with the type strain, formed a distinct sub-cluster within the LAB group. The strains exhibited non-hemolytic activity, lacked functional virulence factors, demonstrated high acid and bile tolerance, strong adhesion to intestinal cells, and antimicrobial activity against pathogens, collectively indicating their safety and high probiotic potential for therapeutic applications. Our studies demonstrated that S2 and S3 grew well in the presence of stevia leaf powder and steviosides, while S1 showed reduced growth and inhibitory effects. Importantly, the stevia-fermented strains exhibited strong probiotic potential along with significant antidiabetic, antioxidant, and antifungal properties in vitro. These findings highlight their potential applications in the food, feed, and pharmaceutical industries. Future research should focus on in vivo experiments to validate these results and evaluate compatibility among the strains before their application in functional foods.
Collapse
Affiliation(s)
- Samra Basharat
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (S.B.); (F.J.); (T.A.); (A.K.)
| | - Lixin Zhai
- Henan Key Laboratory of Biomarker Based Rapid-Detection Technology for Food Safety, Institute of Molecular Detection Technology and Equipment, Xuchang University, Xuchang 461000, China;
| | - Fuyao Jiang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (S.B.); (F.J.); (T.A.); (A.K.)
| | - Tanzila Asjad
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (S.B.); (F.J.); (T.A.); (A.K.)
| | - Adil Khan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (S.B.); (F.J.); (T.A.); (A.K.)
| | - Xiangru Liao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (S.B.); (F.J.); (T.A.); (A.K.)
| |
Collapse
|
7
|
Alu'datt MH, Al-U'datt D, Rababah T, Gammoh S, Alrosan M, Bani-Melhem K, Al-Widyan Y, Kubow S, AbuJalban D, Al Khateeb W, Abubaker M. Recent research directions on functional royal jelly: highlights prospects in food, nutraceutical, and pharmacological industries. Crit Rev Food Sci Nutr 2024:1-14. [PMID: 39440352 DOI: 10.1080/10408398.2024.2418892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The food and pharmaceutical industries have utilized royal jelly, an alternative medicinal food, as a natural pharmaceutical product since ancient times. Royal jelly has a unique remarkable composition containing lipids, proteins, carbohydrates, vitamins, minerals, hormones, and phenolic compounds. The rapidly expanding functional food market has coincided with the increasing consumer demand for royal jelly. Over the past two decades, royal jelly, a rich source of certain bioactive components, has been used by humans as a functional and nutritious food due to recent studies of the effect of royal jelly in underlying pathogenic processes in a variety of animal models. Scientific evidence has accumulated supporting a wide variety of health-promoting effects from the intake of royal jelly that supports cardiovascular health, immune and antioxidant function, wound healing, blood lipid, and glucose control in addition to antibacterial and antihypertensive effects. The main bioactive ingredients are Major Royal Jelly Proteins (MRJPs), essential oils, fatty acids, peptides, and phenolics, which are thought to have a significant role in the development of honeybee queens. The health-endorsing qualities of royal jelly make it a significant functional ingredient in the food, and cosmetic industry. Apisin is one of the main proteins in royal jelly that has antibacterial properties. Other bioactive ingredients of royal jelly that have multifunctional health-promoting properties include defensin-1, royalisin, apisimin, apidaecin, jelleins, royalactin and 10-hydroxy-2-decenoic acid (10HDA) in epigenetic diseases. This review highlights the important role that royal jelly plays as an agent in various fields of medicine, paying special attention to its biological features. Additionally, we discuss royal jelly's composition as a possible therapeutic for vital natural sources of bioactive substances.
Collapse
Affiliation(s)
- Muhammad H Alu'datt
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
- Department of Food Science and Nutrition, College of Life Sciences, Kuwait University, Safat, Kuwait
| | - Doa'a Al-U'datt
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Taha Rababah
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Sana Gammoh
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammad Alrosan
- Department of Food Science and Nutrition, Faculty of Agriculture, Jerash University, Jerash, Jordan
- QU Health, College of Health Sciences, Qatar University, Doha, Qatar
- Applied Science Research Center, Applied Science Private University, Amman, Jordan
| | - Khalid Bani-Melhem
- Water Technology Unit (WTU), Center for Advanced Materials (CAM), Qatar University, Doha, Qatar
| | - Yasmeen Al-Widyan
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Stan Kubow
- School of Dietetics and Human Nutrition, McGill University, Montreal, Quebec, Canada
| | - Dana AbuJalban
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Wesam Al Khateeb
- Department of Biological Sciences, Yarmouk University, Irbid, Jordan
| | - Mais Abubaker
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
8
|
Kumar R, Thakur A, Kumar S, Hajam YA. Royal jelly a promising therapeutic intervention and functional food supplement: A systematic review. Heliyon 2024; 10:e37138. [PMID: 39296128 PMCID: PMC11408027 DOI: 10.1016/j.heliyon.2024.e37138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
Royal jelly (RJ), a secretion produced by honeybees, has garnered significant interest for its potential as a therapeutic intervention and functional food supplement. This systematic review aims to synthesize current research on the health benefits, bioactive components, and mechanisms of action of RJ. Comprehensive literature searches were conducted across multiple databases, including PubMed, Scopus, and Web of Science, focusing on studies published from 2000 to 2024 (April). Findings indicate that RJ exhibits a wide range of pharmacological activities, including anti-inflammatory, antioxidant, antimicrobial, and anti-aging effects. Beneficial biological properties of RJ might be due to the presence of flavonoids proteins, peptides, fatty acids. Both preclinical and clinical studies have reported that RJ improves the immune function such as wound healing, and also decreases the severity of chronic diseases including diabetes and cardiovascular disorders. The molecular mechanisms underlying these effects involve modulation of signalling pathways such as NF-κB, MAPK, and AMPK. Despite promising results, the review identifies several gaps in the current knowledge, including the need for standardized dosing regimens and long-term safety assessments. Furthermore, variations in RJ composition due to geographic and botanical factors necessitate more rigorous quality control measures. This review underscores the potential of RJ as a multifunctional therapeutic agent and highlights the necessity for further well designed studies to fully elucidate its health benefits and optimize its use as a functional food supplement.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department Biosciences, Himachal University, Shimla, Himachal Pradesh-171005, India
| | - Ankita Thakur
- Department Biosciences, Himachal University, Shimla, Himachal Pradesh-171005, India
| | - Suresh Kumar
- Department Biosciences, Himachal University, Shimla, Himachal Pradesh-171005, India
| | - Younis Ahmad Hajam
- Department of Life Sciences and Allied Health Sciences, Sant Baba Bhag Singh University, Jalandhar, Punjab -144030, India
| |
Collapse
|
9
|
Xia Z, Li Y, Liu J, Chen Y, Liu C, Hao Y. CRP and IHF act as host regulators in Royal Jelly's antibacterial activity. Sci Rep 2024; 14:19350. [PMID: 39169111 PMCID: PMC11339446 DOI: 10.1038/s41598-024-70164-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024] Open
Abstract
Royal Jelly (RJ) is a natural substance produced by honeybees, serving not only as nutrition for bee brood and queens but also as a functional food due to its health-promoting properties. Despite its well-known broad-spectrum antibacterial activity, the precise molecular mechanism underlying its antibacterial action has remained elusive. In this study, we investigated the impact of RJ on the bacteria model MG1655 at its half-maximal inhibitory concentration, employing LC-MS/MS to analyze proteomic changes. The differentially expressed proteins were found to primarily contribute to the suppression of gene expression processes, specifically transcription and translation, disrupting nutrition and energy metabolism, and inducing oxidative stress. Notably, RJ treatment led to a marked inhibition of superoxide dismutase and catalase activities, resulting in heightened oxidative damage and lipid peroxidation. Furthermore, through a protein-protein interaction network analysis using the STRING database, we identified CRP and IHF as crucial host regulators responsive to RJ. These regulators were found to play a pivotal role in suppressing essential hub genes associated with energy production and antioxidant capabilities. Our findings significantly contribute to the understanding of RJ's antibacterial mechanism, highlighting its potential as a natural alternative to conventional antibiotics. The identification of CRP and IHF as central players highlights the intricate regulatory networks involved in RJ's action, offering new targets for developing innovative antimicrobial strategies.
Collapse
Affiliation(s)
- Zhenyu Xia
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Yunchang Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Jinhao Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yanping Chen
- U.S. Department of Agriculture -Agricultural Research Service (USDA-ARS) Bee Research Laboratory, Beltsville, MD, 20705, USA
| | - Chenguang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yue Hao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China.
| |
Collapse
|
10
|
Ghosh S, Jang H, Sun S, Jung C. Nutrient Composition and Quality Assessment of Royal Jelly Samples Relative to Feed Supplements. Foods 2024; 13:1942. [PMID: 38928885 PMCID: PMC11203284 DOI: 10.3390/foods13121942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Royal jelly is a substance secreted by the hypopharyngeal and mandibular glands of nurse honey bees, serving as crucial nutritional source for young larvae, queen honey bees, and also valuable product for humans. In this study, the effect of the feed supplements on the nutritional composition and qualities of royal jelly was investigated. Two types of royal jelly samples were acquired: one from honey bees fed with sugar syrup as a feed supplement and the other from honey bees fed with honey. The production, harvesting, and storage of all royal jelly samples followed standard procedures. Parameters for quality assessment and nutritional value, including stable carbon isotopic ratio, moisture content, 10-hydroxy-2-decenoic acid (10-HDA) level, carbohydrate composition, amino acid composition, and mineral contents, were analyzed. The results revealed that despite variability in moisture content and carbohydrate composition, fructose was lower (2.6 and 4.1 g/100 g as is for sugar-fed and honey-fed royal jelly, respectively) and sucrose was higher (7.5 and 2.7 g/100 g as is for sugar-fed and honey-fed royal jelly, respectively) in the sugar-fed group. The stable isotope ratio (-16.4608‱ for sugar-fed and -21.9304‱ for honey-fed royal jelly) clearly distinguished the two groups. 10-HDA, amino acid composition, and total protein levels were not significantly different. Certain minerals, such as potassium, iron, magnesium, manganese, and phosphorus were higher in the honey-fed group. Hierarchical analysis based on moisture, sugar composition, 10-HDA, and stable carbon isotopes categorized the samples into two distinct groups. This study demonstrated that the feed source could affect the nutritional quality of royal jelly.
Collapse
Affiliation(s)
- Sampat Ghosh
- Agriculture Science and Technology Research Institute, Andong National University, Andong 36729, Gyeongsangbuk do, Republic of Korea;
| | - Hyeonjeong Jang
- Department of Plant Medicals, Andong National University, Andong 36729, Gyeongsangbuk do, Republic of Korea; (H.J.); (S.S.)
| | - Sukjun Sun
- Department of Plant Medicals, Andong National University, Andong 36729, Gyeongsangbuk do, Republic of Korea; (H.J.); (S.S.)
| | - Chuleui Jung
- Agriculture Science and Technology Research Institute, Andong National University, Andong 36729, Gyeongsangbuk do, Republic of Korea;
- Department of Plant Medicals, Andong National University, Andong 36729, Gyeongsangbuk do, Republic of Korea; (H.J.); (S.S.)
| |
Collapse
|
11
|
Oršolić N, Jazvinšćak Jembrek M. Royal Jelly: Biological Action and Health Benefits. Int J Mol Sci 2024; 25:6023. [PMID: 38892209 PMCID: PMC11172503 DOI: 10.3390/ijms25116023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Royal jelly (RJ) is a highly nutritious natural product with great potential for use in medicine, cosmetics, and as a health-promoting food. This bee product is a mixture of important compounds, such as proteins, vitamins, lipids, minerals, hormones, neurotransmitters, flavonoids, and polyphenols, that underlie the remarkable biological and therapeutic activities of RJ. Various bioactive molecules like 10-hydroxy-2-decenoic acid (10-HDA), antibacterial protein, apisin, the major royal jelly proteins, and specific peptides such as apisimin, royalisin, royalactin, apidaecin, defensin-1, and jelleins are characteristic ingredients of RJ. RJ shows numerous physiological and pharmacological properties, including vasodilatory, hypotensive, antihypercholesterolaemic, antidiabetic, immunomodulatory, anti-inflammatory, antioxidant, anti-aging, neuroprotective, antimicrobial, estrogenic, anti-allergic, anti-osteoporotic, and anti-tumor effects. Moreover, RJ may reduce menopause symptoms and improve the health of the reproductive system, liver, and kidneys, and promote wound healing. This article provides an overview of the molecular mechanisms underlying the beneficial effects of RJ in various diseases, aging, and aging-related complications, with special emphasis on the bioactive components of RJ and their health-promoting properties. The data presented should be an incentive for future clinical studies that hopefully will advance our knowledge about the therapeutic potential of RJ and facilitate the development of novel RJ-based therapeutic opportunities for improving human health and well-being.
Collapse
Affiliation(s)
- Nada Oršolić
- Division of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, HR-10000 Zagreb, Croatia
| | - Maja Jazvinšćak Jembrek
- Division of Molecular Medicine, Laboratory for Protein Dynamics, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia;
- School of Medicine, Catholic University of Croatia, Ilica 242, HR-10000 Zagreb, Croatia
| |
Collapse
|
12
|
Ricardo PC, Arias MC, de Souza Araujo N. Decoding bee cleptoparasitism through comparative transcriptomics of Coelioxoides waltheriae and its host Tetrapedia diversipes. Sci Rep 2024; 14:12361. [PMID: 38811580 PMCID: PMC11137135 DOI: 10.1038/s41598-024-56261-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/04/2024] [Indexed: 05/31/2024] Open
Abstract
Cleptoparasitism, also known as brood parasitism, is a widespread strategy among bee species in which the parasite lays eggs into the nests of the host species. Even though this behavior has significant ecological implications for the dynamics of several species, little is known about the molecular pathways associated with cleptoparasitism. To shed some light on this issue, we used gene expression data to perform a comparative analysis between two solitary neotropical bees: Coelioxoides waltheriae, an obligate parasite, and their specific host Tetrapedia diversipes. We found that ortholog genes involved in signal transduction, sensory perception, learning, and memory formation were differentially expressed between the cleptoparasite and the host. We hypothesize that these genes and their associated molecular pathways are engaged in cleptoparasitism-related processes and, hence, are appealing subjects for further investigation into functional and evolutionary aspects of cleptoparasitism in bees.
Collapse
Affiliation(s)
- Paulo Cseri Ricardo
- Departamento de Genética e Biologia Evolutiva - Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.
| | - Maria Cristina Arias
- Departamento de Genética e Biologia Evolutiva - Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
13
|
Pătruică S, Adeiza SM, Hulea A, Alexa E, Cocan I, Moraru D, Imbrea I, Floares D, Pet I, Imbrea F, Obiștioiu D. Romanian Bee Product Analysis: Chemical Composition, Antimicrobial Activity, and Molecular Docking Insights. Foods 2024; 13:1455. [PMID: 38790755 PMCID: PMC11119262 DOI: 10.3390/foods13101455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Bee products are considered true wonders of nature, used since ancient times, and studied even today for their various biological activities. In this study, we hypothesise that Romanian bee products from different origins (micro apiary products, lyophilised forms, commercial) exhibit distinct chemical compositions, influencing their biological activities. An LC-MS analysis revealed varied polyphenolic content patterns, with cumaric acid, ferulic acid, rosmarinic acid, and quercitine identified in significant amounts across all samples. Primary anti-inflammatory evaluation phases, including the inhibition of haemolysis values and protein denaturation, unveiled a range of protective effects on red blood cells (RBC) and blood proteins, contingent upon the sample concentration. Antimicrobial activity assessments against 12 ATCC strains and 6 pathogenic isolates demonstrated varying efficacy, with propolis samples showing low efficacy, royal jelly forms displaying moderate effectiveness, and apilarnin forms exhibiting good inhibitory activity, mostly against Gram-positive bacteria. Notably, the lyophilised form emerged as the most promising sample, yielding the best results across the biological activities assessed. Furthermore, molecular docking was employed to elucidate the inhibitory potential of compounds identified from these bee products by targeting putative bacterial and fungal proteins. Results from the docking analysis showed rosmarinic and rutin exhibited strong binding energies and interactions with the putative antimicrobial proteins of bacteria (-9.7 kcal/mol to -7.6 kcal/mol) and fungi (-9.5 kcal/mol to -8.1 kcal/mol). The findings in this study support the use of bee products for antimicrobial purposes in a biologically active and eco-friendly proportion while providing valuable insights into their mechanism of action.
Collapse
Affiliation(s)
- Silvia Pătruică
- Faculty of Bioengineering of Animal Resources, University of Life Sciences “King Mihai I” from Timișoara, Calea Aradului nr. 119, 300645 Timisoara, Romania; (S.P.); (D.M.); (I.P.)
| | - Suleiman Mukhtar Adeiza
- Faculty of Life Science, Department of Biochemistry, Ahmadu Bello University, Zaria 810107, Kaduna State, Nigeria
| | - Anca Hulea
- Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timișoara, Calea Aradului no. 119, 300645 Timisoara, Romania; (D.F.); (F.I.); (D.O.)
| | - Ersilia Alexa
- Faculty of Food Engineering, University of Life Sciences “King Mihai I” from Timișoara, Calea Aradului no. 119, 300645 Timisoara, Romania (I.C.)
| | - Ileana Cocan
- Faculty of Food Engineering, University of Life Sciences “King Mihai I” from Timișoara, Calea Aradului no. 119, 300645 Timisoara, Romania (I.C.)
| | - Dragos Moraru
- Faculty of Bioengineering of Animal Resources, University of Life Sciences “King Mihai I” from Timișoara, Calea Aradului nr. 119, 300645 Timisoara, Romania; (S.P.); (D.M.); (I.P.)
| | - Ilinca Imbrea
- Faculty of Agriculture, University of Life Sciences “King Mihai I” from Timișoara, Calea Aradului no. 119, 300645 Timisoara, Romania;
| | - Doris Floares
- Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timișoara, Calea Aradului no. 119, 300645 Timisoara, Romania; (D.F.); (F.I.); (D.O.)
| | - Ioan Pet
- Faculty of Bioengineering of Animal Resources, University of Life Sciences “King Mihai I” from Timișoara, Calea Aradului nr. 119, 300645 Timisoara, Romania; (S.P.); (D.M.); (I.P.)
| | - Florin Imbrea
- Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timișoara, Calea Aradului no. 119, 300645 Timisoara, Romania; (D.F.); (F.I.); (D.O.)
| | - Diana Obiștioiu
- Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timișoara, Calea Aradului no. 119, 300645 Timisoara, Romania; (D.F.); (F.I.); (D.O.)
| |
Collapse
|
14
|
Caesar L, Rice DW, McAfee A, Underwood R, Ganote C, Tarpy DR, Foster LJ, Newton ILG. Metagenomic analysis of the honey bee queen microbiome reveals low bacterial diversity and Caudoviricetes phages. mSystems 2024; 9:e0118223. [PMID: 38259099 PMCID: PMC10878037 DOI: 10.1128/msystems.01182-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
In eusocial insects, the health of the queens-the colony founders and sole reproductive females-is a primary determinant for colony success. Queen failure in the honey bee Apis mellifera, for example, is a major concern of beekeepers who annually suffer colony losses, necessitating a greater knowledge of queen health. Several studies on the microbiome of honey bees have characterized its diversity and shown its importance for the health of worker bees, the female non-reproductive caste. However, the microbiome of workers differs from that of queens, which, in comparison, is still poorly studied. Thus, direct investigations of the queen microbiome are required to understand colony-level microbiome assembly, functional roles, and evolution. Here, we used metagenomics to comprehensively characterize the honey bee queen microbiome. Comparing samples from different geographic locations and breeder sources, we show that the microbiome of queens is mostly shaped by the environment experienced since early life and is predicted to play roles in the breakdown of the diet and protection from pathogens and xenobiotics. We also reveal that the microbiome of queens comprises only four candidate core bacterial species, Apilactobacillus kunkeei, Lactobacillus apis, Bombella apis, and Commensalibacter sp. Interestingly, in addition to bacteria, we show that bacteriophages infect the queen microbiome, for which Lactobacillaceae are predicted to be the main reservoirs. Together, our results provide the basis to understand the honey bee colony microbiome assemblage, can guide improvements in queen-rearing processes, and highlight the importance of considering bacteriophages for queen microbiome health and microbiome homeostasis in eusocial insects.IMPORTANCEThe queen caste plays a central role in colony success in eusocial insects, as queens lay eggs and regulate colony behavior and development. Queen failure can cause colonies to collapse, which is one of the major concerns of beekeepers. Thus, understanding the biology behind the queen's health is a pressing issue. Previous studies have shown that the bee microbiome plays an important role in worker bee health, but little is known about the queen microbiome and its function in vivo. Here, we characterized the queen microbiome, identifying for the first time the present species and their putative functions. We show that the queen microbiome has predicted nutritional and protective roles in queen association and comprises only four consistently present bacterial species. Additionally, we bring to attention the spread of phages in the queen microbiome, which increased in abundance in failing queens and may impact the fate of the colony.
Collapse
Affiliation(s)
- Lílian Caesar
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Danny W. Rice
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Alison McAfee
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA
| | - Robyn Underwood
- Department of Entomology, Pennsylvania State University, University Park, State College, Pennsylvania, USA
| | - Carrie Ganote
- Luddy School of Informatics, Indiana University, Bloomington, Indiana, USA
| | - David R. Tarpy
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA
| | - Leonard J. Foster
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
15
|
Karimi E, Arab A, Sepidarkish M, Khorvash F, Saadatnia M, Amani R. Effects of the royal jelly consumption on post-stroke complications in patients with ischemic stroke: results of a randomized controlled trial. Front Nutr 2024; 10:1227414. [PMID: 38260068 PMCID: PMC10800663 DOI: 10.3389/fnut.2023.1227414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Aims There is a paucity of evidence regarding the benefit of royal jelly (RJ) on post-stroke complications in patients with ischemic stroke. To address this knowledge gap, this randomized, triple-blind, placebo-controlled clinical trial was carried out to determine the effects of RJ consumption on post-stroke clinical outcomes. Methods Of 64 eligible ischemic stroke patients (45-80 years), 32 were randomized to the RJ and 32 to the placebo groups and completed a 12-week intervention. The intervention group was advised to receive 1,000 mg of RJ dragee daily after breakfast. Post-stroke complications including cognition, fatigue, mental health, and appetite, along with serum levels of brain-derived neurotrophic factor (BDNF), and mid-upper arm circumference (MUAC) were assessed in groups pre-and post-intervention. Results After 12 weeks of RJ consumption, cognitive function [adjusted mean difference, 4.71; 95% confidence interval (CI), 1.75 to 7.67], serum levels of BDNF (adjusted mean difference, 0.36; 95% CI, 0.05 to 0.67), stress (adjusted mean difference, -3.33; 95% CI, -6.50 to -0.17), and appetite (adjusted mean difference, 1.38; 95% CI, 0.19 to 2.56) were significantly improved. However, the findings for fatigue (adjusted mean difference, -4.32; 95% CI, -10.28 to 1.63), depression (adjusted mean difference, -1.71; 95% CI, -5.58 to 2.16), anxiety (adjusted mean difference, -2.50; 95% CI, -5.50 to 0.49), and MUAC (adjusted mean difference, 0.36; 95% CI, -0.11 to 0.84) were less favorable. Conclusion Findings support the benefits of RJ consumption in improving post-stroke complications and clinical outcomes.Clinical trial registration: https://www.irct.ir/trial/59275, Identifier IRCT20180818040827N4.
Collapse
Affiliation(s)
- Elham Karimi
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Research Development Center, Arash Women’s Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Arman Arab
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Department of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Mahdi Sepidarkish
- Social Determinants of Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Fariborz Khorvash
- Isfahan Neurosciences Research Center, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Saadatnia
- Isfahan Neurosciences Research Center, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Amani
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
16
|
Baptista BG, Lima LS, Ribeiro M, Britto IK, Alvarenga L, Kemp JA, Cardozo LFMF, Berretta AA, Mafra D. Royal jelly: a predictive, preventive and personalised strategy for novel treatment options in non-communicable diseases. EPMA J 2023; 14:381-404. [PMID: 37605655 PMCID: PMC10439876 DOI: 10.1007/s13167-023-00330-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/26/2023] [Indexed: 08/23/2023]
Abstract
Royal jelly (RJ) is a bee product produced by young adult worker bees, composed of water, proteins, carbohydrates and lipids, rich in bioactive components with therapeutic properties, such as free fatty acids, mainly 10-hydroxy-trans-2-decenoic acid (10-H2DA) and 10-hydroxydecanoic acid (10-HDA), and major royal jelly proteins (MRJPs), as well as flavonoids, most flavones and flavonols, hormones, vitamins and minerals. In vitro, non-clinical and clinical studies have confirmed its vital role as an antioxidant and anti-inflammatory. This narrative review discusses the possible effects of royal jelly on preventing common complications of non-communicable diseases (NCDs), such as inflammation, oxidative stress and intestinal dysbiosis, from the viewpoint of predictive, preventive and personalised medicine (PPPM/3PM). It is concluded that RJ, predictively, can be used as a non-pharmacological therapy to prevent and mitigate complications related to NCDs, and the treatment must be personalised.
Collapse
Affiliation(s)
- Beatriz G. Baptista
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
| | - Ligia S. Lima
- Graduate Program in Biological Sciences – Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
| | - Marcia Ribeiro
- Graduate Program in Biological Sciences – Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
| | - Isadora K. Britto
- Graduate Program in Biological Sciences – Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
| | - Livia Alvarenga
- Graduate Program in Biological Sciences – Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
| | - Julie A. Kemp
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
| | - Ludmila FMF Cardozo
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
| | - Andresa A. Berretta
- Research, Development, and Innovation Department, Apis Flora Indl. Coml. Ltda, Ribeirão Preto, SP Brazil
| | - Denise Mafra
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
- Graduate Program in Biological Sciences – Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
- Unidade de Pesquisa Clínica, UPC, Rua Marquês de Paraná, 303/4 Andar, Niterói, RJ 24033-900 Brazil
| |
Collapse
|
17
|
Gong Y, Luo H, Li Z, Feng Y, Liu Z, Chang J. Metabolic Profile of Alzheimer's Disease: Is 10-Hydroxy-2-decenoic Acid a Pertinent Metabolic Adjuster? Metabolites 2023; 13:954. [PMID: 37623897 PMCID: PMC10456792 DOI: 10.3390/metabo13080954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023] Open
Abstract
Alzheimer's disease (AD) represents a significant public health concern in modern society. Metabolic syndrome (MetS), which includes diabetes mellitus (DM) and obesity, represents a modifiable risk factor for AD. MetS and AD are interconnected through various mechanisms, such as mitochondrial dysfunction, oxidative stress, insulin resistance (IR), vascular impairment, inflammation, and endoplasmic reticulum (ER) stress. Therefore, it is necessary to seek a multi-targeted and safer approach to intervention. Thus, 10-hydroxy-2-decenoic acid (10-HDA), a unique hydroxy fatty acid in royal jelly, has shown promising anti-neuroinflammatory, blood-brain barrier (BBB)-preserving, and neurogenesis-promoting properties. In this paper, we provide a summary of the relationship between MetS and AD, together with an introduction to 10-HDA as a potential intervention nutrient. In addition, molecular docking is performed to explore the metabolic tuning properties of 10-HDA with associated macromolecules such as GLP-1R, PPARs, GSK-3, and TREM2. In conclusion, there is a close relationship between AD and MetS, and 10-HDA shows potential as a beneficial nutritional intervention for both AD and MetS.
Collapse
Affiliation(s)
| | | | | | | | | | - Jie Chang
- Department of Occupational and Environmental Health, School of Public Health, Soochow University, 199 Ren’ai Road, Suzhou 215123, China; (Y.G.)
| |
Collapse
|
18
|
Çakır S. The Effect of Royal Jelly on Telomere Length and Some Biochemical Parameters in Wistar Albino Rats with Liver Damage Caused by Carbon Tetrachloride. J Med Food 2023; 26:580-585. [PMID: 37477674 DOI: 10.1089/jmf.2023.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Abstract
Royal jelly (RJ) is a natural bee product that has been used for therapeutic purposes since ancient times. The therapeutic properties of this product, which has rich biological content, are still being investigated with new approaches. In this study, the effect of RJ on telomere length, some antioxidant parameters, and lipid profile was examined. This study will contribute to the literature as it is the first to evaluate the effect of RJ on the length of telomeres in damaged liver tissues. In the study, the levels of serum triglyceride, total cholesterol (TC), high-density lipoprotein cholesterol, low-density lipoprotein cholesterol (LDL-C), aspartate transaminase (AST), alanine transaminase (ALT), telomerase, 8'-hydroxy-2'-deoxyguanosine (8-OHdG), and paraoxonase-1 (PON1) were investigated with enzyme-linked immunosorbent assay method and telomere lengths were investigated by real-time quantitative polymerase chain reaction. The increased TC, LDL-C levels, and AST and ALT activities in the serum after carbon tetrachloride (CCl4) administration approached the control level after RJ administration. PON1 activity decreased in groups with CCl4. PON1 activity increased after RJ administration. The level of 8-OHdG, which increased groups with CCl4, decreased after RJ administration. According to the results of telomere length analysis in liver tissues, telomere lengths in damaged tissues were significantly shortened with CCl4 application and increased with RJ application. Based on the findings of the study, it was concluded that RJ may have therapeutic effects on telomere lengths and some biochemistry parameters.
Collapse
Affiliation(s)
- Selcen Çakır
- Vocational School of Health Services, Department of Medical Services and Techniques, Medical Laboratory Techniques Program, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
19
|
Kieliszek M, Piwowarek K, Kot AM, Wojtczuk M, Roszko M, Bryła M, Trajkovska Petkoska A. Recent advances and opportunities related to the use of bee products in food processing. Food Sci Nutr 2023; 11:4372-4397. [PMID: 37576029 PMCID: PMC10420862 DOI: 10.1002/fsn3.3411] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 08/15/2023] Open
Abstract
Nowadays, natural foods that can provide positive health effects are gaining more and more popularity. Bees and the products they produce are our common natural heritage that should be developed. In the article, we presented the characteristics of bee products and their use in industry. We described the development and importance of beekeeping in the modern world. Due to their high nutritional value and therapeutic properties, bee products are of great interest and their consumption is constantly growing. The basis for the use of bee products in human nutrition is their properties and unique chemical composition. The conducted research and opinions confirm the beneficial effect of bee products on health. The current consumer awareness of the positive impact of food having a pro-health effect on health and well-being affects the increase in interest and demand for this type of food among various social groups. Enriching the daily diet with bee products may support the functioning of the organism. New technologies have appeared on the market to improve the process of obtaining bee products. The use of bee products plays a large role in many industries; moreover, the consumption of bee products and promotion of their medicinal properties are very important in shaping proper eating habits.
Collapse
Affiliation(s)
- Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food SciencesWarsaw University of Life Sciences—SGGWWarsawPoland
| | - Kamil Piwowarek
- Department of Food Biotechnology and Microbiology, Institute of Food SciencesWarsaw University of Life Sciences—SGGWWarsawPoland
| | - Anna M. Kot
- Department of Food Biotechnology and Microbiology, Institute of Food SciencesWarsaw University of Life Sciences—SGGWWarsawPoland
| | - Marta Wojtczuk
- Department of Food Biotechnology and Microbiology, Institute of Food SciencesWarsaw University of Life Sciences—SGGWWarsawPoland
| | - Marek Roszko
- Department of Food Safety and Chemical AnalysisProf. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research InstituteWarsawPoland
| | - Marcin Bryła
- Department of Food Safety and Chemical AnalysisProf. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research InstituteWarsawPoland
| | - Anka Trajkovska Petkoska
- Faculty of Technology and Technical Social SciencesSt. Kliment Ohridski University‐BitolaVelesNorth Macedonia
| |
Collapse
|
20
|
Bagameri L, Botezan S, Bobis O, Bonta V, Dezmirean DS. Molecular Insights into Royal Jelly Anti-Inflammatory Properties and Related Diseases. Life (Basel) 2023; 13:1573. [PMID: 37511948 PMCID: PMC10381546 DOI: 10.3390/life13071573] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Royal jelly (RJ), a highly nutritious natural product, has gained recognition for its remarkable health-promoting properties, leading to its widespread use in the pharmaceutical, food, and cosmetic industries. Extensive investigations have revealed that RJ possesses a broad spectrum of therapeutic effects, including anti-inflammatory, antioxidant, antitumor, anti-aging, and antibacterial activities. Distinctive among bee products, RJ exhibits a significantly higher water and relatively lower sugar content. It is characterized by its substantial protein content, making it a valuable source of this essential macronutrient. Moreover, RJ contains a diverse array of bioactive substances, such as lipids, phenolic compounds, flavonoids, organic acids, minerals, vitamins, enzymes, and hormones. This review aims to provide an overview of current research on the bioactive components present in RJ and their associated health-promoting qualities. According to existing literature, these bioactive substances hold great potential as alternative approaches to enhancing human health. Notably, this review emphasizes the anti-inflammatory properties of RJ, particularly in relation to inflammatory diseases, such as multiple sclerosis (MS), rheumatoid arthritis (RA), and inflammatory bowel diseases (IBD). Furthermore, we delve into the antitumor and antioxidant activities of RJ, aiming to deepen our understanding of its biological functions. By shedding light on the multifaceted benefits of RJ, this review seeks to encourage its utilization and inspire further investigation in this field.
Collapse
Affiliation(s)
- Lilla Bagameri
- Department of Apiculture and Sericulture, Faculty of Animal Sciences and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Sara Botezan
- Department of Apiculture and Sericulture, Faculty of Animal Sciences and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Otilia Bobis
- Department of Apiculture and Sericulture, Faculty of Animal Sciences and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Victorita Bonta
- Department of Apiculture and Sericulture, Faculty of Animal Sciences and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Daniel Severus Dezmirean
- Department of Apiculture and Sericulture, Faculty of Animal Sciences and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| |
Collapse
|
21
|
Martínez-Chacón G, Paredes-Barquero M, Yakhine-Diop SM, Uribe-Carretero E, Bargiela A, Sabater-Arcis M, Morales-García J, Alarcón-Gil J, Alegre-Cortés E, Canales-Cortés S, Rodríguez-Arribas M, Camello PJ, Pedro JMBS, Perez-Castillo A, Artero R, Gonzalez-Polo RA, Fuentes JM, Niso-Santano M. Neuroprotective properties of queen bee acid by autophagy induction. Cell Biol Toxicol 2023; 39:751-770. [PMID: 34448959 PMCID: PMC10406658 DOI: 10.1007/s10565-021-09625-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/21/2021] [Indexed: 12/26/2022]
Abstract
Autophagy is a conserved intracellular catabolic pathway that removes cytoplasmic components to contribute to neuronal homeostasis. Accumulating evidence has increasingly shown that the induction of autophagy improves neuronal health and extends longevity in several animal models. Therefore, there is a great interest in the identification of effective autophagy enhancers with potential nutraceutical or pharmaceutical properties to ameliorate age-related diseases, such as neurodegenerative disorders, and/or promote longevity. Queen bee acid (QBA, 10-hydroxy-2-decenoic acid) is the major fatty acid component of, and is found exclusively in, royal jelly, which has beneficial properties for human health. It is reported that QBA has antitumor, anti-inflammatory, and antibacterial activities and promotes neurogenesis and neuronal health; however, the mechanism by which QBA exerts these effects has not been fully elucidated. The present study investigated the role of the autophagic process in the protective effect of QBA. We found that QBA is a novel autophagy inducer that triggers autophagy in various neuronal cell lines and mouse and fly models. The beclin-1 (BECN1) and mTOR pathways participate in the regulation of QBA-induced autophagy. Moreover, our results showed that QBA stimulates sirtuin 1 (SIRT1), which promotes autophagy by the deacetylation of critical ATG proteins. Finally, QBA-mediated autophagy promotes neuroprotection in Parkinson's disease in vitro and in a mouse model and extends the lifespan of Drosophila melanogaster. This study provides detailed evidences showing that autophagy induction plays a critical role in the beneficial health effects of QBA.
Collapse
Affiliation(s)
- Guadalupe Martínez-Chacón
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda de la Universidad s/n, 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Marta Paredes-Barquero
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda de la Universidad s/n, 10003 Cáceres, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Sokhna M.S Yakhine-Diop
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda de la Universidad s/n, 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Elisabet Uribe-Carretero
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda de la Universidad s/n, 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Ariadna Bargiela
- Translational Genomics Group, Incliva Health Research Institute, Valencia, Spain
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, Valencia, Spain
- CIPF-INCLIVA Joint Unit, Valencia, Spain
| | - María Sabater-Arcis
- Translational Genomics Group, Incliva Health Research Institute, Valencia, Spain
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, Valencia, Spain
- CIPF-INCLIVA Joint Unit, Valencia, Spain
| | - José Morales-García
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigaciones Biomédicas (CSIC-UAM) “Alberto Sols” (CSIC-UAM), Madrid, Spain
| | - Jesús Alarcón-Gil
- Instituto de Investigaciones Biomédicas (CSIC-UAM) “Alberto Sols” (CSIC-UAM), Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Eva Alegre-Cortés
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda de la Universidad s/n, 10003 Cáceres, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Saray Canales-Cortés
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda de la Universidad s/n, 10003 Cáceres, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Mario Rodríguez-Arribas
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda de la Universidad s/n, 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Pedro Javier Camello
- Departamento de Fisiología, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
- Instituto Universitario de Biomarcadores de Patologías Metabólicas, Cáceres, Spain
| | - José Manuel Bravo-San Pedro
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana Perez-Castillo
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto de Investigaciones Biomédicas (CSIC-UAM) “Alberto Sols” (CSIC-UAM), Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Rubén Artero
- Translational Genomics Group, Incliva Health Research Institute, Valencia, Spain
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, Valencia, Spain
- CIPF-INCLIVA Joint Unit, Valencia, Spain
| | - Rosa A. Gonzalez-Polo
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda de la Universidad s/n, 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - José M. Fuentes
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda de la Universidad s/n, 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Mireia Niso-Santano
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda de la Universidad s/n, 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| |
Collapse
|
22
|
Ghadimi‐Garjan R, Javadi A, Jafarizadeh‐Malmiri H, Anarjan N, Mirzaei H. Lyophilized royal jelly preparation in nanoscale and evaluation of its physicochemical properties and bactericidal activity. Food Sci Nutr 2023; 11:3404-3413. [PMID: 37324881 PMCID: PMC10261759 DOI: 10.1002/fsn3.3330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 06/17/2023] Open
Abstract
Royal jelly, due to its unique bioactive components, has special biological activities, but a great extent of its nutritional value is lost during processing and storage. Lyophilization, an effective preservation technique, can feasibly preserve the main bioactive compounds present in royal jelly. In this study, fresh royal jelly was subjected to the freeze-drying process at a pressure and temperature of 100 Pa and - 70°C, respectively, for 40 h. The results obtained indicated that the pH, turbidity, total phenol content, and antioxidant activity of the royal jelly powder (RJP), during 3 months of storage at ambient temperature (30°C), were constant with values of 4.30, 1.634 (%A.U.), 0.617 (g/L), and 28.7 (%), respectively. Moisture content of the prepared RJP was less than 1%, while that of the fresh royal jelly was 70%. Furthermore, for the fresh royal jelly, the mentioned parameters were significantly (p < .05) decreased after 2 months of storage at freezer temperature (-20°C). GC-MS analysis indicated that the amount of 10-hydroxy-2-decanoic acid (10H2DA) in RJP was 3.85 times more than that of fresh royal jelly. The obtained results also indicated that prepared RJP had a high bactericidal effect toward Escherichia coli and Staphylococcus aureus, with clear zone diameters of 12 and 15 mm, respectively. The present study provides a foundation for research on the potential application of prepared RJP and the development of dietary supplements and functional foods.
Collapse
Affiliation(s)
- Reza Ghadimi‐Garjan
- Department of Food Hygiene, Faculty of Veterinary, Tabriz Medical ScienceIslamic Azad UniversityTabrizIran
| | - Afshin Javadi
- Department of Food Hygiene, Faculty of Veterinary, Tabriz Medical ScienceIslamic Azad UniversityTabrizIran
| | | | - Navideh Anarjan
- Faculty of Chemical EngineeringSahand University of TechnologyTabrizEast AzarbaijanIran
- Food and Drug Safety ResearchTabriz University of Medical SciencesTabrizIran
| | - Hamid Mirzaei
- Department of Food Hygiene, Faculty of Veterinary, Tabriz Medical ScienceIslamic Azad UniversityTabrizIran
| |
Collapse
|
23
|
Giacomini JJ, Adler LS, Reading BJ, Irwin RE. Differential bumble bee gene expression associated with pathogen infection and pollen diet. BMC Genomics 2023; 24:157. [PMID: 36991318 DOI: 10.1186/s12864-023-09143-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/18/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Diet and parasitism can have powerful effects on host gene expression. However, how specific dietary components affect host gene expression that could feed back to affect parasitism is relatively unexplored in many wild species. Recently, it was discovered that consumption of sunflower (Helianthus annuus) pollen reduced severity of gut protozoan pathogen Crithidia bombi infection in Bombus impatiens bumble bees. Despite the dramatic and consistent medicinal effect of sunflower pollen, very little is known about the mechanism(s) underlying this effect. However, sunflower pollen extract increases rather than suppresses C. bombi growth in vitro, suggesting that sunflower pollen reduces C. bombi infection indirectly via changes in the host. Here, we analyzed whole transcriptomes of B. impatiens workers to characterize the physiological response to sunflower pollen consumption and C. bombi infection to isolate the mechanisms underlying the medicinal effect. B. impatiens workers were inoculated with either C. bombi cells (infected) or a sham control (un-infected) and fed either sunflower or wildflower pollen ad libitum. Whole abdominal gene expression profiles were then sequenced with Illumina NextSeq 500 technology. RESULTS Among infected bees, sunflower pollen upregulated immune transcripts, including the anti-microbial peptide hymenoptaecin, Toll receptors and serine proteases. In both infected and un-infected bees, sunflower pollen upregulated putative detoxification transcripts and transcripts associated with the repair and maintenance of gut epithelial cells. Among wildflower-fed bees, infected bees downregulated immune transcripts associated with phagocytosis and the phenoloxidase cascade. CONCLUSIONS Taken together, these results indicate dissimilar immune responses between sunflower- and wildflower-fed bumble bees infected with C. bombi, a response to physical damage to gut epithelial cells caused by sunflower pollen, and a strong detoxification response to sunflower pollen consumption. Identifying host responses that drive the medicinal effect of sunflower pollen in infected bumble bees may broaden our understanding of plant-pollinator interactions and provide opportunities for effective management of bee pathogens.
Collapse
Affiliation(s)
- Jonathan J Giacomini
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Lynn S Adler
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Benjamin J Reading
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Rebecca E Irwin
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
24
|
Royal jelly extracellular vesicles promote wound healing by modulating underlying cellular responses. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:541-552. [PMID: 36895953 PMCID: PMC9989319 DOI: 10.1016/j.omtn.2023.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Apis mellifera royal jelly (RJ) is a well-known remedy in traditional medicine around the world and its versatile effects range from antibacterial to anti-inflammatory properties and pro-regenerative properties. As a glandular product, RJ has been shown to contain a substantial number of extracellular vesicles (EVs), and, in this study, we aimed to investigate the extent of involvement of RJEVs in wound healing-associated effects. Molecular analysis of RJEVs verified the presence of exosomal markers such as CD63 and syntenin, and cargo molecules MRJP1, defensin-1, and jellein-3. Furthermore, RJEVs were demonstrated to modulate mesenchymal stem cell (MSC) differentiation and secretome, as well as decrease LPS-induced inflammation in macrophages by blocking the mitogen-activated protein kinase (MAPK) pathway. In vivo studies confirmed antibacterial effects of RJEVs and demonstrated an acceleration of wound healing in a splinted mouse model. This study suggests that RJEVs play a crucial role in the known effects of RJ by modulating the inflammatory phase and cellular response in wound healing. Transfer of RJ into the clinics has been impeded by the high complexity of the raw material. Isolating EVs from the raw RJ decreases the complexity while allowing standardization and quality control, bringing a natural nano-therapy one step closer to the clinics.
Collapse
|
25
|
Khadrawy SM, Mohamed DS, Hassan RM, Abdelgawad MA, Ghoneim MM, Alshehri S, Shaban NS. Royal Jelly and Chlorella vulgaris Mitigate Gibberellic Acid-Induced Cytogenotoxicity and Hepatotoxicity in Rats via Modulation of the PPARα/AP-1 Signaling Pathway and Suppression of Oxidative Stress and Inflammation. Foods 2023; 12:foods12061223. [PMID: 36981150 PMCID: PMC10048508 DOI: 10.3390/foods12061223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 03/14/2023] Open
Abstract
Gibberellic acid (GA3) is a well-known plant growth regulator used in several countries, but its widespread use has negative effects on both animal and human health. The current study assesses the protective effect of royal jelly (RJ) and Chlorella vulgaris (CV) on the genotoxicity and hepatic injury induced by GA3 in rats. Daily oral administration of 55 mg/kg GA3 to rats for 6 constitutive weeks induced biochemical and histopathological changes in the liver via oxidative stress and inflammation. Co-administration of 300 mg/kg RJ or 500 mg/kg CV with GA3 considerably ameliorated the serum levels of AST (aspartate aminotransferase), ALT (alanine aminotransferase), ALP (alkaline phosphatase), γGT (gamma-glutamyl transferase), total bilirubin, and albumin. Lowered malondialdehyde, tumor necrosis factor α (TNF-α), and nuclear factor κB (NF-κB) levels along with elevated SOD (superoxide dismutase), CAT (catalase), and GPx (glutathione peroxidase) enzyme activities indicated the antioxidant and anti-inflammatory properties of both RJ and CV. Also, they improved the histological structure and reduced cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expressions along with up-regulating peroxisome proliferator activated receptor α (PPARα) and down-regulating activator protein 1 (AP-1) gene expression. Additionally, chromosomal abnormalities and mitotic index were nearly normalized after treatment with RJ and CV. In conclusion, RJ and CV can protect against GA3-induced genotoxicity and liver toxicity by diminishing oxidative stress and inflammation, and modulating the PPARα/AP-1 signaling pathway.
Collapse
Affiliation(s)
- Sally M. Khadrawy
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
- Correspondence: (S.M.K.); (M.A.A.)
| | - Doaa Sh. Mohamed
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Randa M. Hassan
- Cytology and Histology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
- Correspondence: (S.M.K.); (M.A.A.)
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nema S. Shaban
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|
26
|
An evaluation of the chemical composition and biological properties of Anatolian Royal Jelly, drone brood and queen bee larvae. Eur Food Res Technol 2023. [DOI: 10.1007/s00217-023-04221-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
27
|
Shen P, Ding K, Wang L, Tian J, Huang X, Zhang M, Dang X. In vitro and in vivo antimicrobial activity of antimicrobial peptide Jelleine-I against foodborne pathogen Listeria monocytogenes. Int J Food Microbiol 2023; 387:110050. [PMID: 36508953 DOI: 10.1016/j.ijfoodmicro.2022.110050] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
As a human foodborne pathogen, Listeria monocytogenes can cause severe human listeriosis and develop resistance to antibiotics. Antimicrobial peptides (AMPs) are produced from all kingdoms of life and regarded as promising alternatives to conventional antibiotics. Jelleine-I is an AMP identified from honeybees royal jelly. In this study, we explored the activity and action mechanism of Jelleine-I against L. monocytogenes. We found its minimum inhibitory concentration to be 12.5 μg/mL. Membrane permeability analysis revealed that Jelleine-I increased L. monocytogenes cell membrane permeability, causing calcium leakage. Scanning, transmission electron microscopy and fluorescence microscopy revealed that Jelleine-I destroyed membrane integrity, disrupted intracellular structures and interacted with the bacterial DNA. DNA binding analysis demonstrated that Jelleine-I bound to bacterial genomic DNA. Results of reverse transcription-quantitative PCR revealed that Jelleine-I affected bacterial DNA replication gene expression levels. Moreover, Jelleine-I induced cellular reactive oxygen species (ROS) production from fluorescence intensity analysis, and inhibited bacterial biofilm formation. Results of immunomodulation in Galleria mellonella revealed that Jelleine-I increased host hemocyte counts, upregulated host AMP gene (Gloverin and Cecropin D) expression, and inhibited proinfammatory cytokine (tumor necrosis factor α and interleukin 6) production induced by bacterial infection. It efficiently killed bacteria and increased the survival rate of infected insects to 70 %. Furthermore, Jelleine-I increased the G1 to S phase transition in mammalian cells from cells cycle analysis, and cytotoxicity assay results indicated that it promoted cell proliferation without hemolysis or cytotoxicity. Collectively, Jelleine-I possesses antimicrobial, immunomodulatory and cell proliferative activities, and is a promising candidate for preventing L. monocytogenes emergence and dissemination.
Collapse
Affiliation(s)
- Panpan Shen
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Kang Ding
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Lifang Wang
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Jinhuan Tian
- Department of Material Science and Engineering, College of Chemistry and Material, Jinan University, Guangzhou 510632, China
| | - Xiuhong Huang
- Department of Material Science and Engineering, College of Chemistry and Material, Jinan University, Guangzhou 510632, China
| | - Mingyu Zhang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xiangli Dang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
28
|
Botezan S, Baci GM, Bagameri L, Pașca C, Dezmirean DS. Current Status of the Bioactive Properties of Royal Jelly: A Comprehensive Review with a Focus on Its Anticancer, Anti-Inflammatory, and Antioxidant Effects. Molecules 2023; 28:1510. [PMID: 36771175 PMCID: PMC9921556 DOI: 10.3390/molecules28031510] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Royal jelly (RJ) has been one of the most widely used natural products in alternative medicine for centuries. Being produced by both hypopharyngeal and mandibular glands, RJ exhibits an extraordinary complexity in terms of its composition, including proteins, lipids, carbohydrates, polyphenols, vitamins, and hormones. Due to its heterogeneous structure, RJ displays various functional roles for honeybees, including being involved in nutrition, learning, memory, and social behavior. Furthermore, a wide range of studies reported its therapeutic properties, including anticancer, anti-inflammatory, and antioxidant activities, to name a few. In this direction, there is a wide range of health-related problems for which the medical area specialists and researchers are continuously trying to find a cure, such as cancer, atherosclerosis, or infertility. For the mentioned diseases and more, it has been proven that RJ is a key player in finding a valuable treatment. In this review, the great impact of RJ as an alternative medicine agent is highlighted, with a focus on its anticancer, anti-inflammatory, and antioxidant activities. Moreover, we link it to its apitherapeutic potential by discussing its composition. Herein, we discuss a wide range of novel studies and present the latest research work.
Collapse
Affiliation(s)
| | - Gabriela-Maria Baci
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | | | - Claudia Pașca
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | | |
Collapse
|
29
|
Anderson KE, Copeland DC, Erickson RJ, Floyd AS, Maes PC, Mott BM. A high-throughput sequencing survey characterizing European foulbrood disease and Varroosis in honey bees. Sci Rep 2023; 13:1162. [PMID: 36670153 PMCID: PMC9859799 DOI: 10.1038/s41598-023-28085-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 01/12/2023] [Indexed: 01/21/2023] Open
Abstract
As essential pollinators of ecosystems and agriculture, honey bees (Apis mellifera) are host to a variety of pathogens that result in colony loss. Two highly prevalent larval diseases are European foulbrood (EFB) attributed to the bacterium Melissococcus plutonius, and Varroosis wherein larvae can be afflicted by one or more paralytic viruses. Here we used high-throughput sequencing and qPCR to detail microbial succession of larval development from six diseased, and one disease-free apiary. The disease-free larval microbiome revealed a variety of disease-associated bacteria in early larval instars, but later developmental stages were dominated by beneficial symbionts. Microbial succession associated with EFB pathology differed by apiary, characterized by associations with various gram-positive bacteria. At one apiary, diseased larvae were uniquely described as "melting and deflated", symptoms associated with Varroosis. We found that Acute Bee Paralysis Virus (ABPV) levels were significantly associated with these symptoms, and various gram-negative bacteria became opportunistic in the guts of ABPV afflicted larvae. Perhaps contributing to disease progression, the ABPV associated microbiome was significantly depleted of gram-positive bacteria, a likely result of recent antibiotic application. Our results contribute to the understanding of brood disease diagnosis and treatment, a growing problem for beekeeping and agriculture worldwide.
Collapse
Affiliation(s)
- Kirk E Anderson
- Carl Hayden Bee Research Center, USDA Agricultural Research Service, 2000 E. Allen Rd., Tucson, AZ, 85719, USA.
| | - Duan C Copeland
- Carl Hayden Bee Research Center, USDA Agricultural Research Service, 2000 E. Allen Rd., Tucson, AZ, 85719, USA
- Department of Microbiology, School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Robert J Erickson
- Carl Hayden Bee Research Center, USDA Agricultural Research Service, 2000 E. Allen Rd., Tucson, AZ, 85719, USA
| | - Amy S Floyd
- Carl Hayden Bee Research Center, USDA Agricultural Research Service, 2000 E. Allen Rd., Tucson, AZ, 85719, USA
- Department of Entomology and Center for Insect Science, University of Arizona, Tucson, AZ, 85721, USA
| | - Patrick C Maes
- Department of Entomology and Center for Insect Science, University of Arizona, Tucson, AZ, 85721, USA
| | - Brendon M Mott
- Carl Hayden Bee Research Center, USDA Agricultural Research Service, 2000 E. Allen Rd., Tucson, AZ, 85719, USA
| |
Collapse
|
30
|
Inhibition of Skin Pathogenic Bacteria, Antioxidant and Anti-Inflammatory Activity of Royal Jelly from Northern Thailand. Molecules 2023; 28:molecules28030996. [PMID: 36770665 PMCID: PMC9920569 DOI: 10.3390/molecules28030996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Royal jelly is a nutritious substance produced by the hypopharyngeal and mandibular glands of honeybees. Royal jelly possesses many attractive and beneficial properties which make it an ideal component in medical and pharmaceutical products. The antibacterial, antioxidant, and anti-inflammatory activities of royal jelly from honeybees (Apis mellifera) were determined in this study. Moreover, the total phenolic and flavonoid contents of the royal jelly were also evaluated. The effects of royal jelly on growth inhibition against skin pathogenic bacteria, including Cutibacterium acnes, methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis, and Corynebacterium spp., were investigated by the agar well diffusion method. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were further determined by the broth dilution method. The results indicated that royal jelly showed antibacterial activity by inhibiting the growth of Gram-positive pathogenic bacteria, while the effectiveness decreased against Gram-negative bacteria. Interestingly, royal jelly from Lamphun (RJ-LP1), and Chiang Mai (RJ-CM1), presented high inhibitory efficacy against C. acnes, MRSA, and S. aureus within 4 h by a time killing assay. Furthermore, the anti-inflammatory properties of royal jelly were tested using RAW264.7 macrophage cells, and results revealed that RJ-LP1 and RJ-CM1 could reduce nitric oxide (NO) production and suppress iNOS gene expression. After testing the antioxidant activity, RJ-CM1 and RJ-CM2 of royal jelly from Chiang Mai had the highest level. Additionally, RJ-CM1 also showed the highest total phenolic and flavonoid content. These findings have brought forward new knowledge of the antibacterial, antioxidant, and anti-inflammatory properties of royal jelly, which will improve clinical and pharmaceutical uses of royal jelly as an alternative therapy for bacterial infections, and also as a dietary supplement product.
Collapse
|
31
|
Royal Jelly Increases Hematopoietic Stem Cells in Peripheral Blood: A Double-Blind, Placebo-Controlled, Randomized Trial in Healthy Subjects. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:7665515. [PMID: 36686976 PMCID: PMC9859695 DOI: 10.1155/2023/7665515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023]
Abstract
Objectives Royal jelly (RJ), produced by honeybees, influences stem cell functions, such as pluripotency maintenance of mouse embryonic stem cells and prevention of aging-related muscle stem cell functional deterioration. Thus, we hypothesized that RJ administration has various health-promoting effects based on stem cells. However, its effects are unknown in humans. In this study, we have attempted for the first time to clarify whether the administration of RJ in humans affects stem cells. Materials and Methods This randomized, double-blind, placebo-controlled study was performed on healthy subjects (n = 90) who received protease-treated RJ at a dose of 1200 mg/day or placebo daily for four weeks. Also, the participants with a low number of hematopoietic stem cells (HSCs) in peripheral blood were preferentially selected. HSC counts, endothelial progenitor cell (EPC) counts, blood cell counts in peripheral blood, cytokines in serum, and physical conditions were evaluated. Results and Conclusion. Eligible data from 86 subjects (placebo: 42, RJ: 44) who completed the study were analyzed. There were no significant differences between the two groups regarding the changes in peripheral HSC count (p=0.103), while diastolic blood pressure showed a significant improvement in the RJ group compared to that in the placebo group (p=0.032). The subgroup analysis excluded 14 subjects who complained of cold symptoms at baseline or within five days of the four-week study. The changes in the HSC populations were significantly higher in the RJ group than those in the placebo group (p=0.042). No adverse effects were observed in any of the groups. These results suggest that RJ administration affected the peripheral HSC count and may influence stem cell functions. Further research is needed to reveal the various health-promoting benefits of RJ based on stem cells.
Collapse
|
32
|
Kim E, Jang M, Jeong H, Kim Y, Shin Y, Park J, Lee J, Cho S, Hwang I, Shin Y. Changes in the chemical composition of royal jelly produced through artificial bee-feeding in response to seasonal variations during non-migratory beekeeping. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.104982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Investigation of the effects of the royal jelly on genomic demethylation and tumor suppressor genes in human cancer cells. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:59. [PMID: 36564533 DOI: 10.1007/s12032-022-01927-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/08/2022] [Indexed: 12/25/2022]
Abstract
Royal jelly is a gelatinous nutrient secretion produced by the mandibular glands of young worker honey bees and has a critical role in honey bee life. In the honey bee colonies, queen and worker honey bees have very different morphologies and behaviors due to their diet in the larval period, despite having the same genome. In comparison, queen bees formed from larvae that feed royal jelly exclusively, and worker bees formed from larvae that feed on much less royal jelly. DNA methylation has been shown to play a critical role in the development of queen and worker honeybees. Alterations in DNA methylation, one of the epigenetic mechanisms defined as hereditable nucleotide modifications that occur in gene expression without changes in the DNA sequence, are closely related to many diseases, especially cancer. Hypermethylation of CpG islands located in the promoter regions of genes causes gene silencing and tumor suppressor genes epigenetically have silenced in cancer. The inactivation of tumor suppressor genes disrupts nearly all cellular pathways in cancer. In contrast to genetic alterations, gene silencing by epigenetic modifications may potentially be reversed and used in cancer treatment. Royal jelly, which causes epigenetic changes in bee colonies, has the potential to cause a change in cancer cells. In our study, royal jelly's effects on DNA methyltransferase enzyme and gene methylation of RASSF1A tumor suppressor were investigated in human cancer cell lines (HeLa, HT29, and A549), and modifications in the gene expression profile of royal jelly were determined by next generation sequencing.
Collapse
|
34
|
Mureşan CI, Dezmirean DS, Marc BD, Suharoschi R, Pop OL, Buttstedt A. Biological properties and activities of major royal jelly proteins and their derived peptides. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
35
|
Ma C, Ahmat B, Li J. Effect of queen cell numbers on royal jelly production and quality. Curr Res Food Sci 2022; 5:1818-1825. [PMID: 36254242 PMCID: PMC9568691 DOI: 10.1016/j.crfs.2022.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/15/2022] [Accepted: 10/10/2022] [Indexed: 10/31/2022] Open
Abstract
Royal jelly (RJ) is a popular functional food with a wealth of health-promoting effects. Over 90% of the global RJ is produced in China mainly by a high RJ-producing honeybee (RJB) strain that can accept and feed a great number of queen larvae for RJ production. To elucidate RJ changes due to queen cell numbers (QCNs), we compared the yield, larval acceptance rate, metabolic and proteomic profiles, and antioxidant activities of RJ from 1 to 5 strips of queen cells (64 per strip) in RJB colonies. As QCNs increased, the larval acceptance rate was not found to vary (p = 0.269) whereas the RJ weight per cell began to significantly decline in the 5-strip colonies (p < 0.05). Increased QCNs had a profound impact on RJ metabolic profiles and mainly reduced fatty acid levels. Remarkably, the 10-hydroxy-2-decenoic acid (10-HDA) content, a most important indicator of RJ quality, declined gradually from 2.01% in the 1-strip colonies to 1.52% in the 5-strip colonies (p < 0.001). RJ proteomic profiles were minimally altered and antioxidant activities were not significantly changed by QCNs. Collectively, the metabolomics and proteomics data and the antioxidant activity test represent a global evaluation of the quality of RJ produced with different QCNs. Our findings gain new insights into higher-quality RJ production using the high-yielding RJBs.
Collapse
Affiliation(s)
| | | | - Jianke Li
- Corresponding author. No. 2 Yuanmingyuan West Road, Haidian District, Beijing, China.
| |
Collapse
|
36
|
Dundar AN, Cinar A, Altuntas S, Ulubayram N, Taner G, Dagdelen AF, Demircan H, Oral RA. The role of microencapsulation in maintaining biological activity of royal jelly: comparison with biological activity and bioaccessibility of microencapsulated, fresh and lyophilized forms during storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5502-5511. [PMID: 35355271 DOI: 10.1002/jsfa.11905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Royal jelly (RJ) is a unique beehive product and has been recommended for human health since ancient times because of its antioxidant, antimicrobial, antiproliferative, neuroprotective, anti-lipidemic and anti-aging features. However, the biggest obstacle in the use of RJ is the need for cold storage and the instability of bioactive components over time. In the present study, 10-hydroxy-2-decenoic acid (10-HDA) content, as well as antioxidant [using 1,1-diphenyl-2-picrylhydrazy and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) methods] and antimicrobial activity (five Gram-positive, five Gram-negative and three yeasts), were comparatively evaluated for three RJ forms, two of which can be stored at 24 ± 1 °C during storage. RESULTS Microencapsulated royal jelly (MRJ) stored at room temperature succeeded in preserving its 10-HDA content, a major bioactive compound, during the 6 months, with respect to lyophilized royal jelly (LRJ) and fresh RJ stored at 4 °C. The initial 10-HDA contents of RJ, LRJ and MRJ were determined as 1.90%, 5.26% and 2.75%, respectively. Moreover, the total phenolic content, antioxidant capacity and antimicrobial activity mostly remained constant throughout the storage period (P ≥ 0.05). Gram-positive strains were generally more sensitive than Gram-negative strains. In the present study, the in vitro simulated digestion analysis showed that MRJ can tolerate the digestion process. CONCLUSION Overall, the encapsulation process was considered as one preservative technique for RJ. The microencapsulation of RJ as shown in the results of the present study are encouraging in terms of enabling the local beekeeping sector to achieve ease of production and increased product diversity. MRJ shows promise as a commercial product with a high export value for producers. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ayse Neslihan Dundar
- Faculty of Engineering and Natural Sciences, Department of Food Engineering, Bursa Technical University, Bursa, Turkey
| | - Aycan Cinar
- Faculty of Engineering and Natural Sciences, Department of Food Engineering, Bursa Technical University, Bursa, Turkey
| | - Seda Altuntas
- Faculty of Engineering and Natural Sciences, Department of Food Engineering, Bursa Technical University, Bursa, Turkey
| | - Neslihan Ulubayram
- Vocational School of Altıntaş, Department of Food Processing, Kütahya Dumlupınar University, Kütahya, Turkey
| | - Gokce Taner
- Faculty of Engineering and Natural Sciences, Department of Bioengineering, Bursa Technical University, Bursa, Turkey
| | - Adnan Fatih Dagdelen
- Faculty of Engineering and Natural Sciences, Department of Food Engineering, Bursa Technical University, Bursa, Turkey
| | - Huseyin Demircan
- Faculty of Engineering and Natural Sciences, Department of Food Engineering, Bursa Technical University, Bursa, Turkey
| | - Rasim Alper Oral
- Faculty of Engineering and Natural Sciences, Department of Food Engineering, Bursa Technical University, Bursa, Turkey
| |
Collapse
|
37
|
Parish AJ, Rice DW, Tanquary VM, Tennessen JM, Newton ILG. Honey bee symbiont buffers larvae against nutritional stress and supplements lysine. THE ISME JOURNAL 2022; 16:2160-2168. [PMID: 35726020 PMCID: PMC9381588 DOI: 10.1038/s41396-022-01268-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/17/2022] [Accepted: 06/07/2022] [Indexed: 02/07/2023]
Abstract
Honey bees have suffered dramatic losses in recent years, largely due to multiple stressors underpinned by poor nutrition [1]. Nutritional stress especially harms larvae, who mature into workers unable to meet the needs of their colony [2]. In this study, we characterize the metabolic capabilities of a honey bee larvae-associated bacterium, Bombella apis (formerly Parasaccharibacter apium), and its effects on the nutritional resilience of larvae. We found that B. apis is the only bacterium associated with larvae that can withstand the antimicrobial larval diet. Further, we found that B. apis can synthesize all essential amino acids and significantly alters the amino acid content of synthetic larval diet, largely by supplying the essential amino acid lysine. Analyses of gene gain/loss across the phylogeny suggest that four amino acid transporters were gained in recent B. apis ancestors. In addition, the transporter LysE is conserved across all sequenced strains of B. apis. Finally, we tested the impact of B. apis on developing honey bee larvae subjected to nutritional stress and found that larvae supplemented with B. apis are bolstered against mass reduction despite limited nutrition. Together, these data suggest a novel role of B. apis as a nutritional mutualist of honey bee larvae.
Collapse
Affiliation(s)
- Audrey J Parish
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Danny W Rice
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Vicki M Tanquary
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Jason M Tennessen
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Irene L G Newton
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
38
|
Gevorgyan S, Schubert R, Falke S, Lorenzen K, Trchounian K, Betzel C. Structural characterization and antibacterial activity of silver nanoparticles synthesized using a low-molecular-weight Royal Jelly extract. Sci Rep 2022; 12:14077. [PMID: 35982108 PMCID: PMC9388513 DOI: 10.1038/s41598-022-17929-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
In recent years silver nanoparticles (Ag NPs) gained increased and widespread applications in various fields of industry, technology, and medicine. This study describes the green synthesis of silver nanoparticles (Ag NPs) applying a low-molecular-weight fraction (LMF) of Royal Jelly, the nanoparticle characterization, and particularly their antibacterial activity. The optical properties of NPs, characterized by UV–Vis absorption spectroscopy, showed a peak at ~ 430 nm. The hydrodynamic radius and concentration were determined by complementary dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA). The particle morphology was investigated using transmission electron microscopy (TEM), and the crystallinity of the silver was confirmed by X-ray diffraction (XRD). The antibacterial activities were evaluated utilizing Gram-negative and Gram-positive bacteria and colony counting assays. The growth inhibition curve method was applied to obtain information about the corresponding minimum inhibitory concentrations (MIC) and the minimum bactericidal concentrations (MBC) required. Obtained results showed that (i) the sizes of Ag NPs are increasing within the increase of silver ion precursor concentration, (ii) DLS, in agreement with NTA, showed that most particles have dimensions in the range of 50–100 nm; (iii) E. coli was more susceptible to all Ag NP samples compared to B. subtilis.
Collapse
Affiliation(s)
- Susanna Gevorgyan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, Alex Manoogian 1, 0025, Yerevan, Armenia.,The Hamburg Centre for Ultrafast Imaging (CUI), University of Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany.,Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Notkestrasse 85, Build. 22A, 22607, Hamburg, Germany
| | - Robin Schubert
- European X-Ray Free Electron Laser GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Sven Falke
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607, Hamburg, Germany
| | - Kristina Lorenzen
- European X-Ray Free Electron Laser GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Karen Trchounian
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, Alex Manoogian 1, 0025, Yerevan, Armenia
| | - Christian Betzel
- The Hamburg Centre for Ultrafast Imaging (CUI), University of Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany. .,Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Notkestrasse 85, Build. 22A, 22607, Hamburg, Germany.
| |
Collapse
|
39
|
Royal Jelly Components Encapsulation in a Controlled Release System—Skin Functionality and Biochemical Activity for Skin Applications. Pharmaceuticals (Basel) 2022; 15:ph15080907. [PMID: 35893731 PMCID: PMC9332036 DOI: 10.3390/ph15080907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 02/06/2023] Open
Abstract
Royal jelly is a yellowish-white substance with a gel texture that is secreted from the hypopharyngeal and mandibular glands of young worker bees. It consists mainly of water (50–56%), proteins (18%), carbohydrates (15%), lipids (3–6%), minerals (1.5%), and vitamins, and has many beneficial properties such as antimicrobial, anti-inflammatory, anticancer, antioxidant, antidiabetic, immunomodulatory, and anti-aging. Royal jelly has been used since ancient times in traditional medicine, cosmetics and as a functional food due to its high nutritional value. The main bioactive substances are royalactin, and 10-hydroxy-2-decenoic acid (10-HDA). Other important bioactive molecules with antioxidant and photoprotective skin activity are polyphenols. However, they present difficulties in extraction and in use as they are unstable physicochemically, and a higher temperature causes color change and component degradation. In the present study, a new encapsulation and delivery system consisting of liposomes and cyclodextrins incorporating royal jelly has been developed. The new delivery system aims to the elimination of the stability disadvantages of royal jelly’s sensitive component 10-HDA, but also to the controlled release of its ingredients and, more particularly, 10-HDA, for an enhanced bioactivity in cosmeceutical applications.
Collapse
|
40
|
Fan P, Sha F, Ma C, Wei Q, Zhou Y, Shi J, Fu J, Zhang L, Han B, Li J. 10-Hydroxydec-2-Enoic Acid Reduces Hydroxyl Free Radical-Induced Damage to Vascular Smooth Muscle Cells by Rescuing Protein and Energy Metabolism. Front Nutr 2022; 9:873892. [PMID: 35711556 PMCID: PMC9196250 DOI: 10.3389/fnut.2022.873892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/08/2022] [Indexed: 12/22/2022] Open
Abstract
10-Hydroxydec-2-enoic acid (10-HDA), an unsaturated hydroxyl fatty acid from the natural food royal jelly, can protect against cell and tissue damage, yet the underlying mechanisms are still unexplored. We hypothesized that the neutralization of the hydroxyl free radical (•OH), the most reactive oxygen species, is an important factor underlying the cytoprotective effect of 10-HDA. In this study, we found that the •OH scavenging rate by 10-HDA (2%, g/ml) was more than 20%, which was achieved through multiple-step oxidization of the -OH group and C=C bond of 10-HDA. Moreover, 10-HDA significantly enhanced the viability of vascular smooth muscle cells (VSMCs) damaged by •OH (P < 0.01), significantly attenuated •OH-derived malondialdehyde production that represents cellular lipid peroxidation (P < 0.05), and significantly increased the glutathione levels in •OH-stressed VSMCs (P < 0.05), indicating the role of 10-HDA in reducing •OH-induced cytotoxicity. Further proteomic analyses of VSMCs identified 195 proteins with decreased expression by •OH challenge that were upregulated by 10-HDA rescue and were primarily involved in protein synthesis (such as translation, protein transport, ribosome, and RNA binding) and energy metabolism (such as fatty acid degradation and glycolysis/gluconeogenesis). Taken together, these findings indicate that 10-HDA can effectively promote cell survival by antagonizing •OH-induced injury in VSMCs. To the best of our knowledge, our results provide the first concrete evidence that 10-HDA-scavenged •OH could be a potential pharmacological application for maintaining vascular health.
Collapse
Affiliation(s)
- Pei Fan
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Fangfang Sha
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Chuan Ma
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiaohong Wei
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yaqi Zhou
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Jing Shi
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Jiaojiao Fu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Lu Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Bin Han
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianke Li
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
41
|
Bagameri L, Baci GM, Dezmirean DS. Royal Jelly as a Nutraceutical Natural Product with a Focus on Its Antibacterial Activity. Pharmaceutics 2022; 14:1142. [PMID: 35745715 PMCID: PMC9227439 DOI: 10.3390/pharmaceutics14061142] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 02/06/2023] Open
Abstract
Royal jelly (RJ) is one of the most valued natural products and is known for its health-promoting properties. Due to its therapeutic effects, it has been used in medicine since antiquity. Nowadays, several studies indicate that RJ acts as a powerful antimicrobial agent. Indeed, researchers shed light on its antioxidant and anticancer activity. RJ's biological properties are related to its bioactive compounds, such as proteins, peptides, phenolic, and fatty acids. The aim of this review is to highlight recent findings on RJ's main bioactive compounds correlated with its health-promoting properties. The available literature suggests that these bioactive compounds can be used as an alternative approach in order to enhance human health. Moreover, throughout this paper, we underline the prominent antibacterial effect of RJ against several target bacterial strains. In addition, we briefly discuss other therapeutic activities, such as antioxidative and anticancer effects, of this outstanding natural product.
Collapse
Affiliation(s)
- Lilla Bagameri
- Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Gabriela-Maria Baci
- Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | | |
Collapse
|
42
|
Apitherapy and Periodontal Disease: Insights into In Vitro, In Vivo, and Clinical Studies. Antioxidants (Basel) 2022; 11:antiox11050823. [PMID: 35624686 PMCID: PMC9137511 DOI: 10.3390/antiox11050823] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 12/17/2022] Open
Abstract
Periodontal diseases are caused mainly by inflammation of the gums and bones surrounding the teeth or by dysbiosis of the oral microbiome, and the Global Burden of Disease study (2019) reported that periodontal disease affects 20-50% of the global population. In recent years, more preference has been given to natural therapies compared to synthetic drugs in the treatment of periodontal disease, and several oral care products, such as toothpaste, mouthwash, and dentifrices, have been developed comprising honeybee products, such as propolis, honey, royal jelly, and purified bee venom. In this study, we systematically reviewed the literature on the treatment of periodontitis using honeybee products. A literature search was performed using various databases, including PubMed, Web of Science, ScienceDirect, Scopus, clinicaltrials.gov, and Google Scholar. A total of 31 studies were reviewed using eligibility criteria published between January 2016 and December 2021. In vitro, in vivo, and clinical studies (randomized clinical trials) were included. Based on the results of these studies, honeybee products, such as propolis and purified bee venom, were concluded to be effective and safe for use in the treatment of periodontitis mainly due to their antimicrobial and anti-inflammatory activities. However, to obtain reliable results from randomized clinical trials assessing the effectiveness of honeybee products in periodontal treatment with long-term follow-up, a broader sample size and assessment of various clinical parameters are needed.
Collapse
|
43
|
Al Nohair SF, Ahmed SS, Ismail MS, El Maadawy AA, Albatanony MA, Rasheed Z. Potential of honey against the onset of autoimmune diabetes and its associated nephropathy, pancreatitis, and retinopathy in type 1 diabetic animal model. Open Life Sci 2022; 17:351-361. [PMID: 35480484 PMCID: PMC8989157 DOI: 10.1515/biol-2022-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 11/23/2021] [Accepted: 01/03/2022] [Indexed: 11/15/2022] Open
Abstract
Honey has been used as a traditional remedy for various health benefits. This study investigated the potential of honey against the onset of autoimmune diabetes and its associated secondary complications in type 1 diabetic (T1D) experimental animals. Autoimmune diabetes was induced in Sprague Dawley rats, and at the same time, the rats were treated with honey or metformin. Sandwich ELISAs were used to estimate blood glucose, hemoglobin A1C (HbA1c), total cholesterol, and triglycerides. Histopathological examinations determined the T1D-induced lesions on kidneys, pancreas, cornea, and retina. Treatment of rats with honey during the course of T1D induction showed a significant reduction in fasting-blood-glucose and HbA1c (p < 0.01), and total lipid profile was also improved (p < 0.05). Not only these, but honey also reduced the T1D-induced lesions in the kidney, pancreas, and cornea/retina (p < 0.05). Metformin showed similar effects and was used as a positive control. In conclusion, honey showed therapeutic potential against the onset of autoimmune diabetes, as it reduces blood glucose/HbA1c and improves the lipid profile by reducing the plasma levels of total cholesterol, low-density lipoproteins (LDL), very low-density lipoprotein (VLDL), and triglycerides. Moreover, it also showed protective potential against the development of diabetic nephropathy, pancreatitis, and retinopathy.
Collapse
Affiliation(s)
- Sultan Fahad Al Nohair
- Department of Family and Community Medicine, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Syed Suhail Ahmed
- Department of Medical Microbiology, College of Medicine, Qassim University, Buraidah, Qassim, Saudi Arabia
| | - Mohamed Saleh Ismail
- Department of Nutrition and Food Sciences, Menoufia University, Shebin El-Kom, Egypt
| | - Ahdab Abdo El Maadawy
- Home Economics Dept, Faculty of Specific Education, Zagazig University, Zagazig, Egypt
| | - Manal A. Albatanony
- Department of Family Medicine, College of Medicine, Qassim University, Unaizah, Saudi Arabia
| | - Zafar Rasheed
- Department of Medical Biochemistry, College of Medicine, Qassim University, P.O. Box 6655, Buraidah-51452, Saudi Arabia
| |
Collapse
|
44
|
Chi X, Liu Z, Wang H, Wang Y, Xu B, Wei W. Regulation of a New Type of Selenium-Rich Royal Jelly on Gut Microbiota Profile in Mice. Biol Trace Elem Res 2022; 200:1763-1775. [PMID: 34170447 DOI: 10.1007/s12011-021-02800-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022]
Abstract
Royal jelly (RJ) and selenium (Se)-rich foods have well-known health benefits which are attributable to a broad range of pharmacologic effects including antioxidant, bacteriostatic, anticancer, and immunoregulatory activities. However, there was no study to combine Se with RJ. Here, Se-rich RJ (SRJ) was produced by feeding sodium selenite to honeybees (Apis mellifera). To further clarify the function of SRJ, mice were then fed RJ or SRJ for 30 days, and their antioxidant capacity and gut microbiota profile were analyzed. The results showed that SRJ treatment could more effectively increase glutathione peroxidase levels in the liver and kidney, as well as total antioxidant activity in the liver and superoxide dismutase level in the kidney. Additionally, the ratio of Firmicutes/Bacteroidetes and relative abundance of the Lachnospiraceae and Prevotellaceae families were increased, whereas the abundance of Helicobacterceae was decreased in mice treated with SRJ. At the genus level, SRJ increased the relative abundance of Lachnospiraceae NK4A136 group, Prevotellaceae UCG 001, Rikenellaceae RC9 gut group, and Oscillibacter and decreased that of Alistipes. And the functional prediction of gut microbiota indicated SRJ treatment could enhance the amino acid metabolism. Correlation analysis indicated that SRJ could optimize the functional network of gut microbiota and the interactions between the gut microbiota and the host. These results suggested the SRJ had potential therapeutic applications in the improvement of overall health or treatment of diseases related to oxidative stress or dysbiosis.
Collapse
Affiliation(s)
- Xuepeng Chi
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai' an, 271018, Shandong, China
| | - Zhenguo Liu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai' an, 271018, Shandong, China
| | - Hongfang Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai' an, 271018, Shandong, China
| | - Ying Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai' an, 271018, Shandong, China
| | - Baohua Xu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai' an, 271018, Shandong, China.
| | - Wei Wei
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai' an, 271018, Shandong, China
| |
Collapse
|
45
|
Antifungal, antibiofilm and anti-resistance activities of Brazilian monofloral honeys against Candida spp. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
46
|
Dumitru CD, Neacsu IA, Grumezescu AM, Andronescu E. Bee-Derived Products: Chemical Composition and Applications in Skin Tissue Engineering. Pharmaceutics 2022; 14:750. [PMID: 35456584 PMCID: PMC9030501 DOI: 10.3390/pharmaceutics14040750] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 02/05/2023] Open
Abstract
Skin tissue regeneration is one of the population's most common problems, and the complications that may appear in the healing process can have detrimental consequences. An alternative to conventional treatments could be represented by sustainable materials based on natural products, such as honey and its derivates (propolis, royal jelly, bee pollen, beeswax, and bee venom). They exhibit significant inhibitory activities against bacteria and have great potential in dermal tissue regeneration. Research in the pharmaceutical field demonstrates that conventional medication combined with bee products can deliver better results. The advantages include minimizing side effects and maintaining the same effectiveness by using low concentrations of antibiotic, anti-inflammatory, or chemotherapy drugs. Several studies suggested that bee products can replace the antimicrobial activity and efficiency of antibiotics, but further investigation is needed to establish a topical mixture's potential, including honey, royal jelly, and propolis. Bee products seem to complete each other's deficiencies, and their mixture may have a better impact on the wound healing process. The topic addressed in this paper highlights the usefulness of honey, propolis, royal jelly, bee pollen, beeswax, and bee venom in the re-epithelization process and against most common bacterial infections.
Collapse
Affiliation(s)
- Corina Dana Dumitru
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Ionela Andreea Neacsu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| |
Collapse
|
47
|
Kim YH, Kim BY, Kim JM, Choi YS, Lee MY, Lee KS, Jin BR. Differential Expression of Major Royal Jelly Proteins in the Hypopharyngeal Glands of the Honeybee Apis mellifera upon Bacterial Ingestion. INSECTS 2022; 13:insects13040334. [PMID: 35447776 PMCID: PMC9025693 DOI: 10.3390/insects13040334] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 01/27/2023]
Abstract
Simple Summary Transgenerational immune priming (TGIP) to elicit social immunity in the honeybee Apis mellifera has two axes: the first is the ingested pathogen fragments–vitellogenin (Vg)–queen’s ovary axis for the developing embryo, and the second is the ingested pathogen fragments–Vg–nurse’s hypopharyngeal gland axis for the queen and young larvae through royal jelly. However, the dynamics of the expression of the major royal jelly proteins (MRJPs) in the hypopharyngeal glands of A. mellifera nurse bees after bacterial ingestion must be determined to improve our understanding of the second axis of TGIP. In this study, we investigated the expression patterns of MRJPs 1–7 and defensin-1 in the hypopharyngeal glands and Vg in the fat body of nurse bees fed with live or heat-killed Paenibacillus larvae over 12 h or 24 h by using northern blot analysis. We found that the expression of MRJPs and defensin-1 in the hypopharyngeal glands and Vg in the fat body was significantly induced in nurse bees upon bacterial ingestion, indicating that the differential expression patterns of MRJPs, defensin-1, and Vg were dependent on the bacterial status and timing of bacterial ingestion. We also found that antimicrobial peptide (AMP) genes showed induced expression in young larvae upon bacterial ingestion. In summary, our findings indicate that MRJPs in the hypopharyngeal glands are upregulated along with Vg in the fat body of nurse bees upon bacterial ingestion, providing novel insights into the ingested pathogen fragments–Vg–nurse’s hypopharyngeal gland axis for TGIP. Abstract Honeybee vitellogenin (Vg) transports pathogen fragments from the gut to the hypopharyngeal glands and is also used by nurse bees to synthesize royal jelly (RJ), which serves as a vehicle for transferring pathogen fragments to the queen and young larvae. The proteomic profile of RJ from bacterial-challenged and control colonies was compared using mass spectrometry; however, the expression changes of major royal jelly proteins (MRJPs) in hypopharyngeal glands of the honeybee Apis mellifera in response to bacterial ingestion is not well-characterized. In this study, we investigated the expression patterns of Vg in the fat body and MRJPs 1–7 in the hypopharyngeal glands of nurse bees after feeding them live or heat-killed Paenibacillus larvae. The expression levels of MRJPs and defensin-1 in the hypopharyngeal glands were upregulated along with Vg in the fat body of nurse bees fed with live or heat-killed P. larvae over 12 h or 24 h. We observed that the expression patterns of MRJPs and defensin-1 in the hypopharyngeal glands and Vg in the fat body of nurse bees upon bacterial ingestion were differentially expressed depending on the bacterial status and the time since bacterial ingestion. In addition, the AMP genes had increased expression in young larvae fed heat-killed P. larvae. Thus, our findings indicate that bacterial ingestion upregulates the transcriptional expression of MRJPs in the hypopharyngeal glands as well as Vg in the fat body of A. mellifera nurse bees.
Collapse
Affiliation(s)
- Yun-Hui Kim
- College of Natural Resources and Life Science, Dong-A University, Busan 49315, Korea; (Y.-H.K.); (B.-Y.K.); (J.-M.K.)
| | - Bo-Yeon Kim
- College of Natural Resources and Life Science, Dong-A University, Busan 49315, Korea; (Y.-H.K.); (B.-Y.K.); (J.-M.K.)
| | - Jin-Myung Kim
- College of Natural Resources and Life Science, Dong-A University, Busan 49315, Korea; (Y.-H.K.); (B.-Y.K.); (J.-M.K.)
| | - Yong-Soo Choi
- Department of Agricultural Biology, National Academy of Agricultural Science, Wanju 55365, Korea; (Y.-S.C.); (M.-Y.L.)
| | - Man-Young Lee
- Department of Agricultural Biology, National Academy of Agricultural Science, Wanju 55365, Korea; (Y.-S.C.); (M.-Y.L.)
| | - Kwang-Sik Lee
- College of Natural Resources and Life Science, Dong-A University, Busan 49315, Korea; (Y.-H.K.); (B.-Y.K.); (J.-M.K.)
- Correspondence: (K.-S.L.); (B.-R.J.)
| | - Byung-Rae Jin
- College of Natural Resources and Life Science, Dong-A University, Busan 49315, Korea; (Y.-H.K.); (B.-Y.K.); (J.-M.K.)
- Correspondence: (K.-S.L.); (B.-R.J.)
| |
Collapse
|
48
|
Khan KA, Ghramh HA. Evaluation of queen cell acceptance and royal jelly production between hygienic and non-hygienic honey bee (Apis mellifera) colonies. PLoS One 2022; 17:e0266145. [PMID: 35344573 PMCID: PMC8959157 DOI: 10.1371/journal.pone.0266145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/15/2022] [Indexed: 01/18/2023] Open
Abstract
Honey bees are crucial for pollination services globally and produce important hive products including honey, royal jelly, pollen, and propolis that are being used commercially in food, cosmetics, and alternative medicinal purposes. Among the bee products, royal jelly (RJ) has long attracted scientists' interest because of its importance in honey caste differentiation. The present research was carried out to determine the acceptance rate of queen cells, and RJ production between the hygienic and non-hygienic lines. Further, this study unveils the effect of pollen substitute diets on the queen cell acceptance rate and RJ yields between both bee stocks. Results showed that the uncapped brood cells and dead brood's removal percentage was significantly more in hygienic bee colonies in comparison to non-hygienic bee colonies (p < 0.05). The average percentage of larval acceptance was statistically higher in hygienic lines (64.33 ± 2.91%) compared to non-hygienic lines (29.67 ± 1.20%). Similarly, the RJ mean weight per colony differed statistically between both bee stocks (p<0.001), which were 12.23 ± 0.52 g and 6.72 ± 0.33 g, respectively. Moreover, our results demonstrated that a significant difference was observed in larval acceptance rate, RJ yields (per colony and per cup) between both bee stocks those fed on various diets. However, no significant difference was recorded in RJ yields (per colony and per cup) between both bee stock that feeds on either commercially available pollen or pollen substitute. This study may provide future applications in helping bee breeders to choose the bees that carry a higher level of hygienic behavior with high RJ production traits.
Collapse
Affiliation(s)
- Khalid Ali Khan
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Hamed A. Ghramh
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
49
|
Hamza RZ, Al-Eisa RA, El-Shenawy NS. Possible Ameliorative Effects of the Royal Jelly on Hepatotoxicity and Oxidative Stress Induced by Molybdenum Nanoparticles and/or Cadmium Chloride in Male Rats. BIOLOGY 2022; 11:450. [PMID: 35336823 PMCID: PMC8945475 DOI: 10.3390/biology11030450] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 01/24/2023]
Abstract
The present study aimed to investigate the effect of the royal jelly (RJ) on hepatotoxicity induced by molybdenum nanoparticles (MoO3-NPs), cadmium chloride (CdCl2), or their combination in male rats at biochemical, inflammation, immune response, histological, and ultrastructural levels. The physicochemical properties of MoO3-NPs have been characterized, as well as their ultrastructural organization. A rat experimental model was employed to assess the liver toxicity of MoO3-NPs, even in combination with CdCl2. Different cellular studies indicate divergent mechanisms, from increased reactive oxygen species production to antioxidative damage and cytoprotective activity. Seventy male rats were allocated to groups: (i) control; (ii) MoO3-NPs (500 mg/kg); (iii) CdCl2 (6.5 mg/kg); (iv) RJ (85 mg/kg diluted in saline); (v) MoO3-NPs followed by RJ (30 min after the MoO3-NPs dose); (vi) CdCl2 followed by RJ; and (vii) a combination of MoO3-NPs and CdCl2, followed by RJ, for a total of 30 successive days. Hepatic functions, lipid profile, inflammation marker (CRP), antioxidant biomarkers (SOD, CAT, GPx, and MDA), and genotoxicity were examined. Histological changes, an immunological marker for caspase-3, and transmission electron microscope variations in the liver were also investigated to indicate liver status. The results showed that RJ alleviated the hepatotoxicity of MoO3-NPs and/or CdCl2 by improving all hepatic vitality markers. In conclusion, the RJ was more potent and effective as an antioxidant over the oxidative damage induced by the combination of MoO3-NPs and CdCl2.
Collapse
Affiliation(s)
- Reham Z. Hamza
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
- Biology Department, Main Campus, College of Science, Taif University, Taif 21944, Saudi Arabia;
| | - Rasha A. Al-Eisa
- Biology Department, Main Campus, College of Science, Taif University, Taif 21944, Saudi Arabia;
| | - Nahla S. El-Shenawy
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt; or
| |
Collapse
|
50
|
Functional probiotic yoghurt production with royal jelly fortification and determination of some properties. Int J Gastron Food Sci 2022. [DOI: 10.1016/j.ijgfs.2022.100519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|