1
|
Dias RS, Martinez DP, Leite FPL, Avila LFDCD, Kremer FS. Pato: prediction of probiotic bacteria using metabolic features. Braz J Microbiol 2025; 56:1169-1178. [PMID: 40266486 PMCID: PMC12095092 DOI: 10.1007/s42770-025-01678-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 04/11/2025] [Indexed: 04/24/2025] Open
Abstract
Probiotics have gained recognition for their health-promoting benefits, particularly in the gastrointestinal and immunological systems. Among promising probiotic candidates, Lactobacillus strains, belonging to the lactic acid bacteria (LAB) group, play a significant role in human microbiota. To aid in the in silico identification of Lactobacillus strains with probiotic potential, this study presents a novel classification approach based on functional and metabolism-related elements, which offers improved accuracy and explainability compared to traditional k-mer-based methods. By considering the functional characteristics of genomic sequences, this approach contributes to a clearer understanding of the traits associated with probiotic activity, facilitating the selection of strains with optimal health-promoting attributes. The webserver is available at http://200.132.101.156:5001/ .
Collapse
Affiliation(s)
- Rafaella Sinnott Dias
- Laboratório de Bioinformática OmixLab, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Daniela Peres Martinez
- Laboratório de Bioinformática OmixLab, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Fábio Pereira Leivas Leite
- Laboratório de Bioinformática OmixLab, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | | | - Frederico Schmitt Kremer
- Laboratório de Bioinformática OmixLab, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil.
| |
Collapse
|
2
|
Qiu X, Zou Z, Lin T, Guo C, Lin D. Engineered Lactobacillus rhamnosus Producing 3-Hydroxybutyrate: A Dual-Action Therapeutic Strategy for Colon Cancer Cachexia. Biotechnol Bioeng 2025; 122:1574-1589. [PMID: 40055977 DOI: 10.1002/bit.28972] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/11/2025] [Accepted: 02/28/2025] [Indexed: 05/13/2025]
Abstract
3-hydroxybutyrate (3-HB), an essential endogenous metabolite, shows significant therapeutic potential in several disease contexts. However, its clinical application has been hampered by limitations, such as adverse effects on the gut microbiota. This study introduces a genetically engineered strain of Lactobacillus rhamnosus GG (LGGK) that integrates the benefits of 3-HB production with the probiotic properties of LGG. Using a murine colon cancer cachexia (CAC) model, LGGK supplementation significantly improved survival, reduced tumor progression, and alleviated muscle wasting. LGGK restored gut microbial diversity, increased the abundance of beneficial bacteria, and increased the production of short-chain fatty acids while reducing harmful microbial populations. In addition, LGGK supplementation demonstrated anti-inflammatory effects, effectively reducing elevated pro-inflammatory cytokines in serum and skeletal muscle. These findings highlight LGGK as a dual-action therapeutic approach that utilizes the metabolic benefits of 3-HB and the gut-modulating properties of LGG. This innovation offers a promising strategy for the treatment of CAC and potentially other metabolic and inflammatory disorders, and highlights the potential of engineered probiotics in advanced therapeutic applications.
Collapse
Affiliation(s)
- Xu Qiu
- Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Zhiyun Zou
- Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Taijie Lin
- Shanghai Diglean Health Technology Development Co., Shanghai, China
| | - Chenyun Guo
- Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Donghai Lin
- Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| |
Collapse
|
3
|
Xue C, Lu M, Qin Y, Zhao X, Yang J, Yuan S, Wang Z, Cho N, Jiang C. Polygonati Rhizoma polysaccharide suppresses microglial activation and promotes functional recovery of spinal cord via improving intestinal microbiota. Int J Biol Macromol 2025; 313:143934. [PMID: 40345303 DOI: 10.1016/j.ijbiomac.2025.143934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 04/16/2025] [Accepted: 05/03/2025] [Indexed: 05/11/2025]
Abstract
Spinal cord injury (SCI) can disrupt the gut microbiome and metabolites, impacting prognosis, substantially impairing quality of life, and leading to high socioeconomic costs (Jing et al., 2021). Recent studies indicate that plant polysaccharides exhibit antimicrobial, anti-inflammatory, and immune-enhancing properties, contributing positively to various neurological disorders; however, their role in SCI remains uncertain (Hou et al., 2020 [2]; Aswini et al., 2021 [3]; Dou et al., 2019 [4]). Polygonati Rhizoma polysaccharide (PRP) has shown anti-inflammatory and immunoregulatory effects, but its role in SCI remains unexplored. This study investigated whether PRP facilitates functional recovery after SCI by modulating the gut microbiota and SCFA levels. PRP was administered to SCI mice, and motor function was assessed using DeepLabCut-based behavioral analysis. Histological evaluations were performed with H&E, Nissl, and immunofluorescence staining. Microglial activation and inflammation were analyzed by Western blot and immunofluorescence. Gut microbiota composition and SCFAs were examined through 16S rRNA sequencing and targeted metabolite profiling. PRP treatment significantly improved motor function, reduced microglial activation, and attenuated neuroinflammation. These effects were associated with restoration of microbial diversity and elevated butyrate levels. This study highlights the role of the gut-brain axis in neural regeneration and suggests PRP as a promising therapeutic candidate for SCI.
Collapse
Affiliation(s)
- Chang Xue
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea; Jiuhuashan Polygonati Rhizoma Research Institute, Chizhou 247100, China
| | - Mengqi Lu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Jiuhuashan Polygonati Rhizoma Research Institute, Chizhou 247100, China.
| | - Yuwen Qin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Jiuhuashan Polygonati Rhizoma Research Institute, Chizhou 247100, China.
| | - Xiaoli Zhao
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jinfeng Yang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Shutong Yuan
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Zhouguang Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Namki Cho
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Chengxi Jiang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Jiuhuashan Polygonati Rhizoma Research Institute, Chizhou 247100, China.
| |
Collapse
|
4
|
Yu M, Xu M, Wang G, Feng J, Zhang M. Parasympathetic pathway in melatonin regulation exogenous melatonin alleviates abnormal glucose metabolism in the breast muscle under long-term light exposure through the parasympathetic pathway. J Adv Res 2025:S2090-1232(25)00367-4. [PMID: 40449661 DOI: 10.1016/j.jare.2025.05.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 05/17/2025] [Accepted: 05/23/2025] [Indexed: 06/03/2025] Open
Abstract
INTRODUCTION Human beings and animals have been exposed to long-term artificial lighting environments to induce glucose metabolism disorder. Melatonin (MT) is involved in the regulation of glucolipid metabolism, and can prevent skeletal muscle wasting as well as sarcopenia-associated diseases. However, the effect of exogenous MT on skeletal muscle glucose metabolism and the involvement of the parasympathetic pathway have not been clarified. OBJECTIVES To investigate the role of parasympathetic regulatory pathway in the mediating the effects of exogenous MT on skeletal muscle glucose metabolism following long-term light exposure. METHODS This study established rapid growth period broiler models, while characterized muscle histological analysis, glucose metabolism indexes and related genes expression through parasympathetic activation, exogenous MT administration and exogenous MT with parasympathetic inhibition experiments. RESULTS Long-term light exposure inhibited muscle glycogen synthesis, promoted muscle glycogen decomposition, increased anaerobic glycolysis, decreased aerobic respiration and induced the injury in breast muscle. Parasympathetic activation and exogenous MT caused a marked improvement in muscle glycogen accumulation, aerobic glycolysis and the injury in breast muscle. The exogenous MT beneficial functions were alleviated by parasympathetic inhibition. Furthermore, parasympathetic activation and exogenous MT administration protected cecal microbiota homeostasis, by improving stability of the gut microbiota community and increasing the relative abundance of Lactobacillus. Lactobacillus abundance was positively associated with muscle glycogen accumulation. CONCLUSION Taken together, this study highlighted the role of the novel parasympathetic regulatory pathway in the effects of exogenous MT in maintaining glucose metabolism homeostasis and restoring the damage in skeletal muscle with long-term light exposure. The results indicate that gut microbiota are involved in the MT-parasympathetic regulatory network. This study filles the gap in autonomic nervous-endocrine regulation under long light exposure, and provides a new insight to alleviate long light exposure-induced glucose metabolism disorders to improve the growth and health of humans and animals.
Collapse
Affiliation(s)
- Miao Yu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Haidian, Beijing 100193, China
| | - Mengjie Xu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Haidian, Beijing 100193, China
| | - Guangju Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Haidian, Beijing 100193, China; Adaptation Physiology Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Jinghai Feng
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Haidian, Beijing 100193, China
| | - Minhong Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Haidian, Beijing 100193, China.
| |
Collapse
|
5
|
Jiang Q, Zou H, Zhong F, Ma J. Effect of probiotics on prognosis in patients with hepatectomy: a systematic review and meta-analysis of randomized controlled trial. BMC Pharmacol Toxicol 2025; 26:109. [PMID: 40420172 DOI: 10.1186/s40360-025-00944-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 05/12/2025] [Indexed: 05/28/2025] Open
Abstract
OBJECTIVE To investigate the effect of perioperative probiotics on prognosis in patients with hepatectomy. METHOD By conducting a computer-based search of electronic databases to collect randomized controlled trials (RCTs) on the use of probiotics in the perioperative period for patients undergoing liver resection. Two researchers independently screened the literature, extracted data, assessed bias risk, and performed a meta-analysis using RevMan 5.4 software. RESULT A total of 988 patients were enrolled across 14 studies. The results of the meta-analysis revealed that the probiotics group had lower rates of postoperative infectious complications (OR = 0.49; 95%CI 0.49 to 0.60; P < 0.01), serum endotoxin levels (SMD= -0.69; 95%CI -1.27 to -0.11; P = 0.02), white blood cell counts (SMD= -0.37; 95%CI -0.67 to -0.061.47; P = 0.02), hospital stays (SMD= -0.85; 95%CI -1.53 to -0.18; P = 0.01), and first postoperative exhaust times (SMD= -0.85; 95%CI -1.53 to -0.18; P = 0.01) compared to the control group. No significant differences in liver function indices (alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBiL) and international normalized ratio (INR)) or postoperative inflammatory markers (C-reactive protein (CRP), procalcitonin, interleukin-6 (IL-6)) were found between the two groups (all P > 0.05). CONCLUSIONS Probiotics used perioperatively can lower postoperative infection risk and shorten hospital stays for hepatectomy patients, but they do not appear to aid in liver function restoration or inflammation reduction. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Qinghu Jiang
- Department of Hepatobiliary Surgery, Dazhou Integrated TCM & Western Medicine Hospital, Dazhou, Sichuan, 635000, China.
| | - Hua Zou
- Department of Hepatobiliary Surgery, Dazhou Integrated TCM & Western Medicine Hospital, Dazhou, Sichuan, 635000, China
| | - Furui Zhong
- Department of General Surgery, Zigong Fourth People's Hospital, Zigong, Sichuan, China
| | - Jian Ma
- Department of Hepatobiliary Surgery, Dazhou Integrated TCM & Western Medicine Hospital, Dazhou, Sichuan, 635000, China
| |
Collapse
|
6
|
Wang W, Lu Y, Wu B, Peng S, Cai W, Xiao Y. Multi-omics analysis reveals Lactobacillus and Indolelactic acid involved in small intestinal adaptation of piglet with short bowel syndrome. Nutr Metab (Lond) 2025; 22:47. [PMID: 40405192 PMCID: PMC12096513 DOI: 10.1186/s12986-025-00938-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 05/05/2025] [Indexed: 05/24/2025] Open
Abstract
BACKGROUND Short bowel syndrome (SBS) is a condition characterized by malabsorption that occurs when a patient loses a significant amount of bowel length or function, often necessitating lifelong parenteral nutrition support. This study utilized multi-omics analysis to investigate alterations in gut microbiota, metabolism, and transcriptome during the progression of intestinal adaptation in SBS using a piglet model. METHODS We established a model of SBS in Bama mini piglets by performing a 75% jejunoileal resection. Fifteen piglets were randomized into EN, PN, and PN-SBS groups. Fecal samples were collected for 16 S rRNA gene-based microbiota analysis. Ileal mucosa and serum were collected for untargeted liquid chromatography-mass spectrometry. Transcriptomic analysis on ileal mucosa was performed. RESULTS The PN-SBS model was established in the newborn piglets. A significant decrease in species-level diversity was observed in piglets with SBS, accompanied by alterations in their microbiome compositions. The beneficial anaerobes from Bacillota and Bacteroidota were depleted while microorganisms from Verrucomicrobiota and Fusobacteriota were enriched in feces from SBS piglets. The dysregulation of metabolites and metabolic pathways was observed in the metabolic profiles of ileal mucosa and serum in SBS piglets. Indolelactic acid (ILA) levels were found to be reduced in the ileal mucosa and serum of SBS piglets. Transcriptomic analysis revealed an extensive functional alteration in SBS, primarily manifested as metabolic changes and intestinal proliferation. The multi-omics analysis revealed that the decreased abundance of Lactobacillus may result in a diminished production of their metabolite ILA, thereby influencing intestinal proliferation and anti-inflammatory responses. CONCLUSION Disrupted homeostasis of gut microbiota, metabolism, and transcriptome were reported in the SBS piglets. Multi-omics analysis demonstrated Lactobacillus and its metabolite ILA may be involved in small intestinal adaptation of SBS. These alterations may contribute to the proinflammatory state and the delay of intestinal adaptation in SBS, which in turn provide promising targets for therapies.
Collapse
Affiliation(s)
- Weipeng Wang
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, No. 1665, Kong Jiang Road, Shanghai, China
| | - Ying Lu
- Division of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute of Pediatric Research, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Bo Wu
- Division of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shicheng Peng
- Shanghai Institute of Pediatric Research, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Wei Cai
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, No. 1665, Kong Jiang Road, Shanghai, China
- Division of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute of Pediatric Research, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Yongtao Xiao
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, No. 1665, Kong Jiang Road, Shanghai, China.
- Division of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Institute of Pediatric Research, Shanghai, China.
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.
| |
Collapse
|
7
|
Qiao Y, Zheng H, Cheng R, Guo J, Ji L, Liu Z, Wei L, Bi H, Shan Z. High-fat diet-induced osteoporosis in mice under hypoxic conditions. BMC Musculoskelet Disord 2025; 26:487. [PMID: 40380162 PMCID: PMC12082882 DOI: 10.1186/s12891-025-08725-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Accepted: 05/05/2025] [Indexed: 05/19/2025] Open
Abstract
In the context of global aging, osteoporosis has emerged as a significant public health concern, with a relatively high prevalence observed in plateau regions. This study aimed to investigate the effects and underlying mechanisms of high-fat diet (HFD) and hypoxic conditions on bone metabolism in mice. The mice were subjected to different dietary regimens (a HFD versus a normal diet) and placed in a hypoxic environment. This study explored relevant mechanisms through comprehensive assessments, including body and bone morphological indices, pathological examinations, biochemical analyses, evaluation of gut microbiota diversity, and metabolomics approaches. The results indicated that, compared with those in the control group, the body weight, Lee's index, body mass index (BMI), and body fat percentage of the HFD-fed group were significantly greater. Additionally, the femoral microstructure was compromised, bone metabolic markers were disrupted, inflammatory responses were heightened, gut microbiota diversity was altered, and specific intestinal metabolites such as Anserine were downregulated, whereas L-carnosine was upregulated. Spearman correlation analysis and network visualization elucidated the multifactorial influence mechanism of a HFD on bone metabolism under hypoxic conditions. These factors interconnect to form a complex network that drives osteoporosis development. Notably, L-carnosine occupies a central position within this network, serving as a key hub for interactions among various factors. Under the dual stressors of hypoxia and a HFD, this network becomes imbalanced, leading to bone metabolic disorders and osteoporosis. This study provides insights into the multifactorial mechanisms of osteoporosis induced by a HFD and hypoxia in mice, offering a foundation for subsequent research and preventive strategies for osteoporosis in plateau areas.
Collapse
Affiliation(s)
- Yajun Qiao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, 23 Xinning Road, Xining, 810001, China
- University of Chinese Academy of Sciences, 19(A) yuquan road, Beijing, 10049, China
| | - Huimin Zheng
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, 23 Xinning Road, Xining, 810001, China
- Department of Pharmacy, Qinghai Minzu University, Xining, 810007, China
| | - Ruiying Cheng
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, 23 Xinning Road, Xining, 810001, China
- University of Chinese Academy of Sciences, 19(A) yuquan road, Beijing, 10049, China
| | - Juan Guo
- Department of Orthopedic Surgery, People's Hospital of Qinghai Province, 2 Gonghe Road, Xining, 810007, China
- University of Chinese Academy of Sciences, 19(A) yuquan road, Beijing, 10049, China
- Xining Chengxi District Center for Disease Control and Prevention, Fuxing Lane 8, Xining, 810007, China
| | - Li Ji
- Department of Orthopedic Surgery, People's Hospital of Qinghai Province, 2 Gonghe Road, Xining, 810007, China
| | - Zhibin Liu
- Department of Orthopedic Surgery, People's Hospital of Qinghai Province, 2 Gonghe Road, Xining, 810007, China
| | - Lixin Wei
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, 23 Xinning Road, Xining, 810001, China
- University of Chinese Academy of Sciences, 19(A) yuquan road, Beijing, 10049, China
| | - Hongtao Bi
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, 23 Xinning Road, Xining, 810001, China.
- University of Chinese Academy of Sciences, 19(A) yuquan road, Beijing, 10049, China.
| | - Zhongshu Shan
- Department of Orthopedic Surgery, People's Hospital of Qinghai Province, 2 Gonghe Road, Xining, 810007, China.
| |
Collapse
|
8
|
Chen Y, Han Q. Engineering advanced bacterial therapy for tumor and inflammatory diseases. Int J Pharm 2025; 676:125585. [PMID: 40216039 DOI: 10.1016/j.ijpharm.2025.125585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 04/17/2025]
Abstract
Bacteria have emerged as a promising living medicine for diseases in recent years. With rapid advancements in synthetic biology and materials science, engineered bacterial therapy has encountered new opportunities. Leveraging inherent genetic reprogramming capabilities and surface chemistry modification advantages, engineered bacterial therapy enables selective functional recombination and precise spatiotemporal control, thereby enhancing therapeutic efficacy against diseases. This review summarizes the advantages of engineered bacterial therapy and various engineering strategies employed. Moreover, it outlines representative studies of engineered bacterial therapy in the treatment of tumors and inflammatory diseases, summarizing diverse engineered approaches that enhance the efficacy for these conditions, offering novel avenues for efficient disease management. In addition, current limitations and challenges in utilizing engineered bacterial therapy are discussed, providing insights for further innovation in biomedicine. Specifically, the potential and prospects of oral engineered bacteria in treating gastrointestinal tumors and inflammatory diseases have been explored.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Biological Resource Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China
| | - Qiuju Han
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
9
|
Sugahara H, Nagayama K, Sashihara K, Nagatomi Y. Extracellular vesicles derived from specific lactic acid bacteria have agonistic activity against formyl peptide receptor 2. J Biosci Bioeng 2025:S1389-1723(25)00105-7. [PMID: 40379531 DOI: 10.1016/j.jbiosc.2025.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/15/2025] [Accepted: 04/23/2025] [Indexed: 05/19/2025]
Abstract
Lactic acid bacteria (LAB) play important roles in food microbiology and human health. Extracellular vesicles (EVs), which are drug transporters that contain functional components, derived from LAB have been recognized as materials with various beneficial effects, such as their anti-inflammatory effects. Owing to the complexity arising from strain-dependent functional differences in LAB, the functions of EVs derived from LAB have not been well elucidated. To investigate the strain-specific functions of EVs from LAB, we evaluated the ability of EVs from different LAB to induce interleukin 10 (IL-10) secretion by M2-like macrophages. The use of EVs with an increased capacity to induce IL-10 secretion and a G protein-coupled receptor (GPCR) assay revealed that EVs derived from specific lactic acid bacterial strains have agonistic effects against formyl peptide receptor 2 (FPR2). A strong and significant correlation between the ability of EVs derived from LAB to induce IL-10 secretion and agonistic activity against FPR2 was identified, and treatment with an FPR2 antagonist reduced the secretion of IL-10 induced by EVs from a specific lactic acid bacterial strain. Ultraviolet B (UVB) irradiation-induced damage to human keratinocytes was reversed after treatment with EVs with agonistic activity against FPR2, and this restorative effect was abolished by treatment with an FPR2 antagonist. In this study, we demonstrate for the first time that EVs derived from specific LAB have agonistic activity against FPR2; this activity could be a crucial factor in the anti-inflammatory effects of EVs released from specific LAB.
Collapse
Affiliation(s)
- Hirosuke Sugahara
- Core Technology Laboratories, Asahi Quality and Innovations Ltd., Midori 1-Chome, Moriya-Shi, Ibaraki 302-0106, Japan.
| | - Keitaro Nagayama
- Core Technology Laboratories, Asahi Quality and Innovations Ltd., Midori 1-Chome, Moriya-Shi, Ibaraki 302-0106, Japan
| | - Koichi Sashihara
- Core Technology Laboratories, Asahi Quality and Innovations Ltd., Midori 1-Chome, Moriya-Shi, Ibaraki 302-0106, Japan
| | - Yasushi Nagatomi
- Core Technology Laboratories, Asahi Quality and Innovations Ltd., Midori 1-Chome, Moriya-Shi, Ibaraki 302-0106, Japan
| |
Collapse
|
10
|
Xu H, Yang M, Fu J, Lv H, Guo J, Lu C, Lv Z, Guo Y. Usnic acid and tannic acid as inhibitors of coccidia and Clostridium perfringens: alleviating necrotic enteritis and improving intestinal health in broiler chickens. J Anim Sci Biotechnol 2025; 16:67. [PMID: 40355956 PMCID: PMC12067911 DOI: 10.1186/s40104-025-01201-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/27/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Necrotic enteritis (NE) in broiler chickens leads to significant economic losses in poultry production. This study examined the inhibitory effects of usnic acid and tannic acid on coccidia, sporozoite, and Clostridium perfringens and assessed their influence on growth performance and intestinal health in NE-challenged broilers through in vitro and in vivo experiments. METHODS The in vitro experiment included 5 treatment groups: the negative control (NC), 2 μmol/L diclazuril (DZ), 30 μmol/L usnic acid (UA), 90 μmol/L tannic acid (TA), and 15 μmol/L usnic acid + 45 μmol/L tannic acid (UTA) groups. The in vivo experiment involved 320 broilers divided into four groups: PC (NE-challenged), SA (500 mg/kg salinomycin premix + NE-challenged), UA (300 mg/kg usnic acid + NE-challenged), and UTA (300 mg/kg usnic acid + 500 mg/kg tannic acid + NE-challenged) groups. RESULTS In the in vitro study, the UA, TA, and UTA treatments significantly increased apoptosis in coccidian oocysts and sporozoites, lowered the mitochondrial membrane potential (P < 0.05), and disrupted the oocyst structure compared with those in the NC group. UA and TA had inhibitory effects on C. perfringens, with the strongest inhibition observed in the UTA group. The in vivo results demonstrated that the SA group presented significantly improved growth performance on d 13, 21, and 28 (P < 0.05), whereas the UA and UTA groups presented improvements on d 13 and 21 (P < 0.05). The SA, UA, and UTA treatments reduced the intestinal lesion scores by d 28 and the fecal coccidian oocyst counts from d 19 to 21 (P < 0.05). Compared with the PC group, the UA and UTA groups presented lower intestinal sIgA levels and CD8+ cell percentages (P < 0.05), with a trend toward a reduced CD3+ cell percentage (P = 0.069). The SA, UA, and UTA treatments significantly reduced the serum diamine oxidase activity, crypt depth, and platelet-derived growth factor levels in the intestinal mucosa while increasing the villus height to crypt depth ratio and number of goblet cells (P < 0.05). The UTA treatment also significantly increased the acetate and butyrate concentrations in the cecum (P < 0.05). With respect to the gut microbiota, significant changes in β diversity in the ileum and cecum were observed in the SA, UA, and UTA groups, indicating that the microbial community compositions differed among the groups. Romboutsia dominated the SA group, Bacillales dominated the UA group, and Lactobacillales and Lachnospirales dominated the UTA group in the ileal microbiota. In the cecal microbiota, Lactobacillus, Butyricicoccus, and Blautia abundances were significantly elevated in the UTA group (P < 0.05). CONCLUSION Usnic acid and tannic acid induce apoptosis in coccidia and sporozoites by lowering the mitochondrial membrane potential. Both usnic acid alone and in combination with tannic acid alleviate NE-induced adverse effects in broilers by modulating intestinal immunity, altering the microbial composition, and improving intestinal barrier function. Compared with usnic acid alone, the combination of usnic acid and tannic acid had superior effects, providing a promising basis for the development of effective feed additive combinations.
Collapse
Affiliation(s)
- Huiping Xu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Minghao Yang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jianyang Fu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Huiyuan Lv
- Beijing Centre Biology Co., Ltd., Beijing, 100193, China
| | - Jiang Guo
- Fujian Sunner Development Co., Ltd., Nanping, 354199, China
| | - Changji Lu
- Fujian Sunner Development Co., Ltd., Nanping, 354199, China
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
11
|
Shafiei M, Mardi S, Ghadimi S, Poorshahbazi H, Pourabbas R, Keykhah M, Rafiemanesh H. Efficacy and tolerability of probiotics, prebiotics, and symbiotics consumption on oral complications of patients with thyroid and head and neck cancers: a systematic review and meta-analysis. BMC Oral Health 2025; 25:677. [PMID: 40316921 PMCID: PMC12049045 DOI: 10.1186/s12903-025-05876-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/26/2025] [Indexed: 05/04/2025] Open
Abstract
BACKGROUND Oral complications following cancer treatment are a challenging issue for oncologists. Several studies have demonstrated the efficacy of biotics in the prevention and treatment of oral complications in thyroid and head and neck cancers. METHODS Following the PRISMA criteria, a systematic review and meta-analysis of included studies on efficacy, safety, dosage, and duration of treatment was performed. RESULTS A total of 12 randomized controlled trials and a total of 885 individuals were included in this meta-analysis. Our analysis showed that biotics had a slight but insignificant effect on the incidence of oral mucositis (Risk ratio (RR) = 0.90, 95% CI [0.79, 1.03]), and a significant impact on reducing the severity of oral mucositis (RR = 0.62, 95% CI [0.48, 0.80]). Biotics also had a slight but insignificant effect in developing xerostomia in thyroid and Head and neck cancer (HNC) patients. Subgroup meta-analysis demonstrated that Bifidobacterium-containing products were more effective than other blends. CONCLUSION Our findings demonstrated that biotics are effective and safe for HNC and thyroid patients suffering from oral complications.
Collapse
Affiliation(s)
- Mohammadreza Shafiei
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| | - Shayan Mardi
- Student Research Committee, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Soodeh Ghadimi
- School of Medicine, Azad University of Medical Sciences, Tehran, Iran
| | - Helia Poorshahbazi
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Roozbeh Pourabbas
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammadamin Keykhah
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Hosein Rafiemanesh
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
12
|
Wei L, Bai J, Zhang Y, Suo H, Wang C. Comparison of in vitro fermentation characteristics of carob gum and guar gum. Int J Biol Macromol 2025; 311:143886. [PMID: 40319966 DOI: 10.1016/j.ijbiomac.2025.143886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 04/27/2025] [Accepted: 05/01/2025] [Indexed: 05/07/2025]
Abstract
Carob gum (CG) and guar gum (GG) are widely used as additives in food processing; however, their fermentation properties in the human gut and potential effects on the human body are unclear. This study used an in vitro fermentation model to evaluate the interaction of CG and GG with intestinal flora and compare their fermentation characteristics. The results showed that CG and GG could be degraded and utilized by the intestinal flora. GG can increase the production of acetic acid, propionic acid, and butyric acid and the relative abundance of beneficial microorganisms such as Prevotella and Faecalibacterium. CG promotes propionic acid production and the relative abundance of beneficial microorganisms such as Bifidobacterium and Lactobacillus. Metabolomic studies have shown that fermented CG and GG mainly affect human metabolic pathways. GG promotes amino acid and lipid metabolism, and CG promotes amino acid metabolism and biosynthesis of secondary metabolites. This research shows that despite significant differences in how CG and GG interact with the gut microbiota, both may affect the human body.
Collapse
Affiliation(s)
- Li Wei
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Junying Bai
- Citrus Research Institute, Southwest University, Chongqing 400700, China
| | - Yuyan Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
13
|
Han Y, Cao B, Tang J, Wang J. A comprehensive multi-omics analysis uncovers the associations between gut microbiota and pancreatic cancer. Front Microbiol 2025; 16:1592549. [PMID: 40376462 PMCID: PMC12078283 DOI: 10.3389/fmicb.2025.1592549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 04/17/2025] [Indexed: 05/18/2025] Open
Abstract
Pancreatic cancer is one of the most lethal malignant neoplasms. Pancreatic cancer is related to gut microbiota, but the associations between its treatment and microbial abundance as well as genetic variations remain unclear. In this study, we collected fecal samples from 58 pancreatic cancer patients including 43 pancreatic ductal adenocarcinoma (PDAC) and 15 non-PDAC, and 40 healthy controls, and shotgun metagenomic sequencing and untargeted metabolome analysis were conducted. PDAC patients were divided into five groups according to treatment and tumor location, including treatment-naive (UT), chemotherapy (CT), surgery combined with chemotherapy (SCT), Head, and body/tail (Tail) groups. Multivariate association analysis revealed that both CT and SCT were associated with increased abundance of Lactobacillus gasseri and Streptococcus equinus. The microbial single nucleotide polymorphisms (SNPs) densities of Streptococcus salivarius, Streptococcus vestibularis and Streptococcus thermophilus were positively associated with CT, while Lachnospiraceae bacterium 2_1_58FAA was positively associated with Head group. Compared with Tail group, the Head group showed positive associations with opportunistic pathogens, such as Escherichia coli, Shigella sonnei and Shigella flexneri. We assembled 424 medium-quality non-redundant metagenome-assembled genomes (nrMAGs) and 276 high-quality nrMAGs. In CT group, indole-3-acetic acid, capsaicin, sinigrin, chenodeoxycholic acid, and glycerol-3-phosphate were increased, and the accuracy of the model based on fecal metabolites reached 0.77 in distinguishing healthy controls and patients. This study identifies the associations between pancreatic cancer treatment and gut microbiota as well as its metabolites, reveals bacterial SNPs are related to tumor location, and extends our knowledge of gut microbiota and pancreatic cancer.
Collapse
Affiliation(s)
- Yang Han
- Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
| | - Biyang Cao
- The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jiayue Tang
- The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jing Wang
- The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
14
|
Fan F, Wang Z, Luo Q, Liu Z, Xiao Y, Ren Y. Medical Potential of Insect Symbionts. INSECTS 2025; 16:457. [PMID: 40429170 PMCID: PMC12111880 DOI: 10.3390/insects16050457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/18/2025] [Accepted: 04/24/2025] [Indexed: 05/29/2025]
Abstract
Insect symbionts and their metabolites are complex and diverse and are gradually becoming an important source of new medical materials. Some culturable symbionts from insects produce a variety of active compounds with medical potential. Among them, fatty acids, antibacterial peptides, polyene macrolides, alkaloids, and roseoflavin can inhibit the growth of human pathogenic bacteria and fungi; lipases, yeast killer toxins, reactive oxygen species, pyridines, polyethers, macrotetrolide nactins, and macrolides can kill human parasites; and peptides and polyketides can inhibit human tumors. However, due to difficulty in the culture of symbionts in vitro, difficulty in targeting bacteria to specific sites in the human body, the limited capability of symbionts to produce active metabolites in vitro, inconsistent clinical research results, adverse reactions on humans, and the development of antibiotic resistance, the application of insect symbionts and their metabolites in the medical field remains in its infancy. This paper summarizes the medical potential of insect symbionts and their metabolites and analyzes the status quo and existing problems with their medical application. Possible solutions to these problems are also proposed, with the aim of hastening the utilization of insect symbionts and their metabolites in the medical field.
Collapse
Affiliation(s)
- Fanglei Fan
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China; (F.F.); (Q.L.); (Z.L.)
| | - Zhengyan Wang
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China; (F.F.); (Q.L.); (Z.L.)
| | - Qiong Luo
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China; (F.F.); (Q.L.); (Z.L.)
| | - Zhiyuan Liu
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China; (F.F.); (Q.L.); (Z.L.)
| | - Yu Xiao
- College of Environmental and Life Sciences, Murdoch University, Perth, WA 6150, Australia;
| | - Yonglin Ren
- College of Environmental and Life Sciences, Murdoch University, Perth, WA 6150, Australia;
| |
Collapse
|
15
|
Bertola B, Cotolí-Crespo A, San Onofre N, Soriano JM. The Mystery of Certain Lactobacillus acidophilus Strains in the Treatment of Gastrointestinal Symptoms of COVID-19: A Review. Microorganisms 2025; 13:944. [PMID: 40284780 PMCID: PMC12029412 DOI: 10.3390/microorganisms13040944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/08/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025] Open
Abstract
COVID-19 presents a wide range of symptoms, including gastrointestinal manifestations such as diarrhea, nausea, and abdominal pain. Lactobacillus acidophilus has been proposed as a potential adjunct therapy to alleviate these symptoms due to its probiotic properties, which help restore gut microbiota balance and modulate immune responses. This review systematically analyzed studies assessing the effects of L. acidophilus in COVID-19 patients with gastrointestinal symptoms. The literature search was conducted through PubMed and the WHO COVID-19 database using keywords such as "Lactobacillus acidophilus", "COVID-19", "gastrointestinal symptoms", and "inflammation markers". The search covered studies published until February 2025. Inclusion criteria: observational and clinical trials with L. acidophilus for symptom relief. Exclusion: animal studies and non-ethical approvals. The findings suggest that L. acidophilus supplementation may contribute to faster resolution of diarrhea, improved gut microbiota balance, and reduced inflammatory markers. However, some studies have found no significant impact on hospitalization rates or disease progression. The probiotic's mechanisms of action appear to involve microbiota modulation, intestinal barrier reinforcement, and anti-inflammatory effects rather than direct viral inhibition in COVID-19 after progression. Some L. acidophilus strains show promise, and clinical validation should follow careful preclinical studies (in vitro, cell lines, and animal models), especially in vulnerable populations such as immunocompromised individuals. Understanding the gut-lung axis and its role in immune response regulation, together with the need for a thorough characterization of the specific strains, including biochemical, genomic, and functional properties, before testing in humans, may provide deeper insights into the therapeutic potential of probiotics in viral infections.
Collapse
Affiliation(s)
- Belén Bertola
- Food & Health Lab, Institute of Materials Science, University of Valencia, 46980 Paterna, Spain;
| | - Amparo Cotolí-Crespo
- Faculty of Psychology and Speech Therapy, University of Valencia, 46010 Valencia, Spain;
| | - Nadia San Onofre
- NUTRALiSS Research Group, Faculty of Health Sciences, Universitat Oberta de Catalunya, Rambla del Poblenou 156, 08018 Barcelona, Spain;
| | - Jose M. Soriano
- Food & Health Lab, Institute of Materials Science, University of Valencia, 46980 Paterna, Spain;
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, University of Valencia-Health Research Institute La Fe, 46026 Valencia, Spain
| |
Collapse
|
16
|
Ionescu VA, Diaconu CC, Gheorghe G, Mihai MM, Diaconu CC, Bostan M, Bleotu C. Gut Microbiota and Colorectal Cancer: A Balance Between Risk and Protection. Int J Mol Sci 2025; 26:3733. [PMID: 40332367 PMCID: PMC12028331 DOI: 10.3390/ijms26083733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 05/08/2025] Open
Abstract
The gut microbiome, a complex community of microorganisms residing in the intestinal tract, plays a dual role in colorectal cancer (CRC) development, acting both as a contributing risk factor and as a protective element. This review explores the mechanisms by which gut microbiota contribute to CRC, emphasizing inflammation, oxidative stress, immune evasion, and the production of genotoxins and microbial metabolites. Fusobacterium nucleatum, Escherichia coli (pks+), and Bacteroides fragilis promote tumorigenesis by inducing chronic inflammation, generating reactive oxygen species, and producing virulence factors that damage host DNA. These microorganisms can also evade the antitumor immune response by suppressing cytotoxic T cell activity and increasing regulatory T cell populations. Additionally, microbial-derived metabolites such as secondary bile acids and trimethylamine-N-oxide (TMAO) have been linked to carcinogenic processes. Conversely, protective microbiota, including Lactobacillus, Bifidobacterium, and Faecalibacterium prausnitzii, contribute to intestinal homeostasis by producing short-chain fatty acids (SCFAs) like butyrate, which exhibit anti-inflammatory and anti-carcinogenic properties. These beneficial microbes enhance gut barrier integrity, modulate immune responses, and inhibit tumor cell proliferation. Understanding the dynamic interplay between pathogenic and protective microbiota is essential for developing microbiome-based interventions, such as probiotics, prebiotics, and fecal microbiota transplantation, to prevent or treat CRC. Future research should focus on identifying microbial biomarkers for early CRC detection and exploring personalized microbiome-targeted therapies. A deeper understanding of host-microbiota interactions may lead to innovative strategies for CRC management and improved patient outcomes.
Collapse
Affiliation(s)
- Vlad Alexandru Ionescu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania; (V.A.I.); (G.G.); (M.-M.M.)
- Internal Medicine Department, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
| | - Camelia Cristina Diaconu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania; (V.A.I.); (G.G.); (M.-M.M.)
- Internal Medicine Department, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
- Academy of Romanian Scientists, 050085 Bucharest, Romania;
| | - Gina Gheorghe
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania; (V.A.I.); (G.G.); (M.-M.M.)
- Internal Medicine Department, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
| | - Mara-Madalina Mihai
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania; (V.A.I.); (G.G.); (M.-M.M.)
- Department of Oncologic Dermathology, “Elias” University Emergency Hospital, 010024 Bucharest, Romania
| | - Carmen Cristina Diaconu
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.C.D.); (M.B.)
| | - Marinela Bostan
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.C.D.); (M.B.)
- Department of Immunology, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania
| | - Coralia Bleotu
- Academy of Romanian Scientists, 050085 Bucharest, Romania;
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.C.D.); (M.B.)
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 060023 Bucharest, Romania
| |
Collapse
|
17
|
Zhang Z, Zhu L, Zhang H, Yu D, Yin Z, Zhan X. Comparative Study on the Effects of Selenium-Enriched Yeasts with Different Selenomethionine Contents on Gut Microbiota and Metabolites. Int J Mol Sci 2025; 26:3315. [PMID: 40244176 PMCID: PMC11989349 DOI: 10.3390/ijms26073315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
Selenium is an essential trace element for human health, but it mainly exists in an inorganic form that cannot be directly absorbed by the body. Brewer's yeast efficiently converts inorganic selenium into bioavailable organic selenium, making selenium-enriched yeast highly significant for human health research. Selenomethionine (SeM) is an important indicator for evaluating the quality of selenium-enriched yeast. Brewer's yeast was selected as the experimental subject, and the digestion of this yeast (Brewer's yeast) was simulated using an in vitro biomimetic gastrointestinal reactor to evaluate the effects of selenium-enriched yeast with various SeM levels on the gut flora of a healthy population. The experimental design comprised normal yeast (control group, OR), yeast containing moderate SeM levels (selenium-enriched group, SE), yeast containing high SeM levels (high-selenium group, MU), and a commercially available group comprising selenium-enriched yeast tablets (MA). The MU group exhibited a significantly higher concentration of short-chain fatty acids than the OR and MA groups during 48 h of fermentation, with significant differences observed (p < 0.05). Sequencing results revealed that the MU group showed significantly increased relative abundances of Bacteroidetes and Actinobacteria, while exhibiting a decreased ratio of Firmicutes to Bacteroidetes, which may simultaneously affect multiple metabolic pathways in vivo. These findings support the theory that selenium-enriched yeast with a high SeM has a more positive effect on human health compared with traditional yeast and offer new ideas for the development and application of selenium-enriched yeast.
Collapse
Affiliation(s)
- Zijian Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.Z.); (H.Z.); (D.Y.); (Z.Y.)
| | - Li Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.Z.); (H.Z.); (D.Y.); (Z.Y.)
- A & F Biotech. Ltd., Burnaby, BC V5A 3P6, Canada
| | - Hongtao Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.Z.); (H.Z.); (D.Y.); (Z.Y.)
| | - Dan Yu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.Z.); (H.Z.); (D.Y.); (Z.Y.)
| | - Zhongwei Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.Z.); (H.Z.); (D.Y.); (Z.Y.)
| | - Xiaobei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.Z.); (H.Z.); (D.Y.); (Z.Y.)
| |
Collapse
|
18
|
Lam LY, Liang TR, Wu WJ, Lam HYP. Intestinal Lactobacillus johnsonii protects against neuroangiostrongyliasis in BALB/c mice through modulation of immune response. PLoS Negl Trop Dis 2025; 19:e0012977. [PMID: 40198714 PMCID: PMC11978024 DOI: 10.1371/journal.pntd.0012977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/12/2025] [Indexed: 04/10/2025] Open
Abstract
Neuroangiostrongyliasis is characterized by eosinophilic meningoencephalitis with a robust onset of severe neurological symptoms, by which immunological factors and peripheral metabolites have been postulated to affect the course of the disease. The gut-brain axis provides a bidirectional communication between the gut and the central nervous system, and therefore, understanding the gut microbiome may provide us with a deeper insight into the pathogenesis of angiostrongyliasis. Using 16S rRNA sequencing, we identified an increase in the abundance of different Lactobacillus species in Angiostrongylus cantonensis-infected mice, which was correlated to the disease severity. However, attempts to inoculate L. johnsonii into A. cantonensis-infected mice surprisingly revealed an improvement in neuroinflammation and prolonged survival. RNA sequencing suggested an immune-modulatory effect of L. johnsonii, which was confirmed by ELISA, showing increased levels of IL-10 and reduced levels of IL-2, IL-4, IL-5, and MCP-1 in the brain. Nevertheless, L. johnsonii-associated improvements were not associated with microbiome-related metabolites, as UHPLC-MS/MS analysis revealed no change in short-chain fatty acids, tryptophan metabolites, and bile acids. Our results suggest that while intestinal L. johnsonii appears to be linked to the progression of neuroangiostrongyliasis, these bacteria are likely attempting to modulate the dysregulated immune response to combat the disease. This is one of the first studies to investigate the gut microbiome in mice with A. cantonensis infection, which extends our knowledge from the microbiome-point-of-view of the pathogenesis of angiostrongyliasis and how the body defends against A. cantonensis. This work also extends to possible treatment approaches using L. johnsonii as probiotics.
Collapse
Affiliation(s)
- Long Yin Lam
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Ting-Ruei Liang
- PhD Program in Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan
| | - Wen-Jui Wu
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
| | - Ho Yin Pekkle Lam
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
19
|
Chen H, Li J, Wu Y, Li Y, Zheng S, Wu Y, Xuan R, Wu L, Miao J, Wang Y, Tan H, Zhou J, Huang J, Yan X. Structural characteristics of intestinal microbiota of domestic ducks with different body sizes. Poult Sci 2025; 104:104930. [PMID: 40056781 PMCID: PMC11930160 DOI: 10.1016/j.psj.2025.104930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/10/2025] Open
Abstract
Domestic ducks are economically important agricultural animals, and their body size is a crucial economic trait. The intestinal flora plays a pivotal role in influencing body metabolism, growth, and development. Currently, no literature is available on the potential effect of the intestinal flora of domestic ducks on body size. This study used 16S rRNA sequencing technology to investigate the fecal microbiota of 229 individuals reared under identical feeding conditions. The findings revealed that partridge ducks with large body sizes (LBS) exhibited a higher level of intestinal microbial diversity than ducks with small body sizes (SBS). Notably, the gut microbiota composition of SBS displayed significantly elevated proportions of Streptococcus, Rothia, and Psychrobacter compared to their counterparts with LBS. Conversely, Lactobacillus was significantly more abundant in LBS. Jeotgalibaca and Psychrobacter were identified as key biomarkers of SBS, whereas Lactobacillus and Bacteroides were predominant biomarkers of LBS. Functional predictions based on intestinal microbiota indicated discernible differences among different body types, particularly evident in non- partridge ducks. The present study investigated the correlation between the intestinal microbiota and body size of domestic ducks, aiming to provide practical insights for the production management of domestic duck farming.
Collapse
Affiliation(s)
- Hao Chen
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Jiawei Li
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Yongfei Wu
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Yuhang Li
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Sumei Zheng
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Yan Wu
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Rui Xuan
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Liping Wu
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Junjie Miao
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Yanan Wang
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Hongli Tan
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Jing Zhou
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Jianhua Huang
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China.
| | - Xueming Yan
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China.
| |
Collapse
|
20
|
Dai Y, Yu Q, Zhang F, Ma K, Yan X, Chen W, Chen X, Li S, Han S. Effect of probiotics on necrotizing enterocolitis in preterm infants: a network meta-analysis of randomized controlled trials. BMC Pediatr 2025; 25:237. [PMID: 40140789 PMCID: PMC11948853 DOI: 10.1186/s12887-025-05469-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 01/28/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Previous studies have suggested that probiotics may have potential benefits for preterm infants. Their efficacy seems to depend on the particular species or combinations used. METHODS To further investigate the effects of probiotics in preventing necrotizing enterocolitis (NEC) and other related outcomes in preterm infants, we conducted a network meta-analysis of 51 randomized controlled trials involving 11,661 participants. RESULTS Our study revealed that most probiotics can effectively reduce the incidence of NEC (at or beyond Bell's stage II). Lactobacillus (RR, 0.59; 95% CI: 0.29, 0.98), the combination of Bifidobacterium and Lactobacillus (RR, 0.47; 95% CI: 0.20, 0.87), and the combination of Bifidobacterium, Lactobacillus, and Streptococcus (RR, 0.17; 95% CI: 0.00, 0.84) were the only treatments that significantly reduced all-cause mortality compared to placebo. Lactobacillus can be effective in reducing the time preterm infants spend in the hospital (MD, -4.23; 95% CI: -7.62, -0.81) and reaching full enteral feeding (MD, -2.15; 95% CI: -3.70, -0.64). CONCLUSIONS The combination of Bifidobacterium, Lactobacillus, and Enterococcus was the most efficacious in reducing the mortality and incidence of NEC (Bell II or above) in preterm infants. Both prebiotics and Lactobacillus alone were found to be highly effective in reducing the length of hospitalization and the time needed to achieve full enteral feeding. No evidence suggests that probiotics affect sepsis risk. TRIAL REGISTRATION The study protocol was registered with PROSPERO (CRD42023460231) on March 10, 2023.
Collapse
Affiliation(s)
- Yu Dai
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123 Tian Fei Xiang, Mo Chou Road, Nanjing, 210004, China
| | - Qinlei Yu
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123 Tian Fei Xiang, Mo Chou Road, Nanjing, 210004, China
| | - Fan Zhang
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123 Tian Fei Xiang, Mo Chou Road, Nanjing, 210004, China
| | - Ke Ma
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123 Tian Fei Xiang, Mo Chou Road, Nanjing, 210004, China
| | - Xiangyun Yan
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123 Tian Fei Xiang, Mo Chou Road, Nanjing, 210004, China
| | - Wenjuan Chen
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123 Tian Fei Xiang, Mo Chou Road, Nanjing, 210004, China
| | - Xiaohui Chen
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123 Tian Fei Xiang, Mo Chou Road, Nanjing, 210004, China.
| | - Shushu Li
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123 Tian Fei Xiang, Mo Chou Road, Nanjing, 210004, China.
| | - Shuping Han
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123 Tian Fei Xiang, Mo Chou Road, Nanjing, 210004, China.
| |
Collapse
|
21
|
Duan L, Zhang X, Wang D, Xin J, Jiang Y, Sun N, Chen B, Luo J, He Y, Pan K, Zeng Y, Jing B, Ni X, Liu H. Effect of Probiotic Product Containing Heyndrickxia coagulans TBC169 on Hyperuricemia in Rats. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10519-0. [PMID: 40126815 DOI: 10.1007/s12602-025-10519-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2025] [Indexed: 03/26/2025]
Abstract
Hyperuricemia (HUA) is a metabolic disease characterized by elevated serum uric acid, which is closely related to the gut microbiota. Probiotics have great potential in improving HUA. The purpose of this study was to evaluate the effect and mechanism of probiotic product (SQK) containing Heyndrickxia coagulans TBC169 on HUA rats. Forty SD rats (6 weeks old, 200 ± 20 g) were randomly divided into four groups (Ctrl group, HUA group, SQK1 group, and SQK2 group) of 10 rats each. Rats were given potassium oxonate (100 mg potassium oxonate/100 g BW/day) for 12 weeks to establish HUA model and simultaneously administered with sterile saline (HUA group) or different dose of SQK (SQK1 group, 20.48 mg SQK/100 g BW/day; SQK2 group, 40.95 mg SQK/100 g BW/day) throughout the 12 weeks. The results showed that SQK could degrade uric acid precursors and inhibit the xanthine oxidase (XOD) activity in vitro. Oral supplementation of SQK can reverse the increase of serum uric acid, the increase of the liver and serum XOD activity, and the decrease of ABCG2 expression in the ileum induced by HUA. In addition, SQK could restore the changes in α and β diversity of the ileal microbiota and prevent the increase in pathogenic Helicobacter and Staphylococcus caused by HUA. 16S rRNA sequencing and correlation analysis showed that the chondroitin sulfate (CS) degradation pathway of the gut microbiota played a key role in the prevention of HUA in the SQK group. These findings suggest that SQK may improve HUA by reducing uric acid synthesis and increasing uric acid excretion and provide a basis for its development into a probiotic product to improve HUA.
Collapse
Affiliation(s)
- Lixiao Duan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xingting Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dandan Wang
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jinge Xin
- Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yi Jiang
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ning Sun
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Benhao Chen
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jiuyang Luo
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuhao He
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Kangcheng Pan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yan Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bo Jing
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
| | - Hongfa Liu
- Division of Nephrology, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
22
|
Lam LN, Savage KE, Shakir CN, Lemos JA. Genome-wide analysis of Enterococcus faecalis genes that facilitate interspecies competition with Lactobacillus crispatus. J Bacteriol 2025; 207:e0043824. [PMID: 39902966 PMCID: PMC11925238 DOI: 10.1128/jb.00438-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/15/2025] [Indexed: 02/06/2025] Open
Abstract
Enterococci are opportunistic pathogens notorious for causing a variety of infections. While both Enterococcus faecalis and Lactobacillus crispatus are commensal residents of the vaginal tract, the molecular mechanisms that enable E. faecalis to take advantage of a vaginal biome with lower counts of lactobacilli to colonize the vaginal tract and induce aerobic vaginitis remain unknown. Here, we show that L. crispatus eradicates E. faecalis in a contact-independent manner. Using transposon sequencing to identify E. faecalis OG1RF transposon (Tn) mutants that are either under-represented or over-represented when co-cultured with L. crispatus, we found that Tn mutants with disruption in the dltABCD operon, that encodes the proteins responsible for the D-alanylation of teichoic acids, and OG1RF_11697 encoding for an uncharacterized hypothetical protein are more susceptible to killing by L. crispatus. Inversely, Tn mutants with disruption in ldh1, which encodes for L-lactate dehydrogenase, are more resistant to L. crispatus killing. Using the Galleria mellonella infection model, we show that co-injection of L. crispatus with E. faecalis OG1RF enhances larvae survival while this L. crispatus-mediated protection was lost in larvae co-infected with either L. crispatus and E. faecalisΔldh1 or Δldh1Δldh2 strains. Last, using RNA sequencing to identify E. faecalis genes that are differently expressed in the presence of L. crispatus, we found major changes in the expression of genes associated with glycerophospholipid metabolism, central metabolism, and general stress responses. The findings in this study provide insights into how E. faecalis mitigate assaults by L. crispatus.IMPORTANCEEnterococcus faecalis is an opportunistic pathogen notorious for causing a multitude of infections. As vaginal commensals, E. faecalis must interact with Lactobacillus crispatus, but how E. faecalis overcomes or mitigate assaults by L. crispatus killing remains unknown. We show that L. crispatus eradicates E. faecalis temporally in a contact-independent manner. Using high-throughput molecular approaches, we identified genetic determinants that enable E. faecalis to compete with L. crispatus. This study represents an important first step for the identification of adaptive genetic traits required for enterococci to tolerate assaults by lactobacilli.
Collapse
Affiliation(s)
- Ling Ning Lam
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Kathryn E. Savage
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Camille N. Shakir
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - José A. Lemos
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
23
|
Wang YT, Wu H, Wu JJ, Yu YS, Wen J, Zou B, Li L, Peng J, Cheng LN, Bu ZB, Xu YJ, Hu TG. The hypoglycemic effect of mulberry ( Morus atropurpurea) fruit lacking fructose and glucose by regulation of the gut microbiota. Food Funct 2025; 16:2444-2460. [PMID: 40017446 DOI: 10.1039/d4fo02781g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Mulberries are known to be rich in hypoglycemic active substances such as anthocyanins and dietary fiber, which primarily aid in regulating gut microbiota. However, their high sugar content, such as fructose, hinders their application in hypoglycemic functional foods. This research utilized microbial fermentation technology to remove the fructose and glucose in mulberries (FM), subsequently evaluating their hypoglycemic properties and balancing gut microbiota. Results indicated that administering varying doses of FM to type 2 diabetic mice for five weeks notably decreased blood sugar and insulin levels, improved dyslipidemia and insulin resistance, enhanced antioxidant capacity, repaired organ damage, and regulated hypoglycemic activity by influencing mRNA expression of key signaling factors in the PI3K/Akt and AMPK pathways. Analysis of the intestinal microbiota composition revealed that FM can modulate specific bacterial populations, increasing beneficial bacteria like Lactobacillus, Bifidobacterium and Akkermansia while inhibiting harmful bacteria like Escherichia-Shigella and Helicobacter. This restoration of the intestinal microecological balance helped regulate host sugar metabolism homeostasis and affect the secretion of short chain fatty acid (SCFA) synthase in the gut microbiota to increase the production of SCFAs. These findings offer significant support for the potential use of FM in the treatment of diabetes.
Collapse
Affiliation(s)
- Ya-Ting Wang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, China.
- School of Food Science and Engineering, South China University of Technology, China
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology, China
| | - Ji-Jun Wu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, China.
| | - Yuan-Shan Yu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, China.
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, China
- Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, China
| | - Jing Wen
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, China.
| | - Bo Zou
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, China.
- Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, China
| | - Lu Li
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, China.
| | - Jian Peng
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, China.
| | - Li-Na Cheng
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, China.
| | - Zhi-Bin Bu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, China.
| | - Yu-Juan Xu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, China.
- Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, China
| | - Teng-Gen Hu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, China.
- Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, China
| |
Collapse
|
24
|
Li J, Wei W, Ma X, Ji J, Ling X, Xu Z, Guan Y, Zhou L, Wu Q, Huang W, Liu F, Zhao M. Antihypertensive effects of rice peptides involve intestinal microbiome alterations and intestinal inflammation alleviation in spontaneously hypertensive rats. Food Funct 2025; 16:1731-1759. [PMID: 39752320 DOI: 10.1039/d4fo04251d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Gut dysbiosis serves as an underlying risk factor for the development of hypertension. The resolution of this dysbiosis has emerged as a promising strategy in improving hypertension. Food-derived bioactive protein peptides have become increasingly more attractive in ameliorating hypertension, primarily due to their anti-inflammatory and anti-oxidant activities. However, the regulatory mechanisms linking rice peptides (RP), gut dysbiosis, and hypertension remain to be fully elucidated. In our study, male spontaneously hypertensive rats (SHR) were fed with chow diet and concomitantly treated with ddH2O (Ctrl) or varying doses of rice peptides (20, 100, or 500 mg (kg bw day)-1 designated as low-dose RP, LRP; medium-dose RP, MRP; high-dose RP, HAP) or captopril (Cap) by intragastric administration. Wistar-Kyoto (WKY) rats served as the normotensive control group and were orally administered with ddH2O. We observed beneficial effects of RP in lowering blood pressure and ameliorating cardiovascular risk profiles, as evidenced by improvements in glucolipid metabolic disorders, hepatic and renal damage, left ventricular hypertrophy and endothelial dysfunction in hypertensive rats. More importantly, we found that RP attenuated intestinal pathological damage, improved impaired intestinal barrier, and reduced intestinal inflammation by inhibiting the HMGB1-TLR4-NF-κB pathway. Notably, multi-omics integrative analyses have revealed that RP altered the composition and function of the gut microbiota. This is exemplified by the observed enrichment of beneficial bacterial constituents, such as g_Lactobacillus, g_Lactococcus, s_Lactobacillus_intestinalis, and Lactococcus lactis, and elevated production of microbiota-derived short-chain fatty acid metabolites. Collectively, these studies suggest that the hypotensive effects of RP may be associated with modulation of the gut microbiota and its short-chain fatty acids metabolites. This implicates the microbiota-gut-HMGB1-TLR4-NF-κB axis as a novel venue for the amelioration of hypertension and its complications.
Collapse
Affiliation(s)
- Juan Li
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Wei Wei
- Zhong Shi Du Qing (Shandong) Biotechnology Company, Heze, 274108, China.
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xiaomin Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
- Center for Experimental Public Health and Preventive Medicine Education, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Jing Ji
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Xiaomeng Ling
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Zhuyan Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Yutong Guan
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Leyan Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Qiming Wu
- Nutrilite Health Institute, Shanghai, 201203, China.
| | - Wenhua Huang
- AMWAY (China) R&D Center, Guangzhou, 510730, China.
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Min Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
25
|
Wang Z, Liu T, Liu L, Xie J, Tang F, Pi Y, Zhong Y, He Z, Zhang W, Zheng C. Lactobacillus vaginalis alleviates DSS induced colitis by regulating the gut microbiota and increasing the production of 3-indoleacrylic acid. Pharmacol Res 2025; 213:107663. [PMID: 39961405 DOI: 10.1016/j.phrs.2025.107663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disorder, and its incidence is experiencing an upward trend worldwide. UC can result in gut microbiota dysbiosis, impaired intestinal epithelial barrier, and systemic inflammation, for all of which there is presently no definitive treatment available. Lactobacillus is known to regulate gut microbiota and related metabolites to intervene in the development of UC. The objective of this study was to explore the underlying mechanism through which a novel probiotic, Lactobacillus vaginalis, alleviates DSS-induced colitis. Specifically, L. vaginalis were found to ameliorate the DSS-induced UC phenotype, restore intestinal microbiota balance and intestinal barrier function, and elevate the levels of 3-indoleacrylic acid (IAA) in mouse feces. Furthermore, fecal microbiota transplantation and fecal filtrate transplantation provide additional evidence that L. vaginalis alleviate DSS-induced colitis through metabolic products. Additionally, IAA has been shown to alleviate DSS-induced colitis symptoms, decrease inflammatory responses, and enhance intestinal barrier function. Finally, our findings confirm that L. vaginal and metabolites possess the capability to regulate the immune microenvironment in mice with colitis. And the RNA-seq analysis suggests that L. vaginal may play a pivotal role in alleviating colitis by modulating the PPAR signaling pathway. In conclusion, our findings suggest that oral administration of L. vaginalis alleviates DSS induced colonic inflammation by increasing the levels of IAA. L. vaginalis, as an emerging probiotic, provides a potential therapeutic strategy for clinical UC.
Collapse
Affiliation(s)
- Zhuoya Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Tian Liu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Li Liu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Graduate School of Jiangxi University of Chinese Medicine, Nanchang 330004, PR China
| | - Jian Xie
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Furui Tang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Yimin Pi
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Yuchun Zhong
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Zhidong He
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Wenming Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Jiangxi Province Key Laboratory of Precision Cell Therapy, The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China.
| | - Cihua Zheng
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China.
| |
Collapse
|
26
|
Zhou L, Chen SZ, Li YY, Xue RY, Duan X, Lin XY, Chen S, Zhou D, Li HB. Gut Dysbiosis Exacerbates Intestinal Absorption of Cadmium and Arsenic from Cocontaminated Rice in Mice Due to Impaired Intestinal Barrier Functions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:3459-3471. [PMID: 39945512 DOI: 10.1021/acs.est.5c00817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Globally, humans face gut microbiota dysbiosis; however, its impact on the bioavailability of cadmium (Cd) and arsenic (As) from rice consumption─a major source of human exposure to these metals─remains unclear. In this study, we compared Cd and As accumulation in the liver and kidneys of mice with disrupted gut microbiota (administered cefoperazone sodium), restored microbiota (administered probiotics and prebiotics following antibiotic exposure), and normal microbiota, all after consuming cocontaminated rice. Compared to normal mice, microbiota-disrupted mice exhibited 30.9-119% and 30.0-100% (p < 0.05) higher Cd and As levels in tissues after a 3 week exposure period. The increased Cd and As bioavailability was not due to changes in the duodenal expression of Cd-related transporters or As speciation biotransformation in the intestine. Instead, it was primarily attributed to a damaged mucus layer and depleted tight junctions associated with gut dysbiosis, which increased intestinal permeability. These mechanisms were confirmed by observing 34.3-74.3% and 25.0-75.0% (p < 0.05) lower Cd and As levels in the tissues of microbiota-restored mice with rebuilt intestinal barrier functions. This study enhances our understanding of the increased risk of dietary metal(loid) exposure in individuals with gut microbiota dysbiosis due to impaired intestinal barrier functions.
Collapse
Affiliation(s)
- Lei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Sheng-Zhi Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yuan-Yuan Li
- School of Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Rong-Yue Xue
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xu Duan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xin-Ying Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Shan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
27
|
Wang Y, Chen T, Shi Z, Dong L, Li M, Peng B, Li Q, Pan R, Xiao S, Yang Q, Jiang N, Liu X, Hu Q, Chen Y. Ginsenoside Reshapes Intestinal Microecology to Alleviate Microgravity Stress. Drug Des Devel Ther 2025; 19:1289-1303. [PMID: 40026331 PMCID: PMC11869762 DOI: 10.2147/dddt.s486371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 02/06/2025] [Indexed: 03/05/2025] Open
Abstract
Background During medium- to long-duration spaceflights, real-time microgravity can increase the health risks of astronauts. In particular, the disruption of intestinal homeostasis is closely related to other health problems, and it is necessary to monitor related treatment strategies. Ginseng is a well-known Chinese herbal medicine often used to maintain health. Ginseng total saponins (GTSs), which are the bioactive components of ginseng, have been reported to regulate immune homeostasis, anti-inflammation, and anti-oxidation. This study focused on the regulation of GTSs in intestinal homeostasis imbalance caused by microgravity. Methods A hindlimb suspension (HLS) rat model was established to evaluate the intestinal protective effects of GTSs. Differentially expressed genes (DEGs) were screened using RNA-Seq. RT-PCR was performed to further focus and verify these results. The gut microbiome composition was examined based on 16S rRNA gene amplicon sequencing, and the short-chain fatty acids produced were further analyzed. Results We found that GTSs intervention effectively improved the intestinal injury caused by simulated weightlessness, including reducing the pathological damage, increasing the expression of tight junction proteins and reducing the levels of inflammatory factors. Moreover, GTSs treatment significantly restored the levels of intestinal immunity-related genes and remodeled the gut microbiota. In particular, GTSs significantly increased the abundance of short-chain fatty acid metabolism-related bacteria, thereby increasing the level of propionic acid, butyric acid, isobutyric acid. Conclusion Our results revealed that GTSs improved intestinal microecological disorders and impaired immune function caused by the weightlessness simulation. The underlying mechanism may be related to the "intestinal immune -microbiota-metabolic" pathway. These findings provide a theoretical basis for the precise design and development of GTSs for space-health products.
Collapse
Affiliation(s)
- Yanli Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| | - Tian Chen
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, People’s Republic of China
| | - Zhe Shi
- Division of Stem Cell Regulation and Application, Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Lijinchuan Dong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| | - Mengting Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| | - Bo Peng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| | - Qi Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| | - Ruile Pan
- Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100094, People’s Republic of China
| | - Shuiming Xiao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| | - Qing Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| | - Ning Jiang
- Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100094, People’s Republic of China
| | - Xinmin Liu
- Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100094, People’s Republic of China
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315000, People’s Republic of China
| | - Qin Hu
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, People’s Republic of China
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| |
Collapse
|
28
|
Qian L, Lu S, Jiang W, Mu Q, Lin Y, Gu Z, Wu Y, Ge X, Miao L. Lactobacillus plantarum Alters Gut Microbiota and Metabolites Composition to Improve High Starch Metabolism in Megalobrama amblycephala. Animals (Basel) 2025; 15:583. [PMID: 40003065 PMCID: PMC11852042 DOI: 10.3390/ani15040583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
The aim of this study was to explore the effects of adding Lactobacillus plantarum (LAB) to a high-starch diet on glucose and lipid metabolism, gut microbiota, and the composition of metabolites in Megalobrama amblycephala. This experiment was equipped with three isonitrogenous and isoenergetic feeds as control group (LW), high starch group (HW), and high starch with LAB group (HP). A total of 180 experimental fish (13.5 ± 0.5 g) were randomly divided into three treatments, and three floating cages (1 m × 1 m × 1 m) were set up for each treatment. A total of 20 fish per net were kept in an outdoor pond for 8 weeks. The results showed that both the HW and HP groups had an altered structure and a reduced diversity of gut microbiota. LAB increased the abundance of Cetobacterium and the ratio of Firmicutes/Bacteroidota and decreased PC (16:1/20:5) and taurochenodeoxycholic acid levels. LAB promoted the expression of genes related to the intestinal bile acid cycle (fxr, hmgcr, rxr, shp and hnf4α) and inhibited the expression of pparβ and g6pase (p < 0.05). LAB reduced the expression of genes related to transported cholesterol (lxr and ldlr) (p < 0.05) in the liver. In conclusion, LAB addition could regulate the gut microbiota disorders caused by high starch levels, promote cholesterol metabolism, produce bile acids, and reduce lipid deposition.
Collapse
Affiliation(s)
- Linjie Qian
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (L.Q.); (Q.M.)
| | - Siyue Lu
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (S.L.); (W.J.); (Y.L.); (Z.G.)
| | - Wenqiang Jiang
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (S.L.); (W.J.); (Y.L.); (Z.G.)
| | - Qiaoqiao Mu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (L.Q.); (Q.M.)
| | - Yan Lin
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (S.L.); (W.J.); (Y.L.); (Z.G.)
| | - Zhengyan Gu
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (S.L.); (W.J.); (Y.L.); (Z.G.)
| | - Yeyang Wu
- ANYOU Biotechnology Group Co., Ltd., Taicang 215421, China;
| | - Xianping Ge
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (L.Q.); (Q.M.)
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (S.L.); (W.J.); (Y.L.); (Z.G.)
| | - Linghong Miao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (L.Q.); (Q.M.)
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (S.L.); (W.J.); (Y.L.); (Z.G.)
| |
Collapse
|
29
|
Liu Q, Akhtar M, Kong N, Zhang R, Liang Y, Gu Y, Yang D, Nafady AA, Shi D, Ansari AR, Abdel-Kafy ESM, Naqvi SUAS, Liu H. Early fecal microbiota transplantation continuously improves chicken growth performance by inhibiting age-related Lactobacillus decline in jejunum. MICROBIOME 2025; 13:49. [PMID: 39930537 PMCID: PMC11808950 DOI: 10.1186/s40168-024-02021-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 12/19/2024] [Indexed: 02/13/2025]
Abstract
BACKGROUND At an early age, chickens commonly exhibit a rise in the average daily gain, which declines as they age. Further studies indicated that the decrease in chicken growth performance at a later age is closely associated with an age-related decline in Lactobacillus abundance in the small intestines. Whether inhibiting the age-related decline in Lactobacillus in the small intestine by early fecal microbiota transplantation (FMT) could improve chicken growth performance is an interesting question. RESULTS 16S rRNA gene sequencing revealed a higher jejunal Lactobacillus abundance in high body weight chickens in both two different chicken breeds (yellow feather chickens, H vs L, 85.96% vs 55.58%; white feather chickens, H vs L, 76.21% vs 31.47%), which is significantly and positively associated with body and breast/leg muscle weights (P < 0.05). Moreover, the jejunal Lactobacillus abundance declined with age (30 days, 74.04%; 60 days, 50.80%; 120 days, 34.03%) and the average daily gain rose in early age and declined in later age (1 to 30 days, 5.78 g; 30 to 60 days, 9.86 g; 60 to 90 days, 7.70 g; 90 to 120 days, 3.20 g), indicating the age-related decline in jejunal Lactobacillus abundance is closely related to chicken growth performance. Transplanting fecal microbiota from healthy donor chickens with better growth performance and higher Lactobacillus abundance to 1-day-old chicks continuously improved chicken growth performance (Con vs FMT; 30 days, 288.45 g vs 314.15 g, P < 0.05; 60 days, 672.77 g vs 758.15 g, P < 0.01; 90 days, 1146.08 g vs 1404.43 g, P < 0.0001) even after stopping fecal microbiota transplantation at 4th week. Four-week FMT significantly inhibited age-related decline in jejunal Lactobacillus abundance (Con vs FMT, 30 days, 65.07% vs 85.68%, P < 0.01; 60 days, 38.87% vs 82.71%, P < 0.0001 and 90 days, 34.23% vs 60.86%, P < 0.01). Moreover, the numbers of goblet and Paneth cells were also found significantly higher in FMT groups at three time points (P < 0.05). Besides, FMT triggered GH/IGF-1 underlying signaling by significantly increasing the expressions of GH, GHR, and IGF-1 in the liver and IGF-1 and IGF-1R in muscles along age (P < 0.05). CONCLUSION These findings revealed that age-related decline in jejunal Lactobacillus abundance compromised chicken growth performance, while early fecal microbiota transplantation continuously improved chicken growth performance by inhibiting age-related jejunal Lactobacillus decline, promoting the integrity of jejunal mucosal barrier and up-regulating the expression level of genes related to growth axis. Video Abstract.
Collapse
Affiliation(s)
- Qiyao Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Muhammad Akhtar
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Na Kong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Rumeng Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yue Liang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yaqian Gu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Danyi Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Abdallah A Nafady
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Deshi Shi
- Department of Preventive Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Abdur Rahman Ansari
- Section of Anatomy and Histology, Department of Basic Sciences, College of Veterinary and Animal Sciences (CVAS) Jhang, University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - El-Sayed M Abdel-Kafy
- Animal Production Research Institute (APRI), Agricultural Research Center (ARC), Ministry of Agriculture, Giza, Egypt
| | | | - Huazhen Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
30
|
Lei Y, Sun X, Ruan T, Lu W, Deng B, Zhou R, Mu D. Effects of Probiotics and Diet Management in Patients With Irritable Bowel Syndrome: A Systematic Review and Network Meta-analysis. Nutr Rev 2025:nuae217. [PMID: 39862384 DOI: 10.1093/nutrit/nuae217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2025] Open
Abstract
CONTEXT The efficacy of probiotics and diet management in irritable bowel syndrome (IBS) is controversial, and their relative effectiveness remains unclear. OBJECTIVE This study aimed to evaluate the effects of probiotics, diet management, and their combination on IBS. DATA SOURCES PubMed, Embase, Cochrane, and Web of Science were searched from inception to July 10, 2023, for relevant studies, including symptom relief, IBS-symptom severity score (-SSS), and IBS-quality of life measure (-QOL). DATA EXTRACTION Two investigators independently performed the data extraction and quality assessment. DATA ANALYSIS A network meta-analysis was performed using a frequentist approach and a random-effects model to estimate the relative risk (RR) and 95% CI. RESULTS Forty-four articles were eligible for this study. In relieving IBS symptoms, compared with a sham diet, a low-fermentable oligosaccharide, disaccharide, monosaccharide, and polyols (low-FODMAP) diet (RR: 3.22; 95% CI: 1.70-6.26) and low-FODMAP diet combined with probiotics (RR: 17.79; 95% CI: 3.27-112.54) significantly relieved IBS symptoms. The control group showed significantly lower effectiveness than the probiotics group (RR: 0.47; 95% CI: 0.32-0.69). According to the surface under the cumulative rank curve (SUCRA), a low-FODMAP diet combined with probiotics (80.4%) had the best effect in relieving IBS symptoms, followed by a low-FODMAP diet (70.8%), probiotics (65.1%), and a gluten-free diet (54.3%). In reducing the total IBS-SSS, the low-FODMAP diet (90.5%) was the most effective, followed by the low-FODMAP diet combined with probiotics (76.6%), probiotics alone (62.3%), and gluten-free diet (28.3%). In reducing total IBS-QOL, probiotics (72.1%) ranked first, followed by gluten-free (57.0%) and low-FODMAP (56.9%) diets. Probiotics (34.9%) were associated with the lowest risk of adverse effects. CONCLUSION A low-FODMAP diet combined with probiotics is most effective in relieving IBS symptoms. A low-FODMAP diet is the most recommended diet for alleviating IBS severity, and probiotics were associated with improving the QOL of patients with IBS, with the fewest adverse events. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42024499113.
Collapse
Affiliation(s)
- Yupeng Lei
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan 610041, China
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xuemei Sun
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan 610041, China
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tiechao Ruan
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan 610041, China
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wenting Lu
- Integrated Care Management Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Bixin Deng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan 610041, China
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ruixi Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan 610041, China
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Dezhi Mu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan 610041, China
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
31
|
Qiu M, Bi X, Liu Y, Li H, Li D, Chen G. Toxicology Effects of Cadmium in Pomacea canaliculate: Accumulation, Oxidative Stress, Microbial Community, and Transcriptome Analysis. Int J Mol Sci 2025; 26:751. [PMID: 39859465 PMCID: PMC11766043 DOI: 10.3390/ijms26020751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/26/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Cadmium (Cd) pollution poses an important problem, but limited information is available about the toxicology effects of Cd on freshwater invertebrates. We investigated the accumulation, oxidative stress, microbial community changes, and transcriptomic alterations in apple snails (Pomacea canaliculata) under Cd stress. The snails were exposed to the 10 μg/L Cd solution for 16 days, followed by a 16-day elimination period. Our results showed that the liver accumulated the highest Cd concentration (17.41 μg/g), followed by the kidneys (8.00 μg/g) and intestine-stomach (6.68 μg/g), highlighting these tissues as primary targets for Cd accumulation. During the elimination period, Cd concentrations decreased in all tissues, with the head-foot and shell exhibiting over 30% elimination rates. Cd stress also resulted in reduced activities of superoxide dismutase (SOD), catalase (CAT), and glutathione transferase (GST) compared to the control group. Notably, even after 16 days of depuration, the enzyme activities did not return to normal levels, indicating persistent toxicological effects. Cd exposure significantly reduced the diversity of gut microbiota in P. canaliculata. Moreover, transcriptome analysis identified differentially expressed genes (DEGs) primarily associated with lysosome function, motor proteins, protein processing in the endoplasmic reticulum, drug metabolism via cytochrome P450 (CYP450), arachidonic acid metabolism, and ECM-receptor interactions. These findings suggest that Cd stress predominantly disrupts cellular transport and metabolic processes. Overall, our study provides comprehensive insights into the toxicological impact of Cd on P. canaliculata and emphasizes the importance of understanding the mechanisms underlying Cd toxicity in aquatic organisms.
Collapse
Affiliation(s)
- Mingxin Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (M.Q.); (X.B.); (Y.L.); (H.L.)
| | - Xiaoyang Bi
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (M.Q.); (X.B.); (Y.L.); (H.L.)
| | - Yuanyang Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (M.Q.); (X.B.); (Y.L.); (H.L.)
| | - Huashou Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (M.Q.); (X.B.); (Y.L.); (H.L.)
| | - Dongqin Li
- Institute of Quality Standard and Monitoring Technology for Agro-Products, Guangdong Academy of Agricultural Sciences, Guangzhou 501640, China
| | - Guikui Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (M.Q.); (X.B.); (Y.L.); (H.L.)
| |
Collapse
|
32
|
Fliegerová KO, Mahayri TM, Sechovcová H, Mekadim C, Mrázek J, Jarošíková R, Dubský M, Fejfarová V. Diabetes and gut microbiome. Front Microbiol 2025; 15:1451054. [PMID: 39839113 PMCID: PMC11747157 DOI: 10.3389/fmicb.2024.1451054] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025] Open
Abstract
Diabetes mellitus represents a significant global health problem. The number of people suffering from this metabolic disease is constantly rising and although the incidence is heterogeneous depending on region, country, economic situation, lifestyle, diet and level of medical care, it is increasing worldwide, especially among youths and children, mainly due to lifestyle and environmental changes. The pathogenesis of the two most common subtypes of diabetes mellitus, type 1 (T1DM) and type 2 (T2DM), is substantially different, so each form is characterized by a different causation, etiology, pathophysiology, presentation, and treatment. Research in recent decades increasingly indicates the potential role of the gut microbiome in the initiation, development, and progression of this disease. Intestinal microbes and their fermentation products have an important impact on host metabolism, immune system, nutrient digestion and absorption, gut barrier integrity and protection against pathogens. This review summarizes the current evidence on the changes in gut microbial populations in both types of diabetes mellitus. Attention is focused on changes in the abundance of specific bacterial groups at different taxonomic levels in humans, and microbiome shift is also assessed in relation to geographic location, age, diet and antidiabetic drug. The causal relationship between gut bacteria and diabetes is still unclear, and future studies applying new methodological approaches to a broader range of microorganisms inhabiting the digestive tract are urgently needed. This would not only provide a better understanding of the role of the gut microbiome in this metabolic disease, but also the use of beneficial bacterial species in the form of probiotics for the treatment of diabetes.
Collapse
Affiliation(s)
- Kateřina Olša Fliegerová
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Prague, Czechia
| | - Tiziana Maria Mahayri
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Prague, Czechia
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Hana Sechovcová
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Prague, Czechia
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czechia
| | - Chahrazed Mekadim
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Prague, Czechia
| | - Jakub Mrázek
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Prague, Czechia
| | - Radka Jarošíková
- Institute for Clinical and Experimental Medicine, Diabetes Centre, Prague, Czechia
- Department of Internal Medicine, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Michal Dubský
- Institute for Clinical and Experimental Medicine, Diabetes Centre, Prague, Czechia
| | - Vladimíra Fejfarová
- Institute for Clinical and Experimental Medicine, Diabetes Centre, Prague, Czechia
- Department of Internal Medicine, Second Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
33
|
Nguyen PT, Seo Y, Ahn JS, Oh SJ, Park HJ, Yu JH, Kim SH, Lee Y, Yang JW, Cho J, Kang MJ, Park JH, Kim HS. De novo interleukin-10 production primed by Lactobacillus sakei CVL-001 amplifies the immunomodulatory abilities of mesenchymal stem cells to alleviate colitis. Biomed Pharmacother 2025; 182:117745. [PMID: 39705909 DOI: 10.1016/j.biopha.2024.117745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 12/23/2024] Open
Abstract
Mesenchymal stem cells (MSCs) hold therapeutic promise for treating inflammatory bowel disease (IBD) owing to their immunomodulatory properties. Currently, pre-conditioning strategies with several beneficial agents have been applied to enhance the efficacy of MSCs in treating IBDs. Probiotics are increasingly acknowledged as supplemental therapy for IBD; however, their potential benefits in MSCs-based therapy remain largely unexplored. In this study, we hypothesized that pretreating MSCs with Lactobacillus sakei CVL-001 (L. sakei CVL-001), a representative probiotic strain, could improve their therapeutic effectiveness for IBD. In line with this hypothesis, we noted that pretreatment with L. sakei CVL-001 significantly induced IL-10 secretion in MSCs via the activation of the STAT3 signaling pathway. These primed MSCs reduced pro-inflammatory cytokine production in LPS/IFN-γ-treated macrophages and promoted an M2 phenotype, associated with immunoregulation and tissue repair, in undifferentiated macrophages. In addition, their conditioned media significantly reduced the proliferation capacity of Jurkat T cells and splenocytes, while the neutralization of IL-10 reversed these phenomena. Furthermore, MSCs treated with L. sakei CVL-001 mitigated inflammatory responses and promoted epithelial regeneration, leading to accelerated recovery from disease symptoms and improved survival rates compared to naive MSCs in a DSS-induced colitis mouse model. In conclusion, our findings suggest that probiotics, such as L. sakei CVL-001, can improve the therapeutic efficacy of MSCs for treating IBD.
Collapse
Affiliation(s)
- Phuong Thao Nguyen
- Department of Oral Biochemistry; Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea; Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea; Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Yoojin Seo
- Department of Oral Biochemistry; Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Ji-Su Ahn
- Department of Oral Biochemistry; Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Su-Jeong Oh
- Department of Oral Biochemistry; Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea; Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea; Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Hee-Jeong Park
- Department of Oral Biochemistry; Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea; Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea; Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Jeong Hyun Yu
- Department of Oral Biochemistry; Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea; Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea; Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Seong Hui Kim
- Department of Oral Biochemistry; Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea; Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea; Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Yunji Lee
- Department of Oral Biochemistry; Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea; Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea; Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Ji Won Yang
- Department of Oral Biochemistry; Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Jaejin Cho
- Department of Dental Regenerative Biotechnology, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea; Dental Research Institute, Seoul National University, Seoul 03080, Republic of Korea
| | - Min-Jung Kang
- Department of Oral Biochemistry; Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea.
| | - Jong-Hwan Park
- Laboratory Animal Medicine, College of Veterinary Medicine, Animal Medical Institute, Chonnam National University, Gwangju 61186, Republic of Korea; NODCURE, Inc, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea.
| | - Hyung-Sik Kim
- Department of Oral Biochemistry; Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea; Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea; Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan 50612, Republic of Korea.
| |
Collapse
|
34
|
Liu Z, Zhang F, Jia F, Li S, Jiang C, Ruan B, Long R. Lactobacillus Protects Against Chronic Suppurative Otitis Media via Modulating RFTN1/ Lipid Raft /TLR4-Mediated Inflammation. Biologics 2024; 18:453-468. [PMID: 39742136 PMCID: PMC11687115 DOI: 10.2147/btt.s484410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/10/2024] [Indexed: 01/03/2025]
Abstract
Purpose Chronic suppurative otitis media (CSOM) is a prominent contributor to preventable hearing loss globally. Probiotic therapy has attracted research interest in human infectious and inflammatory disease. As the most prevalent probiotic, the role of Lactobacillus in CSOM remains poorly defined. This study aimed to investigate the antipathogenic effects and underlying mechanism of Lactobacillus on CSOM. Methods RNA sequencing of granulation of middle ear cavity from CSOM patients and lavage fluid of middle ear from normal volunteer was conducted. Human middle ear epithelial cells (HMEEC) and rats infected with Bacillus cereus (B. cereus) and Staphylococcus aureus (S. aureus) were used for CSOM constructing. Western blot, qPCR and Vybrant™ Alexa Fluor™ 488 lipid raft labeling were performed to explore the possible molecular mechanism by which lipid raft linker (RFTN1) regulates lipid raft/toll-like receptor 4 (TLR4). ELISA and HE staining was utilized to evaluate the effect of Lactobacillus on the progression of CSOM in vivo. Results Based on RNA Sequence analysis, a total of 3646 differentially expressed genes (1620 up-regulated and 2026 down-regulated) were identified in CSOM. RFTN1 was highly expressed in CSOM. Inhibition of RFTN1 not only reduced the inflammatory response of CSOM but also suppressed the formation of lipid rafts. Further investigation revealed that RFTN1 inhibition could reduce the expression of TLR4, which also localizes to the lipid rafts. TLR4 responds to RFTN1-mediated inflammatory responses in CSOM. We treated the CSOM model with Lactobacillus, which has great potential for alleviating the inflammatory response, and found that Lactobacillus attenuated the development of CSOM by reducing RFTN1 and TLR4 expression. Conclusion In conclusion, these findings suggest a crucial role for Lactobacillus in alleviating CSOM progression and uncovered the molecular mechanism involving Lactobacillus-regulated inhibition of the RFTN1-lipid raft-TLR4 signaling pathway under CSOM conditions.
Collapse
Affiliation(s)
- Zhuohui Liu
- Department of Otolaryngology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Fan Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Fengfeng Jia
- Department of Otolaryngology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Shuling Li
- Department of Otolaryngology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Chaowu Jiang
- Department of Otolaryngology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Biao Ruan
- Department of Otolaryngology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Ruiqing Long
- Department of Otolaryngology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| |
Collapse
|
35
|
Mirsalami SM, Mirsalami M. Leveraging Lactobacillus plantarum probiotics to mitigate diarrhea and Salmonella infections in broiler chickens. AMB Express 2024; 14:137. [PMID: 39694979 DOI: 10.1186/s13568-024-01792-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/19/2024] [Indexed: 12/20/2024] Open
Abstract
Anaerobic bacteria, such as Lactobacillus plantarum (LP), are known to play a significant role in maintaining gut health and protecting against enteric pathogens in animals. The present study aimed to develop a safe, affordable, and eco-friendly method for producing LP-based probiotics and evaluate their efficacy in mitigating Salmonella-induced diarrhea in broiler chickens. The study employed three different culture media (MRS, TSB, and Baird Parker) to grow LP, which was then dried using a spray-drying technique to produce a stable probiotic formulation. When administered to broiler chickens, the LP probiotic derived from the MRS medium significantly improved body weight gain (4.147-fold increase over 4 weeks) compared to the other two culture conditions. Importantly, the LP probiotic treatment could substantially reduce the diarrhea index in broilers, with up to an 86.45% improvement in Salmonella-induced enteric infections. The beneficial effects were attributed to the ability of LP to modulate the gut microbiome, enhance the integrity of the intestinal mucosa, and mitigate the pathogenic effects of Salmonella. These findings demonstrate the potential of anaerobic Lactobacillus plantarum as a safe and effective probiotic intervention for controlling enteric diseases and improving production outcomes in poultry farming. The developed method provides a sustainable approach to harness the beneficial properties of this anaerobic bacterium for animal health and welfare.
Collapse
Affiliation(s)
- Seyed Mehrdad Mirsalami
- Department of Chemical Engineering, Faculty of Engineering, Islamic Azad University Central Tehran Branch, Tehran, Iran.
| | - Mahsa Mirsalami
- Faculty of Engineering and Technical Sciences, Qazvin Islamic Azad University, Qazvin, Iran
| |
Collapse
|
36
|
Ismael M, Huang M, Zhong Q. The Bacteriocins Produced by Lactic Acid Bacteria and the Promising Applications in Promoting Gastrointestinal Health. Foods 2024; 13:3887. [PMID: 39682959 DOI: 10.3390/foods13233887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Bacteriocins produced by lactic acid bacteria (LAB) are promising bioactive peptides. Intriguingly, bacteriocins have health benefits to the host and may be applied safely in the food industry as bio-preservatives or as therapeutic interventions preventing intestinal diseases. In recent years, finding a safe alternative approach to conventional treatments to promote gut health is a scientific hotspot. Therefore, this review aimed to give insight into the promising applications of LAB-bacteriocins in preventing intestinal diseases, such as colonic cancer, Helicobacter pylori infections, multidrug-resistant infection-associated colitis, viral gastroenteritis, inflammatory bowel disease, and obesity disorders. Moreover, we highlighted the recent research on bacteriocins promoting gastrointestinal health. The review also provided insights into the proposed mechanisms, challenges and opportunities, trends and prospects. In addition, a SWOT analysis was conducted on the potential applications. Based on properties, biosafety, and health functions of LAB-bacteriocins, we conclude that the future applications of LAB-bacteriocins are promising in promoting gastrointestinal health. Further in vivo trials are needed to confirm these potential effects of LAB-bacteriocins interventions.
Collapse
Affiliation(s)
- Mohamedelfatieh Ismael
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Mingxin Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Qingping Zhong
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
37
|
Xu H, Xue Z, Wang P, Lee Q, Chen Z, Liu B, Liu X, Zeng F. Edible fungi polysaccharides modulate gut microbiota and lipid metabolism: A review. Int J Biol Macromol 2024; 283:137427. [PMID: 39537059 DOI: 10.1016/j.ijbiomac.2024.137427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Edible fungi polysaccharides (EFPs) and gut microbiota (GM) play an important role in lipid metabolism. The structure of GM is complex and can be dynamically affected by the diet. EFPs can be used as dietary intervention to improve lipid metabolism directly, or by regulate the GM to participate in the host lipid metabolism by a complex mechanism. In this paper, we reviewed that EFPs regulate the balance of GM by increasing the number of beneficial bacteria and decreasing the number of harmful bacteria in the intestinal tract. The metabolites of GM are mainly bile acids (BAs), short-chain fatty acids (SCFAs), and lipopolysaccharides (LPS). EFPs can promote the synthesis of BAs and increase the content of SCFAs that produced by GM fermented EFPs, but reduce the content of LPS to regulate lipid metabolism. This review provides a valuable reference for further elucidation of the relationship between EFPs-GM-lipid metabolism and EFPs targeted regulation of GM to improve public health.
Collapse
Affiliation(s)
- Huanyi Xu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhixiang Xue
- Engineering Research Center of Fujian Subtropical Fruit and Vegetable Processing, Fuzhou 350002, China; National Engineering Research Center of JUNCAO Technology, Fuzhou 350002, China
| | - Pengyi Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Quancen Lee
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zihui Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bin Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Center of Fujian Subtropical Fruit and Vegetable Processing, Fuzhou 350002, China; National Engineering Research Center of JUNCAO Technology, Fuzhou 350002, China
| | - Xiaoyan Liu
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Feng Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Center of Fujian Subtropical Fruit and Vegetable Processing, Fuzhou 350002, China.
| |
Collapse
|
38
|
Liang S, Tong H, Wang Y, Lv X, Xiong J, Zhu Y, Hou Q, Yang X, Yang X. Lactiplantibacillus plantarum JM113 alleviates deoxynivalenol induced intestinal damage by microbial modulation in broiler chickens. Poult Sci 2024; 103:104291. [PMID: 39316978 PMCID: PMC11462358 DOI: 10.1016/j.psj.2024.104291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024] Open
Abstract
Deoxynivalenol (DON) contamination causes the grievous injury in public and animal health, poultry suffer from the greater toxin challenge. Probiotic have been considered as a potential way to mitigate the deleterious effects of DON. In this study, a total of 144 1-day-old Arbor Acres chickens were randomly assigned into 3 groups: control group, DON group (5 mg/kg DON diet), DJ group (1×109 cfu Lactiplantibacillus plantarum JM113/kg DON diet). The results showed that Lactiplantibacillus plantarum JM113 (L. plantarum JM113) increased the growth performance of 21-day-old broilers that challenged by the DON (P < 0.05), and the DON-induced disorder of jejunal morphology was recovered in DJ group (P < 0.05). Compared with the DON group, the mRNA and protein levels of Nrf2 and NQO-1 were upregulated in jejunum of DJ group broilers (P < 0.05). Meanwhile, administration of L. plantarum JM113 effectively increased the expression level of barrier-related genes, and the protein abundance of occludin and claudin1 (P < 0.05). L. plantarum JM113 restored the mRNA and protein abundance of PCNA, and proliferation-linked gene (Lgr5 and Bmi1) expression levels in jejunum of DON-insulted broilers (P < 0.05). Furthermore, administration of L. plantarum JM113 significantly enhanced the relative abundance of s_Limosilactobacillus_reuteri in jejuna of DON-challenged broilers (P < 0.05). Spearman correlation analysis showed that s_Limosilactobacillus_reuteri was positively associated with the jejunal barrier related genes (P < 0.05). In conclusion, L. plantarum JM113 alleviated the toxic effects of DON by regulating the jejunal function through microbial adjustment. Our findings proposed a viable approach to mitigating the adverse effects of deoxynivalenol exposure in broilers.
Collapse
Affiliation(s)
- Saisai Liang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Haonan Tong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yinlong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xinying Lv
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jiaying Xiong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yufei Zhu
- Dayu Biological Industry Development Research Institute in Xi'an, Xi'an, China
| | - Qihang Hou
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
39
|
Lavanya M, Namasivayam SKR, Priyanka S, Abiraamavalli T. Microencapsulation and nanoencapsulation of bacterial probiotics: new frontiers in Alzheimer's disease treatment. 3 Biotech 2024; 14:313. [PMID: 39611008 PMCID: PMC11599650 DOI: 10.1007/s13205-024-04158-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/08/2024] [Indexed: 11/30/2024] Open
Abstract
Alzheimer's disease, a progressive neurodegenerative disorder marked by cognitive decline, affects millions worldwide. The presence of amyloid plaques and neurofibrillary tangles in the brain is the key pathological feature, leading to neuronal dysfunction and cell death. Current treatment options include pharmacological approaches such as cholinesterase inhibitors, as well as non-pharmacological strategies like cognitive training and lifestyle modifications. Recently, the potential role of probiotics, particularly strains, such as Lactobacillus and Bifidobacterium, in managing neurodegenerative diseases through the gut-brain axis has garnered significant attention. Probiotics can modulate inflammation, produce neurotransmitters, and support neuronal health, potentially slowing disease progression and alleviating symptoms, such as stress and anxiety. Optimizing the pharmacotherapeutic effects of probiotics is critical and involves advanced formulation techniques, such as microencapsulation and nanoencapsulation. Microencapsulation employs natural or synthetic polymers to protect probiotic cells, enhancing their viability and stability against environmental stressors. Methods like extrusion, emulsion, and spray-drying are used to create microcapsules suited for various applications. Nanoencapsulation, on the other hand, operates at the nanoscale, utilizing polymeric or lipid-based nanoparticles to improve the bioavailability and shelf life of probiotics. Techniques, such as nanoprecipitation and emulsification, are employed to ensure stable nanocapsule formation, thereby augmenting the therapeutic potential of probiotics as nutraceutical agents. This study delves into the essential formulation aspects of microencapsulation and nanoencapsulation for beneficial probiotic strains, aimed at managing Alzheimer's disease by optimizing the gut-brain axis. The insights gained from these advanced techniques promise to enhance probiotic delivery efficacy, potentially leading to improved health outcomes for patients suffering from neurodegenerative disorders.
Collapse
Affiliation(s)
- M. Lavanya
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu 602105 India
| | - S. Karthick Raja Namasivayam
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu 602105 India
| | - S. Priyanka
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu 602105 India
| | - T. Abiraamavalli
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu 602105 India
| |
Collapse
|
40
|
Mukherjee S, Kumar D, Guha D. Insights of probiotics as an alternative medicine for cancer therapy, mechanism, and applications. MEDICINE IN MICROECOLOGY 2024; 22:100111. [DOI: 10.1016/j.medmic.2024.100111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
|
41
|
Yu S, Li Z, Zhang X, Zhang Q, Zhang L, Zhao L, Liu P, Guo J, Chen J, Zhang C, Liu X, Yu M, Jin D, Wang X, Li G, Cao Y, Ren F, Wang R. Skin Rejuvenation in Aged Mice by Fecal Transplantation Microbiota from Young Mice Feces. ENGINEERING 2024; 42:26-38. [DOI: 10.1016/j.eng.2024.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
42
|
Xiao X, Qin S, Cui T, Liu J, Wu Y, Zhong Y, Yang C. Bacillus licheniformis suppresses Clostridium perfringens infection via modulating inflammatory response, antioxidant status, inflammasome activation and microbial homeostasis in broilers. Poult Sci 2024; 103:104222. [PMID: 39241614 PMCID: PMC11406086 DOI: 10.1016/j.psj.2024.104222] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/22/2024] [Accepted: 08/11/2024] [Indexed: 09/09/2024] Open
Abstract
Pathogenic bacteria infection, especially Clostridium perfringens (C. perfringens), markedly threatened the health of animals, and further caused huge economic loss. In this study, Bacillus licheniformis HJ0135 (BL) was used. Oxford cup bacteriostatic test and inhibitory rate test were conducted to evaluate the antibacterial ability of BL. Results showed the strongest inhibitory role of BL on C. perfringens (P < 0.05). Afterwards, 540 one-day-old yellow-feather broilers (32.7 ± 0.2 g) were randomly allocated into 3 groups, including CON group (basal diet), CP group (basal diet + 1 × 109 CFU C. perfringens in gavage), and BL + CP group (basal diet containing 7.5 × 106 CFU/g BL + 1 × 109 CFU C. perfringens in gavage). At d 70, broilers in the CP and BL + CP groups were treated with C. perfringens by continuously oral administration for 5 d. The experiment lasted for 75 d. The serum, immune organs, jejunal mucosa, and cecal contents were collected for analysis. In vivo experiment showed that BL supplementation markedly improved (P < 0.05) BW, ADG, thymus index, serum immunoglobins and antioxidases, reduced feed conversion ratio (FCR) and serum pro-inflammatory cytokines of C. perfringens-infected broilers. Furthermore, the increased jejunal injury and levels of pro-inflammatory cytokines, decreased gene expressions of tight junction proteins in the jejunal mucosa were significantly alleviated (P < 0.05) by BL. More importantly, the activation of NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome was inhibited (P < 0.05) by BL to further attenuate jejunal damage. Besides, BL supplementation markedly increased (P < 0.05) the cecal isobutyric acid and isovaleric acid. Microbial analysis showed that BL changed the composition and relative abundances of microbiota in the cecal contents (P < 0.05), especially the short chain fatty acids (SCFAs)-producing bacteria including Eubacterium_coprostanoligenes_group, Megamonas, Faecalibacterium, and Lactobacillus, which further protected against C. perfringens-induced jejunal inflammation in broilers. Our study laid a theoretical basis for the application of probiotics in lessening C. perfringens-related diseases in poultry farming.
Collapse
Affiliation(s)
- Xiao Xiao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Vegamax Biotechnology Co., Ltd., Huzhou 313300, China
| | - Songke Qin
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Tiantian Cui
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Jinsong Liu
- Zhejiang Vegamax Biotechnology Co., Ltd., Huzhou 313300, China
| | - Yanping Wu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Yifan Zhong
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Caimei Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
43
|
Zhang S, Huang Z, Li Q, Zheng X, Liu J. Two-stage solid-state fermentation to increase the nutrient value of corn processing waste and explore its efficacy as a feed protein source. Food Chem X 2024; 23:101656. [PMID: 39113738 PMCID: PMC11304863 DOI: 10.1016/j.fochx.2024.101656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/30/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Corn gluten meal-corn husk mixes (CCM) are an inexpensive and readily available agricultural by-product. This study explores a novel technique by converting CCM into high-value livestock feed protein sources through fermentation with Aspergillus niger AAX and Lactobacillus fermentum LLS, aiming to sustainably meet future global protein needs. The process of fermentation significantly altered the structural composition of high molecular weight proteins, zein, and dietary fibers. This transformation resulted in a marked elevation in the concentrations of peptides, free amino acids, and polyphenols. The acidic environment produced during fermentation prevented lipid oxidation in CCM, thereby extending its storability. After fermentation, the content of anti-nutritional factors decreased, while its antioxidant capacity increased. In vitro simulated digestion suggested that fermentation improved the digestibility of CCM protein. In vivo animal experiments showed that fermented CCM (FCCM) promoted growth and gut health in chicks. This study provides new insights into the utilization of CCM.
Collapse
Affiliation(s)
- Shuai Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Zhaoxin Huang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Qining Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xin Zheng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| |
Collapse
|
44
|
Zhang X, Sun L, Wu M, Yu C, Zhao D, Wang L, Zhang Z, Yi D, Hou Y, Wu T. Effect of supplementation with Lactobacillus rhamnosus GG powder on intestinal and liver damage in broiler chickens challenged by lipopolysaccharide. Front Microbiol 2024; 15:1466274. [PMID: 39534507 PMCID: PMC11555397 DOI: 10.3389/fmicb.2024.1466274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024] Open
Abstract
This study explores the effect of dietary along with Lactobacillus rhamnosus GG (LGG) powder on intestinal and liver damage in broiler chickens challenged by lipopolysaccharide (LPS). A total of 100 healthy 1-day-old Ross 308 broiler chickens were selected and randomly divided into two treatments: the control group and the LGG treatment group. There were five replicates for each group, with 10 chickens per replicate. The chickens in the control group were fed a basal diet, while LGG treatment was supplemented with 1,000 mg/kg LGG along with the basal diet. The experiment lasted 29 days, and the trial included two phases. During the first 27 days, the animals were weighed on the 14th and 27th days to calculate growth performance. Then, on day 29, 2 animals from each replicate were intraperitoneally injected with 1 mg/kg BW LPS, and another 2 animals were treated with an equal volume of saline. The chickens were slaughtered 3 h later for sampling and further analysis. (1) LGG addition to the diet did not affect growth performance, including average daily gain (ADG), average daily feed intake (ADFI), and feed-to-weight ratio (F/G) of broiler chickens; (2) LPS stimulation decreased villus height (VH), and caused oxidative stress and increased the amount of diamine oxidase (DAO) in plasma, and the relative expression of intestinal inflammation genes (interleukin-8 [IL-8], interleukin 1β [IL-1β], inducible nitric oxide synthase [iNOS], and tumor necrosis factor-α [TNF-α]) and the relative expression of liver injury genes (b-cell lymphoma 2 [BCL2], heat shock protein70 [HSP70], and matrix metallopeptidase 13 [MMP13]). (3) Supplementation of LGG increased VH and the relative expression of intestinal barrier genes (mucins 2 [Mucin2] and occludin [Occludin]) and decreased the amount of DAO in plasma and the relative expression of intestinal inflammatory factors (IL-8, iNOS, and IL-1β). LGG supplementation also increased the expression of liver injury-related genes (MMP13 and MMP9). In conclusion, LGG enhanced intestinal barrier function, improved intestinal morphology, and alleviated the intestines' inflammatory response in LPS-stimulated broiler chicken, and it has a slightly protective effect on liver damage.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Tao Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
45
|
Rahangdale S, Deshmukh P, Sammeta S, Aglawe M, Kale M, Umekar M, Kotagale N, Taksande B. Agmatine modulation of gut-brain axis alleviates dysbiosis-induced depression-like behavior in rats. Eur J Pharmacol 2024; 981:176884. [PMID: 39134294 DOI: 10.1016/j.ejphar.2024.176884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/20/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
Depression is a global health concern affecting nearly 280 million individuals. It not only imposes a significant burden on economies and healthcare systems but also manifests complex physiological connections and consequences. Agmatine, a putative neuromodulator derived primarily from beneficial gut microbes specially Lactobacillus, has emerged as a potential therapeutic agent for mental health. The microbiota-gut-brain axis is involved in the development of depression through the peripheral nervous system, endocrine system, and immune system and may be a key factor in the effect of agmatine. Therefore, this study aimed to investigate the potential mechanism of agmatine in antibiotic-induced dysbiosis and depression-like behavior in rats, focusing on its modulation of the gut-brain axis. Depression-like behavior associated with dysbiosis was induced through a seven-day regimen of the broad-spectrum antibiotic, comprising ampicillin and metronidazole and validated through microbial, biochemical, and behavioral alterations. On day 8, antibiotic-treated rats exhibited loose fecal consistency, altered fecal microbiota, and depression-like behavior in forced swim test. Pro-inflammatory cytokines were elevated, while agmatine and monoamine levels decreased in the hippocampus and prefrontal cortex. Antibiotic administration disrupted tight junction proteins in the ileum, affecting gut architecture. Oral administration of agmatine alone or combined with probiotics significantly reversed antibiotic-induced dysbiosis, restoring gut microbiota and mitigating depression-like behaviors. This intervention also restored neuro-inflammatory markers, increased agmatine and monoamine levels, and preserved gut integrity. The study highlights the regulatory role of endogenous agmatine in the gut-brain axis in broad-spectrum antibiotic induced dysbiosis and associated depression-like behavior.
Collapse
Affiliation(s)
- Sandip Rahangdale
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S., 441 002, India
| | - Pankaj Deshmukh
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S., 441 002, India
| | - Shivkumar Sammeta
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S., 441 002, India
| | - Manish Aglawe
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S., 441 002, India
| | - Mayur Kale
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S., 441 002, India
| | - Milind Umekar
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S., 441 002, India
| | - Nandkishor Kotagale
- Government College of Pharmacy, Kathora Naka, VMV Road, Amravati, M.S., 44604, India
| | - Brijesh Taksande
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S., 441 002, India.
| |
Collapse
|
46
|
Kim J, Jo J, Cho S, Kim H. Genomic insights and functional evaluation of Lacticaseibacillus paracasei EG005: a promising probiotic with enhanced antioxidant activity. Front Microbiol 2024; 15:1477152. [PMID: 39469458 PMCID: PMC11513463 DOI: 10.3389/fmicb.2024.1477152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/24/2024] [Indexed: 10/30/2024] Open
Abstract
Introduction Probiotics, such as Lacticaseibacillus paracasei EG005, are gaining attention for their health benefits, particularly in reducing oxidative stress. The goal of this study was to reinforce the antioxidant capacity of EG005, along with comprehensive genomic analysis, with a focus on assessing superoxide dismutase (SOD) activity, acid resistance and bile tolerance, and safety. Methods EG005 was screened for SOD activity and change of SOD activity was tested under various pH conditions. Its survival rates were assessed in acidic (pH 2.5) and bile salt (0.3%) conditions and the antibiotic MIC test and hemolysis test were performed to evaluate safety. Genetic analyses including functional identification and phylogenetic tree construction were performed. The SOD overexpression system was constructed using Ptuf, Pldh1, Plhd2, and Pldh3 strong promoters. Results EG005 demonstrated higher SOD activity compared to Lacticaseibacillus rhamnosus GG, with optimal activity at pH 7.0. It showed significant acid and bile tolerance, with survival rates recovering to 100% after 3 h in acidic conditions. Phylogenetic analysis confirmed that EG005 is closely related to other L. paracasei strains with ANI values above 98%. Overexpression of SOD using the Ptuf promoter resulted in a two-fold increase in activity compared to the controls. Additionally, EG005 exhibited no hemolytic activity and showed antibiotic susceptibility within safe limits. Discussion Our findings highlight EG005's potential as a probiotic with robust antioxidant activity and high tolerance to gastrointestinal conditions. Its unique genetic profile and enhanced SOD activity through strong promoter support its application in probiotic therapies and functional foods. Further research should be investigated to find the in vivo effects of EG005 on gut health and oxidative stress reduction. In addition, attB and attP-based recombination, combined with CRISPR-Cas9 technologies, could offer a more stable alternative for long-term sodA gene expression in commercial and medical applications.
Collapse
Affiliation(s)
- Jisu Kim
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jinchul Jo
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- eGnome Inc., Seoul, Republic of Korea
| | - Seoae Cho
- eGnome Inc., Seoul, Republic of Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
47
|
Ali Q, Ma S, Farooq U, Liu B, Wang Z, Sun H, Cui Y, Li D, Shi Y. Chronological dynamics of the gut microbiome in response to the pasture grazing system in geese. Microbiol Spectr 2024; 12:e0418823. [PMID: 39189756 PMCID: PMC11448393 DOI: 10.1128/spectrum.04188-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/21/2024] [Indexed: 08/28/2024] Open
Abstract
It is commonly accepted that dietary fibers are good for gut health. The effect of fibers on the diversity and metabolic activities of the cecal microflora, however, differ with the passage of time. Therefore, we investigated the time-series impacts of the pasture grazing system (a high dietary fiber source) on the cecal microbiome and short-chain fatty acids in Wanpu geese, comparing it to commercial feeding (a low dietary fiber source). The cecal microbiota composition and SCFA concentrations were evaluated by 16S rRNA gene sequencing and gas chromatography, respectively. We found that pasture produced a generally quick positive response to Bacteroidales, Lactobacillales, Gastranaerophilales (at 45 days), Lachnospirales, and Oscillospirales (at 60 days and 90 days) irrespective of Erysipelotrichales (at 45 days), Clostridia_UCG-014, RF39 (at 60 days), Christensenellales, and Peptostreptococcales-Tissierellales (at 90 days) in geese. Meanwhile, we found that Lactobacillales, Gastranaerophilales, Lachnospirales, and Oscillospirales were significantly correlated with short-chain fatty acids in pasture grazing geese. Indeed, the correlation of cecal microbiota with SCFAs led to altered microbial functions evinced by COG; KEGG pathway levels 1, 2, and 3; BugBase; and FAPROTAX databases. This study emphasizes the importance of dietary fiber sources in influencing beneficial impacts in regulating geese microbiota homeostasis and metabolic functions such as energy and lipid metabolism.IMPORTANCELow dietary fiber diet sources cause gut microbial and short-chain fatty acid alterations that lead to compromised animal health. The establishment of an artificial pasture grazing system at the expense of ryegrass is a good source of dietary fiber for geese. Our results described the importance of pasture in maintaining the gut microbiota, SCFAs, and potential microbial functions reported by COG; KEGG pathway levels 1, 2, and 3; BugBase; and FAPROTAX databases.
Collapse
Affiliation(s)
- Qasim Ali
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Sen Ma
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Herbage Engineering Technology Research Center, Zhengzhou, China
| | - Umar Farooq
- Department of Poultry Science, University of Agriculture Faisalabad, Sub Campus Toba Tek Singh, Toba Tek Singh, Pakistan
| | - Boshuai Liu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Herbage Engineering Technology Research Center, Zhengzhou, China
| | - Zhichang Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Herbage Engineering Technology Research Center, Zhengzhou, China
| | - Hao Sun
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Herbage Engineering Technology Research Center, Zhengzhou, China
| | - Yalei Cui
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Herbage Engineering Technology Research Center, Zhengzhou, China
| | - Defeng Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Herbage Engineering Technology Research Center, Zhengzhou, China
| | - Yinghua Shi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Herbage Engineering Technology Research Center, Zhengzhou, China
| |
Collapse
|
48
|
Prapa I, Kompoura V, Pavlatou C, Nelios G, Mitropoulou G, Kostomitsopoulos N, Plessas S, Bezirtzoglou E, Karathanos VT, Yanni AE, Kourkoutas Y. Effects of Free or Immobilized Pediococcus acidilactici ORE5 on Corinthian Currants on Gut Microbiome of Streptozotocin-Induced Diabetic Rats. Microorganisms 2024; 12:2004. [PMID: 39458313 PMCID: PMC11509866 DOI: 10.3390/microorganisms12102004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/29/2024] [Accepted: 09/29/2024] [Indexed: 10/28/2024] Open
Abstract
The present study aimed to investigate the effect of a dietary intervention including free or immobilized cells of the presumptive probiotic Pediococcus acidilactici ORE5 on Corinthian currants, a food with beneficial impact in the condition of Type-1 Diabetes Mellitus (T1DM), on the microbiome composition of STZ-induced diabetic rats. Twenty four male Wistar rats were divided into four groups (n = 6 per group): healthy animals, which received the free (H_FP) or the immobilized Pediococcus acidilactici ORE5 cells (H_IPC), and diabetic animals, which received the free (D_FP) or the immobilized Pediococcus acidilactici ORE5 cells(D_IPC) for 4 weeks (109 cfu/day, in all groups). At the end of the dietary intervention, the D_IPC group exerted a lower concentration of the inflammatory cytokine IL-1 beta compared to D_FP. Consumption of immobilized P. acidilactici ORE5 cells on Corinthian currants by diabetic animals led to increased loads of fecal lactobacilli and lower Enterobacteriaceae, coliforms, and Escherichia coli levels, while Actinobacteria phylum, Akkermansia, and Bifidobacterium genera abundances were increased, and fecal lactic acid was elevated. Overall, the results of the present research demonstrated that functional ingredients could ameliorate gut dysbiosis present in T1DM and could be used to design dietary patterns aiming at T1DM management. However, well-designed clinical trials are necessary, in order to confirm the beneficial effects in humans.
Collapse
Affiliation(s)
- Ioanna Prapa
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece; (I.P.); (V.K.); (C.P.); (G.N.); (G.M.)
| | - Vasiliki Kompoura
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece; (I.P.); (V.K.); (C.P.); (G.N.); (G.M.)
| | - Chrysoula Pavlatou
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece; (I.P.); (V.K.); (C.P.); (G.N.); (G.M.)
| | - Grigorios Nelios
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece; (I.P.); (V.K.); (C.P.); (G.N.); (G.M.)
| | - Gregoria Mitropoulou
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece; (I.P.); (V.K.); (C.P.); (G.N.); (G.M.)
| | - Nikolaos Kostomitsopoulos
- Laboratory Animal Facility, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| | - Stavros Plessas
- Laboratory of Microbiology, Biotechnology and Hygiene, Faculty of Agricultural Development, Democritus University of Thrace, 68200 Orestiada, Greece;
| | - Eugenia Bezirtzoglou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece;
| | - Vaios T. Karathanos
- Laboratory of Chemistry, Biochemistry, Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopio University of Athens, 17671 Athens, Greece;
- Agricultural Cooperatives’ Union of Aeghion, Corinthou 201, 25100 Aeghion, Greece
| | - Amalia E. Yanni
- Laboratory of Chemistry, Biochemistry, Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopio University of Athens, 17671 Athens, Greece;
| | - Yiannis Kourkoutas
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece; (I.P.); (V.K.); (C.P.); (G.N.); (G.M.)
| |
Collapse
|
49
|
Huang R, Liu Z, Sun T, Zhu L. Cervicovaginal microbiome, high-risk HPV infection and cervical cancer: Mechanisms and therapeutic potential. Microbiol Res 2024; 287:127857. [PMID: 39121703 DOI: 10.1016/j.micres.2024.127857] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
The microbiota in the female genital tract is an intricate assembly of diverse aerobic, anaerobic, and microaerophilic microorganisms, which share the space within the reproductive tract and engage in complex interactions. Microbiome dysbiosis may disrupt the symbiotic relationship between the host and microorganisms and play a pivotal role in the pathogenesis of various diseases, including its involvement in the establishment of human papillomavirus (HPV)-associated cervical cancer (CC). Interventions to restore microbiota homeostasis (e.g., probiotics) and bacterial-vector HPV therapeutic vaccines have been reported to be potentially effective in clearing HPV infection and ameliorating cytological abnormalities. In this review, we place emphasis on elucidating the alterations within the cervical-vaginal microbiota as well as the intratumoral microbiota in the context of high-risk HPV (HR-HPV) infection and its subsequent progression to cervical intraepithelial neoplasia/CC. Furthermore, we explore the mechanisms by which these microbial communities exert potential pathogenic or protective effects, including modulating genital inflammation and immune responses, affecting HR-HPV oncogene expression and oncoprotein production, regulating oxidative stress and deoxyribonucleic acid (DNA) damage, and inducing metabolic rewiring. Lastly, we summarize the latest evidence in human trials regarding the efficacy of probiotics, prebiotics and probiotic-vector HPV therapeutic vaccines. This review aims to foster a deeper understanding of the role of the microbiota in HR-HPV infection-related cervix cancer development, and further provide a theoretical basis for the development of preventive and therapeutic strategies based on microbial modulation.
Collapse
Affiliation(s)
- Roujie Huang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; The State Key Laboratory for Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Beijing 100730, China
| | - Zimo Liu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Tianshu Sun
- Clinical Biobank, Medical Research Center, National Science and Technology Key Infrastructure on Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; The State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100730, China.
| | - Lan Zhu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; The State Key Laboratory for Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Beijing 100730, China; The State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
50
|
Huang Y, Chen Y, Ma L, Guo H, Chen H, Qiu B, Yao M, Huang W, Zhu L. The toxic effects of Helicobacter pylori and benzo(a)pyrene in inducing atrophic gastritis and gut microbiota dysbiosis in Mongolian gerbils. Food Sci Nutr 2024; 12:7568-7580. [PMID: 39479696 PMCID: PMC11521681 DOI: 10.1002/fsn3.4368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 11/02/2024] Open
Abstract
Food chemical and microbiological contamination are major global food safety issues. This study investigated the combined effects of the food-borne pathogen Helicobacter pylori (H. pylori) and the pollutant benzo(a)pyrene (Bap) on atrophic gastritis and gut microbiota in Mongolian gerbils. The results demonstrated that simultaneous administration of H. pylori and Bap caused more severe weight loss, DNA damage, and gastritis in Mongolian gerbils compared with those exposed to H. pylori or Bap alone. The combination also significantly increased the serum level of proinflammatory cytokines, including IL-1β (p < .05), IL-6 (p < .0001), and TNF-α (p < .05). Additionally, the H. pylori and Bap combination altered the composition of gut microbiota in Mongolian gerbils: the relative abundance of Lactobacillus and Ligilactobacillus at the genus level (p < .05) was significantly reduced while the relative abundance of Allobaculum and Erysipelotrichaceae enhanced (p < .0001, p < .05). Our study revealed that the synergy of H. pylori and Bap can boost the development of atrophic gastritis and lead to gut microbiota dysbiosis in Mongolian gerbils, which provides essential implications for preventing contaminated foods to sustain life and promote well-being.
Collapse
Affiliation(s)
- Yilun Huang
- Alberta Institute, Wenzhou Medical UniversityWenzhouChina
| | - Yunxiang Chen
- Center for Safety Evaluation and ResearchHangzhou Medical CollegeHangzhouChina
| | - Lingfei Ma
- Institute for Health PolicyHangzhou Medical CollegeHangzhouChina
| | - Honggang Guo
- Center of Laboratory AnimalHangzhou Medical CollegeHangzhouChina
| | - Hao Chen
- Center for Safety Evaluation and ResearchHangzhou Medical CollegeHangzhouChina
| | - Bo Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Mingfei Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Weixin Huang
- Shaoxing Tongchuang Biotechnology Co., LtdShaoxingChina
| | - Lian Zhu
- School of Basic Medical Sciences and Forensic MedicineHangzhou Medical CollegeHangzhouChina
| |
Collapse
|