1
|
Stuart WS, Jenkins CH, Ireland PM, Isupov MN, Norville IH, Harmer NJ. Structure and catalytic mechanism of methylisocitrate lyase, a potential drug target against Coxiella burnetii. J Biol Chem 2025; 301:108517. [PMID: 40250561 DOI: 10.1016/j.jbc.2025.108517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/03/2025] [Accepted: 04/11/2025] [Indexed: 04/20/2025] Open
Abstract
We present a comprehensive investigation into the catalytic mechanism of methylisocitrate lyase, a potential drug target candidate against the zoonotic pathogen Coxiella burnetii, the causative agent of Q fever and a federal select agent. Current treatment regimens are prolonged, often with incomplete clearance of the pathogen. We utilized a structure-based bioinformatics pipeline to identify methylisocitrate lyase as a candidate therapeutic target against C. burnetii from a list of essential genes. WT C. burnetii methylisocitrate lyase has a kcat of 13.8 s-1 (compared to 105 s-1 for Salmonella enterica), and isocitrate inhibits with a KI of 11 mM. We have determined the previously uncharacterized substrate-bound structure of this enzyme family, alongside product and inhibitor-bound structures. These structures of WT enzyme reveal that in the active state the catalytic C118 is positioned 2.98 Å from O5 of methylisocitrate and Arg152 moves toward the substrate relative to the inhibitor bound structure. Analysis of structure-based mutants reveals that Arg152 and Glu110 are both essential for catalysis. We suggest that Arg152 acts as the catalytic base that initiates the methylisocitrate lyase reaction. These results deepen our understanding of the catalytic mechanism of methylisocitrate lyase and could aid the development of new therapeutics against C. burnetii.
Collapse
Affiliation(s)
- William S Stuart
- Living Systems Institute, University of Exeter, Exeter, UK; Department of Biosciences, University of Exeter, Exeter, UK
| | - Christopher H Jenkins
- Human and Biological Advantage Department, Dstl Porton Down, Salisbury, Wiltshire, UK
| | - Philip M Ireland
- Human and Biological Advantage Department, Dstl Porton Down, Salisbury, Wiltshire, UK
| | | | - Isobel H Norville
- Department of Biosciences, University of Exeter, Exeter, UK; Human and Biological Advantage Department, Dstl Porton Down, Salisbury, Wiltshire, UK
| | - Nicholas J Harmer
- Living Systems Institute, University of Exeter, Exeter, UK; Department of Biosciences, University of Exeter, Exeter, UK.
| |
Collapse
|
2
|
Sobotta K, Schulze-Luehrmann J, Ölke M, Boden K, Lührmann A. Acid Tolerance of Coxiella burnetii Is Strain-Specific and Might Depend on Stomach Content. Pathogens 2025; 14:272. [PMID: 40137758 PMCID: PMC11945843 DOI: 10.3390/pathogens14030272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
Q fever is a zoonotic disease caused by the obligate intracellular bacterium Coxiella (C.) burnetii. Human infections occur mainly via inhalation, but infections via the oral route have been observed. Gastric acidic conditions (pH 2-4) are the first defense mechanism to limit food-associated infections. In this study, we tested the ability of C. burnetii to survive extremely acidic conditions (pH 2-3) to assess the risk of oral infection in humans. We treated different C. burnetii strains with different pH values and calculated the recovery rate by counting colony-forming units. The analysis of an additional eight C. burnetii strains showed that some strains are acid-resistant, while others are not. Importantly, the presence of pepsin, an endopeptidase and the main digestive enzyme in the gastrointestinal tract, increases the survival rate of C. burnetii. Similarly, the presence of milk might also increase the survival rate. These results suggest that oral infections by C. burnetii are possible and depend on the bacterial strain and the stomach microenvironment. Consequently, the digestive infection route of C. burnetii could play a role in the transmission of the pathogen.
Collapse
Affiliation(s)
- Katharina Sobotta
- Institute of Medical Microbiology, Am Klinikum 1, 07747 Jena, Germany
| | - Jan Schulze-Luehrmann
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Martha Ölke
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Katharina Boden
- Institute of Medical Microbiology, Am Klinikum 1, 07747 Jena, Germany
- Synlab MVZ Weiden GmbH, MVZ Thuringia, Ernst-Ruska-Ring 15, 07745 Jena, Germany
| | - Anja Lührmann
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
3
|
Kathayat D, Huang Y, Denis J, Rudoy B, Schwarz H, Szlechter J. LD-transpeptidase-mediated cell envelope remodeling enables developmental transitions and survival in Coxiella burnetii and Legionella pneumophila. J Bacteriol 2025; 207:e0024724. [PMID: 39846729 PMCID: PMC11841132 DOI: 10.1128/jb.00247-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/25/2024] [Indexed: 01/24/2025] Open
Abstract
Coxiella burnetii and Legionella pneumophila are two phylogenetically related bacterial pathogens that exhibit extreme intrinsic resistance when they enter into a dormancy-like state. This enables both pathogens to survive extended periods in growth-limited environments. Survival is dependent upon their ability to undergo developmental transitions into two phenotypically distinct variants, one specialized for intracellular replication and another for prolonged survival in the environment and host. We currently lack an understanding of the mechanisms that mediate these developmental transitions. Here, we performed peptidoglycan (PG) glycoproteome analysis and showed significant enrichment of PG structures catalyzed by LD-transpeptidases (LDTs) in the survival variants of C. burnetii and L. pneumophila. This is supported by the upregulation of LDTs, resulting in susceptibility to carbapenem antibiotics. Furthermore, deletion of the most upregulated LDT, lpg1386, in L. pneumophila significantly changes PG architecture, survival, and susceptibility to antibiotics. Significantly regulated by RpoS, a stationary-phase sigma factor, LDT-dependent PG remodeling is differentially activated by the host intracellular growth environment compared to axenic culture. In addition, β-barrel tethering, a newly discovered mechanism of LDT-mediated cell envelope stabilization, seems not to be specific to the survival variants. Interestingly, an outer membrane (OM) long-chain fatty acid transporter (Lpg1810) is tethered to PG in L. pneumophila. Collectively, these findings show that LDT-mediated PG remodeling is a major determinant of developmental transitions and survival in C. burnetii and L. pneumophila. Understanding this mechanism might inform new therapeutic approaches for treating chronic infections caused by these pathogens, as well as suggest new methods to decontaminate environmental reservoirs during outbreaks.IMPORTANCECoxiella burnetii and L. pneumophila cause Q Fever and Legionnaire's disease in humans, respectively. There is a lack of effective treatments for fatal chronic infections caused by these pathogens, particularly chronic Q Fever. These bacteria survive long term in nutrient-limited environments by differentiating into phenotypically distinct survival variants. Our study revealed that LDTs, a group of PG remodeling enzymes, play a prominent role in the phenotypic differentiations of these bacteria. We show that LDT-targeting carbapenems are effective against the survival variants, thus demanding the exploration of carbapenems for treating chronic infections caused by these pathogens. We report the tethering of a unique OM fatty acid transporter to PG in L. pneumophila that could indicate a novel function of tethering, that is, the uptake of nutrient substrates. Homologs of this transporter are widely present in the Methylobacteriaceae family of bacteria known to survive in water systems like Legionella, thus suggesting a potentially conserved mechanism of bacterial survival in nutrient-limited environments.
Collapse
Affiliation(s)
- Dipak Kathayat
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, USA
| | - Yujia Huang
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, USA
| | - Joee Denis
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, USA
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| | - Benjamin Rudoy
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, USA
| | - Hana Schwarz
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, USA
| | - Jacob Szlechter
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, USA
| |
Collapse
|
4
|
Fratzke AP, Szule JA, Butler SM, van Schaik EJ, Samuel JE. Molecular mechanisms of Coxiella burnetii formalin-fixed cellular vaccine reactogenicity. Infect Immun 2024; 92:e0033524. [PMID: 39356158 PMCID: PMC11556133 DOI: 10.1128/iai.00335-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/06/2024] [Indexed: 10/03/2024] Open
Abstract
Local and systemic reactogenic responses to Q-VAX have prevented licensing of this vaccine outside of Australia. These reactogenic responses occur in previously sensitized individuals and have not been well defined at the cellular level, in part because many studies have been done in guinea pigs that have limited molecular tools. We previously characterized a mouse model of reactogenicity where local reaction sites showed an influx of CD8+ and IFNγ-expressing IL17a+ CD4+ T cells consistent with a Th1 delayed-type hypersensitivity. In this study, we determined, using depletion and adoptive transfer experiments, that both anti-Coxiella antibodies and CD4+ T cells were essential for localized reactions at the site of vaccination. Furthermore, IFNγ depletion showed significant histological changes at the local reaction sites demonstrating the essential nature of this cytokine to reactogenicity. In addition to the cells and cytokines required for this response, we determined that whole cell vaccine (WCV) material remained at the site of vaccination for at least 26 weeks post-injection. Transmission electron microscopy (TEM) of these sites demonstrated intact rod-shaped bacteria at 2 weeks post-injection and partially degraded bacteria within macrophages at 26 weeks post-injection. Finally, because small cell variants (SCVs) are an environmentally stable form, we determined that local reactions were more severe when the WCV material was prepared with higher levels of SCVs compared to typical WCV or with higher levels of large cell variant (LCV). These studies support the hypothesis that antigen persistence at the site of injection contributes to this reactogenicity and that anti-Coxiella antibodies, CD4+ T cells, and IFNγ each contribute to this process.
Collapse
Affiliation(s)
- A. P. Fratzke
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, Texas, USA
| | - J. A. Szule
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - S. M. Butler
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, Texas, USA
| | - E. J. van Schaik
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, Texas, USA
| | - J. E. Samuel
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, Texas, USA
| |
Collapse
|
5
|
McMillan IA, Norris MH, Golon SJ, Franckowiak GA, Grinolds JM, Goldstein SM, Phelps DM, Bodenchuk MJ, Leland BR, Bowen RA, Brown VR, Borlee BR. Serosurveillance of Coxiella burnetii in feral swine populations of Hawai'i and Texas identifies overlap with human Q fever incidence. J Clin Microbiol 2024; 62:e0078024. [PMID: 39189735 PMCID: PMC11481530 DOI: 10.1128/jcm.00780-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/08/2024] [Indexed: 08/28/2024] Open
Abstract
Feral swine are invasive in the United States and a reservoir for infectious diseases. The increase in feral swine population and the geographic range are a concern for the spread of zoonotic diseases to humans and livestock. Feral swine could contribute to the spread of Coxiella burnetii, the causative agent of human Q fever. In this study, we characterized the seroprevalence of C. burnetii in feral swine populations of Hawai'i and Texas, which have low and high rates of human Q fever, respectively. Seropositivity rates were as high as 0.19% and 6.03% in Hawai'i and Texas, respectively, indicating that feral swine cannot be ruled out as a potential reservoir for disease transmission and spread. In Texas, we identified the overlap between seropositivity of feral swine and human Q fever incidence. These results indicate that there is a potentially low but detectable risk of C. burnetii exposure associated with feral swine populations in Hawai'i and Texas.
Collapse
Affiliation(s)
- Ian A. McMillan
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, Hawaiʻi, USA
| | - Michael H. Norris
- Pathogen Analysis and Translational Health Group, School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, Hawaiʻi, USA
| | - Samuel J. Golon
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Gregory A. Franckowiak
- US Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Feral Swine Damage Management Program, Fort Collins, Colorado, USA
| | - James M. Grinolds
- US Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Feral Swine Damage Management Program, Fort Collins, Colorado, USA
| | - Samuel M. Goldstein
- US Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Honolulu, Hawaiʻi, USA
| | - Darrin M. Phelps
- US Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Honolulu, Hawaiʻi, USA
| | - Michael J. Bodenchuk
- US Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, San Antonio, Texas, USA
| | - Bruce R. Leland
- US Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, San Antonio, Texas, USA
| | - Richard A. Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Vienna R. Brown
- US Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Feral Swine Damage Management Program, Fort Collins, Colorado, USA
| | - Bradley R. Borlee
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
6
|
Fratzke AP, Szule JA, Butler SM, van Schaik EJ, Samuel JE. Molecular Mechanisms of Coxiella burnetii Formalin Fixed Cellular Vaccine Reactogenicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608821. [PMID: 39229146 PMCID: PMC11370449 DOI: 10.1101/2024.08.20.608821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Local and systemic reactogenic responses to Q-VAX® have prevented licensing of this vaccine outside of Australia. These reactogenic responses occur in previously sensitize individuals and have not been well defined at the cellular level, in part because many studies have been done in guinea pigs that have limited molecular tools. We previously characterized a mouse model of reactogenicity where local reactions sites showed an influx of CD8+ and IFNγ-expressing IL17a+ CD4+ T cells consistent with a Th1 delayed-type hypersensitivity. In this study we determined using depletion and adoptive transfer experiments that both anti- Coxiella antibodies and CD4+ T cells were essential for localized reactions at the site of vaccination. Furthermore, IFNγ depletion showed significant histological changes at the local reaction sites demonstrating the essential nature of this cytokine to reactogenicity. In addition to the cells and cytokines required for this response, we determined WCV material remained at the site of vaccination for at least 26 weeks post-injection. Transmission electron microscopy of these sites demonstrated intact rod-shaped bacteria at 2 weeks post-injection and partially degraded bacteria within macrophages at 26 weeks post-injection. Finally, since SCVs are an environmentally stable form, we determined that local reactions were more severe when the WCV material was prepared with higher levels of SCVs compared to typical WCV or with higher levels of LCV. These studies support the hypothesis that antigen persistence at the site of injection contributes to this reactogenicity and that anti- Coxiella antibodies, CD4+ T cells, and IFNγ each contribute to this process.
Collapse
|
7
|
Mandel CG, Sanchez SE, Monahan CC, Phuklia W, Omsland A. Metabolism and physiology of pathogenic bacterial obligate intracellular parasites. Front Cell Infect Microbiol 2024; 14:1284701. [PMID: 38585652 PMCID: PMC10995303 DOI: 10.3389/fcimb.2024.1284701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/01/2024] [Indexed: 04/09/2024] Open
Abstract
Bacterial obligate intracellular parasites (BOIPs) represent an exclusive group of bacterial pathogens that all depend on invasion of a eukaryotic host cell to reproduce. BOIPs are characterized by extensive adaptation to their respective replication niches, regardless of whether they replicate within the host cell cytoplasm or within specialized replication vacuoles. Genome reduction is also a hallmark of BOIPs that likely reflects streamlining of metabolic processes to reduce the need for de novo biosynthesis of energetically costly metabolic intermediates. Despite shared characteristics in lifestyle, BOIPs show considerable diversity in nutrient requirements, metabolic capabilities, and general physiology. In this review, we compare metabolic and physiological processes of prominent pathogenic BOIPs with special emphasis on carbon, energy, and amino acid metabolism. Recent advances are discussed in the context of historical views and opportunities for discovery.
Collapse
Affiliation(s)
- Cameron G. Mandel
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Savannah E. Sanchez
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Colleen C. Monahan
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Weerawat Phuklia
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People’s Democratic Republic
| | - Anders Omsland
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| |
Collapse
|
8
|
Long CM, Beare PA, Cockrell D, Binette P, Tesfamariam M, Richards C, Anderson M, McCormick-Ell J, Brose M, Anderson R, Omsland A, Pearson T, Heinzen RA. Natural reversion promotes LPS elongation in an attenuated Coxiella burnetii strain. Nat Commun 2024; 15:697. [PMID: 38267444 PMCID: PMC10808227 DOI: 10.1038/s41467-023-43972-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/24/2023] [Indexed: 01/26/2024] Open
Abstract
Lipopolysaccharide (LPS) phase variation is a critical aspect of virulence in many Gram-negative bacteria. It is of particular importance to Coxiella burnetii, the biothreat pathogen that causes Q fever, as in vitro propagation of this organism leads to LPS truncation, which is associated with an attenuated and exempted from select agent status (Nine Mile II, NMII). Here, we demonstrate that NMII was recovered from the spleens of infected guinea pigs. Moreover, these strains exhibit a previously unrecognized form of elongated LPS and display increased virulence in comparison with the initial NMII strain. The reversion of a 3-bp mutation in the gene cbu0533 directly leads to LPS elongation. To address potential safety concerns, we introduce a modified NMII strain unable to produce elongated LPS.
Collapse
Affiliation(s)
- Carrie M Long
- Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT, 59840, USA.
| | - Paul A Beare
- Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Diane Cockrell
- Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Picabo Binette
- Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Mahelat Tesfamariam
- Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Crystal Richards
- Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Matthew Anderson
- Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Jessica McCormick-Ell
- Office of the Director, Office of Research Services, Division of Occupational Health and Safety, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Megan Brose
- Office of the Director, Office of Research Services, Division of Occupational Health and Safety, National Institutes of Health, Hamilton, 59840, USA
| | - Rebecca Anderson
- Office of the Director, Office of Research Services, Division of Occupational Health and Safety, National Institutes of Health, Hamilton, 59840, USA
| | - Anders Omsland
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA
| | - Talima Pearson
- Department of Biological Sciences, Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Robert A Heinzen
- Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT, 59840, USA
| |
Collapse
|
9
|
Wang T, Wang C, Li C, Song L. The intricate dance: host autophagy and Coxiella burnetii infection. Front Microbiol 2023; 14:1281303. [PMID: 37808314 PMCID: PMC10556474 DOI: 10.3389/fmicb.2023.1281303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
Q fever is a zoonotic disease caused by Coxiella burnetii, an obligatory intracellular bacterial pathogen. Like other intracellular pathogens, C. burnetii is able to survive and reproduce within host cells by manipulating host cellular processes. In particular, the relationship between C. burnetii infection and host autophagy, a cellular process involved in degradation and recycling, is of great interest due to its intricate nature. Studies have shown that autophagy can recognize and target intracellular pathogens such as Legionella and Salmonella for degradation, limiting their replication and promoting bacterial clearance. However, C. burnetii can actively manipulate the autophagic pathway to create an intracellular niche, known as the Coxiella-containing vacuole (CCV), where it can multiply and evade host immune responses. C. burnetii promotes the fusion of CCVs with lysosomes through mechanisms involving virulence factors such as Cig57 and CvpF. This review summarizes the latest findings on the dynamic interaction between host autophagy and C. burnetii infection, highlighting the complex strategies employed by both the bacterium and the host. A better understanding of these mechanisms could provide important insights into the development of novel therapeutic interventions and vaccine strategies against C. burnetii infections.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Infectious Diseases, First Hospital of Zibo City, Zibo, China
| | - Chao Wang
- Department of Traditional Chinese Medicine, First Hospital of Zibo City, Zibo, China
| | - Chang Li
- Department of VIP Unit, China-Japan Union Hospital, Changchun, China
| | - Lei Song
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Shepherd DC, Kaplan M, Vankadari N, Kim KW, Larson CL, Dutka P, Beare PA, Krzymowski E, Heinzen RA, Jensen GJ, Ghosal D. Morphological remodeling of Coxiella burnetii during its biphasic developmental cycle revealed by cryo-electron tomography. iScience 2023; 26:107210. [PMID: 37485371 PMCID: PMC10362272 DOI: 10.1016/j.isci.2023.107210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/05/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
Coxiella burnetii is an obligate zoonotic bacterium that targets macrophages causing a disease called Q fever. It has a biphasic developmental life cycle where the extracellular and metabolically inactive small cell variant (SCV) transforms inside the host into the vegetative large cell variant (LCV). However, details about the morphological and structural changes of this transition are still lacking. Here, we used cryo-electron tomography to image both SCV and LCV variants grown either under axenic conditions or purified directly from host cells. We show that SCVs are characterized by equidistant stacks of inner membrane that presumably facilitate the transition to LCV, a transition coupled with the expression of the Dot/Icm type IVB secretion system (T4BSS). A class of T4BSS particles were associated with extracellular densities possibly involved in host infection. Also, SCVs contained spherical multilayered membrane structures of different sizes and locations suggesting no connection to sporulation as once assumed.
Collapse
Affiliation(s)
- Doulin C. Shepherd
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Mohammed Kaplan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Naveen Vankadari
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Ki Woo Kim
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- School of Ecology and Environmental System, Kyungpook National University, Sangju, Korea
| | - Charles L. Larson
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Przemysław Dutka
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Division od Chemistry and Chemical Engineering, California Institute of Technology, 1200 California Boulevard, Pasadena, CA 91125, USA
| | - Paul A. Beare
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Edward Krzymowski
- Department of Physics and Astronomy, Brigham Young University, Provo, UT 84604, USA
| | - Robert A. Heinzen
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Grant J. Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84604, USA
| | - Debnath Ghosal
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
11
|
Larson CL, Pullman W, Beare PA, Heinzen RA. Identification of Type 4B Secretion System Substrates That Are Conserved among Coxiella burnetii Genomes and Promote Intracellular Growth. Microbiol Spectr 2023; 11:e0069623. [PMID: 37199620 PMCID: PMC10269450 DOI: 10.1128/spectrum.00696-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/21/2023] [Indexed: 05/19/2023] Open
Abstract
Coxiella burnetii is a Gram-negative pathogen that infects a variety of mammalian hosts. Infection of domesticated ewes can cause fetal abortion, whereas acute human infection normally manifests as the flu-like illness Q fever. Successful host infection requires replication of the pathogen within the lysosomal Coxiella-containing vacuole (CCV). The bacterium encodes a type 4B secretion system (T4BSS) that delivers effector proteins into the host cell. Disruption of C. burnetii T4BSS effector export abrogates CCV biogenesis and bacterial replication. Over 150 C. burnetii T4BSS substrates have been designated often based on heterologous protein translocation by the Legionella pneumophila T4BSS. Cross-genome comparisons predict that many of these T4BSS substrates are truncated or absent in the acute-disease reference strain C. burnetii Nine Mile. This study investigated the function of 32 proteins conserved among diverse C. burnetii genomes that are reported to be T4BSS substrates. Despite being previously designated T4BSS substrates, many of the proteins were not translocated by C. burnetii when expressed fused to the CyaA or BlaM reporter tags. CRISPR interference (CRISPRi) indicated that of the validated C. burnetii T4BSS substrates, CBU0122, CBU1752, CBU1825, and CBU2007 promote C. burnetii replication in THP-1 cells and CCV biogenesis in Vero cells. When expressed in HeLa cells tagged at its C or N terminus with mCherry, CBU0122 localized to the CCV membrane and the mitochondria, respectively. Collectively, these data further define the repertoire of bona fide C. burnetii T4BSS substrates. IMPORTANCE Coxiella burnetii secretes effector proteins via a T4BSS that are required for successful infection. Over 150 C. burnetii proteins are reported to be T4BSS substrates and often by default considered putative effectors, but few have assigned functions. Many C. burnetii proteins were designated T4BSS substrates using heterologous secretion assays in L. pneumophila and/or have coding sequences that are absent or pseudogenized in clinically relevant C. burnetii strains. This study examined 32 previously reported T4BSS substrates that are conserved among C. burnetii genomes. Of the proteins tested that were previously designated T4BSS substrates using L. pneumophila, most were not exported by C. burnetii. Several T4BSS substrates that were validated in C. burnetii also promoted pathogen intracellular replication and one trafficked to late endosomes and the mitochondria in a manner suggestive of effector activity. This study identified several bona fide C. burnetii T4BSS substrates and further refined the methodological criteria for their designation.
Collapse
Affiliation(s)
- Charles L. Larson
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
- Innate Immunity and Pathogenesis Section, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Willis Pullman
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Paul A. Beare
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
- Genomics Research Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Robert A. Heinzen
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
12
|
Riffaud CM, Rucks EA, Ouellette SP. Persistence of obligate intracellular pathogens: alternative strategies to overcome host-specific stresses. Front Cell Infect Microbiol 2023; 13:1185571. [PMID: 37284502 PMCID: PMC10239878 DOI: 10.3389/fcimb.2023.1185571] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/05/2023] [Indexed: 06/08/2023] Open
Abstract
In adapting to the intracellular niche, obligate intracellular bacteria usually undergo a reduction of genome size by eliminating genes not needed for intracellular survival. These losses can include, for example, genes involved in nutrient anabolic pathways or in stress response. Living inside a host cell offers a stable environment where intracellular bacteria can limit their exposure to extracellular effectors of the immune system and modulate or outright inhibit intracellular defense mechanisms. However, highlighting an area of vulnerability, these pathogens are dependent on the host cell for nutrients and are very sensitive to conditions that limit nutrient availability. Persistence is a common response shared by evolutionarily divergent bacteria to survive adverse conditions like nutrient deprivation. Development of persistence usually compromises successful antibiotic therapy of bacterial infections and is associated with chronic infections and long-term sequelae for the patients. During persistence, obligate intracellular pathogens are viable but not growing inside their host cell. They can survive for a long period of time such that, when the inducing stress is removed, reactivation of their growth cycles resumes. Given their reduced coding capacity, intracellular bacteria have adapted different response mechanisms. This review gives an overview of the strategies used by the obligate intracellular bacteria, where known, which, unlike model organisms such as E. coli, often lack toxin-antitoxin systems and the stringent response that have been linked to a persister phenotype and amino acid starvation states, respectively.
Collapse
|
13
|
Wachter S, Cockrell DC, Miller HE, Virtaneva K, Kanakabandi K, Darwitz B, Heinzen RA, Beare PA. The endogenous Coxiella burnetii plasmid encodes a functional toxin-antitoxin system. Mol Microbiol 2022; 118:744-764. [PMID: 36385554 PMCID: PMC10098735 DOI: 10.1111/mmi.15001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/25/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022]
Abstract
Coxiella burnetii is the causative agent of Q fever. All C. burnetii isolates encode either an autonomously replicating plasmid (QpH1, QpDG, QpRS, or QpDV) or QpRS-like chromosomally integrated plasmid sequences. The role of the ORFs present in these sequences is unknown. Here, the role of the ORFs encoded on QpH1 was investigated. Using a new C. burnetii shuttle vector (pB-TyrB-QpH1ori), we cured the C. burnetii Nine Mile Phase II strain of QpH1. The ΔQpH1 strain grew normally in axenic media but had a significant growth defect in Vero cells, indicating QpH1 was important for C. burnetii virulence. We developed an inducible CRISPR interference system to examine the role of individual QpH1 plasmid genes. CRISPRi of cbuA0027 resulted in significant growth defects in axenic media and THP-1 cells. The cbuA0028/cbuA0027 operon encodes CBUA0028 (ToxP) and CBUA0027 (AntitoxP), which are homologous to the HigB2 toxin and HigA2 antitoxin, respectively, from Vibrio cholerae. Consistent with toxin-antitoxin systems, overexpression of toxP resulted in a severe intracellular growth defect that was rescued by co-expression of antitoxP. ToxP inhibited protein translation. AntitoxP bound the toxP promoter (PtoxP) and ToxP, with the resulting complex binding also PtoxP. In summary, our data indicate that C. burnetii maintains an autonomously replicating plasmid because of a plasmid-based toxin-antitoxin system.
Collapse
Affiliation(s)
- Shaun Wachter
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA.,Vaccine and Infectious Disease Organization, Saskatoon, Saskatchewan, Canada
| | - Diane C Cockrell
- Vector-Pathogen-Host Interaction unit, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | | | - Kimmo Virtaneva
- Genomics Research Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Kishore Kanakabandi
- Genomics Research Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Benjamin Darwitz
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Robert A Heinzen
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Paul A Beare
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA.,Genomics Research Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
14
|
Cheng E, Dorjsuren D, Lehman S, Larson CL, Titus SA, Sun H, Zakharov A, Rai G, Heinzen RA, Simeonov A, Machner MP. A Comprehensive Phenotypic Screening Strategy to Identify Modulators of Cargo Translocation by the Bacterial Type IVB Secretion System. mBio 2022; 13:e0024022. [PMID: 35258332 PMCID: PMC9040768 DOI: 10.1128/mbio.00240-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 02/03/2023] Open
Abstract
Bacterial type IV secretion systems (T4SSs) are macromolecular machines that translocate effector proteins across multiple membranes into infected host cells. Loss of function mutations in genes encoding protein components of the T4SS render bacteria avirulent, highlighting the attractiveness of T4SSs as drug targets. Here, we designed an automated high-throughput screening approach for the identification of compounds that interfere with the delivery of a reporter-effector fusion protein from Legionella pneumophila into RAW264.7 mouse macrophages. Using a fluorescence resonance energy transfer (FRET)-based detection assay in a bacteria/macrophage coculture format, we screened a library of over 18,000 compounds and, upon vetting compound candidates in a variety of in vitro and cell-based secondary screens, isolated several hits that efficiently interfered with biological processes that depend on a functional T4SS, such as intracellular bacterial proliferation or lysosomal avoidance, but had no detectable effect on L. pneumophila growth in culture medium, conditions under which the T4SS is dispensable. Notably, the same hit compounds also attenuated, to varying degrees, effector delivery by the closely related T4SS from Coxiella burnetii, notably without impacting growth of this organism within synthetic media. Together, these results support the idea that interference with T4SS function is a possible therapeutic intervention strategy, and the emerging compounds provide tools to interrogate at a molecular level the regulation and dynamics of these virulence-critical translocation machines. IMPORTANCE Multi-drug-resistant pathogens are an emerging threat to human health. Because conventional antibiotics target not only the pathogen but also eradicate the beneficial microbiota, they often cause additional clinical complications. Thus, there is an urgent need for the development of "smarter" therapeutics that selectively target pathogens without affecting beneficial commensals. The bacterial type IV secretion system (T4SS) is essential for the virulence of a variety of pathogens but dispensable for bacterial viability in general and can, thus, be considered a pathogen's Achilles heel. By identifying small molecules that interfere with cargo delivery by the T4SS from two important human pathogens, Legionella pneumophila and Coxiella burnetii, our study represents the first step in our pursuit toward precision medicine by developing pathogen-selective therapeutics capable of treating the infections without causing harm to commensal bacteria.
Collapse
Affiliation(s)
- Eric Cheng
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Dorjbal Dorjsuren
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Stephanie Lehman
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Charles L. Larson
- Laboratory of Bacteriology, Coxiella Pathogenesis Section, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, Hamilton, Montana, USA
| | - Steven A. Titus
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Hongmao Sun
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Alexey Zakharov
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Ganesha Rai
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Robert A. Heinzen
- Laboratory of Bacteriology, Coxiella Pathogenesis Section, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, Hamilton, Montana, USA
| | - Anton Simeonov
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Matthias P. Machner
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
15
|
Wittwer M, Hammer P, Runge M, Valentin-Weigand P, Neubauer H, Henning K, Mertens-Scholz K. Inactivation Kinetics of Coxiella burnetii During High-Temperature Short-Time Pasteurization of Milk. Front Microbiol 2022; 12:753871. [PMID: 35069465 PMCID: PMC8770862 DOI: 10.3389/fmicb.2021.753871] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/29/2021] [Indexed: 11/30/2022] Open
Abstract
The Gram-negative, obligate intracellular bacterium Coxiella burnetii is the causative organism of the zoonosis Q fever and is known for its resistance toward various intra- and extracellular stressors. Infected ruminants such as cattle, sheep, and goats can shed the pathogen in their milk. Pasteurization of raw milk was introduced for the inactivation of C. burnetii and other milk-borne pathogens. Legal regulations for the pasteurization of milk are mostly based on recommendations of the Codex Alimentarius. As described there, C. burnetii is considered as the most heat-resistant non-spore-forming bacterial pathogen in milk and has to be reduced by at least 5 log10-steps during the pasteurization process. However, the corresponding inactivation data for C. burnetii originate from experiments performed more than 60 years ago. Recent scientific findings and the technological progress of modern pasteurization equipment indicate that C. burnetii is potentially more effectively inactivated during pasteurization than demanded in the Codex Alimentarius. In the present study, ultra-high heat-treated milk was inoculated with different C. burnetii field isolates and subsequently heat-treated in a pilot-plant pasteurizer. Kinetic inactivation data in terms of D- and z-values were determined and used for the calculation of heat-dependent log reduction. With regard to the mandatory 5 log10-step reduction of the pathogen, the efficacy of the established heat treatment regime was confirmed, and, in addition, a reduction of the pasteurization temperature seems feasible.
Collapse
Affiliation(s)
- Marcel Wittwer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Philipp Hammer
- Federal Research Institute of Nutrition and Food, Department of Microbiology and Biotechnology, Max Rubner-Institut, Kiel, Germany
| | - Martin Runge
- Food and Veterinary Institute, Braunschweig/Hannover, Lower Saxony State Office for Consumer Protection and Food Safety, Hanover, Germany
| | - Peter Valentin-Weigand
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Klaus Henning
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Katja Mertens-Scholz
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| |
Collapse
|
16
|
Sireci G, Badami GD, Di Liberto D, Blanda V, Grippi F, Di Paola L, Guercio A, de la Fuente J, Torina A. Recent Advances on the Innate Immune Response to Coxiella burnetii. Front Cell Infect Microbiol 2021; 11:754455. [PMID: 34796128 PMCID: PMC8593175 DOI: 10.3389/fcimb.2021.754455] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022] Open
Abstract
Coxiella burnetii is an obligate intracellular Gram-negative bacterium and the causative agent of a worldwide zoonosis known as Q fever. The pathogen invades monocytes and macrophages, replicating within acidic phagolysosomes and evading host defenses through different immune evasion strategies that are mainly associated with the structure of its lipopolysaccharide. The main transmission routes are aerosols and ingestion of fomites from infected animals. The innate immune system provides the first host defense against the microorganism, and it is crucial to direct the infection towards a self-limiting respiratory disease or the chronic form. This review reports the advances in understanding the mechanisms of innate immunity acting during C. burnetii infection and the strategies that pathogen put in place to infect the host cells and to modify the expression of specific host cell genes in order to subvert cellular processes. The mechanisms through which different cell types with different genetic backgrounds are differently susceptible to C. burnetii intracellular growth are discussed. The subsets of cytokines induced following C. burnetii infection as well as the pathogen influence on an inflammasome-mediated response are also described. Finally, we discuss the use of animal experimental systems for studying the innate immune response against C. burnetii and discovering novel methods for prevention and treatment of disease in humans and livestock.
Collapse
Affiliation(s)
- Guido Sireci
- Central Laboratory of Advanced Diagnostic and Biological Research (CLADIBIOR), Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University Hospital "Paolo Giaccone", Università degli studi di Palermo, Palermo, Italy
| | - Giusto Davide Badami
- Central Laboratory of Advanced Diagnostic and Biological Research (CLADIBIOR), Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University Hospital "Paolo Giaccone", Università degli studi di Palermo, Palermo, Italy
| | - Diana Di Liberto
- Central Laboratory of Advanced Diagnostic and Biological Research (CLADIBIOR), Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University Hospital "Paolo Giaccone", Università degli studi di Palermo, Palermo, Italy
| | - Valeria Blanda
- Istituto Zooprofilattico Sperimentale della Sicilia, Palermo, Italy
| | - Francesca Grippi
- Istituto Zooprofilattico Sperimentale della Sicilia, Palermo, Italy
| | - Laura Di Paola
- Istituto Zooprofilattico Sperimentale della Sicilia, Palermo, Italy
| | - Annalisa Guercio
- Istituto Zooprofilattico Sperimentale della Sicilia, Palermo, Italy
| | - José de la Fuente
- SaBio Health and Biotechnology, Instituto de Investigación en Recursos Cinegéticos, IREC -Spanish National Research Council CSIC - University of Castilla-La Mancha UCLM - Regional Government of Castilla-La Mancha JCCM, Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | | |
Collapse
|
17
|
Kovacs-Simon A, Metters G, Norville I, Hemsley C, Titball RW. Coxiella burnetii replicates in Galleria mellonella hemocytes and transcriptome mapping reveals in vivo regulated genes. Virulence 2021; 11:1268-1278. [PMID: 32970966 PMCID: PMC7549970 DOI: 10.1080/21505594.2020.1819111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Larvae of the greater wax moth (Galleria mellonella) are susceptible to infection with C. burnetii, an obligate intracellular bacterial pathogen. We show that bacteria are found in hemocytes after infection, and occupy vacuoles which are morphologically similar to Coxiella-containing vacuoles seen in infected mammalian phagocytes. We characterized the infection by transcriptome profiling of bacteria isolated from the hemocytes of infected larvae and identified 46 highly upregulated genes. The encoded proteins are predicted to be involved in translation, LPS biosynthesis, biotin synthesis, scavenging of reactive oxygen species, and included a T4SS effector and 30 hypothetical proteins. Some of these genes had previously been shown to be upregulated in buffalo green monkey (BGM) cells or in mice, whilst others appear to be regulated in a host-specific manner. Altogether, our results demonstrate the value of the G. mellonella model to study intracellular growth and identify potential virulence factors of C. burnetii.
Collapse
Affiliation(s)
- Andrea Kovacs-Simon
- College of Life and Environmental Sciences - Biosciences, University of Exeter , Exeter, UK
| | - Georgie Metters
- College of Life and Environmental Sciences - Biosciences, University of Exeter , Exeter, UK
| | - Isobel Norville
- CBR Division, Defence Science and Technology Laboratory , Porton Down,Salisbury, UK
| | - Claudia Hemsley
- College of Life and Environmental Sciences - Biosciences, University of Exeter , Exeter, UK
| | - Richard W Titball
- College of Life and Environmental Sciences - Biosciences, University of Exeter , Exeter, UK
| |
Collapse
|
18
|
Sanchez SE, Omsland A. Conditional impairment of Coxiella burnetii by glucose-6P dehydrogenase activity. Pathog Dis 2021; 79:6321164. [PMID: 34259815 PMCID: PMC8292140 DOI: 10.1093/femspd/ftab034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 07/06/2021] [Indexed: 11/12/2022] Open
Abstract
Coxiella burnetii is a bacterial obligate intracellular parasite and the etiological agent of query (Q) fever. While the C. burnetii genome has been reduced to ∼2 Mb as a likely consequence of genome streamlining in response to parasitism, enzymes for a nearly complete central metabolic machinery are encoded by the genome. However, lack of a canonical hexokinase for phosphorylation of glucose and an apparent absence of the oxidative branch of the pentose phosphate pathway, a major mechanism for regeneration of the reducing equivalent nicotinamide adenine dinucleotide phosphate (NADPH), have been noted as potential metabolic limitations of C. burnetii. By complementing C. burnetii with the gene zwf encoding the glucose-6-phosphate-consuming and NADPH-producing enzyme glucose-6-phosphate dehydrogenase (G6PD), we demonstrate a severe metabolic fitness defect for C. burnetii under conditions of glucose limitation. Supplementation of the medium with the gluconeogenic carbon source glutamate did not rescue the growth defect of bacteria complemented with zwf. Absence of G6PD in C. burnetii therefore likely relates to the negative effect of its activity under conditions of glucose limitation. Coxiella burnetii central metabolism with emphasis on glucose, NAD+, NADP+ and NADPH is discussed in a broader perspective, including comparisons with other bacterial obligate intracellular parasites.
Collapse
Affiliation(s)
- Savannah E Sanchez
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA 99164, USA.,School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - Anders Omsland
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
19
|
Delaney MA, Hartigh AD, Carpentier SJ, Birkland TP, Knowles DP, Cookson BT, Frevert CW. Avoidance of the NLRP3 Inflammasome by the Stealth Pathogen, Coxiella burnetii. Vet Pathol 2021; 58:624-642. [PMID: 33357072 DOI: 10.1177/0300985820981369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Coxiella burnetii, a highly adapted obligate intracellular bacterial pathogen and the cause of the zoonosis Q fever, is a reemerging public health threat. C. burnetii employs a Type IV secretion system (T4SS) to establish and maintain its intracellular niche and modulate host immune responses including the inhibition of apoptosis. Interactions between C. burnetii and caspase-1-mediated inflammasomes are not fully elucidated. This study confirms that C. burnetii does not activate caspase-1 during infection of mouse macrophages in vitro. C. burnetii-infected cells did not develop NLRP3 and ASC foci indicating its ability to avoid cytosolic detection. C. burnetii is unable to inhibit the pyroptosis and IL-1β secretion that is induced by potent inflammasome stimuli but rather enhances these caspase-1-mediated effects. We found that C. burnetii upregulates pro-IL-1β and robustly primes NLRP3 inflammasomes via TLR2 and MyD88 signaling. As for wildtype C. burnetii, T4SS-deficient mutants primed and potentiated NLRP3 inflammasomes. An in vivo model of pulmonary infection in C57BL/6 mice was developed. Mice deficient in NLRP3 or caspase-1 were like wildtype mice in the development and resolution of splenomegaly due to red pulp hyperplasia, and histologic lesions and macrophage kinetics, but had slightly higher pulmonary bacterial burdens at the greatest measured time point. Together these findings indicate that C. burnetii primes but avoids cytosolic detection by NLRP3 inflammasomes, which are not required for the clinical resistance of C57BL/6 mice. Determining mechanisms employed by C. burnetii to avoid cytosolic detection via NLRP3 inflammasomes will be beneficial to the development of preventative and interventional therapies for Q fever.
Collapse
Affiliation(s)
- Martha A Delaney
- Departments of Comparative Medicine and Pathology, and the Comparative Pathology Program, 7284University of Washington, Seattle, WA
- Current address: Martha A. Delaney, Zoological Pathology Program, University of Illinois, Brookfield, IL, USA
| | - Andreas den Hartigh
- Departments of Microbiology and Lab Medicine, 7284University of Washington, Seattle, WA
| | - Samuel J Carpentier
- Departments of Microbiology and Lab Medicine, 7284University of Washington, Seattle, WA
| | - Timothy P Birkland
- Departments of Comparative Medicine and Pathology, and the Comparative Pathology Program, 7284University of Washington, Seattle, WA
| | - Donald P Knowles
- Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Pullman, WA
- Department of Veterinary Microbiology and Pathology, 6760Washington State University, Pullman, WA
| | - Brad T Cookson
- Departments of Microbiology and Lab Medicine, 7284University of Washington, Seattle, WA
| | - Charles W Frevert
- Departments of Comparative Medicine and Pathology, and the Comparative Pathology Program, 7284University of Washington, Seattle, WA
| |
Collapse
|
20
|
Fisher JR, Chroust ZD, Onyoni F, Soong L. Pattern Recognition Receptors in Innate Immunity to Obligate Intracellular Bacteria. ZOONOSES (BURLINGTON, MASS.) 2021; 1:10. [PMID: 35282331 PMCID: PMC8909792 DOI: 10.15212/zoonoses-2021-0011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Host pattern recognition receptors (PRRs) are crucial for sensing pathogenic microorganisms, launching innate responses, and shaping pathogen-specific adaptive immunity during infection. Rickettsia spp., Orientia tsutsugamushi, Anaplasma spp., Ehrlichia spp., and Coxiella burnetii are obligate intracellular bacteria, which can only replicate within host cells and must evade immune detection to successfully propagate. These five bacterial species are zoonotic pathogens of clinical or agricultural importance, yet, uncovering how immune recognition occurs has remained challenging. Recent evidence from in-vitro studies and animal models has offered new insights into the types and kinetics of PRR activation during infection with Rickettsia spp., A. phagocytophilum, E. chaffeensis, and C. burnetii, respectively. However, much less is known in these regards for O. tsutsugamushi infection, until the recent discovery for the role of the C-type lectin receptor Mincle during lethal infection in mice and in primary macrophage cultures. This review gives a brief summary for clinical and epidemiologic features of these five bacterial infections, focuses on fundamental biologic facets of infection, and recent advances in host recognition. In addition, we discuss knowledge gaps for innate recognition of these bacteria in the context of disease pathogenesis.
Collapse
Affiliation(s)
- James R. Fisher
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- School of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Zachary D. Chroust
- School of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Florence Onyoni
- Graduate School of Biomedical Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
- Corresponding author: Lynn Soong, Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd. MRB 3.142, Galveston, Texas 77555-1070,
| |
Collapse
|
21
|
Sahu R, Rawool DB, Vinod VK, Malik SVS, Barbuddhe SB. Current approaches for the detection of Coxiella burnetii infection in humans and animals. J Microbiol Methods 2020; 179:106087. [PMID: 33086105 DOI: 10.1016/j.mimet.2020.106087] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 02/09/2023]
Abstract
Q fever (coxiellosis), caused by Coxiella burnetii, is an emerging or re-emerging zoonotic disease of public health significance and with worldwide distribution. As a causal agent of the one among the 13 global priority zoonoses, having the infectious dose as low as one bacterium, C. burnetii has been regarded as an obligate intracellular bacterial pathogen. The agent has been classified as a Group B bioterrorism agent by the Centre for Disease Control and Prevention (CDC), and the disease is included in the World Organisation for Animal Health (OIE) list of notifiable diseases. It is mainly transmitted through airborne route in humans and animals. Isolation of C. burnetii, using standard routine laboratory culture techniques was impossible until formulation of axenic-based medium. However, it is still to be included among routinely isolated laboratory pathogen, accounting prolonged incubation period (~7 days) and requirement of specific oxygen concentration (2.5% O2). Therefore, indirect diagnostic tools have been mainly used for its diagnosis. So far serology has been mostly used for testing for C. burnetii infection. The detection of C. burnetii DNA by PCR in various clinical samples have also been widely used. The disease has remained largely under-reported, underdiagnosed and as a masked zoonosis; and therefore, needs to be explored through well-planned scientific studies for knowing its true status and likely it impact in humans and animals by employing state-of-the-art diagnostics, identifying its diverse and new host range, as well as risk factors involved in different geo-climatic, behavioural and social settings as well as risk groups. Here, we reviewed the current approaches used for the detection of C. burnetii infection in humans and animals at the population and individual level.
Collapse
Affiliation(s)
- Radhakrishna Sahu
- Division of Veterinary Public Health, ICAR- Indian Veterinary Research Institute, Izatnagar 243 122, India
| | - Deepak B Rawool
- ICAR- National Research Centre on Meat, Hyderabad 500 092, India
| | - Valil Kunjukunju Vinod
- Division of Veterinary Public Health, ICAR- Indian Veterinary Research Institute, Izatnagar 243 122, India
| | - S V S Malik
- Division of Veterinary Public Health, ICAR- Indian Veterinary Research Institute, Izatnagar 243 122, India
| | | |
Collapse
|
22
|
Miller CN, Khan M, Ahmed SA, Kota K, Panchal RG, Hale ML. Development of a Coxiella burnetii culture method for high-throughput assay to identify host-directed therapeutics. J Microbiol Methods 2019; 169:105813. [PMID: 31862458 DOI: 10.1016/j.mimet.2019.105813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 10/25/2022]
Abstract
The intracellular Gram-negative bacterium, Coxiella burnetii, is a worldwide zoonotic pathogen and the causative agent of Q fever. The standard of care for C. burnetii infections involves extended periods of antibiotic treatment and the development of doxycycline-resistant strains stress the need for new treatment strategies. A previously developed axenic medium has facilitated in vitro growth of the organism. In this study, we have developed a simple culture method that is inexpensive, reliable and utilizes a modular hypoxic chamber system for either small or large scale production of bacteria without the need of a tri-gas incubator. This method provides consistent growth and yields sufficient viable bacteria within four days of culture and can be used for high-throughput screening. The viable bacteria were quantified by counting colony forming units and total bacteria were enumerated using a genomic equivalent method. The characterized bacterial inoculum was then used to optimize cell-based high-throughput immunofluorescence assays with a goal to quantify intracellular bacteria and then screen and identify compounds that inhibit early stages of C. burnetii infection in macrophages.
Collapse
Affiliation(s)
- Cheryl N Miller
- Countermeasures Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, United States.
| | - Maisha Khan
- Countermeasures Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, United States; Department of Chemistry and Physics, Hood College, 401 Rosemont Ave, Frederick, MD 21701, United States
| | - S Ashraf Ahmed
- Systems and Structural Biology, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, United States
| | - Krishna Kota
- Countermeasures Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, United States
| | - Rekha G Panchal
- Countermeasures Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, United States
| | - Martha L Hale
- Countermeasures Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, United States
| |
Collapse
|
23
|
The Effect of pH on Antibiotic Efficacy against Coxiella burnetii in Axenic Media. Sci Rep 2019; 9:18132. [PMID: 31792307 PMCID: PMC6889355 DOI: 10.1038/s41598-019-54556-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/11/2019] [Indexed: 01/06/2023] Open
Abstract
Coxiella burnetii, the etiologic agent of Q fever, replicates in an intracellular phagolysosome with pH between 4 and 5. The impact of this low pH environment on antimicrobial treatment is not well understood. An in vitro system for testing antibiotic susceptibility of C. burnetii in axenic media was set up to evaluate the impact of pH on C. burnetii growth and survival in the presence and absence of antimicrobial agents. The data show that C. burnetii does not grow in axenic media at pH 6.0 or higher, but the organisms remain viable. At pH of 4.75, 5.25, and 5.75 moxifloxacin, doxycycline, and rifampin are effective at preventing growth of C. burnetii in axenic media, with moxifloxacin and doxycycline being bacteriostatic and rifampin having bactericidal activity. The efficacy of doxycycline and moxifloxacin improved at higher pH, whereas rifampin activity was pH independent. Hydroxychloroquine is thought to inhibit growth of C. burnetii in vivo by raising the pH of typically acidic intracellular compartments. It had no direct bactericidal or bacteriostatic activity on C. burnetii in axenic media, suggesting that raising pH of acidic intracellular compartments is its primary mechanism of action in vivo. The data suggest that doxycycline and hydroxychloroquine are primarily independent bacteriostatic agents.
Collapse
|
24
|
Dresler J, Klimentova J, Pajer P, Salovska B, Fucikova AM, Chmel M, Schmoock G, Neubauer H, Mertens-Scholz K. Quantitative Proteome Profiling of Coxiella burnetii Reveals Major Metabolic and Stress Differences Under Axenic and Cell Culture Cultivation. Front Microbiol 2019; 10:2022. [PMID: 31620097 PMCID: PMC6759588 DOI: 10.3389/fmicb.2019.02022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/19/2019] [Indexed: 12/14/2022] Open
Abstract
Coxiella burnetii is the causative agent of the zoonotic disease Q fever. To date, the lipopolysaccharide (LPS) is the only defined and characterized virulence determinant of C. burnetii. In this study, proteome profiles of C. burnetii Nine Mile phase I (RSA 493, NMI) and its isogenic Nine Mile phase II (RSA 439 NMII) isolate with a deep rough LPS were compared on L-929 mouse fibroblasts and in complex (ACCM-2), and defined (ACCM-D) media. Whole proteome extracts were analyzed using a label-free quantification approach. Between 659 and 1,046 C. burnetii proteins of the 2,132 annotated coding sequences (CDS) were identified in any particular experiment. Proteome profiles clustered according to the cultivation conditions used, indicating different regulation patterns. NMI proteome profiles compared to NMII in ACCM-D indicate transition from an exponential to a stationary phase. The levels of regulatory proteins such as RpoS, CsrA2, UspA1, and UspA2 were increased. Comparison of the oxidative stress response of NMI and NMII indicated that ACCM-2 represents a high oxidative stress environment. Expression of peroxidases, superoxide dismutases, as well as thioredoxins was increased for NMI. In contrast, in ACCM-D, only osmoregulation seems to be necessary. Proteome profiles of NMII do not differ and indicate that both axenic media represent similar oxidative stress environments. Deep rough LPS causes changes of the outer membrane stability and fluidity. This might be one reason for the observed differences. Proteins associated with the T4SS and Sec translocon as well as several effector proteins were detectable under all three conditions. Interestingly, none of these putatively secreted proteins are upregulated in ACCM-2 compared to ACCM-D, and L-929 mouse fibroblasts. Curiously, a higher similarity of proteomic patterns (overlapping up- and downregulated proteins) of ACCM-D and bacteria grown in cell culture was observed. Particularly, the proteins involved in a better adaptation or homeostasis in response to the harsh environment of the parasitophorous vacuole were demonstrated for NMI. This semi-quantitative proteomic analysis of C. burnetii compared axenically grown bacteria to those propagated in cell culture.
Collapse
Affiliation(s)
| | - Jana Klimentova
- Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Petr Pajer
- Military Health Institute, Prague, Czechia
| | - Barbora Salovska
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | | | - Martin Chmel
- Department of Infectious Diseases, First Faculty of Medicine, Charles University and Military University Hospital Prague, Prague, Czechia
| | - Gernot Schmoock
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Katja Mertens-Scholz
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| |
Collapse
|
25
|
Hartley MG, Ralph E, Norville IH, Prior JL, Atkins TP. Comparison of PCR and Viable Count as a Method for Enumeration of Bacteria in an A/J Mouse Aerosol Model of Q Fever. Front Microbiol 2019; 10:1552. [PMID: 31379760 PMCID: PMC6647910 DOI: 10.3389/fmicb.2019.01552] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/21/2019] [Indexed: 12/26/2022] Open
Abstract
Historically, disease progression in animal models of Q fever has been carried out using PCR to monitor the presence of Coxiella burnetii DNA in the host. However, the colonization and dissemination of other bacterial infections in animal models are tracked using viable counts, enabling an accurate assessment of viable bacterial load within tissues. Following recent advances in the culture methods, it has become possible to do the same with C. burnetii. Here we compare and contrast the different information gained by using PCR or viable counts to study this disease. Viable bacteria were cleared from organs much faster than previously reported when assessed by bacterial DNA, but weight loss and clinical signs improved while animals were still heavily infected.
Collapse
Affiliation(s)
- M Gill Hartley
- CBR, Defence Science and Technology Laboratory, Salisbury, United Kingdom
| | - Esther Ralph
- CBR, Defence Science and Technology Laboratory, Salisbury, United Kingdom
| | - Isobel H Norville
- CBR, Defence Science and Technology Laboratory, Salisbury, United Kingdom
| | - Joann L Prior
- CBR, Defence Science and Technology Laboratory, Salisbury, United Kingdom.,College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Timothy P Atkins
- CBR, Defence Science and Technology Laboratory, Salisbury, United Kingdom.,College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
26
|
Coxiella burnetii RpoS Regulates Genes Involved in Morphological Differentiation and Intracellular Growth. J Bacteriol 2019; 201:JB.00009-19. [PMID: 30745369 DOI: 10.1128/jb.00009-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/30/2019] [Indexed: 12/19/2022] Open
Abstract
Coxiella burnetii, the etiological agent of Q fever, undergoes a unique biphasic developmental cycle where bacteria transition from a replicating (exponential-phase) large cell variant (LCV) form to a nonreplicating (stationary-phase) small cell variant (SCV) form. The alternative sigma factor RpoS is an essential regulator of stress responses and stationary-phase physiology in several bacterial species, including Legionella pneumophila, which has a developmental cycle superficially similar to that of C. burnetii Here, we used a C. burnetii ΔrpoS mutant to define the role of RpoS in intracellular growth and SCV development. Growth yields following infection of Vero epithelial cells or THP-1 macrophage-like cells with the rpoS mutant in the SCV form, but not the LCV form, were significantly lower than that of wild-type bacteria. RNA sequencing and whole-cell mass spectrometry of the C. burnetii ΔrpoS mutant revealed that a substantial portion of the C. burnetii genome is regulated by RpoS during SCV development. Regulated genes include those involved in stress responses, arginine transport, peptidoglycan remodeling, and synthesis of the SCV-specific protein ScvA. Genes comprising the dot/icm locus, responsible for production of the Dot/Icm type 4B secretion system, were also dysregulated in the rpoS mutant. These data were corroborated with independent assays demonstrating that the C. burnetii ΔrpoS strain has increased sensitivity to hydrogen peroxide and carbenicillin and a thinner cell wall/outer membrane complex. Collectively, these results demonstrate that RpoS is an important regulator of genes involved in C. burnetii SCV development and intracellular growth.IMPORTANCE The Q fever bacterium Coxiella burnetii has spore-like environmental stability, a characteristic that contributes to its designation as a potential bioweapon. Stability is likely conferred by a highly resistant, small cell variant (SCV) stationary-phase form that arises during a biphasic developmental cycle. Here, we define the role of the alternative sigma factor RpoS in regulating genes associated with SCV development. Genes involved in stress responses, amino acid transport, cell wall remodeling, and type 4B effector secretion were dysregulated in the rpoS mutant. Cellular impairments included defects in intracellular growth, cell wall structure, and resistance to oxidants. These results support RpoS as a central regulator of the Coxiella developmental cycle and identify developmentally regulated genes involved in morphological differentiation.
Collapse
|
27
|
Naranjo E, Merfa MV, Ferreira V, Jain M, Davis MJ, Bahar O, Gabriel DW, De La Fuente L. Liberibacter crescens biofilm formation in vitro: establishment of a model system for pathogenic 'Candidatus Liberibacter spp.'. Sci Rep 2019; 9:5150. [PMID: 30914689 PMCID: PMC6435755 DOI: 10.1038/s41598-019-41495-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/11/2019] [Indexed: 11/23/2022] Open
Abstract
The Liberibacter genus comprises insect endosymbiont bacterial species that cause destructive plant diseases, including Huanglongbing in citrus and zebra chip in potato. To date, pathogenic 'Candidatus Liberibacter spp.' (CLs) remain uncultured, therefore the plant-associated Liberibacter crescens (Lcr), only cultured species of the genus, has been used as a biological model for in vitro studies. Biofilm formation by CLs has been observed on the outer midgut surface of insect vectors, but not in planta. However, the role of biofilm formation in the life cycle of these pathogens remains unclear. Here, a model system for studying CLs biofilms was developed using Lcr. By culture media modifications, bovine serum albumin (BSA) was identified as blocking initial cell-surface adhesion. Removal of BSA allowed for the first time observation of Lcr biofilms. After media optimization for biofilm formation, we demonstrated that Lcr attaches to surfaces, and form cell aggregates embedded in a polysaccharide matrix both in batch cultures and under flow conditions in microfluidic chambers. Biofilm structures may represent excellent adaptive advantages for CLs during insect vector colonization helping with host retention, immune system evasion, and transmission. Future studies using the Lcr model established here will help in the understanding of the biology of CLs.
Collapse
Affiliation(s)
- Eber Naranjo
- Department of Entomology and Plant Pathology, Auburn University, Auburn, USA
| | - Marcus V Merfa
- Department of Entomology and Plant Pathology, Auburn University, Auburn, USA
| | - Virginia Ferreira
- Bioscience Department, College of Chemistry, University of the Republic, Montevideo, Uruguay
| | - Mukesh Jain
- Department of Plant Pathology, University of Florida, Gainesville, USA
| | - Michael J Davis
- Citrus Research and Education Center, University of Florida, Gainesville, USA
| | - Ofir Bahar
- Department of Plant Pathology and Weed Research, ARO - Volcani Center, Bet-Dagan, Israel
| | - Dean W Gabriel
- Department of Plant Pathology, University of Florida, Gainesville, USA
| | | |
Collapse
|
28
|
Sanchez SE, Vallejo-Esquerra E, Omsland A. Use of Axenic Culture Tools to StudyCoxiella burnetii. ACTA ACUST UNITED AC 2018; 50:e52. [DOI: 10.1002/cpmc.52] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Savannah E. Sanchez
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University; Pullman Washington
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University; Pullman Washington
| | - Eduardo Vallejo-Esquerra
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University; Pullman Washington
| | - Anders Omsland
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University; Pullman Washington
| |
Collapse
|
29
|
Stead CM, Cockrell DC, Beare PA, Miller HE, Heinzen RA. A Coxiella burnetii phospholipase A homolog pldA is required for optimal growth in macrophages and developmental form lipid remodeling. BMC Microbiol 2018; 18:33. [PMID: 29661138 PMCID: PMC5902883 DOI: 10.1186/s12866-018-1181-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/09/2018] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Many gram-negative bacteria produce an outer membrane phospholipase A (PldA) that plays an important role in outer membrane function and is associated with virulence. RESULTS In the current study, we characterized a pldA mutant of Coxiella burnetii, an intracellular gram-negative pathogen and the agent of human Q fever. The C. burnetti pldA open reading frame directs synthesis of a protein with conserved PldA active site residues. A C. burnetii ΔpldA deletion mutant had a significant growth defect in THP-1 macrophages, but not axenic medium, that was rescued by complementation. Thin layer chromatography was employed to assess whether pldA plays a role in remodeling membrane lipids during C. burnetii morphological differentiation. Extracted lipids were analyzed from replicating, logarithmic phase large cell variants (LCVs), non-replicating, stationary phase small cell variants (SCVs), and a mixture of LCVs and SCVs. Similar to Escherichia coli, all three forms contained cardiolipin (CL), phosphatidylglycerol (PG) and phosphatidylethanolamine (PE). However, PE and PG were present in lower quantities in the SCV while three additional lipid species were present in higher quantities. Co-migration with standards tentatively identified two of the three SCV-enriched lipids as lyso-phosphatidylethanolamine, a breakdown product of PE, and free fatty acids, which are generally toxic to bacteria. Developmental form lipid modifications required the activity of PldA. CONCLUSIONS Collectively, these results indicate developmentally-regulated lipid synthesis by C. burnetii contributes to colonization of macrophages and may contribute to the environmental stability and the distinct biological properties of the SCV.
Collapse
Affiliation(s)
- Christopher M. Stead
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana USA
- Department of Chemistry, New Mexico Highlands University, Las Vegas, New Mexico USA
| | - Diane C. Cockrell
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana USA
| | - Paul A. Beare
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana USA
| | - Heather E. Miller
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana USA
| | - Robert A. Heinzen
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana USA
| |
Collapse
|
30
|
Abnave P, Muracciole X, Ghigo E. Coxiella burnetii Lipopolysaccharide: What Do We Know? Int J Mol Sci 2017; 18:ijms18122509. [PMID: 29168790 PMCID: PMC5751112 DOI: 10.3390/ijms18122509] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 12/28/2022] Open
Abstract
A small gram-negative bacterium, Coxiella burnetii (C. burnetii), is responsible for a zoonosis called Q fever. C. burnetii is an intracellular bacterium that can survive inside microbicidal cells like monocytes and macrophages by hijacking several functions of the immune system. Among several virulence factors, the lipopolysaccharide (LPS) of C. burnetii is one of the major factors involved in this immune hijacking because of its atypical composition and structure. Thus, the aim of this mini-review is to summarize the repressive effects of C. burnetii LPS on the antibacterial immunity of cells.
Collapse
Affiliation(s)
- Prasad Abnave
- Department of Zoology, University of Oxford, Tinbergen Building, South Parks Road, Oxford OX1 3PS, UK.
| | - Xavier Muracciole
- Department of Radiotherapy Oncology, CHU de la Timone, Assistance Publique-Hopitaux Marseille, 13385 Marseille, France.
| | - Eric Ghigo
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), Institut Hospitalier Universitaire Méditerranée-Infection, 19-21 Bd Jean Moulin, CEDEX 05, 13385 Marseille, France.
| |
Collapse
|
31
|
Pechstein J, Schulze-Luehrmann J, Lührmann A. Coxiella burnetii as a useful tool to investigate bacteria-friendly host cell compartments. Int J Med Microbiol 2017; 308:77-83. [PMID: 28935173 DOI: 10.1016/j.ijmm.2017.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/21/2017] [Accepted: 09/11/2017] [Indexed: 10/25/2022] Open
Abstract
Coxiella burnetii is an obligate intracellular and airborne pathogen which can cause the zoonotic disease Q fever. After inhalation of contaminated aerosols alveolar macrophages are taking up C. burnetii into a phagosome. This phagosome matures to a very large vacuole called the C. burnetii-containing vacuole (CCV). Host endogenous and bacterial driven processes lead to the biogenesis of this unusual compartment, which resembles partially a phagolysosome. However, there are several important differences to the classical phagolysosome, which are crucial for the ability of C. burnetii to replicate intracellularly and depend on a functional type IV secretion system (T4SS). The T4SS delivers effector proteins into the host cell cytoplasm to redirect intracellular processes, leading to the establishment of a microenvironment allowing bacterial replication. This article summarizes the current knowledge of the microenvironment permissive for C. burnetii replication.
Collapse
Affiliation(s)
- Julian Pechstein
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Wasserturmstraße 3/5, D-91054 Erlangen, Germany
| | - Jan Schulze-Luehrmann
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Wasserturmstraße 3/5, D-91054 Erlangen, Germany
| | - Anja Lührmann
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Wasserturmstraße 3/5, D-91054 Erlangen, Germany.
| |
Collapse
|
32
|
Eldin C, Mélenotte C, Mediannikov O, Ghigo E, Million M, Edouard S, Mege JL, Maurin M, Raoult D. From Q Fever to Coxiella burnetii Infection: a Paradigm Change. Clin Microbiol Rev 2017; 30:115-190. [PMID: 27856520 PMCID: PMC5217791 DOI: 10.1128/cmr.00045-16] [Citation(s) in RCA: 611] [Impact Index Per Article: 76.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Coxiella burnetii is the agent of Q fever, or "query fever," a zoonosis first described in Australia in 1937. Since this first description, knowledge about this pathogen and its associated infections has increased dramatically. We review here all the progress made over the last 20 years on this topic. C. burnetii is classically a strict intracellular, Gram-negative bacterium. However, a major step in the characterization of this pathogen was achieved by the establishment of its axenic culture. C. burnetii infects a wide range of animals, from arthropods to humans. The genetic determinants of virulence are now better known, thanks to the achievement of determining the genome sequences of several strains of this species and comparative genomic analyses. Q fever can be found worldwide, but the epidemiological features of this disease vary according to the geographic area considered, including situations where it is endemic or hyperendemic, and the occurrence of large epidemic outbreaks. In recent years, a major breakthrough in the understanding of the natural history of human infection with C. burnetii was the breaking of the old dichotomy between "acute" and "chronic" Q fever. The clinical presentation of C. burnetii infection depends on both the virulence of the infecting C. burnetii strain and specific risks factors in the infected patient. Moreover, no persistent infection can exist without a focus of infection. This paradigm change should allow better diagnosis and management of primary infection and long-term complications in patients with C. burnetii infection.
Collapse
Affiliation(s)
- Carole Eldin
- URMITE, UMR CNRS 7278, IRD 198, INSERM U1095, Faculté de Médecine, Marseille, France
| | - Cléa Mélenotte
- URMITE, UMR CNRS 7278, IRD 198, INSERM U1095, Faculté de Médecine, Marseille, France
| | - Oleg Mediannikov
- URMITE, UMR CNRS 7278, IRD 198, INSERM U1095, Faculté de Médecine, Marseille, France
| | - Eric Ghigo
- URMITE, UMR CNRS 7278, IRD 198, INSERM U1095, Faculté de Médecine, Marseille, France
| | - Matthieu Million
- URMITE, UMR CNRS 7278, IRD 198, INSERM U1095, Faculté de Médecine, Marseille, France
| | - Sophie Edouard
- URMITE, UMR CNRS 7278, IRD 198, INSERM U1095, Faculté de Médecine, Marseille, France
| | - Jean-Louis Mege
- URMITE, UMR CNRS 7278, IRD 198, INSERM U1095, Faculté de Médecine, Marseille, France
| | - Max Maurin
- Institut de Biologie et de Pathologie, CHU de Grenoble, Grenoble, France
| | - Didier Raoult
- URMITE, UMR CNRS 7278, IRD 198, INSERM U1095, Faculté de Médecine, Marseille, France
| |
Collapse
|
33
|
Fozo EM, Rucks EA. The Making and Taking of Lipids: The Role of Bacterial Lipid Synthesis and the Harnessing of Host Lipids in Bacterial Pathogenesis. Adv Microb Physiol 2016; 69:51-155. [PMID: 27720012 DOI: 10.1016/bs.ampbs.2016.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In order to survive environmental stressors, including those induced by growth in the human host, bacterial pathogens will adjust their membrane physiology accordingly. These physiological changes also include the use of host-derived lipids to alter their own membranes and feed central metabolic pathways. Within the host, the pathogen is exposed to many stressful stimuli. A resulting adaptation is for pathogens to scavenge the host environment for readily available lipid sources. The pathogen takes advantage of these host-derived lipids to increase or decrease the rigidity of their own membranes, to provide themselves with valuable precursors to feed central metabolic pathways, or to impact host signalling and processes. Within, we review the diverse mechanisms that both extracellular and intracellular pathogens employ to alter their own membranes as well as their use of host-derived lipids in membrane synthesis and modification, in order to increase survival and perpetuate disease within the human host. Furthermore, we discuss how pathogen employed mechanistic utilization of host-derived lipids allows for their persistence, survival and potentiation of disease. A more thorough understanding of all of these mechanisms will have direct consequences for the development of new therapeutics, and specifically, therapeutics that target pathogens, while preserving normal flora.
Collapse
Affiliation(s)
- E M Fozo
- University of Tennessee, Knoxville, TN, United States.
| | - E A Rucks
- Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States.
| |
Collapse
|
34
|
Warrier I, Walter MC, Frangoulidis D, Raghavan R, Hicks LD, Minnick MF. The Intervening Sequence of Coxiella burnetii: Characterization and Evolution. Front Cell Infect Microbiol 2016; 6:83. [PMID: 27595093 PMCID: PMC4990558 DOI: 10.3389/fcimb.2016.00083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/02/2016] [Indexed: 11/23/2022] Open
Abstract
The intervening sequence (IVS) of Coxiella burnetii, the agent of Q fever, is a 428-nt selfish genetic element located in helix 45 of the precursor 23S rRNA. The IVS element, in turn, contains an ORF that encodes a hypothetical ribosomal S23 protein (S23p). Although S23p can be synthesized in vitro in the presence of an engineered E. coli promoter and ribosome binding site, results suggest that the protein is not synthesized in vivo. In spite of a high degree of IVS conservation among different strains of C. burnetii, the region immediately upstream of the S23p start codon is prone to change, and the S23p-encoding ORF is evidently undergoing reductive evolution. We determined that IVS excision from 23S rRNA was mediated by RNase III, and IVS RNA was rapidly degraded, thereafter. Levels of the resulting 23S rRNA fragments that flank the IVS, F1 (~1.2 kb) and F2 (~1.7 kb), were quantified over C. burnetii's logarithmic growth phase (1–5 d). Results showed that 23S F1 quantities were consistently higher than those of F2 and 16S rRNA. The disparity between levels of the two 23S rRNA fragments following excision of IVS is an interesting phenomenon of unknown significance. Based upon phylogenetic analyses, IVS was acquired through horizontal transfer after C. burnetii's divergence from an ancestral bacterium and has been subsequently maintained by vertical transfer. The widespread occurrence, maintenance and conservation of the IVS in C. burnetii imply that it plays an adaptive role or has a neutral effect on fitness.
Collapse
Affiliation(s)
- Indu Warrier
- Program in Cellular, Molecular and Microbial Biology, Division of Biological Sciences, University of Montana Missoula, MT, USA
| | | | | | - Rahul Raghavan
- Department of Biology and Center for Life in Extreme Environments, Portland State University Portland, OR, USA
| | - Linda D Hicks
- Program in Cellular, Molecular and Microbial Biology, Division of Biological Sciences, University of Montana Missoula, MT, USA
| | - Michael F Minnick
- Program in Cellular, Molecular and Microbial Biology, Division of Biological Sciences, University of Montana Missoula, MT, USA
| |
Collapse
|
35
|
Complementation of Arginine Auxotrophy for Genetic Transformation of Coxiella burnetii by Use of a Defined Axenic Medium. Appl Environ Microbiol 2016; 82:3042-51. [PMID: 26969695 DOI: 10.1128/aem.00261-16] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/08/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Host cell-free (axenic) culture of Coxiella burnetii in acidified citrate cysteine medium-2 (ACCM-2) has provided important opportunities for investigating the biology of this naturally obligate intracellular pathogen and enabled the development of tools for genetic manipulation. However, ACCM-2 has complex nutrient sources that preclude a detailed study of nutritional factors required for C. burnetii growth. Metabolic reconstruction of C. burnetii predicts that the bacterium cannot synthesize all amino acids and therefore must sequester some from the host. To examine C. burnetii amino acid auxotrophies, we developed a nutritionally defined medium with known amino acid concentrations, termed ACCM-D. Compared to ACCM-2, ACCM-D supported longer logarithmic growth, a more gradual transition to stationary phase, and approximately 5- to 10-fold greater overall replication. Small-cell-variant morphological forms generated in ACCM-D also showed increased viability relative to that generated in ACCM-2. Lack of growth in amino acid-deficient formulations of ACCM-D revealed C. burnetii auxotrophy for 11 amino acids, including arginine. Heterologous expression of Legionella pneumophila argGH in C. burnetii permitted growth in ACCM-D missing arginine and supplemented with citrulline, thereby providing a nonantibiotic means of selection of C. burnetii genetic transformants. Consistent with bioinformatic predictions, the elimination of glucose did not impair C. burnetii replication. Together, these results highlight the advantages of a nutritionally defined medium in investigations of C. burnetii metabolism and the development of genetic tools. IMPORTANCE Host cell-free growth and genetic manipulation of Coxiella burnetii have revolutionized research of this intracellular bacterial pathogen. Nonetheless, undefined components of growth medium have made studies of C. burnetii physiology difficult and have precluded the development of selectable markers for genetic transformation based on nutritional deficiencies. Here, we describe a medium, containing only amino acids as the sole source of carbon and energy, which supports robust growth and improved viability of C. burnetii Growth studies confirmed that C. burnetii cannot replicate in medium lacking arginine. However, genetic transformation of the bacterium with constructs containing the last two genes in the L. pneumophila arginine biosynthesis pathway (argGH) allowed growth on defined medium missing arginine but supplemented with the arginine precursor citrulline. Our results advance the field by facilitating studies of C. burnetii metabolism and allowing non-antibiotic-based selection of C. burnetii genetic transformants, an important achievement considering that selectable makers based on antibiotic resistance are limited.
Collapse
|
36
|
Sandoz KM, Popham DL, Beare PA, Sturdevant DE, Hansen B, Nair V, Heinzen RA. Transcriptional Profiling of Coxiella burnetii Reveals Extensive Cell Wall Remodeling in the Small Cell Variant Developmental Form. PLoS One 2016; 11:e0149957. [PMID: 26909555 PMCID: PMC4766238 DOI: 10.1371/journal.pone.0149957] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/05/2016] [Indexed: 11/19/2022] Open
Abstract
A hallmark of Coxiella burnetii, the bacterial cause of human Q fever, is a biphasic developmental cycle that generates biologically, ultrastructurally, and compositionally distinct large cell variant (LCV) and small cell variant (SCV) forms. LCVs are replicating, exponential phase forms while SCVs are non-replicating, stationary phase forms. The SCV has several properties, such as a condensed nucleoid and an unusual cell envelope, suspected of conferring enhanced environmental stability. To identify genetic determinants of the LCV to SCV transition, we profiled the C. burnetii transcriptome at 3 (early LCV), 5 (late LCV), 7 (intermediate forms), 14 (early SCV), and 21 days (late SCV) post-infection of Vero epithelial cells. Relative to early LCV, genes downregulated in the SCV were primarily involved in intermediary metabolism. Upregulated SCV genes included those involved in oxidative stress responses, arginine acquisition, and cell wall remodeling. A striking transcriptional signature of the SCV was induction (>7-fold) of five genes encoding predicted L,D transpeptidases that catalyze nonclassical 3-3 peptide cross-links in peptidoglycan (PG), a modification that can influence several biological traits in bacteria. Accordingly, of cross-links identified, muropeptide analysis showed PG of SCV with 46% 3-3 cross-links as opposed to 16% 3-3 cross-links for LCV. Moreover, electron microscopy revealed SCV with an unusually dense cell wall/outer membrane complex as compared to LCV with its clearly distinguishable periplasm and inner and outer membranes. Collectively, these results indicate the SCV produces a unique transcriptome with a major component directed towards remodeling a PG layer that likely contributes to Coxiella's environmental resistance.
Collapse
Affiliation(s)
- Kelsi M. Sandoz
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - David L. Popham
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Paul A. Beare
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Daniel E. Sturdevant
- Genomics Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Bryan Hansen
- Electron Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Vinod Nair
- Electron Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Robert A. Heinzen
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
- * E-mail:
| |
Collapse
|
37
|
Ruiz S, Wolfe DN. Vaccination against Q fever for biodefense and public health indications. Front Microbiol 2014; 5:726. [PMID: 25566235 PMCID: PMC4267281 DOI: 10.3389/fmicb.2014.00726] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/03/2014] [Indexed: 01/02/2023] Open
Abstract
Coxiella burnetii is the etiological agent of Q fever, a disease that is often spread to humans via inhalational exposure to the bacteria from contaminated agricultural sources. Outbreaks have been observed all over the world with larger foci generating interest in vaccination programs, most notably in Australia and the Netherlands. Importantly, exposure rates among military personnel deployed to the Middle East can be relatively high as measured by seroconversion to C. burnetii-specific antibodies. Q fever has been of interest to the biodefense community over the years due to its low infectious dose and environmental stability. Recent advances in cell-free growth and genetics of C. burnetii also make this organism easier to culture and manipulate. While there is a vaccine that is licensed for use in Australia, the combination of biodefense- and public health-related issues associated with Q fever warrant the development of a safer and more effective vaccine against this disease.
Collapse
Affiliation(s)
- Sara Ruiz
- Center for Aerobiological Sciences, U.S. Army Medical Research Institute of Infectious Diseases Fort Detrick, MD USA
| | - Daniel N Wolfe
- Chemical and Biological Technologies Department, Defense Threat Reduction Agency Fort Belvoir, VA USA
| |
Collapse
|
38
|
Identification of novel small RNAs and characterization of the 6S RNA of Coxiella burnetii. PLoS One 2014; 9:e100147. [PMID: 24949863 PMCID: PMC4064990 DOI: 10.1371/journal.pone.0100147] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/20/2014] [Indexed: 11/30/2022] Open
Abstract
Coxiella burnetii, an obligate intracellular bacterial pathogen that causes Q fever, undergoes a biphasic developmental cycle that alternates between a metabolically-active large cell variant (LCV) and a dormant small cell variant (SCV). As such, the bacterium undoubtedly employs complex modes of regulating its lifecycle, metabolism and pathogenesis. Small RNAs (sRNAs) have been shown to play important regulatory roles in controlling metabolism and virulence in several pathogenic bacteria. We hypothesize that sRNAs are involved in regulating growth and development of C. burnetii and its infection of host cells. To address the hypothesis and identify potential sRNAs, we subjected total RNA isolated from Coxiella cultured axenically and in Vero host cells to deep-sequencing. Using this approach, we identified fifteen novel C. burnetii sRNAs (CbSRs). Fourteen CbSRs were validated by Northern blotting. Most CbSRs showed differential expression, with increased levels in LCVs. Eight CbSRs were upregulated (≥2-fold) during intracellular growth as compared to growth in axenic medium. Along with the fifteen sRNAs, we also identified three sRNAs that have been previously described from other bacteria, including RNase P RNA, tmRNA and 6S RNA. The 6S regulatory sRNA of C. burnetii was found to accumulate over log phase-growth with a maximum level attained in the SCV stage. The 6S RNA-encoding gene (ssrS) was mapped to the 5′ UTR of ygfA; a highly conserved linkage in eubacteria. The predicted secondary structure of the 6S RNA possesses three highly conserved domains found in 6S RNAs of other eubacteria. We also demonstrate that Coxiella’s 6S RNA interacts with RNA polymerase (RNAP) in a specific manner. Finally, transcript levels of 6S RNA were found to be at much higher levels when Coxiella was grown in host cells relative to axenic culture, indicating a potential role in regulating the bacterium’s intracellular stress response by interacting with RNAP during transcription.
Collapse
|