1
|
Güler A, Yardımcı BK, Özek NŞ. Human anti-apoptotic Bcl-2 and Bcl-xL proteins protect yeast cells from aging induced oxidative stress. Biochimie 2025; 229:69-83. [PMID: 39413900 DOI: 10.1016/j.biochi.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/24/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
Aging is a degenerative, biological, and time-dependent process that affects all organisms. Yeast aging is a physiological phenomenon characterized by the progressive transformation of yeast cells, resulting in modifications to their viability and vitality. Aging in yeast cells is comparable to that in higher organisms in some respects; however, due to their straightforward and well-characterized genetic makeup, these cells present unique advantages when it comes to researching the aging process. Here, we assessed the impact of human anti-apoptotic Bcl-2 and Bcl-xL proteins on aging using a yeast model. The findings clearly showed that these proteins exhibited remarkable anti-aging properties in yeast cells. Our data indicate that the presence of both proteins enhanced the reproductive survival of aging cells, likely by effecting the components functioning as both pro- and anti-oxidants, depending on the stage of yeast cell lifespan. Both proteins partially protected yeast cells from aging-related morphological deformations and cellular damage during the aging period. In particular, Bcl-xL expressing yeast cells reached the maximum activity levels for almost all of the major antioxidant enzymes and the total antioxidant status on the 8th day of lifespan and could provide effective protection at the latest stage of the investigated aging period. The chemometric data analysis of IR spectra confirmed the findings of the morphological and biochemical analyses. In this regard, specifically, understanding the mechanism of action on the cellular redox state of Bcl-xL in yeast may facilitate comprehension of its indirect antioxidant function in higher eukaryotes.
Collapse
Affiliation(s)
- Ayşenur Güler
- Chemistry Department, Graduate School of Natural and Applied Sciences, Pamukkale University, Denizli, Turkey
| | - Berna Kavakcıoğlu Yardımcı
- Department of Chemistry, Faculty of Science, Pamukkale University, Denizli, Turkey; Advanced Technology Application and Research Center, Pamukkale University, Denizli, Turkey.
| | - Nihal Şimşek Özek
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey; East Anatolian High Technology Research and Application Center, Ataturk University, Erzurum, Turkey
| |
Collapse
|
2
|
Xiang X, Zhang F, Nie L, Guo X, Qin M, Chen J, Jiang D, Zhang Z, Mao L. Legumain deficiency halts atherogenesis by modulating T cell receptor signaling. Aging Cell 2025; 24:e14391. [PMID: 39473192 PMCID: PMC11822642 DOI: 10.1111/acel.14391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/24/2024] [Accepted: 10/11/2024] [Indexed: 02/14/2025] Open
Abstract
Atherosclerosis is an age-related pathological process associated with elevated levels of legumain in plaques and plasma. However, the underlying mechanisms remain unclear. The aim of this study was to investigate the role of legumain in the progression of atherosclerotic plaques, with a particular focus on functional and phenotypic changes in CD4+ T cells. Apolipoprotein E-deficient (Apoe-/-) mice were crossed with legumain-deficient (Lgmn-/-) mice to generate Lgmn-/-Apoe-/- mice. CD4+ T cells accumulated in the atherosclerotic plaques of Apoe-/- mice fed a high-fat diet. Deletion of legumain attenuated the deposition of CD4+ T cells in plaques and reduced the number of atherosclerotic lesions. The levels of CD4+ T cells in the blood, lymph nodes, and spleen were decreased in Lgmn-/- mice. Transcriptomic analysis revealed that the deletion of legumain decreased the differentiation, survival, and function of CD4+ memory T cells by suppressing the T cell receptor (TCR) signaling pathway. These changes are accompanied by the downregulation of the antiapoptotic protein B-cell lymphoma 2 (Bcl-2) and the reduced release of interleukin (IL)-2 and interferon (IFN)-γ. These results suggest that legumain deficiency may play a role in the development of atherosclerosis by impairing the survival, proliferation, and function of CD4+ T cells. Inhibition of legumain activity may be an innovative therapy for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Xuying Xiang
- Department of NeurologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Feng Zhang
- Department of NeurologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Lei Nie
- Department of NeurologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Xiaoqing Guo
- Department of NeurologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Mengting Qin
- Department of NeurologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Jiaojiao Chen
- Department of NeurologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Dailiang Jiang
- Department of NeurologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Zhentao Zhang
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Ling Mao
- Department of NeurologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
3
|
Qin J, Wang C, Zhou X. Glutathione regulates CIA-activated splenic-lymphocytes via NF-κB/MMP-9 and MAPK/PCNA pathways manipulating immune response. Cell Immunol 2024; 405-406:104866. [PMID: 39250860 DOI: 10.1016/j.cellimm.2024.104866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/02/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024]
Abstract
Reduced glutathione (GSH) is an antioxidant involved in redox homeostasis, and recently regarded as an inducer of Reductive stress. Its immune-regulatory effects on lymphocytes have not been extensively studied. This study is based on the finding that much increased GSH level in collagen-induced arthritis (CIA) rat spleen, and aimed to investigate the effects of GSH (0, 1, 10, 100 mM) on normal and immune-stimulated spleen lymphocytes respectively. The elevated GSH level is associated with the increased levels of inflammatory factors; especially the increased DPP1 activity indicated immune-granulocytes activation in CIA rat spleen. Exogenous GSH had different influences on normal and CIA lymphocytes, affecting intracellular levels of GSH, Glutathione-S-transferases (GSTs) and Reactive oxygen species (ROS); as well as the expressions of NF-κB, MMP-9, Bcl-2, GST, P38, PCNA and TLR4. The increased extracellular GSH level disturbed redox homeostasis and induces reductive stress to spleen lymphocytes, which decreased intracellular GSH concentration and influenced the MAPK/PCNA and NF-κB/MMP-9 signaling pathways, as well as cell cycles respectively, leading to cell senescence/ferroptosis/apoptosis. This study also revealed the multiple faces of GSH in regulating spleen lymphocytes, which depended on its levels in tissue or in cells, and the activation status of lymphocytes. These findings indicate the immune-regulatory role of GSH on spleen-lymphocytes, and the high level GSH in CIA rat spleens may contribute to CIA development.
Collapse
Affiliation(s)
- Jingying Qin
- School of Pharmacy, Changzhou University, Jiangsu 213164, China
| | - Cheli Wang
- School of Pharmacy, Changzhou University, Jiangsu 213164, China
| | - Xiaoying Zhou
- School of Pharmacy, Changzhou University, Jiangsu 213164, China.
| |
Collapse
|
4
|
Abdel-Naby DH, El-Sheikh MM, Abd El-Rahman SS, El-Hamoly T. GSK-3β/Notch-1 Activation Promotes Radiation-Induced Renal Damage: The Role of Gallic Acid in Mitigation of Nephrotoxicity. ENVIRONMENTAL TOXICOLOGY 2024; 39:4871-4883. [PMID: 38894622 DOI: 10.1002/tox.24361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/20/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
Despite the therapeutic advances in treating malignancies, the efficient radiotherapeutic approaches with deprived adverse reactions still represent a potential clinical inquiry. The current study aims to elucidate the role of gallic acid (GA) in modifying the hazardous renal cytotoxicity induced by acute exposure to radiation. The MTT test was used to evaluate the viability of Vero cells exposed to 2 Gy gamma radiation with or without incubation of GA. In an in vivo model, male Wistar rats were divided into four experimental groups (n = 6): Control, Irradiated (IRR, 5 Gy), GA (100 mg/kg, i.p.) + IRR, and Glycogen synthase kinase inhibitor (GSKI, 3 mg/kg, i.p.) + IRR. Based on the MTT toxicity assay, from 0 and up to 5 μM dosages of GA did not demonstrate any cytotoxicity to Vero cells. The optimal GA dose that could protect the cells from radiation was 5 μM. Furthermore, GA exerted a protective effect from gamma radiation on renal tissue as indicated by corrected renal functions, decreased LDH level in serum, and balanced oxidative status, which is indicated by decreased tissue contents of NOx and TBARS with a significant increase of reduced GSH. These outcomes were inferred by the upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) expression. The overall molecular impact of radiation in damaging the renal tissue may be explained by modifying the upstream AKT activity and its downstream targets GSK-3β/Notch-1. Here, we concluded that the anticipated adverse reaction in the course of radiation exposure could be protected by daily administration of GA.
Collapse
Affiliation(s)
- Doaa H Abdel-Naby
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Marwa M El-Sheikh
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Sahar S Abd El-Rahman
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Tarek El-Hamoly
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
5
|
Chiu CF, Guerrero JJG, Regalado RRH, Zhou J, Notarte KI, Lu YW, Encarnacion PC, Carles CDD, Octavo EM, Limbaroc DCI, Saengboonmee C, Huang SY. Insights into Metabolic Reprogramming in Tumor Evolution and Therapy. Cancers (Basel) 2024; 16:3513. [PMID: 39456607 PMCID: PMC11506062 DOI: 10.3390/cancers16203513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Cancer remains a global health challenge, characterized not just by uncontrolled cell proliferation but also by the complex metabolic reprogramming that underlies its development and progression. Objectives: This review delves into the intricate relationship between cancer and its metabolic alterations, drawing an innovative comparison with the cosmological concepts of dark matter and dark energy to highlight the pivotal yet often overlooked role of metabolic reprogramming in tumor evolution. Methods: It scrutinizes the Warburg effect and other metabolic adaptations, such as shifts in lipid synthesis, amino acid turnover, and mitochondrial function, driven by mutations in key regulatory genes. Results: This review emphasizes the significance of targeting these metabolic pathways for therapeutic intervention, outlining the potential to disrupt cancer's energy supply and signaling mechanisms. It calls for an interdisciplinary research approach to fully understand and exploit the intricacies of cancer metabolism, pointing toward metabolic reprogramming as a promising frontier for developing more effective cancer treatments. Conclusion: By equating cancer's metabolic complexity with the enigmatic nature of dark matter and energy, this review underscores the critical need for innovative strategies in oncology, highlighting the importance of unveiling and targeting the "dark energy" within cancer cells to revolutionize future therapy and research.
Collapse
Affiliation(s)
- Ching-Feng Chiu
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110301, Taiwan; (J.J.G.G.); (Y.-W.L.); (P.C.E.)
- Taipei Medical University Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Jonathan Jaime G. Guerrero
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110301, Taiwan; (J.J.G.G.); (Y.-W.L.); (P.C.E.)
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines; (C.D.D.C.); (E.M.O.); (D.C.I.L.)
- College of Public Health, University of the Philippines Manila, Manila 1000, Philippines
| | - Ric Ryan H. Regalado
- National Institute of Molecular Biology and Biotechnology, College of Science, University of the Philippines Diliman, Quezon City 1101, Philippines;
| | - Jiayan Zhou
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Kin Israel Notarte
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| | - Yu-Wei Lu
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110301, Taiwan; (J.J.G.G.); (Y.-W.L.); (P.C.E.)
| | - Paolo C. Encarnacion
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110301, Taiwan; (J.J.G.G.); (Y.-W.L.); (P.C.E.)
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines; (C.D.D.C.); (E.M.O.); (D.C.I.L.)
- College of Public Health, University of the Philippines Manila, Manila 1000, Philippines
- Department of Industrial Engineering and Management, Yuan Ze University, 135 Yuan-Tung Road, Chung-Li 32003, Taiwan
| | - Cidne Danielle D. Carles
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines; (C.D.D.C.); (E.M.O.); (D.C.I.L.)
- College of Public Health, University of the Philippines Manila, Manila 1000, Philippines
| | - Edrian M. Octavo
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines; (C.D.D.C.); (E.M.O.); (D.C.I.L.)
| | - Dan Christopher I. Limbaroc
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines; (C.D.D.C.); (E.M.O.); (D.C.I.L.)
- College of Public Health, University of the Philippines Manila, Manila 1000, Philippines
| | - Charupong Saengboonmee
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Shih-Yi Huang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110301, Taiwan
| |
Collapse
|
6
|
Chen YJ, Li HF, Zhao FR, Yu M, Pan SY, Sun WZ, Yin YY, Zhu TT. Spermidine attenuates monocrotaline-induced pulmonary arterial hypertension in rats by inhibiting purine metabolism and polyamine synthesis-associated vascular remodeling. Int Immunopharmacol 2024; 132:111946. [PMID: 38552292 DOI: 10.1016/j.intimp.2024.111946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 05/01/2024]
Abstract
Ensuring the homeostatic integrity of pulmonary artery endothelial cells (PAECs) is essential for combatting pulmonary arterial hypertension (PAH), as it equips the cells to withstand microenvironmental challenges. Spermidine (SPD), a potent facilitator of autophagy, has been identified as a significant contributor to PAECs function and survival. Despite SPD's observed benefits, a comprehensive understanding of its protective mechanisms has remained elusive. Through an integrated approach combining metabolomics and molecular biology, this study uncovers the molecular pathways employed by SPD in mitigating PAH induced by monocrotaline (MCT) in a Sprague-Dawley rat model. The study demonstrates that SPD administration (5 mg/kg/day) significantly corrects right ventricular impairment and pathological changes in pulmonary tissues following MCT exposure (60 mg/kg). Metabolomic profiling identified a purine metabolism disorder in MCT-treated rats, which SPD effectively normalized, conferring a protective effect against PAH progression. Subsequent in vitro analysis showed that SPD (0.8 mM) reduces oxidative stress and apoptosis in PAECs challenged with Dehydromonocrotaline (MCTP, 50 μM), likely by downregulating purine nucleoside phosphorylase (PNP) and modulating polyamine biosynthesis through alterations in S-adenosylmethionine decarboxylase (AMD1) expression and the subsequent production of decarboxylated S-adenosylmethionine (dcSAM). These findings advocate SPD's dual inhibitory effect on PNP and AMD1 as a novel strategy to conserve cellular ATP and alleviate oxidative injuries, thus providing a foundation for SPD's potential therapeutic application in PAH treatment.
Collapse
Affiliation(s)
- Yu-Jing Chen
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang 453003, China; Xinxiang Key Laboratory of Cascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, 453003, China
| | - Han-Fei Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang 453003, China; Xinxiang Key Laboratory of Cascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, 453003, China
| | - Fan-Rong Zhao
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang 453003, China; Xinxiang Key Laboratory of Cascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, 453003, China
| | - Miao Yu
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang 453003, China; Xinxiang Key Laboratory of Cascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, 453003, China
| | - Si-Yu Pan
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang 453003, China; Xinxiang Key Laboratory of Cascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, 453003, China
| | - Wen-Ze Sun
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang 453003, China; Xinxiang Key Laboratory of Cascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, 453003, China
| | - Yan-Yan Yin
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang 453003, China; Xinxiang Key Laboratory of Cascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, 453003, China
| | - Tian-Tian Zhu
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; Department of Pharmacy, The first Affiliated Hospital of Xinxiang Medical University, Xinxiang 453100, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang 453003, China; Xinxiang Key Laboratory of Cascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, 453003, China.
| |
Collapse
|
7
|
Iksen, Witayateeraporn W, Hardianti B, Pongrakhananon V. Comprehensive review of Bcl-2 family proteins in cancer apoptosis: Therapeutic strategies and promising updates of natural bioactive compounds and small molecules. Phytother Res 2024; 38:2249-2275. [PMID: 38415799 DOI: 10.1002/ptr.8157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/04/2024] [Accepted: 01/29/2024] [Indexed: 02/29/2024]
Abstract
Cancer has a considerably higher fatality rate than other diseases globally and is one of the most lethal and profoundly disruptive ailments. The increasing incidence of cancer among humans is one of the greatest challenges in the field of healthcare. A significant factor in the initiation and progression of tumorigenesis is the dysregulation of physiological processes governing cell death, which results in the survival of cancerous cells. B-cell lymphoma 2 (Bcl-2) family members play important roles in several cancer-related processes. Drug research and development have identified various promising natural compounds that demonstrate potent anticancer effects by specifically targeting Bcl-2 family proteins and their associated signaling pathways. This comprehensive review highlights the substantial roles of Bcl-2 family proteins in regulating apoptosis, including the intricate signaling pathways governing the activity of these proteins, the impact of reactive oxygen species, and the crucial involvement of proteasome degradation and the stress response. Furthermore, this review discusses advances in the exploration and potential therapeutic applications of natural compounds and small molecules targeting Bcl-2 family proteins and thus provides substantial scientific information and therapeutic strategies for cancer management.
Collapse
Affiliation(s)
- Iksen
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacy, Sekolah Tinggi Ilmu Kesehatan Senior Medan, Medan, Indonesia
| | - Wasita Witayateeraporn
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Besse Hardianti
- Laboratory of Pharmacology and Clinical Pharmacy, Faculty of Health Sciences, Almarisah Madani University, South Sulawesi, Indonesia
| | - Varisa Pongrakhananon
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research Unit, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
8
|
Lee HK, Na YJ, Seong SM, Ahn D, Choi KC. Cordycepin Enhanced Therapeutic Potential of Gemcitabine against Cholangiocarcinoma via Downregulating Cancer Stem-Like Properties. Biomol Ther (Seoul) 2024; 32:369-378. [PMID: 38589021 PMCID: PMC11063483 DOI: 10.4062/biomolther.2023.198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/08/2023] [Accepted: 01/12/2024] [Indexed: 04/10/2024] Open
Abstract
Cordycepin, a valuable bioactive component isolated from Cordyceps militaris, has been reported to possess anti-cancer potential and the property to enhance the effects of chemotherapeutic agents in various types of cancers. However, the ability of cordycepin to chemosensitize cholangiocarcinoma (CCA) cells to gemcitabine has not yet been evaluated. The current study was performed to evaluate the above, and the mechanisms associated with it. The study analyzed the effects of cordycepin in combination with gemcitabine on the cancer stem-like properties of the CCA SNU478 cell line, including its anti-apoptotic, migratory, and antioxidant effects. In addition, the combination of cordycepin and gemcitabine was evaluated in the CCA xenograft model. The cordycepin treatment significantly decreased SNU478 cell viability and, in combination with gemcitabine, additively reduced cell viability. The cordycepin and gemcitabine co-treatment significantly increased the Annexin V+ population and downregulated B-cell lymphoma 2 (Bcl-2) expression, suggesting that the decreased cell viability in the cordycepin+gemcitabine group may result from an increase in apoptotic death. In addition, the cordycepin and gemcitabine co-treatment significantly reduced the migratory ability of SNU478 cells in the wound healing and trans-well migration assays. It was observed that the cordycepin and gemcitabine cotreatment reduced the CD44highCD133high population in SNU478 cells and the expression level of sex determining region Y-box 2 (Sox-2), indicating the downregulation of the cancer stem-like population. Cordycepin also enhanced oxidative damage mediated by gemcitabine in MitoSOX staining associated with the upregulated Kelch like ECH Associated Protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) expression ratio. In the SNU478 xenograft model, co-administration of cordycepin and gemcitabine additively delayed tumor growth. These results indicate that cordycepin potentiates the chemotherapeutic property of gemcitabine against CCA, which results from the downregulation of its cancer-stem-like properties. Hence, the combination therapy of cordycepin and gemcitabine may be a promising therapeutic strategy in the treatment of CCA.
Collapse
Affiliation(s)
- Hong Kyu Lee
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Yun-Jung Na
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Su-Min Seong
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Dohee Ahn
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
9
|
Huang G, Zhang M, Wang M, Xu W, Duan X, Han X, Ren J. Pioglitazone, a peroxisome proliferator‑activated receptor γ agonist, induces cell death and inhibits the proliferation of hypoxic HepG2 cells by promoting excessive production of reactive oxygen species. Oncol Lett 2024; 27:160. [PMID: 38449795 PMCID: PMC10915805 DOI: 10.3892/ol.2024.14294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/19/2024] [Indexed: 03/08/2024] Open
Abstract
Hypoxia is a hallmark of solid tumors. Hypoxic cancer cells adjust their metabolic characteristics to regulate the production of cellular reactive oxygen species (ROS) and facilitate ROS-mediated metastasis. Peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear receptor that regulates the transcription of fatty acid metabolism-related genes that have a key role in the survival and proliferation function of hypoxic cancer cells. In the present study, mRNA expression in HepG2 cells under chemically induced hypoxia was assessed. The protein expression levels of hypoxia-inducible factor 1α (HIF-1α) were measured using western blotting. Following treatment with the PPARγ agonist pioglitazone, cell viability was assessed using a Cell Counting Kit-8 assay, whilst cell proliferation and death were determined using 5-ethynyl-2'-deoxyuridine incorporation staining, and calcein-acetoxymethyl ester and propidium iodide staining, respectively. Cellular ROS production was assessed using dihydroethidium staining. Cobalt chloride was used to induce hypoxia in HepG2 cells, which was evaluated using HIF-1α expression. The results revealed that the mRNA expression of PPARγ, CD36, acetyl-co-enzyme A dehydrogenase (ACAD) medium chain (ACADM) and ACAD short-chain (ACADS) was downregulated in hypoxic HepG2 cells. The PPARγ agonist pioglitazone decreased the cell viability of hypoxic HepG2 cells by inhibiting cell proliferation and inducing cell death. Following treatment with the PPARγ agonist pioglitazone, hypoxic HepG2 cells produced excessive ROS. ROS-mediated cell death induced by the PPARγ agonist pioglitazone was rescued with the antioxidant N-acetyl-L-cysteine. The downregulated mRNA expression of PPARγ, CD36, ACADM and ACADS was not reverted by a PPARγ agonist in hypoxic HepG2 cells. By contrast, the PPARγ agonist suppressed the mRNA expression of BCL2, which was upregulated in hypoxic HepG2 cells. In summary, the PPARγ agonist stimulated excessive ROS production to inhibit cell proliferation and increase the death of hypoxic HepG2 cells by decreasing BCL2 mRNA expression, suggesting a negative association between PPARγ and BCL2 in the regulation of ROS production in hypoxic HepG2 cells.
Collapse
Affiliation(s)
- Guohao Huang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 P.R. China
| | - Mengfan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 P.R. China
| | - Manzhou Wang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 P.R. China
| | - Wenze Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 P.R. China
| | - Xuhua Duan
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 P.R. China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 P.R. China
| | - Jianzhuang Ren
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 P.R. China
| |
Collapse
|
10
|
Faghfuri E, Gholizadeh P. The role of Akkermansia muciniphila in colorectal cancer: A double-edged sword of treatment or disease progression? Biomed Pharmacother 2024; 173:116416. [PMID: 38471272 DOI: 10.1016/j.biopha.2024.116416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/14/2024] Open
Abstract
Colorectal cancer (CRC) is the second most cancer-related death worldwide. In recent years, probiotics have been used to reduce the potential risks of CRC and tumors with various mechanisms. Different bacteria have been suggested to play different roles in the progression, prevention, or treatment of CRC. Akkermansia muciniphila is considered a next-generation probiotic for preventing and treating some diseases. Therefore, in this review article, we aimed to describe and discuss different mechanisms of A. muciniphila as an intestinal microbiota or probiotic in CRC. Some studies suggested that the abundance of A. muciniphila was higher or increased in CRC patients compared to healthy individuals. However, the decreased abundance of A. muciniphila was associated with severe symptoms of CRC, indicating that A. muciniphila did not play a role in the development of CRC. In addition, A. muciniphila administration elevates gene expression of proliferation-associated molecules such as S100A9, Dbf4, and Snrpd1, or markers for cell proliferation. Some other studies suggested that inflammation and tumorigenesis in the intestine might promoted by A. muciniphila. Overall, the role of A. muciniphila in CRC development or inhibition is still unclear and controversial. Various methods of bacterial supplementation, such as viability, bacterial number, and abundance, could all influence the colonization effect of A. muciniphila administration and CRC progression. Overall, A. mucinipila has been revealed to modulate the therapeutic potential of immune checkpoint inhibitors. Preliminary human data propose that oral consumption of A. muciniphila is safe, but its efficacy needs to be confirmed in more human clinical studies.
Collapse
Affiliation(s)
- Elnaz Faghfuri
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Pourya Gholizadeh
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
11
|
Bailly C, Degand C, Laine W, Sauzeau V, Kluza J. Implication of Rac1 GTPase in molecular and cellular mitochondrial functions. Life Sci 2024; 342:122510. [PMID: 38387701 DOI: 10.1016/j.lfs.2024.122510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
Rac1 is a member of the Rho GTPase family which plays major roles in cell mobility, polarity and migration, as a fundamental regulator of actin cytoskeleton. Signal transduction by Rac1 occurs through interaction with multiple effector proteins, and its activity is regulated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). The small protein is mainly anchored to the inner side of the plasma membrane but it can be found in endocellular compartments, notably endosomes and cell nuclei. The protein localizes also into mitochondria where it contributes to the regulation of mitochondrial dynamics, including both mitobiogenesis and mitophagy, in addition to signaling processes via different protein partners, such as the proapoptotic protein Bcl-2 and chaperone sigma-1 receptor (σ-1R). The mitochondrial form of Rac1 (mtRac1) has been understudied thus far, but it is as essential as the nuclear or plasma membrane forms, via its implication in regulation of oxidative stress and DNA damages. Rac1 is subject to diverse post-translational modifications, notably to a geranylgeranylation which contributes importantly to its mitochondrial import and its anchorage to mitochondrial membranes. In addition, Rac1 contributes to the mitochondrial translocation of other proteins, such as p53. The mitochondrial localization and functions of Rac1 are discussed here, notably in the context of human diseases such as cancers. Inhibitors of Rac1 have been identified (NSC-23766, EHT-1864) and some are being developed for the treatment of cancer (MBQ-167) or central nervous system diseases (JK-50561). Their effects on mtRac1 warrant further investigations. An overview of mtRac1 is provided here.
Collapse
Affiliation(s)
- Christian Bailly
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France; University of Lille, Faculty of Pharmacy, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), 3 rue du Professeur Laguesse, 59000 Lille, France; OncoWitan, Consulting Scientific Office, Lille (Wasquehal) 59290, France.
| | - Claire Degand
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France
| | - William Laine
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France
| | - Vincent Sauzeau
- Université de Nantes, CHU Nantes, CNRS, INSERM, Institut du thorax, Nantes, France
| | - Jérôme Kluza
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France
| |
Collapse
|
12
|
Zhai W, Wang Z, Ye C, Ke L, Wang H, Liu H. IL-6 Mutation Attenuates Liver Injury Caused by Aeromonas hydrophila Infection by Reducing Oxidative Stress in Zebrafish. Int J Mol Sci 2023; 24:17215. [PMID: 38139043 PMCID: PMC10743878 DOI: 10.3390/ijms242417215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Interleukin-6 (IL-6), a pleiotropic cytokine, plays a crucial role in acute stress induced by bacterial infection and is strongly associated with reactive oxygen species (ROS) production. However, the role of IL-6 in the liver of fish after Aeromonas hydrophila infection remains unclear. Therefore, this study constructed a zebrafish (Danio rerio) il-6 knockout line by CRISPR/Cas9 to investigate the function of IL-6 in the liver post bacterial infection. After infection with A. hydrophila, pathological observation showed that il-6-/- zebrafish exhibited milder liver damage than wild-type (WT) zebrafish. Moreover, liver transcriptome sequencing revealed that 2432 genes were significantly up-regulated and 1706 genes were significantly down-regulated in il-6-/- fish compared with WT fish after A. hydrophila infection. Further, gene ontology (GO) analysis showed that differentially expressed genes (DEGs) were significantly enriched in redox-related terms, including oxidoreductase activity, copper ion transport, etc. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that DEGs were significantly enriched in pathways such as the PPAR signaling pathway, suggesting that il-6 mutation has a significant effect on redox processes in the liver after A. hydrophila infection. Additionally, il-6-/- zebrafish exhibited lower malondialdehyde (MDA) levels and higher superoxide dismutase (SOD) activities in the liver compared with WT zebrafish following A. hydrophila infection, indicating that IL-6 deficiency mitigates oxidative stress induced by A. hydrophila infection in the liver. These findings provide a basis for further studies on the role of IL-6 in regulating oxidative stress in response to bacterial infections.
Collapse
Affiliation(s)
- Wenya Zhai
- Key Lab of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (Z.W.); (C.Y.); (L.K.); (H.W.)
| | - Zhensheng Wang
- Key Lab of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (Z.W.); (C.Y.); (L.K.); (H.W.)
| | - Canxun Ye
- Key Lab of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (Z.W.); (C.Y.); (L.K.); (H.W.)
| | - Lan Ke
- Key Lab of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (Z.W.); (C.Y.); (L.K.); (H.W.)
| | - Huanling Wang
- Key Lab of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (Z.W.); (C.Y.); (L.K.); (H.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Hong Liu
- Key Lab of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (Z.W.); (C.Y.); (L.K.); (H.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| |
Collapse
|
13
|
Okon E, Gaweł-Bęben K, Jarzab A, Koch W, Kukula-Koch W, Wawruszak A. Therapeutic Potential of 1,8-Dihydroanthraquinone Derivatives for Breast Cancer. Int J Mol Sci 2023; 24:15789. [PMID: 37958772 PMCID: PMC10648492 DOI: 10.3390/ijms242115789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
Breast cancer (BC) is the most common malignancy among women worldwide. In recent years, significant progress has been made in BC therapy. However, serious side effects resulting from the use of standard chemotherapeutic drugs, as well as the phenomenon of multidrug resistance (MDR), limit the effectiveness of approved therapies. Advanced research in the BC area is necessary to create more effective and safer forms of therapy to improve the outlook for individuals diagnosed with this aggressive neoplasm. For decades, plants and natural products with anticancer properties have been successfully utilized in treating various medical conditions. Anthraquinone derivatives are tricyclic secondary metabolites of natural origin that have been identified in plants, lichens, and fungi. They represent a few botanical families, e.g., Rhamnaceae, Rubiaceae, Fabaceae, Polygonaceae, and others. The review comprehensively covers and analyzes the most recent advances in the anticancer activity of 1,8-dihydroanthraquinone derivatives (emodin, aloe-emodin, hypericin, chrysophanol, rhein, and physcion) applied both individually, or in combination with other chemotherapeutic agents, in in vitro and in vivo BC models. The application of nanoparticles for in vitro and in vivo evidence in the context of 1,8-dihydroanthraquinone derivatives was also described.
Collapse
Affiliation(s)
- Estera Okon
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (E.O.); (A.J.)
| | - Katarzyna Gaweł-Bęben
- Department of Cosmetology, University of Information Technology and Management in Rzeszów, 2 Sucharskiego, 35-225 Rzeszów, Poland;
| | - Agata Jarzab
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (E.O.); (A.J.)
| | - Wojciech Koch
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland;
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medical Plants Garden, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland
| | - Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (E.O.); (A.J.)
| |
Collapse
|
14
|
Lou C, Lin C, Wang W, Jiang H, Cai T, Lin S, Xue X, Lin J, Pan X. Extracts of Oldenlandia diffusa protects chondrocytes via inhibiting apoptosis and associated inflammatory response in osteoarthritis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 316:116744. [PMID: 37295574 DOI: 10.1016/j.jep.2023.116744] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Osteoarthritis (OA) is a type of joint disorder that is marked by the gradual breakdown of cartilage and persistent inflammation of the synovial membrane, and is a leading cause of disability among elderly people worldwide. Oldenlandia diffusa (OD) is a member of the Rubiaceae family, and various researches have revealed that it possesses antioxidant, anti-inflammatory, and anti-tumor properties.Extracts of Oldenlandia diffusa is commonly used in traditional oriental medicine to treat various illnesses, including inflammation and cancer. AIM OF THE STUDY This study is aimed at investigating the anti-inflammatory and anti-apoptosis effects of OD and its potential mechanisms on IL-1β-induced mouse chondrocytes, as well as its characteristics in a mouse osteoarthritis model. MATERIALS AND METHODS In this study, the key targets and potential pathways of OD were determined through network pharmacology analysis and molecular docking. The potential mechanism of OD in osteoarthritis was verified by in vitro and in vivo studies. RESULTS The results of network pharmacology showed that Bax, Bcl2, CASP3, and JUN are key candidate targets of OD for the treatment of osteoarthritis. There is a strong correlation between apoptosis and both OA and OD. Additionally, molecular docking results show that β-sitosterol in OD can strongly bind with CASP3 and PTGS2. In vitro experiments showed that OD pretreatment inhibited the expression of pro-inflammatory factors induced by IL-1β, such as COX2, iNOS, IL-6, TNF-α, and PGE2. Furthermore, OD reversed IL-1β-mediated degradation of collagen II and aggrecan within the extracellular matrix (ECM). The protective effect of OD can be attributed to its inhibition of the MAPK pathway and inhibition of chondrocyte apoptosis. Additionally, it was found that OD can alleviate cartilage degradation in a mouse model of knee osteoarthritis. CONCLUSION Our study showed that β-sitosterol, one of the active components of OD, could alleviate the inflammation and cartilage degeneration of OA by inhibiting chondrocyte apoptosis and MAPK pathway.
Collapse
Affiliation(s)
- Chao Lou
- Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Chihao Lin
- Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Weidan Wang
- Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Hongyi Jiang
- Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Tingwen Cai
- Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Shida Lin
- Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Xinghe Xue
- Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian Lin
- Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Xiaoyun Pan
- Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
15
|
Luo G, Ma B, Jiang Y, Lv H. Propofol Induces the Expression of Nrf2 and HO-1 in Echinococcus granulosus via the JNK and p38 Pathway In Vitro. Trop Med Infect Dis 2023; 8:306. [PMID: 37368724 DOI: 10.3390/tropicalmed8060306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
The purpose of this study was to establish the relationship between mitogen-activated protein kinase (MAPK) and Nrf2 signaling pathways in Echinococcus granulosus (E. granulosus). E. granulosus protoscoleces (PSCs) cultured in vitro were divided into different groups: a control group, PSCs were pretreated with various concentrations of propofol followed by exposure to hydrogen peroxide (H2O2), and PSCs were pretreated with MAPK inhibitors, then co-treated with propofol and incubated in the presence of H2O2. PSCs activity was observed under an inverted microscope and survival rate was calculated. Reactive oxygen species (ROS) was detected by fluorescence microscopy, western blotting was used to detect the expression of Nrf2, Bcl-2, and heme oxygenase 1 (HO-1) in the PSCs among different groups. Pretreatment of PSCs with 0-1 mM propofol for 8 h prevented PSCs death after exposure to 0.5 mM H2O2. PSCs were pretreated with PD98059, SB202190, or SP600125 for 2 h, co-treated with propofol for an additional 8 h, and then exposed to 0.5 mM H2O2 for 6 h. On day 6, the PSCs viability was 42% and 39% in the p38 and JNK inhibitor groups, respectively. Additionally, pretreatment with propofol significantly attenuated the generation of ROS following H2O2 treatment. Propofol increased the expression of Nrf2, HO-1, and BCL2 compared with that of the control group. Pretreatment PSCs with SP600125 or SB202190, co-incubation with propofol and H2O2, can reduce the expression of Nrf2, HO-1, and BCL2 (p < 0.05). These results suggest that propofol induces an upregulated expression of HO-1 and Nrf2 by activation of the JNK and p38 MAPK signaling pathways. This study highlights the cross role of metabolic regulation of ROS signaling and targeting signalling pathways that may provide a promising strategy for the treatment of E. granulosus disease.
Collapse
Affiliation(s)
- Guangyi Luo
- Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu 610031, China
- Section for Hepatopancreatobiliary Surgery, Department of General Surgery, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu 610031, China
| | - Bin Ma
- Department of General Surgery, Jinxiang People's Hospital, Jining 272200, China
| | - Yufeng Jiang
- School of Basic Medicine, Chengdu Medical College, Chengdu 610500, China
| | - Hailong Lv
- Section for Hepatopancreatobiliary Surgery, Department of General Surgery, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu 610031, China
| |
Collapse
|
16
|
Sun J, Yu J, Niu X, Zhang X, Zhou L, Liu X, Zhang B, He K, Niu X, Ho KF, Cao J, Shen Z. Solid fuel derived PM 2.5 induced oxidative stress and according cytotoxicity in A549 cells: The evidence and potential neutralization by green tea. ENVIRONMENT INTERNATIONAL 2023; 171:107674. [PMID: 36463658 DOI: 10.1016/j.envint.2022.107674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/31/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
PM2.5 (particulate matter with aerodynamic diameter ≤ 2.5 μm) is a well-known cytotoxic pollutant that capable to induce severe intracellular oxidative stress while the underlying mechanisms remain unclear. Herein, 4 types of PM2.5 derived from solid fuel burning were selected as stimuli in A549 cells exposure model to evaluate their effects on oxidative stress and inflammatory responses. Although resulting in different responses in cell viability, all PM2.5 exhibited over 50 % higher oxidative stress than control group, expression as intracellular reactive oxygen species, malondialdehyde and superoxide dismutase levels. The Pearson's correlation results indicated that cations (e.g., Ca2+), heavy metals (e.g., Cr and Pb), nPAHs (nitro-polycyclic aromatic hydrocarbons, e.g., 6-nitrochrysene) and oPAHs (oxygenated PAHs, e.g., 9-fluorenone) were the main functioning toxics (r > 0.6). A key finding was the dual-directional regulation function of ECG (epicatechin gallate), that is, it could either increase the low A549 cell viabilities in coal combustion PM2.5 group or reduce them in charcoal PM2.5 group (P < 0.05). The dual-directional effects were likely because ECG can activate Nrf2 oxidation signaling pathway then inhibit the inflammatory signaling pathway NF-κB accordingly. Therefore, evidences indicated cytotoxicity of solid fuel derived PM2.5 were mainly caused by oxidative stress, which was proved to be reversed by green tea, providing a potential therapy method to PM2.5 and other hazards.
Collapse
Affiliation(s)
- Jian Sun
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jinjin Yu
- Department of Pharmacy, School of Medicine, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xinyi Niu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xinya Zhang
- Department of Pharmacy, School of Medicine, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lili Zhou
- Department of Pharmacy, School of Medicine, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xinyao Liu
- Department of Pharmacy, School of Medicine, Xi'an Jiaotong University, Xi'an 710049, China
| | - Bin Zhang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kun He
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiaofeng Niu
- Department of Pharmacy, School of Medicine, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Kin-Fai Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Junji Cao
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
17
|
Su Y, Yin X, Huang X, Guo Q, Ma M, Guo L. The BCL2/BAX/ROS pathway is involved in the inhibitory effect of astragaloside IV on pyroptosis in human umbilical vein endothelial cells. PHARMACEUTICAL BIOLOGY 2022; 60:1812-1818. [PMID: 36121248 PMCID: PMC9518636 DOI: 10.1080/13880209.2022.2101668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 06/23/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Astragaloside IV (AS-IV) is extracted from Astragalus membranaceus (Fisch.) Bunge (Fabaceae). However, its effects on endothelial cell injury remain unclear. OBJECTIVE To investigate the mechanisms underlying the effects of AS-IV on lipopolysaccharide (LPS)-induced endothelial injury in vitro. MATERIALS AND METHODS Human umbilical vein endothelial cells (HUVECs) were pre-treated with AS-IV (100 µmol/mL), 4-hydroxy-3-methoxyacetophenone (APO, 10 µmol/mL), N-acetylcysteine (NAC, 50 µmol/mL) and Ac-YVAD-cmk (AC, 5 µmol/mL) for 2 h before 1 μg/mL LPS 24 h exposure. Untreated cells cultured without any exposure were used as controls. Cell viability, reactive oxygen species (ROS) and pyroptosis assays were performed. The pyroptosis related proteins were detected by western blot. RESULTS The rate in late pyroptosis (Q2-2) of AS-IV (13.65 ± 0.74%), APO (13.69 ± 0.67%) and NAC (15.87 ± 0.46%) groups was lower than the LPS group (21.89 ± 0.66%, p < 0.05), while the rate in early pyroptosis (Q2-4) of AS-IV group (12.00 ± 0.26%) was lower than other groups (p < 0.05). The expression of NOX4, GSDMD, NLRP3, ASC and caspase-1 decreased after AS-IV, NAC or AC intervention (p < 0.05). The ROS production in AS-IV (4664 ± 153.20), APO (4094 ± 78.37), NAC (5103 ± 131.10) and AC (3994 ± 102.50) groups was lower than the LPS (5986 ± 127.30) group, while the mitochondrial BCL2/BAX protein expression ratio increased in AS-IV, APO and NAC groups (p < 0.05). DISCUSSION AND CONCLUSIONS AS-IV suppressed pyroptosis in LPS-activated HUVECs by inducing ROS/NLRP3-mediated inhibition of the inflammatory response, providing a scientific basis for clinical applications of AS-IV.
Collapse
Affiliation(s)
- Yi Su
- Department of Critical Care Medicine, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xin Yin
- Department of Critical Care Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xin Huang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qianqian Guo
- Department of Critical Care Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mingyuan Ma
- Department of Critical Care Medicine, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, China
| | - Liheng Guo
- Department of Critical Care Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
18
|
Bai J, Wu L, Wang X, Wang Y, Shang Z, Jiang E, Shao Z. Roles of Mitochondria in Oral Squamous Cell Carcinoma Therapy: Friend or Foe? Cancers (Basel) 2022; 14:cancers14235723. [PMID: 36497206 PMCID: PMC9738284 DOI: 10.3390/cancers14235723] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) therapy is unsatisfactory, and the prevalence of the disease is increasing. The role of mitochondria in OSCC therapy has recently attracted increasing attention, however, many mechanisms remain unclear. Therefore, we elaborate upon relative studies in this review to achieve a better therapeutic effect of OSCC treatment in the future. Interestingly, we found that mitochondria not only contribute to OSCC therapy but also promote resistance, and targeting the mitochondria of OSCC via nanoparticles is a promising way to treat OSCC.
Collapse
Affiliation(s)
- Junqiang Bai
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
| | - Luping Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
| | - Xinmiao Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
| | - Yifan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
| | - Zhengjun Shang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
| | - Erhui Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
- Correspondence: (E.J.); (Z.S.); Tel.: +86-27-87686215 (E.J. & Z.S.)
| | - Zhe Shao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
- Correspondence: (E.J.); (Z.S.); Tel.: +86-27-87686215 (E.J. & Z.S.)
| |
Collapse
|
19
|
Chabert J, Allauze E, Pereira B, Chassain C, De Chazeron I, Rotgé JY, Fossati P, Llorca PM, Samalin L. Glutamatergic and N-Acetylaspartate Metabolites in Bipolar Disorder: A Systematic Review and Meta-Analysis of Proton Magnetic Resonance Spectroscopy Studies. Int J Mol Sci 2022; 23:ijms23168974. [PMID: 36012234 PMCID: PMC9409038 DOI: 10.3390/ijms23168974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/26/2022] Open
Abstract
The exact neurobiological mechanisms of bipolar disorder (BD) remain unknown. However, some neurometabolites could be implicated, including Glutamate (Glu), Glutamine (Gln), Glx, and N-acetylaspartate (NAA). Proton Magnetic Resonance Spectroscopy (1H-MRS) allows one to quantify these metabolites in the human brain. Thus, we conducted a systematic review and meta-analysis of the literature to compare their levels between BD patients and healthy controls (HC). The main inclusion criteria for inclusion were 1H-MRS studies comparing levels of Glu, Gln, Glx, and NAA in the prefrontal cortex (PFC), anterior cingulate cortex (ACC), and hippocampi between patients with BD in clinical remission or a major depressive episode and HC. Thirty-three studies were included. NAA levels were significantly lower in the left white matter PFC (wmPFC) of depressive and remitted BD patients compared to controls and were also significantly higher in the left dorsolateral PFC (dlPFC) of depressive BD patients compared to HC. Gln levels were significantly higher in the ACC of remitted BD patients compared to in HC. The decreased levels of NAA of BD patients may be related to the alterations in neuroplasticity and synaptic plasticity found in BD patients and may explain the deep white matter hyperintensities frequently observed via magnetic resonance imagery.
Collapse
Affiliation(s)
- Jonathan Chabert
- Service de Psychiatrie Adulte, CHU Clermont-Ferrand, CNRS, Institut Pascal, Université Clermont Auvergne, 58 Rue Montalembert, 63003 Clermont-Ferrand, France
- Correspondence: (J.C.); (L.S.); Tel.: +33-4-73-752-124 (J.C. & L.S.)
| | - Etienne Allauze
- Service de Psychiatrie Adulte, CHU Clermont-Ferrand, CNRS, Institut Pascal, Université Clermont Auvergne, 58 Rue Montalembert, 63003 Clermont-Ferrand, France
| | - Bruno Pereira
- Biostatistics Unit (DRCI), CHU Clermont-Ferrand, Université Clermont Auvergne, 7 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Carine Chassain
- Imaging Department, CHU Clermont-Ferrand, CNRS, Institut Pascal, Université Clermont Auvergne, Clermont Auvergne INP, 58 Rue Montalembert, 63003 Clermont-Ferrand, France
| | - Ingrid De Chazeron
- Service de Psychiatrie Adulte, CHU Clermont-Ferrand, CNRS, Institut Pascal, Université Clermont Auvergne, 58 Rue Montalembert, 63003 Clermont-Ferrand, France
| | - Jean-Yves Rotgé
- Service de Psychiatrie Adulte, Pitié-Salpêtrière Hospital, CNRS UMR 7593, 47-83 Bd de l’Hôpital, 75651 Paris, France
| | - Philippe Fossati
- Service de Psychiatrie Adulte, Pitié-Salpêtrière Hospital, CNRS UMR 7593, 47-83 Bd de l’Hôpital, 75651 Paris, France
| | - Pierre-Michel Llorca
- Service de Psychiatrie Adulte, CHU Clermont-Ferrand, CNRS, Institut Pascal, Université Clermont Auvergne, 58 Rue Montalembert, 63003 Clermont-Ferrand, France
| | - Ludovic Samalin
- Service de Psychiatrie Adulte, CHU Clermont-Ferrand, CNRS, Institut Pascal, Université Clermont Auvergne, 58 Rue Montalembert, 63003 Clermont-Ferrand, France
- Correspondence: (J.C.); (L.S.); Tel.: +33-4-73-752-124 (J.C. & L.S.)
| |
Collapse
|
20
|
Ashkar F, Bhullar KS, Wu J. The Effect of Polyphenols on Kidney Disease: Targeting Mitochondria. Nutrients 2022; 14:nu14153115. [PMID: 35956292 PMCID: PMC9370485 DOI: 10.3390/nu14153115] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 02/01/2023] Open
Abstract
Mitochondrial function, including oxidative phosphorylation (OXPHOS), mitochondrial biogenesis, and mitochondria dynamics, are essential for the maintenance of renal health. Through modulation of mitochondrial function, the kidneys are able to sustain or recover acute kidney injury (AKI), chronic kidney disease (CKD), nephrotoxicity, nephropathy, and ischemia perfusion. Therapeutic improvement in mitochondrial function in the kidneys is related to the regulation of adenosine triphosphate (ATP) production, free radicals scavenging, decline in apoptosis, and inflammation. Dietary antioxidants, notably polyphenols present in fruits, vegetables, and plants, have attracted attention as effective dietary and pharmacological interventions. Considerable evidence shows that polyphenols protect against mitochondrial damage in different experimental models of kidney disease. Mechanistically, polyphenols regulate the mitochondrial redox status, apoptosis, and multiple intercellular signaling pathways. Therefore, this review attempts to focus on the role of polyphenols in the prevention or treatment of kidney disease and explore the molecular mechanisms associated with their pharmacological activity.
Collapse
Affiliation(s)
| | | | - Jianping Wu
- Correspondence: ; Tel.: +1-780-492-6885; Fax: +1-780-492-8524
| |
Collapse
|
21
|
Bazioti V, La Rose AM, Maassen S, Bianchi F, de Boer R, Halmos B, Dabral D, Guilbaud E, Flohr-Svendsen A, Groenen AG, Marmolejo-Garza A, Koster MH, Kloosterhuis NJ, Havinga R, Pranger AT, Langelaar-Makkinje M, de Bruin A, van de Sluis B, Kohan AB, Yvan-Charvet L, van den Bogaart G, Westerterp M. T cell cholesterol efflux suppresses apoptosis and senescence and increases atherosclerosis in middle aged mice. Nat Commun 2022; 13:3799. [PMID: 35778407 PMCID: PMC9249754 DOI: 10.1038/s41467-022-31135-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease driven by hypercholesterolemia. During aging, T cells accumulate cholesterol, potentially affecting inflammation. However, the effect of cholesterol efflux pathways mediated by ATP-binding cassette A1 and G1 (ABCA1/ABCG1) on T cell-dependent age-related inflammation and atherosclerosis remains poorly understood. In this study, we generate mice with T cell-specific Abca1/Abcg1-deficiency on the low-density-lipoprotein-receptor deficient (Ldlr-/-) background. T cell Abca1/Abcg1-deficiency decreases blood, lymph node, and splenic T cells, and increases T cell activation and apoptosis. T cell Abca1/Abcg1-deficiency induces a premature T cell aging phenotype in middle-aged (12-13 months) Ldlr-/- mice, reflected by upregulation of senescence markers. Despite T cell senescence and enhanced T cell activation, T cell Abca1/Abcg1-deficiency decreases atherosclerosis and aortic inflammation in middle-aged Ldlr-/- mice, accompanied by decreased T cells in atherosclerotic plaques. We attribute these effects to T cell apoptosis downstream of T cell activation, compromising T cell functionality. Collectively, we show that T cell cholesterol efflux pathways suppress T cell apoptosis and senescence, and induce atherosclerosis in middle-aged Ldlr-/- mice.
Collapse
Affiliation(s)
- Venetia Bazioti
- grid.4494.d0000 0000 9558 4598Department of Pediatrics, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands ,grid.5252.00000 0004 1936 973XInstitute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | - Anouk M. La Rose
- grid.4494.d0000 0000 9558 4598Department of Pediatrics, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands
| | - Sjors Maassen
- grid.4830.f0000 0004 0407 1981Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Frans Bianchi
- grid.4830.f0000 0004 0407 1981Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Rinse de Boer
- grid.4830.f0000 0004 0407 1981Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Benedek Halmos
- grid.4494.d0000 0000 9558 4598Department of Pediatrics, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands
| | - Deepti Dabral
- grid.4830.f0000 0004 0407 1981Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Emma Guilbaud
- grid.462370.40000 0004 0620 5402Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Université Côte d’Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, 06204 Nice, France
| | - Arthur Flohr-Svendsen
- grid.4494.d0000 0000 9558 4598European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands
| | - Anouk G. Groenen
- grid.4494.d0000 0000 9558 4598Department of Pediatrics, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands
| | - Alejandro Marmolejo-Garza
- grid.4494.d0000 0000 9558 4598Department of Pediatrics, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands
| | - Mirjam H. Koster
- grid.4494.d0000 0000 9558 4598Department of Pediatrics, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands
| | - Niels J. Kloosterhuis
- grid.4494.d0000 0000 9558 4598Department of Pediatrics, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands
| | - Rick Havinga
- grid.4494.d0000 0000 9558 4598Department of Pediatrics, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands
| | - Alle T. Pranger
- grid.4494.d0000 0000 9558 4598Laboratory of Medicine, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands
| | - Miriam Langelaar-Makkinje
- grid.4494.d0000 0000 9558 4598Department of Pediatrics, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands
| | - Alain de Bruin
- grid.4494.d0000 0000 9558 4598Department of Pediatrics, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands ,grid.5477.10000000120346234Department of Biomolecular Health Sciences, Dutch Molecular Pathology Center, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Bart van de Sluis
- grid.4494.d0000 0000 9558 4598Department of Pediatrics, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands
| | - Alison B. Kohan
- grid.21925.3d0000 0004 1936 9000Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Laurent Yvan-Charvet
- grid.462370.40000 0004 0620 5402Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Université Côte d’Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, 06204 Nice, France
| | - Geert van den Bogaart
- grid.4830.f0000 0004 0407 1981Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Marit Westerterp
- grid.4494.d0000 0000 9558 4598Department of Pediatrics, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands
| |
Collapse
|
22
|
Bello-Medina PC, Rodríguez-Martínez E, Prado-Alcalá RA, Rivas-Arancibia S. Ozone pollution, oxidative stress, synaptic plasticity, and neurodegeneration. Neurologia 2022; 37:277-286. [PMID: 30857788 DOI: 10.1016/j.nrl.2018.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 10/21/2018] [Indexed: 01/22/2023] Open
Abstract
INTRODUCTION Overpopulation and industrial growth result in an increase in air pollution, mainly due to suspended particulate matter and the formation of ozone. Repeated exposure to low doses of ozone, such as on a day with high air pollution levels, results in a state of chronic oxidative stress, causing the loss of dendritic spines, alterations in cerebral plasticity and in learning and memory mechanisms, and neuronal death and a loss of brain repair capacity. This has a direct impact on human health, increasing the incidence of chronic and degenerative diseases. DEVELOPMENT We performed a search of the PubMed, Scopus, and Google Scholar databases for original articles and reviews published between 2000 and 2018 and addressing the main consequences of ozone exposure on synaptic plasticity, information processing in cognitive processes, and the alterations that may lead to the development of neurodegenerative diseases. CONCLUSIONS This review describes one of the pathophysiological mechanisms of the effect of repeated exposure to low doses of ozone, which causes loss of synaptic plasticity by producing a state of chronic oxidative stress. This brain function is key to both information processing and the generation of structural changes in neuronal populations. We also address the effect of chronic ozone exposure on brain tissue and the close relationship between ozone pollution and the appearance and progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- P C Bello-Medina
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - E Rodríguez-Martínez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - R A Prado-Alcalá
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - S Rivas-Arancibia
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México.
| |
Collapse
|
23
|
Effects of acute heat stress on liver damage, apoptosis and inflammation of pikeperch (Sander lucioperca). J Therm Biol 2022; 106:103251. [DOI: 10.1016/j.jtherbio.2022.103251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/21/2022] [Accepted: 04/30/2022] [Indexed: 11/22/2022]
|
24
|
Wan Y, Yang L, Jiang S, Qian D, Duan J. Excessive Apoptosis in Ulcerative Colitis: Crosstalk Between Apoptosis, ROS, ER Stress, and Intestinal Homeostasis. Inflamm Bowel Dis 2022; 28:639-648. [PMID: 34871402 DOI: 10.1093/ibd/izab277] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Indexed: 02/06/2023]
Abstract
Ulcerative colitis (UC), an etiologically complicated and relapsing gastrointestinal disease, is characterized by the damage of mucosal epithelium and destruction of the intestinal homeostasis, which has caused a huge social and economic burden on the health system all over the world. Its pathogenesis is multifactorial, including environmental factors, genetic susceptibility, epithelial barrier defect, symbiotic flora imbalance, and dysregulated immune response. Thus far, although immune cells have become the focus of most research, it is increasingly clear that intestinal epithelial cells play an important role in the pathogenesis and progression of UC. Notably, apoptosis is a vital catabolic process in cells, which is crucial to maintain the stability of intestinal environment and regulate intestinal ecology. In this review, the mechanism of apoptosis induced by reactive oxygen species and endoplasmic reticulum stress, as well as excessive apoptosis in intestinal epithelial dysfunction and gut microbiology imbalance are systematically and comprehensively summarized. Further understanding the role of apoptosis in the pathogenesis of UC may provide a novel strategy for its therapy in clinical practices and the development of new drugs.
Collapse
Affiliation(s)
- Yue Wan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Lei Yang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Dawei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, PR China
| | | |
Collapse
|
25
|
GSK-3β inhibition protects human nucleus pulposus cell against oxidative stress-inducing apoptosis through mitochondrial pathway. Mol Biol Rep 2022; 49:3783-3792. [PMID: 35179667 DOI: 10.1007/s11033-022-07218-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/31/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Oxidative stress in the intervertebral disc leads to nucleus pulposus (NP) degeneration by inducing cell apoptosis. However, the molecular mechanisms underlying this process remain unclear. Increasing evidence indicates that GSK-3β is related to cell apoptosis induced by oxidative stress. In this study, we explored whether GSK-3β inhibition protects human NP cell against apoptosis under oxidative stress. METHODS AND RESULTS Immunofluorescence staining was used to show the expression of GSK-3β in human NP cells (NPCs). Flow cytometry, mitochondrial staining and western blot (WB) were used to detect apoptosis of treated NPCs, changes of mitochondrial membrane potential and the expression of mitochondrial apoptosis-related proteins using GSK-3β specific inhibitor SB216763. Co-Immunoprecipitation (Co-IP) was used to demonstrate the interaction between GSK-3β and Bcl-2. We delineated the protective effect of GSK-3β specific inhibitor SB216763 on human NPCs apoptosis induced by oxidative stress in vitro. Further, we showed SB216763 exert the protective effect by preservation of the mitochondrial membrane potential and inhibition of caspase 3/7 activity during oxidative injury. The detailed mechanism underlying the antiapoptotic effect of GSK-3β inhibition was also studied by analyzing mitochondrial apoptosis pathway in vitro. CONCLUSIONS We concluded that the GSK-3β inhibitor SB216763 protected mitochondrial membrane potential to delay nucleus pulposus cell apoptosis by inhibiting the interaction between GSK-3β and Bcl-2 and subsequently reducing cytochrome c(Cyto-C) release and caspase-3 activation. Together, inhibition of GSK-3β using SB216763 in NPCs may be a favorable therapeutic strategy to slow intervertebral disc degeneration.
Collapse
|
26
|
Li Y, Gao X. LINC00883 Promotes Drug Resistance of Glioma Through a microRNA-136/NEK1-Dependent Mechanism. Front Oncol 2022; 11:692265. [PMID: 35083134 PMCID: PMC8785904 DOI: 10.3389/fonc.2021.692265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 11/08/2021] [Indexed: 12/22/2022] Open
Abstract
Objective Accumulating evidence has highlighted the roles of long noncoding RNAs (lncRNAs) as competing endogenous RNAs (ceRNAs) of microRNAs (miRNAs) through their binding sites in the progression of glioma. Hereby, we aim to explore the role of LINC00883 as a regulator of miR-136 and its target, NIMA-related kinase 1 (NEK1), thus, its involvement in the drug resistance of glioma cells. Methods and Results Mechanistic investigations by dual-luciferase reporter, RNA pull-down, and RNA-binding protein immunoprecipitation (RIP) assays indicated that LINC00883 bound to miR-136, thereby blocking miR-136-induced downregulation of NEK1. Through gain-of-function experiments in U251 cells that presented a high drug resistance, we found that ectopic expression of LINC00883 resulted in increased MRP (encoding multidrug resistance-associated protein), limited cell apoptosis, and increased proliferation. Expectedly, depleting LINC00883 yielded tumor-suppressive and anti-chemoresistance effects on U251 cells by increasing miR-136 and inhibiting NEK1. Next, drug-resistant glioma cell line SOWZ1, drug-sensitive glioma cell line SOWZ2, and drug-resistant glioma cell line SOWZ2-BCNU (SOWZ2 cultured in BCNU) were applied to validate the roles of LINC00883 in the regulation of multidrug resistance. LINC00883 knockdown suppressed the viability of SWOZ1, SWOZ2, and SWOZ2-BCNU cells. Conclusion In conclusion, LINC00883 knockdown reduces drug resistance in glioma. Hence, our study provides a future strategy to prevent drug resistance-induced therapeutic failure in glioma.
Collapse
Affiliation(s)
- Yongzhe Li
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Gao
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
27
|
Matsumoto C, Sekine H, Nahata M, Mogami S, Ohbuchi K, Fujitsuka N, Takeda H. Role of mitochondrial dysfunction in the pathogenesis of cisplatin-induced myotube atrophy. Biol Pharm Bull 2022; 45:780-792. [DOI: 10.1248/bpb.b22-00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | - Miwa Nahata
- Tsumura Kampo Research Laboratories, Tsumura & Co
| | | | - Katsuya Ohbuchi
- Tsumura Advanced Technology Research Laboratories, Tsumura & Co
| | | | | |
Collapse
|
28
|
Jia G, Mao H, Zhang Y, Ni Y, Chen Y. Apigenin alleviates neomycin-induced oxidative damage via the Nrf2 signaling pathway in cochlear hair cells. Front Med 2021; 16:637-650. [PMID: 34921675 DOI: 10.1007/s11684-021-0864-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/25/2021] [Indexed: 10/19/2022]
Abstract
Oxidative stress plays an important role in the pathogenesis of aminoglycoside-induced hearing loss and represents a promising target for treatment. We tested the potential effect of apigenin, a natural flavonoid with anticancer, anti-inflammatory, and antioxidant activities, on neomycin-induced ototoxicity in cochlear hair cells in vitro. Results showed that apigenin significantly ameliorated the loss of hair cells and the accumulation of reactive oxygen species upon neomycin injury. Further evidence suggested that the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway was activated by apigenin treatment. Disruption of the Nrf2 axis abolished the effects of apigenin on the alleviation of oxidative stress and subsequent apoptosis of hair cells. This study provided evidence of the protective effect of apigenin on cochlear hair cells and its underlying mechanism.
Collapse
Affiliation(s)
- Gaogan Jia
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China
| | - Huanyu Mao
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China
| | - Yanping Zhang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China
| | - Yusu Ni
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China. .,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China.
| | - Yan Chen
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China. .,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
29
|
Zhang L, Dong R, Wang Y, Wang L, Zhou T, Jia D, Meng Z. The anti-breast cancer property of physcion via oxidative stress-mediated mitochondrial apoptosis and immune response. PHARMACEUTICAL BIOLOGY 2021; 59:303-310. [PMID: 33715588 PMCID: PMC7971271 DOI: 10.1080/13880209.2021.1889002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
CONTEXT Physcion (Phy) exerts several pharmacological effects including anti-inflammatory, antioxidant, and antitumor properties. OBJECTIVE This study investigates the cytotoxicity and its underlying mechanisms of Phy on breast cancer. MATERIALS AND METHODS Human breast cancer cell MCF-7 was treated with 5-400 µM Phy for 24 h, MCF-7-xenografted BALB/c nude mice and immunosuppressive mice model induced by cyclophosphamide were intraperitoneally injected with 0.1 mL/mouse normal saline (control group) and 30 mg/kg Phy every other day for 14 or 28 days, and pathological examination, ELISA and western blot were employed to investigate the Phy anti-breast cancer property in vitro and in vivo. RESULTS In MCF-7 cells, Phy 24 h treatment significantly reduced the cell viability at dose of 50-400 µM and 24 h, with an IC50 of 203.1 µM, and 200 µM Phy induced 56.9, 46.9, 36.9, and 46.9% increment on LDH and caspase-3, -8 and -9. In MCF-7-xenograft tumour nude mice and immunosuppressive mice, 30 mg/kg Phy treatment inhibited tumour growth from the 8th day, and reduced Bcl-2 and Bcl-xL >50%, HO-1 and SOD-1 > 70% in tumour tissues of immunosuppressive mice. In addition, Phy reduced nuclear factor erythroid 2-related factor 2 > 30% and its downstream proteins, and enhanced the phosphorylation of nuclear factor-kappa B > 110% and inhibitor of NF-кB α > 80% in the tumour tissues of BALB/c mice. DISCUSSION AND CONCLUSIONS This research demonstrated that Phy has an anti-breast cancer property via the modulation of oxidative stress-mediated mitochondrial apoptosis and immune response, which provides a scientific basis for further research on its clinical applications.
Collapse
Affiliation(s)
- Luping Zhang
- The Gastroenterology & Endoscopy Center, First Hospital, Jilin University, Changchun, Jilin, China
| | - Ruitao Dong
- School of Life Sciences, Jilin University, Changchun, China
| | - Yu Wang
- The Gastroenterology & Endoscopy Center, First Hospital, Jilin University, Changchun, Jilin, China
| | - Longxiang Wang
- School of Life Sciences, Jilin University, Changchun, China
| | - Tian Zhou
- Department of Translational Medicine Research Institute, First Hospital, Jilin University, Changchun, Jilin, China
| | - Dongxu Jia
- School of Life Sciences, Jilin University, Changchun, China
- Department of Translational Medicine Research Institute, First Hospital, Jilin University, Changchun, Jilin, China
- CONTACT Dongxu Jia School of Life Sciences, Jilin University, Changchun, Jilin, 130021, China
| | - Zhaoli Meng
- Department of Translational Medicine Research Institute, First Hospital, Jilin University, Changchun, Jilin, China
- Zhaoli Meng Department of Translational Medicine Research Institute, First Hospital, Jilin University, Changchun City, Jilin Province, P. R. China
| |
Collapse
|
30
|
Protective effect and mechanism of betaine against hyperosmotic stress in porcine intestinal epithelium. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
31
|
Dai W, Xiao Y, Tu Y, Xiao F, Lu Y, Qin Y, Xie Y. Propofol protects hippocampal neurons in sleep-deprived rats by inhibiting mitophagy and autophagy. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1427. [PMID: 34733979 PMCID: PMC8506745 DOI: 10.21037/atm-21-3872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/09/2021] [Indexed: 12/19/2022]
Abstract
Background Sleep deprivation (SD) causes a disturbance in the cognitive function of rats. While propofol has a powerful sedative and hypnotic effect and is an antioxidant, its effect on the cognitive function of rats following SD remains unknown. The purpose of this study was to explore the protective effects of propofol on excessive autophagy and mitophagy in the hippocampus of rats after SD. Methods Adult male rats were intraperitoneally injected with 30 mg/kg of propofol after 96 hours of SD. Then we evaluated the effect of propofol on the cognitive function of sleep deprived rats by the Morris water maze. Transmission electron microscopy, Western blotting, PCR, immunohistochemistry, autophagy enhancer and autophagy inhibitor were used to study the effect of propofol on hippocampal neurons of rat with excessive autophagy and mitophagy. Results The behavioral experimental results of the Morris water maze showed that propofol improved the learning and memory ability of sleep-deprived rats. The expression of Beclin1, PINK1, parkin, p62, and LC3 protein increased significantly after sleep deprivation. While the intervention of propofol could significantly reduce the expression of these proteins, rapamycin treatment eliminated this effect. Conclusions Our findings showed that propofol could reduce the impairment of learning and memory in sleep-deprived rats by inhibiting excessive autophagy and mitophagy in hippocampal neurons. This strategy may provide an application basis for the clinical use of propofol in patients with chronic insomnia.
Collapse
Affiliation(s)
- Weixin Dai
- Department of Anesthesiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yong Xiao
- Department of Anesthesiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Youbing Tu
- Department of Anesthesiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fei Xiao
- Department of Anesthesiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yizhi Lu
- Department of Anesthesiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yinying Qin
- Department of Anesthesiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yubo Xie
- Department of Anesthesiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
32
|
Emerging approaches of wound healing in experimental models of high-grade oral mucositis induced by anticancer therapy. Oncotarget 2021; 12:2283-2299. [PMID: 34733419 PMCID: PMC8555685 DOI: 10.18632/oncotarget.28091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/24/2021] [Indexed: 01/22/2023] Open
Abstract
Clinical guidelines for oral mucositis (OM) still consist in palliative care. Herein, we summarize cellular and molecular mechanisms of OM ulceration in response to chemical therapies in animal models. We discuss evidenced anti-inflammatory and anti-oxidant drugs which have not been ever used for OM, such as synthetic peptides as well as cell therapy with mesenchymal stem cells; amniotic membranes, mucoadhesive polymers loaded with anti-inflammatory agents and natural or synthetic electrospun. These approaches have been promising to allow the production of drug-loaded membranes, scaffolds for cells encapsulation or guided tissue regeneration.
Collapse
|
33
|
Bacillus amyloliquefaciens SC06 Induced AKT-FOXO Signaling Pathway-Mediated Autophagy to Alleviate Oxidative Stress in IPEC-J2 Cells. Antioxidants (Basel) 2021; 10:antiox10101545. [PMID: 34679680 PMCID: PMC8533163 DOI: 10.3390/antiox10101545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/09/2021] [Accepted: 09/25/2021] [Indexed: 11/16/2022] Open
Abstract
Autophagy is a conserved proteolytic mechanism, which degrades and recycles damaged organs and proteins in cells to resist external stress. Probiotics could induce autophagy; however, its underlying molecular mechanisms remain elusive. Our previous study has found that BaSC06 could alleviate oxidative stress by inducing autophagy in rats. This research aimed to verify whether Bacillus amyloliquefaciens SC06 can induce autophagy to alleviate oxidative stress in IPEC-J2 cells, as well as explore its mechanisms. IPEC-J2 cells were first pretreated with 108 CFU/mL BaSC06, and then were induced to oxidative stress by the optimal dose of diquat. The results showed that BaSC06 significantly triggered autophagy, indicated by the up-regulation of LC3 and Beclin1 along with downregulation of p62 in IPEC-J2 cells. Further analysis revealed that BaSC06 inhibited the AKT-FOXO signaling pathway by inhibiting the expression of p-AKT and p-FOXO and inducing the expression of SIRT1, resulting in increasing the transcriptional activity of FOXO3 and gene expression of the ATG5-ATG12 complex to induce autophagy, which alleviated oxidative stress and apoptosis. Taken together, BaSC06 can induce AKT-FOXO-mediated autophagy to alleviate oxidative stress-induced apoptosis and cell damage, thus providing novel theoretical support for probiotics in the prevention and treatment of oxidative damage.
Collapse
|
34
|
Bello-Medina PC, Rodríguez-Martínez E, Prado-Alcalá RA, Rivas-Arancibia S. Ozone pollution, oxidative stress, synaptic plasticity, and neurodegeneration. NEUROLOGÍA (ENGLISH EDITION) 2021; 37:277-286. [PMID: 34531154 DOI: 10.1016/j.nrleng.2018.10.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 10/21/2018] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION Overpopulation and industrial growth result in an increase in air pollution, mainly due to suspended particulate matter and the formation of ozone. Repeated exposure to low doses of ozone, such as on a day with high air pollution levels, results in a state of chronic oxidative stress, causing the loss of dendritic spines, alterations in cerebral plasticity and in learning and memory mechanisms, and neuronal death and a loss of brain repair capacity. This has a direct impact on human health, increasing the incidence of chronic and degenerative diseases. DEVELOPMENT We performed a search of the PubMed, Scopus, and Google Scholar databases for original articles and reviews published between 2000 and 2018 and addressing the main consequences of ozone exposure on synaptic plasticity, information processing in cognitive processes, and the alterations that may lead to the development of neurodegenerative diseases. CONCLUSIONS This review describes one of the pathophysiological mechanisms of the effect of repeated exposure to low doses of ozone, which causes loss of synaptic plasticity by producing a state of chronic oxidative stress. This brain function is key to both information processing and the generation of structural changes in neuronal populations. We also address the effect of chronic ozone exposure on brain tissue and the close relationship between ozone pollution and the appearance and progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- P C Bello-Medina
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - E Rodríguez-Martínez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - R A Prado-Alcalá
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - S Rivas-Arancibia
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| |
Collapse
|
35
|
Cai P, Zhu Q, Cao Q, Bai Y, Zou H, Gu J, Yuan Y, Liu X, Liu Z, Bian J. Quercetin and Allicin Can Alleviate the Hepatotoxicity of Lead (Pb) through the PI3K Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9451-9460. [PMID: 34372660 DOI: 10.1021/acs.jafc.1c03794] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lead (Pb) is a common toxic heavy metal pollutant in the environment that seriously endangers the health of animals. The liver is a key target organ affected by Pb toxicity. Plant extracts allicin and quercetin have a strong antioxidant capacity that can promote the excretion of heavy metals by improving the body's antioxidant defense and chelating heavy metal ions. To explore the preventive and therapeutic effects of allicin and quercetin on Pb poisoning in chickens, 96 chickens were randomly divided into eight groups: control, Pb, allicin, quercetin, allicin + quercetin, Pb + allicin, Pb + quercetin, and Pb + allicin + quercetin groups. The chickens were given feed containing the above treatments for 90 days. The results indicated that Pb can affect the growth and development of the liver, damage the circulatory system, destroy the structure of mitochondria and nuclei in liver cells, cause an imbalance in the oxidation system, inhibit PI3K protein, and activate the mitochondrial apoptotic pathway. Allicin and quercetin, alone or in combination, can improve the antioxidant capacity of the liver and alleviate liver tissue damage caused by Pb. In summary, allicin and quercetin could alleviate oxidative damage and apoptosis in the Pb-poisoned chicken liver through the PI3K signaling pathway, with stronger effects achieved by their combination.
Collapse
Affiliation(s)
- Peirong Cai
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Qihang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Qianying Cao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Yuni Bai
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Xuezhong Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China
| |
Collapse
|
36
|
Mao H, Chen Y. Noise-Induced Hearing Loss: Updates on Molecular Targets and Potential Interventions. Neural Plast 2021; 2021:4784385. [PMID: 34306060 PMCID: PMC8279877 DOI: 10.1155/2021/4784385] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/12/2021] [Indexed: 12/18/2022] Open
Abstract
Noise overexposure leads to hair cell loss, synaptic ribbon reduction, and auditory nerve deterioration, resulting in transient or permanent hearing loss depending on the exposure severity. Oxidative stress, inflammation, calcium overload, glutamate excitotoxicity, and energy metabolism disturbance are the main contributors to noise-induced hearing loss (NIHL) up to now. Gene variations are also identified as NIHL related. Glucocorticoid is the only approved medication for NIHL treatment. New pharmaceuticals targeting oxidative stress, inflammation, or noise-induced neuropathy are emerging, highlighted by the nanoparticle-based drug delivery system. Given the complexity of the pathogenesis behind NIHL, deeper and more comprehensive studies still need to be fulfilled.
Collapse
Affiliation(s)
- Huanyu Mao
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China
| | - Yan Chen
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China
| |
Collapse
|
37
|
Liang WF, Gong YX, Li HF, Sun FL, Li WL, Chen DQ, Xie DP, Ren CX, Guo XY, Wang ZY, Kwon T, Sun HN. Curcumin Activates ROS Signaling to Promote Pyroptosis in Hepatocellular Carcinoma HepG2 Cells. In Vivo 2021; 35:249-257. [PMID: 33402471 DOI: 10.21873/invivo.12253] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND/AIM Curcumin is a polyphenol that exerts a variety of pharmacological activities and plays an anti-cancer role in many cancer cells. It was recently reported that gasdermin E (GSDME) is involved in the progression of pyroptosis. MATERIALS AND METHODS HepG2 cells were treated with various concentrations of curcumin and cell viability was examined using MTT assay, apoptosis was analysed using flow cytometry, reactive oxygen species (ROS) levels using dihydroethidium, LDH release using an LDH cytotoxicity assay, and protein expression using western blot. RESULTS Curcumin increased the expression of the GSDME N-terminus and proteins involved in pyrolysis, promoted HspG2 cell pyrolysis and increased intracellular ROS levels. Moreover, inhibition of the production of intracellular ROS with n-acetylcysteine (NAC) improved the degree of apoptosis and pyrolysis induced by curcumin. CONCLUSION Curcumin induces HspG2 cell death by increasing apoptosis and pyroptosis, and ROS play a key role in this process. This study improves our understanding of the potential anti-cancer properties of curcumin in liver cancer.
Collapse
Affiliation(s)
- Wan-Feng Liang
- Department of Veterinary Medicine, Agricultural College of Yanbian University, Yanji, P.R. China
| | - Yi-Xi Gong
- Department of Veterinary Medicine, Agricultural College of Yanbian University, Yanji, P.R. China
| | - Hai-Feng Li
- Department of Veterinary Medicine, Agricultural College of Yanbian University, Yanji, P.R. China
| | - Fu-Liang Sun
- Department of Veterinary Medicine, Agricultural College of Yanbian University, Yanji, P.R. China
| | - Wei-Long Li
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Dong-Qin Chen
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Dan-Ping Xie
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Chen-Xi Ren
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Xiao-Yu Guo
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Zi-Yi Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Hu-Nan Sun
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, P.R. China;
| |
Collapse
|
38
|
Dong W, Dong Q, Ding H. Ophiopogonin B induces reactive oxygen species‑dependent apoptosis through the Hippo pathway in nasopharyngeal carcinoma. Mol Med Rep 2021; 24:534. [PMID: 34080657 PMCID: PMC8170196 DOI: 10.3892/mmr.2021.12173] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/15/2021] [Indexed: 12/15/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a common malignant tumor in South China and is characterized by a high death rate. Ophiopogonin B (OP‑B) is a bioactive component of Radix Ophiopogon japonicus, which is frequently used in traditional Chinese medicine to treat cancer. The present study aimed to examine the anti‑cancer properties of OP‑B on NPC cells. Cell viability and cell proliferation were measured using MTT and EdU assays. Flow cytometry was used to measure cell apoptosis, reactive oxygen species and mitochondrial membrane potential. Western blotting was used to investigate the expression of apoptosis and Hippo signaling pathway proteins. OP‑B inhibited the proliferation of NPC cells by inducing apoptosis and disturbing the mitochondrial integrity. OP‑B enhanced ROS accumulation. In addition, OP‑B promoted the expression of mammalian STE20‑like kinase 1, large tumor suppressor 1 and phosphorylated yes‑associated protein (YAP) and suppressed the expression of YAP and transcriptional enhanced associate domain in NPC cells. OP‑B increased the expression of forkhead box transcription factor O1 in the nuclear fraction. In conclusion, OP‑B has therapeutic potential and feasibility in the development of novel YAP inhibitors for NPC.
Collapse
Affiliation(s)
- Wenhui Dong
- Department of Otorhinolaryngology, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Qing Dong
- Department of Operating Room, Weifang Yidu Central Hospital, Weifang, Shandong 262500, P.R. China
| | - Hairui Ding
- Department of Emergency, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
39
|
Kuczler MD, Olseen AM, Pienta KJ, Amend SR. ROS-induced cell cycle arrest as a mechanism of resistance in polyaneuploid cancer cells (PACCs). PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 165:3-7. [PMID: 33991583 DOI: 10.1016/j.pbiomolbio.2021.05.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/30/2021] [Accepted: 05/08/2021] [Indexed: 10/21/2022]
Abstract
Cancer is responsible for the deaths of millions of people worldwide each year. Once metastasized, the disease is incurable and shows resistance to all anti-cancer therapies. The already-elevated level of reactive oxygen species (ROS) in cancer cells is further increased by therapies. The oxidative stress activates the DNA damage response (DDR) and the stressed cancer cell moves towards cell cycle arrest. Once arrested, the majority of cancer cells will undergo programmed cell death in the form of apoptosis. If the cancer cell is able to exit the cell cycle prior to cell division and enter a protected G0 state, it is able to withstand and survive therapy as a polyaneuploid cancer cell (PACC) and eventually seed resistant tumor growth.
Collapse
Affiliation(s)
- Morgan D Kuczler
- James Buchanan Brady Urological Institute at the Johns Hopkins School of Medicine (600 North Wolfe Street, Baltimore, MD, 21287, United States.
| | - Athen M Olseen
- James Buchanan Brady Urological Institute at the Johns Hopkins School of Medicine (600 North Wolfe Street, Baltimore, MD, 21287, United States
| | - Kenneth J Pienta
- James Buchanan Brady Urological Institute at the Johns Hopkins School of Medicine (600 North Wolfe Street, Baltimore, MD, 21287, United States
| | - Sarah R Amend
- James Buchanan Brady Urological Institute at the Johns Hopkins School of Medicine (600 North Wolfe Street, Baltimore, MD, 21287, United States
| |
Collapse
|
40
|
Sha W, Liu M, Sun D, Qiu J, Xu B, Chen L, Shen T, Chen C, Wang H, Zhang C, Lei T. Resveratrol improves Gly-LDL-induced vascular endothelial cell apoptosis, inflammatory factor secretion and oxidative stress by regulating miR-142-3p and regulating SPRED2-mediated autophagy. Aging (Albany NY) 2021; 13:6878-6889. [PMID: 33621197 PMCID: PMC7993714 DOI: 10.18632/aging.202546] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/23/2020] [Indexed: 04/18/2023]
Abstract
BACKGROUND Resveratrol improves cell apoptosis and tissue damage induced by high glucose, but the specific mechanism is unknown. METHODS This is a basic research. We performed cell transfection, real-time fluorescence quantitative PCR (qPCR), flow cytometry, immunofluorescence, western blot, enzyme linked immunosorbent assay (ELISA) and cell viability assay to analyze cell viability, cell cycle, cellular oxidative stress, intracellular inflammatory factors and autophagy activities in vitro. Meanwhile, dual luciferase reporter assay was conducted to explore the influence of miR-142-3p and sprouty-related EVH1 domain 2 (SPRED 2) on human glycated low-density lipoprotein (Gly-LDL)-induced vascular endothelial cell apoptosis, inflammatory factor secretion and oxidative stress. RESULTS Resveratrol inhibited the expression of miR-142-3p in human umbilical vein endothelial cells (HUVECs) induced by Gly-LDL in a dose-dependent manner, and the overexpression of miR-142-3p reverses the effect of resveratrol on the proliferation, apoptosis, secretion of inflammatory factors, oxidative stress, and autophagy. The dual-luciferase report analysis found a negative regulatory relationship between miR-142-3p and SPRED2. Inhibition of SPRED2 reversed the effects of resveratrol on Gly-LDL-induced HUVECs proliferation, apoptosis, inflammatory factor secretion and oxidative stress, and reversed the effects of resveratrol on Gly-LDL-induced HUVECs autophagy. CONCLUSION miR-142-3p promotes the development of diabetes by inhibiting SPRED2-mediated autophagy, including inducing cell apoptosis, aggravating cellular oxidative stress and secretion of inflammatory factors, and resveratrol improves this effect.
Collapse
Affiliation(s)
- Wenjun Sha
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Meizhi Liu
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Dusang Sun
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Junhui Qiu
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Bilin Xu
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Lin Chen
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Tian Shen
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Cheng Chen
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Hongping Wang
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Cuiping Zhang
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Tao Lei
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| |
Collapse
|
41
|
Mu D, Qin H, Jiao M, Hua S, Sun T. Modeling the neuro-protection of theaflavic acid from black tea and its synergy with nimodipine via mitochondria apoptotic pathway. J Zhejiang Univ Sci B 2021; 22:123-135. [PMID: 33615753 DOI: 10.1631/jzus.b2000540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ischemic stroke presents a leading cause of mortality and morbidity worldwide. Theaflavic acid (TFA) is a theaflavin isolated from black tea that exerts a potentially neuro-protective effect. However, the dynamic properties of TFA-mediated protection remain largely unknown. In the current study, we evaluated the function of TFA in the mitochondria apoptotic pathway using mathematical modeling. We found that TFA-enhanced B-cell lymphoma 2 (Bcl-2) overexpression can theoretically give rise to bistability. The bistability is highly robust against parametric stochasticity while also conferring considerable variability in survival threshold. Stochastic simulations faithfully match the TFA dose response pattern seen in experimental studies. In addition, we identified a dose- and time-dependent synergy between TFA and nimodipine, a clinically used neuro-protective drug. This synergistic effect was enhanced by bistability independent of temporal factors. Precise application of pulsed doses of TFA can also promote survival compared with sustained TFA treatment. These data collectively demonstrate that TFA treatment can give rise to bistability and that synergy between TFA and nimodipine may offer a promising strategy for developing therapeutic neuro-protection against ischemic stroke.
Collapse
Affiliation(s)
- Dan Mu
- School of Life Sciences, the Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, Anqing Normal University, Anqing 246133, China
| | - Huaguang Qin
- School of Life Sciences, the Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, Anqing Normal University, Anqing 246133, China
| | - Mengjie Jiao
- School of Life Sciences, the Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, Anqing Normal University, Anqing 246133, China
| | - Shaogui Hua
- School of Life Sciences, the Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, Anqing Normal University, Anqing 246133, China
| | - Tingzhe Sun
- School of Life Sciences, the Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, Anqing Normal University, Anqing 246133, China.
| |
Collapse
|
42
|
Giallongo S, Rehakova D, Raffaele M, Lo Re O, Koutna I, Vinciguerra M. Redox and Epigenetics in Human Pluripotent Stem Cells Differentiation. Antioxid Redox Signal 2021; 34:335-349. [PMID: 32567336 DOI: 10.1089/ars.2019.7983] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: Since their discovery, induced pluripotent stem cells (iPSCs) had generated considerable interest in the scientific community for their great potential in regenerative medicine, disease modeling, and cell-based therapeutic approach, due to their unique characteristics of self-renewal and pluripotency. Recent Advances: Technological advances in iPSC genome-wide epigenetic profiling led to the elucidation of the epigenetic control of cellular identity during nuclear reprogramming. Moreover, iPSC physiology and metabolism are tightly regulated by oxidation-reduction events that mainly occur during the respiratory chain. In theory, iPSC-derived differentiated cells would be ideal for stem cell transplantation as autologous cells from donors, as the risks of rejection are minimal. Critical Issues: However, iPSCs experience high oxidative stress that, in turn, confers a high risk of increased genomic instability, which is most often linked to DNA repair deficiencies. Genomic instability has to be assessed before iPSCs can be used in therapeutic designs. Future Directions: This review will particularly focus on the links between redox balance and epigenetic modifications-in particular based on the histone variant macroH2A1-that determine DNA damage response in iPSCs and derived differentiated cells, and that might be exploited to decrease the teratogenic potential on iPSC transplantation. Antioxid. Redox Signal. 34, 335-349.
Collapse
Affiliation(s)
- Sebastiano Giallongo
- International Clinical Research Center, St' Anne's University Hospital, Brno, Czech Republic.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Daniela Rehakova
- International Clinical Research Center, St' Anne's University Hospital, Brno, Czech Republic.,Faculty of Informatics, Centre for Biomedical Image Analysis, Masaryk University, Brno, Czech Republic
| | - Marco Raffaele
- International Clinical Research Center, St' Anne's University Hospital, Brno, Czech Republic
| | - Oriana Lo Re
- International Clinical Research Center, St' Anne's University Hospital, Brno, Czech Republic
| | - Irena Koutna
- International Clinical Research Center, St' Anne's University Hospital, Brno, Czech Republic.,Faculty of Informatics, Centre for Biomedical Image Analysis, Masaryk University, Brno, Czech Republic
| | - Manlio Vinciguerra
- International Clinical Research Center, St' Anne's University Hospital, Brno, Czech Republic.,Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
43
|
Yang J, Li Q, Zhou R, Zhou M, Lin X, Xiang Y, Xie D, Huang Y, Zhou Z. Combination of mitochondria targeting doxorubicin with Bcl-2 function-converting peptide NuBCP-9 for synergistic breast cancer metastasis inhibition. J Mater Chem B 2021; 9:1336-1350. [PMID: 33443508 DOI: 10.1039/d0tb02564j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Distant organ metastasis is the main cause of death in breast cancer patients. Evidences have shown that mitochondria also play a crucial role in tumor metastasis, except for as apoptosis center. However, the treatment of tumor growth and metastasis was reported to be limited by mitochondria-associated protein Bcl-2, which are gatekeepers of apoptosis and are found to reside in mitochondria mainly. Herein, we designed a mitochondria-targeting doxorubicin delivery system as well as a mitochondrial distributed Bcl-2 function-converting peptide NuBCP-9 delivery system, which are both based on N-(2-hydroxypropyl)methacrylamide copolymers, to achieve a synergistic effect on tumor regression and metastasis inhibition by combination therapy. After mitochondria were damaged by mitochondria-targeting peptide-modified doxorubicin, apoptosis was effectively enhanced by mitochondrial specifically distributed NuBCP-9 peptides, which converted Bcl-2 function from anti-apoptotic to pro-apoptotic and paved the way for the development of mitochondrial impairment. The combination treatment exhibited significant damage to mitochondria, including excess reactive oxygen species (ROS), the permeabilization of mitochondrial outer membrane (MOMP), and apoptosis initiation on 4T1 breast cancer cells. Meanwhile, besides enhanced tumor growth suppression, the combination treatment also improved the inhibition of 4T1 breast cancer metastasis both in vitro and in vivo. By increasing the expression of cytochrome C and decreasing the expression of Bcl-2, metal matrix protease-9 (MMP-9) as well as vascular endothelial growth factor (VEGF), the combination treatment successfully decreased 84% lung metastasis. Overall, our work provided a promising strategy for metastatic cancer treatment through mitochondria-targeting anti-cancer drug delivery and combination with mitochondrial distributed Bcl-2 function-converting peptide.
Collapse
Affiliation(s)
- Jiatao Yang
- Key Laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, P. R. China.
| | - Qiuyi Li
- Key Laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, P. R. China.
| | - Rui Zhou
- Key Laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, P. R. China.
| | - Minglu Zhou
- Key Laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, P. R. China.
| | - Xi Lin
- Key Laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, P. R. China.
| | - Yucheng Xiang
- Key Laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, P. R. China.
| | - Dandan Xie
- Key Laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, P. R. China.
| | - Yuan Huang
- Key Laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, P. R. China.
| | - Zhou Zhou
- Key Laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, P. R. China.
| |
Collapse
|
44
|
Chong SJF, Iskandar K, Lai JXH, Qu J, Raman D, Valentin R, Herbaux C, Collins M, Low ICC, Loh T, Davids M, Pervaiz S. Serine-70 phosphorylated Bcl-2 prevents oxidative stress-induced DNA damage by modulating the mitochondrial redox metabolism. Nucleic Acids Res 2021; 48:12727-12745. [PMID: 33245769 PMCID: PMC7736805 DOI: 10.1093/nar/gkaa1110] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/25/2020] [Accepted: 10/29/2020] [Indexed: 12/16/2022] Open
Abstract
Bcl-2 phosphorylation at serine-70 (S70pBcl2) confers resistance against drug-induced apoptosis. Nevertheless, its specific mechanism in driving drug-resistance remains unclear. We present evidence that S70pBcl2 promotes cancer cell survival by acting as a redox sensor and modulator to prevent oxidative stress-induced DNA damage and execution. Increased S70pBcl2 levels are inversely correlated with DNA damage in chronic lymphocytic leukemia (CLL) and lymphoma patient-derived primary cells as well as in reactive oxygen species (ROS)- or chemotherapeutic drug-treated cell lines. Bioinformatic analyses suggest that S70pBcl2 is associated with lower median overall survival in lymphoma patients. Empirically, sustained expression of the redox-sensitive S70pBcl2 prevents oxidative stress-induced DNA damage and cell death by suppressing mitochondrial ROS production. Using cell lines and lymphoma primary cells, we further demonstrate that S70pBcl2 reduces the interaction of Bcl-2 with the mitochondrial complex-IV subunit-5A, thereby reducing mitochondrial complex-IV activity, respiration and ROS production. Notably, targeting S70pBcl2 with the phosphatase activator, FTY720, is accompanied by an enhanced drug-induced DNA damage and cell death in CLL primary cells. Collectively, we provide a novel facet of the anti-apoptotic Bcl-2 by demonstrating that its phosphorylation at serine-70 functions as a redox sensor to prevent drug-induced oxidative stress-mediated DNA damage and execution with potential therapeutic implications.
Collapse
Affiliation(s)
- Stephen Jun Fei Chong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kartini Iskandar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Jolin Xiao Hui Lai
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Jianhua Qu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Deepika Raman
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Rebecca Valentin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Charles Herbaux
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mary Collins
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ivan Cherh Chiet Low
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Thomas Loh
- Department of Otolaryngology, National University of Healthcare System (NUHS), Singapore, Singapore
| | - Matthew Davids
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore.,NUS Graduate School of Integrative Science and Engineering, NUS, Singapore, Singapore.,National University Cancer Institute, NUHS, Singapore, Singapore.,Faculté de Médecine, Université de Paris, Paris, France
| |
Collapse
|
45
|
S-Adenosyl-l-Methionine Overcomes uL3-Mediated Drug Resistance in p53 Deleted Colon Cancer Cells. Int J Mol Sci 2020; 22:ijms22010103. [PMID: 33374288 PMCID: PMC7795960 DOI: 10.3390/ijms22010103] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023] Open
Abstract
Purpose: In order to study novel therapeutic approaches taking advantage of natural compounds showing anticancer and anti-proliferative effects, we focused our interest on S-adenosyl-l-methionine, a naturally occurring sulfur-containing nucleoside synthesized from adenosine triphosphate and methionine by methionine adenosyltransferase, and its potential in overcoming drug resistance in colon cancer cells devoid of p53. Results: In the present study, we demonstrated that S-adenosyl-l-methionine overcomes uL3-mediated drug resistance in p53 deleted colon cancer cells. In particular, we demonstrated that S-adenosyl-l-methionine causes cell cycle arrest at the S phase; inhibits autophagy; augments reactive oxygen species; and induces apoptosis in these cancer cells. Conclusions: Results reported in this paper led us to propose S-adenosyl-l-methionine as a potential promising agent for cancer therapy by examining p53 and uL3 profiles in tumors to yield a better clinical outcomes.
Collapse
|
46
|
Yee YH, Chong SJF, Kong LR, Goh BC, Pervaiz S. Sustained IKKβ phosphorylation and NF-κB activation by superoxide-induced peroxynitrite-mediated nitrotyrosine modification of B56γ3 and PP2A inactivation. Redox Biol 2020; 41:101834. [PMID: 33838472 PMCID: PMC8056462 DOI: 10.1016/j.redox.2020.101834] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 01/15/2023] Open
Abstract
Apart from its physiological role in inflammation and immunity, the nuclear factor-kappa B (NF-κB) protein complex has been implicated in tumorigenesis and its progression. Here, we provide evidence that a pro-oxidant milieu is an upstream effector of oncogenic NF-κB signaling. Through pharmacological or genetic inhibition of SOD1, we show that elevated intracellular superoxide (O2•-) mediates sustained IKK phosphorylation, and induces downstream degradation of IκBα, leading to the nuclear localization and transcriptional activation of NF-κB. Mechanistically, we show that such sustained NF-κB signaling is a function of protein phosphatase 2A (PP2A) inactivation brought about by the nitrative modification of its substrate-binding sub-unit B56γ. Importantly, the pro-oxidant driven NF-κB activation enhances the migratory and invasive potential of cancer cells. In summary, our work highlights the critical involvement of O2•--dependent peroxynitrite production in inhibiting PP2A-mediated dephosphorylation of IKK, thereby facilitating cancers to acquire an invasive phenotype. Given that NF-κB is a key player of chronic inflammation and carcinogenesis, our work unravels a novel synergistic node involving O2•--driven redox milieu and deregulated PP2A as a potential therapeutic target.
Collapse
Affiliation(s)
- Yi Hui Yee
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore
| | | | - Li Ren Kong
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore; Medical Research Council Cancer Unit, University of Cambridge, Cambridge, CB2, 0XZ, United Kingdom
| | - Boon Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore; Department of Hematology-Oncology, National University Health System, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, NUS, Singapore; National University Cancer Institute, National University Health System, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, NUS, Singapore
| | - Shazib Pervaiz
- National University Cancer Institute, National University Health System, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, NUS, Singapore; Integrative Science and Engineering Programme, NUS Graduate School, NUS, Singapore; Faculté de Medicine, University of Paris, Paris, France.
| |
Collapse
|
47
|
Huang J, Zhao J, Geng X, Chu W, Li S, Chen ZJ, Du Y. Long non-coding RNA lnc-CCNL1-3:1 promotes granulosa cell apoptosis and suppresses glucose uptake in women with polycystic ovary syndrome. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 23:614-628. [PMID: 33552682 PMCID: PMC7819816 DOI: 10.1016/j.omtn.2020.12.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disease in premenopausal women. Long non-coding RNAs (lncRNAs) constitute important factors in numerous biological processes. However, their roles in PCOS pathogenesis require further clarification. Our study aims to elucidate the roles of lncRNA lnc-CCNL1-3:1 (CCNL) in PCOS. CCNL expression in human luteinized granulosa cells (hLGCs) derived from women with and without PCOS was detected. The full length of CCNL was obtained by 5' and 3' rapid amplification of cDNA ends. CCNL roles in granulosa cell apoptosis, mitochondrial function, and glucose uptake were evaluated. The binding relationship between CCNL and forkhead box O1 (FOXO1) was determined by RPISeq, RNA immunoprecipitation, subcellular fractionation, and immunofluorescence. In KGN cells and hLGCs, CCNL overexpression upregulated FOXO1 expression, promoted cell apoptosis, reduced glucose transport capability, and impaired mitochondrial function, and these effects were partially abolished by silencing FOXO1. The interaction of CCNL with FOXO1 might prevents FOXO1 exclusion from the nucleus and subsequent degradation in the cytosol. We determined that CCNL serve as a facilitator in the processes of PCOS. CCNL might participate in PCOS pathologies such as follicular atresia and insulin resistance.
Collapse
Affiliation(s)
- Jiayu Huang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Jun Zhao
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Xueying Geng
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Weiwei Chu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Shang Li
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China.,Center for Reproductive Medicine, Shandong Provincial Hospital, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory for Reproductive Endocrinology (Shandong University), Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong Provincial Key Laboratory of Reproductive Medicine, No. 157 Jingliu Road, Jinan 250001, China
| | - Yanzhi Du
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| |
Collapse
|
48
|
Xu X, Zhang L, Zhao Y, Xu B, Qin W, Yan Y, Yin B, Xi C, Ma L. Anti‑inflammatory mechanism of berberine on lipopolysaccharide‑induced IEC‑18 models based on comparative transcriptomics. Mol Med Rep 2020; 22:5163-5180. [PMID: 33174609 PMCID: PMC7646980 DOI: 10.3892/mmr.2020.11602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
Intestinal surface epithelial cells (IECs) have long been considered as an effective barrier for maintaining water and electrolyte balance, and are involved in the mechanism of nutrient absorption. When intestinal inflammation occurs, it is often accompanied by IEC malfunction. Berberine (BBR) is an isoquinoline alkaloid found in numerous types of medicinal plants, which has been clinically used in China to treat symptoms of gastrointestinal pathogenic bacterial infection, especially bacteria‑induced diarrhea and inflammation. In the present study, IEC‑18 rat intestinal epithelial cells were treated with lipopolysaccharide (LPS) to establish an in vitro model of epithelial cell inflammation, and the cells were subsequently treated with BBR in order to elucidate the anti‑inflammatory mechanism. Transcriptome data were then searched to find the differentially expressed genes (DEGs) compared between two of the treatment groups (namely, the LPS and LPS+BBR groups), and DEGs were analyzed using Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, Weighted Gene Correlation Network Analysis and Interactive Pathways Explorer to identify the functions and pathways enriched with DEGs. Finally, reverse transcription‑quantitative PCR was used to verify the transcriptome data. These experiments revealed that, comparing between the LPS and LPS+BBR groups, the functions and pathways enriched in DEGs were 'DNA replication', 'cell cycle', 'apoptosis', 'leukocyte migration' and the 'NF‑κB and AP‑1 pathways'. The results revealed that BBR is able to restrict DNA replication, inhibit the cell cycle and promote apoptosis. It can also inhibit the classic inflammatory pathways, such as those mediated by NF‑κB and AP‑1, and the expression of various chemokines to prevent the migration of leukocytes. According to transcriptomic data, BBR can exert its anti‑inflammatory effects by regulating a variety of cellular physiological activities, including cell cycle, apoptosis, inflammatory pathways and leukocyte migration.
Collapse
Affiliation(s)
- Xiaofan Xu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Le Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Ya Zhao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Baoyang Xu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Wenxia Qin
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Yiqin Yan
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Boqi Yin
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Chuyu Xi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Libao Ma
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| |
Collapse
|
49
|
Wang J, Zhang W, Ma B, Zhang H, Fan Z, Li M, Li X. A novel biscoumarin derivative dephosphorylates ERK and alleviates apoptosis induced by mitochondrial oxidative damage in ischemic stroke mice. Life Sci 2020; 264:118499. [PMID: 33141045 DOI: 10.1016/j.lfs.2020.118499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 11/17/2022]
Abstract
AIM We previously reported the protective effects of biscoumarin derivatives against oxidative stress, but effects of the derivative on mitochondrial oxidative damage induced apoptosis in ischemic stroke remains unknown. METHODS Primary neurons were subjected to oxygen and glucose deprivation (OGD) for the in vitro simulation of ischemic stroke, and an ischemic stroke model was established in mice by operation of middle cerebral artery occlusion (MCAO). RESULTS The results indicated that the nontoxic concentration range of biscoumarin derivative Comp. B in neurons was from 0 to 30 μg/ml and the optimal protective concentration was 20 μg/ml. Treatment with Comp. B increased the cell survival rate and alleviated mitochondrial oxidative damage and apoptosis in OGD-treated neurons. Comp. B reduced the ratio of Bax/Bcl-2, inhibited the phosphorylation of ERK, and thus alleviated apoptosis in OGD-treated neurons. Further research demonstrated that the dephosphorylation effect on ERK of Comp. B is a key factor in alleviating apoptosis in neurons induced by OGD injury. Furthermore, Comp. B reduced the infarct volume, improved neurobehavioural score, and alleviated morphological changes and brain apoptosis in MCAO mice. CONCLUSION The novel biscoumarin derivative Comp. B alleviates mitochondrial oxidative damage and apoptosis in ischemic stroke mice. These findings might provide new insights that will aid in elucidating the effect of biscoumarin derivative against cerebral ischemic reperfusion injury and support the new development of Comp. B as a potential treatment for ischemic stroke.
Collapse
Affiliation(s)
- Jun Wang
- Department of Digestive Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wentong Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Bo Ma
- Department of Pharmacology, The Fourth Military Medical University, Xi'an, China
| | - Hongchen Zhang
- Department of Neurosurgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhaoyang Fan
- Department of Pharmacology, The Fourth Military Medical University, Xi'an, China
| | - Mingkai Li
- Department of Pharmacology, The Fourth Military Medical University, Xi'an, China.
| | - Xia Li
- Department of Neurosurgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
50
|
Ying W, Zhang Y, Gao W, Cai X, Wang G, Wu X, Chen L, Meng Z, Zheng Y, Hu B, Lin X. Hollow Magnetic Nanocatalysts Drive Starvation-Chemodynamic-Hyperthermia Synergistic Therapy for Tumor. ACS NANO 2020; 14:9662-9674. [PMID: 32709200 DOI: 10.1021/acsnano.0c00910] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Magnetic hyperthermia therapy (MHT) has been considered as an excellent alternative for treatment of deep tumor tissue; however, up-regulation of heat shock proteins (HSPs) impairs its hyperthermal therapeutic effect. Reactive oxygen species (ROS) and competitive consumption of ATP are important targets that can block excessive HSP generation. We developed a magnetic nanocatalytic system comprised of glucose oxidase (GOD)-loaded hollow iron oxide nanocatalysts (HIONCs) to drive starvation-chemodynamic-hyperthermia synergistic therapy for tumor treatment. The Fe2+ present in HIONCs contributed to ROS generation via the Fenton reaction, relieving thermo-resistance and inducing cell apoptosis by chemodynamic action. The Fenton effect was enhanced through the conditions created by increased MHT-related temperature, GOD-mediated H2O2 accumulation, and elevated tumor microenvironment acidity. The HIONCs catalase-like activity facilitated conversion of H2O2 to oxygen, thereby replenishing the oxygen levels. We further demonstrated that locally injected HIONCs-GOD effectively inhibited tumor growth in PC3 tumor-bearing mice. This study presents a multifunctional nanocarrier system driving starvation-chemodynamic-magnetic-thermal synergistic therapy via ROS and oxygen modulation for prostate tumor treatment.
Collapse
Affiliation(s)
- Weiwei Ying
- Department of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
- Department of Ultrasound, Taizhou Hospital, Affiliated Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317000, P.R. China
| | - Yang Zhang
- Department of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Wei Gao
- Shanghai Institute of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Xiaojun Cai
- Shanghai Institute of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Gang Wang
- Department of Ultrasound, Taizhou Hospital, Affiliated Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317000, P.R. China
| | - Xiafang Wu
- Department of Ultrasound, Taizhou Hospital, Affiliated Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317000, P.R. China
| | - Lei Chen
- Department of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Zheying Meng
- Department of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Yuanyi Zheng
- Department of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Bing Hu
- Department of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
- Shanghai Institute of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Xianfang Lin
- Department of Ultrasound, Taizhou Hospital, Affiliated Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317000, P.R. China
| |
Collapse
|