1
|
Nishimura H, Li Y. Human pluripotent stem cell-derived models of the hippocampus. Int J Biochem Cell Biol 2024; 177:106695. [PMID: 39557338 DOI: 10.1016/j.biocel.2024.106695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
The hippocampus is a crucial structure of the brain, recognised for its roles in the formation of memory, and our ability to navigate the world. Despite its importance, clear understanding of how the human hippocampus develops and its contribution to disease is limited due to the inaccessible nature of the human brain. In this regard, the advent of human pluripotent stem cell (hPSC) technologies has enabled the study of human biology in an unprecedented manner, through the ability to model development and disease as both 2D monolayers and 3D organoids. In this review, we explore the existing efforts to derive the hippocampal lineage from hPSCs and evaluate the various aspects of the in vivo hippocampus that are replicated in vitro. In addition, we highlight key diseases that have been modelled using hPSC-derived cultures and offer our perspective on future directions for this emerging field.
Collapse
Affiliation(s)
- Haruka Nishimura
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Yun Li
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
2
|
Tidball AM, Niu W, Ma Q, Takla TN, Walker JC, Margolis JL, Mojica-Perez SP, Sudyk R, Deng L, Moore SJ, Chopra R, Shakkottai VG, Murphy GG, Yuan Y, Isom LL, Li JZ, Parent JM. Deriving early single-rosette brain organoids from human pluripotent stem cells. Stem Cell Reports 2023; 18:2498-2514. [PMID: 37995702 PMCID: PMC10724074 DOI: 10.1016/j.stemcr.2023.10.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023] Open
Abstract
Brain organoid methods are complicated by multiple rosette structures and morphological variability. We have developed a human brain organoid technique that generates self-organizing, single-rosette cortical organoids (SOSR-COs) with reproducible size and structure at early timepoints. Rather than patterning a 3-dimensional embryoid body, we initiate brain organoid formation from a 2-dimensional monolayer of human pluripotent stem cells patterned with small molecules into neuroepithelium and differentiated to cells of the developing dorsal cerebral cortex. This approach recapitulates the 2D to 3D developmental transition from neural plate to neural tube. Most monolayer fragments form spheres with a single central lumen. Over time, the SOSR-COs develop appropriate progenitor and cortical laminar cell types as shown by immunocytochemistry and single-cell RNA sequencing. At early time points, this method demonstrates robust structural phenotypes after chemical teratogen exposure or when modeling a genetic neurodevelopmental disorder, and should prove useful for studies of human brain development and disease modeling.
Collapse
Affiliation(s)
- Andrew M Tidball
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Wei Niu
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Qianyi Ma
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Taylor N Takla
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - J Clayton Walker
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Joshua L Margolis
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Roksolana Sudyk
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lu Deng
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Shannon J Moore
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ravi Chopra
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Vikram G Shakkottai
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Geoffrey G Murphy
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA; Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yukun Yuan
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lori L Isom
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jun Z Li
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jack M Parent
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA; Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI, USA; VA Ann Arbor Healthcare System, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
O'Brien BS, Mokry RL, Schumacher ML, Rosas-Rogers S, Terhune SS, Ebert AD. Neutralizing antibodies with neurotropic factor treatment maintain neurodevelopmental gene expression upon exposure to human cytomegalovirus. J Virol 2023; 97:e0069623. [PMID: 37796129 PMCID: PMC10653813 DOI: 10.1128/jvi.00696-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/23/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE Human cytomegalovirus (HCMV) infection is the leading cause of non-heritable birth defects worldwide. HCMV readily infects the early progenitor cell population of the developing brain, and we have found that infection leads to significantly downregulated expression of key neurodevelopmental transcripts. Currently, there are no approved therapies to prevent or mitigate the effects of congenital HCMV infection. Therefore, we used human-induced pluripotent stem cell-derived organoids and neural progenitor cells to elucidate the glycoproteins and receptors used in the viral entry process and whether antibody neutralization was sufficient to block viral entry and prevent disruption of neurodevelopmental gene expression. We found that blocking viral entry alone was insufficient to maintain the expression of key neurodevelopmental genes, but neutralization combined with neurotrophic factor treatment provided robust protection. Together, these studies offer novel insight into mechanisms of HCMV infection in neural tissues, which may aid future therapeutic development.
Collapse
Affiliation(s)
- Benjamin S. O'Brien
- Department of Cell Biology, Neurobiology, and Anatomy, The Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Rebekah L. Mokry
- Department of Microbiology and Immunology, The Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Megan L. Schumacher
- Department of Microbiology and Immunology, The Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Suzette Rosas-Rogers
- Department of Microbiology and Immunology, The Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Scott S. Terhune
- Department of Microbiology and Immunology, The Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Marquette University and Medical College of Wisconsin Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Allison D. Ebert
- Department of Cell Biology, Neurobiology, and Anatomy, The Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
4
|
Suresh V, Muralidharan B, Pradhan SJ, Bose M, D’Souza L, Parichha A, Reddy PC, Galande S, Tole S. Regulation of chromatin accessibility and gene expression in the developing hippocampal primordium by LIM-HD transcription factor LHX2. PLoS Genet 2023; 19:e1010874. [PMID: 37594984 PMCID: PMC10482279 DOI: 10.1371/journal.pgen.1010874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 09/06/2023] [Accepted: 07/17/2023] [Indexed: 08/20/2023] Open
Abstract
In the mammalian cerebral cortex, the hippocampal primordium (Hcp) occupies a discrete position in the dorsal telencephalic neuroepithelium adjacent to the neocortical primordium (Ncp). We examined transcriptomic and chromatin-level features that distinguish the Hcp from the Ncp in the mouse during the early neurogenic period, embryonic day (E)12.5. ATAC-seq revealed that the Hcp was more accessible than the Ncp at this stage. Motif analysis of the differentially accessible loci in these tissues revealed LHX2 as a candidate transcription factor for modulating gene regulatory networks (GRNs). We analyzed LHX2 occupancy profiles and compared these with transcriptomic data from control and Lhx2 mutant Hcp and Ncp at E12.5. Our results revealed that LHX2 directly regulates distinct genes in the Hcp and Ncp within a set of common pathways that control fundamental aspects of development namely pluripotency, axon pathfinding, Wnt, and Hippo signaling. Loss of Lhx2 caused a decrease in accessibility, specifically in hippocampal chromatin, suggesting that this factor may play a unique role in hippocampal development. We identified 14 genes that were preferentially enriched in the Hcp, for which LHX2 regulates both chromatin accessibility and mRNA expression, which have not thus far been examined in hippocampal development. Together, these results provide mechanistic insight into how LHX2 function in the Hcp may contribute to the process by which the hippocampus acquires features distinct from the neocortex.
Collapse
Affiliation(s)
- Varun Suresh
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Bhavana Muralidharan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Saurabh J. Pradhan
- Chromatin Biology and Epigenetics Laboratory, Biology department, Indian Institute of Science Education and Research Pune, India
| | - Mahima Bose
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Leora D’Souza
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Arpan Parichha
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Puli Chandramouli Reddy
- Chromatin Biology and Epigenetics Laboratory, Biology department, Indian Institute of Science Education and Research Pune, India
- Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Delhi NCR, India
| | - Sanjeev Galande
- Chromatin Biology and Epigenetics Laboratory, Biology department, Indian Institute of Science Education and Research Pune, India
- Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Delhi NCR, India
| | - Shubha Tole
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
5
|
Nguyen H, Sokpor G, Parichha A, Pham L, Saikhedkar N, Xie Y, Ulmke PA, Rosenbusch J, Pirouz M, Behr R, Stoykova A, Brand-Saberi B, Nguyen HP, Staiger JF, Tole S, Tuoc T. BAF (mSWI/SNF) complex regulates mediolateral cortical patterning in the developing forebrain. Front Cell Dev Biol 2022; 10:1011109. [PMID: 36263009 PMCID: PMC9573979 DOI: 10.3389/fcell.2022.1011109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
Abstract
Early forebrain patterning entails the correct regional designation of the neuroepithelium, and appropriate specification, generation, and distribution of neural cells during brain development. Specific signaling and transcription factors are known to tightly regulate patterning of the dorsal telencephalon to afford proper structural/functional cortical arealization and morphogenesis. Nevertheless, whether and how changes of the chromatin structure link to the transcriptional program(s) that control cortical patterning remains elusive. Here, we report that the BAF chromatin remodeling complex regulates the spatiotemporal patterning of the mouse dorsal telencephalon. To determine whether and how the BAF complex regulates cortical patterning, we conditionally deleted the BAF complex scaffolding subunits BAF155 and BAF170 in the mouse dorsal telencephalic neuroepithelium. Morphological and cellular changes in the BAF mutant forebrain were examined using immunohistochemistry and in situ hybridization. RNA sequencing, Co-immunoprecipitation, and mass spectrometry were used to investigate the molecular basis of BAF complex involvement in forebrain patterning. We found that conditional ablation of BAF complex in the dorsal telencephalon neuroepithelium caused expansion of the cortical hem and medial cortex beyond their developmental boundaries. Consequently, the hippocampal primordium is not specified, the mediolateral cortical patterning is compromised, and the cortical identity is disturbed in the absence of BAF complex. The BAF complex was found to interact with the cortical hem suppressor LHX2. The BAF complex suppresses cortical hem fate to permit proper forebrain patterning. We provide evidence that BAF complex modulates mediolateral cortical patterning possibly by interacting with the transcription factor LHX2 to drive the LHX2-dependent transcriptional program essential for dorsal telencephalon patterning. Our data suggest a putative mechanistic synergy between BAF chromatin remodeling complex and LHX2 in regulating forebrain patterning and ontogeny.
Collapse
Affiliation(s)
- Huong Nguyen
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
- Faculty of Biotechnology, Thai Nguyen University of Sciences, Thai Nguyen, Vietnam
| | - Godwin Sokpor
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, Bochum, Germany
| | | | - Linh Pham
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | | | - Yuanbin Xie
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
| | - Pauline Antonie Ulmke
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | - Joachim Rosenbusch
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
| | - Mehdi Pirouz
- Max Planck Institute for Multidisciplinary Sciences, Goettingen, Germany
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, United States
| | - Rüdiger Behr
- German Primate Center-Leibniz Institute for Primate Research, Goettingen, Germany
| | | | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, Bochum, Germany
| | - Huu Phuc Nguyen
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | - Jochen F. Staiger
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
| | - Shubha Tole
- Tata Institute of Fundamental Research, Mumbai, India
- *Correspondence: Shubha Tole, ; Tran Tuoc,
| | - Tran Tuoc
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
- *Correspondence: Shubha Tole, ; Tran Tuoc,
| |
Collapse
|
6
|
Casella AM, Colantuoni C, Ament SA. Identifying enhancer properties associated with genetic risk for complex traits using regulome-wide association studies. PLoS Comput Biol 2022; 18:e1010430. [PMID: 36070311 PMCID: PMC9484640 DOI: 10.1371/journal.pcbi.1010430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/19/2022] [Accepted: 07/23/2022] [Indexed: 11/17/2022] Open
Abstract
Genetic risk for complex traits is strongly enriched in non-coding genomic regions involved in gene regulation, especially enhancers. However, we lack adequate tools to connect the characteristics of these disruptions to genetic risk. Here, we propose RWAS (Regulome Wide Association Study), a new application of the MAGMA software package to identify the characteristics of enhancers that contribute to genetic risk for disease. RWAS involves three steps: (i) assign genotyped SNPs to cell type- or tissue-specific regulatory features (e.g., enhancers); (ii) test associations of each regulatory feature with a trait of interest for which genome-wide association study (GWAS) summary statistics are available; (iii) perform enhancer-set enrichment analyses to identify quantitative or categorical features of regulatory elements that are associated with the trait. These steps are implemented as a novel application of MAGMA, a tool originally developed for gene-based GWAS analyses. Applying RWAS to interrogate genetic risk for schizophrenia, we discovered a class of risk-associated AT-rich enhancers that are active in the developing brain and harbor binding sites for multiple transcription factors with neurodevelopmental functions. RWAS utilizes open-source software, and we provide a comprehensive collection of annotations for tissue-specific enhancer locations and features, including their evolutionary conservation, AT content, and co-localization with binding sites for hundreds of TFs. RWAS will enable researchers to characterize properties of regulatory elements associated with any trait of interest for which GWAS summary statistics are available.
Collapse
Affiliation(s)
- Alex M. Casella
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Medical Scientist Training Program, UMSOM, Baltimore, Maryland, United States of America
| | - Carlo Colantuoni
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Seth A. Ament
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
7
|
Leung RF, George AM, Roussel EM, Faux MC, Wigle JT, Eisenstat DD. Genetic Regulation of Vertebrate Forebrain Development by Homeobox Genes. Front Neurosci 2022; 16:843794. [PMID: 35546872 PMCID: PMC9081933 DOI: 10.3389/fnins.2022.843794] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/14/2022] [Indexed: 01/19/2023] Open
Abstract
Forebrain development in vertebrates is regulated by transcription factors encoded by homeobox, bHLH and forkhead gene families throughout the progressive and overlapping stages of neural induction and patterning, regional specification and generation of neurons and glia from central nervous system (CNS) progenitor cells. Moreover, cell fate decisions, differentiation and migration of these committed CNS progenitors are controlled by the gene regulatory networks that are regulated by various homeodomain-containing transcription factors, including but not limited to those of the Pax (paired), Nkx, Otx (orthodenticle), Gsx/Gsh (genetic screened), and Dlx (distal-less) homeobox gene families. This comprehensive review outlines the integral role of key homeobox transcription factors and their target genes on forebrain development, focused primarily on the telencephalon. Furthermore, links of these transcription factors to human diseases, such as neurodevelopmental disorders and brain tumors are provided.
Collapse
Affiliation(s)
- Ryan F. Leung
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Ankita M. George
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
| | - Enola M. Roussel
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
| | - Maree C. Faux
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Jeffrey T. Wigle
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - David D. Eisenstat
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
8
|
O’Brien BS, Mokry RL, Schumacher ML, Pulakanti K, Rao S, Terhune SS, Ebert AD. Downregulation of neurodevelopmental gene expression in iPSC-derived cerebral organoids upon infection by human cytomegalovirus. iScience 2022; 25:104098. [PMID: 35391828 PMCID: PMC8980761 DOI: 10.1016/j.isci.2022.104098] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/18/2022] [Accepted: 03/15/2022] [Indexed: 11/25/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a betaherpesvirus that can cause severe birth defects including vision and hearing loss, microcephaly, and seizures. Currently, no approved treatment options exist for in utero infections. Here, we aimed to determine the impact of HCMV infection on the transcriptome of developing neurons in an organoid model system. Cell populations isolated from organoids based on a marker for infection and transcriptomes were defined. We uncovered downregulation in key cortical, neurodevelopmental, and functional gene pathways which occurred regardless of the degree of infection. To test the contributions of specific HCMV immediate early proteins known to disrupt neural differentiation, we infected NPCs using a recombinant virus harboring a destabilization domain. Despite suppressing their expression, HCMV-mediated transcriptional downregulation still occurred. Together, our studies have revealed that HCMV infection causes a profound downregulation of neurodevelopmental genes and suggest a role for other viral factors in this process.
Collapse
Affiliation(s)
- Benjamin S. O’Brien
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Rebekah L. Mokry
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Megan L. Schumacher
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | - Sridhar Rao
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Blood Research Institute, Versiti, Milwaukee, WI 53226, USA
| | - Scott S. Terhune
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Allison D. Ebert
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
9
|
Jimenez-García MP, Lucena-Cacace A, Otero-Albiol D, Carnero A. Regulation of sarcomagenesis by the empty spiracles homeobox genes EMX1 and EMX2. Cell Death Dis 2021; 12:515. [PMID: 34016958 PMCID: PMC8137939 DOI: 10.1038/s41419-021-03801-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/03/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023]
Abstract
The EMX (Empty Spiracles Homeobox) genes EMX1 and EMX2 are two homeodomain gene members of the EMX family of transcription factors involved in the regulation of various biological processes, such as cell proliferation, migration, and differentiation, during brain development and neural crest migration. They play a role in the specification of positional identity, the proliferation of neural stem cells, and the differentiation of certain neuronal cell phenotypes. In general, they act as transcription factors in early embryogenesis and neuroembryogenesis from metazoans to higher vertebrates. The EMX1 and EMX2's potential as tumor suppressor genes has been suggested in some cancers. Our work showed that EMX1/EMX2 act as tumor suppressors in sarcomas by repressing the activity of stem cell regulatory genes (OCT4, SOX2, KLF4, MYC, NANOG, NES, and PROM1). EMX protein downregulation, therefore, induced the malignance and stemness of cells both in vitro and in vivo. In murine knockout (KO) models lacking Emx genes, 3MC-induced sarcomas were more aggressive and infiltrative, had a greater capacity for tumor self-renewal, and had higher stem cell gene expression and nestin expression than those in wild-type models. These results showing that EMX genes acted as stemness regulators were reproduced in different subtypes of sarcoma. Therefore, it is possible that the EMX genes could have a generalized behavior regulating proliferation of neural crest-derived progenitors. Together, these results indicate that the EMX1 and EMX2 genes negatively regulate these tumor-altering populations or cancer stem cells, acting as tumor suppressors in sarcoma.
Collapse
Affiliation(s)
- Manuel Pedro Jimenez-García
- grid.411109.c0000 0000 9542 1158Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain ,CIBER de Cancer, IS Carlos III, Madrid, Spain
| | - Antonio Lucena-Cacace
- grid.258799.80000 0004 0372 2033Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Daniel Otero-Albiol
- grid.411109.c0000 0000 9542 1158Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain ,CIBER de Cancer, IS Carlos III, Madrid, Spain
| | - Amancio Carnero
- grid.411109.c0000 0000 9542 1158Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain ,CIBER de Cancer, IS Carlos III, Madrid, Spain
| |
Collapse
|
10
|
Garcia-Calero E, López-González L, Martínez-de-la-Torre M, Fan CM, Puelles L. Sim1-expressing cells illuminate the origin and course of migration of the nucleus of the lateral olfactory tract in the mouse amygdala. Brain Struct Funct 2021; 226:519-562. [PMID: 33492553 PMCID: PMC7910384 DOI: 10.1007/s00429-020-02197-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
We focus this report on the nucleus of the lateral olfactory tract (NLOT), a superficial amygdalar nucleus receiving olfactory input. Mixed with its Tbr1-expressing layer 2 pyramidal cell population (NLOT2), there are Sim1-expressing cells whose embryonic origin and mode of arrival remain unclear. We examined this population with Sim1-ISH and a Sim1-tauLacZ mouse line. An alar hypothalamic origin is apparent at the paraventricular area, which expresses Sim1 precociously. This progenitor area shows at E10.5 a Sim1-expressing dorsal prolongation that crosses the telencephalic stalk and follows the terminal sulcus, reaching the caudomedial end of the pallial amygdala. We conceive this Sim1-expressing hypothalamo-amygdalar corridor (HyA) as an evaginated part of the hypothalamic paraventricular area, which participates in the production of Sim1-expressing cells. From E13.5 onwards, Sim1-expressing cells migrated via the HyA penetrate the posterior pallial amygdalar radial unit and associate therein to the incipient Tbr1-expressing migration stream which swings medially past the amygdalar anterior basolateral nucleus (E15.5), crosses the pallio-subpallial boundary (E16.5), and forms the NLOT2 within the anterior amygdala by E17.5. We conclude that the Tbr1-expressing NLOT2 cells arise strictly within the posterior pallial amygdalar unit, involving a variety of required gene functions we discuss. Our results are consistent with the experimental data on NLOT2 origin reported by Remedios et al. (Nat Neurosci 10:1141–1150, 2007), but we disagree on their implication in this process of the dorsal pallium, observed to be distant from the amygdala.
Collapse
Affiliation(s)
- Elena Garcia-Calero
- University of Murcia, IMIB-Arrixaca Institute of Biomedical Research, 30120, El Palmar, Murcia, Spain.
| | - Lara López-González
- University of Murcia, IMIB-Arrixaca Institute of Biomedical Research, 30120, El Palmar, Murcia, Spain
| | | | - Chen-Ming Fan
- Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD, 21218, USA
| | - Luis Puelles
- University of Murcia, IMIB-Arrixaca Institute of Biomedical Research, 30120, El Palmar, Murcia, Spain
| |
Collapse
|
11
|
Liu YN, Lu SY, Yao J. Application of induced pluripotent stem cells to understand neurobiological basis of bipolar disorder and schizophrenia. Psychiatry Clin Neurosci 2017; 71:579-599. [PMID: 28393474 DOI: 10.1111/pcn.12528] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/04/2017] [Indexed: 12/12/2022]
Abstract
The etiology of neuropsychiatric disorders, such as schizophrenia and bipolar disorder, usually involves complex combinations of genetic defects/variations and environmental impacts, which hindered, for a long time, research efforts based on animal models and patients' non-neuronal cells or post-mortem tissues. However, the development of human induced pluripotent stem cell (iPSC) technology by the Yamanaka group was immediately applied to establish cell research models for neuronal disorders. Since then, techniques to achieve highly efficient differentiation of different types of neural cells following iPSC modeling have made much progress. The fast-growing iPSC and neural differentiation techniques have brought valuable insights into the pathology and neurobiology of neuropsychiatric disorders. In this article, we first review the application of iPSC technology in modeling neuronal disorders and discuss the progress in the accompanying neural differentiation. Then, we summarize the progress in iPSC-based research that has been accomplished so far regarding schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Yao-Nan Liu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Si-Yao Lu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Jun Yao
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| |
Collapse
|
12
|
Aykut B, Ochs M, Radhakrishnan P, Brill A, Höcker H, Schwarz S, Weissinger D, Kehm R, Kulu Y, Ulrich A, Schneider M. EMX2 gene expression predicts liver metastasis and survival in colorectal cancer. BMC Cancer 2017; 17:555. [PMID: 28830374 PMCID: PMC5568393 DOI: 10.1186/s12885-017-3556-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/15/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The Empty Spiracles Homeobox (EMX-) 2 gene has been associated with regulation of growth and differentiation in neuronal development. While recent studies provide evidence that EMX2 regulates tumorigenesis of various solid tumors, its role in colorectal cancer remains unknown. We aimed to assess the prognostic significance of EMX2 expression in stage III colorectal adenocarcinoma. METHODS Expression levels of EMX2 in human colorectal cancer and adjacent mucosa were assessed by qRT-PCR technology, and results were correlated with clinical and survival data. siRNA-mediated knockdown and adenoviral delivery-mediated overexpression of EMX2 were performed in order to investigate its effects on the migration of colorectal cancer cells in vitro. RESULTS Compared to corresponding healthy mucosa, colorectal tumor samples had decreased EMX2 expression levels. Furthermore, EMX2 down-regulation in colorectal cancer tissue was associated with distant metastasis (M1) and impaired overall patient survival. In vitro knockdown of EMX2 resulted in increased tumor cell migration. Conversely, overexpression of EMX2 led to an inhibition of tumor cell migration. CONCLUSIONS EMX2 is frequently down-regulated in human colorectal cancer, and down-regulation of EMX2 is a prognostic marker for disease-free and overall survival. EMX2 might thus represent a promising therapeutic target in colorectal cancer.
Collapse
Affiliation(s)
- Berk Aykut
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Markus Ochs
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Praveen Radhakrishnan
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Adrian Brill
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Hermine Höcker
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Sandra Schwarz
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Daniel Weissinger
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Roland Kehm
- Department of Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Yakup Kulu
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Alexis Ulrich
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany.
| |
Collapse
|
13
|
Kobeissy FH, Hansen K, Neumann M, Fu S, Jin K, Liu J. Deciphering the Role of Emx1 in Neurogenesis: A Neuroproteomics Approach. Front Mol Neurosci 2016; 9:98. [PMID: 27799894 PMCID: PMC5065984 DOI: 10.3389/fnmol.2016.00098] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/26/2016] [Indexed: 12/18/2022] Open
Abstract
Emx1 has long been implicated in embryonic brain development. Previously we found that mice null of Emx1 gene had smaller dentate gyri and reduced neurogenesis, although the molecular mechanisms underlying this defect was not well understood. To decipher the role of Emx1 gene in neural regeneration and the timing of its involvement, we determine the frequency of neural stem cells (NSCs) in embryonic and adult forebrains of Emx1 wild type (WT) and knock out (KO) mice in the neurosphere assay. Emx1 gene deletion reduced the frequency and self-renewal capacity of NSCs of the embryonic brain but did not affect neuronal or glial differentiation. Emx1 KO NSCs also exhibited a reduced migratory capacity in response to serum or vascular endothelial growth factor (VEGF) in the Boyden chamber migration assay compared to their WT counterparts. A thorough comparison between NSC lysates from Emx1 WT and KO mice utilizing 2D-PAGE coupled with tandem mass spectrometry revealed 38 proteins differentially expressed between genotypes, including the F-actin depolymerization factor Cofilin. A global systems biology and cluster analysis identified several potential mechanisms and cellular pathways implicated in altered neurogenesis, all involving Cofilin1. Protein interaction network maps with functional enrichment analysis further indicated that the differentially expressed proteins participated in neural-specific functions including brain development, axonal guidance, synaptic transmission, neurogenesis, and hippocampal morphology, with VEGF as the upstream regulator intertwined with Cofilin1 and Emx1. Functional validation analysis indicated that apart from the overall reduced level of phosphorylated Cofilin1 (p-Cofilin1) in the Emx1 KO NSCs compared to WT NSCs as demonstrated in the western blot analysis, VEGF was able to induce more Cofilin1 phosphorylation and FLK expression only in the latter. Our results suggest that a defect in Cofilin1 phosphorylation induced by VEGF or other growth factors might contribute to the reduced neurogenesis in the Emx1 null mice during brain development.
Collapse
Affiliation(s)
- Firas H Kobeissy
- Department of Psychiatry, Center for Neuroproteomics and Biomarkers Research, University of Florida Gainesville, FL, USA
| | - Katharina Hansen
- Department of Neurological Surgery, University of California, San FranciscoSan Francisco, CA, USA; San Francisco VA Medical CenterSan Francisco, CA, USA
| | - Melanie Neumann
- Department of Neurological Surgery, University of California, San FranciscoSan Francisco, CA, USA; San Francisco VA Medical CenterSan Francisco, CA, USA
| | - Shuping Fu
- Department of Neurological Surgery, University of California, San FranciscoSan Francisco, CA, USA; San Francisco VA Medical CenterSan Francisco, CA, USA; Key Laboratory of Acupuncture and Medicine Research of Minister of Education, Nanjing University of Chinese MedicineNanjing, China
| | - Kulin Jin
- Pharmacology & Neuroscience, University of North Texas Health Science Center Fort Worth, TX, USA
| | - Jialing Liu
- Department of Neurological Surgery, University of California, San FranciscoSan Francisco, CA, USA; San Francisco VA Medical CenterSan Francisco, CA, USA
| |
Collapse
|
14
|
Lim JWC, Donahoo ALS, Bunt J, Edwards TJ, Fenlon LR, Liu Y, Zhou J, Moldrich RX, Piper M, Gobius I, Bailey TL, Wray NR, Kessaris N, Poo MM, Rubenstein JLR, Richards LJ. EMX1 regulates NRP1-mediated wiring of the mouse anterior cingulate cortex. Development 2016; 142:3746-57. [PMID: 26534986 DOI: 10.1242/dev.119909] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Transcription factors act during cortical development as master regulatory genes that specify cortical arealization and cellular identities. Although numerous transcription factors have been identified as being crucial for cortical development, little is known about their downstream targets and how they mediate the emergence of specific neuronal connections via selective axon guidance. The EMX transcription factors are essential for early patterning of the cerebral cortex, but whether EMX1 mediates interhemispheric connectivity by controlling corpus callosum formation remains unclear. Here, we demonstrate that in mice on the C57Bl/6 background EMX1 plays an essential role in the midline crossing of an axonal subpopulation of the corpus callosum derived from the anterior cingulate cortex. In the absence of EMX1, cingulate axons display reduced expression of the axon guidance receptor NRP1 and form aberrant axonal bundles within the rostral corpus callosum. EMX1 also functions as a transcriptional activator of Nrp1 expression in vitro, and overexpression of this protein in Emx1 knockout mice rescues the midline-crossing phenotype. These findings reveal a novel role for the EMX1 transcription factor in establishing cortical connectivity by regulating the interhemispheric wiring of a subpopulation of neurons within the mouse anterior cingulate cortex.
Collapse
Affiliation(s)
- Jonathan W C Lim
- The University of Queensland, Queensland Brain Institute, Brisbane 4072, Australia
| | - Amber-Lee S Donahoo
- The University of Queensland, Queensland Brain Institute, Brisbane 4072, Australia
| | - Jens Bunt
- The University of Queensland, Queensland Brain Institute, Brisbane 4072, Australia
| | - Timothy J Edwards
- The University of Queensland, Queensland Brain Institute, Brisbane 4072, Australia
| | - Laura R Fenlon
- The University of Queensland, Queensland Brain Institute, Brisbane 4072, Australia
| | - Ying Liu
- The University of Queensland, Queensland Brain Institute, Brisbane 4072, Australia
| | - Jing Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Randal X Moldrich
- The University of Queensland, Queensland Brain Institute, Brisbane 4072, Australia
| | - Michael Piper
- The University of Queensland, Queensland Brain Institute, Brisbane 4072, Australia The University of Queensland, The School of Biomedical Sciences, Brisbane 4072, Australia
| | - Ilan Gobius
- The University of Queensland, Queensland Brain Institute, Brisbane 4072, Australia
| | - Timothy L Bailey
- The University of Queensland, Institute for Molecular Bioscience, Brisbane 4072, Australia
| | - Naomi R Wray
- The University of Queensland, Queensland Brain Institute, Brisbane 4072, Australia
| | - Nicoletta Kessaris
- Wolfson Institute for Biomedical Research and Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Mu-Ming Poo
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - John L R Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, CA 94143, USA Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Linda J Richards
- The University of Queensland, Queensland Brain Institute, Brisbane 4072, Australia The University of Queensland, The School of Biomedical Sciences, Brisbane 4072, Australia
| |
Collapse
|
15
|
Yu DX, Di Giorgio FP, Yao J, Marchetto MC, Brennand K, Wright R, Mei A, McHenry L, Lisuk D, Grasmick JM, Silberman P, Silberman G, Jappelli R, Gage FH. Modeling hippocampal neurogenesis using human pluripotent stem cells. Stem Cell Reports 2014; 2:295-310. [PMID: 24672753 PMCID: PMC3964286 DOI: 10.1016/j.stemcr.2014.01.009] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 01/17/2014] [Accepted: 01/20/2014] [Indexed: 02/07/2023] Open
Abstract
The availability of human pluripotent stem cells (hPSCs) offers the opportunity to generate lineage-specific cells to investigate mechanisms of human diseases specific to brain regions. Here, we report a differentiation paradigm for hPSCs that enriches for hippocampal dentate gyrus (DG) granule neurons. This differentiation paradigm recapitulates the expression patterns of key developmental genes during hippocampal neurogenesis, exhibits characteristics of neuronal network maturation, and produces PROX1+ neurons that functionally integrate into the DG. Because hippocampal neurogenesis has been implicated in schizophrenia (SCZD), we applied our protocol to SCZD patient-derived human induced pluripotent stem cells (hiPSCs). We found deficits in the generation of DG granule neurons from SCZD hiPSC-derived hippocampal NPCs with lowered levels of NEUROD1, PROX1, and TBR1, reduced neuronal activity, and reduced levels of spontaneous neurotransmitter release. Our approach offers important insights into the neurodevelopmental aspects of SCZD and may be a promising tool for drug screening and personalized medicine. Hippocampal neurogenesis is modeled using human pluripotent stem cells Differentiated DG neurons are detected using lentiviral PROX1-GFP reporter construct Differentiated granule neurons functionally integrate into the dentate gyrus in vivo SCZD hiPSC-derived hippocampal NPCs present deficits in hippocampal neurogenesis
Collapse
Affiliation(s)
- Diana Xuan Yu
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Francesco Paolo Di Giorgio
- Neuroscience Discovery, Novartis Pharma AG, Novartis Institute for Biomedical Research, Postfach, Basel CH-4002, Switzerland
| | - Jun Yao
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Maria Carolina Marchetto
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Kristen Brennand
- Department of Neuroscience/Psychiatry, Mount Sinai School of Medicine, 1425 Madison Ave, New York, NY 10059, USA
| | - Rebecca Wright
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Arianna Mei
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Lauren McHenry
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - David Lisuk
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jaeson Michael Grasmick
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Pedro Silberman
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Giovanna Silberman
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Roberto Jappelli
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Fred H Gage
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
16
|
Neural crest-derived mesenchymal cells require Wnt signaling for their development and drive invagination of the telencephalic midline. PLoS One 2014; 9:e86025. [PMID: 24516524 PMCID: PMC3916303 DOI: 10.1371/journal.pone.0086025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 12/08/2013] [Indexed: 11/19/2022] Open
Abstract
Embryonic neural crest cells contribute to the development of the craniofacial mesenchyme, forebrain meninges and perivascular cells. In this study, we investigated the function of ß-catenin signaling in neural crest cells abutting the dorsal forebrain during development. In the absence of ß-catenin signaling, neural crest cells failed to expand in the interhemispheric region and produced ectopic smooth muscle cells instead of generating dermal and calvarial mesenchyme. In contrast, constitutive expression of stabilized ß-catenin in neural crest cells increased the number of mesenchymal lineage precursors suggesting that ß-catenin signaling is necessary for the expansion of neural crest-derived mesenchymal cells. Interestingly, the loss of neural crest-derived mesenchymal stem cells (MSCs) leads to failure of telencephalic midline invagination and causes ventricular system defects. This study shows that ß-catenin signaling is required for the switch of neural crest cells to MSCs and mediates the expansion of MSCs to drive the formation of mesenchymal structures of the head. Furthermore, loss of these structures causes striking defects in forebrain morphogenesis.
Collapse
|
17
|
Li G, Pleasure SJ. The development of hippocampal cellular assemblies. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2013; 3:165-77. [PMID: 24719288 DOI: 10.1002/wdev.127] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 08/19/2013] [Accepted: 08/29/2013] [Indexed: 11/10/2022]
Abstract
The proper assembly of a cohort of distinct cell types is a prerequisite for building a functional hippocampus. In this review, we describe the major molecular events of the developmental program leading to the cellular construction of the hippocampus. Data from rodent studies are used here to elaborate on our understanding of these processes.
Collapse
Affiliation(s)
- Guangnan Li
- Department of Neurology, Programs in Neuroscience and Developmental Biology, Institute for Regenerative Medicine, University of California, San Francisco, CA, USA
| | | |
Collapse
|
18
|
Nair IS, Rodrigues V, Reichert H, VijayRaghavan K. The zinc finger transcription factor Jing is required for dendrite/axonal targeting in Drosophila antennal lobe development. Dev Biol 2013; 381:17-27. [PMID: 23810656 DOI: 10.1016/j.ydbio.2013.06.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 06/11/2013] [Accepted: 06/13/2013] [Indexed: 12/22/2022]
Abstract
An important role in olfactory system development is played by transcription factors which act in sensory neurons or in their interneuron targets as cell autonomous regulators of downstream effectors such as cell surface molecules and signalling systems that control neuronal identity and process guidance. Some of these transcriptional regulators have been characterized in detail in the development of the neural elements that innervate the antennal lobe in the olfactory system of Drosophila. Here we identify the zinc finger transcription factor Jing as a cell autonomously acting transcriptional regulator that is required both for dendrite targeting of projection neurons and local interneurons as well as for axonal targeting of olfactory sensory neurons in Drosophila olfactory system development. Immunocytochemical analysis shows that Jing is widely expressed in the neural cells during postembryonic development. MARCM-based clonal analysis of projection neuron and local interneuron lineages reveals a requirement for Jing in dendrite targeting; Jing loss-of-function results in loss of innervation in specific glomeruli, ectopic innervation of inappropriate glomeruli, aberrant profuse dendrite arborisation throughout the antennal lobe, as well as mistargeting to other parts of the CNS. ey-FLP-based MARCM analysis of olfactory sensory neurons reveals an additional requirement for Jing in axonal targeting; mutational inactivation of Jing causes specific mistargeting of some olfactory sensory neuron axons to the DA1 glomerulus, reduction of targeting to other glomeruli, as well as aberrant stalling of axons in the antennal lobe. Taken together, these findings indicate that Jing acts as a key transcriptional control element in wiring of the circuitry in the developing olfactory sensory system in Drosophila.
Collapse
Affiliation(s)
- Indu S Nair
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | | | | | | |
Collapse
|
19
|
Hébert JM. Only scratching the cell surface: extracellular signals in cerebrum development. Curr Opin Genet Dev 2013; 23:470-4. [PMID: 23669550 DOI: 10.1016/j.gde.2013.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 04/03/2013] [Indexed: 01/01/2023]
Abstract
Numerous roles have been identified for extracellular signals such as Fibroblast Growth Factors (FGFs), Transforming Growth Factor-βs (TGFβs), Wingless-Int proteins (WNTs), and Sonic Hedgehog (SHH) in assigning fates to cells during development of the cerebrum. However, several fundamental questions remain largely unexplored. First, how does the same extracellular signal instruct precursor cells in different locations or at different stages to adopt distinct fates? And second, how does a precursor cell integrate multiple signals to adopt a specific fate? Answers to these questions require knowing the mechanisms that underlie each cell type's competence to respond to certain extracellular signals. This brief review provides illustrative examples of potential mechanisms that begin to bridge the gap between cell surface and cell fate during cerebrum development.
Collapse
Affiliation(s)
- Jean M Hébert
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
20
|
Sen S, Reichert H, VijayRaghavan K. Conserved roles of ems/Emx and otd/Otx genes in olfactory and visual system development in Drosophila and mouse. Open Biol 2013; 3:120177. [PMID: 23635521 PMCID: PMC3866872 DOI: 10.1098/rsob.120177] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The regional specialization of brain function has been well documented in the mouse and fruitfly. The expression of regulatory factors in specific regions of the brain during development suggests that they function to establish or maintain this specialization. Here, we focus on two such factors—the Drosophila cephalic gap genes empty spiracles (ems) and orthodenticle (otd), and their vertebrate homologues Emx1/2 and Otx1/2—and review novel insight into their multiple crucial roles in the formation of complex sensory systems. While the early requirement of these genes in specification of the neuroectoderm has been discussed previously, here we consider more recent studies that elucidate the later functions of these genes in sensory system formation in vertebrates and invertebrates. These new studies show that the ems and Emx genes in both flies and mice are essential for the development of the peripheral and central neurons of their respective olfactory systems. Moreover, they demonstrate that the otd and Otx genes in both flies and mice are essential for the development of the peripheral and central neurons of their respective visual systems. Based on these recent experimental findings, we discuss the possibility that the olfactory and visual systems of flies and mice share a common evolutionary origin, in that the conserved visual and olfactory circuit elements derive from conserved domains of otd/Otx and ems/Emx action in the urbilaterian ancestor.
Collapse
Affiliation(s)
- Sonia Sen
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, UAS-GKVK Campus, Bellary Road, Bangalore 560065, India
| | | | | |
Collapse
|
21
|
Beccari L, Marco-Ferreres R, Bovolenta P. The logic of gene regulatory networks in early vertebrate forebrain patterning. Mech Dev 2012; 130:95-111. [PMID: 23111324 DOI: 10.1016/j.mod.2012.10.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 10/09/2012] [Indexed: 01/19/2023]
Abstract
The vertebrate forebrain or prosencephalon is patterned at the beginning of neurulation into four major domains: the telencephalic, hypothalamic, retinal and diencephalic anlagen. These domains will then give rise to the majority of the brain structures involved in sensory integration and the control of higher intellectual and homeostatic functions. Understanding how forebrain pattering arises has thus attracted the interest of developmental neurobiologists for decades. As a result, most of its regulators have been identified and their hierarchical relationship is now the object of active investigation. Here, we summarize the main morphogenetic pathways and transcription factors involved in forebrain specification and propose the backbone of a possible gene regulatory network (GRN) governing its specification, taking advantage of the GRN principles elaborated by pioneer studies in simpler organisms. We will also discuss this GRN and its operational logic in the context of the remarkable morphological and functional diversification that the forebrain has undergone during evolution.
Collapse
Affiliation(s)
- Leonardo Beccari
- Centro de Biología Molecular "Severo Ochoa", CSIC-UAM, c/Nicolas Cabrera, 1, Madrid 28049, Spain
| | | | | |
Collapse
|
22
|
Konno D, Iwashita M, Satoh Y, Momiyama A, Abe T, Kiyonari H, Matsuzaki F. The mammalian DM domain transcription factor Dmrta2 is required for early embryonic development of the cerebral cortex. PLoS One 2012; 7:e46577. [PMID: 23056351 PMCID: PMC3462758 DOI: 10.1371/journal.pone.0046577] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 08/31/2012] [Indexed: 01/08/2023] Open
Abstract
Development of the mammalian telencephalon is precisely organized by a combination of extracellular signaling events derived from signaling centers and transcription factor networks. Using gene expression profiling of the developing mouse dorsal telencephalon, we found that the DM domain transcription factor Dmrta2 (doublesex and mab-3-related transcription factor a2) is involved in the development of the dorsal telencephalon. Consistent with its medial-high/lateral-low expression pattern in the dorsal telencephalon, Dmrta2 null mutants demonstrated a dramatic reduction in medial cortical structures such as the cortical hem and the choroid plexus, and a complete loss of the hippocampus. In this mutant, the dorsal telencephalon also showed a remarkable size reduction, in addition to abnormal cell cycle kinetics and defective patterning. In contrast, a conditional Dmrta2 deletion in the telencephalon, which was accomplished after entry into the neurogenic phase, resulted in only a slight reduction in telencephalon size and normal patterning. We also found that Dmrta2 expression was decreased by a dominant-negative Tcf and was increased by a stabilized β-catenin form. These data suggest that Dmrta2 plays pivotal roles in the early development of the telencephalon via the formation of the cortical hem, a source of Wnts, and also in the maintenance of neural progenitors as a downstream of the Wnt pathway.
Collapse
Affiliation(s)
- Daijiro Konno
- Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan
- * E-mail: (DK); (FM)
| | - Misato Iwashita
- Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan
| | - Yoshiaki Satoh
- Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan
| | - Asuka Momiyama
- Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan
| | - Fumio Matsuzaki
- Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan
- * E-mail: (DK); (FM)
| |
Collapse
|
23
|
Saulnier A, Keruzore M, De Clercq S, Bar I, Moers V, Magnani D, Walcher T, Filippis C, Kricha S, Parlier D, Viviani L, Matson CK, Nakagawa Y, Theil T, Götz M, Mallamaci A, Marine JC, Zarkower D, Bellefroid EJ. The doublesex homolog Dmrt5 is required for the development of the caudomedial cerebral cortex in mammals. ACTA ACUST UNITED AC 2012; 23:2552-67. [PMID: 22923088 DOI: 10.1093/cercor/bhs234] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Regional patterning of the cerebral cortex is initiated by morphogens secreted by patterning centers that establish graded expression of transcription factors within cortical progenitors. Here, we show that Dmrt5 is expressed in cortical progenitors in a high-caudomedial to low-rostrolateral gradient. In its absence, the cortex is strongly reduced and exhibits severe abnormalities, including agenesis of the hippocampus and choroid plexus and defects in commissural and thalamocortical tracts. Loss of Dmrt5 results in decreased Wnt and Bmp in one of the major telencephalic patterning centers, the dorsomedial telencephalon, and in a reduction of Cajal-Retzius cells. Expression of the dorsal midline signaling center-dependent transcription factors is downregulated, including Emx2, which promotes caudomedial fates, while the rostral determinant Pax6, which is inhibited by midline signals, is upregulated. Consistently, Dmrt5(-/-) brains exhibit patterning defects with a dramatic reduction of the caudomedial cortex. Dmrt5 is increased upon the activation of Wnt signaling and downregulated in Gli3(xt/xt) mutants. We conclude that Dmrt5 is a novel Wnt-dependent transcription factor required for early cortical development and that it may regulate initial cortical patterning by promoting dorsal midline signaling center formation and thereby helping to establish the graded expression of the other transcription regulators of cortical identity.
Collapse
Affiliation(s)
- Amandine Saulnier
- Laboratoire de Génétique du Développement, Université Libre de Bruxelles, Institut de Biologie et de Médecine Moléculaires (IBMM), Gosselies, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Gobius I, Richards L. Creating Connections in the Developing Brain: Mechanisms Regulating Corpus Callosum Development. ACTA ACUST UNITED AC 2011. [DOI: 10.4199/c00038ed1v01y201107dbr002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Ilan Gobius
- Queensland Brain Institute, University of Queensland, Australia
| | - Linda Richards
- Queensland Brain Institute, University of Queensland, Australia
| |
Collapse
|
25
|
Rubenstein JLR. Annual Research Review: Development of the cerebral cortex: implications for neurodevelopmental disorders. J Child Psychol Psychiatry 2011; 52:339-55. [PMID: 20735793 PMCID: PMC3429600 DOI: 10.1111/j.1469-7610.2010.02307.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The cerebral cortex has a central role in cognitive and emotional processing. As such, understanding the mechanisms that govern its development and function will be central to understanding the bases of severe neuropsychiatric disorders, particularly those that first appear in childhood. In this review, I highlight recent progress in elucidating genetic, molecular and cellular mechanisms that control cortical development. I discuss basic aspects of cortical developmental anatomy, and mechanisms that regulate cortical size and area formation, with an emphasis on the roles of fibroblast growth factor (Fgf) signaling and specific transcription factors. I then examine how specific types of cortical excitatory projection neurons are generated, and how their axons grow along stereotyped pathways to their targets. Next, I address how cortical inhibitory (GABAergic) neurons are generated, and point out the role of these cells in controlling cortical plasticity and critical periods. The paper concludes with an examination of four possible developmental mechanisms that could contribute to some forms of neurodevelopmental disorders, such as autism.
Collapse
Affiliation(s)
- John L R Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Center for Neurobiology and Psychiatry, Department of Psychiatry, University of California at San Francisco, CA 94158-2324, USA.
| |
Collapse
|
26
|
Sen S, Hartmann B, Reichert H, Rodrigues V. Expression and function of the empty spiracles gene in olfactory sense organ development of Drosophila melanogaster. Development 2010; 137:3687-95. [PMID: 20940227 DOI: 10.1242/dev.052407] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Drosophila, the cephalic gap gene empty spiracles plays key roles in embryonic patterning of the peripheral and central nervous system. During postembryonic development, it is involved in the development of central olfactory circuitry in the antennal lobe of the adult. However, its possible role in the postembryonic development of peripheral olfactory sense organs has not been investigated. Here, we show that empty spiracles acts in a subset of precursors that generate the olfactory sense organs of the adult antenna. All empty spiracles-expressing precursor cells co-express the proneural gene amos and the early patterning gene lozenge. Moreover, the expression of empty spiracles in these precursor cells is dependent on both amos and lozenge. Functional analysis reveals two distinct roles of empty spiracles in the development of olfactory sense organs. Genetic interaction studies in a lozenge-sensitized background uncover a requirement of empty spiracles in the formation of trichoid and basiconic olfactory sensilla. MARCM-based clonal mutant analysis reveals an additional role during axonal targeting of olfactory sensory neurons to glomeruli within the antennal lobe. Our findings on empty spiracles action in olfactory sense organ development complement previous studies that demonstrate its requirement in olfactory interneurons and, taken together with studies on the murine homologs of empty spiracles, suggest that conserved molecular genetic programs might be responsible for the formation of both peripheral and central olfactory circuitry in insects and mammals.
Collapse
Affiliation(s)
- Sonia Sen
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore 560065, India
| | | | | | | |
Collapse
|
27
|
Sakurai Y, Kurokawa D, Kiyonari H, Kajikawa E, Suda Y, Aizawa S. Otx2 and Otx1 protect diencephalon and mesencephalon from caudalization into metencephalon during early brain regionalization. Dev Biol 2010; 347:392-403. [PMID: 20816794 DOI: 10.1016/j.ydbio.2010.08.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 08/24/2010] [Accepted: 08/25/2010] [Indexed: 10/19/2022]
Abstract
Otx2 is expressed in each step and site of head development. To dissect each Otx2 function we have identified a series of Otx2 enhancers. The Otx2 expression in the anterior neuroectoderm is regulated by the AN enhancer and the subsequent expression in forebrain and midbrain later than E8.5 by FM1 and FM2 enhancers; the Otx1 expression takes place at E8.0. In telencephalon later than E9.5 Otx1 continues to be expressed in the entire pallium, while the Otx2 expression is confined to the most medial pallium. To determine the Otx functions in forebrain and midbrain development we have generated mouse mutants that lack both FM1 and FM2 enhancers (DKO: Otx2(ΔFM1ΔFM2/ΔFM1ΔFM2)) and examined the TKO (Otx1(-/-)Otx2(ΔFM1ΔFM2/ΔFM1ΔFM2)) phenotype. The mutants develop normally until E8.0, but subsequently by E9.5 the diencephalon, including thalamic eminence and prethalamus, and the mesencephalon are caudalized into metencephalon consisting of isthmus and rhombomere 1; the caudalization does not extend to rhombomere 2 and more caudal rhombomeres. In rostral forebrain, neopallium, ganglionic eminences and hypothalamus in front of prethalamus develop; we propose that they become insensitive to the caudalization with the switch from the Otx2 expression under the AN enhancer to that under FM1 and FM2 enhancers. In contrast, the medial pallium requires Otx1 and Otx2 for its development later than E9.5, and the Otx2 expression in diencepalon and mesencephalon later than E9.5 is also directed by an enhancer other than FM1 and FM2 enhancers.
Collapse
Affiliation(s)
- Yusuke Sakurai
- Laboratory for Vertebrate Body Plan, Center for Developmental Biology, RIKEN Kobe, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Suda Y, Kokura K, Kimura J, Kajikawa E, Inoue F, Aizawa S. The same enhancer regulates the earliest Emx2 expression in caudal forebrain primordium, subsequent expression in dorsal telencephalon and later expression in the cortical ventricular zone. Development 2010; 137:2939-49. [PMID: 20667915 DOI: 10.1242/dev.048843] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have analyzed Emx2 enhancers to determine how Emx2 functions during forebrain development are regulated. The FB (forebrain) enhancer we identified immediately 3' downstream of the last coding exon is well conserved among tetrapods and unexpectedly directed all the Emx2 expression in forebrain: caudal forebrain primordium at E8.5, dorsal telencephalon at E9.5-E10.5 and the cortical ventricular zone after E12.5. Otx, Tcf, Smad and two unknown transcription factor binding sites were essential to all these activities. The mutant that lacked this enhancer demonstrated that Emx2 expression under the enhancer is solely responsible for diencephalon development. However, in telencephalon, the FB enhancer did not have activities in cortical hem or Cajal-Retzius cells, nor was its activity in the cortex graded. Emx2 expression was greatly reduced, but persisted in the telencephalon of the enhancer mutant, indicating that there exists another enhancer for Emx2 expression unique to mammalian telencephalon.
Collapse
Affiliation(s)
- Yoko Suda
- Laboratory for Vertebrate Body Plan, Center for Developmental Biology, RIKEN Kobe, Chuo-ku, Kobe, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Fotaki V, Larralde O, Zeng S, McLaughlin D, Nichols J, Price DJ, Theil T, Mason JO. Loss of Wnt8b has no overt effect on hippocampus development but leads to altered Wnt gene expression levels in dorsomedial telencephalon. Dev Dyn 2010; 239:284-296. [PMID: 19890917 DOI: 10.1002/dvdy.22137] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Wnt signalling proteins regulate many aspects of animal development. We have investigated the function of mouse Wnt8b during forebrain development. Wnt8b is expressed in a highly restricted pattern including the prospective hippocampus and hypothalamus. Mutant mice lacking Wnt8b are viable and healthy. The size and morphology of the hippocampus appeared normal in mutant embryos and adults, and we found no evidence of hypothalamic defects in mutants. Wnt8b is also expressed in the neurogenic region of the adult dentate gyrus, however, cell proliferation was unchanged in Wnt8b(-/-) mutants. Mutant embryos did, however, display altered levels of expression of other Wnt genes normally expressed in forebrain. The spatial expression patterns of other Wnt genes and the overall level of canonical Wnt activity were indistinguishable from wild-types. Thus, loss of Wnt8b does not give rise to an overt morphological phenotype, but does affect expression levels of other Wnts in developing forebrain.
Collapse
Affiliation(s)
- Vassiliki Fotaki
- Genes and Development Group, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Osmany Larralde
- Genes and Development Group, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Shaoju Zeng
- Genes and Development Group, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
- Key Laboratory for Cell Proliferation and Regulation Biology, Beijing Normal University, China
| | - David McLaughlin
- Genes and Development Group, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Jennifer Nichols
- Institute for Stem Cell Research, University of Edinburgh, King's Buildings, Edinburgh EH9 3JQ, UK
| | - David J Price
- Genes and Development Group, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Thomas Theil
- Genes and Development Group, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - John O Mason
- Genes and Development Group, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| |
Collapse
|
30
|
Viktorin G, Chiuchitu C, Rissler M, Varga ZM, Westerfield M. Emx3 is required for the differentiation of dorsal telencephalic neurons. Dev Dyn 2009; 238:1984-98. [PMID: 19650145 DOI: 10.1002/dvdy.22031] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
emx3 is first expressed in prospective telencephalic cells at the anterior border of the zebrafish neural plate. Knockdown of Emx3 function by morpholino reduces the expression of markers specific to dorsal telencephalon, and impairs axon tract formation. Rescue of both early and late markers requires low-level expression of emx3 at the one- or two-somite stage. Higher emx3 expression levels cause dorsal telencephalic markers to expand ventrally, which points to a possible role of emx3 in specifying dorsal telencephalon and a potential new function for Wnt/beta-catenin pathway activation. In contrast to mice, where Emx2 plays a major role in dorsal telencephalic development, knockdown of zebrafish Emx2 apparently does not affect telencephalic development. Similarly, Emx1 knockdown has little effect. Previously, emx3 was thought to be fish-specific. However, we found all three emx orthologs in Xenopus tropicalis and opossum (Monodelphis domestica) genomes, indicating that emx3 was present in an ancestral tetrapod genome.
Collapse
Affiliation(s)
- Gudrun Viktorin
- Institute of Developmental Biology, University of Freiburg, Freiburg, Germany
| | | | | | | | | |
Collapse
|
31
|
Tank EM, Dekker RG, Beauchamp K, Wilson KA, Boehmke AE, Langeland JA. Patterns and consequences of vertebrate Emx gene duplications. Evol Dev 2009; 11:343-53. [PMID: 19601968 DOI: 10.1111/j.1525-142x.2009.00341.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We have cloned and analyzed two Emx genes from the lamprey Petromyzon marinus and our findings provide insight into the patterns and developmental consequences of gene duplications during early vertebrate evolution. The Emx gene family presents an excellent case for addressing these issues as gnathostome vertebrates possess two or three Emx paralogs that are highly pleiotropic, functioning in or being expressed during the development of several vertebrate synapomorphies. Lampreys are the most primitive extant vertebrates and characterization of their development and genomic organization is critical for understanding vertebrate origins. We identified two Emx genes from P. marinus and analyzed their phylogeny and their embryological expression relative to other chordate Emx genes. Our phylogenetic analysis shows that the two lamprey Emx genes group independently from the gnathostome Emx1, Emx2, and Emx3 paralogy groups. Our expression analysis shows that the two lamprey Emx genes are expressed in distinct spatial and temporal patterns that together broadly encompass the combined sites of expression of all gnathostome Emx genes. Our data support a model wherein large-scale regulatory evolution of a single Emx gene occurred after the protochordate/vertebrate divergence, but before the vertebrate radiation. Both the lamprey and gnathostome lineages then underwent independent gene duplications followed by extensive paralog subfunctionalization. Emx subfunctionalization in the telencephalon is remarkably convergent and refines our understanding of lamprey forebrain patterning. We also identify lamprey-specific sites of expression that indicate either neofunctionalization in lampreys or sites-specific nonfunctionalization of all gnathostome Emx genes. Overall, we see only very limited correlation between Emx gene duplications and the acquisition of novel expression domains.
Collapse
Affiliation(s)
- Elizabeth M Tank
- Department of Biology, Kalamazoo College, Kalamazoo, MI 49006, USA
| | | | | | | | | | | |
Collapse
|
32
|
Okado H, Ohtaka-Maruyama C, Sugitani Y, Fukuda Y, Ishida R, Hirai S, Miwa A, Takahashi A, Aoki K, Mochida K, Suzuki O, Honda T, Nakajima K, Ogawa M, Terashima T, Matsuda J, Kawano H, Kasai M. The transcriptional repressor RP58 is crucial for cell-division patterning and neuronal survival in the developing cortex. Dev Biol 2009; 331:140-51. [PMID: 19409883 DOI: 10.1016/j.ydbio.2009.04.030] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2008] [Revised: 04/01/2009] [Accepted: 04/24/2009] [Indexed: 12/20/2022]
Abstract
The neocortex and the hippocampus comprise several specific layers containing distinct neurons that originate from progenitors at specific development times, under the control of an adequate cell-division patterning mechanism. Although many molecules are known to regulate this cell-division patterning process, its details are not well understood. Here, we show that, in the developing cerebral cortex, the RP58 transcription repressor protein was expressed both in postmitotic glutamatergic projection neurons and in their progenitor cells, but not in GABAergic interneurons. Targeted deletion of the RP58 gene led to dysplasia of the neocortex and of the hippocampus, reduction of the number of mature cortical neurons, and defects of laminar organization, which reflect abnormal neuronal migration within the cortical plate. We demonstrate an impairment of the cell-division patterning during the late embryonic stage and an enhancement of apoptosis of the postmitotic neurons in the RP58-deficient cortex. These results suggest that RP58 controls cell division of progenitor cells and regulates the survival of postmitotic cortical neurons.
Collapse
Affiliation(s)
- Haruo Okado
- Department of Molecular Physiology, Tokyo Metropolitan Institute for Neuroscience, Musashidai, Fuchu, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Primary cilia are important sites of signal transduction involved in a wide range of developmental and postnatal functions. Proteolytic processing of the transcription factor Gli3, for example, occurs in primary cilia, and defects in intraflagellar transport (IFT), which is crucial for the maintenance of primary cilia, can lead to severe developmental defects and diseases. Here we report an essential role of primary cilia in forebrain development. Uncovered by N-ethyl-N-nitrosourea-mutagenesis, cobblestone is a hypomorphic allele of the IFT gene Ift88, in which Ift88 mRNA and protein levels are reduced by 70-80%. cobblestone mutants are distinguished by subpial heterotopias in the forebrain. Mutants show both severe defects in the formation of dorsomedial telencephalic structures, such as the choroid plexus, cortical hem and hippocampus, and also a relaxation of both dorsal-ventral and rostral-caudal compartmental boundaries. These defects phenocopy many of the abnormalities seen in the Gli3 mutant forebrain, and we show that Gli3 proteolytic processing is reduced, leading to an accumulation of the full-length activator isoform. In addition, we observe an upregulation of canonical Wnt signaling in the neocortex and in the caudal forebrain. Interestingly, the ultrastructure and morphology of ventricular cilia in the cobblestone mutants remains intact. Together, these results indicate a critical role for ciliary function in the developing forebrain.
Collapse
|
34
|
Cholfin JA, Rubenstein JLR. Frontal cortex subdivision patterning is coordinately regulated by Fgf8, Fgf17, and Emx2. J Comp Neurol 2008; 509:144-55. [PMID: 18459137 DOI: 10.1002/cne.21709] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The frontal cortex (FC) plays a major role in cognition, movement and behavior. However, little is known about the genetic mechanisms that govern its development. We recently described a panel of gene expression markers that delineate neonatal FC subdivisions and identified FC regionalization defects in Fgf17-/- mutant mice (Cholfin and Rubenstein [2007] Proc. Natl. Acad. Sci. U. S. A. [in press]). In the present study, we applied this FC gene expression panel to examine regionalization phenotypes in Fgf8(neo/neo), Emx2-/-, and Emx2-/-;Fgf17-/- newborn mice. We report that Fgf8, Fgf17 and Emx2 play distinct roles in the molecular regionalization of FC subdivisions. The changes in regionalization are presaged by differential effects of rostral patterning center Fgf8 and Fgf17 signaling on the rostral cortical neuroepithelium, revealed by altered expression of Spry1, Spry2, and "rostral" transcription factors Er81, Erm, Pea3, and Sp8. We used Emx2-/-;Fgf17-/- double mutants to provide direct evidence that Emx2 and Fgf17 antagonistically regulate the expression of Erm, Pea3, and Er81 in the rostral cortical neuroepithelium and FC regionalization. We have integrated our results to propose a model for how fibroblast growth factors regulate FC patterning through regulation of regional transcription factor expression within the FC anlage.
Collapse
Affiliation(s)
- Jeremy A Cholfin
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, California 94143-2611, USA
| | | |
Collapse
|
35
|
Hébert JM, Fishell G. The genetics of early telencephalon patterning: some assembly required. Nat Rev Neurosci 2008; 9:678-85. [PMID: 19143049 PMCID: PMC2669317 DOI: 10.1038/nrn2463] [Citation(s) in RCA: 280] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The immense range of human behaviours is rooted in the complex neural networks of the cerebrum. The creation of these networks depends on the precise integration of specific neuronal subtypes that are born in different regions of the telencephalon. Here, using the mouse as a model system, we review how these proliferative zones are established. Moreover, we discuss how these regions can be traced back in development to the function of a few key genes, including those that encode fibroblast growth factors (FGFs), sonic hedgehog (SHH), bone morphogenetic proteins (BMPs), forkhead box G1 (FOXG1), paired box 6 (PAX6) and LIM homeobox protein 2 (LHX2), that pattern the early telencephalon.
Collapse
Affiliation(s)
- Jean M Hébert
- Department of Neuroscience, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, New York 10461, USA.
| | | |
Collapse
|
36
|
Imayoshi I, Shimogori T, Ohtsuka T, Kageyama R. Hes genes and neurogenin regulate non-neural versus neural fate specification in the dorsal telencephalic midline. Development 2008; 135:2531-41. [PMID: 18579678 DOI: 10.1242/dev.021535] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The choroid plexus in the brain is unique because it is a non-neural secretory tissue. It secretes the cerebrospinal fluid and functions as a blood-brain barrier, but the precise mechanism of specification of this non-neural tissue has not yet been determined. Using mouse embryos and lineage-tracing analysis, we found that the prospective choroid plexus region initially gives rise to Cajal-Retzius cells, specialized neurons that guide neuronal migration. Inactivation of the bHLH repressor genes Hes1, Hes3 and Hes5 upregulated expression of the proneural gene neurogenin 2 (Ngn2) and prematurely depleted Bmp-expressing progenitor cells, leading to enhanced formation of Cajal-Retzius cells and complete loss of choroid plexus epithelial cells. Overexpression of Ngn2 had similar effects. These data indicate that Hes genes promote specification of the fate of choroid plexus epithelial cells rather than the fate of Cajal-Retzius cells by antagonizing Ngn2 in the dorsal telencephalic midline region, and thus this study has identified a novel role for bHLH genes in the process of deciding which cells will have a non-neural versus a neural fate.
Collapse
Affiliation(s)
- Itaru Imayoshi
- Institute for Virus Research, Kyoto University, Kyoto, Japan
| | | | | | | |
Collapse
|
37
|
|
38
|
Mangale VS, Hirokawa KE, Satyaki PRV, Gokulchandran N, Chikbire S, Subramanian L, Shetty AS, Martynoga B, Paul J, Mai MV, Li Y, Flanagan LA, Tole S, Monuki ES. Lhx2 selector activity specifies cortical identity and suppresses hippocampal organizer fate. Science 2008; 319:304-9. [PMID: 18202285 DOI: 10.1126/science.1151695] [Citation(s) in RCA: 248] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The earliest step in creating the cerebral cortex is the specification of neuroepithelium to a cortical fate. Using mouse genetic mosaics and timed inactivations, we demonstrated that Lhx2 acts as a classic selector gene and essential intrinsic determinant of cortical identity. Lhx2 selector activity is restricted to an early critical period when stem cells comprise the cortical neuroepithelium, where it acts cell-autonomously to specify cortical identity and suppress alternative fates in a spatially dependent manner. Laterally, Lhx2 null cells adopt antihem identity, whereas medially they become cortical hem cells, which can induce and organize ectopic hippocampal fields. In addition to providing functional evidence for Lhx2 selector activity, these findings show that the cortical hem is a hippocampal organizer.
Collapse
Affiliation(s)
- Vishakha S Mangale
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Faedo A, Tomassy GS, Ruan Y, Teichmann H, Krauss S, Pleasure SJ, Tsai SY, Tsai MJ, Studer M, Rubenstein JLR. COUP-TFI coordinates cortical patterning, neurogenesis, and laminar fate and modulates MAPK/ERK, AKT, and beta-catenin signaling. ACTA ACUST UNITED AC 2007; 18:2117-31. [PMID: 18165280 DOI: 10.1093/cercor/bhm238] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A major unsolved question in cortical development is how proliferation, neurogenesis, regional growth, regional identity, and laminar fate specification are coordinated. Here we provide evidence, using loss-of-function and gain-of-function manipulations, that the COUP-TFI orphan nuclear receptor promotes ventral cortical fate, promotes cell cycle exit and neural differentiation, regulates the balance of early- and late-born neurons, and regulates the balanced production of different types of layer V cortical projection neurons. We suggest that COUP-TFI controls these processes by repressing Mapk/Erk, Akt, and beta-catenin signaling.
Collapse
Affiliation(s)
- Andrea Faedo
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, University of California, San Francisco, CA 94158, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Aboitiz F, Montiel J. Co-option of signaling mechanisms from neural induction to telencephalic patterning. Rev Neurosci 2007; 18:311-42. [PMID: 18019612 DOI: 10.1515/revneuro.2007.18.3-4.311] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This article provides an overview of signaling processes during early specification of the anterior neural tube, with special emphasis on the telencephalon. A series of signaling systems based on the action of distinct morphogens acts at different developmental stages, specifying interacting developmental fields that define axes of differentiation in the rostrocaudal and the dorsoventral domains. Interestingly, many of these signaling systems are co-opted for several differentiation processes. This strategy provides a simple and efficient mechanism to generate novel structures in evolution, and may have been especially important in the origin of the telencephalon and the mammalian cerebral cortex. For example, the action of fibroblast growth factor (FGF) secreted in early stages from the anterior neural ridge, but in later stages from the dorsal anterior forebrain, may have been a key factor in the early differentiation of the ventral telencephalon and in the eventual expansion of the mammalian neocortex. Likewise, bone morphogenetic proteins (BMPs) participate at several stages in neural patterning, even if early neural induction consists of the inhibition of the BMP pathway. BMPs, secreted dorsally, interact with FGFs in the frontal aspect of the hemispheres, and with PAX6-dependent signaling sources located laterally, to pattern the dorsal telencephalon. The actions of other morphogens are also described in this context, such as the ventralizing factor SHH, the dorsalizing element GLI3, and other factors related to the dorsomedial telencephalon such as WNTs and EMXs. The main conclusion we draw from this review is the well-known phylogenetic and developmental conservatism of signaling pathways, which in evolution have been applied in different embryological contexts, generating novel interactions between morphogenetic fields and leading to the generation of new morphological structures.
Collapse
Affiliation(s)
- Francisco Aboitiz
- Departamento de Psiquiatría y Centro de Investigaciones Médicas, Escuela de Medicina, Pontificia Universidad Católica de Chile.
| | | |
Collapse
|
41
|
The role of Foxg1 and dorsal midline signaling in the generation of Cajal-Retzius subtypes. J Neurosci 2007; 27:11103-11. [PMID: 17928452 DOI: 10.1523/jneurosci.1066-07.2007] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cajal-Retzius (CR) cells, the earliest-born neurons in the neocortex, arise from discrete sources within the telencephalon, including the dorsal midline and the pallial-subpallial boundary (PSB). In particular, the cortical hem, a region of high bone morphogenetic proteins (BMPs) and Wnt (wingless-type MMTV integration site family) expression but lacking in Foxg1 (forkhead box G1) is a major source of CR neurons. Whether CR cells from distinct origins arise from disparate developmental processes or share a common mechanism is unclear. To elucidate the molecular basis of CR cell development, we assessed the role of both Foxg1 and dorsal midline signaling in the production of cortical hem- and PSB-derived CR cells. We demonstrate that the loss of Foxg1 results in the overproduction of both of these CR populations. However, removal of Foxg1 at embryonic day 13, although expanding the number of CR cells with a PSB phenotype, does not result in an expansion of BMPs or Wnts in the dorsomedial signaling center. Conversely, loss of the dorsal midline ligands as observed in Gli3 (glioma-associated oncogene homolog 3) mutants results in the loss of the cortical hem-derived CR character but does not affect the specification of PSB-derived CR cells. Hence, our findings demonstrate that, although the specification of cortical hem-derived CR cells is dependent on signaling from the dorsal midline, Foxg1 functions to repress the generation of both cortical hem- and PSB-derived CR cells.
Collapse
|
42
|
Leroy JG, Lyon G, Fallet C, Amiel J, De Praeter C, Van Den Broecke C, Vanhaesebrouck P. Congenital pontocerebellar atrophy and telencephalic defects in three siblings: a new subtype. Acta Neuropathol 2007; 114:387-99. [PMID: 17628812 DOI: 10.1007/s00401-007-0248-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2006] [Revised: 05/30/2007] [Accepted: 06/04/2007] [Indexed: 10/23/2022]
Abstract
We report three siblings, two of whom had a neuropathological study, with a new subtype of congenital ponto-cerebellar atrophy (PCH). In addition to the brain stem and cerebellar anomalies common to all types of this heterogeneous condition, there were unique developmental defects in the telencephalon: absence of the claustrum, diffuse cortical changes particularly in the insula and an extremely small brain. In an attempt to shed some light on the pathogenesis of this developmental disorder, we have analyzed the pattern of brain stem and cerebellar abnormalities in ours and in previously reported patients with PCH, to possibly distinguish primary from secondary effects of the mutant gene upon the cerebellar circuitry, and compared our patients' cerebellar and cerebral defects to those of some other human brain malformations and to mutant mice with both hindbrain and forebrain anomalies. Although this and previous observations of familial congenital PCH with apparent autosomal recessive inheritance spawn the endeavor to compare and classify patients into subgroups, any final classification must await identification and molecular characterization of the causal gene(s).
Collapse
Affiliation(s)
- Jules G Leroy
- Departments of Pediatrics, Neonatology and Pathology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | | | | | | | | | | | | |
Collapse
|
43
|
Huang X, Litingtung Y, Chiang C. Ectopic sonic hedgehog signaling impairs telencephalic dorsal midline development: implication for human holoprosencephaly. Hum Mol Genet 2007; 16:1454-68. [PMID: 17468181 DOI: 10.1093/hmg/ddm096] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Holoprosencephaly (HPE) is the most common developmental anomaly of the human forebrain, and in its severe form, the cerebral hemispheres fail to completely separate into two distinct halves. Although disruption of ventral forebrain induction is thought to underlie most HPE cases, a subset of HPE patients exhibits preferential dysgenesis of forebrain dorsal midline structures with unknown etiology. In this study, we show that Sonic hedgehog (Shh) lacking cholesterol moiety in one allele (ShhN/+) in mice can elicit ectopic Shh signaling in early telencephalon to induce ventral progenitor marker expression in the cortical region and impair telencephalic dorsal midline development. Prolonged ectopic ShhN signaling impaired Bmp and Wnt signaling from the dorsal patterning center through upregulation of Fgf8, leading to augmented cell proliferation, decreased cell death and impaired roof plate morphogenesis. Accordingly, ShhN/+ mutant telencephalic dorsal midline structures, including cortical hem, hippocampus and choroid plexus, either failed to form or were hypoplastic. Strikingly, ShhN/+ mutants displayed a spectrum of phenotypic features such as failure of anterior cerebral hemisphere to divide, hydrocephalus and cleft palate which have been observed in a human patient with milder HPE predicted to produce SHHN protein due to a truncation mutation in one SHH allele. We propose that elevated ectopic Shh signaling can impair dorsal telencephalic midline morphogenesis, and lead to non-cleavage of midline structures mimicking human HPE with dorsal midline defects.
Collapse
Affiliation(s)
- Xi Huang
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, 4114 MRB III, Nashville, TN 37232, USA
| | | | | |
Collapse
|
44
|
Anselme I, Laclef C, Lanaud M, Rüther U, Schneider-Maunoury S. Defects in brain patterning and head morphogenesis in the mouse mutant Fused toes. Dev Biol 2007; 304:208-20. [PMID: 17241623 DOI: 10.1016/j.ydbio.2006.12.025] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Revised: 11/17/2006] [Accepted: 12/12/2006] [Indexed: 01/25/2023]
Abstract
During vertebrate development, brain patterning and head morphogenesis are tightly coordinated. In this paper, we study these processes in the mouse mutant Fused toes (Ft), which presents severe head defects at midgestation. The Ft line carries a 1.6-Mb deletion on chromosome 8. This deletion eliminates six genes, three members of the Iroquois gene family, Irx3, Irx5 and Irx6, which form the IrxB cluster, and three other genes of unknown function, Fts, Ftm and Fto. We show that in Ft/Ft embryos, both anteroposterior and dorsoventral patterning of the brain are affected. As soon as the beginning of somitogenesis, the forebrain is expanded caudally and the midbrain is reduced. Within the expanded forebrain, the most dorsomedial (medial pallium) and ventral (hypothalamus) regions are severely reduced or absent. Morphogenesis of the forebrain and optic vesicles is strongly perturbed, leading to reduction of the eyes and delayed or absence of neural tube closure. Finally, facial structures are hypoplastic. Given the diversity, localisation and nature of the defects, we propose that some of them are caused by the elimination of the IrxB cluster, while others result from the loss of one or several of the Fts, Ftm and Fto genes.
Collapse
Affiliation(s)
- Isabelle Anselme
- Biologie du Développement, CNRS UMR7622, Université Pierre et Marie Curie, 9 Quai Saint-Bernard, 75252 Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
45
|
|
46
|
Zhao T, Kraemer N, Oldekamp J, Cankaya M, Szabó N, Conrad S, Skutella T, Alvarez-Bolado G. Emx2 in the developing hippocampal fissure region. Eur J Neurosci 2006; 23:2895-907. [PMID: 16819978 DOI: 10.1111/j.1460-9568.2006.04819.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mice deficient in transcription factor gene Emx2 show developmental alterations in the hippocampal dentate gyrus. Emx2, however, is also expressed in the region around the developing hippocampal fissure. The developing fissure contains a radial glial scaffolding, and is surrounded by the outer marginal zone and the dentate marginal zone, which become specifically colonized by neurons and differentiate into stratum lacunosum-moleculare and molecular layer of the dentate, respectively. In this study we show that the Emx2 mutant lacks the glial scaffolding of the fissure and has an outer marginal zone (precursor of the stratum lacunosum-moleculare), as well as a dentate marginal zone severely reduced in size while most of the reelin (Reln)-expressing cells that should occupy it fail to be generated. We have also identified a subpopulation of hippocampal Reln-expressing cells of the marginal zone, probably born in the hem, expressing a specific combination of markers, and for which Emx2 is not essentially required. Additionally, we show differential mutant phenotypes of both Emx2 and Pax6 in neocortical vs. hippocampal Reln-expressing cells, indicating differential development of both subpopulations.
Collapse
Affiliation(s)
- Tianyu Zhao
- Max Planck Institute of Experimental Endocrinology, 30625 Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Kato M. A new paradigm for West syndrome based on molecular and cell biology. Epilepsy Res 2006; 70 Suppl 1:S87-95. [PMID: 16806828 DOI: 10.1016/j.eplepsyres.2006.02.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2005] [Revised: 01/10/2006] [Accepted: 02/06/2006] [Indexed: 02/02/2023]
Abstract
Symptomatic West syndrome has heterogeneous backgrounds. Recently, two novel genes, ARX and CDKL5, have been found to be responsible for cryptogenic West syndrome or infantile spasms. Both are located in the human chromosome Xp22 region and are mainly expressed and play roles in fetal brain. Moreover, several genes responsible for brain malformations including lissencephaly, which is frequently associated with West syndrome or infantile spasms, have been found, and the mechanisms responsible for the neural network disorders in these brain malformations are rapidly being determined. Findings of animal and in vitro studies and mutation analyses in humans are delineating the molecular and cellular basis of West syndrome. Mutations of the ARX gene controlling the development of GABAergic interneurons exhibit pleiotropic effects including lissencephaly with a strong genotype-phenotype correlation. An expansion mutation of the first polyalanine tract of ARX is more strongly related to infantile spasms than is that of the second polyalanine tract. Although the phenotype of CDKL5 mutation is similar to Rett syndrome caused by MECP2 mutation, the former is characterized by early-onset seizures and association with West syndrome. Lissencephaly caused by LIS1 or DCX mutation frequently results in West syndrome, while lissencephaly due to ARX mutation is associated with the most severe form of epilepsy but never results in West syndrome nor infantile spasms. Both LIS1 and DCX participate in the development of GABAergic interneurons as well as pyramidal neurons, while ARX participates only in that of interneurons. Individuals with lissencephaly due to ARX mutation lack non-pyramidal or GABAergic interneurons. ARX is crucial for the development of GABAergic interneuron, so abnormal interneurons in patients with ARX mutation are thought to be implicated in the pathological mechanism, even though brain MRI is normal. Abnormal interneurons appear to play an essential role in the pathogenesis of West syndrome or infantile spasms, which can be considered an interneuronopathy.
Collapse
Affiliation(s)
- Mitsuhiro Kato
- Department of Pediatrics, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan.
| |
Collapse
|
48
|
von Frowein J, Wizenmann A, Götz M. The transcription factors Emx1 and Emx2 suppress choroid plexus development and promote neuroepithelial cell fate. Dev Biol 2006; 296:239-52. [PMID: 16793035 DOI: 10.1016/j.ydbio.2006.04.461] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 04/01/2006] [Accepted: 04/24/2006] [Indexed: 10/24/2022]
Abstract
The transcription factors Emx1 and Emx2 exert important functions during development of the cerebral cortex, including its arealization. Here, we addressed their role in development of the derivatives of the midline region in the telencephalon. The center of the midline region differentiates into the choroid plexus, but little is known about its molecular specification. As we noted a lack of Emx1 or 2 expression in the midline region early in development, we interfered by misexpressing Emx1 and/or Emx2 in this region of the chick telencephalon. Ectopic expression of either Emx1 or Emx2 prior to HH 13 instructed a neuroepithelial identity in the previous midline region instead of a choroidal fate. Thus, Gli3 and Lhx2 normally restricted to the neuroepithelium expanded into the Emx misexpressing region. This was accompanied by down-regulation of Otx2 and BMP7, which implicates that these factors are essential for choroid plexus specification and differentiation. Interestingly, the region next to the ectopic Emx-misexpression then acquired a hybrid identity with some choroidal features such as Bmp7, Otx2 and Ttr gene expression, as well as some neuroepithelial features. These observations indicate that the expression levels of Emx1 and/or Emx2 restrict the prospective choroid plexus territory, a novel role of these transcription factors.
Collapse
Affiliation(s)
- Julia von Frowein
- GSF-National Research Center for Environment and Health, Institute for Stem Cell Research, Ingolstädter Landstrasse 1, 85764 Neuherberg/Munich, Germany
| | | | | |
Collapse
|
49
|
Storm EE, Garel S, Borello U, Hebert JM, Martinez S, McConnell SK, Martin GR, Rubenstein JLR. Dose-dependent functions of Fgf8 in regulating telencephalic patterning centers. Development 2006; 133:1831-44. [PMID: 16613831 DOI: 10.1242/dev.02324] [Citation(s) in RCA: 291] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mouse embryos bearing hypomorphic and conditional null Fgf8mutations have small and abnormally patterned telencephalons. We provide evidence that the hypoplasia results from decreased Foxg1 expression,reduced cell proliferation and increased cell death. In addition, alterations in the expression of Bmp4, Wnt8b, Nkx2.1 and Shh are associated with abnormal development of dorsal and ventral structures. Furthermore, nonlinear effects of Fgf8 gene dose on the expression of a subset of genes, including Bmp4 and Msx1, correlate with a holoprosencephaly phenotype and with the nonlinear expression of transcription factors that regulate neocortical patterning. These data suggest that Fgf8 functions to coordinate multiple patterning centers, and that modifications in the relative strength of FGF signaling can have profound effects on the relative size and nature of telencephalic subdivisions.
Collapse
Affiliation(s)
- Elaine E Storm
- Department of Anatomy, University of California, San Francisco, CA 94143-2711, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Lindsay S, Sarma S, Martínez-de-la-Torre M, Kerwin J, Scott M, Luis Ferran J, Baldock R, Puelles L. Anatomical and gene expression mapping of the ventral pallium in a three-dimensional model of developing human brain. Neuroscience 2006; 136:625-32. [PMID: 16344140 DOI: 10.1016/j.neuroscience.2005.06.093] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 06/16/2005] [Accepted: 06/27/2005] [Indexed: 11/19/2022]
Abstract
Combining gene expression data with morphological information has revolutionized developmental neuroanatomy in the last decade. Visualization and interpretation of complex images have been crucial to these advances in our understanding of mechanisms underlying early brain development, as most developmental processes are spatially oriented, in topologically invariant patterns that become overtly distorted during brain morphogenesis. It has also become clear that more powerful methodologies are needed to accommodate the increasing volume of data available and the increasingly sophisticated analyses that are required, for example analyzing anatomy and multiple gene expression patterns at individual developmental stages, or identifying and analyzing homologous structures through time and/or between species. Three-dimensional models have long been recognized as a valuable way of providing a visual interpretation and overview of complex morphological data. We have used a recently developed method, optical projection tomography, to generate digital three-dimensional models of early human brain development. These models can be used both as frameworks, onto which normal or experimental gene expression data can be mapped, and as objects, within which topological morphological relationships can be investigated in silico. Gene expression patterns and selected morphological structures or boundaries can then be visualized individually or in different combinations in order to study their respective morphogenetic significance. Here, we review briefly the optical projection tomography method, placing it in the context of other methods used to generate developmental three dimensional models, and show the definition of some CNS anatomical domains within a Carnegie stage 19 human model. We also map the telencephalic EMX1 and PAX6 gene expression patterns to this model, corroborating for the first time the existence of a ventral pallium primordium in the telencephalon of human embryos, a distinct claustroamygdaloid histogenetic area comparable to the recently defined mouse primordium given that name [Puelles L, Kuwana E, Puelles E, Bulfone A, Shimamura K, Keleher J, Smiga S, Rubenstein JLR (2000) Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6, and Tbr-1. J Comp Neurol 424:409-438; Puelles L, Martínez S, Martínez-de-la-Torre M, Rubenstein JLR (2004) Gene maps and related histogenetic domains in the forebrain and midbrain. In: The rat nervous system, 3rd ed (Paxinos G, ed), pp 3-25. San Diego: Academic Press].
Collapse
Affiliation(s)
- S Lindsay
- Institute of Human Genetics, University of Newcastle upon Tyne, International Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | | | | | | | | | | | | | | |
Collapse
|