1
|
Sarkar A, Jin Y, DeFelice BC, Logan CY, Yang Y, Anbarchian T, Wu P, Morri M, Neff NF, Nguyen H, Rulifson E, Fish M, Kaye AG, Martínez Jaimes AM, Nusse R. Intermittent fasting induces rapid hepatocyte proliferation to restore the hepatostat in the mouse liver. eLife 2023; 12:e82311. [PMID: 36719070 PMCID: PMC9889086 DOI: 10.7554/elife.82311] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 12/09/2022] [Indexed: 02/01/2023] Open
Abstract
Nutrient availability fluctuates in most natural populations, forcing organisms to undergo periods of fasting and re-feeding. It is unknown how dietary changes influence liver homeostasis. Here, we show that a switch from ad libitum feeding to intermittent fasting (IF) promotes rapid hepatocyte proliferation. Mechanistically, IF-induced hepatocyte proliferation is driven by the combined action of systemic FGF15 and localized WNT signaling. Hepatocyte proliferation during periods of fasting and re-feeding re-establishes a constant liver-to-body mass ratio, thus maintaining the hepatostat. This study provides the first example of dietary influence on adult hepatocyte proliferation and challenges the widely held view that liver tissue is mostly quiescent unless chemically or mechanically injured.
Collapse
Affiliation(s)
- Abby Sarkar
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
| | - Yinhua Jin
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
| | | | - Catriona Y Logan
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
| | - Yan Yang
- Stanford Center for Genomics & Personalized Medicine, Stanford University School of MedicineStanfordUnited States
| | - Teni Anbarchian
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
| | - Peng Wu
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Department of Pediatrics, Stanford University School of MedicineStanfordUnited States
| | | | - Norma F Neff
- Chan-Zuckerberg BiohubSan FranciscoUnited States
| | - Huy Nguyen
- Department of Neurology and Neurological Sciences, Stanford University School of MedicineStanfordUnited States
| | - Eric Rulifson
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
| | - Matthew Fish
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
| | - Avi Gurion Kaye
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
| | - Azalia M Martínez Jaimes
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
| | - Roel Nusse
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
2
|
Wang S, Maruyama EO, Martinez J, Lopes J, Hsu T, Wu W, Hsu W, Maruyama T. miRNA-27a is essential for bone remodeling by modulating p62-mediated osteoclast signaling. eLife 2023; 12:79768. [PMID: 36752600 PMCID: PMC9946445 DOI: 10.7554/elife.79768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 02/07/2023] [Indexed: 02/09/2023] Open
Abstract
The ability to simultaneously modulate a set of genes for lineage-specific development has made miRNA an ideal master regulator for organogenesis. However, most miRNA deletions do not exhibit obvious phenotypic defects possibly due to functional redundancy. miRNAs are known to regulate skeletal lineages as the loss of their maturation enzyme Dicer impairs bone remodeling processes. Therefore, it is important to identify specific miRNA essential for bone homeostasis. We report the loss of MIR27a causing severe osteoporosis in mice. MIR27a affects osteoclast-mediated bone resorption but not osteoblast-mediated bone formation during skeletal remodeling. Gene profiling and bioinformatics further identify the specific targets of MIR27a in osteoclast cells. MIR27a exerts its effects on osteoclast differentiation through modulation of Squstm1/p62 whose mutations have been linked to Paget's disease of bone. Our findings reveal a new MIR27a-p62 axis necessary and sufficient to mediate osteoclast differentiation and highlight a therapeutic implication for osteoporosis.
Collapse
Affiliation(s)
- Shumin Wang
- University of Rochester Medical CenterRochesterUnited States
| | | | - John Martinez
- University of Rochester Medical CenterRochesterUnited States
| | | | - Trunee Hsu
- Case Western Reserve UniversityClevelandUnited States
| | - Wencheng Wu
- University of Rochester Medical CenterRochesterUnited States
| | - Wei Hsu
- University of Rochester Medical CenterRochesterUnited States,The Forsyth InstituteCambridgeUnited States,Faculty of Medicine, Harvard UniversityBostonUnited States,Harvard School of Dental MedicineBostonUnited States,Harvard Stem Cell InstituteCambridgeUnited States
| | - Takamitsu Maruyama
- University of Rochester Medical CenterRochesterUnited States,The Forsyth InstituteCambridgeUnited States
| |
Collapse
|
3
|
Abstract
WNT/CTNNB1 signaling plays a critical role in the development of all multicellular animals. Here, we include both the embryonic stages, during which tissue morphogenesis takes place, and the postnatal stages of development, during which tissue homeostasis occurs. Thus, embryonic development concerns lineage development and cell fate specification, while postnatal development involves tissue maintenance and regeneration. Multiple tools are available to researchers who want to investigate, and ideally visualize, the dynamic and pleiotropic involvement of WNT/CTNNB1 signaling in these processes. Here, we discuss and evaluate the decisions that researchers need to make in identifying the experimental system and appropriate tools for the specific question they want to address, covering different types of WNT/CTNNB1 reporters in cells and mice. At a molecular level, advanced quantitative imaging techniques can provide spatio-temporal information that cannot be provided by traditional biochemical assays. We therefore also highlight some recent studies to show their potential in deciphering the complex and dynamic mechanisms that drive WNT/CTNNB1 signaling.
Collapse
|
4
|
Wnt signaling regulates hepatocyte cell division by a transcriptional repressor cascade. Proc Natl Acad Sci U S A 2022; 119:e2203849119. [PMID: 35867815 PMCID: PMC9335208 DOI: 10.1073/pnas.2203849119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
As a general model for cell cycle control, repressors keep cells quiescent until growth signals remove the inhibition. For S phase, this is exemplified by the Retinoblastoma (RB) protein and its inactivation. It was unknown whether similar mechanisms operate in the M phase. The Wnt signaling pathway is an important regulator of cell proliferation. Here, we find that Wnt induces expression of the transcription factor Tbx3, which in turn represses mitotic inhibitors E2f7 and E2f8 to permit mitotic progression. Such a cascade of transcriptional repressors may be a general mechanism for cell division control. These findings have implications for tissue homeostasis and disease, as the function for Wnt signaling in mitosis is relevant to its widespread role in stem cells and cancer. Cell proliferation is tightly controlled by inhibitors that block cell cycle progression until growth signals relieve this inhibition, allowing cells to divide. In several tissues, including the liver, cell proliferation is inhibited at mitosis by the transcriptional repressors E2F7 and E2F8, leading to formation of polyploid cells. Whether growth factors promote mitosis and cell cycle progression by relieving the E2F7/E2F8-mediated inhibition is unknown. We report here on a mechanism of cell division control in the postnatal liver, in which Wnt/β-catenin signaling maintains active hepatocyte cell division through Tbx3, a Wnt target gene. The TBX3 protein directly represses transcription of E2f7 and E2f8, thereby promoting mitosis. This cascade of sequential transcriptional repressors, initiated by Wnt signals, provides a paradigm for exploring how commonly active developmental signals impact cell cycle completion.
Collapse
|
5
|
Kim JW, Nam SA, Yi J, Kim JY, Lee JY, Park S, Sen T, Choi Y, Lee JY, Kim HL, Kim HW, Park J, Cho D, Kim YK. Kidney Decellularized Extracellular Matrix Enhanced the Vascularization and Maturation of Human Kidney Organoids. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103526. [PMID: 35322595 PMCID: PMC9130892 DOI: 10.1002/advs.202103526] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 03/02/2022] [Indexed: 05/27/2023]
Abstract
Kidney organoids derived from human pluripotent stem cells (hPSCs) have extensive potential for disease modelling and regenerative medicine. However, the limited vascularization and immaturity of kidney organoids have been still remained to overcome. Extracellular matrix (ECM) can provide mechanical support and a biochemical microenvironment for cell growth and differentiation. Here in vitro methods using a kidney decellularized extracellular matrix (dECM) hydrogel to culture hPSC-derived kidney organoids, which have extensive vascular network and their own endothelial cells, are reported. Single-cell transcriptomics reveal that the vascularized kidney organoids cultured using the kidney dECM have more mature patterns of glomerular development and higher similarity to human kidney than those cultured without the kidney dECM. Differentiation of α-galactosidase A (GLA)-knock-out hPSCs generated using CRISPR/Cas9 into kidney organoids by the culture method using kidney dECM efficiently recapitulate Fabry nephropathy with vasculopathy. Transplantation of kidney organoids with kidney dECM into kidney of mouse accelerates the recruitment of endothelial cells from the host mouse kidney and maintains vascular integrity with the more organized slit diaphragm-like structures than those without kidney dECM. The kidney dECM methodology for inducing extensive vascularization and maturation of kidney organoids can be applied to studies for kidney development, disease modeling, and regenerative medicine.
Collapse
Affiliation(s)
- Jin Won Kim
- Cell Death Disease Research CenterCollege of MedicineThe Catholic University of KoreaSeoul06591Korea
| | - Sun Ah Nam
- Cell Death Disease Research CenterCollege of MedicineThe Catholic University of KoreaSeoul06591Korea
| | - Jawoon Yi
- School of Life SciencesGwangju Institute of Science and TechnologyGwangju61005Korea
| | - Jae Yun Kim
- School of Interdisciplinary Bioscience and BioengineeringPohang University of Science and TechnologyPohang790‐784Korea
| | - Jong Young Lee
- Cell Death Disease Research CenterCollege of MedicineThe Catholic University of KoreaSeoul06591Korea
| | - Seo‐Yeon Park
- Cell Death Disease Research CenterCollege of MedicineThe Catholic University of KoreaSeoul06591Korea
| | - Tugce Sen
- Department of Mechanical EngineeringPohang University of Science and Technology (POSTECH)PohangKyungbuk790‐784Korea
| | - Yoo‐mi Choi
- Department of Convergence IT EngineeringPohang University of Science and TechnologyPohang790‐784Korea
| | - Jae Yeon Lee
- Department of Companion Animal HealthDaegu Haany UniversityGyeongsan790‐784Republic of Korea
| | - Hong Lim Kim
- Integrative Research Support CenterCollege of MedicineThe Catholic University of KoreaSeoul06591Korea
| | - Hyung Wook Kim
- Department of Internal MedicineThe Catholic University of KoreaSt. Vincent's HospitalSuwon16247Korea
| | - Jiwhan Park
- School of Life SciencesGwangju Institute of Science and TechnologyGwangju61005Korea
| | - Dong‐Woo Cho
- School of Interdisciplinary Bioscience and BioengineeringPohang University of Science and TechnologyPohang790‐784Korea
- Department of Mechanical EngineeringPohang University of Science and Technology (POSTECH)PohangKyungbuk790‐784Korea
| | - Yong Kyun Kim
- Cell Death Disease Research CenterCollege of MedicineThe Catholic University of KoreaSeoul06591Korea
- Department of Internal MedicineThe Catholic University of KoreaSt. Vincent's HospitalSuwon16247Korea
| |
Collapse
|
6
|
Maruyama T, Stevens R, Boka A, DiRienzo L, Chang C, Yu HMI, Nishimori K, Morrison C, Hsu W. BMPR1A maintains skeletal stem cell properties in craniofacial development and craniosynostosis. Sci Transl Med 2021; 13:13/583/eabb4416. [PMID: 33658353 DOI: 10.1126/scitranslmed.abb4416] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 10/19/2020] [Accepted: 02/12/2021] [Indexed: 12/20/2022]
Abstract
Skeletal stem cells from the suture mesenchyme, which are referred to as suture stem cells (SuSCs), exhibit long-term self-renewal, clonal expansion, and multipotency. These SuSCs reside in the suture midline and serve as the skeletal stem cell population responsible for calvarial development, homeostasis, injury repair, and regeneration. The ability of SuSCs to engraft in injury site to replace the damaged skeleton supports their potential use for stem cell-based therapy. Here, we identified BMPR1A as essential for SuSC self-renewal and SuSC-mediated bone formation. SuSC-specific disruption of Bmpr1a in mice caused precocious differentiation, leading to craniosynostosis initiated at the suture midline, which is the stem cell niche. We found that BMPR1A is a cell surface marker of human SuSCs. Using an ex vivo system, we showed that SuSCs maintained stemness properties for an extended period without losing the osteogenic ability. This study advances our knowledge base of congenital deformity and regenerative medicine mediated by skeletal stem cells.
Collapse
Affiliation(s)
- Takamitsu Maruyama
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY 14642, USA.,Department of Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Ronay Stevens
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Alan Boka
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Laura DiRienzo
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Connie Chang
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hsiao-Man Ivy Yu
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Katsuhiko Nishimori
- Department of Bioregulation and Pharmacological Medicine and Department of Obesity and Internal Inflammation, Fukushima Medical University, Fukushima City 960-1295, Japan
| | - Clinton Morrison
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Wei Hsu
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY 14642, USA. .,Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA.,Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
7
|
Hill EM, Howard CD, Bale TL, Jašarević E. Perinatal exposure to tetracycline contributes to lasting developmental effects on offspring. Anim Microbiome 2021; 3:37. [PMID: 33975649 PMCID: PMC8111738 DOI: 10.1186/s42523-021-00099-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/27/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND For more than 30 years, the tetracycline on/off system of inducible gene expression has been leveraged to study disease mechanisms across many research areas, especially that of metabolism and neuroscience. This system requires acute or chronic exposure to tetracycline derivatives, such as doxycycline, to manipulate gene expression in a temporal and tissue-specific manner, with exposure often being restricted to gestational and early developmental windows. Despite evidence showing that early life antibiotic exposure has adverse effects on gut microbiota, metabolism, physiology, immunity and behavior, little is known regarding the lasting impact of doxycycline treatment on relevant outcomes in experimental offspring. RESULTS To examine the hypothesis that early life doxycycline exposure produces effects on offspring growth, behavior, and gut microbiota, we employed the most commonly used method for tetracycline on/off system by administering a low dose of doxycycline (0.5 mg/ml) in the drinking water to C57Bl/6J and C57BL/6J:129S1/SvImJ dams from embryonic day 15.5 to postnatal day 28. Developmental exposure to low dose doxycycline resulted in significant alterations to growth trajectories and body weight in both strains, which persisted beyond cessation of doxycycline exposure. Developmental doxycycline exposure influenced offspring bacterial community assembly in a temporal and sex-specific manner. Further, gut microbiota composition failed to recover by adulthood, suggesting a lasting imprint of developmental antibiotic exposure. CONCLUSIONS Our results demonstrated that early life doxycycline exposure shifts the homeostatic baseline of prior exposed animals that may subsequently impact responses to experimental manipulations. These results highlight the gut microbiota as an important factor to consider in systems requiring methods of chronic antibiotic administration during pregnancy and critical periods of postnatal development.
Collapse
Affiliation(s)
- Elizabeth M Hill
- Center for Epigenetics Research in Child Health and Brain Development, Department of Pharmacology, University of Maryland School of Medicine, Baltimore, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christopher D Howard
- Center for Epigenetics Research in Child Health and Brain Development, Department of Pharmacology, University of Maryland School of Medicine, Baltimore, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tracy L Bale
- Center for Epigenetics Research in Child Health and Brain Development, Department of Pharmacology, University of Maryland School of Medicine, Baltimore, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Eldin Jašarević
- Center for Epigenetics Research in Child Health and Brain Development, Department of Pharmacology, University of Maryland School of Medicine, Baltimore, USA.
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
8
|
Marchini M, Hu D, Lo Vercio L, Young NM, Forkert ND, Hallgrímsson B, Marcucio R. Wnt Signaling Drives Correlated Changes in Facial Morphology and Brain Shape. Front Cell Dev Biol 2021; 9:644099. [PMID: 33855022 PMCID: PMC8039397 DOI: 10.3389/fcell.2021.644099] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/08/2021] [Indexed: 11/20/2022] Open
Abstract
Canonical Wnt signaling plays multiple roles critical to normal craniofacial development while its dysregulation is known to be involved in structural birth defects of the face. However, when and how Wnt signaling influences phenotypic variation, including those associated with disease, remains unclear. One potential mechanism is via Wnt signaling’s role in the patterning of an early facial signaling center, the frontonasal ectodermal zone (FEZ), and its subsequent regulation of early facial morphogenesis. For example, Wnt signaling may directly alter the shape and/or magnitude of expression of the sonic hedgehog (SHH) domain in the FEZ. To test this idea, we used a replication-competent avian sarcoma retrovirus (RCAS) encoding Wnt3a to modulate its expression in the facial mesenchyme. We then quantified and compared ontogenetic changes in treated to untreated embryos in the three-dimensional (3D) shape of both the SHH expression domain of the FEZ, and the morphology of the facial primordia and brain using iodine-contrast microcomputed tomography imaging and 3D geometric morphometrics (3DGM). We found that increased Wnt3a expression in early stages of head development produces correlated variation in shape between both structural and signaling levels of analysis. In addition, altered Wnt3a activation disrupted the integration between the forebrain and other neural tube derivatives. These results show that activation of Wnt signaling influences facial shape through its impact on the forebrain and SHH expression in the FEZ, and highlights the close relationship between morphogenesis of the forebrain and midface.
Collapse
Affiliation(s)
- Marta Marchini
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada.,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Diane Hu
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Lucas Lo Vercio
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada.,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Nathan M Young
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Nils D Forkert
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Benedikt Hallgrímsson
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada.,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Ralph Marcucio
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
9
|
Aberrant Gcm1 expression mediates Wnt/β-catenin pathway activation in folate deficiency involved in neural tube defects. Cell Death Dis 2021; 12:234. [PMID: 33664222 PMCID: PMC7933360 DOI: 10.1038/s41419-020-03313-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023]
Abstract
Wnt signaling plays a major role in early neural development. An aberrant activation in Wnt/β-catenin pathway causes defective anteroposterior patterning, which results in neural tube closure defects (NTDs). Changes in folate metabolism may participate in early embryo fate determination. We have identified that folate deficiency activated Wnt/β-catenin pathway by upregulating a chorion-specific transcription factor Gcm1. Specifically, folate deficiency promoted formation of the Gcm1/β-catenin/T-cell factor (TCF4) complex formation to regulate the Wnt targeted gene transactivation through Wnt-responsive elements. Moreover, the transcription factor Nanog upregulated Gcm1 transcription in mESCs under folate deficiency. Lastly, in NTDs mouse models and low-folate NTDs human brain samples, Gcm1 and Wnt/β-catenin targeted genes related to neural tube closure are specifically overexpressed. These results indicated that low-folate level promoted Wnt/β-catenin signaling via activating Gcm1, and thus leaded into aberrant vertebrate neural development.
Collapse
|
10
|
van de Moosdijk AAA, van de Grift YBC, de Man SMA, Zeeman AL, van Amerongen R. A novel Axin2 knock-in mouse model for visualization and lineage tracing of WNT/CTNNB1 responsive cells. Genesis 2020; 58:e23387. [PMID: 32643876 PMCID: PMC7539917 DOI: 10.1002/dvg.23387] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/06/2020] [Accepted: 06/24/2020] [Indexed: 12/29/2022]
Abstract
Wnt signal transduction controls tissue morphogenesis, maintenance and regeneration in all multicellular animals. In mammals, the WNT/CTNNB1 (Wnt/β-catenin) pathway controls cell proliferation and cell fate decisions before and after birth. It plays a critical role at multiple stages of embryonic development, but also governs stem cell maintenance and homeostasis in adult tissues. However, it remains challenging to monitor endogenous WNT/CTNNB1 signaling dynamics in vivo. Here, we report the generation and characterization of a new knock-in mouse strain that doubles as a fluorescent reporter and lineage tracing driver for WNT/CTNNB1 responsive cells. We introduced a multi-cistronic targeting cassette at the 3' end of the universal WNT/CTNNB1 target gene Axin2. The resulting knock-in allele expresses a bright fluorescent reporter (3xNLS-SGFP2) and a doxycycline-inducible driver for lineage tracing (rtTA3). We show that the Axin2P2A-rtTA3-T2A-3xNLS-SGFP2 strain labels WNT/CTNNB1 responsive cells at multiple anatomical sites during different stages of embryonic and postnatal development. It faithfully reports the subtle and dynamic changes in physiological WNT/CTNNB1 signaling activity that occur in vivo. We expect this mouse strain to be a useful resource for biologists who want to track and trace the location and developmental fate of WNT/CTNNB1 responsive stem cells in different contexts.
Collapse
Affiliation(s)
| | | | | | - Amber Lisanne Zeeman
- Swammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamthe Netherlands
| | - Renée van Amerongen
- Swammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamthe Netherlands
| |
Collapse
|
11
|
Yu HI, Hsu T, Maruyama EO, Paschen W, Yang W, Hsu W. The requirement of SUMO2/3 for SENP2 mediated extraembryonic and embryonic development. Dev Dyn 2020; 249:237-244. [PMID: 31625212 PMCID: PMC7027852 DOI: 10.1002/dvdy.125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 12/23/2022] Open
Abstract
Small ubiquitin-related modifier (SUMO)-specific protease 2 (SENP2) is essential for the development of healthy placenta. The loss of SENP2 causes severe placental deficiencies and leads to embryonic death that is associated with heart and brain deformities. However, tissue-specific disruption of SENP2 demonstrates its dispensable role in embryogenesis and the embryonic defects are secondary to placental insufficiency. SENP2 regulates SUMO1 modification of Mdm2, which controls p53 activities critical for trophoblast cell proliferation and differentiation. Here we use genetic analyses to examine the involvement of SUMO2 and SUMO3 for SENP2-mediated placentation. The results indicate that hyper-SUMOylation caused by SENP2 deficiency can be compensated by reducing the level of SUMO modifiers. The placental deficiencies caused by the loss of SENP2 can be alleviated by the inactivation of gene encoding SUMO2 or SUMO3. Our findings demonstrate that SENP2 genetically interacts with SUMO2 and SUMO3 pivotal for the development of three major trophoblast layers. The alleviation of placental defects in the SENP2 knockouts further leads to the proper formation of the heart structures, including atrioventricular cushion and myocardium. SUMO2 and SUMO3 modifications regulate placentation and organogenesis mediated by SENP2.
Collapse
Affiliation(s)
- H‐M Ivy Yu
- Center for Oral BiologyUniversity of Rochester Medical CenterRochesterNew York
| | - Trunee Hsu
- Center for Oral BiologyUniversity of Rochester Medical CenterRochesterNew York
- Pittsford Mendon High SchoolPittsfordNew York
| | - Eri O Maruyama
- Center for Oral BiologyUniversity of Rochester Medical CenterRochesterNew York
| | - Wulf Paschen
- Department of AnesthesiologyDuke UniversityDurhamNorth Carolina
| | - Wei Yang
- Department of AnesthesiologyDuke UniversityDurhamNorth Carolina
| | - Wei Hsu
- Center for Oral BiologyUniversity of Rochester Medical CenterRochesterNew York
- Department of Biomedical GeneticsUniversity of Rochester Medical CenterRochesterNew York
- Stem Cell and Regenerative Medicine Institute, University of Rochester Medical CenterRochesterNew York
| |
Collapse
|
12
|
Syed SM, Kumar M, Ghosh A, Tomasetig F, Ali A, Whan RM, Alterman D, Tanwar PS. Endometrial Axin2 + Cells Drive Epithelial Homeostasis, Regeneration, and Cancer following Oncogenic Transformation. Cell Stem Cell 2019; 26:64-80.e13. [PMID: 31883834 DOI: 10.1016/j.stem.2019.11.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/09/2019] [Accepted: 11/20/2019] [Indexed: 01/08/2023]
Abstract
The remarkable regenerative capacity of the endometrium (the inner lining of the uterus) is essential for the sustenance of mammalian life. Over the years, the role of stem cells in endometrial functions and their pathologies has been suggested; however, the identity and location of such stem cells remain unclear. Here, we used in vivo lineage tracing to show that endometrial epithelium self-renews during development, growth, and regeneration and identified Axin2, a classical Wnt reporter gene, as a marker of long-lived bipotent epithelial progenitors that reside in endometrial glands. Axin2-expressing cells are responsible for epithelial regeneration in vivo and for endometrial organoid development in vitro. Ablation of Axin2+ cells severely impairs endometrial homeostasis and compromises its regeneration. More important, upon oncogenic transformation, these cells can lead to endometrial cancer. These findings provide valuable insights into the cellular basis of endometrial functions and diseases.
Collapse
Affiliation(s)
- Shafiq M Syed
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Manish Kumar
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Arnab Ghosh
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Florence Tomasetig
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ayesha Ali
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Renee M Whan
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Dariusz Alterman
- School of Engineering, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Pradeep S Tanwar
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia.
| |
Collapse
|
13
|
Peng WC, Logan CY, Fish M, Anbarchian T, Aguisanda F, Álvarez-Varela A, Wu P, Jin Y, Zhu J, Li B, Grompe M, Wang B, Nusse R. Inflammatory Cytokine TNFα Promotes the Long-Term Expansion of Primary Hepatocytes in 3D Culture. Cell 2019; 175:1607-1619.e15. [PMID: 30500539 DOI: 10.1016/j.cell.2018.11.012] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/15/2018] [Accepted: 11/12/2018] [Indexed: 12/17/2022]
Abstract
In the healthy adult liver, most hepatocytes proliferate minimally. However, upon physical or chemical injury to the liver, hepatocytes proliferate extensively in vivo under the direction of multiple extracellular cues, including Wnt and pro-inflammatory signals. Currently, liver organoids can be generated readily in vitro from bile-duct epithelial cells, but not hepatocytes. Here, we show that TNFα, an injury-induced inflammatory cytokine, promotes the expansion of hepatocytes in 3D culture and enables serial passaging and long-term culture for more than 6 months. Single-cell RNA sequencing reveals broad expression of hepatocyte markers. Strikingly, in vitro-expanded hepatocytes engrafted, and significantly repopulated, the injured livers of Fah-/- mice. We anticipate that tissue repair signals can be harnessed to promote the expansion of otherwise hard-to-culture cell-types, with broad implications.
Collapse
Affiliation(s)
- Weng Chuan Peng
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Catriona Y Logan
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matt Fish
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Teni Anbarchian
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Francis Aguisanda
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Adrián Álvarez-Varela
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peng Wu
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yinhua Jin
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Junjie Zhu
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Bin Li
- Oregon Stem Cell Center, Oregon Health and Science University, Portland, OR 97239, USA
| | - Markus Grompe
- Oregon Stem Cell Center, Oregon Health and Science University, Portland, OR 97239, USA
| | - Bruce Wang
- Department of Medicine and Liver Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Roel Nusse
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
14
|
Mishra A, Singh S, Tiwari V, Chaturvedi S, Wahajuddin M, Shukla S. Dopamine receptor activation mitigates mitochondrial dysfunction and oxidative stress to enhance dopaminergic neurogenesis in 6-OHDA lesioned rats: A role of Wnt signalling. Neurochem Int 2019; 129:104463. [PMID: 31078578 DOI: 10.1016/j.neuint.2019.104463] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 02/04/2023]
Abstract
Nigral dopaminergic (DAergic) cell degeneration and depletion of dopamine neurotransmitter in the midbrain are cardinal features of Parkinson's disease (PD). Dopamine system regulates different aspects of behavioural phenotypes such as motor control, reward, anxiety and depression via acting on dopamine receptors (D1-D5). Recent studies have shown the potential effects of dopamine on modulation of neurogenesis, a process of newborn neuron formation from neural stem cells (NSCs). Reduced proliferative capacity of NSCs and net neurogenesis has been reported in subventricular zone, olfactory bulb and hippocampus of patients with PD. However, the molecular and cellular mechanism of dopamine mediated modulation of DAergic neurogenesis is not defined. In this study, we attempted to investigate the molecular mechanism of dopamine receptors mediated control of DAergic neurogenesis and whether it affects mitochondrial biogenesis in 6-hydroxydopamine (6-OHDA) induced rat model of PD-like phenotypes. Unilateral administration of 6-OHDA into medial forebrain bundle potentially reduced tyrosine hydroxylase immunoreactivity, dopamine content in substantia nigra pars compacta (SNpc) and striatum region and impaired motor functions in adult rats. We found decreased D1 receptor expression, mitochondrial biogenesis, mitochondrial functions and DAergic differentiation associated with down-regulation of Wnt/β-catenin signalling in SNpc of 6-OHDA lesioned rats. Pharmacological stimulation of D1 receptor enhanced mitochondrial biogenesis, mitochondrial functions and DAergic neurogenesis that lead to improved motor functions in 6-OHDA lesioned rats. D1 agonist induced effects were attenuated following administration of D1 antagonist, whereas shRNA mediated knockdown of Axin-2, a negative regulator of Wnt signalling significantly abolished D1 antagonist induced impairment in mitochondrial biogenesis and DAergic neurogenesis in 6-OHDA lesioned rats. Our results suggest that dopamine receptor regulates DAergic neurogenesis and mitochondrial functions by activation of Wnt/β-catenin signaling in rat model of PD-like phenotypes.
Collapse
Affiliation(s)
- Akanksha Mishra
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research, New Delhi, India
| | - Sonu Singh
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP, India; National Institute of Child Health and Human Development, Bethesda, MD, 20814, USA
| | - Virendra Tiwari
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research, New Delhi, India
| | - Swati Chaturvedi
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, New Delhi, India
| | - M Wahajuddin
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Shubha Shukla
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research, New Delhi, India.
| |
Collapse
|
15
|
Singh S, Mishra A, Mohanbhai SJ, Tiwari V, Chaturvedi RK, Khurana S, Shukla S. Axin-2 knockdown promote mitochondrial biogenesis and dopaminergic neurogenesis by regulating Wnt/β-catenin signaling in rat model of Parkinson's disease. Free Radic Biol Med 2018; 129:73-87. [PMID: 30176346 DOI: 10.1016/j.freeradbiomed.2018.08.033] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/23/2018] [Accepted: 08/27/2018] [Indexed: 12/24/2022]
Abstract
Wnts and the components of Wnt/β-catenin signaling are widely expressed in midbrain and required to control the fate specification of dopaminergic (DAergic) neurons, a neuronal population that specifically degenerate in Parkinson's disease (PD). Accumulating evidence suggest that mitochondrial dysfunction plays a key role in pathogenesis of PD. Axin-2, a negative regulator of Wnt/β-catenin signaling affects mitochondrial biogenesis and death/birth of new DAergic neurons is not fully explored. We investigated the functional role of Axin-2/Wnt/β-catenin signaling in mitochondrial biogenesis and DAergic neurogenesis in 6-hydroxydopamine (6-OHDA) induced rat model of PD-like phenotypes. We demonstrate that single unilateral injection of 6-OHDA into the medial forebrain bundle (MFB) potentially dysregulates Wnt/β-catenin signaling in substantia nigra pars compacta (SNpc). We used shRNA lentiviruses to genetically knockdown Axin-2 to up-regulate Wnt/β-catenin signaling in SNpc in parkinsonian rats. Genetic knockdown of Axin-2 up-regulates Wnt/β-catenin signaling by destabilizing the β-catenin degradation complex in SNpc in parkinsonian rats. Axin-2 shRNA mediated activation of Wnt/β-catenin signaling improved behavioural functions and protected the nigral DAergic neurons by increasing mitochondrial functionality in parkinsonian rats. Axin-2 shRNA treatment reduced apoptotic signaling, autophagy and ROS generation and improved mitochondrial membrane potential which promotes mitochondrial biogenesis in SNpc in parkinsonian rats. Interestingly, Axin-2 shRNA-mediated up-regulation of Wnt/β-catenin signaling enhanced net DAergic neurogenesis by regulating proneural genes (Nurr-1, Pitx-3, Ngn-2, and NeuroD1) and mitochondrial biogenesis in SNpc in parkinsonian rats. Therefore, our data suggest that pharmacological/genetic manipulation of Wnt signaling that enhances the endogenous regenerative capacity of DAergic neurons may have implication for regenerative approaches in PD.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/antagonists & inhibitors
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Carrier Proteins/antagonists & inhibitors
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Dopaminergic Neurons/drug effects
- Dopaminergic Neurons/metabolism
- Dopaminergic Neurons/pathology
- Gene Expression Regulation
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Injections, Intraventricular
- Male
- Medial Forebrain Bundle/drug effects
- Medial Forebrain Bundle/metabolism
- Medial Forebrain Bundle/pathology
- Mesencephalon/drug effects
- Mesencephalon/metabolism
- Mesencephalon/pathology
- Mitochondria/genetics
- Mitochondria/metabolism
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neurogenesis/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 2/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism
- Organelle Biogenesis
- Oxidopamine/administration & dosage
- Parkinson Disease, Secondary/chemically induced
- Parkinson Disease, Secondary/genetics
- Parkinson Disease, Secondary/metabolism
- Parkinson Disease, Secondary/pathology
- Pars Compacta/drug effects
- Pars Compacta/metabolism
- Pars Compacta/pathology
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Rats
- Rats, Sprague-Dawley
- Stereotaxic Techniques
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Wnt Proteins/genetics
- Wnt Proteins/metabolism
- Wnt Signaling Pathway
- beta Catenin/genetics
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Sonu Singh
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, U.P., India
| | - Akanksha Mishra
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, U.P., India; Academy of Scientific and Innovative Research, New Delhi, India
| | | | - Virendra Tiwari
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, U.P., India; Academy of Scientific and Innovative Research, New Delhi, India
| | - Rajnish Kumar Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India
| | - Sukant Khurana
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, U.P., India
| | - Shubha Shukla
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, U.P., India; Academy of Scientific and Innovative Research, New Delhi, India.
| |
Collapse
|
16
|
Maruyama T, Jiang M, Abbott A, Yu HMI, Huang Q, Chrzanowska-Wodnicka M, Chen EI, Hsu W. Rap1b Is an Effector of Axin2 Regulating Crosstalk of Signaling Pathways During Skeletal Development. J Bone Miner Res 2017; 32:1816-1828. [PMID: 28520221 PMCID: PMC5555789 DOI: 10.1002/jbmr.3171] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 12/22/2022]
Abstract
Recent identification and isolation of suture stem cells capable of long-term self-renewal, clonal expanding, and differentiating demonstrate their essential role in calvarial bone development, homeostasis, and injury repair. These bona fide stem cells express a high level of Axin2 and are able to mediate bone regeneration and repair in a cell autonomous fashion. The importance of Axin2 is further demonstrated by its genetic inactivation in mice causing skeletal deformities resembling craniosynostosis in humans. The fate determination and subsequent differentiation of Axin2+ stem cells are highly orchestrated by a variety of evolutionary conserved signaling pathways including Wnt, FGF, and BMP. These signals are often antagonistic of each other and possess differential effects on osteogenic and chondrogenic cell types. However, the mechanisms underlying the interplay of these signaling transductions remain largely elusive. Here we identify Rap1b acting downstream of Axin2 as a signaling interrogator for FGF and BMP. Genetic analysis reveals that Rap1b is essential for development of craniofacial and body skeletons. Axin2 regulates Rap1b through modulation of canonical BMP signaling. The BMP-mediated activation of Rap1b promotes chondrogenic fate and chondrogenesis. Furthermore, by inhibiting MAPK signaling, Rap1b mediates the antagonizing effect of BMP on FGF to repress osteoblast differentiation. Disruption of Rap1b in mice not only enhances osteoblast differentiation but also impairs chondrocyte differentiation during intramembranous and endochondral ossifications, respectively, leading to severe defects in craniofacial and body skeletons. Our findings reveal a dual role of Rap1b in development of the skeletogenic cell types. Rap1b is critical for balancing the signaling effects of BMP and FGF during skeletal development and disease. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Takamitsu Maruyama
- Department of Dentistry, University of Rochester Medical Center, Rochester, NY, USA.,Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Ming Jiang
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA.,Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | - Alycia Abbott
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - H-M Ivy Yu
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Qirong Huang
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Emily I Chen
- Proteomics Shared Resource at the Herbert Irving Comprehensive Cancer Center and Department of Pharmacology, Columbia University, New York, NY, USA
| | - Wei Hsu
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA.,Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA.,Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY, USA.,Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
17
|
Extraembryonic but not embryonic SUMO-specific protease 2 is required for heart development. Sci Rep 2016; 6:20999. [PMID: 26883797 PMCID: PMC4756675 DOI: 10.1038/srep20999] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 01/15/2016] [Indexed: 02/01/2023] Open
Abstract
SUMO-specific protease 2 (SENP2) activities to remove SUMO from its substrates is essential for development of trophoblast stem cells, niches and lineages. Global deletion of SENP2 leads to midgestation lethality, and causes severe defects in the placenta which is accompanied by embryonic brain and heart abnormalities. Because of the placental deficiencies, the role of SENP2 in development of the embryonic tissues has not been properly determined. The brain and heart abnormalities may be secondary to placental insufficiency. Here we have created a new mouse strain permitting conditional inactivation of SENP2. Mice homozygous for germline deletion of the conditional allele exhibit trophoblast defects and embryonic abnormalities resembling the global SENP2 knockout. However, tissue-specific disruptions of SENP2 demonstrate its dispensable role in embryogenesis. Placental expression of SENP2 is necessary and sufficient for embryonic heart and brain development. Using a protease deficient model, we further demonstrate the requirement of SENP2-dependent SUMO modification in development of all major trophoblast lineages. SENP2 regulates sumoylation of Mdm2 which controls p53 activities critical for G-S transition of mitotic division and endoreduplication in trophoblast proliferation and differentiation, respectively. The differentiation of trophoblasts is also dependent on SENP2-mediated activation of p57Kip2, a CDK-specific inhibitor required for endoreduplication.
Collapse
|
18
|
Stem cells of the suture mesenchyme in craniofacial bone development, repair and regeneration. Nat Commun 2016; 7:10526. [PMID: 26830436 PMCID: PMC4740445 DOI: 10.1038/ncomms10526] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/22/2015] [Indexed: 12/17/2022] Open
Abstract
The suture mesenchyme serves as a growth centre for calvarial morphogenesis and has been postulated to act as the niche for skeletal stem cells. Aberrant gene regulation causes suture dysmorphogenesis resulting in craniosynostosis, one of the most common craniofacial deformities. Owing to various limitations, especially the lack of suture stem cell isolation, reconstruction of large craniofacial bone defects remains highly challenging. Here we provide the first evidence for an Axin2-expressing stem cell population with long-term self-renewing, clonal expanding and differentiating abilities during calvarial development and homeostastic maintenance. These cells, which reside in the suture midline, contribute directly to injury repair and skeletal regeneration in a cell autonomous fashion. Our findings demonstrate their true identity as skeletal stem cells with innate capacities to replace the damaged skeleton in cell-based therapy, and permit further elucidation of the stem cell-mediated craniofacial skeletogenesis, leading to revealing the complex nature of congenital disease and regenerative medicine.
Collapse
|
19
|
Wang B, Zhao L, Fish M, Logan CY, Nusse R. Self-renewing diploid Axin2(+) cells fuel homeostatic renewal of the liver. Nature 2015; 524:180-5. [PMID: 26245375 PMCID: PMC4589224 DOI: 10.1038/nature14863] [Citation(s) in RCA: 533] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 06/29/2015] [Indexed: 02/06/2023]
Abstract
The source of new hepatocytes in the uninjured liver has remained an open question. By lineage tracing using the Wnt-responsive gene Axin2 in mice, we identify a population of proliferating and self-renewing cells adjacent to the central vein in the liver lobule. These pericentral cells express the early liver progenitor marker Tbx3, are diploid, and thereby differ from mature hepatocytes, which are mostly polyploid. The descendants of pericentral cells differentiate into Tbx3-negative, polyploid hepatocytes, and can replace all hepatocytes along the liver lobule during homeostatic renewal. Adjacent central vein endothelial cells provide Wnt signals that maintain the pericentral cells, thereby constituting the niche. Thus, we identify a cell population in the liver that subserves homeostatic hepatocyte renewal, characterize its anatomical niche, and identify molecular signals that regulate its activity.
Collapse
Affiliation(s)
- Bruce Wang
- 1] Department of Developmental Biology, Howard Hughes Medical Institute, Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA [2] Department of Medicine and Liver Center, University of California San Francisco, San Francisco, California 94143, USA
| | - Ludan Zhao
- Department of Developmental Biology, Howard Hughes Medical Institute, Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Matt Fish
- Department of Developmental Biology, Howard Hughes Medical Institute, Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Catriona Y Logan
- Department of Developmental Biology, Howard Hughes Medical Institute, Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Roel Nusse
- Department of Developmental Biology, Howard Hughes Medical Institute, Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
20
|
Lavado A, Ware M, Paré J, Cao X. The tumor suppressor Nf2 regulates corpus callosum development by inhibiting the transcriptional coactivator Yap. Development 2014; 141:4182-93. [PMID: 25336744 DOI: 10.1242/dev.111260] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The corpus callosum connects cerebral hemispheres and is the largest axon tract in the mammalian brain. Callosal malformations are among the most common congenital brain anomalies and are associated with a wide range of neuropsychological deficits. Crossing of the midline by callosal axons relies on a proper midline environment that harbors guidepost cells emitting guidance cues to instruct callosal axon navigation. Little is known about what controls the formation of the midline environment. We find that two components of the Hippo pathway, the tumor suppressor Nf2 (Merlin) and the transcriptional coactivator Yap (Yap1), regulate guidepost development and expression of the guidance cue Slit2 in mouse. During normal brain development, Nf2 suppresses Yap activity in neural progenitor cells to promote guidepost cell differentiation and prevent ectopic Slit2 expression. Loss of Nf2 causes malformation of midline guideposts and Slit2 upregulation, resulting in callosal agenesis. Slit2 heterozygosity and Yap deletion both restore callosal formation in Nf2 mutants. Furthermore, selectively elevating Yap activity in midline neural progenitors is sufficient to disrupt guidepost formation, upregulate Slit2 and prevent midline crossing. The Hippo pathway is known for its role in controlling organ growth and tumorigenesis. Our study identifies a novel role of this pathway in axon guidance. Moreover, by linking axon pathfinding and neural progenitor behaviors, our results provide an example of the intricate coordination between growth and wiring during brain development.
Collapse
Affiliation(s)
- Alfonso Lavado
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Michelle Ware
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Joshua Paré
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xinwei Cao
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
21
|
Serinagaoglu Y, Paré J, Giovannini M, Cao X. Nf2-Yap signaling controls the expansion of DRG progenitors and glia during DRG development. Dev Biol 2014; 398:97-109. [PMID: 25433207 DOI: 10.1016/j.ydbio.2014.11.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 11/14/2014] [Accepted: 11/18/2014] [Indexed: 11/17/2022]
Abstract
Molecular mechanisms governing the maintenance and proliferation of dorsal root ganglia (DRG) progenitors are largely unknown. Here we reveal that the Hippo pathway regulates the expansion of DRG progenitors and glia during mammalian DRG development. The key effectors of this pathway, transcriptional coactivators Yap and Taz, are expressed in DRG progenitors and glia during DRG development but are at least partially inhibited from activating transcription. Aberrant YAP activation leads to overexpansion of DRG progenitor and glial populations. We further show that the Neurofibromatosis 2 (Nf2) tumor suppressor inhibits Yap during DRG development. Loss of Nf2 leads to similar phenotypes as does YAP hyperactivation, and deleting Yap suppresses these phenotypes. Our study demonstrates that Nf2-Yap signaling plays important roles in controlling the expansion of DRG progenitors and glia during DRG development.
Collapse
Affiliation(s)
- Yelda Serinagaoglu
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Joshua Paré
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Marco Giovannini
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90057, USA
| | - Xinwei Cao
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
22
|
Quiroga AC, Stolt CC, Diez del Corral R, Dimitrov S, Pérez-Alcalá S, Sock E, Barbas JA, Wegner M, Morales AV. Sox5 controls dorsal progenitor and interneuron specification in the spinal cord. Dev Neurobiol 2014; 75:522-38. [PMID: 25363628 DOI: 10.1002/dneu.22240] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/22/2014] [Accepted: 10/25/2014] [Indexed: 11/08/2022]
Abstract
The basic organization of somatosensory circuits in the spinal cord is already setup during the initial patterning of the dorsal neural tube. Extrinsic signals, such as Wnt and TGF-β pathways, activate combinatorial codes of transcription factors that are responsible for generating a pattern of discrete domains of dorsal progenitors (dp). These progenitors will give rise to distinct dorsal interneurons (dI). The Wnt/ βcatenin signaling pathway controls specification of dp/dI1-3 progenitors and interneurons. According to the current model in the field, Wnt/βcatenin activity seems to act in a graded fashion in the spinal cord, as different relative levels determine the identity of adjacent progenitors. However, it is not clear how this activity gradient is controlled and how the identities of dI1-3 are differentially regulated by Wnt signalling. We have determined that two SoxD transcription factors, Sox5 and Sox6, are expressed in restricted domains of dorsal progenitors in the neural tube. Using gain- and loss-of function approaches in chicken embryos, we have established that Sox5 controls cell fate specification of dp2 and dp3 progenitors and, as a result, controls the correct number of the corresponding dorsal interneurons (dI2 and dI3). Furthermore, Sox5 exerts its function by restricting dorsally Wnt signaling activity via direct transcriptional induction of the negative Wnt pathway regulator Axin2. By that way, Sox5 acts as a Wnt pathway modulator that contributes to sharpen the dorsal gradient of Wnt/βcatenin activity to control the distinction of two functionally distinct types of interneurons, dI2 and dI3 involved in the somatosensory relay.
Collapse
Affiliation(s)
- Alejandra C Quiroga
- Department of Cellular, Molecular and Developmental Neurobiology, Instituto Cajal, CSIC, Madrid, 28002, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Pu Y, Chen P, Zhou B, Wang Y, Song Y, Peng Y, Rao L, Zhang L. Association between polymorphisms in AXIN1 gene and atrial septal defect. Biomarkers 2014; 19:674-8. [PMID: 25355064 DOI: 10.3109/1354750x.2014.978895] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT AXIN1 is a central component of Wnt signalling pathway which is essential for embryonic development. OBJECTIVE To investigate whether polymorphisms of AXIN1 contribute to ASD susceptibility. MATERIALS AND METHODS Three tag SNPs (rs12921862, rs370681 and rs1805105) in AXIN1 were genotyped in 208 ASD patients and 302 healthy controls using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) in a Chinese population. RESULTS Significantly increased ASD risk was observed to be associated with the A allele of rs12921862 (p < 0.0001, OR = 3.096, 95% CI = 2.037-4.717). Increased ASD risk was observed to be associated with rs370681 in a codominant (p = 0.043, OR = 1.52, 95% CI = 1.04-2.22) and overdominant model (p = 0.016, OR = 1.57, 95% CI = 1.08-2.27). CONCLUSION rs12921862 and rs370681 may contribute to ASD susceptibility.
Collapse
Affiliation(s)
- Yan Pu
- Department of Forensic Biology, West China School of Preclinical and Forensic Medicine, Sichuan University , Chengdu, Sichuan , P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Disruption of SUMO-specific protease 2 induces mitochondria mediated neurodegeneration. PLoS Genet 2014; 10:e1004579. [PMID: 25299344 PMCID: PMC4191884 DOI: 10.1371/journal.pgen.1004579] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 07/08/2014] [Indexed: 12/20/2022] Open
Abstract
Post-translational modification of proteins by small ubiquitin-related modifier (SUMO) is reversible and highly evolutionarily conserved from yeasts to humans. Unlike ubiquitination with a well-established role in protein degradation, sumoylation may alter protein function, activity, stability and subcellular localization. Members of SUMO-specific protease (SENP) family, capable of SUMO removal, are involved in the reversed conjugation process. Although SUMO-specific proteases are known to reverse sumoylation in many well-defined systems, their importance in mammalian development and pathogenesis remains largely elusive. In patients with neurodegenerative diseases, aberrant accumulation of SUMO-conjugated proteins has been widely described. Several aggregation-prone proteins modulated by SUMO have been implicated in neurodegeneration, but there is no evidence supporting a direct involvement of SUMO modification enzymes in human diseases. Here we show that mice with neural-specific disruption of SENP2 develop movement difficulties which ultimately results in paralysis. The disruption induces neurodegeneration where mitochondrial dynamics is dysregulated. SENP2 regulates Drp1 sumoylation and stability critical for mitochondrial morphogenesis in an isoform-specific manner. Although dispensable for development of neural cell types, this regulatory mechanism is necessary for their survival. Our findings provide a causal link of SUMO modification enzymes to apoptosis of neural cells, suggesting a new pathogenic mechanism for neurodegeneration. Exploring the protective effect of SENP2 on neuronal cell death may uncover important preventive and therapeutic strategies for neurodegenerative diseases.
Collapse
|
25
|
Bohnenpoll T, Trowe MO, Wojahn I, Taketo MM, Petry M, Kispert A. Canonical Wnt signaling regulates the proliferative expansion and differentiation of fibrocytes in the murine inner ear. Dev Biol 2014; 391:54-65. [PMID: 24727668 DOI: 10.1016/j.ydbio.2014.03.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/27/2014] [Accepted: 03/29/2014] [Indexed: 01/18/2023]
Abstract
Otic fibrocytes tether the cochlear duct to the surrounding otic capsule but are also critically involved in maintenance of ion homeostasis in the cochlea, thus, perception of sound. The molecular pathways that regulate the development of this heterogenous group of cells from mesenchymal precursors are poorly understood. Here, we identified epithelial Wnt7a and Wnt7b as possible ligands of Fzd-mediated β-catenin (Ctnnb1)-dependent (canonical) Wnt signaling in the adjacent undifferentiated periotic mesenchyme (POM). Mice with a conditional deletion of Ctnnb1 in the POM exhibited a complete failure of fibrocyte differentiation, a severe reduction of mesenchymal cells surrounding the cochlear duct, loss of pericochlear spaces, a thickening and partial loss of the bony capsule and a secondary disturbance of cochlear duct coiling shortly before birth. Analysis at earlier stages revealed that radial patterning of the POM in two domains with highly condensed cartilaginous precursors and more loosely arranged inner mesenchymal cells occurred normally but that proliferation in the inner domain was reduced and cytodifferentiation failed. Cells with mis/overexpression of a stabilized form of Ctnnb1 in the entire POM mesenchyme sorted to the inner mesenchymal compartment and exhibited increased proliferation. Our analysis suggests that Wnt signals from the cochlear duct epithelium are crucial to induce differentiation and expansion of fibrocyte precursor cells. Our findings emphasize the importance of epithelial-mesenchymal signaling in inner ear development.
Collapse
Affiliation(s)
- Tobias Bohnenpoll
- Institut für Molekularbiologie, OE5250, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Mark-Oliver Trowe
- Institut für Molekularbiologie, OE5250, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Irina Wojahn
- Institut für Molekularbiologie, OE5250, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | | | - Marianne Petry
- Institut für Molekularbiologie, OE5250, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Andreas Kispert
- Institut für Molekularbiologie, OE5250, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| |
Collapse
|
26
|
Han Y, Zhou L, Ma L, Li D, Xu M, Yuan H, Ma J, Zhang W, Jiang H, Wu Y, Wang L, Pan Y. The axis inhibition protein 2 polymorphisms and non-syndromic orofacial clefts susceptibility in a Chinese Han population. J Oral Pathol Med 2014; 43:554-60. [DOI: 10.1111/jop.12162] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Yue Han
- Institute of Stomatology; Nanjing Medical University; Nanjing China
| | - Lian Zhou
- Institute of environment disease prevention and control; Jiangsu Provincial Center for Disease Control and Prevention; Nanjing China
| | - Lan Ma
- Institute of Stomatology; Nanjing Medical University; Nanjing China
| | - Dandan Li
- Institute of Stomatology; Nanjing Medical University; Nanjing China
| | - Min Xu
- Institute of Stomatology; Nanjing Medical University; Nanjing China
| | - Hua Yuan
- Institute of Stomatology; Nanjing Medical University; Nanjing China
| | - Junqing Ma
- Institute of Stomatology; Nanjing Medical University; Nanjing China
| | - Weibing Zhang
- Institute of Stomatology; Nanjing Medical University; Nanjing China
| | - Hongbing Jiang
- Institute of Stomatology; Nanjing Medical University; Nanjing China
| | - Yunong Wu
- Institute of Stomatology; Nanjing Medical University; Nanjing China
| | - Lin Wang
- Institute of Stomatology; Nanjing Medical University; Nanjing China
| | - Yongchu Pan
- Institute of Stomatology; Nanjing Medical University; Nanjing China
| |
Collapse
|
27
|
Abstract
Although Wnt7a has been implicated in axon guidance and synapse formation, investigations of its role in the early steps of neurogenesis have just begun. We show here that Wnt7a is essential for neural stem cell self-renewal and neural progenitor cell cycle progression in adult mouse brains. Loss of Wnt7a expression dramatically reduced the neural stem cell population and increased the rate of cell cycle exit in neural progenitors in the hippocampal dentate gyrus of adult mice. Furthermore, Wnt7a is important for neuronal differentiation and maturation. Loss of Wnt7a expression led to a substantial decrease in the number of newborn neurons in the hippocampal dentate gyrus. Wnt7a(-/-) dentate granule neurons exhibited dramatically impaired dendritic development. Moreover, Wnt7a activated β-catenin and its downstream target genes to regulate neural stem cell proliferation and differentiation. Wnt7a stimulated neural stem cell proliferation by activating the β-catenin-cyclin D1 pathway and promoted neuronal differentiation and maturation by inducing the β-catenin-neurogenin 2 pathway. Thus, Wnt7a exercised critical control over multiple steps of neurogenesis by regulating genes involved in both cell cycle control and neuronal differentiation.
Collapse
|
28
|
Maupin KA, Droscha CJ, Williams BO. A Comprehensive Overview of Skeletal Phenotypes Associated with Alterations in Wnt/β-catenin Signaling in Humans and Mice. Bone Res 2013; 1:27-71. [PMID: 26273492 DOI: 10.4248/br201301004] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 01/20/2013] [Indexed: 12/23/2022] Open
Abstract
The Wnt signaling pathway plays key roles in differentiation and development and alterations in this signaling pathway are causally associated with numerous human diseases. While several laboratories were examining roles for Wnt signaling in skeletal development during the 1990s, interest in the pathway rose exponentially when three key papers were published in 2001-2002. One report found that loss of the Wnt co-receptor, Low-density lipoprotein related protein-5 (LRP5), was the underlying genetic cause of the syndrome Osteoporosis pseudoglioma (OPPG). OPPG is characterized by early-onset osteoporosis causing increased susceptibility to debilitating fractures. Shortly thereafter, two groups reported that individuals carrying a specific point mutation in LRP5 (G171V) develop high-bone mass. Subsequent to this, the causative mechanisms for these observations heightened the need to understand the mechanisms by which Wnt signaling controlled bone development and homeostasis and encouraged significant investment from biotechnology and pharmaceutical companies to develop methods to activate Wnt signaling to increase bone mass to treat osteoporosis and other bone disease. In this review, we will briefly summarize the cellular mechanisms underlying Wnt signaling and discuss the observations related to OPPG and the high-bone mass disorders that heightened the appreciation of the role of Wnt signaling in normal bone development and homeostasis. We will then present a comprehensive overview of the core components of the pathway with an emphasis on the phenotypes associated with mice carrying genetically engineered mutations in these genes and clinical observations that further link alterations in the pathway to changes in human bone.
Collapse
Affiliation(s)
- Kevin A Maupin
- Program for Skeletal Pathobiology and Center for Tumor Metastasis, Van Andel Research Institute , 333 Bostwick NE, Grand Rapids, MI 49503, USA
| | - Casey J Droscha
- Program for Skeletal Pathobiology and Center for Tumor Metastasis, Van Andel Research Institute , 333 Bostwick NE, Grand Rapids, MI 49503, USA
| | - Bart O Williams
- Program for Skeletal Pathobiology and Center for Tumor Metastasis, Van Andel Research Institute , 333 Bostwick NE, Grand Rapids, MI 49503, USA
| |
Collapse
|
29
|
Maruyama EO, Yu HMI, Jiang M, Fu J, Hsu W. Gpr177 deficiency impairs mammary development and prohibits Wnt-induced tumorigenesis. PLoS One 2013; 8:e56644. [PMID: 23457599 PMCID: PMC3574013 DOI: 10.1371/journal.pone.0056644] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 01/11/2013] [Indexed: 12/24/2022] Open
Abstract
Aberrant regulation of the Wnt pathway, essential for various developmental processes, is tightly linked to human breast cancers. By hijacking this evolutionary conserved signaling pathway, cancer cells acquire sustaining proliferation ability, leading to modification of physiologic properties necessary for tumor initiation and progression. An enormous wealth of knowledge on the importance of Wnt signaling in breast development and cancer has been obtained, but the cell types responsible for production of this proliferative signal operating within normal and malignant tissues remains poorly understood. Here we report that Wnt production mediated by Gpr177 is essential for mammary morphogenesis. The loss of Gpr177 interferes with mammary stem cells, leading to deficiencies in cell proliferation and differentiation. Genetic analysis further demonstrates an indispensable role of Gpr177 in Wnt-induced tumorigenesis. The Gpr177-deficiency mice are resistant to malignant transformation. This study not only demonstrates the necessity of Wnt in mammary organogenesis but also provides a proof-of-principle for targeting of Gpr177 as a potential new treatment for human diseases with aberrant Wnt stimulation.
Collapse
Affiliation(s)
- Eri Ohfuchi Maruyama
- Department of Biomedical Genetics, Center for Oral Biology, James P. Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, United States of America
| | - H-M. Ivy Yu
- Department of Biomedical Genetics, Center for Oral Biology, James P. Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Ming Jiang
- Department of Biomedical Genetics, Center for Oral Biology, James P. Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Jiang Fu
- Department of Biomedical Genetics, Center for Oral Biology, James P. Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Wei Hsu
- Department of Biomedical Genetics, Center for Oral Biology, James P. Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
30
|
Transcriptional effects of E3 ligase atrogin-1/MAFbx on apoptosis, hypertrophy and inflammation in neonatal rat cardiomyocytes. PLoS One 2013; 8:e53831. [PMID: 23335977 PMCID: PMC3545877 DOI: 10.1371/journal.pone.0053831] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 12/03/2012] [Indexed: 12/24/2022] Open
Abstract
Atrogin-1/MAFbx is an ubiquitin E3 ligase that regulates myocardial structure and function through the ubiquitin-dependent protein modification. However, little is known about the effect of atrogin-1 activation on the gene expression changes in cardiomyocytes. Neonatal rat cardiomyocytes were infected with adenovirus atrogin-1 (Ad-atrogin-1) or GFP control (Ad-GFP) for 24 hours. The gene expression profiles were compared with microarray analysis. 314 genes were identified as differentially expressed by overexpression of atrogin-1, of which 222 were up-regulated and 92 were down-regulated. Atrogin-1 overexpression significantly modulated the expression of genes in 30 main functional categories, most genes clustered around the regulation of cell death, proliferation, inflammation, metabolism and cardiomyoctye structure and function. Moreover, overexpression of atrogin-1 significantly inhibited cardiomyocyte survival, hypertrophy and inflammation under basal condition or in response to lipopolysaccharide (LPS). In contrast, knockdown of atrogin-1 by siRNA had opposite effects. The mechanisms underlying these effects were associated with inhibition of MAPK (ERK1/2, JNK1/2 and p38) and NF-κB signaling pathways. In conclusion, the present microarray analysis reveals previously unappreciated atrogin-1 regulation of genes that could contribute to the effects of atrogin-1 on cardiomyocyte survival, hypertrophy and inflammation in response to endotoxin, and may provide novel insight into how atrogin-1 modulates the programming of cardiac muscle gene expression.
Collapse
|
31
|
Fu J, Hsu W. Epidermal Wnt controls hair follicle induction by orchestrating dynamic signaling crosstalk between the epidermis and dermis. J Invest Dermatol 2012. [PMID: 23190887 PMCID: PMC3594635 DOI: 10.1038/jid.2012.407] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A signal first arising in the dermis to initiate the development of hair follicles has been described for many decades. Wnt is the earliest signal known to be intimately involved in hair follicle induction. However, it is not clear whether the inductive signal of Wnt arises intradermally or intraepidermally. Whether Wnt acts as the first dermal signal to initiate hair follicle development also remains unclear. Here, we report that Wnt production mediated by Gpr177, the mouse Wls orthologue encoding a Wnt trafficking regulator, is essential for hair follicle induction. Cell-type specific abrogation of the signal reveals that only epidermal, but not dermal, production of Wnt is required. An intra-epidermal Wnt signal is necessary and sufficient for hair follicle initiation. But, the subsequent development depends on reciprocal signaling crosstalk of epidermal and dermal cells. Wnt signals within the epidermis and dermis, and crossing between the epidermis and dermis, have distinct roles and specific functions in skin development. This study not only defines the cell type responsible for Wnt production, but also reveals a highly dynamic regulation of Wnt signaling at different steps of hair follicle morphogenesis. Our findings uncover a mechanism underlying hair follicle development orchestrated by the Wnt pathway.
Collapse
Affiliation(s)
- Jiang Fu
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | | |
Collapse
|
32
|
Weaver C, Turner N, Hall J. Review of the neuroanatomic landscape implicated in glucose sensing and regulation of nutrient signaling: immunophenotypic localization of diabetes gene Tcf7l2 in the developing murine brain. J Chem Neuroanat 2012; 45:1-17. [PMID: 22796301 DOI: 10.1016/j.jchemneu.2012.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 06/12/2012] [Accepted: 06/19/2012] [Indexed: 01/25/2023]
Abstract
Genetic variants in the transcription factor 7-like 2(Tcf7l2) gene have been found to confer a significant risk of type 2 diabetes and attenuated insulin secretion. Based on its genomic wide association Tcf7l2 is considered the single most important predictor of diabetes to date. Previous studies of Tcf7l2 mRNA localization in the adult brain suggest a putative role of Tcf7l2 in the CNS regulation of energy homeostasis. The present study further characterizes the immunophenotypic distribution of peptide expression in the brains of Tcf7l2 progeny during developmental time periods between E12.5 and P1. Tcf7l2(-/-) is lethal beyond P1. Results show that while negligible TCF7L2 expression is found in the developing brains of Tcf7l2(-/-)mice, TCF7L2 protein is relatively widespread and robustly expressed in the brain by E18.5 and exhibits specific expression within neuronal populations and regions of the brain in Tcf7l2(+/-) and Tcf7l2(+/+) progeny. Strong immunophenotypic labeling was found in the diencephalic structure of the thalamus that suggests a role of Tcf7l2 in the development and maintenance of thalamic activity. Strongly expressed TCF7L2 was localized in select hypothalamic and preoptic nuclei indicative of Tcf7l2 function within neurons controlling energy balance. Definitive neuronal staining for TCF7L2 within nuclei of the brain stem and circumventricular organs extends TCF7L2 localization within autonomic neurons and its potential integration with autonomic function. In addition robust TCF7L2 expression was found in the tectal and tegmental structures of the superior and inferior colliculi as well as transient expression in neuroepithelium of the cerebral and hippocampal cortices of E16 and E18.5. Patterns of TCF7L2 peptide localization when compared to the adult protein synthetic chemical/anatomical landscape of glucose sensing exhibit a good correlational fit between its expression and regions, nuclei, and pathways regulating energy homeostasis via integration and response to peripheral endocrine, metabolic and neuronal signaling. TCF was also found co-localized with peptides that regulate energy homeostasis including AgRP, POMC and NPY. TCF7l2, some variants of which have been shown to impair GLP-1-induced insulin secretion, was also found co-localize with GLP-1 in adult TCF wild type progeny. Impaired Tcf7l2-mediated neural regulation may contribute to the risk and/or underlying pathophysiology of type 2 diabetes that has found high expression in genomic studies of Tcf7l2 variants.
Collapse
Affiliation(s)
- Cyprian Weaver
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
33
|
Zhang YG, Wu S, Xia Y, Chen D, Petrof EO, Claud EC, Hsu W, Sun J. Axin1 prevents Salmonella invasiveness and inflammatory response in intestinal epithelial cells. PLoS One 2012; 7:e34942. [PMID: 22509369 PMCID: PMC3324539 DOI: 10.1371/journal.pone.0034942] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 03/11/2012] [Indexed: 01/07/2023] Open
Abstract
Background Axin1 and its homolog Axin2 are scaffold proteins essential for regulating Wnt signaling. Axin-dependent regulation of Wnt is important for various developmental processes and human diseases. However, the involvement of Axin1 and Axin2 in host defense and inflammation remains to be determined. Methods/Principal Findings Here, we report that Axin1, but not Axin2, plays an essential role in host-pathogen interaction mediated by the Wnt pathway. Pathogenic Salmonella colonization greatly reduces the level of Axin1 in intestinal epithelial cells. This reduction is regulated at the posttranslational level in early onset of the bacterial infection. Further analysis reveals that the DIX domain and Ser614 of Axin1 are necessary for the Salmonella-mediated modulation through ubiquitination and SUMOylation. Conclusion/Significance Axin1 apparently has a preventive effect on bacterial invasiveness and inflammatory response during the early stages of infection. The results suggest a distinct biological function of Axin1 and Axin2 in infectious disease and intestinal inflammation while they are functionally equivalent in developmental settings.
Collapse
Affiliation(s)
- Yong-guo Zhang
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Shaoping Wu
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Yinglin Xia
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York, United States of America
| | - Di Chen
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Elaine O. Petrof
- GI Diseases Research Unit and Division of Infectious Diseases, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Erika C. Claud
- Department of Pediatrics and Medicine, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Wei Hsu
- Department of Biomedical Genetics, Center for Oral Biology, and James P Wilmot Cancer Center, University of Rochester, Rochester, New York, United States of America
| | - Jun Sun
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois, United States of America
- Gastroenterology and Hepatology Division, Department of Medicine, University of Rochester, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
34
|
Letra A, Bjork B, Cooper ME, Szabo-Rogers H, Deleyiannis FWB, Field LL, Czeizel AE, Ma L, Garlet GP, Poletta FA, Mereb JC, Lopez-Camelo JS, Castilla EE, Orioli IM, Wendell S, Blanton SH, Liu K, Hecht JT, Marazita ML, Vieira AR, Silva RM. Association of AXIN2 with non-syndromic oral clefts in multiple populations. J Dent Res 2012; 91:473-8. [PMID: 22370446 DOI: 10.1177/0022034512440578] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We have previously shown the association of AXIN2 with oral clefts in a US population. Here, we expanded our study to explore the association of 11 AXIN2 markers in 682 cleft families from multiple populations. Alleles for each AXIN2 marker were tested for transmission distortion with clefts by means of the Family-based Association Test. We observed an association with SNP rs7224837 and all clefts in the combined populations (p = 0.001), and with SNP rs3923086 and cleft lip and palate in Asian populations (p = 0.004). We confirmed our association findings in an additional 528 cleft families from the United States (p < 0.009). We tested for gene-gene interaction between AXIN2 and additional cleft susceptibility loci. We assessed and detected Axin2 mRNA and protein expression during murine palatogenesis. In addition, we also observed co-localization of Axin2 with Irf6 proteins, particularly in the epithelium. Our results continue to support a role for AXIN2 in the etiology of human clefting. Additional studies should be performed to improve our understanding of the biological mechanisms linking AXIN2 to oral clefts.
Collapse
Affiliation(s)
- A Letra
- School of Dentistry, University of Texas Health Science Center at Houston, DBB-202, 6516 MD Anderson Blvd., Houston, TX 77030-3402, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Slawny NA, O'Shea KS. Dynamic changes in Wnt signaling are required for neuronal differentiation of mouse embryonic stem cells. Mol Cell Neurosci 2011; 48:205-16. [PMID: 21856426 DOI: 10.1016/j.mcn.2011.07.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 07/20/2011] [Accepted: 07/26/2011] [Indexed: 10/17/2022] Open
Abstract
Embryonic stem cells (ESC) and the epiblast share a similar gene expression profile and an attenuated cell cycle, making them an accessible and tractable model system to study lineage choice at gastrulation. Differentiation of the epiblast and ESC to the mesendodermal lineage has been shown to rely on Wnt/β-catenin signaling; which counterintuitively, is also required to inhibit differentiation and maintain pluripotency. To examine these seemingly contradictory roles, we developed a mouse ESC (ESC) line that inducibly expresses a dominant negative Tcf4 (dnTcf4) protein to block canonical Wnt signaling. Cells expressing the dnTcf4 protein differentiated largely to Sox3 positive neural precursors but were unable to progress to βIII tubulin positive neurons unless Wnt signaling was derepressed, demonstrating a sequential requirement for Wnt signaling in lineage differentiation. To determine if Wnt/β-catenin signaling is similarily required at sequential stages of neural differentiation in the intact embryo, we delivered shRNA targeting β-catenin to pregnant mice on E5.5 of development. Blocking canonical Wnt signaling during post-implantation development increased the number of neural precursors which failed to differentiate to mature neurons, and produced defects of embryonic axis elongation, neurulation and neural tube closure that phenocopy the β-catenin null embryo. These results demonstrate that lineage differentiation relies on sequential repression and derepression of critical signaling pathways involved in maintaining pluripotency versus differentiation.
Collapse
Affiliation(s)
- N A Slawny
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | | |
Collapse
|
36
|
Jiang M, Chiu SY, Hsu W. SUMO-specific protease 2 in Mdm2-mediated regulation of p53. Cell Death Differ 2011; 18:1005-15. [PMID: 21183956 PMCID: PMC3081924 DOI: 10.1038/cdd.2010.168] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 11/15/2010] [Accepted: 11/16/2010] [Indexed: 01/05/2023] Open
Abstract
Genetic analysis in mice has revealed a key genetic pathway, SUMO-specific protease 2 (SENP2)-Mdm2-p53, essential for trophoblast development. Targeted disruption of SENP2 impairs the G-S transition required for mitotic and endoreduplication cell cycles during the expansion of trophoblast stem cells and their differentiation into polyploidy cells, respectively. The disruption disturbed the subcellular distribution and SUMO modification of Mdm2, leading to interference with p53 degradation. Here, we further explore the mechanism underlying SENP2-mediated regulation of Mdm2 in p53-induced cellular stress. We identify a specific isoform of SENP2 necessary and sufficient to negatively regulate the p53-dependent transcription and its related stress responses. This isoform-specific effect is attributed to the differential compartmentalization of SENP2. SUMO conjugation of Mdm2 induces its co-localization and association with SENP2 in promyelocytic leukemia bodies. Biochemical studies show that SENP2 catalyzes the desumoylation process of Mdm2. SENP2-dependent regulation of Mdm2 is sensitive to its p53-binding activity. Our findings led us to propose a mechanism underlying the SENP2-mediated regulation of Mdm2 that is critical for genome integrity in p53-dependent stress responses.
Collapse
Affiliation(s)
- M Jiang
- Department of Biomedical Genetics, Center for Oral Biology, James P Wilmot Cancer Center, University of Rochester Medical Center, 601 Elmwood Avenue, Box 611, Rochester, NY, USA
| | - S-Y Chiu
- Department of Biomedical Genetics, Center for Oral Biology, James P Wilmot Cancer Center, University of Rochester Medical Center, 601 Elmwood Avenue, Box 611, Rochester, NY, USA
| | - W Hsu
- Department of Biomedical Genetics, Center for Oral Biology, James P Wilmot Cancer Center, University of Rochester Medical Center, 601 Elmwood Avenue, Box 611, Rochester, NY, USA
| |
Collapse
|
37
|
Fu J, Yu HMI, Maruyama T, Mirando AJ, Hsu W. Gpr177/mouse Wntless is essential for Wnt-mediated craniofacial and brain development. Dev Dyn 2011; 240:365-71. [PMID: 21246653 PMCID: PMC3056068 DOI: 10.1002/dvdy.22541] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2010] [Indexed: 12/16/2022] Open
Abstract
We have previously demonstrated that Gpr177, the mouse orthologue of Drosophila Wls/Evi/Srt, is required for establishment of the anterior-posterior axis. The Gpr177 null phenotype is highly reminiscent to the loss of Wnt3, the earliest abnormality among all Wnt knockouts in mice. The expression of Gpr177 in various cell types and tissues lead us to hypothesize that reciprocal regulation of Wnt and Gpr177 is essential for the Wnt-dependent developmental and pathogenic processes. Here, we create a new mouse strain permitting conditional inactivation of Gpr177. The loss of Gpr177 in the Wnt1-expressing cells causes mid/hindbrain and craniofacial defects which are far more severe than the Wnt1 knockout, but resemble the double knockout of Wnt1 and Wnt3a as well as β-catenin deletion in the Wnt1-expressing cells. Our findings demonstrate the importance of Gpr177 in Wnt1-mediated development of the mouse embryo, suggesting an overlapping function of Wnt family members in the Wnt1-expressing cells.
Collapse
Affiliation(s)
| | | | - Takamitsu Maruyama
- Department of Biomedical Genetics, Center for Oral Biology, James Wilmot Cancer Center, University of Rochester Medical Center, 601 Elmwood Avenue, Box 611, Rochester, NY 14642
| | - Anthony J. Mirando
- Department of Biomedical Genetics, Center for Oral Biology, James Wilmot Cancer Center, University of Rochester Medical Center, 601 Elmwood Avenue, Box 611, Rochester, NY 14642
| | - Wei Hsu
- Department of Biomedical Genetics, Center for Oral Biology, James Wilmot Cancer Center, University of Rochester Medical Center, 601 Elmwood Avenue, Box 611, Rochester, NY 14642
| |
Collapse
|
38
|
Mirando AJ, Maruyama T, Fu J, Yu HMI, Hsu W. β-catenin/cyclin D1 mediated development of suture mesenchyme in calvarial morphogenesis. BMC DEVELOPMENTAL BIOLOGY 2010; 10:116. [PMID: 21108844 PMCID: PMC3001432 DOI: 10.1186/1471-213x-10-116] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 11/26/2010] [Indexed: 12/14/2022]
Abstract
BACKGROUND Mouse genetic study has demonstrated that Axin2 is essential for calvarial development and disease. Haploid deficiency of β-catenin alleviates the calvarial phenotype caused by Axin2 deficiency. This loss-of-function study provides evidence for the requirement of β-catenin in exerting the downstream effects of Axin2. RESULTS Here we utilize a gain-of-function analysis to further assess the role of β-catenin. A transgenic expression system permitting conditional activation of β-catenin in a spatiotemporal specific manner has been developed. Aberrant stimulation of β-catenin leads to increases in expansion of skeletogenic precursors and the enhancement of bone ossification reminiscent to the loss of Axin2. The constitutively active signal promotes specification of osteoprogenitors, but prevents their maturation into terminally differentiated osteoblasts, along the osteoblast lineage. However, the prevention does not interfere with bone synthesis, suggesting that mineralization occurs without the presence of mature osteoblasts. β-catenin signaling apparently plays a key role in suture development through modulation of calvarial morphogenetic signaling pathways. Furthermore, genetic inactivation of the β-catenin transcriptional target, cyclin D1, impairs expansion of the skeletogenic precursors contributing to deficiencies in calvarial ossification. There is a specific requirement for cyclin D1 in populating osteoprogenitor cell types at various developmental stages. CONCLUSION These findings advance our knowledge base of Wnt signaling in calvarial morphogenesis, suggesting a key regulatory pathway of Axin2/β-catenin/cyclin D1 in development of the suture mesenchyme.
Collapse
Affiliation(s)
- Anthony J Mirando
- Department of Biomedical Genetics, Center for Oral Biology, James P Wilmot Cancer Center, University of Rochester Medical Center, 601 Elmwood Avenue, Box 611, Rochester, NY 14642, USA
| | - Takamitsu Maruyama
- Department of Biomedical Genetics, Center for Oral Biology, James P Wilmot Cancer Center, University of Rochester Medical Center, 601 Elmwood Avenue, Box 611, Rochester, NY 14642, USA
| | - Jiang Fu
- Department of Biomedical Genetics, Center for Oral Biology, James P Wilmot Cancer Center, University of Rochester Medical Center, 601 Elmwood Avenue, Box 611, Rochester, NY 14642, USA
| | - Hsiao-Man Ivy Yu
- Department of Biomedical Genetics, Center for Oral Biology, James P Wilmot Cancer Center, University of Rochester Medical Center, 601 Elmwood Avenue, Box 611, Rochester, NY 14642, USA
| | - Wei Hsu
- Department of Biomedical Genetics, Center for Oral Biology, James P Wilmot Cancer Center, University of Rochester Medical Center, 601 Elmwood Avenue, Box 611, Rochester, NY 14642, USA
| |
Collapse
|
39
|
Abstract
Wls/Evi/Srt encoding a multipass transmembrane protein has been identified as a regulator for proper sorting and secretion of Wnt in flies. We have previously demonstrated that Gpr177 is the mouse ortholog required for axis determination. Gpr177 is a transcriptional target of Wnt that is activated to assist its subcellular distribution in a feedback regulatory loop. We, therefore, proposed that reciprocal regulation of Wnt and Gpr177 is essential for the Wnt-dependent developmental and pathogenic processes. Here, we examine the expression pattern of Gpr177 in mouse development. Gpr177 is expressed in a variety of tissues and cell types during organogenesis. Furthermore, Gpr177 is a glycoprotein primarily accumulating in the Golgi apparatus in signal-producing cells. The glycosylation of Gpr177 is necessary for proper transportation in the secretory pathway. Our findings suggest that the Gpr177-mediated regulation of Wnt is crucial for organogenesis in health and disease.
Collapse
Affiliation(s)
- Hsiao-Man Ivy Yu
- Department of Biomedical Genetics, Center for Oral Biology, James Wilmot Cancer Center, University of Rochester Medical Center, 601 Elmwood Avenue, Box 611, Rochester, NY 14642
| | - Ying Jin
- Department of Biomedical Genetics, Center for Oral Biology, James Wilmot Cancer Center, University of Rochester Medical Center, 601 Elmwood Avenue, Box 611, Rochester, NY 14642
| | - Jiang Fu
- Department of Biomedical Genetics, Center for Oral Biology, James Wilmot Cancer Center, University of Rochester Medical Center, 601 Elmwood Avenue, Box 611, Rochester, NY 14642
| | - Wei Hsu
- Department of Biomedical Genetics, Center for Oral Biology, James Wilmot Cancer Center, University of Rochester Medical Center, 601 Elmwood Avenue, Box 611, Rochester, NY 14642
| |
Collapse
|
40
|
Comai G, Boutet A, Neirijnck Y, Schedl A. Expression patterns of the Wtx/Amer gene family during mouse embryonic development. Dev Dyn 2010; 239:1867-78. [PMID: 20503382 DOI: 10.1002/dvdy.22313] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
WTX/AMER1 is a novel negative regulator of the WNT/beta-catenin pathway with mutations detected in Wilms' tumors and an X-linked sclerosing bone dysplasia. WTX/AMER1 (Fam123b) shares several domains of homology with two other recently identified proteins: AMER2 (Fam123a) and AMER3 (Fam123c). Here, we describe an in-depth expression analysis of all three members of this gene family during mouse embryonic development. All genes were strongly expressed in the central as well as the peripheral nervous system, thus suggesting important roles of this gene family during neurogenesis. Specific expression was found in the retina, inner ear, and nasal epithelium. Outside of the nervous system Wtx/Amer1 showed the broadest expression domains including cephalic and limb mesenchyme, skeletal muscle, bladder, gonads, lung bud, salivary glands, and the kidneys. The widespread expression pattern of Wtx/Amer1, together with its role as a modulator of the Wnt signaling pathway, suggest that Wtx/Amer1 serves pleiotropic roles during mammalian organogenesis.
Collapse
Affiliation(s)
- Glenda Comai
- INSERM U636, Centre de Biochimie, and University of Nice/Sophia-Antipolis, Nice, France
| | | | | | | |
Collapse
|
41
|
Maruyama T, Mirando AJ, Deng CX, Hsu W. The balance of WNT and FGF signaling influences mesenchymal stem cell fate during skeletal development. Sci Signal 2010; 3:ra40. [PMID: 20501936 PMCID: PMC2902546 DOI: 10.1126/scisignal.2000727] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Craniosynostosis, a developmental disorder resulting from premature closure of the gaps (sutures) between skull bones, can be caused by excessive intramembranous ossification, a type of bone formation that does not involve formation of a cartilage template (chondrogenesis). Here, we show that endochondral ossification, a type of bone formation that proceeds through a cartilage intermediate, caused by switching the fate of mesenchymal stem cells to chondrocytes, can also result in craniosynostosis. Simultaneous knockout of Axin2, a negative regulator of the WNT-beta-catenin pathway, and decreased activity of fibroblast growth factor (FGF) receptor 1 (FGFR1) in mice induced ectopic chondrogenesis, leading to abnormal suture morphogenesis and fusion. Genetic analyses revealed that activation of beta-catenin cooperated with FGFR1 to alter the lineage commitment of mesenchymal stem cells to differentiate into chondrocytes, from which cartilage is formed. We showed that the WNT-beta-catenin pathway directly controlled the stem cell population by regulating its renewal and proliferation, and indirectly modulated lineage specification by setting the balance of the FGF and bone morphogenetic protein pathways. This study identifies endochondral ossification as a mechanism of suture closure during development and implicates this process in craniosynostosis.
Collapse
Affiliation(s)
- Takamitsu Maruyama
- Department of Biomedical Genetics, Center for Oral Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Anthony J. Mirando
- Department of Biomedical Genetics, Center for Oral Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Chu-Xia Deng
- Genetics of Development and Disease Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Hsu
- Department of Biomedical Genetics, Center for Oral Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
- James Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
42
|
Kim H, Won S, Hwang DY, Lee JS, Kim M, Kim R, Kim W, Cha B, Kim T, Kim D, Costantini F, Jho EH. Downregulation of Wnt/β-catenin signaling causes degeneration of hippocampal neurons in vivo. Neurobiol Aging 2010; 32:2316.e1-15. [PMID: 20409609 DOI: 10.1016/j.neurobiolaging.2010.03.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 01/31/2010] [Accepted: 03/18/2010] [Indexed: 10/19/2022]
Abstract
The possibility that the degeneration of hippocampal neurons can be caused by mis-regulation of Wnt/β-catenin signaling was tested. Downregulation of Wnt signaling by the inducible expression of Axin, ICAT, and dnTcf4E causes degeneration of hippocampal neurons, while upregulation of Wnt signaling by the inducible expression of Dvl and β-catenin has a negligible effect. Treatment with ICG-001, a small molecule known to inhibit Wnt signaling, causes degeneration of hippocampal neurons, while the treatment with a JNK specific inhibitor does not show any effect. The results from LDH and TUNEL assays suggest that degeneration occurs via apoptotic processes. Inhibition of Wnt signaling reduced IGF-1 expression and the addition of IGF-1 blocked degeneration, which suggests that downregulation of IGF-1/Akt signaling is partially responsible for the degeneration. Inducible expression of Axin in the hippocampal neurons isolated from Axin2P-rtTA/pBI-EGFP-Axin double transgenic mice also causes degeneration. Consistent with the findings, these mice had more neuronal cell death in hippocampus and had differences in contextual conditioning upon the inducible expression of Axin. In summary, our data strongly support the idea that downregulation of Wnt/β-catenin signaling causes degeneration of hippocampal neurons in vivo and may be a cause of neurodegenerative diseases related to an anxiety related response.
Collapse
Affiliation(s)
- Hanjun Kim
- Department of Life Science, The University of Seoul, Seoul, 130-743, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
The power of reversibility regulating gene activities via tetracycline-controlled transcription. Methods Enzymol 2010; 477:429-53. [PMID: 20699154 DOI: 10.1016/s0076-6879(10)77022-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Tetracycline-controlled transcriptional activation systems are widely used to control gene expression in transgenic animals in a truly conditional manner. By this we refer to the capability of these expression systems to control gene activities not only in a tissue specific and temporal defined but also reversible manner. This versatility has made the Tet regulatory systems to a preeminent tool in reverse mouse genetics. The development of the technology in the past 15 years will be reviewed and guidelines will be given for its implementation in creating transgenic rodents. Finally, we highlight some recent exciting applications of the Tet technology as well as its foreseeable combination with other emerging technologies in mouse transgenesis.
Collapse
|
44
|
Hsu W, Mirando AJ, Yu HMI. Manipulating gene activity in Wnt1-expressing precursors of neural epithelial and neural crest cells. Dev Dyn 2010; 239:338-45. [PMID: 19653308 PMCID: PMC2797833 DOI: 10.1002/dvdy.22044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Targeted gene disruption or expression often encounters lethality. Conditional approaches, permitting manipulation at desired stages, are required to overcome this problem in order to analyze gene function in later developmental processes. Wnt1 has been shown to be expressed in neural crest precursors at the dorsal midline region. However, its expression was not detected in emigrated neural crest cells, the descendants of Wnt1-expressing precursors. We have developed mouse transgenic systems to manipulate gene activity in the Wnt1-expressing precursors and their derivatives by integrating the tetracycline-dependent activation and Cre-mediated recombination methods. A new Wnt1-rtTA strain, carrying rtTA under control of Wnt1 regulatory elements, has been created for gene manipulation in a spatiotemporal-specific fashion. Together with our previously developed Wnt1-Cre;R26STOPrtTA model, these systems permit conditional gene expression and ablation in pre-migratory and/or post-migratory neural crest cells. This study demonstrated the versatility of our mouse models to achieve gene manipulation in early neural development.
Collapse
Affiliation(s)
- Wei Hsu
- Department of Biomedical Genetics, Center for Oral Biology, James Wilmot Cancer Center, University of Rochester Medical Center, 601 Elmwood Avenue, Box 611, Rochester, NY 14642, USA.
| | | | | |
Collapse
|
45
|
Orphan nuclear receptor TLX activates Wnt/beta-catenin signalling to stimulate neural stem cell proliferation and self-renewal. Nat Cell Biol 2009; 12:31-40; sup pp 1-9. [PMID: 20010817 DOI: 10.1038/ncb2001] [Citation(s) in RCA: 243] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 11/06/2009] [Indexed: 01/04/2023]
Abstract
The nuclear receptor TLX (also known as NR2E1) is essential for adult neural stem cell self-renewal; however, the molecular mechanisms involved remain elusive. Here we show that TLX activates the canonical Wnt/beta-catenin pathway in adult mouse neural stem cells. Furthermore, we demonstrate that Wnt/beta-catenin signalling is important in the proliferation and self-renewal of adult neural stem cells in the presence of epidermal growth factor and fibroblast growth factor. Wnt7a and active beta-catenin promote neural stem cell self-renewal, whereas the deletion of Wnt7a or the lentiviral transduction of axin, a beta-catenin inhibitor, led to decreased cell proliferation in adult neurogenic areas. Lentiviral transduction of active beta-catenin led to increased numbers of type B neural stem cells in the subventricular zone of adult brains, whereas deletion of Wnt7a or TLX resulted in decreased numbers of neural stem cells retaining bromodeoxyuridine label in the adult brain. Both Wnt7a and active beta-catenin significantly rescued a TLX (also known as Nr2e1) short interfering RNA-induced deficiency in neural stem cell proliferation. Lentiviral transduction of an active beta-catenin increased cell proliferation in neurogenic areas of TLX-null adult brains markedly. These results strongly support the hypothesis that TLX acts through the Wnt/beta-catenin pathway to regulate neural stem cell proliferation and self-renewal. Moreover, this study suggests that neural stem cells can promote their own self-renewal by secreting signalling molecules that act in an autocrine/paracrine mode.
Collapse
|
46
|
Reciprocal regulation of Wnt and Gpr177/mouse Wntless is required for embryonic axis formation. Proc Natl Acad Sci U S A 2009; 106:18598-603. [PMID: 19841259 DOI: 10.1073/pnas.0904894106] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Members of the Wnt family are secreted glycoproteins that trigger cellular signals essential for proper development of organisms. Cellular signaling induced by Wnt proteins is involved in diverse developmental processes and human diseases. Previous studies have generated an enormous wealth of knowledge on the events in signal-receiving cells. However, relatively little is known about the making of Wnt in signal-producing cells. Here, we describe that Gpr177, the mouse orthologue of Drosophila Wls, is expressed during formation of embryonic axes. Embryos with deficient Gpr177 exhibit defects in establishment of the body axis, a phenotype highly reminiscent to the loss of Wnt3. Although many different mammalian Wnt proteins are required for a wide range of developmental processes, the Wnt3 ablation exhibits the earliest developmental abnormality. This suggests that the Gpr177-mediated Wnt production cannot be substituted. As a direct target of Wnt, Gpr177 is activated by beta-catenin and LEF/TCF-dependent transcription. This activation alters the cellular distributions of Gpr177 which binds to Wnt proteins and assists their sorting and secretion in a feedback regulatory mechanism. Our findings demonstrate that the loss of Gpr177 affects Wnt production in the signal-producing cells, leading to alterations of Wnt signaling in the signal-receiving cells. A reciprocal regulation of Wnt and Gpr177 is essential for the patterning of the anterior-posterior axis during mammalian development.
Collapse
|
47
|
Sustained Neurog3 expression in hormone-expressing islet cells is required for endocrine maturation and function. Proc Natl Acad Sci U S A 2009; 106:9715-20. [PMID: 19487660 DOI: 10.1073/pnas.0904247106] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neurog3 (Neurogenin 3 or Ngn3) is both necessary and sufficient to induce endocrine islet cell differentiation from embryonic pancreatic progenitors. Since robust Neurog3 expression has not been detected in hormone-expressing cells, Neurog3 is used as an endocrine progenitor marker and regarded as dispensable for the function of differentiated islet cells. Here we used 3 independent lines of Neurog3 knock-in reporter mice and mRNA/protein-based assays to examine Neurog3 expression in hormone-expressing islet cells. Neurog3 mRNA and protein are detected in hormone-producing cells at both embryonic and adult stages. Significantly, inactivating Neurog3 in insulin-expressing beta cells at embryonic stages or in Pdx1-expressing islet cells in adults impairs endocrine function, a phenotype that is accompanied by reduced expression of several Neurog3 target genes that are essential for islet cell differentiation, maturation, and function. These findings demonstrate that Neurog3 is required not only for initiating endocrine cell differentiation, but also for promoting islet cell maturation and maintaining islet function.
Collapse
|
48
|
Chiu SY, Asai N, Costantini F, Hsu W. SUMO-specific protease 2 is essential for modulating p53-Mdm2 in development of trophoblast stem cell niches and lineages. PLoS Biol 2009; 6:e310. [PMID: 19090619 PMCID: PMC2602722 DOI: 10.1371/journal.pbio.0060310] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Accepted: 10/31/2008] [Indexed: 11/18/2022] Open
Abstract
SUMO-specific protease 2 (SENP2) modifies proteins by removing SUMO from its substrates. Although SUMO-specific proteases are known to reverse sumoylation in many defined systems, their importance in mammalian development and pathogenesis remains largely elusive. Here we report that SENP2 is highly expressed in trophoblast cells that are required for placentation. Targeted disruption of SENP2 in mice reveals its essential role in development of all three trophoblast layers. The mutation causes a deficiency in cell cycle progression. SENP2 has a specific role in the G-S transition, which is required for mitotic and endoreduplication cell cycles in trophoblast proliferation and differentiation, respectively. SENP2 ablation disturbs the p53-Mdm2 pathway, affecting the expansion of trophoblast progenitors and their maturation. Reintroducing SENP2 into the mutants can reduce the sumoylation of Mdm2, diminish the p53 level and promote trophoblast development. Furthermore, downregulation of p53 alleviates the SENP2-null phenotypes and stimulation of p53 causes abnormalities in trophoblast proliferation and differentiation, resembling those of the SENP2 mutants. Our data reveal a key genetic pathway, SENP2-Mdm2-p53, underlying trophoblast lineage development, suggesting its pivotal role in cell cycle progression of mitosis and endoreduplication.
Collapse
Affiliation(s)
- Shang-Yi Chiu
- Department of Biomedical Genetics, Center for Oral Biology, James P Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Naoya Asai
- Department of Pathology, Nagoya University, Nagoya, Japan
- Department of Genetics and Development, Columbia University Medical Center, New York, New York, United States of America
| | - Frank Costantini
- Department of Genetics and Development, Columbia University Medical Center, New York, New York, United States of America
| | - Wei Hsu
- Department of Biomedical Genetics, Center for Oral Biology, James P Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
49
|
Co-opted JNK/SAPK signaling in Wnt/beta-catenin-induced tumorigenesis. Neoplasia 2009; 10:1004-13. [PMID: 18714362 DOI: 10.1593/neo.08548] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 06/19/2008] [Accepted: 06/23/2008] [Indexed: 11/18/2022]
Abstract
Aberrant stimulation of the canonical Wnt pathway induces mammary tumorigenesis in mice. It has been well documented that two types of tumors, adenocarcinoma and adenocarcinoma with squamous metaplasia, develop in these mutants. However, the molecular mechanism underlying the induction of squamous transdifferentiation remains largely unknown. Here, we show that JNK/SAPK signaling plays an important role in Wnt-dependent mammary development and malignant transformation. The JNK/SAPK pathway is stimulated in pregnancy-mediated lobulo-alveolar morphogenesis, a process highly dependent on Wnt/beta-catenin signaling. Strong elevations of JNK/SAPK signaling are associated with squamous metaplasia of the Wnt-induced adenocarcinoma. Reconstitution of beta-catenin and JNK/SAPK signaling activities also promotes expression of the squamous cell marker in cultured epithelial cells. Furthermore, a synergistic activation of these two pathways can be identified in the malignant squamous cells of human endometrial and lung cancers. This is potentially a significant discovery in modern cancer therapy because of the effectiveness of an angiogenesis inhibitor, Avastin, for the treatment of adenocarcinoma, but not squamous cell carcinoma, in human lung cancers. Our finding may improve the usage of biomarkers to distinguish these two poorly differentiated tumor types, sharing similar histologic features.
Collapse
|
50
|
Aoki K, Taketo MM. Tissue-specific transgenic, conditional knockout and knock-in mice of genes in the canonical Wnt signaling pathway. Methods Mol Biol 2008; 468:307-31. [PMID: 19099265 DOI: 10.1007/978-1-59745-249-6_24] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Wnt signaling pathway plays key roles in the development and homeostasis of a number of organs such as the brain, lung, liver, heart, gastrointestinal tract, mammary gland, skin, and bone, as well as of the immune system. Studies on conventional knockout mice of the genes in the Wnt signaling pathway have revealed its essential roles in these tissues; however, most of these knockout mice die during embryogenesis or soon after birth. Through more advanced techniques such as Cre/loxP and tetracycline-inducible systems, a gene of interest can be expressed or inactivated in a tissue-specific and time-controlled manner. Here we review recent papers on the tissue-specific transgenic, conditional knockout and knock-in mice of the genes in the Wnt signaling pathway In addition to such engineered mice, we also list reporter mice that have been generated to determine the activity of the canonical Wnt signaling pathway in mouse tissues.
Collapse
Affiliation(s)
- Koji Aoki
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Yoshida-Konoé-cho, Sakyo, Japan
| | | |
Collapse
|