1
|
Gerdes K. Mono- and multidomain defense toxins of the RelE/ParE superfamily. mBio 2025; 16:e0025825. [PMID: 39998207 PMCID: PMC11980606 DOI: 10.1128/mbio.00258-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
Toxin-antitoxin (TA) modules are widely distributed across prokaryotes, often existing in large numbers despite their associated fitness costs. Most type II TA modules are bicistronic operons encoding a monodomain toxin and its cognate protein antitoxin. The RelE/ParE superfamily encompasses toxins with a conserved Barnase-EndoU-ColicinE5/D-RelE (BECR) fold. Yet, their cellular targets differ remarkably: RelE toxins function as ribosome-dependent RNases, while ParE toxins act as DNA gyrase inhibitors. Using a comprehensive bioinformatics approach, this study analyzed 13 BECR-fold toxin families as classified in the Pfam database. Intriguingly, the ParE family was found to include a subcluster of mRNA-cleaving toxins, challenging its conventional role as solely DNA-targeting. This study identified a novel tripartite operon encoding a PtuA-like defense ATPase, a homolog of type IV restriction endonucleases, and a RelE homolog, suggesting a coordinated role in defense mechanisms. Multidomain BECR-fold toxins, including transmembrane variants, were also discovered, extending the functional repertoire of type II TA modules to membrane-associated systems. These findings clarify the evolutionary relationships and functional diversity within the RelE/ParE superfamily and discover novel, putative defense systems that can now be investigated experimentally.IMPORTANCEToxin-antitoxin modules play critical roles in prokaryotic survival and adaptation, contributing to genome stabilization and defense against phages and invading plasmids. The RelE/ParE superfamily exemplifies the structural and functional diversity of these systems, with members targeting distinct cellular processes, such as translation and DNA supercoiling. By elucidating the relationships among the 13 BECR-fold toxin families, this study enhances our understanding of microbial resistance mechanisms and reveals potential new opportunities for research into prokaryotic defense and regulation. These insights may have significant implications for medical and biotechnological applications, particularly in understanding bacterial responses to genetic invaders.
Collapse
|
2
|
Charette M, Rosenblum C, Shade O, Deiters A. Optogenetics with Atomic Precision─A Comprehensive Review of Optical Control of Protein Function through Genetic Code Expansion. Chem Rev 2025; 125:1663-1717. [PMID: 39928721 PMCID: PMC11869211 DOI: 10.1021/acs.chemrev.4c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 02/12/2025]
Abstract
Conditional control of protein activity is important in order to elucidate the particular functions and interactions of proteins, their regulators, and their substrates, as well as their impact on the behavior of a cell or organism. Optical control provides a perhaps optimal means of introducing spatiotemporal control over protein function as it allows for tunable, rapid, and noninvasive activation of protein activity in its native environment. One method of introducing optical control over protein activity is through the introduction of photocaged and photoswitchable noncanonical amino acids (ncAAs) through genetic code expansion in cells and animals. Genetic incorporation of photoactive ncAAs at key residues in a protein provides a tool for optical activation, or sometimes deactivation, of protein activity. Importantly, the incorporation site can typically be rationally selected based on structural, mechanistic, or computational information. In this review, we comprehensively summarize the applications of photocaged lysine, tyrosine, cysteine, serine, histidine, glutamate, and aspartate derivatives, as well as photoswitchable phenylalanine analogues. The extensive and diverse list of proteins that have been placed under optical control demonstrates the broad applicability of this methodology.
Collapse
Affiliation(s)
- Maura Charette
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Carolyn Rosenblum
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Olivia Shade
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
3
|
Johannesman A, Awasthi LC, Carlson N, LeRoux M. Phages carry orphan antitoxin-like enzymes to neutralize the DarTG1 toxin-antitoxin defense system. Nat Commun 2025; 16:1598. [PMID: 39948090 PMCID: PMC11825919 DOI: 10.1038/s41467-025-56887-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 02/04/2025] [Indexed: 02/16/2025] Open
Abstract
The astounding number of anti-phage defenses encoded by bacteria is countered by an elaborate set of phage counter-defenses, though their evolutionary origins are often unknown. Here, we report the discovery of an orphan antitoxin counter-defense element in T4-like phages that can overcome the bacterial toxin-antitoxin phage defense system, DarTG1. The DarT1 toxin, an ADP-ribosyltransferase, modifies phage DNA to prevent replication while its cognate antitoxin, DarG1, is a NADAR superfamily ADP-ribosylglycohydrolase that reverses these modifications in uninfected bacteria. We show that some phages carry an orphan DarG1-like NADAR domain protein, which we term anti-DarT factor NADAR (AdfN), that removes ADP-ribose modifications from phage DNA during infection thereby enabling replication in DarTG1-containing bacteria. We find divergent NADAR proteins in unrelated phages that likewise exhibit anti-DarTG1 activity, underscoring the importance of ADP-ribosylation in bacterial-phage interactions, and revealing the function of a substantial subset of the NADAR superfamily.
Collapse
Affiliation(s)
- Anna Johannesman
- Department of Molecular Microbiology, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | - Leila C Awasthi
- Department of Molecular Microbiology, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | - Nico Carlson
- Department of Molecular Microbiology, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | - Michele LeRoux
- Department of Molecular Microbiology, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
4
|
Kim DH, Lee YC, Jin C, Kang SM, Kang SJ, Kang HS, Lee BJ. Structural and Functional Insight Into YefM-YoeB Complex of Toxin-Antitoxin System From Streptococcus pneumoniae. J Cell Biochem 2025; 126:e30672. [PMID: 39530329 DOI: 10.1002/jcb.30672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Streptococcus pneumonia is a Gram-positive and facultative anaerobic bacterium that causes a number of diseases, including otitis media, community-acquired pneumonia, sepsis, and meningitis. With the emergence of antibiotic-resistant strains, there is an urgent need to develop antibiotics with a novel mechanism. The toxin-antitoxin (TA) system, which is primarily found in prokaryotes, consists of a toxin and its equivalent antitoxin genes. The YefM-YoeB module is a Type II TA system, where the YoeB toxin functions as a putative mRNA interferase upon activation, while the YefM antitoxin acts as a transcription repressor by binding to its promoter region along with YoeB. In this study, we determined the crystal structure of the YefM-YoeB complex from S. pneumoniae TIGR4 to comprehend the binding mechanism of the TA system. Furthermore, an in vitro ribonuclease activity assay was conducted to identify the ribonuclease activity of the YoeB toxin. Additionally, furthermore, the oligomeric state of the YefM-YoeB complex in solution was investigated, and a DNA-binding mode was proposed. These structural and functional insights into the YefM-YoeB complex could provide valuable information for the development of novel antibiotics targeting S. pneumonia-associated diseases.
Collapse
Affiliation(s)
- Do-Hee Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Yong-Chan Lee
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Chenglong Jin
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- Mastermeditech Ltd., Seoul, Republic of Korea
| | - Sung-Min Kang
- College of Pharmacy, Duksung Women's University, Seoul, Republic of Korea
| | - Su-Jin Kang
- College of Pharmacy, Dongduk Women's University, Seoul, Republic of Korea
| | - Hoon-Seok Kang
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, Republic of Korea
| | - Bong-Jin Lee
- Mastermeditech Ltd., Seoul, Republic of Korea
- College of Pharmacy, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
5
|
Rodamilans B, Cheng X, Simón-Mateo C, García JA. Use of Bacterial Toxin-Antitoxin Systems as Biotechnological Tools in Plants. Int J Mol Sci 2024; 25:10449. [PMID: 39408779 PMCID: PMC11476816 DOI: 10.3390/ijms251910449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Toxin-antitoxin (TA) systems in bacteria are key regulators of the cell cycle and can activate a death response under stress conditions. Like other bacterial elements, TA modules have been widely exploited for biotechnological purposes in diverse applications, such as molecular cloning and anti-cancer therapies. However, their use in plants has been limited, leaving room for the development of new approaches. In this study, we examined two TA systems previously tested in plants, MazEF and YefM-YoeB, and identified interesting differences between them, likely related to their modes of action. We engineered modifications to these specific modules to transform them into molecular switches that can be activated by a protease, inducing necrosis in the plant cells where they are expressed. Finally, we demonstrated the antiviral potential of the modified TA modules by using, as a proof-of-concept, the potyvirus plum pox virus as an activator of the death phenotype.
Collapse
Affiliation(s)
- Bernardo Rodamilans
- Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, 28049 Madrid, Spain; (C.S.-M.); (J.A.G.)
| | - Xiaofei Cheng
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China;
| | - Carmen Simón-Mateo
- Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, 28049 Madrid, Spain; (C.S.-M.); (J.A.G.)
| | - Juan Antonio García
- Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, 28049 Madrid, Spain; (C.S.-M.); (J.A.G.)
| |
Collapse
|
6
|
Prins RC, Billerbeck S. The signal peptide of yeast killer toxin K2 confers producer self-protection and allows conversion into a modular toxin-immunity system. Cell Rep 2024; 43:114449. [PMID: 38985680 DOI: 10.1016/j.celrep.2024.114449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/30/2024] [Accepted: 06/20/2024] [Indexed: 07/12/2024] Open
Abstract
Some microbial toxins also target the producer species itself, necessitating a means of self-protection. The M2 double-stranded RNA (dsRNA) killer virus in Saccharomyces cerevisiae contains a single open reading frame (ORF) encoding both the secreted pore-forming toxin K2 as well as a cognate immunity factor. Here, we show that expression of a 49-amino acid N-terminal peptide from the K2 precursor is both necessary and sufficient for immunity. This immunity peptide simultaneously functions as a signal peptide for toxin secretion and protects the cell against the cytotoxic K2 α subunit. The K2 toxin and immunity factor can be functionally separated into two ORFs, yielding a modular toxin-immunity system. This case further shows how a (signal) peptide can carry the potential for providing cellular protection against an antimicrobial toxin.
Collapse
Affiliation(s)
- Rianne C Prins
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Sonja Billerbeck
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
7
|
Hyun JS, Pun R, Park SJ, Lee BJ. Effect of Divalent Metal Ions on the Ribonuclease Activity of the Toxin Molecule HP0894 from Helicobacter pylori. Life (Basel) 2024; 14:225. [PMID: 38398734 PMCID: PMC10890551 DOI: 10.3390/life14020225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Bacteria and archaea respond and adapt to environmental stress conditions by modulating the toxin-antitoxin (TA) system for survival. Within the bacterium Helicobacter pylori, the protein HP0894 is a key player in the HP0894-HP0895 TA system, in which HP0894 serves as a toxin and HP0895 as an antitoxin. HP0894 has intrinsic ribonuclease (RNase) activity that regulates gene expression and translation, significantly influencing bacterial physiology and survival. This activity is influenced by the presence of metal ions such as Mg2+. In this study, we explore the metal-dependent RNase activity of HP0894. Surprisingly, all tested metal ions lead to a reduction in RNase activity, with zinc ions (Zn2+) causing the most significant decrease. The secondary structure of HP0894 remained largely unaffected by Zn2+ binding, whereas structural rigidity was notably increased, as revealed using CD analysis. NMR characterized the Zn2+ binding, implicating numerous His, Asp, and Glu residues in HP0894. In summary, these results suggest that metal ions play a regulatory role in the RNase activity of HP0894, contributing to maintaining the toxin molecule in an inactive state under normal conditions.
Collapse
Affiliation(s)
- Ja-Shil Hyun
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Rabin Pun
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Sung Jean Park
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Bong-Jin Lee
- College of Pharmacy, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| |
Collapse
|
8
|
Vasudevan S, David H, Chanemougam L, Ramani J, Ramesh Sangeetha M, Solomon AP. Emergence of persister cells in Staphylococcus aureus: calculated or fortuitous move? Crit Rev Microbiol 2024; 50:64-75. [PMID: 36548910 DOI: 10.1080/1040841x.2022.2159319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
A stable but reversible phenotype switch from normal to persister state is advantageous to the intracellular pathogens to cause recurrent infections and to evade the host immune system. Staphylococcus aureus is a versatile opportunistic pathogen known to cause chronic infections with significant mortality. One of the notable features is the ability to switch to a per-sisters cell, which is found in planktonic and biofilm states. This phenotypic switch is always an open question to explore the hidden fundamental science that coheres with a calculated or fortuitous move. Toxin-antitoxin modules, nutrient stress, and an erroneous translation-enabled state of dormancy entail this persistent behaviour in S. aureus. It is paramount to get a clear picture of why the cell chooses to enter a persistent condition, as it would decide the course of treatment. Analyzing the exit from a persistent state to an active state and the subsequent repercussion of this transition is essential to determine its role in chronic infections. This review attempts to provide a constructed argument discussing the most widely accepted mechanisms and identifying the various attributes of persistence.
Collapse
Affiliation(s)
- Sahana Vasudevan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Helma David
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Lakshmi Chanemougam
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Jayalakshmi Ramani
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Maanasa Ramesh Sangeetha
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
9
|
Kinkar OU, Kumar A, Prashar A, Yadav B, Hadapad AB, Hire RS, Makde RD. The crystal structure of insecticidal protein Txp40 from Xenorhabdus nematophila reveals a two-domain unique binary toxin with homology to the toxin-antitoxin (TA) system. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 164:104045. [PMID: 38040266 DOI: 10.1016/j.ibmb.2023.104045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 11/15/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023]
Abstract
Txp40 is a ubiquitous, conserved, and novel toxin from Xenorhabdus and Photorhabdus bacteria, toxic to a wide range of insect pests. However, the three-dimensional structure and toxicity mechanism for Txp40 or any of its sequence homologs are not yet known. Here, we are reporting the crystal structure of the insecticidal protein Txp40 from Xenorhabdus nematophila at 2.08 Å resolution. The Txp40 was structurally distinct from currently known insecticidal proteins. Txp40 consists of two structurally different domains, an N-terminal domain (NTD) and a C-terminal domain (CTD), primarily joined by a 33-residue long linker peptide. Txp40 displayed proteolytic propensity. Txp40 gets proteolyzed, removing the linker peptide, which is essential for proper crystal packing. NTD adopts a novel fold composed of nine amphipathic helices and has no shared sequence or structural homology to any known proteins. CTD has structural homology with RNases of type II toxin-antitoxin (TA) complex belonging to the RelE/ParE toxin domain superfamily. NTD and CTD were individually toxic to Galleria mellonella larvae. However, maximal toxicity was observed when both domains were present. Our results suggested that the Txp40 acts as a two-domain binary toxin, which is unique and different from any known binary toxins and insecticidal proteins. Txp40 is also unique because it belongs to the prokaryotic RelE/ParE toxin family with a toxic effect on eukaryotic organisms, in contrast to other members of the same family. Broad insect specificity and unique binary toxin complex formation make Txp40 a viable candidate to overcome the development of resistance in insect pests.
Collapse
Affiliation(s)
- Omkar U Kinkar
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, Maharashtra, India; Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai, 400085, Maharashtra, India.
| | - Ashwani Kumar
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai, 400085, Maharashtra, India.
| | - Arpit Prashar
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, Maharashtra, India.
| | - Beena Yadav
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai, 400085, Maharashtra, India.
| | - Ashok B Hadapad
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, Maharashtra, India.
| | - Ramesh S Hire
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, Maharashtra, India; Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, Maharashtra, India.
| | - Ravindra D Makde
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, Maharashtra, India; Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai, 400085, Maharashtra, India.
| |
Collapse
|
10
|
Inoue S, Ikeda Y, Fujiyama S, Ueda T, Abe Y. Oligomeric state of the N-terminal domain of DnaT for replication restart in Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023:140929. [PMID: 37328019 DOI: 10.1016/j.bbapap.2023.140929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023]
Abstract
DNA replication stops when chemical or physical damage occurs to the DNA. Repairing genomic DNA and reloading the replication helicase are crucial steps for restarting DNA replication. The Escherichia coli primosome is a complex of proteins and DNA responsible for reloading the replication helicase DnaB. DnaT, a protein found in the primosome complex, contains two functional domains. The C-terminal domain (89-179) forms an oligomeric complex with single-stranded DNA. Although the N-terminal domain (1-88) forms an oligomer, the specific residues responsible for this oligomeric structure have not yet been identified. In this study, we proposed that the N-terminal domain of DnaT has a dimeric antitoxin structure based on its primary sequence. Based on the proposed model, we confirmed the site of oligomerization in the N-terminal domain of DnaT through site-directed mutagenesis. The molecular masses and thermodynamic stabilities of the site-directed mutants located at the dimer interface, namely Phe42, Tyr43, Leu50, Leu53, and Leu54, were found to be lower than those of the wild-type. Moreover, we observed a decrease in the molecular masses of the V10S and F35S mutants compared to the wild-type DnaT. NMR analysis of the V10S mutant revealed that the secondary structure of the N-terminal domain of DnaT was consistent with the proposed model. Additionally, we have demonstrated that the stability of the oligomer formed by the N-terminal domain of DnaT is crucial for its function. Based on these findings, we propose that the DnaT oligomer plays a role in replication restart in Escherichia coli.
Collapse
Affiliation(s)
- Shogo Inoue
- Department of Protein Structure, Function and Design, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yohei Ikeda
- Department of Protein Structure, Function and Design, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Saki Fujiyama
- Department of Protein Structure, Function and Design, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Tadashi Ueda
- Department of Protein Structure, Function and Design, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshito Abe
- Department of Protein Structure, Function and Design, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Department of Pharmaceutical Sciences, School of Pharmacy at Fukuoka, International University of Health and Welfare, Okawa 831-8501, Japan.
| |
Collapse
|
11
|
Krin E, Baharoglu Z, Sismeiro O, Varet H, Coppée JY, Mazel D. Systematic transcriptome analysis allows the identification of new type I and type II Toxin/Antitoxin systems located in the superintegron of Vibrio cholerae. Res Microbiol 2023; 174:103997. [PMID: 36347445 DOI: 10.1016/j.resmic.2022.103997] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/07/2022]
Abstract
Vibrio cholerae N16961 genome encodes 18 type II Toxin/Antitoxin (TA) systems, all but one located inside gene cassettes of its chromosomal superintegron (SI). This study aims to investigate additional TA systems in this genome. We screened for all two-genes operons of uncharacterized function by analyzing previous RNAseq data. Assays on nine candidates, revealed one additional functional type II TA encoded by the VCA0497-0498 operon, carried inside a SI cassette. We showed that VCA0498 antitoxin alone and in complex with VCA0497 represses its own operon promoter. VCA0497-0498 is the second element of the recently identified dhiT/dhiA superfamily uncharacterized type II TA system. RNAseq analysis revealed that another SI cassette encodes a novel type I TA system: VCA0495 gene and its two associated antisense non-coding RNAs, ncRNA495 and ncRNA496. Silencing of both antisense ncRNAs lead to cell death, demonstrating the type I TA function. Both VCA0497 and VCA0495 toxins do not show any homology to functionally characterized toxins, however our preliminary data suggest that their activity may end up in mRNA degradation, directly or indirectly. Our findings increase the TA systems number carried in this SI to 19, preferentially located in its distal end, confirming their importance in this large cassette array.
Collapse
Affiliation(s)
- Evelyne Krin
- Institut Pasteur, Université Paris Cité, CNRS UMR 3525, Unité de Plasticité du Génome Bactérien, 28 rue du Docteur Roux, F-75015 Paris, France.
| | - Zeynep Baharoglu
- Institut Pasteur, Université Paris Cité, CNRS UMR 3525, Unité de Plasticité du Génome Bactérien, 28 rue du Docteur Roux, F-75015 Paris, France.
| | - Odile Sismeiro
- Institut Pasteur, Université Paris Cité, Transcriptome and EpiGenome, Biomics Center for Innovation and Technological Research, 28 rue du Docteur Roux, F-75015 Paris, France.
| | - Hugo Varet
- Institut Pasteur, Université Paris Cité, Transcriptome and EpiGenome, Biomics Center for Innovation and Technological Research, 28 rue du Docteur Roux, F-75015 Paris, France.
| | - Jean-Yves Coppée
- Institut Pasteur, Université Paris Cité, Transcriptome and EpiGenome, Biomics Center for Innovation and Technological Research, 28 rue du Docteur Roux, F-75015 Paris, France.
| | - Didier Mazel
- Institut Pasteur, Université Paris Cité, CNRS UMR 3525, Unité de Plasticité du Génome Bactérien, 28 rue du Docteur Roux, F-75015 Paris, France.
| |
Collapse
|
12
|
Molecular mechanism of toxin neutralization in the HipBST toxin-antitoxin system of Legionella pneumophila. Nat Commun 2022; 13:4333. [PMID: 35882877 PMCID: PMC9325769 DOI: 10.1038/s41467-022-32049-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/11/2022] [Indexed: 11/08/2022] Open
Abstract
Toxin-antitoxin (TA) systems are ubiquitous genetic modules in bacteria and archaea. Here, we perform structural and biochemical characterization of the Legionella pneumophila effector Lpg2370, demonstrating that it is a Ser/Thr kinase. Together with two upstream genes, lpg2370 constitutes the tripartite HipBST TA. Notably, the toxin Lpg2370 (HipTLp) and the antitoxin Lpg2369 (HipSLp) correspond to the C-terminus and N-terminus of HipA from HipBA TA, respectively. By determining crystal structures of autophosphorylated HipTLp, its complex with AMP-PNP, and the structure of HipTLp-HipSLp complex, we identify residues in HipTLp critical for ATP binding and those contributing to its interactions with HipSLp. Structural analysis reveals that HipSLp binding induces a loop-to-helix shift in the P-loop of HipTLp, leading to the blockage of ATP binding and inhibition of the kinase activity. These findings establish the L. pneumophila effector Lpg2370 as the HipBST TA toxin and elucidate the molecular basis for HipT neutralization in HipBST TA.
Collapse
|
13
|
Kurita D, Himeno H. Bacterial Ribosome Rescue Systems. Microorganisms 2022; 10:372. [PMID: 35208827 PMCID: PMC8874680 DOI: 10.3390/microorganisms10020372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 12/10/2022] Open
Abstract
To maintain proteostasis, the cell employs multiple ribosome rescue systems to relieve the stalled ribosome on problematic mRNA. One example of problematic mRNA is non-stop mRNA that lacks an in-frame stop codon produced by endonucleolytic cleavage or transcription error. In Escherichia coli, there are at least three ribosome rescue systems that deal with the ribosome stalled on non-stop mRNA. According to one estimation, 2-4% of translation is the target of ribosome rescue systems even under normal growth conditions. In the present review, we discuss the recent findings of ribosome rescue systems in bacteria.
Collapse
Affiliation(s)
| | - Hyouta Himeno
- Department of Biochemistry and Molecular Biology, Hirosaki University, 3, Bunkyo-cho, Hirosaki 036-8561, Japan;
| |
Collapse
|
14
|
Xue L, Khan MH, Yue J, Zhu Z, Niu L. The two paralogous copies of the YoeB-YefM toxin-antitoxin module in Staphylococcus aureus differ in DNA binding and recognition patterns. J Biol Chem 2022; 298:101457. [PMID: 34861238 PMCID: PMC8717551 DOI: 10.1016/j.jbc.2021.101457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/13/2022] Open
Abstract
Toxin-antitoxin (TA) systems are ubiquitous regulatory modules for bacterial growth and cell survival following stress. YefM-YoeB, the most prevalent type II TA system, is present in a variety of bacterial species. In Staphylococcus aureus, the YefM-YoeB system exists as two independent paralogous copies. Our previous research resolved crystal structures of the two oligomeric states (heterotetramer and heterohexamer-DNA ternary complex) of the first paralog as well as the molecular mechanism of transcriptional autoregulation of this module. However, structural details reflecting molecular diversity in both paralogs have been relatively unexplored. To understand the molecular mechanism of how Sa2YoeB and Sa2YefM regulate their own transcription and how each paralog functions independently, we solved a series of crystal structures of the Sa2YoeB-Sa2YefM. Our structural and biochemical data demonstrated that both paralogous copies adopt similar mechanisms of transcriptional autoregulation. In addition, structural analysis suggested that molecular diversity between the two paralogs might be reflected in the interaction profile of YefM and YoeB and the recognition pattern of promoter DNA by YefM. Interaction analysis revealed unique conformational and activating force effected by the interface between Sa2YoeB and Sa2YefM. In addition, the recognition pattern analysis demonstrated that residues Thr7 and Tyr14 of Sa2YefM specifically recognizes the flanking sequences (G and C) of the promoter DNA. Together, these results provide the structural insights into the molecular diversity and independent function of the paralogous copies of the YoeB-YefM TA system.
Collapse
Affiliation(s)
- Lu Xue
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei, Anhui, China; Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Muhammad Hidayatullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei, Anhui, China; Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Jian Yue
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei, Anhui, China; Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhongliang Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei, Anhui, China; Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China.
| | - Liwen Niu
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei, Anhui, China; Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
15
|
Insights into the Neutralization and DNA Binding of Toxin-Antitoxin System ParE SO-CopA SO by Structure-Function Studies. Microorganisms 2021; 9:microorganisms9122506. [PMID: 34946107 PMCID: PMC8706911 DOI: 10.3390/microorganisms9122506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 12/03/2022] Open
Abstract
ParESO-CopASO is a new type II toxin–antitoxin (TA) system in prophage CP4So that plays an essential role in circular CP4So maintenance after the excision in Shewanella oneidensis. The toxin ParESO severely inhibits cell growth, while CopASO functions as an antitoxin to neutralize ParESO toxicity through direct interactions. However, the molecular mechanism of the neutralization and autoregulation of the TA operon transcription remains elusive. In this study, we determined the crystal structure of a ParESO-CopASO complex that adopted an open V-shaped heterotetramer with the organization of ParESO-(CopASO)2-ParESO. The structure showed that upon ParESO binding, the intrinsically disordered C-terminal domain of CopASO was induced to fold into a partially ordered conformation that bound into a positively charged and hydrophobic groove of ParESO. Thermodynamics analysis showed the DNA-binding affinity of CopASO was remarkably higher than that of the purified TA complex, accompanied by the enthalpy change reversion from an exothermic reaction to an endothermic reaction. These results suggested ParESO acts as a de-repressor of the TA operon transcription at the toxin:antitoxin level of 1:1. Site-directed mutagenesis of ParESO identified His91 as the essential residue for its toxicity by cell toxicity assays. Our structure-function studies therefore elucidated the transcriptional regulation mechanism of the ParESO-CopASO pair, and may help to understand the regulation of CP4So maintenance in S. oneidensis.
Collapse
|
16
|
Global Analysis of the Specificities and Targets of Endoribonucleases from Escherichia coli Toxin-Antitoxin Systems. mBio 2021; 12:e0201221. [PMID: 34544284 PMCID: PMC8546651 DOI: 10.1128/mbio.02012-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Toxin-antitoxin systems are widely distributed genetic modules typically featuring toxins that can inhibit bacterial growth and antitoxins that can reverse inhibition. Although Escherichia coli encodes 11 toxins with known or putative endoribonuclease activity, the targets of most of these toxins remain poorly characterized. Using a new RNA sequencing (RNA-seq) pipeline that enables the mapping and quantification of RNA cleavage with single-nucleotide resolution, we characterized the targets and specificities of 9 endoribonuclease toxins from E. coli. We found that these toxins use low-information cleavage motifs to cut a significant proportion of mRNAs in E. coli, but not tRNAs or the rRNAs from mature ribosomes. However, all the toxins, including those that are ribosome dependent and cleave only translated RNA, inhibit ribosome biogenesis. This inhibition likely results from the cleavage of ribosomal protein transcripts, which disrupts the stoichiometry and biogenesis of new ribosomes and causes the accumulation of aberrant ribosome precursors. Collectively, our results provide a comprehensive, global analysis of endoribonuclease-based toxin-antitoxin systems in E. coli and support the conclusion that, despite their diversity, each disrupts translation and ribosome biogenesis.
Collapse
|
17
|
A minimal model for gene expression dynamics of bacterial type II toxin-antitoxin systems. Sci Rep 2021; 11:19516. [PMID: 34593858 PMCID: PMC8484670 DOI: 10.1038/s41598-021-98570-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/07/2021] [Indexed: 02/08/2023] Open
Abstract
Toxin-antitoxin (TA) modules are part of most bacteria's regulatory machinery for stress responses and general aspects of their physiology. Due to the interplay of a long-lived toxin with a short-lived antitoxin, TA modules have also become systems of interest for mathematical modelling. Here we resort to previous modelling efforts and extract from these a minimal model of type II TA system dynamics on a timescale of hours, which can be used to describe time courses derived from gene expression data of TA pairs. We show that this model provides a good quantitative description of TA dynamics for the 11 TA pairs under investigation here, while simpler models do not. Our study brings together aspects of Biophysics with its focus on mathematical modelling and Computational Systems Biology with its focus on the quantitative interpretation of 'omics' data. This mechanistic model serves as a generic transformation of time course information into kinetic parameters. The resulting parameter vector can, in turn, be mechanistically interpreted. We expect that TA pairs with similar mechanisms are characterized by similar vectors of kinetic parameters, allowing us to hypothesize on the mode of action for TA pairs still under discussion.
Collapse
|
18
|
Gu Q, He P, Wang D, Ma J, Zhong X, Zhu Y, Zhang Y, Bai Q, Pan Z, Yao H. An Auto-Regulating Type II Toxin-Antitoxin System Modulates Drug Resistance and Virulence in Streptococcus suis. Front Microbiol 2021; 12:671706. [PMID: 34475853 PMCID: PMC8406773 DOI: 10.3389/fmicb.2021.671706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/26/2021] [Indexed: 11/13/2022] Open
Abstract
Toxin-antitoxin (TA) systems are ubiquitous genetic elements that play an essential role in multidrug tolerance and virulence of bacteria. So far, little is known about the TA systems in Streptococcus suis. In this study, the Xress-MNTss TA system, composed of the MNTss toxin in the periplasmic space and its interacting Xress antitoxin, was identified in S. suis. β-galactosidase activity and electrophoretic mobility shift assay (EMSA) revealed that Xress and the Xress-MNTss complex could bind directly to the Xress-MNTss promoter as well as downregulate streptomycin adenylyltransferase ZY05719_RS04610. Interestingly, the Xress deletion mutant was less pathogenic in vivo following a challenge in mice. Transmission electron microscopy and adhesion assays pointed to a significantly thinner capsule but greater biofilm-formation capacity in ΔXress than in the wild-type strain. These results indicate that Xress-MNTss, a new type II TA system, plays an important role in antibiotic resistance and pathogenicity in S. suis.
Collapse
Affiliation(s)
- Qibing Gu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
| | - Peijuan He
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
| | - Dan Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
| | - Jiale Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
| | - Xiaojun Zhong
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China.,College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Yinchu Zhu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China.,Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yue Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China.,College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Qiankun Bai
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
| | - Zihao Pan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
| | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
| |
Collapse
|
19
|
De Bruyn P, Girardin Y, Loris R. Prokaryote toxin-antitoxin modules: Complex regulation of an unclear function. Protein Sci 2021; 30:1103-1113. [PMID: 33786944 PMCID: PMC8138530 DOI: 10.1002/pro.4071] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/29/2022]
Abstract
Toxin–antitoxin (TA) modules are small operons in bacteria and archaea that encode a metabolic inhibitor (toxin) and a matching regulatory protein (antitoxin). While their biochemical activities are often well defined, their biological functions remain unclear. In Type II TA modules, the most common class, both toxin and antitoxin are proteins, and the antitoxin inhibits the biochemical activity of the toxin via complex formation with the toxin. The different TA modules vary significantly regarding structure and biochemical activity. Both regulation of protein activity by the antitoxin and regulation of transcription can be highly complex and sometimes show striking parallels between otherwise unrelated TA modules. Interplay between the multiple levels of regulation in the broader context of the cell as a whole is most likely required for optimum fine‐tuning of these systems. Thus, TA modules can go through great lengths to prevent activation and to reverse accidental activation, in agreement with recent in vivo data. These complex mechanisms seem at odds with the lack of a clear biological function.
Collapse
Affiliation(s)
- Pieter De Bruyn
- VIB-VUB Center for Structural Biology, Vrije Universiteit Brussel and Vlaams Instituut voor Biotechnologie, Brussels, Belgium
| | - Yana Girardin
- VIB-VUB Center for Structural Biology, Vrije Universiteit Brussel and Vlaams Instituut voor Biotechnologie, Brussels, Belgium
| | - Remy Loris
- VIB-VUB Center for Structural Biology, Vrije Universiteit Brussel and Vlaams Instituut voor Biotechnologie, Brussels, Belgium
| |
Collapse
|
20
|
Kang S, Jin C, Kim D, Park SJ, Han S, Lee B. Structure-based design of peptides that trigger Streptococcus pneumoniae cell death. FEBS J 2021; 288:1546-1564. [PMID: 32770723 PMCID: PMC7984235 DOI: 10.1111/febs.15514] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/30/2020] [Accepted: 08/06/2020] [Indexed: 01/08/2023]
Abstract
Toxin-antitoxin (TA) systems regulate key cellular functions in bacteria. Here, we report a unique structure of the Streptococcus pneumoniae HigBA system and a novel antimicrobial agent that activates HigB toxin, which results in mRNA degradation as an antibacterial strategy. In this study, protein structure-based peptides were designed and successfully penetrated the S. pneumoniae cell membrane and exerted bactericidal activity. This result represents the time during which inhibitors triggered S. pneumoniae cell death via the TA system. This discovery is a remarkable milestone in the treatment of antibiotic-resistant S. pneumoniae, and the mechanism of bactericidal activity is completely different from those of current antibiotics. Furthermore, we found that the HigBA complex shows a crossed-scissor interface with two intermolecular β-sheets at both the N and C termini of the HigA antitoxin. Our biochemical and structural studies provided valuable information regarding the transcriptional regulation mechanisms associated with the structural variability of HigAs. Our in vivo study also revealed the potential catalytic residues of HigB and their functional relationships. An inhibition study with peptides additionally proved that peptide binding may allosterically inhibit HigB activity. Overall, our results provide insights into the molecular basis of HigBA TA systems in S. pneumoniae, which can be applied for the development of new antibacterial strategies. DATABASES: Structural data are available in the PDB database under the accession number 6AF4.
Collapse
Affiliation(s)
- Sung‐Min Kang
- Research Institute of Pharmaceutical Sciences, College of PharmacySeoul National UniversityGwanak‐guSeoulKorea
| | - Chenglong Jin
- Research Institute of Pharmaceutical Sciences, College of PharmacySeoul National UniversityGwanak‐guSeoulKorea
| | - Do‐Hee Kim
- College of PharmacyJeju National UniversityJejuKorea
- Interdisciplinary Graduate Program in Advanced Convergence Technology & ScienceJeju National UniversityJejuKorea
| | - Sung Jean Park
- Gachon Institute of Pharmaceutical Sciences, College of PharmacyGachon UniversityIncheonKorea
| | - Sang‐Woo Han
- Research Institute of Pharmaceutical Sciences, College of PharmacySeoul National UniversityGwanak‐guSeoulKorea
| | - Bong‐Jin Lee
- Research Institute of Pharmaceutical Sciences, College of PharmacySeoul National UniversityGwanak‐guSeoulKorea
| |
Collapse
|
21
|
Klemenčič M, Halužan Vasle A, Dolinar M. The Cysteine Protease MaOC1, a Prokaryotic Caspase Homolog, Cleaves the Antitoxin of a Type II Toxin-Antitoxin System. Front Microbiol 2021; 12:635684. [PMID: 33679669 PMCID: PMC7935541 DOI: 10.3389/fmicb.2021.635684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/01/2021] [Indexed: 01/26/2023] Open
Abstract
The bloom-forming cyanobacterium Microcystis aeruginosa is known for its global distribution and for the production of toxic compounds. In the genome of M. aeruginosa PCC 7806, we discovered that the gene coding for MaOC1, a caspase homolog protease, is followed by a toxin-antitoxin module, flanked on each side by a direct repeat. We therefore investigated their possible interaction at the protein level. Our results suggest that this module belongs to the ParE/ParD-like superfamily of type II toxin-antitoxin systems. In solution, the antitoxin is predominantly alpha-helical and dimeric. When coexpressed with its cognate toxin and isolated from Escherichia coli, it forms a complex, as revealed by light scattering and affinity purification. The active site of the toxin is restricted to the C-terminus of the molecule. Its truncation led to normal cell growth, while the wild-type form prevented bacterial growth in liquid medium. The orthocaspase MaOC1 was able to cleave the antitoxin so that it could no longer block the toxin activity. The most likely target of the protease was the C-terminus of the antitoxin with two sections of basic amino acid residues. E. coli cells in which MaOC1 was expressed simultaneously with the toxin-antitoxin pair were unable to grow. In contrast, no effect on cell growth was found when using a proteolytically inactive MaOC1 mutant. We thus present the first case of a cysteine protease that regulates the activity of a toxin-antitoxin module, since all currently known activating proteases are of the serine type.
Collapse
Affiliation(s)
- Marina Klemenčič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Ana Halužan Vasle
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Marko Dolinar
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
22
|
McGillick J, Ames JR, Murphy T, Bourne CR. A YoeB toxin cleaves both RNA and DNA. Sci Rep 2021; 11:3592. [PMID: 33574407 PMCID: PMC7878887 DOI: 10.1038/s41598-021-82950-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/20/2021] [Indexed: 11/17/2022] Open
Abstract
Type II toxin-antitoxin systems contain a toxin protein, which mediates diverse interactions within the bacterial cell when it is not bound by its cognate antitoxin protein. These toxins provide a rich source of evolutionarily-conserved tertiary folds that mediate diverse catalytic reactions. These properties make toxins of interest in biotechnology applications, and studies of the catalytic mechanisms continue to provide surprises. In the current work, our studies on a YoeB family toxin from Agrobacterium tumefaciens have revealed a conserved ribosome-independent non-specific nuclease activity. We have quantified the RNA and DNA cleavage activity, revealing they have essentially equivalent dose-dependence while differing in requirements for divalent cations and pH sensitivity. The DNA cleavage activity is as a nickase for any topology of double-stranded DNA, as well as cleaving single-stranded DNA. AtYoeB is able to bind to double-stranded DNA with mid-micromolar affinity. Comparison of the ribosome-dependent and -independent reactions demonstrates an approximate tenfold efficiency imparted by the ribosome. This demonstrates YoeB toxins can act as non-specific nucleases, cleaving both RNA and DNA, in the absence of being bound within the ribosome.
Collapse
Affiliation(s)
- Julia McGillick
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA.,GENEiQ, Dallas, TX, USA
| | - Jessica R Ames
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA.,School of Physics, University of Bristol, Bristol, England
| | - Tamiko Murphy
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA.,Baylor College of Medicine, Houston, TX, USA
| | - Christina R Bourne
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA.
| |
Collapse
|
23
|
Texier P, Bordes P, Nagpal J, Sala AJ, Mansour M, Cirinesi AM, Xu X, Dougan DA, Genevaux P. ClpXP-mediated Degradation of the TAC Antitoxin is Neutralized by the SecB-like Chaperone in Mycobacterium tuberculosis. J Mol Biol 2021; 433:166815. [PMID: 33450247 DOI: 10.1016/j.jmb.2021.166815] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/27/2020] [Accepted: 01/05/2021] [Indexed: 01/31/2023]
Abstract
Bacterial toxin-antitoxin (TA) systems are composed of a deleterious toxin and its antagonistic antitoxin. They are widespread in bacterial genomes and mobile genetic elements, and their functions remain largely unknown. Some TA systems, known as TAC modules, include a cognate SecB-like chaperone that assists the antitoxin in toxin inhibition. Here, we have investigated the involvement of proteases in the activation cycle of the TAC system of the human pathogen Mycobacterium tuberculosis. We show that the deletion of endogenous AAA+ proteases significantly bypasses the need for a dedicated chaperone and identify the mycobacterial ClpXP1P2 complex as the main protease involved in TAC antitoxin degradation. In addition, we show that the ClpXP1P2 degron is located at the extreme C-terminal end of the chaperone addiction (ChAD) region of the antitoxin, demonstrating that ChAD functions as a hub for both chaperone binding and recognition by proteases.
Collapse
Affiliation(s)
- Pauline Texier
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Patricia Bordes
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France.
| | - Jyotsna Nagpal
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Ambre Julie Sala
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Moise Mansour
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Anne-Marie Cirinesi
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Xibing Xu
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - David Andrew Dougan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| | - Pierre Genevaux
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
24
|
Abstract
Bacterial endoribonuclease toxins belong to a protein family that inhibits bacterial growth by degrading mRNA or rRNA sequences. The toxin genes are organized in pairs with its cognate antitoxins in the chromosome and thus the activities of the toxins are antagonized by antitoxin proteins or RNAs during active translation. In response to a variety of cellular stresses, the endoribonuclease toxins appear to be released from antitoxin molecules via proteolytic cleavage of antitoxin proteins or preferential degradation of antitoxin RNAs and cleave a diverse range of mRNA or rRNA sequences in a sequence-specific or codon-specific manner, resulting in various biological phenomena such as antibiotic tolerance and persister cell formation. Given that substrate specificity of each endoribonuclease toxin is determined by its structure and the composition of active site residues, we summarize the biology, structure, and substrate specificity of the updated bacterial endoribonuclease toxins.
Collapse
Affiliation(s)
- Yoontak Han
- Department of Life Sciences, Korea University, Seoul 02481, Korea
| | - Eun-Jin Lee
- Department of Life Sciences, Korea University, Seoul 02481, Korea
| |
Collapse
|
25
|
Kędzierska B, Potrykus K, Szalewska-Pałasz A, Wodzikowska B. Insights into Transcriptional Repression of the Homologous Toxin-Antitoxin Cassettes yefM-yoeB and axe-txe. Int J Mol Sci 2020; 21:ijms21239062. [PMID: 33260607 PMCID: PMC7730913 DOI: 10.3390/ijms21239062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 11/16/2022] Open
Abstract
Transcriptional repression is a mechanism which enables effective gene expression switch off. The activity of most of type II toxin-antitoxin (TA) cassettes is controlled in this way. These cassettes undergo negative autoregulation by the TA protein complex which binds to the promoter/operator sequence and blocks transcription initiation of the TA operon. Precise and tight control of this process is vital to avoid uncontrolled expression of the toxin component. Here, we employed a series of in vivo and in vitro experiments to establish the molecular basis for previously observed differences in transcriptional activity and repression levels of the pyy and pat promoters which control expression of two homologous TA systems, YefM-YoeB and Axe-Txe, respectively. Transcriptional fusions of promoters with a lux reporter, together with in vitro transcription, EMSA and footprinting assays revealed that: (1) the different sequence composition of the -35 promoter element is responsible for substantial divergence in strengths of the promoters; (2) variations in repression result from the TA repressor complex acting at different steps in the transcription initiation process; (3) transcription from an additional promoter upstream of pat also contributes to the observed inefficient repression of axe-txe module. This study provides evidence that even closely related TA cassettes with high sequence similarity in the promoter/operator region may employ diverse mechanisms for transcriptional regulation of their genes.
Collapse
|
26
|
Xue L, Yue J, Ke J, Khan MH, Wen W, Sun B, Zhu Z, Niu L. Distinct oligomeric structures of the YoeB-YefM complex provide insights into the conditional cooperativity of type II toxin-antitoxin system. Nucleic Acids Res 2020; 48:10527-10541. [PMID: 32845304 PMCID: PMC7544224 DOI: 10.1093/nar/gkaa706] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 12/21/2022] Open
Abstract
YoeB-YefM, the widespread type II toxin-antitoxin (TA) module, binds to its own promoter to autoregulate its transcription: repress or induce transcription under normal or stress conditions, respectively. It remains unclear how YoeB-YefM regulates its transcription depending on the YoeB to YefM TA ratio. We find that YoeB-YefM complex from S.aureus exists as two distinct oligomeric assemblies: heterotetramer (YoeB-YefM2-YoeB) and heterohexamer (YoeB-YefM2-YefM2-YoeB) with low and high DNA-binding affinities, respectively. Structures of the heterotetramer alone and heterohexamer bound to promoter DNA reveals that YefM C-terminal domain undergoes disorder to order transition upon YoeB binding, which allosterically affects the conformation of N-terminal DNA-binding domain. At TA ratio of 1:2, unsaturated binding of YoeB to the C-terminal regions of YefM dimer forms an optimal heterohexamer for DNA binding, and two YefM dimers with N-terminal domains dock into the adjacent major grooves of DNA to specifically recognize the 5'-TTGTACAN6AGTACAA-3' palindromic sequence, resulting in transcriptional repression. In contrast, at TA ratio of 1:1, binding of two additional YoeB molecules onto the heterohexamer induces the completely ordered conformation of YefM and disassembles the heterohexamer into two heterotetramers, which are unable to bind the promoter DNA optimally due to steric clashes, hence derepresses TA operon transcription.
Collapse
Affiliation(s)
- Lu Xue
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jian Yue
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jiyuan Ke
- Lead Discovery Department, H3 Biomedicine Inc, 300 Technology Square FL 5, Cambridge, MA 02139, USA
| | - Muhammad Hidayatullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wen Wen
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Baolin Sun
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhongliang Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Liwen Niu
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
27
|
Evaluating the Potential for Cross-Interactions of Antitoxins in Type II TA Systems. Toxins (Basel) 2020; 12:toxins12060422. [PMID: 32604745 PMCID: PMC7354431 DOI: 10.3390/toxins12060422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 01/21/2023] Open
Abstract
The diversity of Type-II toxin–antitoxin (TA) systems in bacterial genomes requires tightly controlled interaction specificity to ensure protection of the cell, and potentially to limit cross-talk between toxin–antitoxin pairs of the same family of TA systems. Further, there is a redundant use of toxin folds for different cellular targets and complexation with different classes of antitoxins, increasing the apparent requirement for the insulation of interactions. The presence of Type II TA systems has remained enigmatic with respect to potential benefits imparted to the host cells. In some cases, they play clear roles in survival associated with unfavorable growth conditions. More generally, they can also serve as a “cure” against acquisition of highly similar TA systems such as those found on plasmids or invading genetic elements that frequently carry virulence and resistance genes. The latter model is predicated on the ability of these highly specific cognate antitoxin–toxin interactions to form cross-reactions between chromosomal antitoxins and invading toxins. This review summarizes advances in the Type II TA system models with an emphasis on antitoxin cross-reactivity, including with invading genetic elements and cases where toxin proteins share a common fold yet interact with different families of antitoxins.
Collapse
|
28
|
Eun HJ, Lee KY, Kim DG, Im D, Lee BJ. Crystal structure of the YoeB Sa1-YefM Sa1 complex from Staphylococcus aureus. Biochem Biophys Res Commun 2020; 527:264-269. [PMID: 32446378 DOI: 10.1016/j.bbrc.2020.04.089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 04/16/2020] [Indexed: 12/31/2022]
Abstract
Toxin-antitoxin (TA) systems are ubiquitously found in bacteria and are related to cell maintenance and survival under environmental stresses such as heat shock, nutrient starvation, and antibiotic treatment. Here, we report for the first time the crystal structure of the Staphylococcus aureus TA complex YoeBSa1-YefMSa1 at a resolution of 1.7 Å. This structure reveals a heterotetramer with a 2:2 stoichiometry between YoeBSa1 and YefMSa1. The N-terminal regions of the YefMSa1 antitoxin form a homodimer characteristic of a hydrophobic core, and the C-terminal extended region of each YefMSa1 protomer makes contact with each YoeBSa1 monomer. The binding stoichiometry of YoeBSa1 and YefMSa1 is different from that of YoeB and YefM of E. coli (YoeBEc and YefMEc), which is the only structural homologue among YoeB-YefM families; however, the structures of individual YoeBSa1 and YefMSa1 subunits in the complex are highly similar to the corresponding structures in E. coli. In addition, docking simulation with a minimal RNA substrate provides structural insight into the guanosine specificity of YoeBSa1 for cleavage in the active site, which is distinct from the specificity of YoeBEc for adenosine rather than guanosine. Given the previous finding that YoeBSa1 exhibits fatal toxicity without inducing persister cells, the structure of the YoeBSa1-YefMSa1 complex will contribute to the design of a new category of anti-staphylococcal agents that disrupt the YoeBSa1-YefMSa1 complex and increase YoeBSa1 toxicity.
Collapse
Affiliation(s)
- Hyun-Jong Eun
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ki-Young Lee
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dong-Gyun Kim
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Daseul Im
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Bong-Jin Lee
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
29
|
Ames JR, McGillick J, Murphy T, Reddem E, Bourne CR. Identifying a Molecular Mechanism That Imparts Species-Specific Toxicity to YoeB Toxins. Front Microbiol 2020; 11:959. [PMID: 32528435 PMCID: PMC7256200 DOI: 10.3389/fmicb.2020.00959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/21/2020] [Indexed: 11/24/2022] Open
Abstract
The ribosome-dependent E. coli (Ec) mRNase toxin YoeB has been demonstrated to protect cells during thermal stress. Agrobacterium tumefaciens (At), a plant pathogen, also encodes a YoeB toxin. Initial studies indicated that AtYoeB does not impact the growth of Ec, but its expression is toxic to the native host At. The current work examines this species-specific effect. We establish the highly similar structure and function of Ec and AtYoeB toxins, including the ability of the AtYoeB toxin to inhibit Ec ribosomes in vitro. Comparison of YoeB sequences and structures highlights a four-residue helix between β-strands 2 and 3 that interacts with mRNA bases within the ribosome. This helix sequence is varied among YoeB toxins, and this variation correlates with bacterial classes of proteobacteria. When the four amino acid sequence of this helix is transplanted from EcYoeB onto AtYoeB, the resulting chimera gains toxicity to Ec cells and lessens toxicity to At cells. The reverse is also true, such that EcYoeB with the AtYoeB helix sequence is less toxic to Ec and gains toxicity to At cultures. We suggest this helix sequence directs mRNA sequence-specific degradation, which varies among proteobacterial classes, and thus controls growth inhibition and YoeB toxicity.
Collapse
Affiliation(s)
- Jessica R Ames
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - Julia McGillick
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - Tamiko Murphy
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - Eswar Reddem
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - Christina R Bourne
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| |
Collapse
|
30
|
Hiller DA, Dunican BF, Nallur S, Li NS, Piccirilli JA, Strobel SA. The Positively Charged Active Site of the Bacterial Toxin RelE Causes a Large Shift in the General Base p Ka. Biochemistry 2020; 59:1665-1671. [PMID: 32320214 DOI: 10.1021/acs.biochem.9b01047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bacterial toxin RelE cleaves mRNA in the ribosomal A site. Although it shares a global fold with other microbial RNases, the active site contains several positively charged residues instead of histidines and glutamates that are typical of ribonucleases. The pH dependences of wild-type and mutant RelE indicate it uses general acid-base catalysis, but either the general acid (proposed to be R81) or the general base must have a substantially downshifted pKa. However, which group is shifted cannot be determined using available structural and biochemical data. Here, we use a phosphorothiolate at the scissile phosphate to remove the need for a general acid. We show this modification rescues nearly all of the defect of the R81A mutation, supporting R81 as the general acid. We also find that the observed pKa of the general base is dependent on the charge of the side chain at position 81. This indicates that positive charge in the active site contributes to a general base pKa downshifted by more than 5 units. Although this modestly reduces the effectiveness of general acid-base catalysis, it is strongly supplemented by the role of the positive charge in stabilizing the transition state for cleavage. Furthermore, we show that the ribosome is required for cleavage but not binding of mRNA by RelE. Ribosome functional groups do not directly contact the scissile phosphate, indicating that positioning and charge interactions dominate RelE catalysis. The unusual RelE active site catalyzes phosphoryl transfer at a rate comparable to those of similar enzymes, but in a ribosome-dependent fashion.
Collapse
Affiliation(s)
- David A Hiller
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States.,Department of Chemistry and Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Brian F Dunican
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Sunitha Nallur
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States.,Department of Chemistry and Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Nan-Sheng Li
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Joseph A Piccirilli
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Scott A Strobel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States.,Department of Chemistry and Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
| |
Collapse
|
31
|
Jurėnas D, Van Melderen L. The Variety in the Common Theme of Translation Inhibition by Type II Toxin-Antitoxin Systems. Front Genet 2020; 11:262. [PMID: 32362907 PMCID: PMC7180214 DOI: 10.3389/fgene.2020.00262] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
Type II Toxin-antitoxin (TA) modules are bacterial operons that encode a toxic protein and its antidote, which form a self-regulating genetic system. Antitoxins put a halter on toxins in many ways that distinguish different types of TA modules. In type II TA modules, toxin and antitoxin are proteins that form a complex which physically sequesters the toxin, thereby preventing its toxic activity. Type II toxins inhibit various cellular processes, however, the translation process appears to be their favorite target and nearly every step of this complex process is inhibited by type II toxins. The structural features, enzymatic activities and target specificities of the different toxin families are discussed. Finally, this review emphasizes that the structural folds presented by these toxins are not restricted to type II TA toxins or to one particular cellular target, and discusses why so many of them evolved to target translation as well as the recent developments regarding the role(s) of these systems in bacterial physiology and evolution.
Collapse
Affiliation(s)
- Dukas Jurėnas
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la Méditerranée, CNRS, Aix-Marseille Université, Marseille, France
| | - Laurence Van Melderen
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles, Gosselies, Belgium
| |
Collapse
|
32
|
Pavelich IJ, Maehigashi T, Hoffer ED, Ruangprasert A, Miles SJ, Dunham CM. Monomeric YoeB toxin retains RNase activity but adopts an obligate dimeric form for thermal stability. Nucleic Acids Res 2019; 47:10400-10413. [PMID: 31501867 PMCID: PMC6821326 DOI: 10.1093/nar/gkz760] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/13/2019] [Accepted: 08/21/2019] [Indexed: 11/30/2022] Open
Abstract
Chromosomally-encoded toxin-antitoxin complexes are ubiquitous in bacteria and regulate growth through the release of the toxin component typically in a stress-dependent manner. Type II ribosome-dependent toxins adopt a RelE-family RNase fold and inhibit translation by degrading mRNAs while bound to the ribosome. Here, we present biochemical and structural studies of the Escherichia coli YoeB toxin interacting with both a UAA stop and an AAU sense codon in pre- and post-mRNA cleavage states to provide insights into possible mRNA substrate selection. Both mRNAs undergo minimal changes during the cleavage event in contrast to type II ribosome-dependent RelE toxin. Further, the 16S rRNA decoding site nucleotides that monitor the mRNA in the aminoacyl(A) site adopt different orientations depending upon which toxin is present. Although YoeB is a RelE family member, it is the sole ribosome-dependent toxin that is dimeric. We show that engineered monomeric YoeB is active against mRNAs bound to both the small and large subunit. However, the stability of monomeric YoeB is reduced ∼20°C, consistent with potential YoeB activation during heat shock in E. coli as previously demonstrated. These data provide a molecular basis for the ability of YoeB to function in response to thermal stress.
Collapse
Affiliation(s)
- Ian J Pavelich
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.,Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA 30322, USA.,Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Tatsuya Maehigashi
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Eric D Hoffer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.,Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Stacey J Miles
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Christine M Dunham
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.,Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
33
|
Qian H, Yu H, Li P, Zhu E, Yao Q, Tai C, Deng Z, Gerdes K, He X, Gan J, Ou HY. Toxin-antitoxin operon kacAT of Klebsiella pneumoniae is regulated by conditional cooperativity via a W-shaped KacA-KacT complex. Nucleic Acids Res 2019; 47:7690-7702. [PMID: 31260525 PMCID: PMC6698736 DOI: 10.1093/nar/gkz563] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/28/2019] [Accepted: 06/20/2019] [Indexed: 12/05/2022] Open
Abstract
Bacterial toxin–antitoxin pairs play important roles in bacterial multidrug tolerance. Gcn5-related N-acetyltransferase (GNAT) toxins inhibit translation by acetylation of aminoacyl-tRNAs and are counteracted by direct contacts with cognate ribbon–helix–helix (RHH) antitoxins. Our previous analysis showed that the GNAT toxin KacT and RHH antitoxin KacA of Klebsiella pneumoniae form a heterohexamer in solution and that the complex interacts with the cognate promoter DNA, resulting in negative autoregulation of kacAT transcription. Here, we present the crystal structure of DNA-bound KacAT complex at 2.2 Å resolution. The crystal structure revealed the formation of a unique heterohexamer, KacT–KacA2–KacA2–KacT. The direct interaction of KacA and KacT involves a unique W-shaped structure with the two KacT molecules at opposite ends. Inhibition of KacT is achieved by the binding of four KacA proteins that preclude the formation of an active KacT dimer. The kacAT operon is auto-regulated and we present an experimentally supported molecular model proposing that the KacT:KacA ratio controls kacAT transcription by conditional cooperativity. These results yield a profound understanding of how transcription GNAT–RHH pairs are regulated.
Collapse
Affiliation(s)
- Hongliang Qian
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Hao Yu
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Peifei Li
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - E Zhu
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qingqing Yao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Cui Tai
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Kenn Gerdes
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Xinyi He
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jianhua Gan
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Hong-Yu Ou
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
34
|
Ames JR, Muthuramalingam M, Murphy T, Najar FZ, Bourne CR. Expression of different ParE toxins results in conserved phenotypes with distinguishable classes of toxicity. Microbiologyopen 2019; 8:e902. [PMID: 31309747 PMCID: PMC6813445 DOI: 10.1002/mbo3.902] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/12/2019] [Accepted: 06/18/2019] [Indexed: 01/10/2023] Open
Abstract
Toxin–antitoxin (TA) systems are found on both chromosomes and plasmids. These systems are unique in that they can confer both fatal and protective effects on bacterial cells—a quality that could potentially be harnessed given further understanding of these TA mechanisms. The current work focuses on the ParE subfamily, which is found throughout proteobacteria and has a sequence identity on average of approximately 12% (similarity at 30%–80%). Our aim is to evaluate the equivalency of chromosomally derived ParE toxin activity depending on its bacterial species of origin. Nine ParE toxins were analyzed, originating from six different bacterial species. Based on the resulting toxicity, three categories can be established: ParE toxins that do not exert toxicity under the experimental conditions, toxins that exert toxicity within the first four hours, and those that exert toxicity only after 10–12 hr of exposure. All tested ParE toxins produce a cellular morphologic change from rods to filaments, consistent with disruption of DNA topology. Analysis of the distribution of filamented cells within a population reveals a correlation between the extent of filamentation and toxicity. No membrane septation is visible along the length of the cell filaments, whereas aberrant lipid blebs are evident. Potent ParE‐mediated toxicity is also correlated with a hallmark signature of abortive DNA replication, consistent with the inhibition of DNA gyrase.
Collapse
Affiliation(s)
- Jessica R Ames
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | | | - Tamiko Murphy
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Fares Z Najar
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Christina R Bourne
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
35
|
Zhan W, Yao J, Tang K, Li Y, Guo Y, Wang X. Characterization of Two Toxin-Antitoxin Systems in Deep-Sea Streptomyces sp. SCSIO 02999. Mar Drugs 2019; 17:md17040211. [PMID: 30987346 PMCID: PMC6521030 DOI: 10.3390/md17040211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/26/2019] [Accepted: 04/01/2019] [Indexed: 12/20/2022] Open
Abstract
Toxin-antitoxin (TA) systems are ubiquitous and abundant genetic elements in bacteria and archaea. Most previous TA studies have focused on commensal and pathogenic bacteria, but have rarely focused on marine bacteria, especially those isolated from the deep sea. Here, we identified and characterized three putative TA pairs in the deep-sea-derived Streptomyces sp. strain SCSIO 02999. Our results showed that Orf5461/Orf5462 and Orf2769/Orf2770 are bona fide TA pairs. We provide several lines of evidence to demonstrate that Orf5461 and Orf5462 constitute a type-II TA pair that are homologous to the YoeB/YefM TA pair from Escherichia coli. Although YoeB from SCSIO 02999 was toxic to an E. coli host, the homologous YefM antitoxin from SCSIO 02999 did not neutralize the toxic effect of YoeB from E. coli. For the Orf2769/Orf2770 TA pair, Orf2769 overexpression caused significant cell elongation and could lead to cell death in E. coli, and the neighboring Orf2770 could neutralize the toxic effect of Orf2769. However, no homologous toxin or antitoxin was found for this pair, and no direct interaction was found between Orf2769 and Orf2770. These results suggest that Orf2769 and Orf2770 may constitute a novel TA pair. Thus, deep-sea bacteria harbor typical and novel TA pairs. The biochemical and physiological functions of different TAs in deep-sea bacteria warrant further investigation.
Collapse
Affiliation(s)
- Waner Zhan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jianyun Yao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Yangmei Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yunxue Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
36
|
Schureck MA, Meisner J, Hoffer ED, Wang D, Onuoha N, Ei Cho S, Lollar P, Dunham CM. Structural basis of transcriptional regulation by the HigA antitoxin. Mol Microbiol 2019; 111:1449-1462. [PMID: 30793388 DOI: 10.1111/mmi.14229] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2019] [Indexed: 01/16/2023]
Abstract
Bacterial toxin-antitoxin systems are important factors implicated in growth inhibition and plasmid maintenance. Type II toxin-antitoxin pairs are regulated at the transcriptional level by the antitoxin itself. Here, we examined how the HigA antitoxin regulates the expression of the Proteus vulgaris higBA toxin-antitoxin operon from the Rts1 plasmid. The HigBA complex adopts a unique architecture suggesting differences in its regulation as compared to classical type II toxin-antitoxin systems. We find that the C-terminus of the HigA antitoxin is required for dimerization and transcriptional repression. Further, the HigA structure reveals that the C terminus is ordered and does not transition between disorder-to-order states upon toxin binding. HigA residue Arg40 recognizes a TpG dinucleotide in higO2, an evolutionary conserved mode of recognition among prokaryotic and eukaryotic transcription factors. Comparison of the HigBA and HigA-higO2 structures reveals the distance between helix-turn-helix motifs of each HigA monomer increases by ~4 Å in order to bind to higO2. Consistent with these data, HigBA binding to each operator is twofold less tight than HigA alone. Together, these data show the HigB toxin does not act as a co-repressor suggesting potential novel regulation in this toxin-antitoxin system.
Collapse
Affiliation(s)
- Marc A Schureck
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jeffrey Meisner
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Eric D Hoffer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Dongxue Wang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Nina Onuoha
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Shein Ei Cho
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Pete Lollar
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA.,Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Christine M Dunham
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|
37
|
Yoon WS, Seok SH, Won HS, Cho T, Lee SJ, Seo MD. Structural changes of antitoxin HigA from Shigella flexneri by binding of its cognate toxin HigB. Int J Biol Macromol 2019; 130:99-108. [PMID: 30797012 DOI: 10.1016/j.ijbiomac.2019.02.111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 11/17/2022]
Abstract
In toxin-antitoxin systems, many antitoxin proteins that neutralize their cognate toxin proteins also bind to DNA to repress transcription, and the DNA-binding affinity of the antitoxin is affected by its toxin. We solved crystal structures of the antitoxin HigA (apo-SfHigA) and its complex with the toxin HigB (SfHigBA) from Shigella flexneri. The apo-SfHigA shows a distinctive V-shaped homodimeric conformation with sequestered N-domains having a novel fold. SfHigBA appears as a heterotetramer formed by N-terminal dimerization of SfHigB-bound SfHigA molecules. The conformational change in SfHigA upon SfHigB binding is mediated by rigid-body movements of its C-domains, which accompanied an overall conformational change from wide V-shaped to narrow V-shaped dimer. Consequently, the two putative DNA-binding helices (α7 in each subunit) are repositioned to a conformation more compatible with canonical homodimeric DNA-binding proteins containing HTH motifs. Collectively, this study demonstrates a conformational change in an antitoxin protein, which occurs upon toxin binding and is responsible for regulating antitoxin DNA binding.
Collapse
Affiliation(s)
- Won-Su Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon, Gyeonggi 16499, Republic of Korea; College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, Gyeonggi 16499, Republic of Korea
| | - Seung-Hyeon Seok
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, Gyeonggi 16499, Republic of Korea
| | - Hyung-Sik Won
- Department of Biotechnology, Research Institute (RIBHS) and College of Biomedical & Health Science, Konkuk University, Chungju, Chungbuk 27478, Republic of Korea
| | - Taehwan Cho
- Department of Molecular Science and Technology, Ajou University, Suwon, Gyeonggi 16499, Republic of Korea; College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, Gyeonggi 16499, Republic of Korea
| | - Sang Jae Lee
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Min-Duk Seo
- Department of Molecular Science and Technology, Ajou University, Suwon, Gyeonggi 16499, Republic of Korea; College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, Gyeonggi 16499, Republic of Korea.
| |
Collapse
|
38
|
Mechanism of regulation and neutralization of the AtaR–AtaT toxin–antitoxin system. Nat Chem Biol 2019; 15:285-294. [DOI: 10.1038/s41589-018-0216-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 12/14/2018] [Indexed: 11/08/2022]
|
39
|
Roy M, Kundu A, Bhunia A, Das Gupta S, De S, Das AK. Structural characterization of VapB46 antitoxin from
Mycobacterium tuberculosis
: insights into VapB46–
DNA
binding. FEBS J 2019; 286:1174-1190. [DOI: 10.1111/febs.14737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 10/24/2018] [Accepted: 12/17/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Madhurima Roy
- Department of Biotechnology Indian Institute of Technology Kharagpur India
| | - Anirban Kundu
- Department of Biotechnology Indian Institute of Technology Kharagpur India
| | | | | | - Soumya De
- School of Bioscience Indian Institute of Technology Kharagpur India
| | - Amit Kumar Das
- Department of Biotechnology Indian Institute of Technology Kharagpur India
- School of Bioscience Indian Institute of Technology Kharagpur India
| |
Collapse
|
40
|
Jurėnas D, Van Melderen L, Garcia-Pino A. Crystallization and X-ray analysis of all of the players in the autoregulation of the ataRT toxin-antitoxin system. Acta Crystallogr F Struct Biol Commun 2018; 74:391-401. [PMID: 29969102 PMCID: PMC6038448 DOI: 10.1107/s2053230x18007914] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/29/2018] [Indexed: 01/02/2023] Open
Abstract
The ataRT operon from enteropathogenic Escherichia coli encodes a toxin-antitoxin (TA) module with a recently discovered novel toxin activity. This new type II TA module targets translation initiation for cell-growth arrest. Virtually nothing is known regarding the molecular mechanisms of neutralization, toxin catalytic action or translation autoregulation. Here, the production, biochemical analysis and crystallization of the intrinsically disordered antitoxin AtaR, the toxin AtaT, the AtaR-AtaT complex and the complex of AtaR-AtaT with a double-stranded DNA fragment of the operator region of the promoter are reported. Because they contain large regions that are intrinsically disordered, TA antitoxins are notoriously difficult to crystallize. AtaR forms a homodimer in solution and crystallizes in space group P6122, with unit-cell parameters a = b = 56.3, c = 160.8 Å. The crystals are likely to contain an AtaR monomer in the asymmetric unit and diffracted to 3.8 Å resolution. The Y144F catalytic mutant of AtaT (AtaTY144F) bound to the cofactor acetyl coenzyme A (AcCoA) and the C-terminal neutralization domain of AtaR (AtaR44-86) were also crystallized. The crystals of the AtaTY144F-AcCoA complex diffracted to 2.5 Å resolution and the crystals of AtaR44-86 diffracted to 2.2 Å resolution. Analysis of these structures should reveal the full scope of the neutralization of the toxin AtaT by AtaR. The crystals belonged to space groups P6522 and P3121, with unit-cell parameters a = b = 58.1, c = 216.7 Å and a = b = 87.6, c = 125.5 Å, respectively. The AtaR-AtaT-DNA complex contains a 22 bp DNA duplex that was optimized to obtain high-resolution data based on the sequence of two inverted repeats detected in the operator region. It crystallizes in space group C2221, with unit-cell parameters a = 75.6, b = 87.9, c = 190.5 Å. These crystals diffracted to 3.5 Å resolution.
Collapse
Affiliation(s)
- Dukas Jurėnas
- Cellular and Molecular Microbiology, Université Libre de Bruxelles (ULB), Rue des Professeurs Jeener et Brachet 12, B-6041 Gosselies, Belgium
- Department of Biochemistry and Molecular Biology, Vilnius University Joint Life Sciences Center, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Laurence Van Melderen
- Cellular and Molecular Microbiology, Université Libre de Bruxelles (ULB), Rue des Professeurs Jeener et Brachet 12, B-6041 Gosselies, Belgium
| | - Abel Garcia-Pino
- Cellular and Molecular Microbiology, Université Libre de Bruxelles (ULB), Rue des Professeurs Jeener et Brachet 12, B-6041 Gosselies, Belgium
| |
Collapse
|
41
|
Hadži S, Garcia-Pino A, Haesaerts S, Jurenas D, Gerdes K, Lah J, Loris R. Ribosome-dependent Vibrio cholerae mRNAse HigB2 is regulated by a β-strand sliding mechanism. Nucleic Acids Res 2017; 45:4972-4983. [PMID: 28334932 PMCID: PMC5416850 DOI: 10.1093/nar/gkx138] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 02/25/2017] [Indexed: 11/12/2022] Open
Abstract
Toxin–antitoxin (TA) modules are small operons involved in bacterial stress response and persistence. higBA operons form a family of TA modules with an inverted gene organization and a toxin belonging to the RelE/ParE superfamily. Here, we present the crystal structures of chromosomally encoded Vibrio cholerae antitoxin (VcHigA2), toxin (VcHigB2) and their complex, which show significant differences in structure and mechanisms of function compared to the higBA module from plasmid Rts1, the defining member of the family. The VcHigB2 is more closely related to Escherichia coli RelE both in terms of overall structure and the organization of its active site. VcHigB2 is neutralized by VcHigA2, a modular protein with an N-terminal intrinsically disordered toxin-neutralizing segment followed by a C-terminal helix-turn-helix dimerization and DNA binding domain. VcHigA2 binds VcHigB2 with picomolar affinity, which is mainly a consequence of entropically favorable de-solvation of a large hydrophobic binding interface and enthalpically favorable folding of the N-terminal domain into an α-helix followed by a β-strand. This interaction displaces helix α3 of VcHigB2 and at the same time induces a one-residue shift in the register of β-strand β3, thereby flipping the catalytically important Arg64 out of the active site.
Collapse
Affiliation(s)
- San Hadži
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, B-1050 Brussel, Belgium.,Molecular Recognition Unit, Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050 Brussel, Belgium.,Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Abel Garcia-Pino
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, B-1050 Brussel, Belgium.,Biologie Structurale et Biophysique, IBMM-DBM, Université Libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Sarah Haesaerts
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, B-1050 Brussel, Belgium.,Molecular Recognition Unit, Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050 Brussel, Belgium
| | - Dukas Jurenas
- Biologie Structurale et Biophysique, IBMM-DBM, Université Libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Kenn Gerdes
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Jurij Lah
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Remy Loris
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, B-1050 Brussel, Belgium.,Molecular Recognition Unit, Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050 Brussel, Belgium
| |
Collapse
|
42
|
Gautam LK, Yadav M, Rathore JS. Functional annotation of a novel toxin-antitoxin system Xn-RelT of Xenorhabdus nematophila; a combined in silico and in vitro approach. J Mol Model 2017; 23:189. [PMID: 28508139 DOI: 10.1007/s00894-017-3361-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 04/26/2017] [Indexed: 12/19/2022]
Abstract
Toxin-antitoxin (TA) complexes play an important role in stress responses and programmed cell death in bacteria. The RelB-RelE toxin antitoxin system is well studied in Escherichia coli. In this study, we used combined in silico and in vitro approaches to study a novel Xn-RelT toxin from Xenorhabdus nematophila bearing its own antitoxin Xn-RelAT-a RelB homolog of E. coli. The structure for this toxin-antitoxin pair is yet unknown. We generated homology-based models of X. nematophila RelT toxin and antitoxin. The deduced models were further characterized for protein-nucleic acid, protein-protein interactions and gene ontology. A detrimental effect of recombinant Xn-RelT on host E. coli was determined through endogenous toxicity assay. When expressed from a isopropyl β-D-1-thiogalactopyranoside-regulated LacZ promoter, Xn-RelT toxin showed a toxic effect on E. coli cells. These observations imply that the conditional cooperativity governing the Xn-RelT TA operon in X. nematophila plays an important role in stress management and programmed cell death.
Collapse
Affiliation(s)
- Lalit Kumar Gautam
- School of Biotechnology, Gautam Buddha University, Yamuna Expressway, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh, 201312, India.,Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Mohit Yadav
- School of Biotechnology, Gautam Buddha University, Yamuna Expressway, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh, 201312, India
| | - Jitendra Singh Rathore
- School of Biotechnology, Gautam Buddha University, Yamuna Expressway, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh, 201312, India.
| |
Collapse
|
43
|
Yang QE, Walsh TR. Toxin-antitoxin systems and their role in disseminating and maintaining antimicrobial resistance. FEMS Microbiol Rev 2017; 41:343-353. [PMID: 28449040 PMCID: PMC5812544 DOI: 10.1093/femsre/fux006] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Indexed: 12/20/2022] Open
Abstract
Toxin-antitoxin systems (TAs) are ubiquitous among bacteria and play a crucial role in the dissemination and evolution of antibiotic resistance, such as maintaining multi-resistant plasmids and inducing persistence formation. Generally, activities of the toxins are neutralised by their conjugate antitoxins. In contrast, antitoxins are more liable to degrade under specific conditions such as stress, and free active toxins interfere with essential cellular processes including replication, translation and cell-wall synthesis. TAs have also been shown to be responsible for plasmid maintenance, stress management, bacterial persistence and biofilm formation. We discuss here the recent findings of these multifaceted TAs (type I-VI) and in particular examine the role of TAs in augmenting the dissemination and maintenance of multi-drug resistance in bacteria.
Collapse
Affiliation(s)
- Qiu E. Yang
- Division of Infection and Immunity, Heath Park Hospital, Cardiff University, Cardiff CF14 4XN, UK
| | - Timothy R. Walsh
- Division of Infection and Immunity, Heath Park Hospital, Cardiff University, Cardiff CF14 4XN, UK
| |
Collapse
|
44
|
Masuda H, Inouye M. Toxins of Prokaryotic Toxin-Antitoxin Systems with Sequence-Specific Endoribonuclease Activity. Toxins (Basel) 2017; 9:toxins9040140. [PMID: 28420090 PMCID: PMC5408214 DOI: 10.3390/toxins9040140] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 01/21/2023] Open
Abstract
Protein translation is the most common target of toxin-antitoxin system (TA) toxins. Sequence-specific endoribonucleases digest RNA in a sequence-specific manner, thereby blocking translation. While past studies mainly focused on the digestion of mRNA, recent analysis revealed that toxins can also digest tRNA, rRNA and tmRNA. Purified toxins can digest single-stranded portions of RNA containing recognition sequences in the absence of ribosome in vitro. However, increasing evidence suggests that in vivo digestion may occur in association with ribosomes. Despite the prevalence of recognition sequences in many mRNA, preferential digestion seems to occur at specific positions within mRNA and also in certain reading frames. In this review, a variety of tools utilized to study the nuclease activities of toxins over the past 15 years will be reviewed. A recent adaptation of an RNA-seq-based technique to analyze entire sets of cellular RNA will be introduced with an emphasis on its strength in identifying novel targets and redefining recognition sequences. The differences in biochemical properties and postulated physiological roles will also be discussed.
Collapse
Affiliation(s)
- Hisako Masuda
- School of Sciences, Indiana University Kokomo, Kokomo, IN 46902, USA.
| | - Masayori Inouye
- Department of Biochemistry, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08854, USA.
| |
Collapse
|
45
|
Ruangprasert A, Maehigashi T, Miles SJ, Dunham CM. Importance of the E. coli DinJ antitoxin carboxy terminus for toxin suppression and regulated proteolysis. Mol Microbiol 2017; 104:65-77. [PMID: 28164393 DOI: 10.1111/mmi.13641] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2017] [Indexed: 11/26/2022]
Abstract
Toxin-antitoxin genes play important roles in the regulation of bacterial growth during stress. One response to stress is selective proteolysis of antitoxin proteins which releases their cognate toxin partners causing rapid inhibition of growth. The features of toxin-antitoxin complexes that are important to inhibit toxin activity as well as to release the active toxin remain elusive. Furthermore, it is unclear how antitoxins are selected for proteolysis by cellular proteases. Here, we test the minimal structural requirements of the Escherichia coli DinJ antitoxin to suppress its toxin partner, YafQ. We find that DinJ-YafQ complex formation is critically dependent on the last ten C-terminal residues of DinJ. However, deletion of these 10 DinJ residues has little effect on transcriptional autorepression suggesting that the YafQ toxin is not a critical component of the repression complex in contrast to other toxin-antitoxin systems. We further demonstrate that loop 5 preceding these ten C-terminal residues is important for Lon-mediated proteolysis. These results provide important insights into the critical interactions between toxin-antitoxin pairs necessary to inhibit toxin activity and the regulated proteolysis of antitoxins.
Collapse
Affiliation(s)
- Ajchareeya Ruangprasert
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Tatsuya Maehigashi
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Stacey J Miles
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Christine M Dunham
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta, GA, 30322, USA
| |
Collapse
|
46
|
Caprari S, Minervini G, Brandi V, Polticelli F. In silico study of the structure and function of Streptococcus mutans plasmidic proteins. BIO-ALGORITHMS AND MED-SYSTEMS 2017. [DOI: 10.1515/bams-2017-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe Gram-positive bacterium
Collapse
|
47
|
Ramisetty BCM, Ghosh D, Roy Chowdhury M, Santhosh RS. What Is the Link between Stringent Response, Endoribonuclease Encoding Type II Toxin-Antitoxin Systems and Persistence? Front Microbiol 2016; 7:1882. [PMID: 27933045 PMCID: PMC5120126 DOI: 10.3389/fmicb.2016.01882] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 11/09/2016] [Indexed: 11/21/2022] Open
Abstract
Persistence is a transient and non-inheritable tolerance to antibiotics by a small fraction of a bacterial population. One of the proposed determinants of bacterial persistence is toxin–antitoxin systems (TASs) which are also implicated in a wide range of stress-related phenomena. Maisonneuve E, Castro-Camargo M, Gerdes K. 2013. Cell 154:1140–1150 reported an interesting link between ppGpp mediated stringent response, TAS, and persistence. It is proposed that accumulation of ppGpp enhances the accumulation of inorganic polyphosphate which modulates Lon protease to degrade antitoxins. The decrease in the concentration of antitoxins supposedly activated the toxin to increase in the number of persisters during antibiotic treatment. In this study, we show that inorganic polyphosphate is not required for transcriptional activation of yefM/yoeB TAS, which is an indirect indication of Lon-dependent degradation of YefM antitoxin. The Δ10 strain, an Escherichia coli MG1655 derivative in which the 10 TAS are deleted, is more sensitive to ciprofloxacin compared to wild type MG1655. Furthermore, we show that the Δ10 strain has relatively lower fitness compared to the wild type and hence, we argue that the persistence related implications based on Δ10 strain are void. We conclude that the transcriptional regulation and endoribonuclease activity of YefM/YoeB TAS is independent of ppGpp and inorganic polyphosphate. Therefore, we urge for thorough inspection and debate on the link between chromosomal endoribonuclease TAS and persistence.
Collapse
Affiliation(s)
- Bhaskar C M Ramisetty
- School of Chemical and Biotechnology, SASTRA UniversityThanjavur, India; Department of Biochemistry and Molecular Biology, University of Southern DenmarkOdense, Denmark
| | - Dimpy Ghosh
- School of Chemical and Biotechnology, SASTRA University Thanjavur, India
| | | | | |
Collapse
|
48
|
Kwiatek M, Parasion S, Rutyna P, Mizak L, Gryko R, Niemcewicz M, Olender A, Łobocka M. Isolation of bacteriophages and their application to control Pseudomonas aeruginosa in planktonic and biofilm models. Res Microbiol 2016; 168:194-207. [PMID: 27818282 DOI: 10.1016/j.resmic.2016.10.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/22/2016] [Accepted: 10/25/2016] [Indexed: 01/21/2023]
Abstract
Pseudomonas aeruginosa is frequently identified as a cause of diverse infections and chronic diseases. It forms biofilms and has natural resistance to several antibiotics. Strains of this pathogen resistant to new-generation beta-lactams have emerged. Due to the difficulties associated with treating chronic P. aeruginosa infections, bacteriophages are amongst the alternative therapeutic options being actively researched. Two obligatorily lytic P. aeruginosa phages, vB_PaeM_MAG1 (MAG1) and vB_PaeP_MAG4 (MAG4), have been isolated and characterized. These phages belong to the PAK_P1likevirus genus of the Myoviridae family and the LIT1virus genus of the Podoviridae family, respectively. They adsorb quickly to their hosts (∼90% in 5 min), have a short latent period (15 min), and are stable during storage. Each individual phage propagated in approximately 50% of P. aeruginosa strains tested, which increased to 72.9% when phages were combined into a cocktail. While MAG4 reduced biofilm more effectively after a short time of treatment, MAG1 was more effective after a longer time and selected less for phage-resistant clones. A MAG1-encoded homolog of YefM antitoxin of the bacterial toxin-antitoxin system may contribute to the superiority of MAG1 over MAG4.
Collapse
Affiliation(s)
- Magdalena Kwiatek
- Military Institute of Hygiene and Epidemiology, Lubelska Str. 2, 24-100 Puławy, Poland.
| | - Sylwia Parasion
- Military Institute of Hygiene and Epidemiology, Lubelska Str. 2, 24-100 Puławy, Poland.
| | - Paweł Rutyna
- Military Institute of Hygiene and Epidemiology, Lubelska Str. 2, 24-100 Puławy, Poland.
| | - Lidia Mizak
- Military Institute of Hygiene and Epidemiology, Lubelska Str. 2, 24-100 Puławy, Poland.
| | - Romuald Gryko
- Military Institute of Hygiene and Epidemiology, Lubelska Str. 2, 24-100 Puławy, Poland.
| | - Marcin Niemcewicz
- Military Institute of Hygiene and Epidemiology, Lubelska Str. 2, 24-100 Puławy, Poland.
| | - Alina Olender
- Medical University of Lublin, Chair and Department of Medical Microbiology, dr W. Chodźki 1, 20-093 Lublin, Poland.
| | - Małgorzata Łobocka
- Autonomous Department of Microbial Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warszawa, Poland.
| |
Collapse
|
49
|
Structure, Biology, and Therapeutic Application of Toxin-Antitoxin Systems in Pathogenic Bacteria. Toxins (Basel) 2016; 8:toxins8100305. [PMID: 27782085 PMCID: PMC5086665 DOI: 10.3390/toxins8100305] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 01/09/2023] Open
Abstract
Bacterial toxin–antitoxin (TA) systems have received increasing attention for their diverse identities, structures, and functional implications in cell cycle arrest and survival against environmental stresses such as nutrient deficiency, antibiotic treatments, and immune system attacks. In this review, we describe the biological functions and the auto-regulatory mechanisms of six different types of TA systems, among which the type II TA system has been most extensively studied. The functions of type II toxins include mRNA/tRNA cleavage, gyrase/ribosome poison, and protein phosphorylation, which can be neutralized by their cognate antitoxins. We mainly explore the similar but divergent structures of type II TA proteins from 12 important pathogenic bacteria, including various aspects of protein–protein interactions. Accumulating knowledge about the structure–function correlation of TA systems from pathogenic bacteria has facilitated a novel strategy to develop antibiotic drugs that target specific pathogens. These molecules could increase the intrinsic activity of the toxin by artificially interfering with the intermolecular network of the TA systems.
Collapse
|
50
|
Schureck MA, Repack A, Miles SJ, Marquez J, Dunham CM. Mechanism of endonuclease cleavage by the HigB toxin. Nucleic Acids Res 2016; 44:7944-53. [PMID: 27378776 PMCID: PMC5027501 DOI: 10.1093/nar/gkw598] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/17/2016] [Accepted: 06/22/2016] [Indexed: 01/11/2023] Open
Abstract
Bacteria encode multiple type II toxin-antitoxin modules that cleave ribosome-bound mRNAs in response to stress. All ribosome-dependent toxin family members structurally characterized to date adopt similar microbial RNase architectures despite possessing low sequence identities. Therefore, determining which residues are catalytically important in this specialized RNase family has been a challenge in the field. Structural studies of RelE and YoeB toxins bound to the ribosome provided significant insights but biochemical experiments with RelE were required to clearly demonstrate which residues are critical for acid-base catalysis of mRNA cleavage. Here, we solved an X-ray crystal structure of the wild-type, ribosome-dependent toxin HigB bound to the ribosome revealing potential catalytic residues proximal to the mRNA substrate. Using cell-based and biochemical assays, we further determined that HigB residues His54, Asp90, Tyr91 and His92 are critical for activity in vivo, while HigB H54A and Y91A variants have the largest effect on mRNA cleavage in vitro Comparison of X-ray crystal structures of two catalytically inactive HigB variants with 70S-HigB bound structures reveal that HigB active site residues undergo conformational rearrangements likely required for recognition of its mRNA substrate. These data support the emerging concept that ribosome-dependent toxins have diverse modes of mRNA recognition.
Collapse
Affiliation(s)
- Marc A Schureck
- Emory University School of Medicine, Department of Biochemistry, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - Adrienne Repack
- Emory University School of Medicine, Department of Biochemistry, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - Stacey J Miles
- Emory University School of Medicine, Department of Biochemistry, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - Jhomar Marquez
- Emory University School of Medicine, Department of Biochemistry, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - Christine M Dunham
- Emory University School of Medicine, Department of Biochemistry, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| |
Collapse
|