1
|
Zhang H, Li Q, Liao Y, Ma D, Zeng F, Zhang Z, Yu L, Yue R, Li X, Liao Y, Li D, Jang G, Zhao H, Zhao X, Zheng H, Li H, Liu L, Zhang Y. Immune Response Elicited by Recombinant Adenovirus-Delivered Glycoprotein B and Nucleocapsid Protein UL18 and UL25 of HSV-1 in Mice. Int J Mol Sci 2024; 25:13486. [PMID: 39769249 PMCID: PMC11678876 DOI: 10.3390/ijms252413486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Due to the complex pathogenic and immune escape mechanisms of herpes simplex virus type 1 (HSV-1), especially the failure of induced immune responses to block the initial cell-to-cell transmission of the virus from skin cells to neurons, the body struggles to establish effective prevention and control methods, resulting in the failure of currently developed vaccines. Previous studies have highlighted the crucial roles of surface glycoproteins and nucleocapsid proteins in activating the body's immune defense system against HSV-1 infection. In this study, recombinant adenoviruses were used as vectors to generate adenoviruses carrying the nucleocapsid protein genes UL18 and UL25, as well as the surface glycoprotein gene gB. This approach aimed to mimic the protein expression process that occurs following viral infection of the host and to investigate the immune response characteristics induced by UL18, UL25, and gB proteins. The findings revealed that UL18, UL25, and gB proteins could all trigger the expression of genes associated with innate immune responses; however, the specific genes induced varied in type and level. Furthermore, all three proteins were capable of promoting the proliferation of CD8+ T cells in the lymph nodes. Notably, only UL18 and gB could elicit a Th1 cell immune response. Interestingly, among these proteins, only UL18 could also induce a relatively higher IL-4 level, indicating a Th2 cell immune response. In addition to cellular immunity, all three proteins stimulated the production of specific IgG antibodies. Notably, UL18 induced higher and more sustained levels of specific IgG antibodies in mice. By contrast, only glycoprotein gB induced lower levels of neutralizing antibodies in mice. Moreover, when these mice were challenged with HSV-1, the co-immunization with UL18 and gB provided better protection than gB alone. In conclusion, HSV-1 surface glycoproteins and nucleocapsid proteins exhibit differences in their ability to induce innate and adaptive immunity in the body, suggesting potential avenues for vaccine design by leveraging their complementary advantages.
Collapse
Affiliation(s)
- Haobo Zhang
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650118, China; (H.Z.); (Q.L.); (Y.L.); (D.M.); (F.Z.); (Z.Z.); (L.Y.); (R.Y.); (X.L.); (Y.L.); (D.L.); (G.J.); (H.Z.); (X.Z.); (H.Z.); (H.L.)
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Qi Li
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650118, China; (H.Z.); (Q.L.); (Y.L.); (D.M.); (F.Z.); (Z.Z.); (L.Y.); (R.Y.); (X.L.); (Y.L.); (D.L.); (G.J.); (H.Z.); (X.Z.); (H.Z.); (H.L.)
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Yun Liao
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650118, China; (H.Z.); (Q.L.); (Y.L.); (D.M.); (F.Z.); (Z.Z.); (L.Y.); (R.Y.); (X.L.); (Y.L.); (D.L.); (G.J.); (H.Z.); (X.Z.); (H.Z.); (H.L.)
| | - Danjing Ma
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650118, China; (H.Z.); (Q.L.); (Y.L.); (D.M.); (F.Z.); (Z.Z.); (L.Y.); (R.Y.); (X.L.); (Y.L.); (D.L.); (G.J.); (H.Z.); (X.Z.); (H.Z.); (H.L.)
| | - Fengyuan Zeng
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650118, China; (H.Z.); (Q.L.); (Y.L.); (D.M.); (F.Z.); (Z.Z.); (L.Y.); (R.Y.); (X.L.); (Y.L.); (D.L.); (G.J.); (H.Z.); (X.Z.); (H.Z.); (H.L.)
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Zhenxiao Zhang
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650118, China; (H.Z.); (Q.L.); (Y.L.); (D.M.); (F.Z.); (Z.Z.); (L.Y.); (R.Y.); (X.L.); (Y.L.); (D.L.); (G.J.); (H.Z.); (X.Z.); (H.Z.); (H.L.)
| | - Li Yu
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650118, China; (H.Z.); (Q.L.); (Y.L.); (D.M.); (F.Z.); (Z.Z.); (L.Y.); (R.Y.); (X.L.); (Y.L.); (D.L.); (G.J.); (H.Z.); (X.Z.); (H.Z.); (H.L.)
| | - Rong Yue
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650118, China; (H.Z.); (Q.L.); (Y.L.); (D.M.); (F.Z.); (Z.Z.); (L.Y.); (R.Y.); (X.L.); (Y.L.); (D.L.); (G.J.); (H.Z.); (X.Z.); (H.Z.); (H.L.)
| | - Xinghang Li
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650118, China; (H.Z.); (Q.L.); (Y.L.); (D.M.); (F.Z.); (Z.Z.); (L.Y.); (R.Y.); (X.L.); (Y.L.); (D.L.); (G.J.); (H.Z.); (X.Z.); (H.Z.); (H.L.)
| | - Yuansheng Liao
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650118, China; (H.Z.); (Q.L.); (Y.L.); (D.M.); (F.Z.); (Z.Z.); (L.Y.); (R.Y.); (X.L.); (Y.L.); (D.L.); (G.J.); (H.Z.); (X.Z.); (H.Z.); (H.L.)
| | - Dandan Li
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650118, China; (H.Z.); (Q.L.); (Y.L.); (D.M.); (F.Z.); (Z.Z.); (L.Y.); (R.Y.); (X.L.); (Y.L.); (D.L.); (G.J.); (H.Z.); (X.Z.); (H.Z.); (H.L.)
| | - Guorun Jang
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650118, China; (H.Z.); (Q.L.); (Y.L.); (D.M.); (F.Z.); (Z.Z.); (L.Y.); (R.Y.); (X.L.); (Y.L.); (D.L.); (G.J.); (H.Z.); (X.Z.); (H.Z.); (H.L.)
| | - Heng Zhao
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650118, China; (H.Z.); (Q.L.); (Y.L.); (D.M.); (F.Z.); (Z.Z.); (L.Y.); (R.Y.); (X.L.); (Y.L.); (D.L.); (G.J.); (H.Z.); (X.Z.); (H.Z.); (H.L.)
| | - Xin Zhao
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650118, China; (H.Z.); (Q.L.); (Y.L.); (D.M.); (F.Z.); (Z.Z.); (L.Y.); (R.Y.); (X.L.); (Y.L.); (D.L.); (G.J.); (H.Z.); (X.Z.); (H.Z.); (H.L.)
| | - Huiwen Zheng
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650118, China; (H.Z.); (Q.L.); (Y.L.); (D.M.); (F.Z.); (Z.Z.); (L.Y.); (R.Y.); (X.L.); (Y.L.); (D.L.); (G.J.); (H.Z.); (X.Z.); (H.Z.); (H.L.)
| | - Heng Li
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650118, China; (H.Z.); (Q.L.); (Y.L.); (D.M.); (F.Z.); (Z.Z.); (L.Y.); (R.Y.); (X.L.); (Y.L.); (D.L.); (G.J.); (H.Z.); (X.Z.); (H.Z.); (H.L.)
| | - Longding Liu
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650118, China; (H.Z.); (Q.L.); (Y.L.); (D.M.); (F.Z.); (Z.Z.); (L.Y.); (R.Y.); (X.L.); (Y.L.); (D.L.); (G.J.); (H.Z.); (X.Z.); (H.Z.); (H.L.)
| | - Ying Zhang
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650118, China; (H.Z.); (Q.L.); (Y.L.); (D.M.); (F.Z.); (Z.Z.); (L.Y.); (R.Y.); (X.L.); (Y.L.); (D.L.); (G.J.); (H.Z.); (X.Z.); (H.Z.); (H.L.)
| |
Collapse
|
2
|
Zhen J, Chen J, Huang H, Liao S, Liu S, Yuan Y, Sun R, Longnecker R, Wu TT, Zhou ZH. Structures of Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus virions reveal species-specific tegument and envelope features. J Virol 2024; 98:e0119424. [PMID: 39470208 PMCID: PMC11575322 DOI: 10.1128/jvi.01194-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/26/2024] [Indexed: 10/30/2024] Open
Abstract
Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are classified into the gammaherpesvirus subfamily of Herpesviridae, which stands out from its alpha- and betaherpesvirus relatives due to the tumorigenicity of its members. Although structures of human alpha- and betaherpesviruses by cryogenic electron tomography (cryoET) have been reported, reconstructions of intact human gammaherpesvirus virions remain elusive. Here, we structurally characterize extracellular virions of EBV and KSHV by deep learning-enhanced cryoET, resolving both previously known monomorphic capsid structures and previously unknown pleomorphic features beyond the capsid. Through subtomogram averaging and subsequent tomogram-guided sub-particle reconstruction, we determined the orientation of KSHV nucleocapsids from mature virions with respect to the portal to provide spatial context for the tegument within the virion. Both EBV and KSHV have an eccentric capsid position and polarized distribution of tegument. Tegument species span from the capsid to the envelope and may serve as scaffolds for tegumentation and envelopment. The envelopes of EBV and KSHV are less densely populated with glycoproteins than those of herpes simplex virus 1 (HSV-1) and human cytomegalovirus (HCMV), representative members of alpha- and betaherpesviruses, respectively. Also, we observed fusion protein gB trimers exist within triplet arrangements in addition to standalone complexes, which is relevant to understanding dynamic processes such as fusion pore formation. Taken together, this study reveals nuanced yet important differences in the tegument and envelope architectures among human herpesviruses and provides insights into their varied cell tropism and infection. IMPORTANCE Discovered in 1964, Epstein-Barr virus (EBV) is the first identified human oncogenic virus and the founding member of the gammaherpesvirus subfamily. In 1994, another cancer-causing virus was discovered in lesions of AIDS patients and later named Kaposi's sarcoma-associated herpesvirus (KSHV), the second human gammaherpesvirus. Despite the historical importance of EBV and KSHV, technical difficulties with isolating large quantities of these viruses and the pleiomorphic nature of their envelope and tegument layers have limited structural characterization of their virions. In this study, we employed the latest technologies in cryogenic electron microscopy (cryoEM) and tomography (cryoET) supplemented with an artificial intelligence-powered data processing software package to reconstruct 3D structures of the EBV and KSHV virions. We uncovered unique properties of the envelope glycoproteins and tegument layers of both EBV and KSHV. Comparison of these features with their non-tumorigenic counterparts provides insights into their relevance during infection.
Collapse
Affiliation(s)
- James Zhen
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, USA
- California NanoSystems Institute, UCLA, Los Angeles, California, USA
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Jia Chen
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Haigen Huang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Shiqing Liao
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, USA
- California NanoSystems Institute, UCLA, Los Angeles, California, USA
| | - Shiheng Liu
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, USA
- California NanoSystems Institute, UCLA, Los Angeles, California, USA
| | - Yan Yuan
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ren Sun
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Richard Longnecker
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ting-Ting Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Z. Hong Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, USA
- California NanoSystems Institute, UCLA, Los Angeles, California, USA
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
| |
Collapse
|
3
|
Zhen J, Chen J, Huang H, Liao S, Liu S, Yuan Y, Sun R, Longnecker R, Wu TT, Zhou ZH. Structures of Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus virions reveal species-specific tegument and envelope features. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602672. [PMID: 39026862 PMCID: PMC11257568 DOI: 10.1101/2024.07.09.602672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are classified into the gammaherpesvirus subfamily of Herpesviridae , which stands out from its alpha- and betaherpesvirus relatives due to the tumorigenicity of its members. Although structures of human alpha- and betaherpesviruses by cryogenic electron tomography (cryoET) have been reported, reconstructions of intact human gammaherpesvirus virions remain elusive. Here, we structurally characterize extracellular virions of EBV and KSHV by deep learning-enhanced cryoET, resolving both previously known monomorphic capsid structures and previously unknown pleomorphic features beyond the capsid. Through subtomogram averaging and subsequent tomogram-guided sub-particle reconstruction, we determined the orientation of KSHV nucleocapsids from mature virions with respect to the portal to provide spatial context for the tegument within the virion. Both EBV and KSHV have an eccentric capsid position and polarized distribution of tegument. Tegument species span from the capsid to the envelope and may serve as scaffolds for tegumentation and envelopment. The envelopes of EBV and KSHV are less densely populated with glycoproteins than those of herpes simplex virus 1 and human cytomegalovirus, representative members of alpha- and betaherpesviruses, respectively. This population density of glycoproteins correlates with their relative infectivity against HEK293T cells. Also, we observed fusion protein gB trimers exist within triplet arrangements in addition to standalone complexes, which is relevant to understanding dynamic processes such as fusion pore formation. Taken together, this study reveals nuanced yet important differences in the tegument and envelope architectures among human herpesviruses and provides insights into their varied cell tropism and infection. Importance Discovered in 1964, Epstein-Barr virus (EBV) is the first identified human oncogenic virus and the founding member of the gammaherpesvirus subfamily. In 1994, another cancer-causing virus was discovered in lesions of AIDS patients and later named Kaposi's sarcoma-associated herpesvirus (KSHV), the second human gammaherpesvirus. Despite the historical importance of EBV and KSHV, technical difficulties with isolating large quantities of these viruses and the pleiomorphic nature of their envelope and tegument layers have limited structural characterization of their virions. In this study, we employed the latest technologies in cryogenic electron microscopy (cryoEM) and tomography (cryoET) supplemented with an artificial intelligence-powered data processing software package to reconstruct 3D structures of the EBV and KSHV virions. We uncovered unique properties of the envelope glycoproteins and tegument layers of both EBV and KSHV. Comparison of these features with their non-tumorigenic counterparts provides insights into their relevance during infection.
Collapse
|
4
|
Turner DL, Mathias RA. The human cytomegalovirus decathlon: Ten critical replication events provide opportunities for restriction. Front Cell Dev Biol 2022; 10:1053139. [PMID: 36506089 PMCID: PMC9732275 DOI: 10.3389/fcell.2022.1053139] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous human pathogen that can cause severe disease in immunocompromised individuals, transplant recipients, and to the developing foetus during pregnancy. There is no protective vaccine currently available, and with only a limited number of antiviral drug options, resistant strains are constantly emerging. Successful completion of HCMV replication is an elegant feat from a molecular perspective, with both host and viral processes required at various stages. Remarkably, HCMV and other herpesviruses have protracted replication cycles, large genomes, complex virion structure and complicated nuclear and cytoplasmic replication events. In this review, we outline the 10 essential stages the virus must navigate to successfully complete replication. As each individual event along the replication continuum poses as a potential barrier for restriction, these essential checkpoints represent potential targets for antiviral development.
Collapse
Affiliation(s)
- Declan L. Turner
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Rommel A. Mathias
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
5
|
The herpes simplex virus tegument protein pUL21 is required for viral genome retention within capsids. PLoS Pathog 2022; 18:e1010969. [DOI: 10.1371/journal.ppat.1010969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/28/2022] [Accepted: 11/02/2022] [Indexed: 11/15/2022] Open
Abstract
During virion morphogenesis herpes simplex virus nucleocapsids transit from the nucleoplasm to the cytoplasm, through a process called nuclear egress, where the final stages of virion assembly occur. Coupled to nuclear egress is a poorly understood quality-control mechanism that preferentially selects genome-containing C-capsids, rather than A- and B-capsids that lack genomes, for transit to the cytoplasm. We and others have reported that cells infected with HSV strains deleted for the tegument protein pUL21 accumulate both empty A-capsids and C-capsids in the cytoplasm of infected cells. Quantitative microscopy experiments indicated that C-capsids were preferentially selected for envelopment at the inner nuclear membrane and that nuclear integrity remained intact in cells infected with pUL21 mutants, prompting alternative explanations for the accumulation of A-capsids in the cytoplasm. More A-capsids were also found in the nuclei of cells infected with pUL21 mutants compared to their wild type (WT) counterparts, suggesting pUL21 might be required for optimal genome packaging or genome retention within capsids. In support of this, more viral genomes were prematurely released into the cytoplasm during pUL21 mutant infection compared to WT infection and led to enhanced activation of cellular cytoplasmic DNA sensors. Mass spectrometry and western blot analysis of WT and pUL21 mutant capsids revealed an increased association of the known pUL21 binding protein, pUL16, with pUL21 mutant capsids, suggesting that premature and/or enhanced association of pUL16 with capsids might result in capsid destabilization. Further supporting this idea, deletion of pUL16 from a pUL21 mutant strain rescued genome retention within capsids. Taken together, these findings suggest that pUL21 regulates pUL16 addition to nuclear capsids and that premature, and/or, over-addition of pUL16 impairs HSV genome retention within capsids.
Collapse
|
6
|
Sanchez V, Britt W. Human Cytomegalovirus Egress: Overcoming Barriers and Co-Opting Cellular Functions. Viruses 2021; 14:v14010015. [PMID: 35062219 PMCID: PMC8778548 DOI: 10.3390/v14010015] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/06/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022] Open
Abstract
The assembly of human cytomegalovirus (HCMV) and other herpesviruses includes both nuclear and cytoplasmic phases. During the prolonged replication cycle of HCMV, the cell undergoes remarkable changes in cellular architecture that include marked increases in nuclear size and structure as well as the reorganization of membranes in cytoplasm. Similarly, significant changes occur in cellular metabolism, protein trafficking, and cellular homeostatic functions. These cellular modifications are considered integral in the efficient assembly of infectious progeny in productively infected cells. Nuclear egress of HCMV nucleocapsids is thought to follow a pathway similar to that proposed for other members of the herpesvirus family. During this process, viral nucleocapsids must overcome structural barriers in the nucleus that limit transit and, ultimately, their delivery to the cytoplasm for final assembly of progeny virions. HCMV, similar to other herpesviruses, encodes viral functions that co-opt cellular functions to overcome these barriers and to bridge the bilaminar nuclear membrane. In this brief review, we will highlight some of the mechanisms that define our current understanding of HCMV egress, relying heavily on the current understanding of egress of the more well-studied α-herpesviruses, HSV-1 and PRV.
Collapse
Affiliation(s)
- Veronica Sanchez
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham, AL 35294, USA;
- Correspondence:
| | - William Britt
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham, AL 35294, USA;
- Department of Microbiology, University of Alabama School of Medicine, Birmingham, AL 35294, USA
| |
Collapse
|
7
|
Role of HSV-1 Capsid Vertex-Specific Component (CVSC) and Viral Terminal DNA in Capsid Docking at the Nuclear Pore. Viruses 2021; 13:v13122515. [PMID: 34960783 PMCID: PMC8704396 DOI: 10.3390/v13122515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 01/18/2023] Open
Abstract
Penetration of the viral genome into a host cell nucleus is critical for initiation of viral replication for most DNA viruses and a few RNA viruses. For herpesviruses, viral DNA ejection into a nucleus occurs when the capsid docks at the nuclear pore complex (NPC) basket with the correct orientation of the unique capsid portal vertex. It has been shown that capsid vertex-specific component (CVSC) proteins, which are located at the twelve vertices of the human herpes simplex virus type 1 (HSV-1) capsid, interact with nucleoporins (Nups) of NPCs. However, it remained unclear whether CVSC proteins determine capsid-to-NPC binding. Furthermore, it has been speculated that terminal DNA adjacent to the portal complex of DNA-filled C-capsids forms a structural motif with the portal cap (which retains DNA in the capsid), which mediates capsid-NPC binding. We demonstrate that terminal viral DNA adjacent to the portal proteins does not present a structural element required for capsid-NPC binding. Our data also show that level of CVSC proteins on the HSV-1 capsid affects level of NPC binding. To elucidate the capsid-binding process, we use an isolated, reconstituted cell nucleus system that recapitulates capsid-nucleus binding in vivo without interference from trafficking kinetics of capsids moving toward the nucleus. This allows binding of non-infectious capsid maturation intermediates with varying levels of vertex-specific components. This experimental system provides a platform for investigating virus-host interaction at the nuclear membrane.
Collapse
|
8
|
Mechanical Capsid Maturation Facilitates the Resolution of Conflicting Requirements for Herpesvirus Assembly. J Virol 2021; 96:e0183121. [PMID: 34878808 PMCID: PMC8865421 DOI: 10.1128/jvi.01831-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Most viruses undergo a maturation process from a weakly self-assembled, noninfectious particle to a stable, infectious virion. For herpesviruses, this maturation process resolves several conflicting requirements: (i) assembly must be driven by weak, reversible interactions between viral particle subunits to reduce errors and minimize the energy of self-assembly, and (ii) the viral particle must be stable enough to withstand tens of atmospheres of DNA pressure resulting from its strong confinement in the capsid. With herpes simplex virus 1 (HSV-1) as a prototype of human herpesviruses, we demonstrated that this mechanical capsid maturation is mainly facilitated through capsid binding auxiliary protein UL25, orthologs of which are present in all herpesviruses. Through genetic manipulation of UL25 mutants of HSV-1 combined with the interrogation of capsid mechanics with atomic force microscopy nano-indentation, we suggested the mechanism of stepwise binding of distinct UL25 domains correlated with capsid maturation and DNA packaging. These findings demonstrate another paradigm of viruses as elegantly programmed nano-machines where an intimate relationship between mechanical and genetic information is preserved in UL25 architecture. IMPORTANCE The minor capsid protein UL25 plays a critical role in the mechanical maturation of the HSV-1 capsid during virus assembly and is required for stable DNA packaging. We modulated the UL25 capsid interactions by genetically deleting different UL25 regions and quantifying the effect on mechanical capsid stability using an atomic force microscopy (AFM) nanoindentation approach. This approach revealed how UL25 regions reinforced the herpesvirus capsid to stably package and retain pressurized DNA. Our data suggest a mechanism of stepwise binding of two main UL25 domains timed with DNA packaging.
Collapse
|
9
|
Abstract
Two of the most prevalent human viruses worldwide, herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2, respectively), cause a variety of diseases, including cold sores, genital herpes, herpes stromal keratitis, meningitis and encephalitis. The intrinsic, innate and adaptive immune responses are key to control HSV, and the virus has developed mechanisms to evade them. The immune response can also contribute to pathogenesis, as observed in stromal keratitis and encephalitis. The fact that certain individuals are more prone than others to suffer severe disease upon HSV infection can be partially explained by the existence of genetic polymorphisms in humans. Like all herpesviruses, HSV has two replication cycles: lytic and latent. During lytic replication HSV produces infectious viral particles to infect other cells and organisms, while during latency there is limited gene expression and lack of infectious virus particles. HSV establishes latency in neurons and can cause disease both during primary infection and upon reactivation. The mechanisms leading to latency and reactivation and which are the viral and host factors controlling these processes are not completely understood. Here we review the HSV life cycle, the interaction of HSV with the immune system and three of the best-studied pathologies: Herpes stromal keratitis, herpes simplex encephalitis and genital herpes. We also discuss the potential association between HSV-1 infection and Alzheimer's disease.
Collapse
Affiliation(s)
- Shuyong Zhu
- Institute of Virology, Hannover Medical School, Cluster of Excellence RESIST (Exc 2155), Hannover Medical School, Hannover, Germany
| | - Abel Viejo-Borbolla
- Institute of Virology, Hannover Medical School, Cluster of Excellence RESIST (Exc 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
10
|
Draganova EB, Valentin J, Heldwein EE. The Ins and Outs of Herpesviral Capsids: Divergent Structures and Assembly Mechanisms across the Three Subfamilies. Viruses 2021; 13:v13101913. [PMID: 34696343 PMCID: PMC8539031 DOI: 10.3390/v13101913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 12/17/2022] Open
Abstract
Human herpesviruses, classified into three subfamilies, are double-stranded DNA viruses that establish lifelong latent infections within most of the world’s population and can cause severe disease, especially in immunocompromised people. There is no cure, and current preventative and therapeutic options are limited. Therefore, understanding the biology of these viruses is essential for finding new ways to stop them. Capsids play a central role in herpesvirus biology. They are sophisticated vehicles that shelter the pressurized double-stranded-DNA genomes while ensuring their delivery to defined cellular destinations on the way in and out of the host cell. Moreover, the importance of capsids for multiple key steps in the replication cycle makes their assembly an attractive therapeutic target. Recent cryo-electron microscopy reconstructions of capsids from all three subfamilies of human herpesviruses revealed not only conserved features but also remarkable structural differences. Furthermore, capsid assembly studies have suggested subfamily-specific roles of viral capsid protein homologs. In this review, we compare capsid structures, assembly mechanisms, and capsid protein functions across human herpesvirus subfamilies, highlighting the differences.
Collapse
Affiliation(s)
- Elizabeth B. Draganova
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA;
| | - Jonathan Valentin
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32603, USA;
| | - Ekaterina E. Heldwein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA;
- Correspondence:
| |
Collapse
|
11
|
UL25 capsid binding facilitates mechanical maturation of the Herpesvirus capsid and allows retention of pressurized DNA. J Virol 2021; 95:e0075521. [PMID: 34346766 DOI: 10.1128/jvi.00755-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The maturation process that occurs in most viruses is evolutionarily driven as it resolves several conflicting virion assembly requirements. During herpesvirus assembly in a host cell nucleus, micron-long double-stranded herpes DNA is packaged into a nanometer-sized procapsid. This leads to strong confinement of the viral genome with resulting tens of atmospheres of intra-capsid DNA pressure. Yet, the procapsid is unstable due to weak, reversible interactions between its protein subunits, which ensures free energy minimization and reduces assembly errors. In this work we show that herpesviruses resolve these contradictory capsid requirements through a mechanical capsid maturation process facilitated by multi-functional auxiliary protein UL25. Through mechanical interrogation of herpes simplex virus type 1 (HSV-1) capsid with atomic force microscopy nano-indentation, we show that UL25 binding at capsid vertices post-assembly provides the critical capsid reinforcement required for stable DNA encapsidation; the absence of UL25 binding leads to capsid rupture. Furthermore, we demonstrate that gradual capsid reinforcement is a feasible maturation mechanism facilitated by progressive UL25 capsid binding, which is likely correlated with DNA packaging progression. This work provides insight into elegantly programmed viral assembly machinery where targeting of capsid assembly mechanics presents a new antiviral strategy that is resilient to development of drug resistance. Importance: Most viruses undergo a maturation process from a weakly assembled particle to a stable virion. Herpesvirus capsid undergoes mechanical maturation to withstand tens of atmospheres of DNA pressure. We demonstrate that this mechanical capsid maturation is mainly facilitated through binding of auxiliary protein UL25 in HSV-1 capsid vertices. We show that UL25 binding provides the critical capsid reinforcement required for stable DNA encapsidation. Our data also suggests that gradual capsid reinforcement by progressive UL25 binding is a feasible capsid maturation mechanism, correlated with DNA packaging progression.
Collapse
|
12
|
Host and Viral Factors Involved in Nuclear Egress of Herpes Simplex Virus 1. Viruses 2021; 13:v13050754. [PMID: 33923040 PMCID: PMC8146395 DOI: 10.3390/v13050754] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) replicates its genome and packages it into capsids within the nucleus. HSV-1 has evolved a complex mechanism of nuclear egress whereby nascent capsids bud on the inner nuclear membrane to form perinuclear virions that subsequently fuse with the outer nuclear membrane, releasing capsids into the cytosol. The viral-encoded nuclear egress complex (NEC) plays a crucial role in this vesicle-mediated nucleocytoplasmic transport. Nevertheless, similar system mediates the movement of other cellular macromolecular complexes in normal cells. Therefore, HSV-1 may utilize viral proteins to hijack the cellular machinery in order to facilitate capsid transport. However, little is known about the molecular mechanisms underlying this phenomenon. This review summarizes our current understanding of the cellular and viral factors involved in the nuclear egress of HSV-1 capsids.
Collapse
|
13
|
Cryo-Electron Tomography of the Herpesvirus Procapsid Reveals Interactions of the Portal with the Scaffold and a Shift on Maturation. mBio 2021; 12:mBio.03575-20. [PMID: 33727359 PMCID: PMC8092310 DOI: 10.1128/mbio.03575-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) infects a majority of humans, causing mostly mild disease but in some cases progressing toward life-threatening encephalitis. Understanding the life cycle of the virus is important to devise countermeasures. Herpes simplex virus 1 (HSV-1) requires seven proteins to package its genome through a vertex in its capsid, one of which is the portal protein, pUL6. The portal protein is also thought to facilitate assembly of the procapsid. While the portal has been visualized in mature capsids, we aimed to elucidate its role in the assembly and maturation of procapsids using cryo-electron tomography (cryoET). We identified the portal vertex in individual procapsids, calculated a subtomogram average, and compared that with the portal vertex in empty mature capsids (A-capsids). The resulting maps show the portal on the interior surface with its narrower end facing outwards, while maintaining close contact with the capsid shell. In the procapsid, the portal is embedded in the underlying scaffold, suggesting that assembly involves a portal-scaffold complex. During maturation, the capsid shell angularizes with a corresponding outward movement of the vertices. We found that in A-capsids, the portal translocates outward further than the adjacent capsomers and strengthens its contacts with the capsid shell. Our methodology also allowed us to determine the number of portal vertices in each capsid, with most having one per capsid, but some none or two, and rarely three. The predominance of a single portal per capsid supports facilitation of the assembly of the procapsid.
Collapse
|
14
|
Draganova EB, Heldwein EE. Virus-derived peptide inhibitors of the herpes simplex virus type 1 nuclear egress complex. Sci Rep 2021; 11:4206. [PMID: 33603021 PMCID: PMC7893173 DOI: 10.1038/s41598-021-83402-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 02/01/2021] [Indexed: 11/12/2022] Open
Abstract
Herpesviruses infect a majority of the human population, establishing lifelong latent infections for which there is no cure. Periodic viral reactivation spreads infection to new hosts while causing various disease states particularly detrimental in the immunocompromised. Efficient viral replication, and ultimately the spread of infection, is dependent on the nuclear egress complex (NEC), a conserved viral heterodimer that helps translocate viral capsids from the nucleus to the cytoplasm where they mature into infectious virions. Here, we have identified peptides, derived from the capsid protein UL25, that are capable of inhibiting the membrane-budding activity of the NEC from herpes simplex virus type 1 in vitro. We show that the inhibitory ability of the peptides depends on their length and the propensity to form an α-helix but not on the exact amino acid sequence. Current therapeutics that target viral DNA replication machinery are rendered ineffective by drug resistance due to viral mutations. Our results establish a basis for the development of an alternative class of inhibitors against nuclear egress, an essential step in herpesvirus replication, potentially expanding the current repertoire of available therapeutics.
Collapse
Affiliation(s)
- Elizabeth B Draganova
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, 02111, USA
| | - Ekaterina E Heldwein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, 02111, USA.
| |
Collapse
|
15
|
Lee JH, Shim J, Kim SJ. Stunning symmetries involved in the self-assembly of the HSV-1 capsid. THE JOURNAL OF THE KOREAN PHYSICAL SOCIETY 2021; 78:357-364. [PMID: 33584000 PMCID: PMC7871024 DOI: 10.1007/s40042-020-00044-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 06/12/2023]
Abstract
Herpes simplex virus-1 (HSV-1) is an enveloped dsDNA virus, infecting ~ 67% of humans. Here, we present the essential components of the HSV-1, focusing on stunning symmetries on the capsid. However, little is known about how the symmetries are involved dynamically in the self-assembly process. We suggest small angle X-ray scattering as a suitable method to capture the dynamics of self-assembly. Furthermore, our understanding of the viruses can be expanded by using an integrative approach that combines heterogeneous types of data, thus promoting new diagnostic tools and a cure for viral infections.
Collapse
Affiliation(s)
- Joo-hyeon Lee
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Korea
| | - Jaehyu Shim
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Korea
| | - Seung Joong Kim
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Korea
| |
Collapse
|
16
|
Abstract
Herpes simplex virus replicates in the nucleus, where new capsids are assembled. It produces procapsids devoid of nucleic acid but containing the preVP22a scaffold protein. These thermo-unstable particles then mature into A-, B- or C-nuclear icosahedral capsids, depending on their ability to shed the proteolytically processed scaffold and incorporation of the viral genome. To study how these viral capsids differ, we performed proteomics studies of highly enriched HSV-1 A-, B- and C-nuclear capsids, relying in part on a novel and powerful flow virometry approach to purify C-capsids. We found that the viral particles contained the expected capsid components and identified several tegument proteins in the C-capsid fraction (pUL21, pUL36, pUL46, pUL48, pUL49, pUL50, pUL51 and pUS10). Moreover, numerous ribosomal, hnRNPs and other host proteins, absent from the uninfected controls, were detected on the capsids with some of them seemingly specific to C-capsids (glycogen synthase, four different keratin-related proteins, fibronectin 1 and PCBP1). A subsequent proteomics analysis was performed to rule out the presence of protein complexes that may share similar density as the viral capsids but do not otherwise interact with them. Using pUL25 or VP5 mutant viruses incapable of assembling C-nuclear or all nuclear capsids, respectively, we confirmed the bulk of our initial findings. Naturally, it will next be important to address the functional relevance of these proteins.IMPORTANCE Much is known about the biology of herpesviruses. This includes their unique ability to traverse the two nuclear envelopes by sequential budding and fusion steps. For HSV-1, this implies the pUL31/pUL34 and pUL17/pUL25 complexes that may favor C-capsid egress. However, this selection process is not clear, nor are all the differences that distinguish A-, B- and C-capsids. The present study probes what proteins compose these capsids, including host proteins. This should open up new research avenues to clarify the biology of this most interesting family of viruses. It also reiterates the use of flow virometry as an innovative tool to purify viral particles.
Collapse
|
17
|
Role of the Herpes Simplex Virus CVSC Proteins at the Capsid Portal Vertex. J Virol 2020; 94:JVI.01534-20. [PMID: 32967953 DOI: 10.1128/jvi.01534-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/16/2020] [Indexed: 12/31/2022] Open
Abstract
The packaging of DNA into preformed capsids is a critical step during herpesvirus infection. For herpes simplex virus, this process requires the products of seven viral genes: the terminase proteins pUL15, pUL28, and pUL33; the capsid vertex-specific component (CVSC) proteins pUL17 and pUL25; and the portal proteins pUL6 and pUL32. The pUL6 portal dodecamer is anchored at one vertex of the capsid by interactions with the adjacent triplexes as well as helical density attributed to the pUL17 and pUL25 subunits of the CVSC. To define the roles and structures of the CVSC proteins in virus assembly and DNA packaging, we isolated a number of recombinant viruses expressing pUL25, pUL17, and pUL36 fused with green or red fluorescent proteins as well as viruses with specific deletions in the CVSC genes. Biochemical and structural studies of these mutants demonstrated that (i) four of the helices in the CVSC helix bundle can be attributed to two copies each of pUL36 and pUL25, (ii) pUL17 and pUL6 are required for capsid binding of the terminase complex in the nucleus, (iii) pUL17 is important for determining the site of the first cleavage reaction generating replicated genomes with termini derived from the long-arm component of the herpes simplex virus 1 (HSV-1) genome, (iv) pUL36 serves no direct role in cleavage/packaging, (v) cleavage and stable packaging of the viral genome involve an ordered interaction of the terminase complex and pUL25 with pUL17 at the portal vertex, and (vi) packaging of the viral genome results in a dramatic displacement of the portal.IMPORTANCE Herpes simplex virus 1 (HSV-1) is the causative agent of several pathologies ranging in severity from the common cold sore to life-threatening encephalitic infection. A critical step during productive HSV-1 infection is the cleavage and packaging of replicated, concatemeric viral DNA into preformed capsids. A key knowledge gap is how the capsid engages the replicated viral genome and the subsequent packaging of a unit-length HSV genome. Here, biochemical and structural studies focused on the unique portal vertex of wild-type HSV and packaging mutants provide insights into the mechanism of HSV genome packaging. The significance of our research is in identifying the portal proteins pUL6 and pUL17 as key viral factors for engaging the terminase complex with the capsid and the subsequent cleavage, packaging, and stable incorporation of the viral genome in the HSV-1 capsid.
Collapse
|
18
|
Hölper JE, Reiche S, Franzke K, Mettenleiter TC, Klupp BG. Generation and characterization of monoclonal antibodies specific for the Pseudorabies Virus nuclear egress complex. Virus Res 2020; 287:198096. [PMID: 32682818 DOI: 10.1016/j.virusres.2020.198096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 11/16/2022]
Abstract
During herpesvirus replication, newly synthesized nucleocapsids exit the nucleus by a vesicle-mediated transport, which requires the nuclear egress complex (NEC), composed of the conserved viral proteins designated as pUL31 and pUL34 in the alphaherpesviruses pseudorabies virus (PrV) and herpes simplex viruses. Oligomerization of the heterodimeric NEC at the inner nuclear membrane (INM) results in membrane bending and budding of virus particles into the perinuclear space. The INM-derived primary envelope then fuses with the outer nuclear membrane to release nucleocapsids into the cytoplasm. The two NEC components are necessary and sufficient for induction of vesicle budding and scission as shown after co-expression in eukaryotic cells or in synthetic membranes. However, where and when the NEC is formed, how membrane curvature is mediated and how it is regulated, remains unclear. While monospecific antisera raised against the different components of the PrV NEC aided in the characterization and intracellular localization of the individual proteins, no NEC specific tools have been described yet for any herpesvirus. To gain more insight into vesicle budding and scission, we aimed at generating NEC specific monoclonal antibodies (mAbs). To this end, mice were immunized with bacterially expressed soluble PrV NEC, which was previously used for structure determination. Besides pUL31- and pUL34-specific mAbs, we also identified mAbs, which reacted only in the presence of both proteins indicating specificity for the complex. Confocal microscopy with those NEC-specific mAbs revealed small puncta (approx. 0.064 μm2) along the nuclear rim in PrV wild type infected cells. In contrast, ca. 5-fold larger speckles (approx. 0.35 μm2) were detectable in cells infected with a PrV mutant lacking the viral protein kinase pUS3, which is known to accumulate primary enveloped virions in the PNS within large invaginations of the INM, or in cells co-expressing pUL31 and pUL34. Kinetic experiments showed that while the individual proteins were detectable already between 2-4 hours after infection, the NEC-specific mAbs produced significant staining only after 4-6 hours in accordance with timing of nuclear egress. Taken together, the data indicate that these mAbs specifically label the PrV NEC.
Collapse
Affiliation(s)
- Julia E Hölper
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Sven Reiche
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Kati Franzke
- Institute of Infectology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Barbara G Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.
| |
Collapse
|
19
|
Cryo-EM structure of the varicella-zoster virus A-capsid. Nat Commun 2020; 11:4795. [PMID: 32963252 PMCID: PMC7508878 DOI: 10.1038/s41467-020-18537-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022] Open
Abstract
Varicella-zoster virus (VZV), a member of the Alphaherpesvirinae subfamily, causes severe diseases in humans of all ages. The viral capsids play critical roles in herpesvirus infection, making them potential antiviral targets. Here, we present the 3.7-Å-resolution structure of the VZV A-capsid and define the molecular determinants underpinning the assembly of this complicated viral machinery. Overall, the VZV capsid has a similar architecture to that of other known herpesviruses. The major capsid protein (MCP) assembles into pentons and hexons, forming extensive intra- and inter-capsomer interaction networks that are further secured by the small capsid protein (SCP) and the heterotriplex. The structure reveals a pocket beneath the floor of MCP that could potentially be targeted by antiviral inhibitors. In addition, we identified two alphaherpesvirus-specific structural features in SCP and Tri1 proteins. These observations highlight the divergence of different herpesviruses and provide an important basis for developing antiviral drugs. Varicella-zoster virus (VZV) is the causative agent of chickenpox and herpes zoster (shingles). Cryo-EM structure of VZV capsid provides insights into the capsid assembly and reveals a pocket that could potentially be targeted by antiviral drugs.
Collapse
|
20
|
Ahmad I, Wilson DW. HSV-1 Cytoplasmic Envelopment and Egress. Int J Mol Sci 2020; 21:ijms21175969. [PMID: 32825127 PMCID: PMC7503644 DOI: 10.3390/ijms21175969] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 12/25/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a structurally complex enveloped dsDNA virus that has evolved to replicate in human neurons and epithelia. Viral gene expression, DNA replication, capsid assembly, and genome packaging take place in the infected cell nucleus, which mature nucleocapsids exit by envelopment at the inner nuclear membrane then de-envelopment into the cytoplasm. Once in the cytoplasm, capsids travel along microtubules to reach, dock, and envelope at cytoplasmic organelles. This generates mature infectious HSV-1 particles that must then be sorted to the termini of sensory neurons, or to epithelial cell junctions, for spread to uninfected cells. The focus of this review is upon our current understanding of the viral and cellular molecular machinery that enables HSV-1 to travel within infected cells during egress and to manipulate cellular organelles to construct its envelope.
Collapse
Affiliation(s)
- Imran Ahmad
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA;
| | - Duncan W. Wilson
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA;
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
- Correspondence:
| |
Collapse
|
21
|
Draganova EB, Zhang J, Zhou ZH, Heldwein EE. Structural basis for capsid recruitment and coat formation during HSV-1 nuclear egress. eLife 2020; 9:56627. [PMID: 32579107 PMCID: PMC7340501 DOI: 10.7554/elife.56627] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/22/2020] [Indexed: 12/19/2022] Open
Abstract
During herpesvirus infection, egress of nascent viral capsids from the nucleus is mediated by the viral nuclear egress complex (NEC). NEC deforms the inner nuclear membrane (INM) around the capsid by forming a hexagonal array. However, how the NEC coat interacts with the capsid and how curved coats are generated to enable budding is yet unclear. Here, by structure-guided truncations, confocal microscopy, and cryoelectron tomography, we show that binding of the capsid protein UL25 promotes the formation of NEC pentagons rather than hexagons. We hypothesize that during nuclear budding, binding of UL25 situated at the pentagonal capsid vertices to the NEC at the INM promotes formation of NEC pentagons that would anchor the NEC coat to the capsid. Incorporation of NEC pentagons at the points of contact with the vertices would also promote assembly of the curved hexagonal NEC coat around the capsid, leading to productive egress of UL25-decorated capsids.
Collapse
Affiliation(s)
- Elizabeth B Draganova
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, United States
| | - Jiayan Zhang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, United States.,Molecular Biology Institute, UCLA, Los Angeles, United States.,California NanoSystems Institute, UCLA, Los Angeles, United States
| | - Z Hong Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, United States.,Molecular Biology Institute, UCLA, Los Angeles, United States.,California NanoSystems Institute, UCLA, Los Angeles, United States
| | - Ekaterina E Heldwein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, United States
| |
Collapse
|
22
|
Mutational Functional Analysis of the Pseudorabies Virus Nuclear Egress Complex-Nucleocapsid Interaction. J Virol 2020; 94:JVI.01910-19. [PMID: 32051272 DOI: 10.1128/jvi.01910-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/04/2020] [Indexed: 01/11/2023] Open
Abstract
Herpesvirus nucleocapsids leave the nucleus by a vesicle-mediated translocation mediated by the viral nuclear egress complex (NEC). The NEC is composed of two conserved viral proteins, designated pUL34 and pUL31 in the alphaherpesvirus pseudorabies virus (PrV). It is required for efficient nuclear egress and is sufficient for vesicle formation and scission from the inner nuclear membrane (INM). Structure-based mutagenesis identified a lysine at position 242 (K242) in pUL31, located in the most membrane distal part of the NEC, to be crucial for efficient nucleocapsid incorporation into budding vesicles. Replacing the lysine by alanine (K242A) resulted in accumulations of empty vesicles in the perinuclear space, despite the presence of excess nucleocapsids in the nucleus. However, it remained unclear whether the defect in capsid incorporation was due to interference with a direct, electrostatic interaction between the capsid and the NEC or structural restrictions. To test this, we replaced K242 with several amino acids, thereby modifying the charge, size, and side chain orientation. In addition, virus recombinants expressing pUL31-K242A were passaged and screened for second-site mutations. Compensatory mutations at different locations in pUL31 or pUL34 were identified, pointing to an inherent flexibility of the NEC. In summary, our data suggest that the amino acid at position 242 does not directly interact with the nucleocapsid but that rearrangements in the NEC coat are required for efficient nucleocapsid envelopment at the INM.IMPORTANCE Herpesviruses encode an exceptional vesicle formation and scission machinery, which operates at the inner nuclear membrane, translocating the viral nucleocapsid from the nucleus into the perinuclear space. The conserved herpesviral nuclear egress complex (NEC) orchestrates this process. High-resolution imaging approaches as well as the recently solved crystal structures of the NEC provided deep insight into the molecular details of vesicle formation and scission. Nevertheless, the molecular mechanism of nucleocapsid incorporation remained unclear. In accordance with structure-based predictions, a basic amino acid could be pinpointed in the most membrane-distal domain of the NEC (pUL31-K242), indicating that capsid incorporation might depend on a direct electrostatic interaction. Our follow-up study, described here, however, shows that the positive charge is not relevant but that the overall structure matters.
Collapse
|
23
|
Identification of the Capsid Binding Site in the Herpes Simplex Virus 1 Nuclear Egress Complex and Its Role in Viral Primary Envelopment and Replication. J Virol 2019; 93:JVI.01290-19. [PMID: 31391274 DOI: 10.1128/jvi.01290-19] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/31/2022] Open
Abstract
During nuclear egress of nascent progeny herpesvirus nucleocapsids, the nucleocapsids acquire a primary envelope by budding through the inner nuclear membrane of infected cells into the perinuclear space between the inner and outer nuclear membranes. Herpes simplex virus 1 (HSV-1) UL34 and UL31 proteins form a nuclear egress complex (NEC) and play critical roles in this budding process, designated primary envelopment. To clarify the role of NEC binding to progeny nucleocapsids in HSV-1 primary envelopment, we established an assay system for HSV-1 NEC binding to nucleocapsids and capsid proteins in vitro Using this assay system, we showed that HSV-1 NEC bound to nucleocapsids and to capsid protein UL25 but not to the other capsid proteins tested (i.e., VP5, VP23, and UL17) and that HSV-1 NEC binding of nucleocapsids was mediated by the interaction of NEC with UL25. UL31 residues arginine-281 (R281) and aspartic acid-282 (D282) were required for efficient NEC binding to nucleocapsids and UL25. We also showed that alanine substitution of UL31 R281 and D282 reduced HSV-1 replication, caused aberrant accumulation of capsids in the nucleus, and induced an accumulation of empty vesicles that were similar in size and morphology to primary envelopes in the perinuclear space. These results suggested that NEC binding via UL31 R281 and D282 to nucleocapsids, and probably to UL25 in the nucleocapsids, has an important role in HSV-1 replication by promoting the incorporation of nucleocapsids into vesicles during primary envelopment.IMPORTANCE Binding of HSV-1 NEC to nucleocapsids has been thought to promote nucleocapsid budding at the inner nuclear membrane and subsequent incorporation of nucleocapsids into vesicles during nuclear egress of nucleocapsids. However, data to directly support this hypothesis have not been reported thus far. In this study, we have present data showing that two amino acids in the membrane-distal face of the HSV-1 NEC, which contains the putative capsid binding site based on the solved NEC structure, were in fact required for efficient NEC binding to nucleocapsids and for efficient incorporation of nucleocapsids into vesicles during primary envelopment. This is the first report showing direct linkage between NEC binding to nucleocapsids and an increase in nucleocapsid incorporation into vesicles during herpesvirus primary envelopment.
Collapse
|
24
|
Sugimoto A, Yamashita Y, Kanda T, Murata T, Tsurumi T. Epstein-Barr virus genome packaging factors accumulate in BMRF1-cores within viral replication compartments. PLoS One 2019; 14:e0222519. [PMID: 31518362 PMCID: PMC6743757 DOI: 10.1371/journal.pone.0222519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/02/2019] [Indexed: 12/26/2022] Open
Abstract
Productive replication of Epstein-Barr virus (EBV) during the lytic cycle occurs in discrete sites within nuclei, termed replication compartments. We previously proposed that replication compartments consist of two subnuclear domains: "ongoing replication foci" and "BMRF1-cores". Viral genome replication takes place in ongoing replication foci, which are enriched with viral replication proteins, such as BALF5 and BALF2. Amplified DNA and BMRF1 protein accumulate in BMRF1-cores, which are surrounded by ongoing replication foci. We here determined the locations of procapsid and genome-packaging proteins of EBV via three-dimensional (3D) surface reconstruction and correlative fluorescence microscopy-electron microscopy (FM-EM). The results revealed that viral factors required for DNA packaging, such as BGLF1, BVRF1, and BFLF1 proteins, are located in the innermost subdomains of the BMRF1-cores. In contrast, capsid structural proteins, such as BBRF1, BORF1, BDLF1, and BVRF2, were found both outside and inside the BMRF1-cores. Based on these observations, we propose a model in which viral procapsids are assembled outside the BMRF1-cores and subsequently migrate therein, where viral DNA encapsidation occurs. To our knowledge, this is the first report describing capsid assembly sites in relation to EBV replication compartments.
Collapse
Affiliation(s)
- Atsuko Sugimoto
- Division of Virology, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya, Japan
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya University, Showa-ku, Nagoya, Japan
- Department of Virology and Parasitology, Fujita Health University, School of Medicine, Toyoake, Japan
| | - Yoriko Yamashita
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Teru Kanda
- Division of Virology, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya, Japan
- Division of Microbiology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Takayuki Murata
- Division of Virology, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya, Japan
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya University, Showa-ku, Nagoya, Japan
- Department of Virology and Parasitology, Fujita Health University, School of Medicine, Toyoake, Japan
- * E-mail:
| | - Tatsuya Tsurumi
- Division of Virology, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya, Japan
| |
Collapse
|
25
|
Beyond the NEC: Modulation of Herpes Simplex Virus Nuclear Egress by Viral and Cellular Components. CURRENT CLINICAL MICROBIOLOGY REPORTS 2019. [DOI: 10.1007/s40588-019-0112-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Structure of the herpes simplex virus type 2 C-capsid with capsid-vertex-specific component. Nat Commun 2018; 9:3668. [PMID: 30201968 PMCID: PMC6131487 DOI: 10.1038/s41467-018-06078-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 08/11/2018] [Indexed: 11/19/2022] Open
Abstract
Herpes simplex viruses (HSVs) cause human oral and genital ulcer diseases. Patients with HSV-2 have a higher risk of acquiring a human immunodeficiency virus infection. HSV-2 is a member of the α-herpesvirinae subfamily that together with the β- and γ-herpesvirinae subfamilies forms the Herpesviridae family. Here, we report the cryo-electron microscopy structure of the HSV-2 C-capsid with capsid-vertex-specific component (CVSC) that was determined at 3.75 Å using a block-based reconstruction strategy. We present atomic models of multiple conformers for the capsid proteins (VP5, VP23, VP19C, and VP26) and CVSC. Comparison of the HSV-2 homologs yields information about structural similarities and differences between the three herpesviruses sub-families and we identify α-herpesvirus-specific structural features. The hetero-pentameric CVSC, consisting of a UL17 monomer, a UL25 dimer and a UL36 dimer, is bound tightly by a five-helix bundle that forms extensive networks of subunit contacts with surrounding capsid proteins, which reinforce capsid stability. Herpes simplex virus type-2 (HSV-2) belongs to the α-herpesvirinae subfamily and is a sexually transmitted virus that causes genital ulcer disease. Here the authors present the 3.75 Å cryo-EM structure of the HSV-2 C-capsid with capsid-vertex-specific component and describe α-herpesvirus-specific structural features.
Collapse
|
27
|
McElwee M, Vijayakrishnan S, Rixon F, Bhella D. Structure of the herpes simplex virus portal-vertex. PLoS Biol 2018; 16:e2006191. [PMID: 29924793 PMCID: PMC6028144 DOI: 10.1371/journal.pbio.2006191] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/02/2018] [Accepted: 06/06/2018] [Indexed: 12/04/2022] Open
Abstract
Herpesviruses include many important human pathogens such as herpes simplex virus, cytomegalovirus, varicella-zoster virus, and the oncogenic Epstein-Barr virus and Kaposi sarcoma-associated herpesvirus. Herpes virions contain a large icosahedral capsid that has a portal at a unique 5-fold vertex, similar to that seen in the tailed bacteriophages. The portal is a molecular motor through which the viral genome enters the capsid during virion morphogenesis. The genome also exits the capsid through the portal-vertex when it is injected through the nuclear pore into the nucleus of a new host cell to initiate infection. Structural investigations of the herpesvirus portal-vertex have proven challenging, owing to the small size of the tail-like portal-vertex-associated tegument (PVAT) and the presence of the tegument layer that lays between the nucleocapsid and the viral envelope, obscuring the view of the portal-vertex. Here, we show the structure of the herpes simplex virus portal-vertex at subnanometer resolution, solved by electron cryomicroscopy (cryoEM) and single-particle 3D reconstruction. This led to a number of new discoveries, including the presence of two previously unknown portal-associated structures that occupy the sites normally taken by the penton and the Ta triplex. Our data revealed that the PVAT is composed of 10 copies of the C-terminal domain of pUL25, which are uniquely arranged as two tiers of star-shaped density. Our 3D reconstruction of the portal-vertex also shows that one end of the viral genome extends outside the portal in the manner described for some bacteriophages but not previously seen in any eukaryote viruses. Finally, we show that the viral genome is consistently packed in a highly ordered left-handed spool to form concentric shells of DNA. Our data provide new insights into the structure of a molecular machine critical to the biology of an important class of human pathogens.
Collapse
Affiliation(s)
- Marion McElwee
- Medical Research Council, University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Swetha Vijayakrishnan
- Medical Research Council, University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Frazer Rixon
- Medical Research Council, University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - David Bhella
- Medical Research Council, University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| |
Collapse
|
28
|
Dai X, Zhou ZH. Structure of the herpes simplex virus 1 capsid with associated tegument protein complexes. Science 2018; 360:360/6384/eaao7298. [PMID: 29622628 DOI: 10.1126/science.aao7298] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 02/23/2018] [Indexed: 12/25/2022]
Abstract
Herpes simplex viruses (HSVs) rely on capsid-associated tegument complex (CATC) for long-range axonal transport of their genome-containing capsids between sites of infection and neuronal cell bodies. Here we report cryo-electron microscopy structures of the HSV-1 capsid with CATC up to 3.5-angstrom resolution and atomic models of multiple conformers of capsid proteins VP5, VP19c, VP23, and VP26 and tegument proteins pUL17, pUL25, and pUL36. Crowning every capsid vertex are five copies of heteropentameric CATC, each containing a pUL17 monomer supporting the coiled-coil helix bundle of a pUL25 dimer and a pUL36 dimer, thus positioning their flexible domains for potential involvement in nuclear capsid egress and axonal capsid transport. Notwithstanding newly discovered fold conservation between triplex proteins and bacteriophage λ protein gpD and the previously recognized bacteriophage HK97 gp5-like fold in VP5, HSV-1 capsid proteins exhibit extraordinary diversity in forms of domain insertion and conformational polymorphism, not only for interactions with tegument proteins but also for encapsulation of large genomes.
Collapse
Affiliation(s)
- Xinghong Dai
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.,California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA. .,California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
29
|
Abstract
Many icosahedral viruses use a specialized portal vertex for genome encapsidation in the viral capsid (or head). This structure then controls release of the viral genetic information to the host cell at the beginning of infection. In tailed bacteriophages, the portal system is connected to a tail device that delivers their genome to the bacterial cytoplasm. The head-to-tail interface is a multiprotein complex that locks the viral DNA inside the phage capsid correctly positioned for egress and that controls its ejection when the viral particle interacts with the host cell receptor. Here we review the molecular mechanisms how this interface is assembled and how it carries out those two critical steps in the life cycle of tailed phages.
Collapse
Affiliation(s)
- Paulo Tavares
- Department of Virology, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France.
| |
Collapse
|
30
|
Abstract
The assembly and egress of herpes simplex virus (HSV) is a complicated multistage process that involves several different cellular compartments and the activity of many viral and cellular proteins. The process begins in the nucleus, with capsid assembly followed by genome packaging into the preformed capsids. The DNA-filled capsids (nucleocapsids) then exit the nucleus by a process of envelopment at the inner nuclear membrane followed by fusion with the outer nuclear membrane. In the cytoplasm nucleocapsids associate with tegument proteins, which form a complicated protein network that links the nucleocapsid to the cytoplasmic domains of viral envelope proteins. Nucleocapsids and associated tegument then undergo secondary envelopment at intracellular membranes originating from late secretory pathway and endosomal compartments. This leads to assembled virions in the lumen of large cytoplasmic vesicles, which are then transported to the cell periphery to fuse with the plasma membrane and release virus particles from the cell. The details of this multifaceted process are described in this chapter.
Collapse
|
31
|
Lysine 242 within Helix 10 of the Pseudorabies Virus Nuclear Egress Complex pUL31 Component Is Critical for Primary Envelopment of Nucleocapsids. J Virol 2017; 91:JVI.01182-17. [PMID: 28878082 DOI: 10.1128/jvi.01182-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 08/21/2017] [Indexed: 12/26/2022] Open
Abstract
Newly assembled herpesvirus nucleocapsids are translocated from the nucleus to the cytosol by a vesicle-mediated process engaging the nuclear membranes. This transport is governed by the conserved nuclear egress complex (NEC), consisting of the alphaherpesviral pUL34 and pUL31 homologs. The NEC is not only required for efficient nuclear egress but also sufficient for vesicle formation from the inner nuclear membrane (INM), as well as from synthetic lipid bilayers. The recently solved crystal structures for the NECs from different herpesviruses revealed molecular details of this membrane deformation and scission machinery uncovering the interfaces involved in complex and coat formation. However, the interaction domain with the nucleocapsid remained undefined. Since the NEC assembles a curved hexagonal coat on the nucleoplasmic side of the INM consisting of tightly interwoven pUL31/pUL34 heterodimers arranged in hexamers, only the membrane-distal end of the NEC formed by pUL31 residues appears to be accessible for interaction with the nucleocapsid cargo. To identify the amino acids involved in capsid incorporation, we mutated the corresponding regions in the alphaherpesvirus pseudorabies virus (PrV). Site-specifically mutated pUL31 homologs were tested for localization, interaction with pUL34, and complementation of PrV-ΔUL31. We identified a conserved lysine residue at amino acid position 242 in PrV pUL31 located in the alpha-helical domain H10 exposed on the membrane-distal end of the NEC as a key residue for nucleocapsid incorporation into the nascent primary particle.IMPORTANCE Vesicular transport through the nuclear envelope is a focus of research but is still not well understood. Herpesviruses pioneered this mechanism for translocation of the newly assembled nucleocapsid from the nucleus into the cytosol via vesicles derived from the inner nuclear membrane which fuse in a well-tuned process with the outer nuclear membrane to release their content. The structure of the viral nuclear membrane budding and scission machinery has been solved recently, providing in-depth molecular details. However, how cargo is incorporated remained unclear. We identified a conserved lysine residue in the membrane-distal portion of the nuclear egress complex required for capsid uptake into inner nuclear membrane-derived vesicles.
Collapse
|
32
|
Liu YT, Jiang J, Bohannon KP, Dai X, Gant Luxton GW, Hui WH, Bi GQ, Smith GA, Zhou ZH. A pUL25 dimer interfaces the pseudorabies virus capsid and tegument. J Gen Virol 2017; 98:2837-2849. [PMID: 29035172 DOI: 10.1099/jgv.0.000903] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Inside the virions of α-herpesviruses, tegument protein pUL25 anchors the tegument to capsid vertices through direct interactions with tegument proteins pUL17 and pUL36. In addition to promoting virion assembly, both pUL25 and pUL36 are critical for intracellular microtubule-dependent capsid transport. Despite these essential roles during infection, the stoichiometry and precise organization of pUL25 and pUL36 on the capsid surface remain controversial due to the insufficient resolution of existing reconstructions from cryo-electron microscopy (cryoEM). Here, we report a three-dimensional (3D) icosahedral reconstruction of pseudorabies virus (PRV), a varicellovirus of the α-herpesvirinae subfamily, obtained by electron-counting cryoEM at 4.9 Å resolution. Our reconstruction resolves a dimer of pUL25 forming a capsid-associated tegument complex with pUL36 and pUL17 through a coiled coil helix bundle, thus correcting previous misinterpretations. A comparison between reconstructions of PRV and the γ-herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV) reinforces their similar architectures and establishes important subfamily differences in the capsid-tegument interface.
Collapse
Affiliation(s)
- Yun-Tao Liu
- California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.,Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.,Center for Integrative Imaging, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Brain Science and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Jiansen Jiang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.,California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Kevin Patrick Bohannon
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine Chicago, IL 60611, USA.,Present address: Department of Pharmacology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Xinghong Dai
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.,California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - G W Gant Luxton
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine Chicago, IL 60611, USA.,Present address: College of Biological Sciences, University of Minnesota, 420 Washington, Avenue SE, Minneapolis, MN 55455, USA
| | - Wong Hoi Hui
- California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Guo-Qiang Bi
- Center for Integrative Imaging, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Brain Science and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Gregory Allan Smith
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine Chicago, IL 60611, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.,California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| |
Collapse
|
33
|
Heymann JB. Guidelines for using Bsoft for high resolution reconstruction and validation of biomolecular structures from electron micrographs. Protein Sci 2017; 27:159-171. [PMID: 28891250 DOI: 10.1002/pro.3293] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/12/2022]
Abstract
Cryo-electron microscopy (cryoEM) is becoming popular as a tool to solve biomolecular structures with the recent availability of direct electron detectors allowing automated acquisition of high resolution data. The Bsoft software package, developed over 20 years for analyzing electron micrographs, offers a full workflow for validated single particle analysis with extensive functionality, enabling customization for specific cases. With the increasing use of cryoEM and its automation, proper validation of the results is a bigger concern. The three major validation approaches, independent data sets, resolution-limited processing, and coherence testing, can be incorporated into any Bsoft workflow. Here, the main workflow is divided into four phases: (i) micrograph preprocessing, (ii) particle picking, (iii) particle alignment and reconstruction, and (iv) interpretation. Each of these phases represents a conceptual unit that can be automated, followed by a check point to assess the results. The aim in the first three phases is to reconstruct one or more validated maps at the best resolution possible. Map interpretation then involves identification of components, segmentation, quantification, and modeling. The algorithms in Bsoft are well established, with future plans focused on ease of use, automation and institutionalizing validation.
Collapse
Affiliation(s)
- J Bernard Heymann
- Laboratory for Structural Biology Research, National Institute of Arthritis, Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, 20892
| |
Collapse
|
34
|
Herpes Simplex Virus 1 Small Capsomere-Interacting Protein VP26 Regulates Nucleocapsid Maturation. J Virol 2017; 91:JVI.01068-17. [PMID: 28679756 DOI: 10.1128/jvi.01068-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 01/22/2023] Open
Abstract
VP26 is a herpes simplex virus 1 (HSV-1) small capsomere-interacting protein. In this study, we investigated the function of VP26 in HSV-1-infected cells with the following results. (i) The VP26 null mutation significantly impaired incorporation of minor capsid protein UL25 into nucleocapsids (type C capsids) in the nucleus. (ii) The VP26 mutation caused improper localization of UL25 in discrete punctate domains containing multiple capsid proteins (e.g., the VP5 major capsid protein) in the nucleus; these domains corresponded to capsid aggregates. (iii) The VP26 mutation significantly impaired packaging of replicated viral DNA genomes into capsids but had no effect on viral DNA concatemer cleavage. (iv) The VP26 mutation reduced the frequency of type C capsids, which contain viral DNA but not scaffolding proteins, and produced an accumulation of type A capsids, which lack both viral DNA and scaffold proteins, and had no effect on accumulation of type B capsids, which lack viral DNA but retain cleaved scaffold proteins. Collectively, these results indicated that VP26 was required for efficient viral DNA packaging and proper localization of nuclear capsids. The phenotype of the VP26 null mutation was similar to that reported previously of the UL25 null mutation and of UL25 mutations that preclude UL25 binding to capsids. Thus, VP26 appeared to regulate nucleocapsid maturation by promoting incorporation of UL25 into capsids, which is likely to be required for proper capsid nuclear localization.IMPORTANCE HSV-1 VP26 has been reported to be important for viral replication and virulence in cell cultures and/or mouse models. However, little is known about the function of VP26 during HSV-1 replication, in particular, in viral nucleocapsid maturation although HSV-1 nucleocapsids are estimated to contain 900 copies of VP26. In this study, we present data suggesting that VP26 promoted packaging of HSV-1 DNA genomes into capsids by regulating incorporation of capsid protein UL25 into capsids, which was reported to increase stability of the capsid structure. We also showed that VP26 was required for proper localization of capsids in the infected cell nucleus. This is the first report showing that HSV-1 VP26 is a regulator for nucleocapsid maturation.
Collapse
|
35
|
The C Terminus of the Herpes Simplex Virus UL25 Protein Is Required for Release of Viral Genomes from Capsids Bound to Nuclear Pores. J Virol 2017; 91:JVI.00641-17. [PMID: 28490590 DOI: 10.1128/jvi.00641-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/03/2017] [Indexed: 12/27/2022] Open
Abstract
The herpes simplex virus (HSV) capsid is released into the cytoplasm after fusion of viral and host membranes, whereupon dynein-dependent trafficking along microtubules targets it to the nuclear envelope. Binding of the capsid to the nuclear pore complex (NPC) is mediated by the capsid protein pUL25 and the capsid-tethered tegument protein pUL36. Temperature-sensitive mutants in both pUL25 and pUL36 dock at the NPC but fail to release DNA. The uncoating reaction has been difficult to study due to the rapid release of the genome once the capsid interacts with the nuclear pore. In this study, we describe the isolation and characterization of a truncation mutant of pUL25. Live-cell imaging and immunofluorescence studies demonstrated that the mutant was not impaired in penetration of the host cell or in trafficking of the capsid to the nuclear membrane. However, expression of viral proteins was absent or significantly delayed in cells infected with the pUL25 mutant virus. Transmission electron microscopy revealed capsids accumulated at nuclear pores that retained the viral genome for at least 4 h postinfection. In addition, cryoelectron microscopy (cryo-EM) reconstructions of virion capsids did not detect any obvious differences in the location or structural organization for the pUL25 or pUL36 proteins on the pUL25 mutant capsids. Further, in contrast to wild-type virus, the antiviral response mediated by the viral DNA-sensing cyclic guanine adenine synthase (cGAS) was severely compromised for the pUL25 mutant. These results demonstrate that the pUL25 capsid protein has a critical role in releasing viral DNA from NPC-bound capsids.IMPORTANCE Herpes simplex virus 1 (HSV-1) is the causative agent of several pathologies ranging in severity from the common cold sore to life-threatening encephalitic infection. Early steps in infection include release of the capsid into the cytoplasm, docking of the capsid at a nuclear pore, and release of the viral genome into the nucleus. A key knowledge gap is how the capsid engages the NPC and what triggers release of the viral genome into the nucleus. Here we show that the C-terminal region of the HSV-1 pUL25 protein is required for releasing the viral genome from capsids docked at nuclear pores. The significance of our research is in identifying pUL25 as a key viral factor for genome uncoating. pUL25 is found at each of the capsid vertices as part of the capsid vertex-specific component and implicates the importance of this complex for NPC binding and genome release.
Collapse
|
36
|
Newcomb WW, Fontana J, Winkler DC, Cheng N, Heymann JB, Steven AC. The Primary Enveloped Virion of Herpes Simplex Virus 1: Its Role in Nuclear Egress. mBio 2017; 8:e00825-17. [PMID: 28611252 PMCID: PMC5472190 DOI: 10.1128/mbio.00825-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 05/19/2017] [Indexed: 12/28/2022] Open
Abstract
Many viruses migrate between different cellular compartments for successive stages of assembly. The HSV-1 capsid assembles in the nucleus and then transfers into the cytoplasm. First, the capsid buds through the inner nuclear membrane, becoming coated with nuclear egress complex (NEC) protein. This yields a primary enveloped virion (PEV) whose envelope fuses with the outer nuclear membrane, releasing the capsid into the cytoplasm. We investigated the associated molecular mechanisms by isolating PEVs from US3-null-infected cells and imaging them by cryo-electron microscopy and tomography. (pUS3 is a viral protein kinase in whose absence PEVs accumulate in the perinuclear space.) Unlike mature extracellular virions, PEVs have very few glycoprotein spikes. PEVs are ~20% smaller than mature virions, and the little space available between the capsid and the NEC layer suggests that most tegument proteins are acquired later in the egress pathway. Previous studies have proposed that NEC is organized as hexamers in honeycomb arrays in PEVs, but we find arrays of heptameric rings in extracts from US3-null-infected cells. In a PEV, NEC contacts the capsid predominantly via the pUL17/pUL25 complexes which are located close to the capsid vertices. Finally, the NEC layer dissociates from the capsid as it leaves the nucleus, possibly in response to pUS3-mediated phosphorylation. Overall, nuclear egress emerges as a process driven by a program of multiple weak interactions.IMPORTANCE On its maturation pathway, the newly formed HSV-1 nucleocapsid must traverse the nuclear envelope, while respecting the integrity of that barrier. Nucleocapsids (125 nm in diameter) are too large to pass through the nuclear pore complexes that conduct most nucleocytoplasmic traffic. It is now widely accepted that the process involves envelopment/de-envelopment of a key intermediate-the primary enveloped virion. In wild-type infections, PEVs are short-lived, which has impeded study. Using a mutant that accumulates PEVs in the perinuclear space, we were able to isolate PEVs in sufficient quantity for structural analysis by cryo-electron microscopy and tomography. The findings not only elucidate the maturation pathway of an important human pathogen but also have implications for cellular processes that involve the trafficking of large macromolecular complexes.
Collapse
Affiliation(s)
- William W Newcomb
- Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Juan Fontana
- Astbury Centre for Structural Molecular Biology and Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Dennis C Winkler
- Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Naiqian Cheng
- Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - J Bernard Heymann
- Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Alasdair C Steven
- Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
37
|
Vertex-Specific Proteins pUL17 and pUL25 Mechanically Reinforce Herpes Simplex Virus Capsids. J Virol 2017; 91:JVI.00123-17. [PMID: 28381566 DOI: 10.1128/jvi.00123-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/24/2017] [Indexed: 01/24/2023] Open
Abstract
Using atomic force microscopy imaging and nanoindentation measurements, we investigated the effect of the minor capsid proteins pUL17 and pUL25 on the structural stability of icosahedral herpes simplex virus capsids. pUL17 and pUL25, which form the capsid vertex-specific component (CVSC), particularly contributed to capsid resilience along the 5-fold and 2-fold but not along the 3-fold icosahedral axes. Our detailed analyses, including quantitative mass spectrometry of the protein composition of the capsids, revealed that both pUL17 and pUL25 are required to stabilize the capsid shells at the vertices. This indicates that herpesviruses withstand the internal pressure that is generated during DNA genome packaging by locally reinforcing the mechanical sturdiness of the vertices, the most stressed part of the capsids.IMPORTANCE In this study, the structural, material properties of herpes simplex virus 1 were investigated. The capsid of herpes simplex virus is built up of a variety of proteins, and we scrutinized the influence of two of these proteins on the stability of the capsid. For this, we used a scanning force microscope that makes detailed, topographic images of the particles and that is able to perform mechanical deformation measurements. Using this approach, we revealed that both studied proteins play an essential role in viral stability. These new insights support us in forming a complete view on viral structure and furthermore could possibly help not only to develop specific antivirals but also to build protein shells with improved stability for drug delivery purposes.
Collapse
|
38
|
El Bilali N, Duron J, Gingras D, Lippé R. Quantitative Evaluation of Protein Heterogeneity within Herpes Simplex Virus 1 Particles. J Virol 2017; 91:e00320-17. [PMID: 28275191 PMCID: PMC5411592 DOI: 10.1128/jvi.00320-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 03/02/2017] [Indexed: 02/06/2023] Open
Abstract
Several virulence genes have been identified thus far in the herpes simplex virus 1 genome. It is also generally accepted that protein heterogeneity among virions further impacts viral fitness. However, linking this variability directly with infectivity has been challenging at the individual viral particle level. To address this issue, we resorted to flow cytometry (flow virometry), a powerful approach we recently employed to analyze individual viral particles, to identify which tegument proteins vary and directly address if such variability is biologically relevant. We found that the stoichiometry of the UL37, ICP0, and VP11/12 tegument proteins in virions is more stable than the VP16 and VP22 tegument proteins, which varied significantly among viral particles. Most interestingly, viruses sorted for their high VP16 or VP22 content yielded modest but reproducible increases in infectivity compared to their corresponding counterparts containing low VP16 or VP22 content. These findings were corroborated for VP16 in short interfering RNA experiments but proved intriguingly more complex for VP22. An analysis by quantitative Western blotting revealed substantial alterations of virion composition upon manipulation of individual tegument proteins and suggests that VP22 protein levels acted indirectly on viral fitness. These findings reaffirm the interdependence of the virion components and corroborate that viral fitness is influenced not only by the genome of viruses but also by the stoichiometry of proteins within each virion.IMPORTANCE The ability of viruses to spread in animals has been mapped to several viral genes, but other factors are clearly involved, including virion heterogeneity. To directly probe whether the latter influences viral fitness, we analyzed the protein content of individual herpes simplex virus 1 particles using an innovative flow cytometry approach. The data confirm that some viral proteins are incorporated in more controlled amounts, while others vary substantially. Interestingly, this correlates with the VP16 trans-activating viral protein and indirectly with VP22, a second virion component whose modulation profoundly alters virion composition. This reaffirms that not only the presence but also the amount of specific tegument proteins is an important determinant of viral fitness.
Collapse
Affiliation(s)
- Nabil El Bilali
- Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec, Canada
| | - Johanne Duron
- Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec, Canada
| | - Diane Gingras
- Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec, Canada
| | - Roger Lippé
- Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
39
|
Grzesik P, MacMath D, Henson B, Prasad S, Joshi P, Desai PJ. Incorporation of the Kaposi's sarcoma-associated herpesvirus capsid vertex-specific component (CVSC) into self-assembled capsids. Virus Res 2017; 236:9-13. [PMID: 28456575 DOI: 10.1016/j.virusres.2017.04.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/30/2017] [Accepted: 04/21/2017] [Indexed: 11/18/2022]
Abstract
Self-assembly of herpesvirus capsids can be accomplished in heterologous expression systems provided all six capsid proteins are present. We have demonstrated the assembly of icosahedral Kaposi's sarcoma-associated herpesvirus (KSHV) capsids in insect cells using the baculovirus expression system. Using this self-assembly system we investigated whether we could add additional capsid associated proteins and determine their incorporation into the assembled capsid. We chose the capsid vertex-specific component (CVSC) proteins encoded by open reading frames (ORFs) 19 and 32 to test this. This complex sits on the capsid vertex and is important for capsid maturation in herpesvirus-infected cells. Co-immunoprecipitation assays were used to initially confirm a bi-molecular interaction between ORF19 and ORF32. Both proteins also precipitated the triplex proteins of the capsid shell (ORF26 and ORF62) as well as the major capsid protein (ORF25). Capsid immunoprecipitation assays revealed the incorporation of ORF19 as well as ORF32 into assembled capsids. Similar experiments also showed that the incorporation of each protein occurred independent of the other. These studies reveal biochemically how the KSHV CVSC interacts with the capsid shell.
Collapse
Affiliation(s)
- Peter Grzesik
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University, Baltimore, MD, USA
| | - Derek MacMath
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University, Baltimore, MD, USA
| | - Brandon Henson
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University, Baltimore, MD, USA
| | - Sanjana Prasad
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University, Baltimore, MD, USA
| | - Poorval Joshi
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University, Baltimore, MD, USA
| | - Prashant J Desai
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
40
|
Herpesvirus Capsid Assembly and DNA Packaging. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2017; 223:119-142. [PMID: 28528442 DOI: 10.1007/978-3-319-53168-7_6] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Herpes simplex virus type I (HSV-1) is the causative agent of several pathologies ranging in severity from the common cold sore to life-threatening encephalitic infection. During productive lytic infection, over 80 viral proteins are expressed in a highly regulated manner, resulting in the replication of viral genomes and assembly of progeny virions. The virion of all herpesviruses consists of an external membrane envelope, a proteinaceous layer called the tegument, and an icosahedral capsid containing the double-stranded linear DNA genome. The capsid shell of HSV-1 is built from four structural proteins: a major capsid protein, VP5, which forms the capsomers (hexons and pentons), the triplex consisting of VP19C and VP23 found between the capsomers, and VP26 which binds to VP5 on hexons but not pentons. In addition, the dodecameric pUL6 portal complex occupies 1 of the 12 capsid vertices, and the capsid vertex specific component (CVSC), a heterotrimer complex of pUL17, pUL25, and pUL36, binds specifically to the triplexes adjacent to each penton. The capsid is assembled in the nucleus where the viral genome is packaged into newly assembled closed capsid shells. Cleavage and packaging of replicated, concatemeric viral DNA requires the seven viral proteins encoded by the UL6, UL15, UL17, UL25, UL28, UL32, and UL33 genes. Considerable advances have been made in understanding the structure of the herpesvirus capsid and the function of several of the DNA packaging proteins by applying biochemical, genetic, and structural techniques. This review is a summary of recent advances with respect to the structure of the HSV-1 virion capsid and what is known about the function of the seven packaging proteins and their interactions with each other and with the capsid shell.
Collapse
|
41
|
Assembly and Egress of an Alphaherpesvirus Clockwork. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2017; 223:171-193. [PMID: 28528444 PMCID: PMC5768427 DOI: 10.1007/978-3-319-53168-7_8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
All viruses produce infectious particles that possess some degree of stability in the extracellular environment yet disassemble upon cell contact and entry. For the alphaherpesviruses, which include many neuroinvasive viruses of mammals, these metastable virions consist of an icosahedral capsid surrounded by a protein matrix (referred to as the tegument) and a lipid envelope studded with glycoproteins. Whereas the capsid of these viruses is a rigid structure encasing the DNA genome, the tegument and envelope are dynamic assemblies that orchestrate a sequential series of events that ends with the delivery of the genome into the nucleus. These particles are adapted to infect two different polarized cell types in their hosts: epithelial cells and neurons of the peripheral nervous system. This review considers how the virion is assembled into a primed state and is targeted to infect these cell types such that the incoming particles can subsequently negotiate the diverse environments they encounter on their way from plasma membrane to nucleus and thereby achieve their remarkably robust neuroinvasive infectious cycle.
Collapse
|
42
|
Roller RJ, Baines JD. Herpesvirus Nuclear Egress. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2017; 223:143-169. [PMID: 28528443 DOI: 10.1007/978-3-319-53168-7_7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Herpesviruses assemble and package their genomes into capsids in the nucleus, but complete final assembly of the mature virion in the cell cytoplasm. This requires passage of the genome-containing capsid across the double-membrane nuclear envelope. Herpesviruses have evolved a mechanism that relies on a pair of conserved viral gene products to shuttle the capsids from the nucleus to the cytoplasm by way of envelopment and de-envelopment at the inner and outer nuclear membranes, respectively. This complex process requires orchestration of the activities of viral and cellular factors to alter the architecture of the nuclear membrane, select capsids at the appropriate stage for egress, and accomplish efficient membrane budding and fusion events. The last few years have seen major advances in our understanding of the membrane budding mechanism and helped clarify the roles of viral and cellular proteins in the other, more mysterious steps. Here, we summarize and place into context this recent research and, hopefully, clarify both the major advances and major gaps in our understanding.
Collapse
Affiliation(s)
- Richard J Roller
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Joel D Baines
- Kenneth F. Burns Chair in Veterinary Medicine, School of Veterinary Medicine, Skip Bertman Drive, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
43
|
Visualizing Herpesvirus Procapsids in Living Cells. J Virol 2016; 90:10182-10192. [PMID: 27581983 DOI: 10.1128/jvi.01437-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 08/24/2016] [Indexed: 01/16/2023] Open
Abstract
A complete understanding of herpesvirus morphogenesis requires studies of capsid assembly dynamics in living cells. Although fluorescent tags fused to the VP26 and pUL25 capsid proteins are available, neither of these components is present on the initial capsid assembly, the procapsid. To make procapsids accessible to live-cell imaging, we made a series of recombinant pseudorabies viruses that encoded green fluorescent protein (GFP) fused in frame to the internal capsid scaffold and maturation protease. One recombinant, a GFP-VP24 fusion, maintained wild-type propagation kinetics in vitro and approximated wild-type virulence in vivo The fusion also proved to be well tolerated in herpes simplex virus. Viruses encoding GFP-VP24, along with a traditional capsid reporter fusion (pUL25/mCherry), demonstrated that GFP-VP24 was a reliable capsid marker and revealed that the protein remained capsid associated following entry into cells and upon nuclear docking. These dual-fluorescent viruses made possible the discrimination of procapsids during infection and monitoring of capsid shell maturation kinetics. The results demonstrate the feasibility of imaging herpesvirus procapsids and their morphogenesis in living cells and indicate that the encapsidation machinery does not substantially help coordinate capsid shell maturation. IMPORTANCE The family Herpesviridae consists of human and veterinary pathogens that cause a wide range of diseases in their respective hosts. These viruses share structurally related icosahedral capsids that encase the double-stranded DNA (dsDNA) viral genome. The dynamics of capsid assembly and maturation have been inaccessible to examination in living cells. This study has overcome this technical hurdle and provides new insights into this fundamental stage of herpesvirus infection.
Collapse
|
44
|
Herpes Simplex Virus Capsid Localization to ESCRT-VPS4 Complexes in the Presence and Absence of the Large Tegument Protein UL36p. J Virol 2016; 90:7257-7267. [PMID: 27252536 PMCID: PMC4984650 DOI: 10.1128/jvi.00857-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 05/24/2016] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED UL36p (VP1/2) is the largest protein encoded by herpes simplex virus 1 (HSV-1) and resides in the innermost layer of tegument, the complex protein layer between the capsid and envelope. UL36p performs multiple functions in the HSV life cycle, including a critical but unknown role in capsid cytoplasmic envelopment. We tested whether UL36p is essential for envelopment because it is required to engage capsids with the cellular ESCRT/Vps4 apparatus. A green fluorescent protein (GFP)-fused form of the dominant negative ATPase Vps4-EQ was used to irreversibly tag ESCRT envelopment sites during infection by UL36p-expressing and UL36-null HSV strains. Using fluorescence microscopy and scanning electron microscopy, we quantitated capsid/Vps4-EQ colocalization and examined the ultrastructure of the corresponding viral assembly intermediates. We found that loss of UL36p resulted in a two-thirds reduction in the efficiency of capsid/Vps4-EQ association but that the remaining UL36p-null capsids were still able to engage the ESCRT envelopment apparatus. It appears that although UL36p helps to couple HSV capsids to the ESCRT pathway, this is likely not the sole reason for its absolute requirement for envelopment. IMPORTANCE Envelopment of the HSV capsid is essential for the assembly of an infectious virion and requires the complex interplay of a large number of viral and cellular proteins. Critical to envelope assembly is the virally encoded protein UL36p, whose function is unknown. Here we test the hypothesis that UL36p is essential for the recruitment of cellular ESCRT complexes, which are also known to be required for envelopment.
Collapse
|
45
|
Human Cytomegalovirus pUL93 Links Nucleocapsid Maturation and Nuclear Egress. J Virol 2016; 90:7109-7117. [PMID: 27226374 DOI: 10.1128/jvi.00728-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 05/18/2016] [Indexed: 01/10/2023] Open
Abstract
UNLABELLED Human cytomegalovirus (HCMV) pUL93 and pUL77 are both essential for virus growth, but their functions in the virus life cycle remain mostly unresolved. Homologs of pUL93 and pUL77 in herpes simplex virus 1 (HSV-1) and pseudorabies virus (PRV) are known to interact to form a complex at capsid vertices known as the capsid vertex-specific component (CVSC), which likely stabilizes nucleocapsids during virus maturation and also aids in nuclear egress. In herpesviruses, nucleocapsids assemble and partially mature in nuclear replication compartments and then travel to the inner nuclear membrane (INM) for nuclear egress. The factors governing the recruitment of nucleocapsids to the INM are not known. Kinetic analysis of pUL93 demonstrates that this protein is expressed late during infection and localizes primarily to the nucleus of infected cells. pUL93 associates with both virions and capsids and interacts with the components of the nuclear egress complex (NEC), namely, pUL50, pUL53, and pUL97, during infection. Also, multiple regions in pUL93 can independently interact with pUL77, which has been shown to help retain viral DNA during capsid assembly. These studies, combined with our earlier report of an essential role of pUL93 in viral DNA packaging, indicate that pUL93 serves as an important link between nucleocapsid maturation and nuclear egress. IMPORTANCE HCMV causes life-threatening disease and disability in immunocompromised patients and congenitally infected newborns. In this study, we investigated the functions of HCMV essential tegument protein pUL93 and determined that it interacts with the components of the nuclear egress complex, namely, pUL50, pUL53, and pUL97. We also found that pUL93 specifically interacts with pUL77, which helps retain viral DNA during capsid assembly. Together, our data point toward an important role of pUL93 in linking virus maturation to nuclear egress. In addition to expanding our knowledge of the process of HCMV maturation, information from these studies will also be utilized to develop new antiviral therapies.
Collapse
|
46
|
Abstract
Most DNA viruses replicate in the nucleus and exit it either by passing through the nuclear pores or by rupturing the nuclear envelope. Unusually, herpesviruses have evolved a complex mechanism of nuclear escape whereby nascent capsids bud at the inner nuclear membrane to form perinuclear virions that subsequently fuse with the outer nuclear membrane, releasing capsids into the cytosol. Although this general scheme is accepted in the field, the players and their roles are still debated. Recent studies illuminated critical mechanistic features of this enigmatic process and uncovered surprising parallels with a novel cellular nuclear export process. This review summarizes our current understanding of nuclear egress in herpesviruses, examines the experimental evidence and models, and outlines outstanding questions with the goal of stimulating new research in this area.
Collapse
Affiliation(s)
- Janna M Bigalke
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111;
| | - Ekaterina E Heldwein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111;
| |
Collapse
|
47
|
Ashford P, Hernandez A, Greco TM, Buch A, Sodeik B, Cristea IM, Grünewald K, Shepherd A, Topf M. HVint: A Strategy for Identifying Novel Protein-Protein Interactions in Herpes Simplex Virus Type 1. Mol Cell Proteomics 2016; 15:2939-53. [PMID: 27384951 PMCID: PMC5013309 DOI: 10.1074/mcp.m116.058552] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Indexed: 11/12/2022] Open
Abstract
Human herpesviruses are widespread human pathogens with a remarkable impact on worldwide public health. Despite intense decades of research, the molecular details in many aspects of their function remain to be fully characterized. To unravel the details of how these viruses operate, a thorough understanding of the relationships between the involved components is key. Here, we present HVint, a novel protein-protein intraviral interaction resource for herpes simplex virus type 1 (HSV-1) integrating data from five external sources. To assess each interaction, we used a scoring scheme that takes into consideration aspects such as the type of detection method and the number of lines of evidence. The coverage of the initial interactome was further increased using evolutionary information, by importing interactions reported for other human herpesviruses. These latter interactions constitute, therefore, computational predictions for potential novel interactions in HSV-1. An independent experimental analysis was performed to confirm a subset of our predicted interactions. This subset covers proteins that contribute to nuclear egress and primary envelopment events, including VP26, pUL31, pUL40, and the recently characterized pUL32 and pUL21. Our findings support a coordinated crosstalk between VP26 and proteins such as pUL31, pUS9, and the CSVC complex, contributing to the development of a model describing the nuclear egress and primary envelopment pathways of newly synthesized HSV-1 capsids. The results are also consistent with recent findings on the involvement of pUL32 in capsid maturation and early tegumentation events. Further, they open the door to new hypotheses on virus-specific regulators of pUS9-dependent transport. To make this repository of interactions readily accessible for the scientific community, we also developed a user-friendly and interactive web interface. Our approach demonstrates the power of computational predictions to assist in the design of targeted experiments for the discovery of novel protein-protein interactions.
Collapse
Affiliation(s)
- Paul Ashford
- From the: ‡Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London, WC1E 7HX, UK
| | - Anna Hernandez
- From the: ‡Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London, WC1E 7HX, UK; §Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Todd Michael Greco
- ¶Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey 08544
| | - Anna Buch
- ‖Institute of Virology, Hannover Medical School, OE 4310, Carl-Neuberg-Str. 1, D-30623, Hannover, Germany
| | - Beate Sodeik
- ‖Institute of Virology, Hannover Medical School, OE 4310, Carl-Neuberg-Str. 1, D-30623, Hannover, Germany
| | - Ileana Mihaela Cristea
- ¶Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey 08544;
| | - Kay Grünewald
- §Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Adrian Shepherd
- From the: ‡Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London, WC1E 7HX, UK
| | - Maya Topf
- From the: ‡Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London, WC1E 7HX, UK;
| |
Collapse
|
48
|
Borst EM, Bauerfeind R, Binz A, Stephan TM, Neuber S, Wagner K, Steinbrück L, Sodeik B, Lenac Roviš T, Jonjić S, Messerle M. The Essential Human Cytomegalovirus Proteins pUL77 and pUL93 Are Structural Components Necessary for Viral Genome Encapsidation. J Virol 2016; 90:5860-5875. [PMID: 27009952 PMCID: PMC4907240 DOI: 10.1128/jvi.00384-16] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 03/15/2016] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED Several essential viral proteins are proposed to participate in genome encapsidation of human cytomegalovirus (HCMV), among them pUL77 and pUL93, which remain largely uncharacterized. To gain insight into their properties, we generated an HCMV mutant expressing a pUL77-monomeric enhanced green fluorescent protein (mGFP) fusion protein and a pUL93-specific antibody. Immunoblotting demonstrated that both proteins are incorporated into capsids and virions. Conversely to data suggesting internal translation initiation sites within the UL93 open reading frame (ORF), we provide evidence that pUL93 synthesis commences at the first start codon. In infected cells, pUL77-mGFP was found in nuclear replication compartments and dot-like structures, colocalizing with capsid proteins. Immunogold labeling of nuclear capsids revealed that pUL77 is present on A, B, and C capsids. Pulldown of pUL77-mGFP revealed copurification of pUL93, indicating interaction between these proteins, which still occurred when capsid formation was prevented. Correct subnuclear distribution of pUL77-mGFP required pUL93 as well as the major capsid protein (and thus probably the presence of capsids), but not the tegument protein pp150 or the encapsidation protein pUL52, demonstrating that pUL77 nuclear targeting occurs independently of the formation of DNA-filled capsids. When pUL77 or pUL93 was missing, generation of unit-length genomes was not observed, and only empty B capsids were produced. Taken together, these results show that pUL77 and pUL93 are capsid constituents needed for HCMV genome encapsidation. Therefore, the task of pUL77 seems to differ from that of its alphaherpesvirus orthologue pUL25, which exerts its function subsequent to genome cleavage-packaging. IMPORTANCE The essential HCMV proteins pUL77 and pUL93 were suggested to be involved in viral genome cleavage-packaging but are poorly characterized both biochemically and functionally. By producing a monoclonal antibody against pUL93 and generating an HCMV mutant in which pUL77 is fused to a fluorescent protein, we show that pUL77 and pUL93 are capsid constituents, with pUL77 being similarly abundant on all capsid types. Each protein is required for genome encapsidation, as the absence of either pUL77 or pUL93 results in a genome packaging defect with the formation of empty capsids only. This distinguishes pUL77 from its alphaherpesvirus orthologue pUL25, which is enriched on DNA-filled capsids and exerts its function after the viral DNA is packaged. Our data for the first time describe an HCMV mutant with a fluorescent capsid and provide insight into the roles of pUL77 and pUL93, thus contributing to a better understanding of the HCMV encapsidation network.
Collapse
Affiliation(s)
- Eva Maria Borst
- Institute for Virology, Hannover Medical School, Hannover, Germany
| | - Rudolf Bauerfeind
- Institute for Cell Biology, Hannover Medical School, Hannover, Germany
| | - Anne Binz
- Institute for Virology, Hannover Medical School, Hannover, Germany
| | | | - Sebastian Neuber
- Institute for Virology, Hannover Medical School, Hannover, Germany
| | - Karen Wagner
- Institute for Virology, Hannover Medical School, Hannover, Germany
| | - Lars Steinbrück
- Institute for Virology, Hannover Medical School, Hannover, Germany
| | - Beate Sodeik
- Institute for Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
| | - Tihana Lenac Roviš
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Stipan Jonjić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Martin Messerle
- Institute for Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
| |
Collapse
|
49
|
Intracellular Distribution of Capsid-Associated pUL77 of Human Cytomegalovirus and Interactions with Packaging Proteins and pUL93. J Virol 2016; 90:5876-5885. [PMID: 27053556 DOI: 10.1128/jvi.00351-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/31/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED DNA packaging into procapsids is a common multistep process during viral maturation in herpesviruses. In human cytomegalovirus (HCMV), the proteins involved in this process are terminase subunits pUL56 and pUL89, which are responsible for site-specific cleavage and insertion of the DNA into the procapsid via portal protein pUL104. However, additional viral proteins are required for the DNA packaging process. We have shown previously that the plasmid that encodes capsid-associated pUL77 encodes another potential player during capsid maturation. Pulse-chase experiments revealed that pUL77 is stably expressed during HCMV infection. Time course analysis demonstrated that pUL77 is expressed in the early late part of the infectious cycle. The sequence of pUL77 was analyzed to find nuclear localization sequences (NLSs), revealing monopartite NLSm at the N terminus and bipartite NLSb in the middle of pUL77. The potential NLSs were inserted into plasmid pHM829, which encodes a chimeric protein with β-galactosidase and green fluorescent protein. In contrast to pUL56, neither NLSm nor NLSb was sufficient for nuclear import. Furthermore, we investigated by coimmunoprecipitation whether packaging proteins, as well as pUL93, the homologue protein of herpes simplex virus 1 pUL17, are interaction partners of pUL77. The interactions between pUL77 and packaging proteins, as well as pUL93, were verified. IMPORTANCE We showed that the capsid-associated pUL77 is another potential player during capsid maturation of HCMV. Protein UL77 (pUL77) is a conserved core protein of HCMV. This study demonstrates for the first time that pUL77 has early-late expression kinetics during the infectious cycle and an intrinsic potential for nuclear translocation. According to its proposed functions in stabilization of the capsid and anchoring of the encapsidated DNA during packaging, interaction with further DNA packaging proteins is required. We identified physical interactions with terminase subunits pUL56 and pUL89 and another postulated packaging protein, pUL93, in infected, as well as transfected, cells.
Collapse
|
50
|
Wu W, Newcomb WW, Cheng N, Aksyuk A, Winkler DC, Steven AC. Internal Proteins of the Procapsid and Mature Capsids of Herpes Simplex Virus 1 Mapped by Bubblegram Imaging. J Virol 2016; 90:5176-86. [PMID: 26984725 PMCID: PMC4859710 DOI: 10.1128/jvi.03224-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 03/09/2016] [Indexed: 02/08/2023] Open
Abstract
UNLABELLED The herpes simplex virus 1 (HSV-1) capsid is a huge assembly, ∼1,250 Å in diameter, and is composed of thousands of protein subunits with a combined mass of ∼200 MDa, housing a 100-MDa genome. First, a procapsid is formed through coassembly of the surface shell with an inner scaffolding shell; then the procapsid matures via a major structural transformation, triggered by limited proteolysis of the scaffolding proteins. Three mature capsids are found in the nuclei of infected cells. A capsids are empty, B capsids retain a shrunken scaffolding shell, and C capsids-which develop into infectious virions-are filled with DNA and ostensibly have expelled the scaffolding shell. The possible presence of other internal proteins in C capsids has been moot as, in cryo-electron microscopy (cryo-EM), they would be camouflaged by the surrounding DNA. We have used bubblegram imaging to map internal proteins in all four capsids, aided by the discovery that the scaffolding protein is exceptionally prone to radiation-induced bubbling. We confirmed that this protein forms thick-walled inner shells in the procapsid and the B capsid. C capsids generate two classes of bubbles: one occupies positions beneath the vertices of the icosahedral surface shell, and the other is distributed throughout its interior. A likely candidate is the viral protease. A subpopulation of C capsids bubbles particularly profusely and may represent particles in which expulsion of scaffold and DNA packaging are incomplete. Based on the procapsid structure, we propose that the axial channels of hexameric capsomers afford the pathway via which the scaffolding protein is expelled. IMPORTANCE In addition to DNA, capsids of tailed bacteriophages and their distant relatives, herpesviruses, contain internal proteins. These proteins are often essential for infectivity but are difficult to locate within the virion. A novel adaptation of cryo-EM based on detecting gas bubbles generated by radiation damage was used to localize internal proteins of HSV-1, yielding insights into how capsid maturation is regulated. The scaffolding protein, which forms inner shells in the procapsid and B capsid, is exceptionally bubbling-prone. In the mature DNA-filled C capsid, a previously undetected protein was found to underlie the icosahedral vertices: this is tentatively assigned as a storage form of the viral protease. We also observed a capsid species that appears to contain substantial amounts of scaffolding protein as well as DNA, suggesting that DNA packaging and expulsion of the scaffolding protein are coupled processes.
Collapse
Affiliation(s)
- Weimin Wu
- Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - William W Newcomb
- Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Naiqian Cheng
- Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Anastasia Aksyuk
- Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Dennis C Winkler
- Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Alasdair C Steven
- Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|