1
|
Friedrich F, Schiedel M, Swyter S, Zhang L, Sippl W, Schutkowski M, Einsle O, Jung M. Efficient Crystallization of Apo Sirt2 for Small-Molecule Soaking and Structural Analysis of Ligand Interactions. J Med Chem 2025; 68:10771-10780. [PMID: 40390200 DOI: 10.1021/acs.jmedchem.4c02896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
The selectivity pocket is a key binding site for inhibitors of the NAD+-dependent lysine deacylase Sirtuin 2 (Sirt2), a promising drug target in diseases like cancer. While small-molecule soaking can advance inhibitor development, the selectivity pocket is absent in available Sirt2 apo structures, and existing soaking systems like Sirt2-ADPribose (ADPR) suffer from unfavorable crystal packing that hinders ligand binding. We developed a method to rapidly generate high-quality Sirt2 apo crystals with an open selectivity pocket, suitable for high-throughput soaking. The induced-fit pocket forms upon seeding with a Sirtuin Rearranging ligand (SirReal) and is retained in the ligand-free apo structure. Screening the Maybridge Ro3-fragment library using a fluorescence polarization assay yielded three novel Sirt2-fragment-inhibitor structures. Additionally, our Sirt2 apo crystals can accommodate ligands at the acyl-lysine channel entrance and the cofactor binding site, as confirmed by binding of the peptide inhibitor KT9 and NAD+, facilitating SAR studies and inhibitor optimization.
Collapse
Affiliation(s)
- Florian Friedrich
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg 79104, Germany
| | - Matthias Schiedel
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig 38106, Germany
| | - Sören Swyter
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg 79104, Germany
| | - Lin Zhang
- Institute of Biochemistry, University of Freiburg, Freiburg 79104, Germany
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518107, China
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle 06120, Germany
| | - Mike Schutkowski
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle 06120, Germany
| | - Oliver Einsle
- Institute of Biochemistry, University of Freiburg, Freiburg 79104, Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg 79104, Germany
| |
Collapse
|
2
|
Bernhard SP, Ruiz FX, Remiszewski S, Todd MJ, Shenk T, Kulp JL, Chiang LW. Structural basis for sirtuin 2 activity and modulation: current state and opportunities. J Biol Chem 2025:110274. [PMID: 40412521 DOI: 10.1016/j.jbc.2025.110274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 05/12/2025] [Accepted: 05/17/2025] [Indexed: 05/27/2025] Open
Abstract
Sirtuin 2 (SIRT2) is a ubiquitously expressed cellular enzyme that deacylates protein lysine residues using NAD+ as a cofactor. SIRT2-mediated post-translational modifications on a plethora of protein targets position the enzyme to exert a wide-ranging regulatory role in many physiological and pathological processes. More than 39 SIRT2 crystal structures in complex with substrates, products, mimetics of substrates and products, and modulators, have been reported. The Rossmann fold of the catalytic core presents inducible acyl and cofactor binding cavities that accommodate acyl chains of diverse lengths. These structures have provided information for the design of mechanism- and substrate-based inhibitors. Indeed, a specific SIRT2 selectivity pocket has been described and can be targeted by different chemotypes. Despite the determination of many crystal structures, numerous open questions remain, especially relating to the development of small molecule modulators, full or partial activation or inhibition, and relating these effects to different therapeutic applications. Additional questions include understanding the role of the disordered termini, and the role of potential quaternary states (monomer, dimer, and trimer). Deeper insight into these issues may facilitate the development of SIRT2 selective modulators that can be tailored to different pathological scenarios, such as viral infections and cancers, in which either activation or inhibition of SIRT2 may be of therapeutic benefit. This review covers the following topics: (1) primary to quaternary and catalytic structural biology; (2) structural insights into molecular modulation of SIRT2 (inhibition and selectivity by mechanism-based inhibitors, substrate-mimicking inhibitors, C pocket-binding inhibitors, and selectivity pocket binding inhibitors, including insights to activation; and (3) the impact of structural variations (mutations, post-translational modifications, polymorphs, protein interactions). Despite considerable progress, key knowledge gaps remain regarding the design of optimized SIRT2 modulators. Addressing these uncertainties, particularly within the realms of full/partial activation/inhibition, off-target effects, and tailoring modulators to specific pathologies, will require further investigation into the roles of the SIRT2 disordered termini, quaternary states, and post-translational modifications. Ultimately, unraveling these intricacies holds the key to unlocking the therapeutic potential of SIRT2 modulation.
Collapse
Affiliation(s)
- Samuel P Bernhard
- Conifer Point Pharmaceuticals, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Francesc X Ruiz
- Chemistry and Chemical Biology, Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854 USA
| | - Stacy Remiszewski
- Evrys Bio LLC, Pennsylvania Biotechnology Center, Doylestown, PA, 18902, USA
| | - Matthew J Todd
- Evrys Bio LLC, Pennsylvania Biotechnology Center, Doylestown, PA, 18902, USA
| | - Thomas Shenk
- Evrys Bio LLC, Pennsylvania Biotechnology Center, Doylestown, PA, 18902, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - John L Kulp
- Conifer Point Pharmaceuticals, 3805 Old Easton Road, Doylestown, PA, 18902, USA; Evrys Bio LLC, Pennsylvania Biotechnology Center, Doylestown, PA, 18902, USA.
| | - Lillian W Chiang
- Evrys Bio LLC, Pennsylvania Biotechnology Center, Doylestown, PA, 18902, USA.
| |
Collapse
|
3
|
Gao X, Jia S, Gao L, Chen S, Zhang Y, Liang X, Zhang L, Zhang B, Meng C. MSC-derived exosomes alleviate oxidative stress-induced lysosomal membrane permeabilization damage in degenerated nucleus pulposus cells via promoting m6A demethylation of Nrf2. Free Radic Biol Med 2025; 235:213-230. [PMID: 40316061 DOI: 10.1016/j.freeradbiomed.2025.04.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/26/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
Lysosomal membrane permeabilization (LMP) is a specific feature of lysosomal dysfunction; however, its specific role and underlying mechanisms involved in intervertebral disc degeneration (IVDD) remain elusive. Although the therapeutic potential of mesenchymal stem cell-derived exosomes (MSC-Exo) in ameliorating IVDD has been verified, it remains unclear whether their protective effects are referred to LMP damage. This work revealed that oxidative stress induced-LMP damage directly mediated the pathological process of human IVDD, which aggravated nucleus pulposus cells (NPCs) senescence by disrupting lysosomal autophagy function. Conversely, umbilical cord derived MSC-Exo inhibited LMP damage in degenerated NPCs by activating Nrf2-medaited anti-oxidative stress effects. Specifically, MSC-Exo facilitated H3K27ac modification in the demethylase FTO promoter by promoting histone acetyltransferase activity of p300/CBP, resulting in the enhanced FTO transcription. This process inhibited the elevation of N6-methyladenosine (m6A) modification of Nrf2 in degenerated NPCs, resulting in less recognition of YTHDF2 and enhanced stability of Nrf2 expression. Here, our finding demonstrates oxidative stress induced-LMP damage potentially establishing pathological conditions conducive to the progression of IVDD, and providing epigenetic regulatory targets for MSC-Exo in the treatment of IVDD.
Collapse
Affiliation(s)
- Xu Gao
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272000, PR China
| | - Shu Jia
- Clinical Research Team of Spine & Spinal Cord Diseases, Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272000, PR China
| | - Longfei Gao
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272000, PR China
| | - Shang Chen
- Clinical Research Team of Spine & Spinal Cord Diseases, Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272000, PR China
| | - Yanan Zhang
- Department of obstetrics, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272000, PR China
| | - Xiao Liang
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272000, PR China
| | - Lu Zhang
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272000, PR China
| | - Bin Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, 272000, PR China.
| | - Chunyang Meng
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272000, PR China.
| |
Collapse
|
4
|
Wang F, Keating CR, Xu Y, Hou W, Malnassy G, Boedeker K, Perera A, Ham E, Patel D, Ding X, Qiu W. Suppression of Hepatocellular Carcinoma by Deletion of SIRT2 in Hepatocytes via Elevated C/EBPβ/GADD45γ. Cell Mol Gastroenterol Hepatol 2025; 19:101494. [PMID: 40081570 DOI: 10.1016/j.jcmgh.2025.101494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND & AIMS There is a gap in our understanding of mechanisms promoting hepatocellular carcinoma (HCC), and this limits our ability to provide targeted therapy interventions for HCC. In HCC samples, NAD-dependent deacetylase sirtuin 2 (SIRT2) levels are increased and associated with a significantly worse prognosis, but the role of SIRT2 in hepatocarcinogenesis remains controversial. METHODS To assess the role of SIRT2 in hepatocarcinogenesis, we used a hepatocyte-specific knockout of SIRT2 and two plasmid overexpression HCC models: c-MET (MET)/β-catenin (CAT) and protein kinase B (AKT)/Nras. RNA sequencing of mouse liver tissue was performed, and mechanistic findings were confirmed using immunohistochemistry (IHC), quantitative polymerase chain reaction, Western blot, and Cell Counting Kit-8. RESULTS Using the MET/CAT and AKT/Nras models, we found that SIRT2 is a significant mediator of liver tumorigenesis, with the knockout of SIRT2 delaying tumor growth. RNA sequencing of MET/CAT-driven tumor tissue showed an increase in growth arrest and DNA-damage-inducible protein gamma (GADD45γ) in SIRT2 knockout mice compared with wild-type. GADD45γ is a known tumor suppressor, but the regulation of GADD45γ by SIRT2 has not been shown. CCAAT/enhancer-binding protein beta (C/EBPβ) proteins are known to regulate GADD45γ expression, and we found that C/EBPβ expression was increased in SIRT2 knockout livers and HCC cells. Also, C/EBPβ knockdown reversed GADD45γ expression and growth suppression following SIRT2 inhibition. Finally, C/EBPβ or GADD45γ overexpression significantly suppressed MET/CAT-induced HCC development. CONCLUSIONS SIRT2 is a potent tumor promotor in HCC that negatively regulates GADD45γ expression through C/EBPβ. The SIRT2-C/EBPβ-GADD45γ pathway elucidates a novel mechanism in HCC and establishes SIRT2 as a therapeutic target for patients with HCC.
Collapse
Affiliation(s)
- Fang Wang
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Claudia Rose Keating
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Yingchen Xu
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wei Hou
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Greg Malnassy
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Kyle Boedeker
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Aldeb Perera
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Eugene Ham
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Diya Patel
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Xianzhong Ding
- Department of Pathology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Wei Qiu
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois.
| |
Collapse
|
5
|
Sola-Sevilla N, Garmendia-Berges M, Mera-Delgado MC, Puerta E. Context-dependent role of sirtuin 2 in inflammation. Neural Regen Res 2025; 20:682-694. [PMID: 38886935 PMCID: PMC11433891 DOI: 10.4103/nrr.nrr-d-23-02063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/09/2024] [Accepted: 03/30/2024] [Indexed: 06/20/2024] Open
Abstract
Sirtuin 2 is a member of the sirtuin family nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases, known for its regulatory role in different processes, including inflammation. In this context, sirtuin 2 has been involved in the modulation of key inflammatory signaling pathways and transcription factors by deacetylating specific targets, such as nuclear factor κB and nucleotide-binding oligomerization domain-leucine-rich-repeat and pyrin domain-containing protein 3 (NLRP3). However, whether sirtuin 2-mediated pathways induce a pro- or an anti-inflammatory response remains controversial. Sirtuin 2 has been implicated in promoting inflammation in conditions such as asthma and neurodegenerative diseases, suggesting that its inhibition in these conditions could be a potential therapeutic strategy. Conversely, arthritis and type 2 diabetes mellitus studies suggest that sirtuin 2 is essential at the peripheral level and, thus, its inhibition in these pathologies would not be recommended. Overall, the precise role of sirtuin 2 in inflammation appears to be context-dependent, and further investigation is needed to determine the specific molecular mechanisms and downstream targets through which sirtuin 2 influences inflammatory processes in various tissues and pathological conditions. The present review explores the involvement of sirtuin 2 in the inflammation associated with different pathologies to elucidate whether its pharmacological modulation could serve as an effective strategy for treating this prevalent symptom across various diseases.
Collapse
Affiliation(s)
- Noemí Sola-Sevilla
- Department of Pharmaceutical Sciences, Division of Pharmacology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Maider Garmendia-Berges
- Department of Pharmaceutical Sciences, Division of Pharmacology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - MCarmen Mera-Delgado
- Department of Pharmaceutical Sciences, Division of Pharmacology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Elena Puerta
- Department of Pharmaceutical Sciences, Division of Pharmacology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| |
Collapse
|
6
|
Keller MA, Nakamura M. Acetyltransferase in cardiovascular disease and aging. THE JOURNAL OF CARDIOVASCULAR AGING 2024; 4:10.20517/jca.2024.21. [PMID: 39958699 PMCID: PMC11827898 DOI: 10.20517/jca.2024.21] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Acetyltransferases are enzymes that catalyze the transfer of an acetyl group to a substrate, a modification referred to as acetylation. Loss-of-function variants in genes encoding acetyltransferases can lead to congenital disorders, often characterized by intellectual disability and heart and muscle defects. Their activity is influenced by dietary nutrients that alter acetyl coenzyme A levels, a key cofactor. Cardiovascular diseases, including ischemic, hypertensive, and diabetic heart diseases - leading causes of mortality in the elderly - are largely attributed to prolonged lifespan and the growing prevalence of metabolic syndrome. Acetyltransferases thus serve as a crucial link between lifestyle modifications, cardiometabolic disease, and aging through both epigenomic and non-epigenomic mechanisms. In this review, we discuss the roles and relevance of acetyltransferases. While the sirtuin family of deacetylases has been extensively studied in longevity, particularly through fasting-mediated NAD+ metabolism, recent research has brought attention to the essential roles of acetyltransferases in health and aging-related pathways, including cell proliferation, DNA damage response, mitochondrial function, inflammation, and senescence. We begin with an overview of acetyltransferases, classifying them by domain structure, including canonical and non-canonical lysine acetyltransferases, N-terminal acetyltransferases, and sialic acid O-acetyltransferases. We then discuss recent advances in understanding acetyltransferase-related pathologies, particularly focusing on cardiovascular disease and aging, and explore their potential therapeutic applications for promoting health in older individuals.
Collapse
Affiliation(s)
- Mariko Aoyagi Keller
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Michinari Nakamura
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
7
|
Kamal S, Babar S, Ali W, Rehman K, Hussain A, Akash MSH. Sirtuin insights: bridging the gap between cellular processes and therapeutic applications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9315-9344. [PMID: 38976046 DOI: 10.1007/s00210-024-03263-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024]
Abstract
The greatest challenges that organisms face today are effective responses or detection of life-threatening environmental changes due to an obvious semblance of stress and metabolic fluctuations. These are associated with different pathological conditions among which cancer is most important. Sirtuins (SIRTs; NAD+-dependent enzymes) are versatile enzymes with diverse substrate preferences, cellular locations, crucial for cellular processes and pathological conditions. This article describes in detail the distinct roles of SIRT isoforms, unveiling their potential as either cancer promoters or suppressors and also explores how both natural and synthetic compounds influence the SIRT function, indicating promise for therapeutic applications. We also discussed the inhibitors/activators tailored to specific SIRTs, holding potential for diseases lacking effective treatments. It may uncover the lesser-studied SIRT isoforms (e.g., SIRT6, SIRT7) and their unique functions. This article also offers a comprehensive overview of SIRTs, linking them to a spectrum of diseases and highlighting their potential for targeted therapies, combination approaches, disease management, and personalized medicine. We aim to contribute to a transformative era in healthcare and innovative treatments by unraveling the intricate functions of SIRTs.
Collapse
Affiliation(s)
- Shagufta Kamal
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Sharon Babar
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Waqas Ali
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, The Women University, Multan, Pakistan
| | - Amjad Hussain
- Institute of Chemistry, University of Okara, Okara, Punjab, Pakistan
| | | |
Collapse
|
8
|
Marín-Blázquez M, Rovira J, Ramírez-Bajo MJ, Zapata-Pérez R, Rabadán-Ros R. NAD + enhancers as therapeutic agents in the cardiorenal axis. Cell Commun Signal 2024; 22:537. [PMID: 39516787 PMCID: PMC11546376 DOI: 10.1186/s12964-024-01903-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Cardiorenal diseases represent a complex interplay between heart failure and renal dysfunction, being clinically classified as cardiorenal syndromes (CRS). Recently, the contributions of altered nicotinamide adenine dinucleotide (NAD+) metabolism, through deficient NAD+ synthesis and/or elevated consumption, have proved to be decisive in the onset and progress of cardiorenal disease. NAD+ is a pivotal coenzyme in cellular metabolism, being significant in various signaling pathways, such as energy metabolism, DNA damage repair, gene expression, and stress response. Convincing evidence suggests that strategies designed to boost cellular NAD+ levels are a promising therapeutic option to address cardiovascular and renal disorders. Here, we review and discuss the implications of NAD+ metabolism in cardiorenal diseases, focusing on the propitious NAD+ boosting therapeutic strategies, based on the use of NAD+ precursors, poly(ADP-ribose) polymerase inhibitors, sirtuin activators, and other alternative approaches, such as CD38 blockade, nicotinamide phosphoribosyltransferase activation and combined interventions.
Collapse
Affiliation(s)
- Mariano Marín-Blázquez
- Group of Metabolism and Genetic Regulation of Disease, UCAM HiTech Sport & Health Innovation Hub, Universidad Católica de Murcia, 30107 Guadalupe de Maciascoque, Murcia, Spain
| | - Jordi Rovira
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Casanova 143 CRB CELLEX sector 2B, Barcelona, 08036, Spain
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS 2040), Madrid, Spain
| | - María José Ramírez-Bajo
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Casanova 143 CRB CELLEX sector 2B, Barcelona, 08036, Spain
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS 2040), Madrid, Spain
| | - Rubén Zapata-Pérez
- Group of Metabolism and Genetic Regulation of Disease, UCAM HiTech Sport & Health Innovation Hub, Universidad Católica de Murcia, 30107 Guadalupe de Maciascoque, Murcia, Spain.
| | - Rubén Rabadán-Ros
- Group of Metabolism and Genetic Regulation of Disease, UCAM HiTech Sport & Health Innovation Hub, Universidad Católica de Murcia, 30107 Guadalupe de Maciascoque, Murcia, Spain.
| |
Collapse
|
9
|
Goell J, Li J, Mahata B, Ma AJ, Kim S, Shah S, Shah S, Contreras M, Misra S, Reed D, Bedford GC, Escobar M, Hilton IB. Tailoring a CRISPR/Cas-based Epigenome Editor for Programmable Chromatin Acylation and Decreased Cytotoxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.22.611000. [PMID: 39345554 PMCID: PMC11429961 DOI: 10.1101/2024.09.22.611000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Engineering histone acylation states can inform mechanistic epigenetics and catalyze therapeutic epigenome editing opportunities. Here, we developed engineered lysine acyltransferases that enable the programmable deposition of acetylation and longer-chain acylations. We show that targeting an engineered lysine crotonyltransferase results in weak levels of endogenous enhancer activation yet retains potency when targeted to promoters. We further identify a single mutation within the catalytic core of human p300 that preserves enzymatic activity while substantially reducing cytotoxicity, enabling improved viral delivery. We leveraged these capabilities to perform single-cell CRISPR activation screening and map enhancers to the genes they regulate in situ. We also discover acylation-specific interactions and find that recruitment of p300, regardless of catalytic activity, to prime editing sites can improve editing efficiency. These new programmable epigenome editing tools and insights expand our ability to understand the mechanistic role of lysine acylation in epigenetic and cellular processes and perform functional genomic screens.
Collapse
Affiliation(s)
- Jacob Goell
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Jing Li
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Barun Mahata
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Alex J Ma
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Sunghwan Kim
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Spencer Shah
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Shriya Shah
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Maria Contreras
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Suchir Misra
- Department of Biosciences, Rice University, Houston, TX 77030, USA
| | - Daniel Reed
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Guy C Bedford
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Mario Escobar
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Isaac B Hilton
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
- Department of Biosciences, Rice University, Houston, TX 77030, USA
| |
Collapse
|
10
|
Zamperla MG, Illi B, Barbi V, Cencioni C, Santoni D, Gagliardi S, Garofalo M, Zingale GA, Pandino I, Sbardella D, Cipolla L, Sabbioneda S, Farsetti A, Ripamonti C, Fossati G, Steinkühler C, Gaetano C, Atlante S. HDAC6 inhibition disrupts HDAC6-P300 interaction reshaping the cancer chromatin landscape. Clin Epigenetics 2024; 16:109. [PMID: 39155390 PMCID: PMC11331611 DOI: 10.1186/s13148-024-01725-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024] Open
Abstract
BACKGROUND Histone deacetylases (HDACs) are crucial regulators of gene expression, DNA synthesis, and cellular processes, making them essential targets in cancer research. HDAC6, specifically, influences protein stability and chromatin dynamics. Despite HDAC6's potential therapeutic value, its exact role in gene regulation and chromatin remodeling needs further clarification. This study examines how HDAC6 inactivation influences lysine acetyltransferase P300 stabilization and subsequent effects on chromatin structure and function in cancer cells. METHODS AND RESULTS We employed the HDAC6 inhibitor ITF3756, siRNA, or CRISPR/Cas9 gene editing to inactivate HDAC6 in different epigenomic backgrounds. Constantly, this inactivation led to significant changes in chromatin accessibility, particularly increased acetylation of histone H3 lysines 9, 14, and 27 (ATAC-seq and H3K27Ac ChIP-seq analysis). Transcriptomics, proteomics, and gene ontology analysis revealed gene changes in cell proliferation, adhesion, migration, and apoptosis. Significantly, HDAC6 inactivation altered P300 ubiquitination, stabilizing P300 and leading to downregulating genes critical for cancer cell survival. CONCLUSIONS Our study highlights the substantial impact of HDAC6 inactivation on the chromatin landscape of cancer cells and suggests a role for P300 in contributing to the anticancer effects. The stabilization of P300 with HDAC6 inhibition proposes a potential shift in therapeutic focus from HDAC6 itself to its interaction with P300. This finding opens new avenues for developing targeted cancer therapies, improving our understanding of epigenetic mechanisms in cancer cells.
Collapse
Affiliation(s)
| | - Barbara Illi
- Institute of Molecular Biology and Pathology, National Research Council (CNR), c/o Sapienza University of Rome, 00185, Rome, Italy
| | - Veronica Barbi
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
| | - Chiara Cencioni
- Institute for Systems Analysis and Computer Science, National Research Council (CNR)-IASI, 00185, Rome, Italy
| | - Daniele Santoni
- Institute for Systems Analysis and Computer Science, National Research Council (CNR)-IASI, 00185, Rome, Italy
| | - Stella Gagliardi
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, 27100, Pavia, Italy
| | - Maria Garofalo
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, 27100, Pavia, Italy
| | | | | | | | - Lina Cipolla
- Institute of Molecular Genetics, National Research Council (CNR), 27100, Pavia, Italy
| | - Simone Sabbioneda
- Institute of Molecular Genetics, National Research Council (CNR), 27100, Pavia, Italy
| | - Antonella Farsetti
- Institute for Systems Analysis and Computer Science, National Research Council (CNR)-IASI, 00185, Rome, Italy
| | - Chiara Ripamonti
- New Drug Incubator Department, Italfarmaco Group, 20092, Cinisello Balsamo, Italy
| | - Gianluca Fossati
- New Drug Incubator Department, Italfarmaco Group, 20092, Cinisello Balsamo, Italy
| | | | - Carlo Gaetano
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy.
| | - Sandra Atlante
- Institute for Systems Analysis and Computer Science, National Research Council (CNR)-IASI, 00185, Rome, Italy
| |
Collapse
|
11
|
Gao Y, Kim K, Vitrac H, Salazar RL, Gould BD, Soedkamp D, Spivia W, Raedschelders K, Dinh AQ, Guzman AG, Tan L, Azinas S, Taylor DJR, Schiffer W, McNavish D, Burks HB, Gottlieb RA, Lorenzi PL, Hanson BM, Van Eyk JE, Taegtmeyer H, Karlstaedt A. Autophagic signaling promotes systems-wide remodeling in skeletal muscle upon oncometabolic stress by D2-HG. Mol Metab 2024; 86:101969. [PMID: 38908793 PMCID: PMC11278897 DOI: 10.1016/j.molmet.2024.101969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/11/2024] [Indexed: 06/24/2024] Open
Abstract
OBJECTIVES Cachexia is a metabolic disorder and comorbidity with cancer and heart failure. The syndrome impacts more than thirty million people worldwide, accounting for 20% of all cancer deaths. In acute myeloid leukemia, somatic mutations of the metabolic enzyme isocitrate dehydrogenase 1 and 2 cause the production of the oncometabolite D2-hydroxyglutarate (D2-HG). Increased production of D2-HG is associated with heart and skeletal muscle atrophy, but the mechanistic links between metabolic and proteomic remodeling remain poorly understood. Therefore, we assessed how oncometabolic stress by D2-HG activates autophagy and drives skeletal muscle loss. METHODS We quantified genomic, metabolomic, and proteomic changes in cultured skeletal muscle cells and mouse models of IDH-mutant leukemia using RNA sequencing, mass spectrometry, and computational modeling. RESULTS D2-HG impairs NADH redox homeostasis in myotubes. Increased NAD+ levels drive activation of nuclear deacetylase Sirt1, which causes deacetylation and activation of LC3, a key regulator of autophagy. Using LC3 mutants, we confirm that deacetylation of LC3 by Sirt1 shifts its distribution from the nucleus into the cytosol, where it can undergo lipidation at pre-autophagic membranes. Sirt1 silencing or p300 overexpression attenuated autophagy activation in myotubes. In vivo, we identified increased muscle atrophy and reduced grip strength in response to D2-HG in male vs. female mice. In male mice, glycolytic intermediates accumulated, and protein expression of oxidative phosphorylation machinery was reduced. In contrast, female animals upregulated the same proteins, attenuating the phenotype in vivo. Network modeling and machine learning algorithms allowed us to identify candidate proteins essential for regulating oncometabolic adaptation in mouse skeletal muscle. CONCLUSIONS Our multi-omics approach exposes new metabolic vulnerabilities in response to D2-HG in skeletal muscle and provides a conceptual framework for identifying therapeutic targets in cachexia.
Collapse
Affiliation(s)
- Yaqi Gao
- Department of Cardiology, Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kyoungmin Kim
- Department of Cardiology, Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Heidi Vitrac
- Department of Biochemistry, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Bruker Daltonics, Billerica, MA, USA
| | - Rebecca L Salazar
- Department of Internal Medicine, Division of Cardiology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Benjamin D Gould
- Department of Internal Medicine, Division of Cardiology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Daniel Soedkamp
- Department of Cardiology, Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Weston Spivia
- Department of Cardiology, Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Koen Raedschelders
- Department of Cardiology, Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - An Q Dinh
- Center for Infectious Diseases, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Anna G Guzman
- Center for Stem Cell and Regeneration, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lin Tan
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Stavros Azinas
- Department of Biochemistry, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Cell and Molecular Biology, Uppsala University, Sweden
| | - David J R Taylor
- Department of Cardiology, Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Walter Schiffer
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA
| | - Daniel McNavish
- Department of Internal Medicine, Division of Cardiology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Helen B Burks
- Department of Internal Medicine, Division of Cardiology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Roberta A Gottlieb
- Department of Cardiology, Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Blake M Hanson
- Center for Infectious Diseases, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jennifer E Van Eyk
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Heinrich Taegtmeyer
- Department of Biochemistry, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Anja Karlstaedt
- Department of Cardiology, Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
12
|
Kaya SG, Eren G, Massarotti A, Bakar-Ates F, Ozkan E, Gozelle M, Ozkan Y. 2-(Methyl(phenyl)amino)-N-(phenyloxyphenyl)acetamide structural motif representing a framework for selective SIRT2 inhibition. Drug Dev Res 2024; 85:e22224. [PMID: 38867474 DOI: 10.1002/ddr.22224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/02/2024] [Indexed: 06/14/2024]
Abstract
The mammalian cytoplasmic protein SIRT2, a class III histone deacetylase family member, possesses NAD+-dependent lysine deacetylase/deacylase activity. Dysregulation of SIRT2 has been implicated in the pathogenesis of several diseases, including neurological and metabolic disorders and cancer; thus, SIRT2 emerges as a potential therapeutic target. Herein, we identified a series of diaryl acetamides (ST61-ST90) by the structural optimization of our hit STH2, followed by enhanced SIRT2 inhibitory potency and selectivity. Among them, ST72, ST85, and ST88 selectively inhibited SIRT2 with IC50 values of 9.97, 5.74, and 8.92 μM, respectively. Finally, the entire study was accompanied by in silico prediction of binding modes of docked compounds and the stability of SIRT2-ligand complexes. We hope our findings will provide substantial information for designing selective inhibitors of SIRT2.
Collapse
Affiliation(s)
- Selen Gozde Kaya
- SIRTeam Group, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - Gokcen Eren
- SIRTeam Group, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - Alberto Massarotti
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale, "A. Avogadro", Largo Donegani 2, Novara, Italy
| | - Filiz Bakar-Ates
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Türkiye
| | - Erva Ozkan
- Department of Biochemistry, Faculty of Pharmacy, Ankara Medipol University, Ankara, Türkiye
| | - Mahmut Gozelle
- SIRTeam Group, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - Yesim Ozkan
- Department of Biochemistry, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| |
Collapse
|
13
|
Oh HJ, Bae SC, Oh IJ, Park CK, Jung KM, Kim DM, Lee JW, Kang CK, Park IY, Kim YC. Nicotinamide in Combination with EGFR-TKIs for the Treatment of Stage IV Lung Adenocarcinoma with EGFR Mutations: A Randomized Double-Blind (Phase IIb) Trial. Clin Cancer Res 2024; 30:1478-1487. [PMID: 38593249 DOI: 10.1158/1078-0432.ccr-23-3059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/03/2024] [Accepted: 01/23/2024] [Indexed: 04/11/2024]
Abstract
PURPOSE RUNX3 is a tumor suppressor gene, which is inactivated in approximately 70% of lung adenocarcinomas. Nicotinamide, a sirtuin inhibitor, has demonstrated potential in re-activating epigenetically silenced RUNX3 in cancer cells. This study assessed the therapeutic benefits of combining nicotinamide with first-generation EGFR-tyrosine kinase inhibitors (TKI) for patients with stage IV lung cancer carrying EGFR mutations. PATIENTS AND METHODS We assessed the impact of nicotinamide on carcinogen-induced lung adenocarcinomas in mice and observed that nicotinamide increased RUNX3 levels and inhibited lung cancer growth. Subsequently, 110 consecutive patients with stage IV lung cancer who had EGFR mutations were recruited: 70 females (63.6%) and 84 never-smokers (76.4%). The patients were randomly assigned to receive either nicotinamide (1 g/day, n = 55) or placebo (n = 55). The primary and secondary endpoints were progression-free survival (PFS) and overall survival (OS), respectively. RESULTS After a median follow-up of 54.3 months, the nicotinamide group exhibited a median PFS of 12.7 months [95% confidence interval (CI), 10.4-18.3], while the placebo group had a PFS of 10.9 months (9.0-13.2; P = 0.2). The median OS was similar in the two groups (31.0 months with nicotinamide vs. 29.4 months with placebo; P = 0.2). Notably, subgroup analyses revealed a significant reduction in mortality risk for females (P = 0.01) and never-smokers (P = 0.03) treated with nicotinamide. CONCLUSIONS The addition of nicotinamide with EGFR-TKIs demonstrated potential improvements in PFS and OS, with notable survival benefits for female patients and those who had never smoked (ClinicalTrials.gov Identifier: NCT02416739).
Collapse
Affiliation(s)
- Hyung-Joo Oh
- Department of Internal Medicine, Chonnam National University Medical School, and CNU Hwasun Hospital, Hwasun, Jeonnam, South Korea
| | - Suk-Chul Bae
- Department of Biochemistry, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - In-Jae Oh
- Department of Internal Medicine, Chonnam National University Medical School, and CNU Hwasun Hospital, Hwasun, Jeonnam, South Korea
| | - Cheol-Kyu Park
- Department of Internal Medicine, Chonnam National University Medical School, and CNU Hwasun Hospital, Hwasun, Jeonnam, South Korea
| | - Kyoung-Mi Jung
- Department of Biochemistry, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - Da-Mi Kim
- Department of Biochemistry, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - Jung-Won Lee
- Department of Biochemistry, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - Chang Kyun Kang
- College of Pharmacy, Chungbuk National University, Cheongju, South Korea
| | - Il Yeong Park
- College of Pharmacy, Chungbuk National University, Cheongju, South Korea
| | - Young-Chul Kim
- Department of Internal Medicine, Chonnam National University Medical School, and CNU Hwasun Hospital, Hwasun, Jeonnam, South Korea
| |
Collapse
|
14
|
Betsinger CN, Justice JL, Tyl MD, Edgar JE, Budayeva HG, Abu YF, Cristea IM. Sirtuin 2 promotes human cytomegalovirus replication by regulating cell cycle progression. mSystems 2023; 8:e0051023. [PMID: 37916830 PMCID: PMC10734535 DOI: 10.1128/msystems.00510-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/28/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE This study expands the growing understanding that protein acetylation is a highly regulated molecular toggle of protein function in both host anti-viral defense and viral replication. We describe a pro-viral role for the human enzyme SIRT2, showing that its deacetylase activity supports HCMV replication. By integrating quantitative proteomics, flow cytometry cell cycle assays, microscopy, and functional virology assays, we investigate the temporality of SIRT2 functions and substrates. We identify a pro-viral role for the SIRT2 deacetylase activity via regulation of CDK2 K6 acetylation and the G1-S cell cycle transition. These findings highlight a link between viral infection, protein acetylation, and cell cycle progression.
Collapse
Affiliation(s)
- Cora N. Betsinger
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, USA
| | - Joshua L. Justice
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, USA
| | - Matthew D. Tyl
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, USA
| | - Julia E. Edgar
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, USA
| | - Hanna G. Budayeva
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, USA
| | - Yaa F. Abu
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, USA
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, USA
| |
Collapse
|
15
|
Santos L, Benitez-Rosendo A, Bresque M, Camacho-Pereira J, Calliari A, Escande C. Sirtuins: The NAD +-Dependent Multifaceted Modulators of Inflammation. Antioxid Redox Signal 2023; 39:1185-1208. [PMID: 37767625 DOI: 10.1089/ars.2023.0295] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Significance: Sirtuins are NAD+-dependent histone deacetylases regulating important processes in cellular biology such as inflammation, metabolism, oxidative stress, and apoptosis. Recent Advances: Despite initially being discovered to regulate transcription and life span via histone deacetylase activities, emerging data continually uncover new targets and propose additional roles. Due to the outstanding importance of the sirtuins in the control of the inflammatory response, their roles in the pathogenesis of several inflammatory-based diseases have become an area of intense research. Although sirtuins have been traditionally regarded as anti-inflammatory players, several recent findings suggest that their role in inflammation is complex and that in some cases sirtuins can indeed promote inflammation. Critical Issues: In this article, we provide an update on the latest findings concerning the new mechanisms of action and concepts about the role of sirtuins during inflammation. We focus on the impact that inflammatory-based processes exert on the liver, adipose tissue, and nervous system as well as on macrophage function and activation. Also, we discuss available data pointing to the dual role that, in particular contexts, sirtuins may have on inflammation control. Future Directions: Since the knowledge of sirtuin impact on metabolism is continually expanding, new venues of research arise. Besides become being regarded as candidates of therapeutic targets, posttranscriptional control of sirtuin expression by means of microRNAs challenges our traditional concepts of sirtuin regulation; importantly, the emerging role of NAD+ metabolism in aging and longevity has added a new dimension to the interest in sirtuin function. Antioxid. Redox Signal. 39, 1185-1208.
Collapse
Affiliation(s)
- Leonardo Santos
- Laboratory of Metabolic Diseases and Aging, INDICYO Program, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Andrés Benitez-Rosendo
- Laboratory of Metabolic Diseases and Aging, INDICYO Program, Institut Pasteur Montevideo, Montevideo, Uruguay
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, Florida, USA
- Department of Biosciences, Facultad de Veterinaria, Universidad de la República (Udelar), Montevideo, Uruguay
| | - Mariana Bresque
- Laboratory of Metabolic Diseases and Aging, INDICYO Program, Institut Pasteur Montevideo, Montevideo, Uruguay
- Department of Neurology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Juliana Camacho-Pereira
- Laboratory of Bioenergetics and Mitochondrial Physiology, Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aldo Calliari
- Laboratory of Metabolic Diseases and Aging, INDICYO Program, Institut Pasteur Montevideo, Montevideo, Uruguay
- Department of Biosciences, Facultad de Veterinaria, Universidad de la República (Udelar), Montevideo, Uruguay
| | - Carlos Escande
- Laboratory of Metabolic Diseases and Aging, INDICYO Program, Institut Pasteur Montevideo, Montevideo, Uruguay
| |
Collapse
|
16
|
Emmons MF, Bennett RL, Riva A, Gupta K, Carvalho LADC, Zhang C, Macaulay R, Dupéré-Richér D, Fang B, Seto E, Koomen JM, Li J, Chen YA, Forsyth PA, Licht JD, Smalley KSM. HDAC8-mediated inhibition of EP300 drives a transcriptional state that increases melanoma brain metastasis. Nat Commun 2023; 14:7759. [PMID: 38030596 PMCID: PMC10686983 DOI: 10.1038/s41467-023-43519-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/13/2023] [Indexed: 12/01/2023] Open
Abstract
Melanomas can adopt multiple transcriptional states. Little is known about the epigenetic drivers of these cell states, limiting our ability to regulate melanoma heterogeneity. Here, we identify stress-induced HDAC8 activity as driving melanoma brain metastasis development. Exposure of melanocytes and melanoma cells to multiple stresses increases HDAC8 activation leading to a neural crest-stem cell transcriptional state and an amoeboid, invasive phenotype that increases seeding to the brain. Using ATAC-Seq and ChIP-Seq we show that increased HDAC8 activity alters chromatin structure by increasing H3K27ac and enhancing accessibility at c-Jun binding sites. Functionally, HDAC8 deacetylates the histone acetyltransferase EP300, causing its enzymatic inactivation. This, in turn, increases binding of EP300 to Jun-transcriptional sites and decreases binding to MITF-transcriptional sites. Inhibition of EP300 increases melanoma cell invasion, resistance to stress and increases melanoma brain metastasis development. HDAC8 is identified as a mediator of transcriptional co-factor inactivation and chromatin accessibility that drives brain metastasis.
Collapse
Affiliation(s)
- Michael F Emmons
- Department of Tumor Biology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Richard L Bennett
- UF Health Cancer Center, 2033 Mowry Road, University of Florida, Gainesville, FL, 32610, USA
| | - Alberto Riva
- Bioinformatics Core, Interdisciplinary Center for Biotechnology Research, University of Florida, 2033 Mowry Road, Gainesville, FL, 32610, USA
| | - Kanchan Gupta
- UF Health Cancer Center, 2033 Mowry Road, University of Florida, Gainesville, FL, 32610, USA
| | | | - Chao Zhang
- Department of Tumor Biology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Robert Macaulay
- Department of Neuro-Oncology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Daphne Dupéré-Richér
- UF Health Cancer Center, 2033 Mowry Road, University of Florida, Gainesville, FL, 32610, USA
| | - Bin Fang
- Proteomics & Metabolomics Core, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Edward Seto
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, George Washington Cancer Center, George Washington University, 2300 Eye Street, Washington, DC, 20037, USA
| | - John M Koomen
- Department of Molecular Oncology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Jiannong Li
- Department of Bioinformatics and Biostatistics, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Y Ann Chen
- Department of Bioinformatics and Biostatistics, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Peter A Forsyth
- Department of Neuro-Oncology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Jonathan D Licht
- UF Health Cancer Center, 2033 Mowry Road, University of Florida, Gainesville, FL, 32610, USA
| | - Keiran S M Smalley
- Department of Tumor Biology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA.
- Department of Cutaneous Oncology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA.
| |
Collapse
|
17
|
Filon M, Yang B, Purohit TA, Schehr J, Singh A, Bigarella M, Lewis P, Denu J, Lang J, Jarrard DF. Development of a multiplex assay to assess activated p300/CBP in circulating prostate tumor cells. Oncotarget 2023; 14:738-746. [PMID: 37477521 PMCID: PMC10360924 DOI: 10.18632/oncotarget.28477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023] Open
Abstract
Reduced SIRT2 deacetylation and increased p300 acetylation activity leads to a concerted mechanism of hyperacetylation at specific histone lysine sites (H3K9, H3K14, and H3K18) in castration-resistant prostate cancer (CRPC). We examined whether circulating tumor cells (CTCs) identify patients with altered p300/CBP acetylation. CTCs were isolated from 13 advanced PC patients using Exclusion-based Sample Preparation (ESP) technology. Bound cells underwent immunofluorescent staining for histone modifying enzymes (HMEs) of interest and image capture with NIS-Elements software. Using the cBioPortal PCF/SU2C dataset, the response of CRPC to androgen receptor signaling inhibitors (ARSI) was analyzed in 50 subjects. Staining optimization and specificity revealed clear expression of acetyl-p300, acetyl-H3K18, and SIRT2 on CTCs (CK positive, CD45 negative cells). Exposure to A-485, a selective p300/CBP catalytic inhibitor, reduced p300 and H3K18 acetylation. In CRPC patients, a-p300 strongly correlated with its target acetylated H3k18 (Pearson's R = 0.61), and SIRT2 expression showed robust negative correlation with a-H3k18 (R = -0.60). A subgroup of CRPC patients (6/11; 55%) demonstrated consistent upregulation of acetylation based on these markers. To examine the clinical impact of upregulation of the CBP/p300 axis, CRPC patients with reduced deacetylase SIRT2 expression demonstrate shorter response times to ARSI therapy (5.9 vs. 12 mo; p = 0.03). A subset of CRPC patients demonstrate increased p300/CBP activity based on a novel CTC biomarker assay. With further development, this biomarker suite may be used to identify candidates for CBP/p300 acetylation inhibitors in clinical development.
Collapse
Affiliation(s)
- Mikolaj Filon
- Department of Urology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Bing Yang
- Department of Urology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Tanaya A. Purohit
- Department of Urology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Jennifer Schehr
- Department of Hematology/Oncology, University of Wisconsin, Madison, WI 53705, USA
| | - Anupama Singh
- Department of Hematology/Oncology, University of Wisconsin, Madison, WI 53705, USA
| | - Marcelo Bigarella
- Department of Urology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Peter Lewis
- Biomolecular Chemistry, University of Wisconsin, Madison, WI 53705, USA
| | - John Denu
- Biomolecular Chemistry, University of Wisconsin, Madison, WI 53705, USA
| | - Joshua Lang
- Department of Hematology/Oncology, University of Wisconsin, Madison, WI 53705, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53705, USA
| | - David F. Jarrard
- Department of Urology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
18
|
Lu W, Ji H, Wu D. SIRT2 plays complex roles in neuroinflammation neuroimmunology-associated disorders. Front Immunol 2023; 14:1174180. [PMID: 37215138 PMCID: PMC10196137 DOI: 10.3389/fimmu.2023.1174180] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Neuroinflammation and neuroimmunology-associated disorders, including ischemic stroke and neurodegenerative disease, commonly cause severe neurologic function deficits, including bradypragia, hemiplegia, aphasia, and cognitive impairment, and the pathological mechanism is not completely clear. SIRT2, an NAD+-dependent deacetylase predominantly localized in the cytoplasm, was proven to play an important and paradoxical role in regulating ischemic stroke and neurodegenerative disease. This review summarizes the comprehensive mechanism of the crucial pathological functions of SIRT2 in apoptosis, necroptosis, autophagy, neuroinflammation, and immune response. Elaborating on the mechanism by which SIRT2 participates in neuroinflammation and neuroimmunology-associated disorders is beneficial to discover novel effective drugs for diseases, varying from vascular disorders to neurodegenerative diseases.
Collapse
|
19
|
Vlasevska S, Garcia-Ibanez L, Duval R, Holmes A, Jahan R, Cai B, Kim A, Mo T, Basso K, Soni R, Bhagat G, Dalla-Favera R, Pasqualucci L. KMT2D acetylation by CREBBP reveals a cooperative functional interaction at enhancers in normal and malignant germinal center B cells. Proc Natl Acad Sci U S A 2023; 120:e2218330120. [PMID: 36893259 PMCID: PMC10089214 DOI: 10.1073/pnas.2218330120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/26/2023] [Indexed: 03/11/2023] Open
Abstract
Heterozygous inactivating mutations of the KMT2D methyltransferase and the CREBBP acetyltransferase are among the most common genetic alterations in B cell lymphoma and co-occur in 40 to 60% of follicular lymphoma (FL) and 30% of EZB/C3 diffuse large B cell lymphoma (DLBCL) cases, suggesting they may be coselected. Here, we show that combined germinal center (GC)-specific haploinsufficiency of Crebbp and Kmt2d synergizes in vivo to promote the expansion of abnormally polarized GCs, a common preneoplastic event. These enzymes form a biochemical complex on select enhancers/superenhancers that are critical for the delivery of immune signals in the GC light zone and are only corrupted upon dual Crebbp/Kmt2d loss, both in mouse GC B cells and in human DLBCL. Moreover, CREBBP directly acetylates KMT2D in GC-derived B cells, and, consistently, its inactivation by FL/DLBCL-associated mutations abrogates its ability to catalyze KMT2D acetylation. Genetic and pharmacologic loss of CREBBP and the consequent decrease in KMT2D acetylation lead to reduced levels of H3K4me1, supporting a role for this posttranslational modification in modulating KMT2D activity. Our data identify a direct biochemical and functional interaction between CREBBP and KMT2D in the GC, with implications for their role as tumor suppressors in FL/DLBCL and for the development of precision medicine approaches targeting enhancer defects induced by their combined loss.
Collapse
Affiliation(s)
- Sofija Vlasevska
- Institute for Cancer Genetics, Columbia University, New York, NY10032
| | | | - Romain Duval
- Institute for Cancer Genetics, Columbia University, New York, NY10032
| | - Antony B. Holmes
- Institute for Cancer Genetics, Columbia University, New York, NY10032
| | - Rahat Jahan
- Institute for Cancer Genetics, Columbia University, New York, NY10032
| | - Bowen Cai
- Institute for Cancer Genetics, Columbia University, New York, NY10032
| | - Andrew Kim
- Institute for Cancer Genetics, Columbia University, New York, NY10032
| | - Tongwei Mo
- Institute for Cancer Genetics, Columbia University, New York, NY10032
| | - Katia Basso
- Institute for Cancer Genetics, Columbia University, New York, NY10032
- Department of Pathology and Cell Biology, Columbia University, New York, NY10032
| | - Rajesh K. Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Columbia University, New York, NY10032
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY10032
| | - Govind Bhagat
- Department of Pathology and Cell Biology, Columbia University, New York, NY10032
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY10032
| | - Riccardo Dalla-Favera
- Institute for Cancer Genetics, Columbia University, New York, NY10032
- Department of Pathology and Cell Biology, Columbia University, New York, NY10032
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY10032
- Department of Genetics and Development, Columbia University, New York, NY10032
- Department of Microbiology and Immunology, Columbia University, New York, NY10032
| | - Laura Pasqualucci
- Institute for Cancer Genetics, Columbia University, New York, NY10032
- Department of Pathology and Cell Biology, Columbia University, New York, NY10032
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY10032
| |
Collapse
|
20
|
Bae EJ, Park BH. Multiple Roles of Sirtuin 6 in Adipose Tissue Inflammation. Diabetes Metab J 2023; 47:164-172. [PMID: 36631993 PMCID: PMC10040615 DOI: 10.4093/dmj.2022.0270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/03/2022] [Indexed: 01/13/2023] Open
Abstract
Adipose tissue (AT) inflammation is strongly associated with obesity-induced insulin resistance. When subjected to metabolic stress, adipocytes become inflamed and secrete a plethora of cytokines and chemokines, which recruit circulating immune cells to AT. Although sirtuin 6 (Sirt6) is known to control genomic stabilization, aging, and cellular metabolism, it is now understood to also play a pivotal role in the regulation of AT inflammation. Sirt6 protein levels are reduced in the AT of obese humans and animals and increased by weight loss. In this review, we summarize the potential mechanism of AT inflammation caused by impaired action of Sirt6 from the immune cells' point of view. We first describe the properties and functions of immune cells in obese AT, with an emphasis on discrete macrophage subpopulations which are central to AT inflammation. We then highlight data that links Sirt6 to functional phenotypes of AT inflammation. Importantly, we discuss in detail the effects of Sirt6 deficiency in adipocytes, macrophages, and eosinophils on insulin resistance or AT browning. In our closing perspectives, we discuss emerging issues in this field that require further investigation.
Collapse
Affiliation(s)
- Eun Ju Bae
- School of Pharmacy, Chonbuk National University, Jeonju, Korea
- Corresponding authors: Eun Ju Bae https://orcid.org/0000-0003-1693-8290 School of Pharmacy, Chonbuk National University, 20 Geonji-ro, Deokjin-gu, Jeonju 54907, Korea E-mail:
| | - Byung-Hyun Park
- Department of Biochemistry and Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju, Korea
- Byung-Hyun Park https://orcid.org/0000-0003-3768-4285 Department of Biochemistry and Research Institute for Endocrine Sciences, Chonbuk National University Medical School, 20 Geonji-ro, Deokjin-gu, Jeonju 54907, Korea E-mail:
| |
Collapse
|
21
|
Beyond metabolic waste: lysine lactylation and its potential roles in cancer progression and cell fate determination. Cell Oncol (Dordr) 2023; 46:465-480. [PMID: 36656507 DOI: 10.1007/s13402-023-00775-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/21/2022] [Accepted: 11/26/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Lactate is an important metabolite derived from glycolysis under physiological and pathological conditions. The Warburg effect reveals the vital role of lactate in cancer progression. Numerous studies have reported crucial roles for lactate in cancer progression and cell fate determination. Lactylation, a novel posttranslational modification (PTM), has provided a new opportunity to investigate metabolic epigenetic regulation, and studies of this process have been initiated in a wide range of cancer cells, cancer-associated immune cells, and embryonic stem cells. CONCLUSION Lactylation is a novel and interesting mechanism of lactate metabolism linked to metabolic rewiring and epigenetic remodeling. It is a potential and hopeful target for cancer therapy. Here, we summarize the discovery of lactylation, the mechanisms of site modification, and progress in research on nonhistone lactylation. We focus on the potential roles of lactylation in cancer progression and cell fate determination and the possible therapeutic strategies for targeting lysine lactylation. Finally, we suggest some future research topics on lactylation to inspire some interesting ideas.
Collapse
|
22
|
Ibrahim Z, Wang T, Destaing O, Salvi N, Hoghoughi N, Chabert C, Rusu A, Gao J, Feletto L, Reynoird N, Schalch T, Zhao Y, Blackledge M, Khochbin S, Panne D. Structural insights into p300 regulation and acetylation-dependent genome organisation. Nat Commun 2022; 13:7759. [PMID: 36522330 PMCID: PMC9755262 DOI: 10.1038/s41467-022-35375-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Histone modifications are deposited by chromatin modifying enzymes and read out by proteins that recognize the modified state. BRD4-NUT is an oncogenic fusion protein of the acetyl lysine reader BRD4 that binds to the acetylase p300 and enables formation of long-range intra- and interchromosomal interactions. We here examine how acetylation reading and writing enable formation of such interactions. We show that NUT contains an acidic transcriptional activation domain that binds to the TAZ2 domain of p300. We use NMR to investigate the structure of the complex and found that the TAZ2 domain has an autoinhibitory role for p300. NUT-TAZ2 interaction or mutations found in cancer that interfere with autoinhibition by TAZ2 allosterically activate p300. p300 activation results in a self-organizing, acetylation-dependent feed-forward reaction that enables long-range interactions by bromodomain multivalent acetyl-lysine binding. We discuss the implications for chromatin organisation, gene regulation and dysregulation in disease.
Collapse
Affiliation(s)
- Ziad Ibrahim
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Tao Wang
- CNRS UMR 5309, INSERM U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Olivier Destaing
- CNRS UMR 5309, INSERM U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Nicola Salvi
- Institut de Biologie Structurale, CNRS, CEA, UGA, Grenoble, France
| | - Naghmeh Hoghoughi
- CNRS UMR 5309, INSERM U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Clovis Chabert
- CNRS UMR 5309, INSERM U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Alexandra Rusu
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Jinjun Gao
- Ben May Department of Cancer Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Leonardo Feletto
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Nicolas Reynoird
- CNRS UMR 5309, INSERM U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Thomas Schalch
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Yingming Zhao
- Ben May Department of Cancer Research, The University of Chicago, Chicago, IL, 60637, USA
| | | | - Saadi Khochbin
- CNRS UMR 5309, INSERM U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Daniel Panne
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK.
| |
Collapse
|
23
|
Hai R, Yang D, Zheng F, Wang W, Han X, Bode AM, Luo X. The emerging roles of HDACs and their therapeutic implications in cancer. Eur J Pharmacol 2022; 931:175216. [PMID: 35988787 DOI: 10.1016/j.ejphar.2022.175216] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/03/2022] [Accepted: 08/12/2022] [Indexed: 12/25/2022]
Abstract
Deregulation of protein post-translational modifications is intensively involved in the etiology of diseases, including degenerative diseases, inflammatory injuries, and cancers. Acetylation is one of the most common post-translational modifications of proteins, and the acetylation levels are controlled by two mutually antagonistic enzyme families, histone acetyl transferases (HATs) and histone deacetylases (HDACs). HATs loosen the chromatin structure by neutralizing the positive charge of lysine residues of histones; whereas HDACs deacetylate certain histones, thus inhibiting gene transcription. Compared with HATs, HDACs have been more intensively studied, particularly regarding their clinical significance. HDACs extensively participate in the regulation of proliferation, migration, angiogenesis, immune escape, and therapeutic resistance of cancer cells, thus emerging as critical targets for clinical cancer therapy. Compared to HATs, inhibitors of HDAC have been clinically used for cancer treatment. Here, we enumerate and integratethe mechanisms of HDAC family members in tumorigenesis and cancer progression, and address the new and exciting therapeutic implications of single or combined HDAC inhibitor (HDACi) treatment.
Collapse
Affiliation(s)
- Rihan Hai
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China
| | - Deyi Yang
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China
| | - Feifei Zheng
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China
| | - Weiqin Wang
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China
| | - Xing Han
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China; Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China; Key Laboratory of Biological Nanotechnology of National Health Commission, Central South University, Changsha, Hunan, 410078, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410078, China.
| |
Collapse
|
24
|
Chopra A, Willmore WG, Biggar KK. Insights into a Cancer-Target Demethylase: Substrate Prediction through Systematic Specificity Analysis for KDM3A. Biomolecules 2022; 12:biom12050641. [PMID: 35625569 PMCID: PMC9139010 DOI: 10.3390/biom12050641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 02/07/2023] Open
Abstract
Jumonji C (JmjC) lysine demethylases (KDMs) catalyze the removal of methyl (-CH3) groups from modified lysyl residues. Several JmjC KDMs promote cancerous properties and these findings have primarily been in relation to histone demethylation. However, the biological roles of these enzymes are increasingly being shown to also be attributed to non-histone demethylation. Notably, KDM3A has become relevant to tumour progression due to recent findings of this enzyme's role in promoting cancerous phenotypes, such as enhanced glucose consumption and upregulated mechanisms of chemoresistance. To aid in uncovering the mechanism(s) by which KDM3A imparts its oncogenic function(s), this study aimed to unravel KDM3A substrate specificity to predict high-confidence substrates. Firstly, substrate specificity was assessed by monitoring activity towards a peptide permutation library of histone H3 di-methylated at lysine-9 (i.e., H3K9me2). From this, the KDM3A recognition motif was established and used to define a set of high-confidence predictions of demethylation sites from within the KDM3A interactome. Notably, this led to the identification of three in vitro substrates (MLL1, p300, and KDM6B), which are relevant to the field of cancer progression. This preliminary data may be exploited in further tissue culture experiments to decipher the avenues by which KDM3A imparts cancerous phenotypes.
Collapse
Affiliation(s)
- Anand Chopra
- Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada;
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - William G. Willmore
- Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada;
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
- Correspondence: (W.G.W.); (K.K.B.)
| | - Kyle K. Biggar
- Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada;
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
- Correspondence: (W.G.W.); (K.K.B.)
| |
Collapse
|
25
|
Quantitative proteomic analysis of the lysine acetylome reveals diverse SIRT2 substrates. Sci Rep 2022; 12:3822. [PMID: 35264593 PMCID: PMC8907344 DOI: 10.1038/s41598-022-06793-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/02/2022] [Indexed: 12/24/2022] Open
Abstract
Sirtuin 2 (SIRT2) is a NAD+-dependent deacetylase, which regulates multiple biological processes, including genome maintenance, aging, tumor suppression, and metabolism. While a number of substrates involved in these processes have been identified, the global landscape of the SIRT2 acetylome remains unclear. Using a label-free quantitative proteomic approach following enrichment for acetylated peptides from SIRT2-depleted and SIRT2-overexpressing HCT116 human colorectal cancer cells, we identified a total of 2,846 unique acetylation sites from 1414 proteins. 896 sites from 610 proteins showed a > 1.5-fold increase in acetylation with SIRT2 knockdown, and 509 sites from 361 proteins showed a > 1.5-fold decrease in acetylation with SIRT2 overexpression, with 184 proteins meeting both criteria. Sequence motif analyses identified several site-specific consensus sequence motifs preferentially recognized by SIRT2, most commonly KxxxxK(ac). Gene Ontology, KEGG, and MetaCore pathway analyses identified SIRT2 substrates involved in diverse pathways, including carbon metabolism, glycolysis, spliceosome, RNA transport, RNA binding, transcription, DNA damage response, the cell cycle, and colorectal cancer. Collectively, our findings expand on the number of known acetylation sites, substrates, and cellular pathways targeted by SIRT2, providing support for SIRT2 in regulating networks of proteins in diverse pathways and opening new avenues of investigation into SIRT2 function.
Collapse
|
26
|
Bär J, Popp Y, Bucher M, Mikhaylova M. Direct and indirect effects of tubulin post-translational modifications on microtubule stability: Insights and regulations. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119241. [PMID: 35181405 DOI: 10.1016/j.bbamcr.2022.119241] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 12/17/2022]
Abstract
Microtubules (MTs) mediate various cellular functions such as structural support, chromosome segregation, and intracellular transport. To achieve this, the pivotal properties of MTs have to be changeable and tightly controlled. This is enabled by a high variety of tubulin posttranslational modifications, which influence MT properties directly, via altering the MT lattice structurally, or indirectly by changing MT interaction partners. Here, the distinction between these direct and indirect effects of MT PTMs are exemplified by acetylation of the luminal α-tubulin K40 resulting in decreased rigidity of MTs, and by MT detyrosination which decreases interaction with depolymerizing proteins, thus causing more stable MTs. We discuss how these PTMs are reversed and regulated, e.g. on the level of enzyme transcription, localization, and activity via various signalling pathways including the conventional calcium-dependent proteases calpains and how advances in microscopy techniques and development of live-sensors facilitate the understanding of MT PTM interaction and effects.
Collapse
Affiliation(s)
- Julia Bär
- RG Optobiology, Institute of Biology, Humboldt Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany; Guest Group "Neuronal Protein Transport", Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany.
| | - Yannes Popp
- RG Optobiology, Institute of Biology, Humboldt Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany; Guest Group "Neuronal Protein Transport", Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany.
| | - Michael Bucher
- RG Optobiology, Institute of Biology, Humboldt Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany; Guest Group "Neuronal Protein Transport", Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany.
| | - Marina Mikhaylova
- RG Optobiology, Institute of Biology, Humboldt Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany; Guest Group "Neuronal Protein Transport", Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany.
| |
Collapse
|
27
|
Varga JK, Diffley K, Welker Leng KR, Fierke CA, Schueler-Furman O. Structure-based prediction of HDAC6 substrates validated by enzymatic assay reveals determinants of promiscuity and detects new potential substrates. Sci Rep 2022; 12:1788. [PMID: 35110592 PMCID: PMC8810773 DOI: 10.1038/s41598-022-05681-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/17/2022] [Indexed: 01/25/2023] Open
Abstract
Histone deacetylases play important biological roles well beyond the deacetylation of histone tails. In particular, HDAC6 is involved in multiple cellular processes such as apoptosis, cytoskeleton reorganization, and protein folding, affecting substrates such as ɑ-tubulin, Hsp90 and cortactin proteins. We have applied a biochemical enzymatic assay to measure the activity of HDAC6 on a set of candidate unlabeled peptides. These served for the calibration of a structure-based substrate prediction protocol, Rosetta FlexPepBind, previously used for the successful substrate prediction of HDAC8 and other enzymes. A proteome-wide screen of reported acetylation sites using our calibrated protocol together with the enzymatic assay provide new peptide substrates and avenues to novel potential functional regulatory roles of this promiscuous, multi-faceted enzyme. In particular, we propose novel regulatory roles of HDAC6 in tumorigenesis and cancer cell survival via the regulation of EGFR/Akt pathway activation. The calibration process and comparison of the results between HDAC6 and HDAC8 highlight structural differences that explain the established promiscuity of HDAC6.
Collapse
Affiliation(s)
- Julia K Varga
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Faculty of Medicine, POB 12272, 9112102, Jerusalem, Israel
| | - Kelsey Diffley
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI, 48109, USA
| | - Katherine R Welker Leng
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI, 48109, USA
| | - Carol A Fierke
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI, 48109, USA
- Department of Biochemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| | - Ora Schueler-Furman
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Faculty of Medicine, POB 12272, 9112102, Jerusalem, Israel.
| |
Collapse
|
28
|
Krishnan RH, Sadu L, Das UR, Satishkumar S, Pranav Adithya S, Saranya I, Akshaya R, Selvamurugan N. Role of p300, a histone acetyltransferase enzyme, in osteoblast differentiation. Differentiation 2022; 124:43-51. [DOI: 10.1016/j.diff.2022.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 12/21/2022]
|
29
|
Mendoza M, Egervari G, Sidoli S, Donahue G, Alexander DC, Sen P, Garcia BA, Berger SL. Enzymatic transfer of acetate on histones from lysine reservoir sites to lysine activating sites. SCIENCE ADVANCES 2022; 8:eabj5688. [PMID: 35061542 PMCID: PMC8782443 DOI: 10.1126/sciadv.abj5688] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/29/2021] [Indexed: 05/04/2023]
Abstract
Histone acetylation is governed by nuclear acetyl-CoA pools generated, in part, from local acetate by metabolic enzyme acetyl-CoA synthetase 2 (ACSS2). We hypothesize that during gene activation, a local transfer of intact acetate occurs via sequential action of epigenetic and metabolic enzymes. Using stable isotope labeling, we detect transfer between histone acetylation sites both in vitro using purified mammalian enzymes and in vivo using quiescence exit in Saccharomyces cerevisiae as a change-of-state model. We show that Acs2, the yeast ortholog of ACSS2, is recruited to chromatin during quiescence exit and observe dynamic histone acetylation changes proximal to Acs2 peaks. We find that Acs2 is preferentially associated with the most up-regulated genes, suggesting that acetyl group transfer plays an important role in gene activation. Overall, our data reveal direct transfer of acetate between histone lysine residues to facilitate rapid transcriptional induction, an exchange that may be critical during changes in nutrient availability.
Collapse
Affiliation(s)
- Mariel Mendoza
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Gabor Egervari
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Simone Sidoli
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Greg Donahue
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Desi C. Alexander
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Payel Sen
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin A. Garcia
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Shelley L. Berger
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
30
|
Vogelmann A, Schiedel M, Wössner N, Merz A, Herp D, Hammelmann S, Colcerasa A, Komaniecki G, Hong JY, Sum M, Metzger E, Neuwirt E, Zhang L, Einsle O, Groß O, Schüle R, Lin H, Sippl W, Jung M. Development of a NanoBRET assay to validate dual inhibitors of Sirt2-mediated lysine deacetylation and defatty-acylation that block prostate cancer cell migration. RSC Chem Biol 2022; 3:468-485. [PMID: 35441145 PMCID: PMC8985159 DOI: 10.1039/d1cb00244a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/28/2022] [Indexed: 11/21/2022] Open
Abstract
Sirtuin2 (Sirt2) with its NAD+-dependent deacetylase and defatty-acylase activities plays a central role in the regulation of specific cellular functions. Dysregulation of Sirt2 activity has been associated with the pathogenesis of many diseases, thus making Sirt2 a promising target for pharmaceutical intervention. Herein, we present new high affinity Sirt2 selective Sirtuin-Rearranging Ligands (SirReals) that inhibit both Sirt2-dependent deacetylation and defatty-acylation in vitro and in cells. We show that simultaneous inhibition of both Sirt2 activities results in strongly reduced levels of the oncoprotein c-Myc and an inhibition of cancer cell migration. Furthermore, we describe the development of a NanoBRET-based assay for Sirt2, thereby providing a method to study cellular target engagement for Sirt2 in a straightforward and accurately quantifiable manner. Applying this assay, we could confirm cellular Sirt2 binding of our new Sirt2 inhibitors and correlate their anticancer effects with their cellular target engagement. Sirt2 inhibitors that show simultaneous inhibition of Sirt2 deacetylase and defatty-acylase activity block prostate cancer cell migration and their target engagement is shown by a newly developed NanoBRET assay.![]()
Collapse
Affiliation(s)
- A Vogelmann
- Institute of Pharmaceutical Sciences, University of Freiburg Albertstraße 25 79104 Freiburg Germany
| | - M Schiedel
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg Nikolaus-Fiebiger-Straße 10 91058 Erlangen Germany
| | - N Wössner
- Institute of Pharmaceutical Sciences, University of Freiburg Albertstraße 25 79104 Freiburg Germany
| | - A Merz
- Institute of Pharmaceutical Sciences, University of Freiburg Albertstraße 25 79104 Freiburg Germany
| | - D Herp
- Institute of Pharmaceutical Sciences, University of Freiburg Albertstraße 25 79104 Freiburg Germany
| | - S Hammelmann
- Institute of Pharmaceutical Sciences, University of Freiburg Albertstraße 25 79104 Freiburg Germany
| | - A Colcerasa
- Institute of Pharmaceutical Sciences, University of Freiburg Albertstraße 25 79104 Freiburg Germany
| | - G Komaniecki
- Department of Chemistry and Chemical Biology, Cornell University Ithaca NY 14853 USA
| | - J Y Hong
- Department of Chemistry and Chemical Biology, Cornell University Ithaca NY 14853 USA
| | - M Sum
- Department of Urology and Center for Clinical Research, University of Freiburg Medical Center Breisacher Strasse 66 79106 Freiburg Germany
| | - E Metzger
- Department of Urology and Center for Clinical Research, University of Freiburg Medical Center Breisacher Strasse 66 79106 Freiburg Germany
| | - E Neuwirt
- Institute of Neuropathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg 79106 Freiburg Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg Germany
- Faculty of Biology, University of Freiburg 79104 Freiburg Germany
| | - L Zhang
- Institute of Biochemistry, University of Freiburg Albertstraße 21 79104 Freiburg Germany
| | - O Einsle
- Institute of Biochemistry, University of Freiburg Albertstraße 21 79104 Freiburg Germany
| | - O Groß
- Institute of Neuropathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg 79106 Freiburg Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg 79106 Freiburg Germany
| | - R Schüle
- Department of Urology and Center for Clinical Research, University of Freiburg Medical Center Breisacher Strasse 66 79106 Freiburg Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg Germany
| | - H Lin
- Department of Chemistry and Chemical Biology, Cornell University Ithaca NY 14853 USA
- Howard Hughes Medical Institute; Department of Chemistry and Chemical Biology, Cornell University Ithaca NY 14853 USA
| | - W Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, University of Halle-Wittenberg Kurt-Mothes-Str. 3 06120 Halle Germany
| | - M Jung
- Institute of Pharmaceutical Sciences, University of Freiburg Albertstraße 25 79104 Freiburg Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg Germany
| |
Collapse
|
31
|
Ren YR, Ye YL, Feng Y, Xu TF, Shen Y, Liu J, Huang SL, Shen JH, Leng Y. SL010110, a lead compound, inhibits gluconeogenesis via SIRT2-p300-mediated PEPCK1 degradation and improves glucose homeostasis in diabetic mice. Acta Pharmacol Sin 2021; 42:1834-1846. [PMID: 33574568 PMCID: PMC8563938 DOI: 10.1038/s41401-020-00609-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/29/2020] [Indexed: 12/25/2022]
Abstract
Suppression of excessive hepatic gluconeogenesis is an effective strategy for controlling hyperglycemia in type 2 diabetes (T2D). In the present study, we screened our compounds library to discover the active molecules inhibiting gluconeogenesis in primary mouse hepatocytes. We found that SL010110 (5-((4-allyl-2-methoxyphenoxy) methyl) furan-2-carboxylic acid) potently inhibited gluconeogenesis with 3 μM and 10 μM leading to a reduction of 45.5% and 67.5%, respectively. Moreover, SL010110 caused suppression of gluconeogenesis resulted from downregulating the protein level of phosphoenolpyruvate carboxykinase 1 (PEPCK1), but not from affecting the gene expressions of PEPCK, glucose-6-phosphatase, and fructose-1,6-bisphosphatase. Furthermore, SL010110 increased PEPCK1 acetylation, and promoted PEPCK1 ubiquitination and degradation. SL010110 activated p300 acetyltransferase activity in primary mouse hepatocytes. The enhanced PEPCK1 acetylation and suppressed gluconeogenesis caused by SL010110 were blocked by C646, a histone acetyltransferase p300 inhibitor, suggested that SL010110 inhibited gluconeogenesis by activating p300. SL010110 decreased NAD+/NADH ratio, inhibited SIRT2 activity, and further promoted p300 acetyltransferase activation and PEPCK1 acetylation. These effects were blocked by NMN, an NAD+ precursor, suggested that SL010110 inhibited gluconeogenesis by inhibiting SIRT2, activating p300, and subsequently promoting PEPCK1 acetylation. In type 2 diabetic ob/ob mice, single oral dose of SL010110 (100 mg/kg) suppressed gluconeogenesis accompanied by the suppressed hepatic SIRT2 activity, increased p300 activity, enhanced PEPCK1 acetylation and degradation. Chronic oral administration of SL010110 (15 or 50 mg/kg) significantly reduced the blood glucose levels in ob/ob and db/db mice. This study reveals that SL010110 is a lead compound with a distinct mechanism of suppressing gluconeogenesis via SIRT2-p300-mediated PEPCK1 degradation and potent anti-hyperglycemic activity for the treatment of T2D.
Collapse
Affiliation(s)
- Yu-Ran Ren
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang-Liang Ye
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ying Feng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ti-Fei Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yu Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jia Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Su-Ling Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Jian-Hua Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Ying Leng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
32
|
Taneja A, Ravi V, Hong JY, Lin H, Sundaresan NR. Emerging roles of Sirtuin 2 in cardiovascular diseases. FASEB J 2021; 35:e21841. [PMID: 34582046 DOI: 10.1096/fj.202100490r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/07/2021] [Accepted: 07/23/2021] [Indexed: 11/11/2022]
Abstract
Sirtuins are a family of NAD+ -dependent deacetylases implicated in a wide variety of age-associated pathologies, including cardiovascular disorders. Among the seven mammalian sirtuins, SIRT2 modulates various cellular processes through the deacetylation or deacylation of their target proteins. Notably, the levels of SIRT2 in the heart decline with age and other pathological conditions, leading to cardiovascular dysfunction. In the present review, we discuss the emerging roles of SIRT2 in cardiovascular dysfunction and heart failure associated with factors like age, hypertension, oxidative stress, and diabetes. We also discuss the potential of using inhibitors to study the unexplored role of SIRT2 in the heart. While SIRT2 undoubtedly plays a crucial role in the cardiovascular system, its functions are only beginning to be understood, making it an attractive candidate for further research in the field.
Collapse
Affiliation(s)
- Arushi Taneja
- Department of Microbiology and Cell Biology, Cardiovascular and Muscle Research Laboratory, Indian Institute of Science, Bengaluru, India
| | - Venkatraman Ravi
- Department of Microbiology and Cell Biology, Cardiovascular and Muscle Research Laboratory, Indian Institute of Science, Bengaluru, India
| | - Jun Young Hong
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.,Howard Hughes Medical Institute, Cornell University, Ithaca, NY, USA
| | - Nagalingam Ravi Sundaresan
- Department of Microbiology and Cell Biology, Cardiovascular and Muscle Research Laboratory, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
33
|
Zhang Y, Brown K, Yu Y, Ibrahim Z, Zandian M, Xuan H, Ingersoll S, Lee T, Ebmeier CC, Liu J, Panne D, Shi X, Ren X, Kutateladze TG. Nuclear condensates of p300 formed though the structured catalytic core can act as a storage pool of p300 with reduced HAT activity. Nat Commun 2021; 12:4618. [PMID: 34326347 PMCID: PMC8322156 DOI: 10.1038/s41467-021-24950-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/12/2021] [Indexed: 12/03/2022] Open
Abstract
The transcriptional co-activator and acetyltransferase p300 is required for fundamental cellular processes, including differentiation and growth. Here, we report that p300 forms phase separated condensates in the cell nucleus. The phase separation ability of p300 is regulated by autoacetylation and relies on its catalytic core components, including the histone acetyltransferase (HAT) domain, the autoinhibition loop, and bromodomain. p300 condensates sequester chromatin components, such as histone H3 tail and DNA, and are amplified through binding of p300 to the nucleosome. The catalytic HAT activity of p300 is decreased due to occlusion of the active site in the phase separated droplets, a large portion of which co-localizes with chromatin regions enriched in H3K27me3. Our findings suggest a model in which p300 condensates can act as a storage pool of the protein with reduced HAT activity, allowing p300 to be compartmentalized and concentrated at poised or repressed chromatin regions. The histone acetyltransferase p300 mostly localizes to active chromatin; however, some repressed genes marked with H3K27me3 are also bound by p300. Here the authors show p300 is capable of phase separation, which relies on its catalytic core, and that p300 catalytic activity is decreased in phase-separated droplets that co-localize with H3K27me3-marked chromatin.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kyle Brown
- Department of Chemistry, University of Colorado, Denver, CO, USA
| | - Yucong Yu
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Ziad Ibrahim
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, UK
| | - Mohamad Zandian
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Hongwen Xuan
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Steven Ingersoll
- Department of Chemistry, University of Colorado, Denver, CO, USA
| | - Thomas Lee
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | | | - Jiuyang Liu
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Daniel Panne
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, UK
| | - Xiaobing Shi
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Xiaojun Ren
- Department of Chemistry, University of Colorado, Denver, CO, USA
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
34
|
Akawa OB, Subair TI, Soremekun OS, Olotu FA, Soliman MES. Structural alterations in the catalytic core of hSIRT2 enzyme predict therapeutic benefits of Garcinia mangostana derivatives in Alzheimer's disease: molecular dynamics simulation study. RSC Adv 2021; 11:8003-8018. [PMID: 35423339 PMCID: PMC8695224 DOI: 10.1039/d0ra10459k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/03/2021] [Indexed: 12/15/2022] Open
Abstract
Recent studies have shown that inhibition of the hSIRT2 enzyme provides favorable effects in neurodegenerative diseases such as Alzheimer's disease. Prenylated xanthone phytochemicals including α-mangostin, β-mangostin and γ-mangostin obtained from Garcinia mangostana, a well-established tropical plant, have been shown experimentally to inhibit sirtuin enzymatic activity. However, the molecular mechanism of this sirtuin inhibition has not been reported. Using comprehensive integrated computational techniques, we provide molecular and timewise dynamical insights into the structural alterations capable of facilitating therapeutically beneficial effects of these phytochemicals at the catalytic core of the hSIRT2 enzyme. Findings revealed the enhanced conformational stability and compactness of the hSIRT2 catalytic core upon binding of γ-mangostin relative to the apoenzyme and better than α-mangostin and β-mangostin. Although thermodynamic calculations revealed favorable binding of all the phytochemicals to the hSIRT2 enzyme, the presence of only hydroxy functional groups on γ-mangostin facilitated the occurrence of additional hydrogen bonds involving Pro115, Phe119, Asn168 and His187 which are absent in α-mangostin- and β-mangostin-bound systems. Per-residue energy contributions showed that van der Waals and more importantly electrostatic interactions are involved in catalytic core stability with Phe96, Tyr104 and Phe235 notably contributing π-π stacking, π-π T shaped and π-sigma interactions. Cumulatively, our study revealed the structural alterations leading to inhibition of hSIRT2 catalysis and findings from this study could be significantly important for the future design and development of sirtuin inhibitors in the management of Alzheimer's disease.
Collapse
Affiliation(s)
- Oluwole B Akawa
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal Westville Campus Durban 4001 South Africa http://soliman.ukzn.ac.za +27 31 260 7872 +27 31 260 8048
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Afe Babalola University Ado Ekiti Nigeria
| | - Temitayo I Subair
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal Westville Campus Durban 4001 South Africa http://soliman.ukzn.ac.za +27 31 260 7872 +27 31 260 8048
| | - Opeyemi S Soremekun
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal Westville Campus Durban 4001 South Africa http://soliman.ukzn.ac.za +27 31 260 7872 +27 31 260 8048
| | - Fisayo A Olotu
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal Westville Campus Durban 4001 South Africa http://soliman.ukzn.ac.za +27 31 260 7872 +27 31 260 8048
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal Westville Campus Durban 4001 South Africa http://soliman.ukzn.ac.za +27 31 260 7872 +27 31 260 8048
| |
Collapse
|
35
|
Latorre-Muro P, Baeza J, Hurtado-Guerrero R, Hicks T, Delso I, Hernández-Ruiz C, Velázquez-Campoy A, Lawton AJ, Angulo J, Denu JM, Carrodeguas JA. Self-acetylation at the active site of phosphoenolpyruvate carboxykinase (PCK1) controls enzyme activity. J Biol Chem 2021; 296:100205. [PMID: 33334880 PMCID: PMC7948413 DOI: 10.1074/jbc.ra120.015103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 12/12/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022] Open
Abstract
Acetylation is known to regulate the activity of cytosolic phosphoenolpyruvate carboxykinase (PCK1), a key enzyme in gluconeogenesis, by promoting the reverse reaction of the enzyme (converting phosphoenolpyruvate to oxaloacetate). It is also known that the histone acetyltransferase p300 can induce PCK1 acetylation in cells, but whether that is a direct or indirect function was not known. Here we initially set out to determine whether p300 can acetylate directly PCK1 in vitro. We report that p300 weakly acetylates PCK1, but surprisingly, using several techniques including protein crystallization, mass spectrometry, isothermal titration calorimetry, saturation-transfer difference nuclear magnetic resonance and molecular docking, we found that PCK1 is also able to acetylate itself using acetyl-CoA independently of p300. This reaction yielded an acetylated recombinant PCK1 with a 3-fold decrease in kcat without changes in Km for all substrates. Acetylation stoichiometry was determined for 14 residues, including residues lining the active site. Structural and kinetic analyses determined that site-directed acetylation of K244, located inside the active site, altered this site and rendered the enzyme inactive. In addition, we found that acetyl-CoA binding to the active site is specific and metal dependent. Our findings provide direct evidence for acetyl-CoA binding and chemical reaction with the active site of PCK1 and suggest a newly discovered regulatory mechanism of PCK1 during metabolic stress.
Collapse
Affiliation(s)
- Pedro Latorre-Muro
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain.
| | - Josue Baeza
- Wisconsin Institute for Discovery and Department of Biomolecular Chemistry, School of Medicine and Public Health-Madison, Madison, Wisconsin, USA
| | - Ramon Hurtado-Guerrero
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain; Department of Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark; Laboratorio de Microscopías Avanzadas (LMA), University of Zaragoza, Zaragoza, Spain; Fundación ARAID, Zaragoza, Spain
| | - Thomas Hicks
- School of Pharmacy, University of East Anglia, Norwich, UK
| | - Ignacio Delso
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza, CSIC, Zaragoza, Spain
| | - Cristina Hernández-Ruiz
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain
| | - Adrian Velázquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain; Fundación ARAID, Zaragoza, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain; Biomedical Research Network Center in Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain; IIS Aragón, Zaragoza, Spain
| | - Alexis J Lawton
- Wisconsin Institute for Discovery and Department of Biomolecular Chemistry, School of Medicine and Public Health-Madison, Madison, Wisconsin, USA
| | - Jesús Angulo
- School of Pharmacy, University of East Anglia, Norwich, UK; Departamento de Química Orgánica, Universidad de Sevilla, Sevilla, Spain; Instituto de Investigaciones Químicas (CSIC-Universidad de Sevilla), Sevilla, Spain
| | - John M Denu
- Wisconsin Institute for Discovery and Department of Biomolecular Chemistry, School of Medicine and Public Health-Madison, Madison, Wisconsin, USA
| | - José A Carrodeguas
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain; IIS Aragón, Zaragoza, Spain.
| |
Collapse
|
36
|
Manjula R, Anuja K, Alcain FJ. SIRT1 and SIRT2 Activity Control in Neurodegenerative Diseases. Front Pharmacol 2021; 11:585821. [PMID: 33597872 PMCID: PMC7883599 DOI: 10.3389/fphar.2020.585821] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Sirtuins are NAD+ dependent histone deacetylases (HDAC) that play a pivotal role in neuroprotection and cellular senescence. SIRT1-7 are different homologs from sirtuins. They play a prominent role in many aspects of physiology and regulate crucial proteins. Modulation of sirtuins can thus be utilized as a therapeutic target for metabolic disorders. Neurological diseases have distinct clinical manifestations but are mainly age-associated and due to loss of protein homeostasis. Sirtuins mediate several life extension pathways and brain functions that may allow therapeutic intervention for age-related diseases. There is compelling evidence to support the fact that SIRT1 and SIRT2 are shuttled between the nucleus and cytoplasm and perform context-dependent functions in neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). In this review, we highlight the regulation of SIRT1 and SIRT2 in various neurological diseases. This study explores the various modulators that regulate the activity of SIRT1 and SIRT2, which may further assist in the treatment of neurodegenerative disease. Moreover, we analyze the structure and function of various small molecules that have potential significance in modulating sirtuins, as well as the technologies that advance the targeted therapy of neurodegenerative disease.
Collapse
Affiliation(s)
- Ramu Manjula
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, United States
| | - Kumari Anuja
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Francisco J. Alcain
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Albacete, Spain
- Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| |
Collapse
|
37
|
Kratz EM, Sołkiewicz K, Kubis-Kubiak A, Piwowar A. Sirtuins as Important Factors in Pathological States and the Role of Their Molecular Activity Modulators. Int J Mol Sci 2021; 22:ijms22020630. [PMID: 33435263 PMCID: PMC7827102 DOI: 10.3390/ijms22020630] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
Sirtuins (SIRTs), enzymes from the family of NAD+-dependent histone deacetylases, play an important role in the functioning of the body at the cellular level and participate in many biochemical processes. The multi-directionality of SIRTs encourages scientists to undertake research aimed at understanding the mechanisms of their action and the influence that SIRTs have on the organism. At the same time, new substances are constantly being sought that can modulate the action of SIRTs. Extensive research on the expression of SIRTs in various pathological conditions suggests that regulation of their activity may have positive results in supporting the treatment of certain metabolic, neurodegenerative or cancer diseases or this connected with oxidative stress. Due to such a wide spectrum of activity, SIRTs may also be a prognostic markers of selected pathological conditions and prove helpful in assessing their progression, especially by modulating their activity. The article presents and discusses the activating or inhibiting impact of individual SIRTs modulators. The review also gathered selected currently available information on the expression of SIRTs in individual disease cases as well as the biological role that SIRTs play in the human organism, also in connection with oxidative stress condition, taking into account the progress of knowledge about SIRTs over the years, with particular reference to the latest research results.
Collapse
Affiliation(s)
- Ewa Maria Kratz
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-(71)-784-01-52
| | - Katarzyna Sołkiewicz
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Adriana Kubis-Kubiak
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.K.-K.); (A.P.)
| | - Agnieszka Piwowar
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.K.-K.); (A.P.)
| |
Collapse
|
38
|
Sikder S, Kaypee S, Kundu TK. Regulation of epigenetic state by non-histone chromatin proteins and transcription factors: Implications in disease. J Biosci 2020. [DOI: 10.1007/s12038-019-9974-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
Catalysis by protein acetyltransferase Gcn5. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1864:194627. [PMID: 32841743 DOI: 10.1016/j.bbagrm.2020.194627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 02/04/2023]
Abstract
Gcn5 serves as the defining member of the Gcn5-related N-acetyltransferase (GNAT) superfamily of proteins that display a common structural fold and catalytic mechanism involving the transfer of the acyl-group, primarily acetyl-, from CoA to an acceptor nucleophile. In the case of Gcn5, the target is the ε-amino group of lysine primarily on histones. Over the years, studies on Gcn5 structure-function have often formed the basis by which we understand the complex activities and regulation of the entire protein acetyltransferase family. It is now appreciated that protein acetylation occurs on thousands of proteins and can reversibly regulate the function of many cellular processes. In this review, we provide an overview of our fundamental understanding of catalysis, regulation of activity and substrate selection, and inhibitor development for this archetypal acetyltransferase.
Collapse
|
40
|
Liu HY, Liu YY, Yang F, Zhang L, Zhang FL, Hu X, Shao ZM, Li DQ. Acetylation of MORC2 by NAT10 regulates cell-cycle checkpoint control and resistance to DNA-damaging chemotherapy and radiotherapy in breast cancer. Nucleic Acids Res 2020; 48:3638-3656. [PMID: 32112098 PMCID: PMC7144926 DOI: 10.1093/nar/gkaa130] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/10/2020] [Accepted: 02/17/2020] [Indexed: 12/16/2022] Open
Abstract
MORC family CW-type zinc finger 2 (MORC2) is an oncogenic chromatin-remodeling enzyme with an emerging role in DNA repair. Here, we report a novel function for MORC2 in cell-cycle checkpoint control through an acetylation-dependent mechanism. MORC2 is acetylated by the acetyltransferase NAT10 at lysine 767 (K767Ac) and this process is counteracted by the deacetylase SIRT2 under unperturbed conditions. DNA-damaging chemotherapeutic agents and ionizing radiation stimulate MORC2 K767Ac through enhancing the interaction between MORC2 and NAT10. Notably, acetylated MORC2 binds to histone H3 phosphorylation at threonine 11 (H3T11P) and is essential for DNA damage-induced reduction of H3T11P and transcriptional repression of its downstream target genes CDK1 and Cyclin B1, thus contributing to DNA damage-induced G2 checkpoint activation. Chemical inhibition or depletion of NAT10 or expression of an acetylation-defective MORC2 (K767R) forces cells to pass through G2 checkpoint, resulting in hypersensitivity to DNA-damaging agents. Moreover, MORC2 acetylation levels are associated with elevated NAT10 expression in clinical breast tumor samples. Together, these findings uncover a previously unrecognized role for MORC2 in regulating DNA damage-induced G2 checkpoint through NAT10-mediated acetylation and provide a potential therapeutic strategy to sensitize breast cancer cells to DNA-damaging chemotherapy and radiotherapy by targeting NAT10.
Collapse
Affiliation(s)
- Hong-Yi Liu
- Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Ying-Ying Liu
- Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fan Yang
- Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lin Zhang
- Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fang-Lin Zhang
- Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xin Hu
- Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhi-Min Shao
- Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Da-Qiang Li
- Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai 200032, China.,International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai 200032, China
| |
Collapse
|
41
|
Romeo-Guitart D, Leiva-Rodríguez T, Casas C. SIRT2 Inhibition Improves Functional Motor Recovery After Peripheral Nerve Injury. Neurotherapeutics 2020; 17:1197-1211. [PMID: 32323205 PMCID: PMC7609484 DOI: 10.1007/s13311-020-00860-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Sirtuin-2 (Sirt2) is a member of the NAD (+)-dependent protein deacetylase family involved in neuroprotection, cellular metabolism, homeostasis, and stress responses after injury of the nervous system. So far, no data have been published describing the role of SIRT2 in motor functional recovery after damage. We found that SIRT2 expression and deacetylase activity were increased within motoneurons after axotomy. To shed light onto the biological relevance of this change, we combined in vitro and in vivo models with pharmacological and genetic ablation approaches. We found that SIRT2 KO (knockout) mice exhibited improved functional recovery after sciatic nerve crush. SIRT2 activity blockage, using AK7, increased neurite outgrowth and length in organotypic spinal cord cultures and human cell line models. SIRT2 blockage enhanced the acetyltransferase activity of p300, which in turn increased the levels of an acetylated form of p53 (Ac-p53 k373), histone 3 (Ac-H3K9), and expression of GAP43, a downstream marker of regeneration. Lastly, we verified that p300 acetyltransferase activity is essential for these effects. Our results suggest that bolstering an epigenetic shift that promotes SIRT2 inhibition can be an effective therapy to increase functional recovery after peripheral nerve injury.
Collapse
Affiliation(s)
- David Romeo-Guitart
- Institut de Neurociències (INc) and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Tatiana Leiva-Rodríguez
- Institut de Neurociències (INc) and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Caty Casas
- Institut de Neurociències (INc) and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain.
- Unitat de Fisiologia Mèdica, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
42
|
Xue J, Pan X, Peng T, Duan M, Du L, Zhuang X, Cai X, Yi X, Fu Y, Li S. Auto Arginine-GlcNAcylation Is Crucial for Bacterial Pathogens in Regulating Host Cell Death. Front Cell Infect Microbiol 2020; 10:197. [PMID: 32432056 PMCID: PMC7214673 DOI: 10.3389/fcimb.2020.00197] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/15/2020] [Indexed: 12/25/2022] Open
Abstract
Many Gram-negative bacterial pathogens utilize the type III secretion system (T3SS) to inject virulence factors, named effectors, into host cells. These T3SS effectors manipulate host cellular signaling pathways to facilitate bacterial pathogenesis. Death receptor signaling plays an important role in eukaryotic cell death pathways. NleB from enteropathogenic Escherichia coli (EPEC) and SseK1/3 from Salmonella enterica serovar Typhimurium (S. Typhimurium) are T3SS effectors. They are defined as a family of arginine GlcNAc transferase to modify a conserved arginine residue in the death domain (DD) of the death receptor TNFR and their corresponding adaptors to hijack death receptor signaling. Here we identified that these enzymes, NleB, SseK1, and SseK3 could catalyze auto-GlcNAcylation. Residues, including Arg13/53/159/293 in NleB, Arg30/158/339 in SseK1, and Arg153/184/305/335 in SseK3 were identified as the auto-GlcNAcylation sites by mass spectrometry. Mutation of the auto-modification sites of NleB, SseK1, and SseK3 abolished or attenuated the capability of enzyme activity toward their death domain targets during infection. Loss of this ability led to the increased susceptibility of the cells to TNF- or TRAIL-induced cell death during bacterial infection. Overall, our study reveals that the auto-GlcNAcylation of NleB, SseK1, and SseK3 is crucial for their biological activity during infection.
Collapse
Affiliation(s)
- Juan Xue
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Xing Pan
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Ting Peng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Meimei Duan
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Lijie Du
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiaohui Zhuang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Xiaobin Cai
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Xueying Yi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Yang Fu
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Shan Li
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
43
|
Active nuclear import of the deacetylase Sirtuin-2 is controlled by its C-terminus and importins. Sci Rep 2020; 10:2034. [PMID: 32042025 PMCID: PMC7010746 DOI: 10.1038/s41598-020-58397-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/10/2020] [Indexed: 12/11/2022] Open
Abstract
The NAD-dependent deacetylase Sirtuin-2 (SIRT2) functions in diverse cellular processes including the cell cycle, metabolism, and has important roles in tumorigenesis and bacterial infection. SIRT2 predominantly resides in the cytoplasm but can also function in the nucleus. Consequently, SIRT2 localisation and its interacting partners may greatly impact its function and need to be defined more clearly. In this study we used mass spectrometry to determine the interactomes of SIRT2 in whole cells and in specific cellular fractions; cytoplasm, nucleus and chromatin. Using this approach, we identified novel interacting partners of SIRT2. These included a number of proteins that function in nuclear import. We show that multiple importins interact with and contribute to the basal nuclear shuttling of SIRT2 and that one of these, IPO7 is required for SIRT2 mediated H3K18 deacetylation in response to bacterial infection. Furthermore, we reveal that the unstructured C-terminus of SIRT2 negatively regulates importin-binding and nuclear transport. This study demonstrates that SIRT2 is actively transported into the nucleus via a process regulated by its C-terminus and provides a resource of SIRT2 interacting partners.
Collapse
|
44
|
Chowdhury S, Sripathy S, Webster AA, Park A, Lao U, Hsu JH, Loe T, Bedalov A, Simon JA. Discovery of Selective SIRT2 Inhibitors as Therapeutic Agents in B-Cell Lymphoma and Other Malignancies. Molecules 2020; 25:molecules25030455. [PMID: 31973227 PMCID: PMC7036909 DOI: 10.3390/molecules25030455] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/16/2020] [Accepted: 01/19/2020] [Indexed: 11/27/2022] Open
Abstract
Genetic ablation as well as pharmacological inhibition of sirtuin 2 (SIRT2), an NAD+-dependent protein deacylase, have therapeutic effects in various cancers and neurodegenerative diseases. Previously, we described the discovery of a dual SIRT1/SIRT2 inhibitor called cambinol (IC50 56 and 59 µM, respectively), which showed cytotoxic activity against cancer cells in vitro and a marked anti-proliferative effect in a Burkitt lymphoma mouse xenograft model. A number of recent studies have shown a protective effect of SIRT1 and SIRT3 in neurodegenerative and metabolic diseases as well as in certain cancers prompting us to initiate a medicinal chemistry effort to develop cambinol-based SIRT2-specific inhibitors devoid of SIRT1 or SIRT3 modulating activity. Here we describe potent cambinol-based SIRT2 inhibitors, several of which show potency of ~600 nM with >300 to >800-fold selectivity over SIRT1 and 3, respectively. In vitro, these inhibitors are found to be toxic to lymphoma and epithelial cancer cell lines. In particular, compounds 55 (IC50 SIRT2 0.25 µM and <25% inhibition at 50 µM against SIRT1 and SIRT3) and 56 (IC50 SIRT2 0.78 µM and <25% inhibition at 50 µM against SIRT1 and SIRT3) showed apoptotic as well as strong anti-proliferative properties against B-cell lymphoma cells.
Collapse
Affiliation(s)
- Sarwat Chowdhury
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (S.C.); (S.S.); (A.A.W.); (A.P.); (U.L.); (J.H.H.); (T.L.); (A.B.)
| | - Smitha Sripathy
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (S.C.); (S.S.); (A.A.W.); (A.P.); (U.L.); (J.H.H.); (T.L.); (A.B.)
| | - Alyssa A. Webster
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (S.C.); (S.S.); (A.A.W.); (A.P.); (U.L.); (J.H.H.); (T.L.); (A.B.)
| | - Angela Park
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (S.C.); (S.S.); (A.A.W.); (A.P.); (U.L.); (J.H.H.); (T.L.); (A.B.)
| | - Uyen Lao
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (S.C.); (S.S.); (A.A.W.); (A.P.); (U.L.); (J.H.H.); (T.L.); (A.B.)
| | - Joanne H. Hsu
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (S.C.); (S.S.); (A.A.W.); (A.P.); (U.L.); (J.H.H.); (T.L.); (A.B.)
| | - Taylor Loe
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (S.C.); (S.S.); (A.A.W.); (A.P.); (U.L.); (J.H.H.); (T.L.); (A.B.)
| | - Antonio Bedalov
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (S.C.); (S.S.); (A.A.W.); (A.P.); (U.L.); (J.H.H.); (T.L.); (A.B.)
| | - Julian A. Simon
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (S.C.); (S.S.); (A.A.W.); (A.P.); (U.L.); (J.H.H.); (T.L.); (A.B.)
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Correspondence: ; Tel.: (206)-667-6241
| |
Collapse
|
45
|
Sikder S, Kaypee S, Kundu TK. Regulation of epigenetic state by non-histone chromatin proteins and transcription factors: Implications in disease. J Biosci 2020; 45:15. [PMID: 31965993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Besides the fundamental components of the chromatin, DNA and octameric histone, the non-histone chromatin proteins and non-coding RNA play a critical role in the organization of functional chromatin domains. The non-histone chromatin proteins therefore regulate the transcriptional outcome in both physiological and pathophysiological state as well. They also help to maintain the epigenetic state of the genome indirectly. Several transcription factors and histone interacting factors also contribute in the maintenance of the epigenetic states, especially acetylation by the induction of autoacetylation ability of p300/CBP. Alterations of KAT activity have been found to be causally related to disease manifestation, and thus could be potential therapeutic target.
Collapse
Affiliation(s)
- Sweta Sikder
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560 064, India
| | | | | |
Collapse
|
46
|
Ling H, Peng L, Wang J, Rahhal R, Seto E. Histone Deacetylase SIRT1 Targets Plk2 to Regulate Centriole Duplication. Cell Rep 2019; 25:2851-2865.e3. [PMID: 30517871 DOI: 10.1016/j.celrep.2018.11.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 09/04/2018] [Accepted: 11/02/2018] [Indexed: 11/17/2022] Open
Abstract
The protein deacetylase SIRT1 (Sirtuin 1) regulates many cellular processes, including cell-cycle progression, DNA damage response, and metabolism. Although the centrosome is a key regulator of cell-cycle progression and genome stability, little is known concerning SIRT1 controlled centrosome-associated events. Here we report that the centrosome protein Plk2 is acetylated and undergoes deacetylation by SIRT1. Acetylation protects Plk2 from ubiquitination, and SIRT1-mediated deacetylation promotes ubiquitin-dependent degradation of Plk2. SIRT1 controls centriole duplication by temporally modulating centrosomal Plk2 levels. AURKA phosphorylates SIRT1 and promotes the SIRT1-Plk2 interaction in mitosis. In early-mid G1, phosphorylated SIRT1 deacetylates and promotes Plk2 degradation. In late G1, SIRT1 is hypophosphorylated and its affinity to Plk2 is decreased, resulting in a rapid accumulation of centrosomal Plk2, which contributes to the timely initiation of centriole duplication. Collectively, our findings uncover a critical role of SIRT1 in centriole duplication and provide a mechanistic insight into SIRT1-mediated centrosome-associated functions.
Collapse
Affiliation(s)
- Hongbo Ling
- George Washington University Cancer Center, Washington, DC 20052, USA; Department of Biochemistry & Molecular Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA
| | - Lirong Peng
- George Washington University Cancer Center, Washington, DC 20052, USA; Department of Biochemistry & Molecular Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA
| | - Jianbo Wang
- Department of Oncology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Raneen Rahhal
- George Washington University Cancer Center, Washington, DC 20052, USA; Department of Biochemistry & Molecular Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA
| | - Edward Seto
- George Washington University Cancer Center, Washington, DC 20052, USA; Department of Biochemistry & Molecular Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA.
| |
Collapse
|
47
|
Orang AV, Petersen J, McKinnon RA, Michael MZ. Micromanaging aerobic respiration and glycolysis in cancer cells. Mol Metab 2019; 23:98-126. [PMID: 30837197 PMCID: PMC6479761 DOI: 10.1016/j.molmet.2019.01.014] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/22/2019] [Accepted: 01/30/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Cancer cells possess a common metabolic phenotype, rewiring their metabolic pathways from mitochondrial oxidative phosphorylation to aerobic glycolysis and anabolic circuits, to support the energetic and biosynthetic requirements of continuous proliferation and migration. While, over the past decade, molecular and cellular studies have clearly highlighted the association of oncogenes and tumor suppressors with cancer-associated glycolysis, more recent attention has focused on the role of microRNAs (miRNAs) in mediating this metabolic shift. Accumulating studies have connected aberrant expression of miRNAs with direct and indirect regulation of aerobic glycolysis and associated pathways. SCOPE OF REVIEW This review discusses the underlying mechanisms of metabolic reprogramming in cancer cells and provides arguments that the earlier paradigm of cancer glycolysis needs to be updated to a broader concept, which involves interconnecting biological pathways that include miRNA-mediated regulation of metabolism. For these reasons and in light of recent knowledge, we illustrate the relationships between metabolic pathways in cancer cells. We further summarize our current understanding of the interplay between miRNAs and these metabolic pathways. This review aims to highlight important metabolism-associated molecular components in the hunt for selective preventive and therapeutic treatments. MAJOR CONCLUSIONS Metabolism in cancer cells is influenced by driver mutations but is also regulated by posttranscriptional gene silencing. Understanding the nuanced regulation of gene expression in these cells and distinguishing rapid cellular responses from chronic adaptive mechanisms provides a basis for rational drug design and novel therapeutic strategies.
Collapse
Affiliation(s)
- Ayla V Orang
- Flinders Centre for Innovation in Cancer, Flinders University, Flinders Medical Centre, Adelaide, South Australia 5042, Australia.
| | - Janni Petersen
- Flinders Centre for Innovation in Cancer, Flinders University, Flinders Medical Centre, Adelaide, South Australia 5042, Australia.
| | - Ross A McKinnon
- Flinders Centre for Innovation in Cancer, Flinders University, Flinders Medical Centre, Adelaide, South Australia 5042, Australia.
| | - Michael Z Michael
- Flinders Centre for Innovation in Cancer, Flinders University, Flinders Medical Centre, Adelaide, South Australia 5042, Australia.
| |
Collapse
|
48
|
Kosciuk T, Wang M, Hong JY, Lin H. Updates on the epigenetic roles of sirtuins. Curr Opin Chem Biol 2019; 51:18-29. [PMID: 30875552 DOI: 10.1016/j.cbpa.2019.01.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/09/2019] [Accepted: 01/25/2019] [Indexed: 12/18/2022]
Abstract
Sirtuins are a class of enzyme with NAD+-dependent protein lysine deacylase activities. They were initially discovered to regulate transcription and life span via histone deacetylase activities. Later studies expanded their activities to other proteins and acyl lysine modifications. Through deacylating various substrate proteins, they regulate many biological processes, including transcription, DNA repair and genome stability, metabolism, and signal transduction. Here, we review recent understandings of the epigenetic functions (broadly defined to include transcriptional, post-transcriptional regulation, and DNA repair) of mammalian sirtuins. Because of the important functions of sirtuins, their own regulation is of great interest and is also discussed.
Collapse
Affiliation(s)
- Tatsiana Kosciuk
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Miao Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jun Young Hong
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA; Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
49
|
Rafehi H, Kaspi A, Ziemann M, Okabe J, Karagiannis TC, El-Osta A. Systems approach to the pharmacological actions of HDAC inhibitors reveals EP300 activities and convergent mechanisms of regulation in diabetes. Epigenetics 2018; 12:991-1003. [PMID: 28886276 DOI: 10.1080/15592294.2017.1371892] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Given the skyrocketing costs to develop new drugs, repositioning of approved drugs, such as histone deacetylase (HDAC) inhibitors, may be a promising strategy to develop novel therapies. However, a gap exists in the understanding and advancement of these agents to meaningful translation for which new indications may emerge. To address this, we performed systems-level analyses of 33 independent HDAC inhibitor microarray studies. Based on network analysis, we identified enrichment for pathways implicated in metabolic syndrome and diabetes (insulin receptor signaling, lipid metabolism, immunity and trafficking). Integration with ENCODE ChIP-seq datasets identified suppression of EP300 target genes implicated in diabetes. Experimental validation indicates reversal of diabetes-associated EP300 target genes in primary vascular endothelial cells derived from a diabetic individual following inhibition of HDACs (by SAHA), EP300, or EP300 knockdown. Our computational systems biology approach provides an adaptable framework for the prediction of novel therapeutics for existing disease.
Collapse
Affiliation(s)
- Haloom Rafehi
- a Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Faculty of Medicine, Monash University , Melbourne , Victoria , Australia
| | - Antony Kaspi
- a Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Faculty of Medicine, Monash University , Melbourne , Victoria , Australia
| | - Mark Ziemann
- a Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Faculty of Medicine, Monash University , Melbourne , Victoria , Australia
| | - Jun Okabe
- a Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Faculty of Medicine, Monash University , Melbourne , Victoria , Australia
| | - Tom C Karagiannis
- a Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Faculty of Medicine, Monash University , Melbourne , Victoria , Australia.,b Department of Pathology, The University of Melbourne , Parkville , Victoria , Australia
| | - Assam El-Osta
- a Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Faculty of Medicine, Monash University , Melbourne , Victoria , Australia.,b Department of Pathology, The University of Melbourne , Parkville , Victoria , Australia.,c Faculty of Medicine, Nursing and Health Sciences, Department of Diabetes, Monash University , Melbourne , Victoria , Australia.,d Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, The Chinese University of Hong Kong , Hong Kong SAR
| |
Collapse
|
50
|
Kaypee S, Sahadevan SA, Patil S, Ghosh P, Roy NS, Roy S, Kundu TK. Mutant and Wild-Type Tumor Suppressor p53 Induces p300 Autoacetylation. iScience 2018; 4:260-272. [PMID: 30240745 PMCID: PMC6147029 DOI: 10.1016/j.isci.2018.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/18/2018] [Accepted: 06/04/2018] [Indexed: 12/18/2022] Open
Abstract
The transcriptional co-activator p300 is essential for p53 transactivation, although its precise role remains unclear. We report that p53 activates the acetyltransferase activity of p300 through the enhancement of p300 autoacetylation. Autoacetylated p300 accumulates near the transcription start sites accompanied by a similar enrichment of activating histone marks near those sites. Abrogation of p53-p300 interaction by a site-directed peptide inhibitor abolished p300-mediated histone acetylation, suggesting a crucial role played by the activation in p53-mediated gene regulation. Gain-of-function mutant p53, known to impart aggressive proliferative properties in tumor cells, also activates p300 autoacetylation. The same peptide abolished many of the gain-of-function properties of mutant p53 as well. Reversal of gain-of-function properties of mutant p53 suggests that molecules targeting the p53-p300 interface may be good candidates for anti-tumor drugs. Wild-type and mutant p53 are potent inducers of p300 autoacetylation p53 activates p300 catalytic activity by altering its structural conformation Induction of p300 autoacetylation possibly enhances p53-targeted gene expression Mutant-p53-induced p300 autoacetylation could be critical for tumorigenicity
Collapse
Affiliation(s)
- Stephanie Kaypee
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Smitha Asoka Sahadevan
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Shilpa Patil
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Piya Ghosh
- Department of Biophysics, Bose Institute, Kolkata 700054, India
| | | | - Siddhartha Roy
- Department of Biophysics, Bose Institute, Kolkata 700054, India
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India.
| |
Collapse
|