1
|
Piano V. Multitasking Proteins: Exploring Noncanonical Functions of Proteins during Mitosis. Biochemistry 2025; 64:2123-2137. [PMID: 40315343 DOI: 10.1021/acs.biochem.5c00083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
Abstract
This review provides a comprehensive overview of how mitotic cells drive the repurposing of proteins to fulfill mitosis-specific functions. To ensure the successful completion of cell division, the cell strategically reallocates its "workforce" by assigning additional functions to available proteins. Protein repurposing occurs at multiple levels of cellular organization and involves diverse mechanisms. At the protein level, proteins may gain mitosis-specific functions through post-translational modifications. At the structural level, proteins that typically maintain cellular architecture in interphase are co-opted to participate in mitotic spindle formation, chromosome condensation, and kinetochore assembly. Furthermore, the dynamic reorganization of the nuclear envelope and other organelles relies on the temporary reassignment of enzymes, structural proteins, and motor proteins to facilitate these changes. These adaptive mechanisms underscore the remarkable versatility of the cellular proteome in responding to the stringent requirements of mitosis. By leveraging the existing proteome for dual or multiple specialized roles, cells optimize resource usage while maintaining the precision needed to preserve genomic integrity and ensure the survival of the next generation of cells.
Collapse
Affiliation(s)
- Valentina Piano
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital, University of Cologne, 50931 Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
2
|
Rosenthal KJ, Gordan JD, Scott JD. Protein kinase A and local signaling in cancer. Biochem J 2024; 481:1659-1677. [PMID: 39540434 PMCID: PMC11975432 DOI: 10.1042/bcj20230352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Protein kinase A (PKA) is a basophilic kinase implicated in the modulation of many cell-signaling and physiological processes. PKA also contributes to cancer-relevant events such as growth factor action, cell cycle control, cell migration and tumor metabolism. Germline and somatic mutations in PKA, gene amplifications, and chromosome rearrangements that encode kinase fusions, are linked to a growing number of malignant neoplasms. Mislocalization of PKA by exclusion from A-Kinase Anchoring Protein (AKAP) signaling islands further underlies cancer progression. This article highlights the influence of AKAP signaling and local kinase action in selected hallmarks of cancer. We also feature the utility of kinase inhibitor drugs as frontline and future anti-cancer therapies.
Collapse
Affiliation(s)
- Kacey J. Rosenthal
- Department of Pharmacology, University of Washington School of Medicine, 1959 NE Pacific St., Box 357750, Seattle, WA 98195, U.S.A
| | - John D. Gordan
- Department of Medicine (Hematology/Oncology), Quantitative Biosciences Institute, UCSF Helen Diller Family Cancer Center, 1700 4th St., San Francisco, CA 94143, U.S.A
| | - John D. Scott
- Department of Pharmacology, University of Washington School of Medicine, 1959 NE Pacific St., Box 357750, Seattle, WA 98195, U.S.A
| |
Collapse
|
3
|
Wang W, Dai X, Li Y, Li M, Chi Z, Hu X, Wang Z. The miR-669a-5p/G3BP/HDAC6/AKAP12 Axis Regulates Primary Cilia Length. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305068. [PMID: 38088586 PMCID: PMC10853727 DOI: 10.1002/advs.202305068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/13/2023] [Indexed: 02/10/2024]
Abstract
Primary cilia are conserved organelles in most mammalian cells, acting as "antennae" to sense external signals. Maintaining a physiological cilium length is required for cilium function. MicroRNAs (miRNAs) are potent gene expression regulators, and aberrant miRNA expression is closely associated with ciliopathies. However, how miRNAs modulate cilium length remains elusive. Here, using the calcium-shock method and small RNA sequencing, a miRNA is identified, namely, miR-669a-5p, that is highly expressed in the cilia-enriched noncellular fraction. It is shown that miR-669a-5p promotes cilium elongation but not cilium formation in cultured cells. Mechanistically, it is demonstrated that miR-669a-5p represses ras-GTPase-activating protein SH3-domain-binding protein (G3BP) expression to inhibit histone deacetylase 6 (HDAC6) expression, which further upregulates A-kinase anchor protein 12 (AKAP12) expression. This effect ultimately blocks cilia disassembly and leads to greater cilium length, which can be restored to wild-type lengths by either upregulating HDAC6 or downregulating AKAP12. Collectively, these results elucidate a previously unidentified miR-669a-5p/G3BP/HDAC6/AKAP12 signaling pathway that regulates cilium length, providing potential pharmaceutical targets for treating ciliopathies.
Collapse
Affiliation(s)
- Weina Wang
- School of Life SciencesInstitute of Life Science and Green DevelopmentHebei UniversityBaoding071002China
| | - Xuyao Dai
- School of Life SciencesInstitute of Life Science and Green DevelopmentHebei UniversityBaoding071002China
| | - Yue Li
- School of Life SciencesInstitute of Life Science and Green DevelopmentHebei UniversityBaoding071002China
| | - Mo Li
- School of Public HealthHebei UniversityBaoding071000China
| | - Zongqi Chi
- School of Public HealthHebei UniversityBaoding071000China
| | - Xiaoyu Hu
- School of Life SciencesInstitute of Life Science and Green DevelopmentHebei UniversityBaoding071002China
| | - Zhenshan Wang
- School of Life SciencesInstitute of Life Science and Green DevelopmentHebei UniversityBaoding071002China
| |
Collapse
|
4
|
Kimura S, Lok J, Gelman IH, Lo EH, Arai K. Role of A-Kinase Anchoring Protein 12 in the Central Nervous System. J Clin Neurol 2023; 19:329-337. [PMID: 37417430 DOI: 10.3988/jcn.2023.0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 07/08/2023] Open
Abstract
A-kinase anchoring protein (AKAP) 12 is a scaffolding protein that anchors various signaling proteins to the plasma membrane. These signaling proteins include protein kinase A, protein kinase C, protein phosphatase 2B, Src-family kinases, cyclins, and calmodulin, which regulate their respective signaling pathways. AKAP12 expression is observed in the neurons, astrocytes, endothelial cells, pericytes, and oligodendrocytes of the central nervous system (CNS). Its physiological roles include promoting the development of the blood-brain barrier, maintaining white-matter homeostasis, and even regulating complex cognitive functions such as long-term memory formation. Under pathological conditions, dysregulation of AKAP12 expression levels may be involved in the pathology of neurological diseases such as ischemic brain injury and Alzheimer's disease. This minireview aimed to summarize the current literature on the role of AKAP12 in the CNS.
Collapse
Affiliation(s)
- Shintaro Kimura
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Life Science Research Center, Gifu University, Gifu, Japan
| | - Josephine Lok
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Pediatric Critical Care Medicine, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Irwin H Gelman
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Ramani K, Mavila N, Abeynayake A, Tomasi ML, Wang J, Matsuda M, Seki E. Targeting A-kinase anchoring protein 12 phosphorylation in hepatic stellate cells regulates liver injury and fibrosis in mouse models. eLife 2022; 11:e78430. [PMID: 36193675 PMCID: PMC9531947 DOI: 10.7554/elife.78430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/03/2022] [Indexed: 12/24/2022] Open
Abstract
Trans-differentiation of hepatic stellate cells (HSCs) to activated state potentiates liver fibrosis through release of extracellular matrix (ECM) components, distorting the liver architecture. Since limited antifibrotics are available, pharmacological intervention targeting activated HSCs may be considered for therapy. A-kinase anchoring protein 12 (AKAP12) is a scaffolding protein that directs protein kinases A/C (PKA/PKC) and cyclins to specific locations spatiotemporally controlling their biological effects. It has been shown that AKAP12's scaffolding functions are altered by phosphorylation. In previously published work, observed an association between AKAP12 phosphorylation and HSC activation. In this work, we demonstrate that AKAP12's scaffolding activity toward the endoplasmic reticulum (ER)-resident collagen chaperone, heat-shock protein 47 (HSP47) is strongly inhibited by AKAP12's site-specific phosphorylation in activated HSCs. CRISPR-directed gene editing of AKAP12's phospho-sites restores its scaffolding toward HSP47, inhibiting HSP47's collagen maturation functions, and HSC activation. AKAP12 phospho-editing dramatically inhibits fibrosis, ER stress response, HSC inflammatory signaling, and liver injury in mice. Our overall findings suggest a pro-fibrogenic role of AKAP12 phosphorylation that may be targeted for therapeutic intervention in liver fibrosis.
Collapse
Affiliation(s)
- Komal Ramani
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical CenterLos AngelesUnited States
- Applied Cell Biology Division, Department of Biomedical Sciences, Cedars-Sinai Medical CenterLos AngelesUnited States
| | - Nirmala Mavila
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical CenterLos AngelesUnited States
- Applied Cell Biology Division, Department of Biomedical Sciences, Cedars-Sinai Medical CenterLos AngelesUnited States
| | - Aushinie Abeynayake
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical CenterLos AngelesUnited States
| | - Maria Lauda Tomasi
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical CenterLos AngelesUnited States
- Applied Cell Biology Division, Department of Biomedical Sciences, Cedars-Sinai Medical CenterLos AngelesUnited States
| | - Jiaohong Wang
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical CenterLos AngelesUnited States
| | - Michitaka Matsuda
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical CenterLos AngelesUnited States
| | - Eki Seki
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical CenterLos AngelesUnited States
- Applied Cell Biology Division, Department of Biomedical Sciences, Cedars-Sinai Medical CenterLos AngelesUnited States
| |
Collapse
|
6
|
Gopalan J, Wordeman L, Scott JD. Kinase-anchoring proteins in ciliary signal transduction. Biochem J 2021; 478:1617-1629. [PMID: 33909027 PMCID: PMC11848745 DOI: 10.1042/bcj20200869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 12/16/2022]
Abstract
Historically, the diffusion of chemical signals through the cell was thought to occur within a cytoplasmic soup bounded by the plasma membrane. This theory was predicated on the notion that all regulatory enzymes are soluble and moved with a Brownian motion. Although enzyme compartmentalization was initially rebuffed by biochemists as a 'last refuge of a scoundrel', signal relay through macromolecular complexes is now accepted as a fundamental tenet of the burgeoning field of spatial biology. A-Kinase anchoring proteins (AKAPs) are prototypic enzyme-organizing elements that position clusters of regulatory proteins at defined subcellular locations. In parallel, the primary cilium has gained recognition as a subcellular mechanosensory organelle that amplifies second messenger signals pertaining to metazoan development. This article highlights advances in our understanding of AKAP signaling within the primary cilium and how defective ciliary function contributes to an increasing number of diseases known as ciliopathies.
Collapse
Affiliation(s)
- Janani Gopalan
- Department of Pharmacology, University of Washington, Seattle, WA 98195, U.S.A
| | - Linda Wordeman
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, U.S.A
| | - John D. Scott
- Department of Pharmacology, University of Washington, Seattle, WA 98195, U.S.A
| |
Collapse
|
7
|
Xie G, Zhou Y, Tu X, Ye X, Xu L, Xiao Z, Wang Q, Wang X, Du M, Chen Z, Chi X, Zhang X, Xia J, Zhang X, Zhou Y, Li Z, Xie C, Sheng L, Zeng Z, Zhou H, Yin Z, Su Y, Xu Y, Zhang XK. Centrosomal Localization of RXRα Promotes PLK1 Activation and Mitotic Progression and Constitutes a Tumor Vulnerability. Dev Cell 2020; 55:707-722.e9. [PMID: 33321102 DOI: 10.1016/j.devcel.2020.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/15/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
Retinoid X receptor alpha (RXRα), a nuclear receptor of transcription factor, controls various physiological and pathological pathways including cellular growth, proliferation, differentiation, and apoptosis. Here, we report that RXRα is phosphorylated at its N-terminal A/B domain by cyclin-dependent kinase 1 (Cdk1) at the onset of mitosis, triggering its translocation to the centrosome, where phosphorylated-RXRα (p-RXRα) interacts with polo-like kinase 1 (PLK1) through its N-terminal A/B domain by a unique mechanism. The interaction promotes PLK1 activation, centrosome maturation, and mitotic progression. Levels of p-RXRα are abnormally elevated in cancer cell lines, during carcinogenesis in animals, and in clinical tumor tissues. An RXRα ligand XS060, which specifically inhibits p-RXRα/PLK1 interaction but not RXRα heterodimerization, promotes mitotic arrest and catastrophe in a tumor-specific manner. These findings unravel a transcription-independent action of RXRα at the centrosome during mitosis and identify p-RXRα as a tumor-specific vulnerability for developing mitotic drugs with improved therapeutic index.
Collapse
Affiliation(s)
- Guobin Xie
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Yuqi Zhou
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China; NucMito Pharmaceuticals Co. Ltd., Xiamen 361101, Fujian, China
| | - Xuhuang Tu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Xiaohong Ye
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Lin Xu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Zhijian Xiao
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Qiqiang Wang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Xin Wang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Mingxuan Du
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Ziwen Chen
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China; NucMito Pharmaceuticals Co. Ltd., Xiamen 361101, Fujian, China
| | - Xiaoqin Chi
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital Xiamen University, Xiamen 361004, Fujian, China
| | - Xiaoli Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Ji Xia
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Xiaowei Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Yunxia Zhou
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Zongxi Li
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Chengrong Xie
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital Xiamen University, Xiamen 361004, Fujian, China
| | - Luoyan Sheng
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Zhiping Zeng
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Hu Zhou
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Zhenyu Yin
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital Xiamen University, Xiamen 361004, Fujian, China
| | - Ying Su
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China; NucMito Pharmaceuticals Co. Ltd., Xiamen 361101, Fujian, China
| | - Yang Xu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Xiao-Kun Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China.
| |
Collapse
|
8
|
Omar MH, Scott JD. AKAP Signaling Islands: Venues for Precision Pharmacology. Trends Pharmacol Sci 2020; 41:933-946. [PMID: 33082006 DOI: 10.1016/j.tips.2020.09.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 12/19/2022]
Abstract
Regulatory enzymes often have different roles in distinct subcellular compartments. Yet, most drugs indiscriminately saturate the cell. Thus, subcellular drug-delivery holds promise as a means to reduce off-target pharmacological effects. A-kinase anchoring proteins (AKAPs) sequester combinations of signaling enzymes within subcellular microdomains. Targeting drugs to these 'signaling islands' offers an opportunity for more precise delivery of therapeutics. Here, we review mechanisms that bestow protein kinase A (PKA) versatility inside the cell, appraise recent advances in exploiting AKAPs as platforms for precision pharmacology, and explore the impact of methodological innovations on AKAP research.
Collapse
Affiliation(s)
- Mitchell H Omar
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA
| | - John D Scott
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
9
|
Bucko PJ, Garcia I, Manocha R, Bhat A, Wordeman L, Scott JD. Gravin-associated kinase signaling networks coordinate γ-tubulin organization at mitotic spindle poles. J Biol Chem 2020; 295:13784-13797. [PMID: 32732289 PMCID: PMC7535905 DOI: 10.1074/jbc.ra120.014791] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/21/2020] [Indexed: 01/16/2023] Open
Abstract
Mitogenic signals that regulate cell division often proceed through multienzyme assemblies within defined intracellular compartments. The anchoring protein Gravin restricts the action of mitotic kinases and cell-cycle effectors to defined mitotic structures. In this report we discover that genetic deletion of Gravin disrupts proper accumulation and asymmetric distribution of γ-tubulin during mitosis. We utilize a new precision pharmacology tool, Local Kinase Inhibition, to inhibit the Gravin binding partner polo-like kinase 1 at spindle poles. Using a combination of gene-editing approaches, quantitative imaging, and biochemical assays, we provide evidence that disruption of local polo-like kinase 1 signaling underlies the γ-tubulin distribution defects observed with Gravin loss. Our study uncovers a new role for Gravin in coordinating γ-tubulin recruitment during mitosis and illuminates the mechanism by which signaling enzymes regulate this process at a distinct subcellular location.
Collapse
Affiliation(s)
- Paula J Bucko
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | - Irvin Garcia
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | - Ridhima Manocha
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | - Akansha Bhat
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | - Linda Wordeman
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, USA
| | - John D Scott
- Department of Pharmacology, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
10
|
Bucko PJ, Scott JD. Drugs That Regulate Local Cell Signaling: AKAP Targeting as a Therapeutic Option. Annu Rev Pharmacol Toxicol 2020; 61:361-379. [PMID: 32628872 DOI: 10.1146/annurev-pharmtox-022420-112134] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cells respond to environmental cues by mobilizing signal transduction cascades that engage protein kinases and phosphoprotein phosphatases. Correct organization of these enzymes in space and time enables the efficient and precise transmission of chemical signals. The cyclic AMP-dependent protein kinase A is compartmentalized through its association with A-kinase anchoring proteins (AKAPs). AKAPs are a family of multivalent scaffolds that constrain signaling enzymes and effectors at subcellular locations to drive essential physiological events. More recently, it has been recognized that defective signaling in certain endocrine disorders and cancers proceeds through pathological AKAP complexes. Consequently, pharmacologically targeting these macromolecular complexes unlocks new therapeutic opportunities for a growing number of clinical indications. This review highlights recent findings on AKAP signaling in disease, particularly in certain cancers, and offers an overview of peptides and small molecules that locally regulate AKAP-binding partners.
Collapse
Affiliation(s)
- Paula J Bucko
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA; ,
| | - John D Scott
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA; ,
| |
Collapse
|
11
|
Fulcher LJ, Sapkota GP. Mitotic kinase anchoring proteins: the navigators of cell division. Cell Cycle 2020; 19:505-524. [PMID: 32048898 PMCID: PMC7100989 DOI: 10.1080/15384101.2020.1728014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/14/2020] [Accepted: 02/06/2020] [Indexed: 02/07/2023] Open
Abstract
The coordinated activities of many protein kinases, acting on multiple protein substrates, ensures the error-free progression through mitosis of eukaryotic cells. Enormous research effort has thus been devoted to studying the roles and regulation of these mitotic kinases, and to the identification of their physiological substrates. Central for the timely deployment of specific protein kinases to their appropriate substrates during the cell division cycle are the many anchoring proteins, which serve critical regulatory roles. Through direct association, anchoring proteins are capable of modulating the catalytic activity and/or sub-cellular distribution of the mitotic kinases they associate with. The key roles of some anchoring proteins in cell division are well-established, whilst others are still being unearthed. Here, we review the current knowledge on anchoring proteins for some mitotic kinases, and highlight how targeting anchoring proteins for inhibition, instead of the mitotic kinases themselves, could be advantageous for disrupting the cell division cycle.
Collapse
Affiliation(s)
- Luke J Fulcher
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, Scotland, UK
| | - Gopal P Sapkota
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, Scotland, UK
| |
Collapse
|
12
|
The role of A-kinase anchoring proteins in cardiac oxidative stress. Biochem Soc Trans 2020; 47:1341-1353. [PMID: 31671182 PMCID: PMC6824835 DOI: 10.1042/bst20190228] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/08/2019] [Accepted: 09/10/2019] [Indexed: 12/18/2022]
Abstract
Cardiac stress initiates a pathological remodeling process that is associated with cardiomyocyte loss and fibrosis that ultimately leads to heart failure. In the injured heart, a pathologically elevated synthesis of reactive oxygen species (ROS) is the main driver of oxidative stress and consequent cardiomyocyte dysfunction and death. In this context, the cAMP-dependent protein kinase (PKA) plays a central role in regulating signaling pathways that protect the heart against ROS-induced cardiac damage. In cardiac cells, spatiotemporal regulation of PKA activity is controlled by A-kinase anchoring proteins (AKAPs). This family of scaffolding proteins tether PKA and other transduction enzymes at subcellular microdomains where they can co-ordinate cellular responses regulating oxidative stress. In this review, we will discuss recent literature illustrating the role of PKA and AKAPs in modulating the detrimental impact of ROS production on cardiac function.
Collapse
|
13
|
The Role of Cyclic AMP Signaling in Cardiac Fibrosis. Cells 2019; 9:cells9010069. [PMID: 31888098 PMCID: PMC7016856 DOI: 10.3390/cells9010069] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 12/18/2022] Open
Abstract
Myocardial stress and injury invariably promote remodeling of the cardiac tissue, which is associated with cardiomyocyte death and development of fibrosis. The fibrotic process is initially triggered by the differentiation of resident cardiac fibroblasts into myofibroblasts. These activated fibroblasts display increased proliferative capacity and secrete large amounts of extracellular matrix. Uncontrolled myofibroblast activation can thus promote heart stiffness, cardiac dysfunction, arrhythmias, and progression to heart failure. Despite the well-established role of myofibroblasts in mediating cardiac disease, our current knowledge on how signaling pathways promoting fibrosis are regulated and coordinated in this cell type is largely incomplete. In this respect, cyclic adenosine monophosphate (cAMP) signaling acts as a major modulator of fibrotic responses activated in fibroblasts of injured or stressed hearts. In particular, accumulating evidence now suggests that upstream cAMP modulators including G protein-coupled receptors, adenylyl cyclases (ACs), and phosphodiesterases (PDEs); downstream cAMP effectors such as protein kinase A (PKA) and the guanine nucleotide exchange factor Epac; and cAMP signaling organizers such as A-kinase anchoring proteins (AKAPs) modulate a variety of fundamental cellular processes involved in myocardial fibrosis including myofibroblast differentiation, proliferation, collagen secretion, and invasiveness. The current review will discuss recent advances highlighting the role of cAMP and AKAP-mediated signaling in regulating pathophysiological responses controlling cardiac fibrosis.
Collapse
|
14
|
Bucko PJ, Lombard CK, Rathbun L, Garcia I, Bhat A, Wordeman L, Smith FD, Maly DJ, Hehnly H, Scott JD. Subcellular drug targeting illuminates local kinase action. eLife 2019; 8:e52220. [PMID: 31872801 PMCID: PMC6930117 DOI: 10.7554/elife.52220] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/30/2019] [Indexed: 01/02/2023] Open
Abstract
Deciphering how signaling enzymes operate within discrete microenvironments is fundamental to understanding biological processes. A-kinase anchoring proteins (AKAPs) restrict the range of action of protein kinases within intracellular compartments. We exploited the AKAP targeting concept to create genetically encoded platforms that restrain kinase inhibitor drugs at distinct subcellular locations. Local Kinase Inhibition (LoKI) allows us to ascribe organelle-specific functions to broad specificity kinases. Using chemical genetics, super resolution microscopy, and live-cell imaging we discover that centrosomal delivery of Polo-like kinase 1 (Plk1) and Aurora A (AurA) inhibitors attenuates kinase activity, produces spindle defects, and prolongs mitosis. Targeted inhibition of Plk1 in zebrafish embryos illustrates how centrosomal Plk1 underlies mitotic spindle assembly. Inhibition of kinetochore-associated pools of AurA blocks phosphorylation of microtubule-kinetochore components. This versatile precision pharmacology tool enhances investigation of local kinase biology.
Collapse
Affiliation(s)
- Paula J Bucko
- Department of PharmacologyUniversity of WashingtonSeattleUnited States
| | - Chloe K Lombard
- Department of ChemistryUniversity of WashingtonSeattleUnited States
| | - Lindsay Rathbun
- Department of BiologySyracuse UniversitySyracuseUnited States
| | - Irvin Garcia
- Department of PharmacologyUniversity of WashingtonSeattleUnited States
| | - Akansha Bhat
- Department of PharmacologyUniversity of WashingtonSeattleUnited States
| | - Linda Wordeman
- Department of Physiology and BiophysicsUniversity of WashingtonSeattleUnited States
| | - F Donelson Smith
- Department of PharmacologyUniversity of WashingtonSeattleUnited States
| | - Dustin J Maly
- Department of ChemistryUniversity of WashingtonSeattleUnited States
| | - Heidi Hehnly
- Department of BiologySyracuse UniversitySyracuseUnited States
| | - John D Scott
- Department of PharmacologyUniversity of WashingtonSeattleUnited States
| |
Collapse
|
15
|
Fonti C, Saumet A, Abi‐Khalil A, Orsetti B, Cleroux E, Bender A, Dumas M, Schmitt E, Colinge J, Jacot W, Weber M, Sardet C, du Manoir S, Theillet C. Distinct oncogenes drive different genome and epigenome alterations in human mammary epithelial cells. Int J Cancer 2019; 145:1299-1311. [DOI: 10.1002/ijc.32413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/15/2019] [Accepted: 05/02/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Claire Fonti
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier Montpellier France
| | - Anne Saumet
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier Montpellier France
| | - Amanda Abi‐Khalil
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier Montpellier France
| | - Béatrice Orsetti
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier Montpellier France
- ICM, Institut Régional du Cancer de Montpellier Montpellier France
| | - Elouan Cleroux
- CNRS, University of Strasbourg, UMR 7242 Biotechnology and Cell Signaling Strasbourg France
| | - Ambre Bender
- CNRS, University of Strasbourg, UMR 7242 Biotechnology and Cell Signaling Strasbourg France
| | - Michael Dumas
- CNRS, University of Strasbourg, UMR 7242 Biotechnology and Cell Signaling Strasbourg France
| | - Emeline Schmitt
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier Montpellier France
| | - Jacques Colinge
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier Montpellier France
| | - William Jacot
- ICM, Institut Régional du Cancer de Montpellier Montpellier France
| | - Michael Weber
- CNRS, University of Strasbourg, UMR 7242 Biotechnology and Cell Signaling Strasbourg France
| | - Claude Sardet
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier Montpellier France
| | - Stanislas du Manoir
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier Montpellier France
| | - Charles Theillet
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier Montpellier France
- ICM, Institut Régional du Cancer de Montpellier Montpellier France
| |
Collapse
|
16
|
Colicino EG, Hehnly H. Regulating a key mitotic regulator, polo-like kinase 1 (PLK1). Cytoskeleton (Hoboken) 2018; 75:481-494. [PMID: 30414309 PMCID: PMC7113694 DOI: 10.1002/cm.21504] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/08/2018] [Accepted: 10/26/2018] [Indexed: 12/13/2022]
Abstract
During cell division, duplicated genetic material is separated into two distinct daughter cells. This process is essential for initial tissue formation during development and to maintain tissue integrity throughout an organism's lifetime. To ensure the efficacy and efficiency of this process, the cell employs a variety of regulatory and signaling proteins that function as mitotic regulators and checkpoint proteins. One vital mitotic regulator is polo-like kinase 1 (PLK1), a highly conserved member of the polo-like kinase family. Unique from its paralogues, it functions specifically during mitosis as a regulator of cell division. PLK1 is spatially and temporally enriched at three distinct subcellular locales; the mitotic centrosomes, kinetochores, and the cytokinetic midbody. These localization patterns allow PLK1 to phosphorylate specific downstream targets to regulate mitosis. In this review, we will explore how polo-like kinases were originally discovered and diverged into the five paralogues (PLK1-5) in mammals. We will then focus specifically on the most conserved, PLK1, where we will discuss what is known about how its activity is modulated, its role during the cell cycle, and new, innovative tools that have been developed to examine its function and interactions in cells.
Collapse
Affiliation(s)
- Erica G. Colicino
- Department of Cell and Developmental BiologyUpstate Medical UniversitySyracuseNew York
| | - Heidi Hehnly
- Department of Cell and Developmental BiologyUpstate Medical UniversitySyracuseNew York
- Department of BiologySyracuse UniversitySyracuseNew York
| |
Collapse
|
17
|
Colicino EG, Garrastegui AM, Freshour J, Santra P, Post DE, Kotula L, Hehnly H. Gravin regulates centrosome function through PLK1. Mol Biol Cell 2018; 29:532-541. [PMID: 29282278 PMCID: PMC6004580 DOI: 10.1091/mbc.e17-08-0524] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/19/2017] [Accepted: 12/23/2017] [Indexed: 11/11/2022] Open
Abstract
We propose to understand how the mitotic kinase PLK1 drives chromosome segregation errors, with a specific focus on Gravin, a PLK1 scaffold. In both three-dimensional primary prostate cancer cell cultures that are prone to Gravin depletion and Gravin short hairpin RNA (shRNA)-treated cells, an increase in cells containing micronuclei was noted in comparison with controls. To examine whether the loss of Gravin affected PLK1 distribution and activity, we utilized photokinetics and a PLK1 activity biosensor. Gravin depletion resulted in an increased PLK1 mobile fraction, causing the redistribution of active PLK1, which leads to increased defocusing and phosphorylation of the mitotic centrosome protein CEP215 at serine-613. Gravin depletion further led to defects in microtubule renucleation from mitotic centrosomes, decreased kinetochore-fiber integrity, increased incidence of chromosome misalignment, and subsequent formation of micronuclei following mitosis completion. Murine Gravin rescued chromosome misalignment and micronuclei formation, but a mutant Gravin that cannot bind PLK1 did not. These findings suggest that disruption of a Gravin-PLK1 interface leads to inappropriate PLK1 activity contributing to chromosome segregation errors, formation of micronuclei, and subsequent DNA damage.
Collapse
Affiliation(s)
- Erica G Colicino
- Department of Cell and Developmental Biology, Upstate Medical University, Syracuse, NY 13202
| | - Alice M Garrastegui
- Department of Cell and Developmental Biology, Upstate Medical University, Syracuse, NY 13202
- Department of Biology, Syracuse University, Syracuse, NY 13244
| | - Judy Freshour
- Department of Cell and Developmental Biology, Upstate Medical University, Syracuse, NY 13202
| | - Peu Santra
- Department of Cell and Developmental Biology, Upstate Medical University, Syracuse, NY 13202
| | - Dawn E Post
- Department of Urology, Upstate Medical University, Syracuse, NY 13202
| | - Leszek Kotula
- Department of Biochemistry, Upstate Medical University, Syracuse, NY 13202
- Department of Urology, Upstate Medical University, Syracuse, NY 13202
| | - Heidi Hehnly
- Department of Cell and Developmental Biology, Upstate Medical University, Syracuse, NY 13202
- Department of Urology, Upstate Medical University, Syracuse, NY 13202
| |
Collapse
|
18
|
Ramani K, Tomasi ML, Berlind J, Mavila N, Sun Z. Role of A-Kinase Anchoring Protein Phosphorylation in Alcohol-Induced Liver Injury and Hepatic Stellate Cell Activation. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:640-655. [PMID: 29305319 DOI: 10.1016/j.ajpath.2017.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/13/2017] [Accepted: 11/21/2017] [Indexed: 01/06/2023]
Abstract
Alcoholic liver injury is associated with hepatic stellate cell (HSC) activation. A-kinase anchoring protein 12 (AKAP12) scaffolds protein kinase C and cyclin-D1, which is regulated by its phosphorylation, and spatiotemporally controls cell proliferation, invasiveness, and chemotaxis. HSC activation induces AKAP12 expression, but the role of AKAP12's scaffolding activity in liver function is unknown. Because AKAP12 phosphorylation is enhanced in ethanol-treated HSCs, we examined AKAP12's scaffolding functions in alcohol-mediated HSC activation and liver injury. AKAP12 expression, interaction, and phosphorylation were assayed in in vitro and in vivo ethanol models and human subjects by real-time PCR, coimmunoprecipitation, immunoblotting, and phosphorylated proteomics/Phos-tag. Ethanol induced AKAP12 phosphorylation in the liver and in primary HSCs, but not in hepatocytes. AKAP12's scaffolding activity for protein kinase C/cyclin-D1 decreased in ethanol-treated HSCs but not hepatocytes. AKAP12 negatively regulated HSC activation, which was reversed by ethanol-mediated AKAP12 phosphorylation. AKAP12 interacted with heat shock protein 47 (HSP47), which chaperones collagen and induces its secretion. Ethanol inhibited AKAP12-HSP47 and induced HSP47-collagen interaction. Ethanol-induced phosphorylated AKAP12 was unable to bind to HSP47 compared with its unphosphorylated counterpart, thereby proving that ethanol-mediated phosphorylation of AKAP12 inhibited the HSP47-AKAP12 scaffold. Silencing AKAP12 facilitated the chaperoning of collagen by HSP47. Hence, AKAP12 scaffolds HSP47 and regulates collagen-HSP47 interaction. Ethanol quenches AKAP12's scaffolding activity through phosphorylation and facilitates HSC activation.
Collapse
Affiliation(s)
- Komal Ramani
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California.
| | - Maria Lauda Tomasi
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Joshua Berlind
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Nirmala Mavila
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Zhaoli Sun
- Transplant Biology Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
19
|
Reggi E, Diviani D. The role of A-kinase anchoring proteins in cancer development. Cell Signal 2017; 40:143-155. [DOI: 10.1016/j.cellsig.2017.09.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/08/2017] [Accepted: 09/14/2017] [Indexed: 02/06/2023]
|
20
|
Muramatsu M, Gao L, Peresie J, Balderman B, Akakura S, Gelman IH. SSeCKS/AKAP12 scaffolding functions suppress B16F10-induced peritoneal metastasis by attenuating CXCL9/10 secretion by resident fibroblasts. Oncotarget 2017; 8:70281-70298. [PMID: 29050279 PMCID: PMC5642554 DOI: 10.18632/oncotarget.20092] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/26/2017] [Indexed: 12/11/2022] Open
Abstract
SSeCKS/Gravin/AKAP12 (SSeCKS) is a kinase scaffolding protein known to suppress metastasis by attenuating tumor-intrinsic PKC- and Src-mediated signaling pathways [1]. In addition to downregulation in metastatic cells, in silico analyses identified SSeCKS downregulation in prostate or breast cancer-derived stroma, suggesting a microenvironmental cell role in controlling malignancy. Although orthotopic B16F10 and SM1WT1[BrafV600E] mouse melanoma tumors grew similarly in syngeneic WT or SSeCKS-null (KO) mice, KO hosts exhibited 5- to 10-fold higher levels of peritoneal metastasis, and this enhancement could be adoptively transferred by pre-injecting naïve WT mice with peritoneal fluid (PF), but not non-adherent peritoneal cells (PC), from naïve KO mice. B16F10 and SM1WT1 cells showed increased chemotaxis to KO-PF compared to WT-PF, corresponding to increased PF levels of multiple inflammatory mediators, including the Cxcr3 ligands, Cxcl9 and 10. Cxcr3 knockdown abrogated enhanced chemotaxis to KO-PF and peritoneal metastasis in KO hosts. Conditioned media from KO peritoneal membrane fibroblasts (PMF), but not from KO-PC, induced increased B16F10 chemotaxis over controls, which could be blocked with Cxcl10 neutralizing antibody. KO-PMF exhibited increased levels of the senescence markers, SA-β-galactosidase, p21waf1 and p16ink4a, and enhanced Cxcl10 secretion induced by inflammatory mediators, lipopolysaccharide, TNFα, IFNα and IFNγ. SSeCKS scaffolding-site mutants and small molecule kinase inhibitors were used to show that the loss of SSeCKS-regulated PKC, PKA and PI3K/Akt pathways are responsible for the enhanced Cxcl10 secretion. These data mark the first description of a role for stromal SSeCKS/AKAP12 in suppressing metastasis, specifically by attenuating signaling pathways that promote secretion of tumor chemoattractants in the peritoneum.
Collapse
Affiliation(s)
- Masashi Muramatsu
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
| | - Lingqiu Gao
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo 14263, NY, USA
| | - Jennifer Peresie
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo 14263, NY, USA
| | - Benjamin Balderman
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo 14263, NY, USA
| | - Shin Akakura
- Frontiers in Bioscience Research Institute in Aging and Cancer, Irvine 92618, CA, USA
| | - Irwin H Gelman
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo 14263, NY, USA
| |
Collapse
|
21
|
Jarrett SG, Wolf Horrell EM, D'Orazio JA. AKAP12 mediates PKA-induced phosphorylation of ATR to enhance nucleotide excision repair. Nucleic Acids Res 2016; 44:10711-10726. [PMID: 27683220 PMCID: PMC5159552 DOI: 10.1093/nar/gkw871] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 09/16/2016] [Accepted: 09/21/2016] [Indexed: 12/30/2022] Open
Abstract
Loss-of-function in melanocortin 1 receptor (MC1R), a GS protein-coupled receptor that regulates signal transduction through cAMP and protein kinase A (PKA) in melanocytes, is a major inherited melanoma risk factor. Herein, we report a novel cAMP-mediated response for sensing and responding to UV-induced DNA damage regulated by A-kinase-anchoring protein 12 (AKAP12). AKAP12 is identified as a necessary participant in PKA-mediated phosphorylation of ataxia telangiectasia mutated and Rad3-related (ATR) at S435, a post-translational event required for cAMP-enhanced nucleotide excision repair (NER). Moreover, UV exposure promotes ATR-directed phosphorylation of AKAP12 at S732, which promotes nuclear translocation of AKAP12–ATR-pS435. This complex subsequently recruits XPA to UV DNA damage and enhances 5′ strand incision. Preventing AKAP12's interaction with PKA or with ATR abrogates ATR-pS435 accumulation, delays recruitment of XPA to UV-damaged DNA, impairs NER and increases UV-induced mutagenesis. Our results define a critical role for AKAP12 as an UV-inducible scaffold for PKA-mediated ATR phosphorylation, and identify a repair complex consisting of AKAP12–ATR-pS435-XPA at photodamage, which is essential for cAMP-enhanced NER.
Collapse
Affiliation(s)
- Stuart G Jarrett
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Erin M Wolf Horrell
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA.,Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - John A D'Orazio
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA .,Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA.,Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA.,Department of Pharmacology and Nutritional Science, University of Kentucky College of Medicine, Lexington, KY 40536, USA.,Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| |
Collapse
|
22
|
Enhanced cAMP-stimulated protein kinase A activity in human fibrolamellar hepatocellular carcinoma. Pediatr Res 2016; 80:110-8. [PMID: 27027723 PMCID: PMC5105330 DOI: 10.1038/pr.2016.36] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 12/18/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND Fibrolamellar hepatocellular carcinoma (FL-HCC) affects children without underlying liver disease. A consistent mutation in FL-HCCs leads to fusion of the genes encoding a heat shock protein (DNAJB1) and the catalytic subunit of protein kinase A (PRKACA). We sought to characterize the resultant chimeric protein and its effects in FL-HCC. METHODS The expression pattern and subcellular localization of protein kinase A (PKA) subunits in FL-HCCs were compared to paired normal livers by quantitative polymerase chain reaction (qPCR), immunoblotting, and immunofluorescence. PKA activity was measured by radioactive kinase assay, and we determined whether the FL-HCC mutation is present in other primary liver tumors. RESULTS The fusion transcript and chimeric protein were detected exclusively in FL-HCCs. DNAJB1-PRKACA was expressed 10-fold higher than the wild-type PRKACA transcript, resulting in overexpression of the mutant protein in tumors. Consequently, FL-HCCs possess elevated cAMP-stimulated PKA activity compared to normal livers, despite similar Kms between the mutant and wild-type kinases. CONCLUSION FL-HCCs in children and young adults uniquely overexpress DNAJB1-PRKACA, which results in elevated cAMP-dependent PKA activity. These data suggest that aberrant PKA signaling contributes to liver tumorigenesis.
Collapse
|
23
|
Cherry AE, Haas BR, Naydenov AV, Fung S, Xu C, Swinney K, Wagenbach M, Freeling J, Canton DA, Coy J, Horne EA, Rickman B, Vicente JJ, Scott JD, Ho RJY, Liggitt D, Wordeman L, Stella N. ST-11: A New Brain-Penetrant Microtubule-Destabilizing Agent with Therapeutic Potential for Glioblastoma Multiforme. Mol Cancer Ther 2016; 15:2018-29. [PMID: 27325686 DOI: 10.1158/1535-7163.mct-15-0800] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 06/04/2016] [Indexed: 12/12/2022]
Abstract
Glioblastoma multiforme is a devastating and intractable type of cancer. Current antineoplastic drugs do not improve the median survival of patients diagnosed with glioblastoma multiforme beyond 14 to 15 months, in part because the blood-brain barrier is generally impermeable to many therapeutic agents. Drugs that target microtubules (MT) have shown remarkable efficacy in a variety of cancers, yet their use as glioblastoma multiforme treatments has also been hindered by the scarcity of brain-penetrant MT-targeting compounds. We have discovered a new alkylindole compound, ST-11, that acts directly on MTs and rapidly attenuates their rate of assembly. Accordingly, ST-11 arrests glioblastoma multiforme cells in prometaphase and triggers apoptosis. In vivo analyses reveal that unlike current antitubulin agents, ST-11 readily crosses the blood-brain barrier. Further investigation in a syngeneic orthotopic mouse model of glioblastoma multiforme shows that ST-11 activates caspase-3 in tumors to reduce tumor volume without overt toxicity. Thus, ST-11 represents the first member of a new class of brain-penetrant antitubulin therapeutic agents. Mol Cancer Ther; 15(9); 2018-29. ©2016 AACR.
Collapse
Affiliation(s)
- Allison E Cherry
- Department of Pharmacology, University of Washington, Seattle, Washington
| | - Brian R Haas
- Department of Pharmacology, University of Washington, Seattle, Washington
| | - Alipi V Naydenov
- Department of Pharmacology, University of Washington, Seattle, Washington. Graduate Program in Neurobiology and Behavior, University of Washington, Seattle, Washington
| | - Susan Fung
- Department of Pharmacology, University of Washington, Seattle, Washington. Graduate Program in Neurobiology and Behavior, University of Washington, Seattle, Washington
| | - Cong Xu
- Department of Pharmacology, University of Washington, Seattle, Washington
| | - Katie Swinney
- Department of Pharmacology, University of Washington, Seattle, Washington
| | - Michael Wagenbach
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Jennifer Freeling
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | - David A Canton
- Department of Pharmacology, University of Washington, Seattle, Washington. Howard Hughes Medical Institute, University of Washington, Seattle, Washington
| | - Jonathan Coy
- Department of Pharmacology, University of Washington, Seattle, Washington
| | - Eric A Horne
- Department of Pharmacology, University of Washington, Seattle, Washington
| | - Barry Rickman
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Juan Jesus Vicente
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - John D Scott
- Department of Pharmacology, University of Washington, Seattle, Washington. Howard Hughes Medical Institute, University of Washington, Seattle, Washington
| | - Rodney J Y Ho
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | - Denny Liggitt
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Linda Wordeman
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Nephi Stella
- Department of Pharmacology, University of Washington, Seattle, Washington. Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington.
| |
Collapse
|
24
|
Diviani D, Reggi E, Arambasic M, Caso S, Maric D. Emerging roles of A-kinase anchoring proteins in cardiovascular pathophysiology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1926-36. [PMID: 26643253 DOI: 10.1016/j.bbamcr.2015.11.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/20/2015] [Accepted: 11/23/2015] [Indexed: 01/08/2023]
Abstract
Heart and blood vessels ensure adequate perfusion of peripheral organs with blood and nutrients. Alteration of the homeostatic functions of the cardiovascular system can cause hypertension, atherosclerosis, and coronary artery disease leading to heart injury and failure. A-kinase anchoring proteins (AKAPs) constitute a family of scaffolding proteins that are crucially involved in modulating the function of the cardiovascular system both under physiological and pathological conditions. AKAPs assemble multifunctional signaling complexes that ensure correct targeting of the cAMP-dependent protein kinase (PKA) as well as other signaling enzymes to precise subcellular compartments. This allows local regulation of specific effector proteins that control the function of vascular and cardiac cells. This review will focus on recent advances illustrating the role of AKAPs in cardiovascular pathophysiology. The accent will be mainly placed on the molecular events linked to the control of vascular integrity and blood pressure as well as on the cardiac remodeling process associated with heart failure. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
Affiliation(s)
- Dario Diviani
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Lausanne 1005, Switzerland.
| | - Erica Reggi
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Lausanne 1005, Switzerland
| | - Miroslav Arambasic
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Lausanne 1005, Switzerland
| | - Stefania Caso
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Lausanne 1005, Switzerland
| | - Darko Maric
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Lausanne 1005, Switzerland
| |
Collapse
|
25
|
Hehnly H, Canton D, Bucko P, Langeberg LK, Ogier L, Gelman I, Santana LF, Wordeman L, Scott JD. A mitotic kinase scaffold depleted in testicular seminomas impacts spindle orientation in germ line stem cells. eLife 2015; 4:e09384. [PMID: 26406118 PMCID: PMC4612572 DOI: 10.7554/elife.09384] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/20/2015] [Indexed: 12/19/2022] Open
Abstract
Correct orientation of the mitotic spindle in stem cells underlies organogenesis. Spindle abnormalities correlate with cancer progression in germ line-derived tumors. We discover a macromolecular complex between the scaffolding protein Gravin/AKAP12 and the mitotic kinases, Aurora A and Plk1, that is down regulated in human seminoma. Depletion of Gravin correlates with an increased mitotic index and disorganization of seminiferous tubules. Biochemical, super-resolution imaging, and enzymology approaches establish that this Gravin scaffold accumulates at the mother spindle pole during metaphase. Manipulating elements of the Gravin-Aurora A-Plk1 axis prompts mitotic delay and prevents appropriate assembly of astral microtubules to promote spindle misorientation. These pathological responses are conserved in seminiferous tubules from Gravin(-/-) mice where an overabundance of Oct3/4 positive germ line stem cells displays randomized orientation of mitotic spindles. Thus, we propose that Gravin-mediated recruitment of Aurora A and Plk1 to the mother (oldest) spindle pole contributes to the fidelity of symmetric cell division.
Collapse
Affiliation(s)
- Heidi Hehnly
- Department of Pharmacology, Howard Hughes Medical Institute, University of Washington, Seattle, United States
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, United States
| | - David Canton
- Department of Pharmacology, Howard Hughes Medical Institute, University of Washington, Seattle, United States
| | - Paula Bucko
- Department of Pharmacology, Howard Hughes Medical Institute, University of Washington, Seattle, United States
| | - Lorene K Langeberg
- Department of Pharmacology, Howard Hughes Medical Institute, University of Washington, Seattle, United States
| | - Leah Ogier
- Department of Pharmacology, Howard Hughes Medical Institute, University of Washington, Seattle, United States
| | - Irwin Gelman
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, United States
| | - L Fernando Santana
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - Linda Wordeman
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - John D Scott
- Department of Pharmacology, Howard Hughes Medical Institute, University of Washington, Seattle, United States
| |
Collapse
|
26
|
Abstract
Cell division relies on coordinated regulation of the cell cycle. A process including a well-defined series of strictly regulated molecular mechanisms involving cyclin-dependent kinases, retinoblastoma protein, and polo-like kinases. Dysfunctions in cell cycle regulation are associated with disease such as cancer, diabetes, and neurodegeneration. Compartmentalization of cellular signaling is a common strategy used to ensure the accuracy and efficiency of cellular responses. Compartmentalization of intracellular signaling is maintained by scaffolding proteins, such as A-kinase anchoring proteins (AKAPs). AKAPs are characterized by their ability to anchor the regulatory subunits of protein kinase A (PKA), and thereby achieve guidance to different cellular locations via various targeting domains. Next to PKA, AKAPs also associate with several other signaling elements including receptors, ion channels, protein kinases, phosphatases, small GTPases, and phosphodiesterases. Taking the amount of possible AKAP signaling complexes and their diverse localization into account, it is rational to believe that such AKAP-based complexes regulate several critical cellular events of the cell cycle. In fact, several AKAPs are assigned as tumor suppressors due to their vital roles in cell cycle regulation. Here, we first briefly discuss the most important players of cell cycle progression. After that, we will review our recent knowledge of AKAPs linked to the regulation and progression of the cell cycle, with special focus on AKAP12, AKAP8, and Ezrin. At last, we will discuss this specific AKAP subset in relation to diseases with focus on a diverse subset of cancer.
Collapse
Affiliation(s)
- B Han
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands. .,Groningen Research Institute for Asthma and COPD, GRIAC, Groningen, The Netherlands.
| | - W J Poppinga
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD, GRIAC, Groningen, The Netherlands
| | - M Schmidt
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD, GRIAC, Groningen, The Netherlands
| |
Collapse
|
27
|
Abstract
Sequential transfer of information from one enzyme to the next within the confines of a protein kinase scaffold enhances signal transduction. Though frequently considered to be inert organizational elements, two recent reports implicate kinase-scaffolding proteins as active participants in signal relay.
Collapse
Affiliation(s)
- F Donelson Smith
- Howard Hughes Medical Institute, Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|
28
|
Esseltine JL, Scott JD. AKAP signaling complexes: pointing towards the next generation of therapeutic targets? Trends Pharmacol Sci 2013; 34:648-55. [PMID: 24239028 DOI: 10.1016/j.tips.2013.10.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/11/2013] [Accepted: 10/14/2013] [Indexed: 10/26/2022]
Abstract
A-kinase anchoring proteins (AKAPs) streamline signal transduction by localizing signaling enzymes with their substrates. Great strides have been made in elucidating the role of these macromolecular signaling complexes as new binding partners and novel AKAPs are continually being uncovered. The mechanics and dynamics of these multi-enzyme assemblies suggest that AKAP complexes are viable targets for therapeutic intervention. This review will highlight recent advances in AKAP research focusing on local signaling events that are perturbed in disease.
Collapse
Affiliation(s)
- Jessica L Esseltine
- Howard Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, USA
| | | |
Collapse
|
29
|
Cytogenetic characterization of HB2 epithelial cells from the human breast. In Vitro Cell Dev Biol Anim 2013; 50:48-55. [PMID: 23982912 DOI: 10.1007/s11626-013-9676-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 07/25/2013] [Indexed: 12/21/2022]
Abstract
HB2 is a cell line originated by subcloning of MTSV1-7 mammary luminal epithelial cells isolated from human milk and immortalization via introduction of the gene encoding simian virus 40 (SV40) large T antigen. Despite its wide utilization as non-neoplastic counterpart in assays aimed to elucidating various biochemical and genetical aspects of normal and tumoral breast cells, to our knowledge no literature data have so far appeared concerning the chromosomal characterization of the HB2 cells. Here, we report the cytogenetic characterization of the karyotype of HB2 cells, which puts in evidence the occurrence of changes in chromosomal number and structure and the presence of unidentified chromosomal markers in variable amount. Our results do not detract from the utility of HB2 cells in illustrating fundamental aspects of breast cell biology, but rather interject a note of caution into generalizing results obtained with this cell line to other non-immortalized epithelial cell populations from the human breast. Therefore, this work represents a useful resource for all who want to perform appropriate and focused future studies on this cell line and proposes precise indications for a knowledgeable use of HB2 cells.
Collapse
|
30
|
Schott MB, Grove B. Receptor-mediated Ca2+ and PKC signaling triggers the loss of cortical PKA compartmentalization through the redistribution of gravin. Cell Signal 2013; 25:2125-35. [PMID: 23838009 DOI: 10.1016/j.cellsig.2013.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 07/01/2013] [Indexed: 10/26/2022]
Abstract
A-Kinase Anchoring Proteins (AKAPs) direct the flow of cellular information by positioning multiprotein signaling complexes into proximity with effector proteins. However, certain AKAPs are not stationary but can undergo spatiotemporal redistribution in response to stimuli. Gravin, a 300kD AKAP that intersects with a diverse signaling array, is localized to the plasma membrane but has been shown to translocate to the cytosol following the elevation of intracellular calcium ([Ca(2+)]i). Despite the potential for gravin redistribution to impact multiple signaling pathways, the dynamics of this event remain poorly understood. In this study, quantitative microscopy of cells expressing gravin-EGFP revealed that Ca(2+) elevation caused the complete translocation of gravin from the cell cortex to the cytosol in as little as 60s of treatment with ionomycin or thapsigargin. In addition, receptor mediated signaling was also shown to cause gravin redistribution following ATP treatment, and this event required both [Ca(2+)]i elevation and PKC activation. To understand the mechanism for Ca(2+) mediated gravin dynamics, deletion of calmodulin-binding domains revealed that a fourth putative calmodulin binding domain called CB4 (a.a. 670-694) is critical for targeting gravin to the cell cortex despite its location downstream of gravin's membrane-targeting domains, which include an N-terminal myristoylation site and three polybasic domains. Finally, confocal microscopy of cells co-transfected with gravin-EYFP and PKA RII-ECFP revealed that gravin redistribution mediated by ionomycin, thapsigargin, and ATP each triggered the gravin-dependent loss of PKA localized at the cell cortex. Our results support the hypothesis that gravin redistribution regulates cross-talk between PKA-dependent signaling and receptor-mediated events involving Ca(2+) and PKC.
Collapse
Affiliation(s)
- Micah B Schott
- Department of Basic Sciences, UND School of Medicine and Health Sciences, 501 N Columbia Rd., Grand Forks, ND 58202-9037, USA
| | | |
Collapse
|
31
|
Affiliation(s)
- David A. Canton
- Howard Hughes Medical Institute; Department of Pharmacology; University of Washington; Seattle, WA USA
| | - John D. Scott
- Howard Hughes Medical Institute; Department of Pharmacology; University of Washington; Seattle, WA USA
| |
Collapse
|