1
|
Gao T, Sun Y, Leng P, Liu D, Guo Q, Li J. CDK4/6 inhibitors in breast cancer therapy: mechanisms of drug resistance and strategies for treatment. Front Pharmacol 2025; 16:1549520. [PMID: 40421216 PMCID: PMC12104243 DOI: 10.3389/fphar.2025.1549520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 04/24/2025] [Indexed: 05/28/2025] Open
Abstract
Dysregulated cell cycle progression is a well-established hallmark of cancer, driving the development of targeted antitumor therapies that intervene at specific phases of the cell cycle. Among these therapeutic targets, cyclin-dependent kinases 4 and 6 (CDK4/6) have emerged as critical regulators of cell cycle progression, with their aberrant activation being strongly implicated in tumorigenesis and cancer progression. Currently, multiple CDK4/6 inhibitors have received clinical approval for hormone receptor (HR)-positive/human epidermal growth factor receptor 2 (HER2)-negative breast cancer, demonstrating dual therapeutic mechanisms through both cell cycle arrest and enhancement of antitumor immunity. However, clinical implementation faces two major challenges: the inevitable development of acquired resistance during prolonged treatment, and the need for optimized combination strategies with other anticancer agents to achieve synergistic efficacy. This review systematically examines the molecular mechanisms underlying CDK4/6 inhibitor function and characterizes currently approved therapeutic agents. Importantly, it synthesizes recent discoveries regarding resistance mechanisms, including dysregulated cell cycle checkpoints, compensatory signaling pathway activation, and tumor microenvironment adaptations. Furthermore, we critically evaluate emerging combination therapeutic approaches targeting these resistance mechanisms. By integrating mechanistic insights with clinical evidence, this analysis aims to provide actionable strategies for overcoming therapeutic resistance and maximizing the clinical potential of CDK4/6 inhibitors in breast cancer management.
Collapse
Affiliation(s)
- Tong Gao
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ying Sun
- Department of Health Management Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ping Leng
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Donghua Liu
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qie Guo
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Li
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Blank HM, No EG, Polymenis M. Cdk activation by phosphorylation: linking growth signals to cell cycle control. Biochem Soc Trans 2025; 53:BST20253004. [PMID: 40358525 DOI: 10.1042/bst20253004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 04/10/2025] [Indexed: 05/15/2025]
Abstract
Cells adjust their proliferation in response to extrinsic factors and nutrients. Such inputs must reach the cell cycle machinery to ensure proper cell proliferation. This minireview focuses on evidence suggesting that phosphorylating the T-loop domain of cyclin-dependent kinases may be a critical and conserved conduit for these external signals. Understanding this regulatory mechanism could provide crucial insights into how all eukaryotic cells integrate external information to decide whether or not to divide.
Collapse
Affiliation(s)
- Heidi M Blank
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd., College Station, Texas 77843, U.S.A
| | - Eun-Gyu No
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd., College Station, Texas 77843, U.S.A
| | - Michael Polymenis
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd., College Station, Texas 77843, U.S.A
| |
Collapse
|
3
|
Lee CF, Pienta KJ, Amend SR. The involvement of cyclin-dependent kinase 7 (CDK7) and 9 (CDK9) in coordinating transcription and cell cycle checkpoint regulation. Cell Cycle 2025:1-13. [PMID: 40223539 DOI: 10.1080/15384101.2025.2485844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/24/2024] [Accepted: 10/08/2024] [Indexed: 04/15/2025] Open
Abstract
Cells regulate the expression of cell cycle-related genes, including cyclins essential for mitosis, through the transcriptional activity of the positive transcription elongation factor b (P-TEFb), a complex comprising CDK9, cyclin T, and transcription factors. P-TEFb cooperates with CDK7 to activate RNA polymerase. In response to DNA stress, the cell cycle shifts from mitosis to repair, triggering cell cycle arrest and the activation of DNA repair genes. This tight coordination between transcription, cell cycle progression, and DNA stress response is crucial for maintaining cellular integrity. Cyclin-dependent kinases CDK7 and CDK9 are central to both transcription and cell cycle regulation. CDK7 functions as the CDK-activating kinase (CAK), essential for activating other CDKs, while CDK9 acts as a critical integrator of signals from both the cell cycle and transcriptional machinery. This review elucidates the mechanisms by which CDK7 and CDK9 regulate the mitotic process and cell cycle checkpoints, emphasizing their roles in balancing cell growth, homeostasis, and DNA repair through transcriptional control.
Collapse
Affiliation(s)
- Cheng-Fan Lee
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, USA
| | - Kenneth J Pienta
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, USA
| | - Sarah R Amend
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, USA
| |
Collapse
|
4
|
Zhang W, Bradburn D, Heidebrink G, Liu Y, Jang H, Nussinov R, Kõivomägi M. Distinct Allosteric Networks in CDK4 and CDK6 in the Cell Cycle and in Drug Resistance. J Mol Biol 2025:169121. [PMID: 40174666 DOI: 10.1016/j.jmb.2025.169121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/04/2025]
Abstract
Cyclin-dependent kinases 4 and 6 (CDK4 and CDK6) are key regulators of the G1-S phase transition in the cell cycle. In cancer cells, CDK6 overexpression often outcompetes CDK4 in driving cell cycle progression, contributing to resistance against CDK4/6 inhibitors (CDK4/6i). This suggests distinct functional and conformational differences between these two kinases, despite their striking structural and sequence similarities. Understanding the mechanisms that differentiate CDK4 and CDK6 is crucial, as resistance to CDK4/6i-frequently linked to CDK6 overexpression-remains a significant therapeutic challenge. Notably, CDK6 is often upregulated in CDK4/6i-resistant cancers and rapidly proliferating hematopoietic stem cells, underscoring its unique regulatory roles. We hypothesize that their distinct conformational dynamics explain their differences in phosphorylation of retinoblastoma protein, Rb, inhibitor efficacy, and cell cycle control. This leads us to question how their dissimilar conformational dynamics encode their distinct actions. To elucidate their differential activities, molecular mechanisms, and inhibitor binding, we combine biochemical assays and molecular dynamics (MD) simulations. We discover that CDK4 and CDK6 have distinct allosteric networks connecting the β3-αC loop and the G-loop. CDK6 exhibits stronger coupling and shorter path lengths between these regions, resulting in higher kinase activity upon cyclin binding and impacting inhibitor specificity. We also discover an unrecognized role of the unstructured CDK6 C-terminus, which allosterically connects and stabilizes the R-spine, facilitating slightly higher activity. Our findings bridge the gap between the structural similarity and functional divergence of CDK4 and CDK6, advancing the understanding of kinase regulation in cancer biology.
Collapse
Affiliation(s)
- Wengang Zhang
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Devin Bradburn
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Gretchen Heidebrink
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA; Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ruth Nussinov
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA; Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Mardo Kõivomägi
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
5
|
Zhang W, Bradburn D, Heidebrink G, Liu Y, Jang H, Nussinov R, Kõivomägi M. Distinct allosteric networks in CDK4 and CDK6 in the cell cycle and in drug resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640857. [PMID: 40093074 PMCID: PMC11908124 DOI: 10.1101/2025.02.28.640857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Cyclin-dependent kinases 4 and 6 (CDK4 and CDK6) are key regulators of the G1-S phase transition in the cell cycle. In cancer cells, CDK6 overexpression often outcompetes CDK4 in driving cell cycle progression, contributing to resistance against CDK4/6 inhibitors (CDK4/6i). This suggests distinct functional and conformational differences between these two kinases, despite their striking structural and sequence similarities. Understanding the mechanisms that differentiate CDK4 and CDK6 is crucial, as resistance to CDK4/6i-frequently linked to CDK6 overexpression-remains a significant therapeutic challenge. Notably, CDK6 is often upregulated in CDK4/6i-resistant cancers and rapidly proliferating hematopoietic stem cells, underscoring its unique regulatory roles. We hypothesize that their distinct conformational dynamics explain their differences in phosphorylation of retinoblastoma protein, Rb, inhibitor efficacy, and cell cycle control. This leads us to question how their dissimilar conformational dynamics encode their distinct actions. To elucidate their differential activities, molecular mechanisms, and inhibitor binding, we combine biochemical assays and molecular dynamics (MD) simulations. We discover that CDK4 and CDK6 have distinct allosteric networks connecting the β3-αC loop and the G-loop. CDK6 exhibits stronger coupling and shorter path lengths between these regions, resulting in higher kinase activity upon cyclin binding and impacting inhibitor specificity. We also discover an unrecognized role of the unstructured CDK6 C-terminus, which allosterically connects and stabilizes the R-spine, facilitating slightly higher activity. Our findings bridge the gap between the structural similarity and functional divergence of CDK4 and CDK6, advancing the understanding of kinase regulation in cancer biology.
Collapse
Affiliation(s)
- Wengang Zhang
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, U.S.A
| | - Devin Bradburn
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, U.S.A
| | - Gretchen Heidebrink
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, U.S.A
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, U.S.A
| | - Hyunbum Jang
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, U.S.A
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, U.S.A
| | - Ruth Nussinov
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, U.S.A
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, U.S.A
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Mardo Kõivomägi
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, U.S.A
| |
Collapse
|
6
|
Nöltner L, Engeland K, Kohler R. CeDaD-a novel assay for simultaneous tracking of cell death and division in a single population. Cell Death Discov 2025; 11:86. [PMID: 40038265 PMCID: PMC11880512 DOI: 10.1038/s41420-025-02370-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/21/2025] [Accepted: 02/20/2025] [Indexed: 03/06/2025] Open
Abstract
The cell division cycle and the various forms of programmed cell death are interconnected. A prominent example is the tumor suppressor p53, which not only induces apoptosis but also plays an important role in the arrest of the cell cycle. Consequently, simultaneous analysis of cell division and cell death is frequently of significant interest in cell biology research. Traditionally, these processes require distinct assays, making concurrent analysis challenging. To address this, we present a novel combined assay, called CeDaD assay-Cell Death and Division assay-which allows for the simultaneous quantification of cell division and cell death within a single-cell population. This assay utilizes a straightforward flow cytometric approach, combining a staining based on carboxyfluorescein succinimidyl ester (CFSE) to monitor cell division with an annexin V-derived staining to assess the extent of cell death.
Collapse
Affiliation(s)
- Lukas Nöltner
- Molecular Oncology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Kurt Engeland
- Molecular Oncology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Robin Kohler
- Molecular Oncology, Faculty of Medicine, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
7
|
Jones T, Feng J, Luyties O, Cozzolino K, Sanford L, Rimel JK, Ebmeier CC, Shelby GS, Watts LP, Rodino J, Rajagopal N, Hu S, Brennan F, Maas ZL, Alnemy S, Richter WF, Koh AF, Cronin NB, Madduri A, Das J, Cooper E, Hamman KB, Carulli JP, Allen MA, Spencer S, Kotecha A, Marineau JJ, Greber BJ, Dowell RD, Taatjes DJ. TFIIH kinase CDK7 drives cell proliferation through a common core transcription factor network. SCIENCE ADVANCES 2025; 11:eadr9660. [PMID: 40020069 PMCID: PMC11870056 DOI: 10.1126/sciadv.adr9660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 01/28/2025] [Indexed: 03/03/2025]
Abstract
How cyclin-dependent kinase 7 (CDK7) coordinately regulates the cell cycle and RNA polymerase II transcription remains unclear. Here, high-resolution cryo-electron microscopy revealed how two clinically relevant inhibitors block CDK7 function. In cells, CDK7 inhibition rapidly suppressed transcription, but constitutively active genes were disproportionately affected versus stimulus-responsive. Distinct transcription factors (TFs) regulate constitutive versus stimulus-responsive genes. Accordingly, stimulus-responsive TFs were refractory to CDK7 inhibition whereas constitutively active "core" TFs were repressed. Core TFs (n = 78) are predominantly promoter associated and control cell cycle and proliferative gene expression programs across cell types. Mechanistically, rapid suppression of core TF function can occur through CDK7-dependent phosphorylation changes in core TFs and RB1. Moreover, CDK7 inhibition depleted core TF protein levels within hours, consistent with durable target gene suppression. Thus, a major but unappreciated biological function for CDK7 is regulation of a TF cohort that drives proliferation, revealing an apparent universal mechanism by which CDK7 coordinates RNAPII transcription with cell cycle CDK regulation.
Collapse
Affiliation(s)
- Taylor Jones
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Junjie Feng
- Institute for Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | - Olivia Luyties
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Kira Cozzolino
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Lynn Sanford
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80303, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO 80303, USA
| | - Jenna K. Rimel
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | | | - Grace S. Shelby
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Lotte P. Watts
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO 80303, USA
| | - Jessica Rodino
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | | | - Shanhu Hu
- Syros Pharmaceuticals, Cambridge, MA 02140, USA
| | - Finn Brennan
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Zachary L. Maas
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80303, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO 80303, USA
| | | | - William F. Richter
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Adrian F. Koh
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Achtseweg Noord 5, 5651 Eindhoven, Netherlands
| | - Nora B. Cronin
- London Consortium for High-Resolution Cryo-EM, The Francis Crick Institute, London NW1 1AT, UK
| | | | - Jhuma Das
- Syros Pharmaceuticals, Cambridge, MA 02140, USA
| | | | | | | | - Mary A. Allen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80303, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO 80303, USA
| | - Sabrina Spencer
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO 80303, USA
| | - Abhay Kotecha
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Achtseweg Noord 5, 5651 Eindhoven, Netherlands
| | | | - Basil J. Greber
- Institute for Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | - Robin D. Dowell
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80303, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO 80303, USA
| | - Dylan J. Taatjes
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| |
Collapse
|
8
|
He K, Sun X, Chen C, Luc S, Robichaud JH, Zhang Y, Huang Y, Ji B, Ku PI, Subramanian R, Ling K, Hu J. Non-canonical CDK6 activity promotes cilia disassembly by suppressing axoneme polyglutamylation. J Cell Biol 2025; 224:e202405170. [PMID: 39636239 PMCID: PMC11619382 DOI: 10.1083/jcb.202405170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/02/2024] [Accepted: 11/01/2024] [Indexed: 12/07/2024] Open
Abstract
Tubulin polyglutamylation is a posttranslational modification that occurs primarily along the axoneme of cilia. Defective axoneme polyglutamylation impairs cilia function and has been correlated with ciliopathies, including Joubert Syndrome (JBTS). However, the precise mechanisms regulating proper axoneme polyglutamylation remain vague. Here, we show that cyclin-dependent kinase 6 (CDK6), but not its paralog CDK4, localizes to the cilia base and suppresses axoneme polyglutamylation by phosphorylating RAB11 family interacting protein 5 (FIP5) at site S641, a critical regulator of cilia import of glutamylases. S641 phosphorylation disrupts the ciliary recruitment of FIP5 and its association with RAB11, thereby reducing the ciliary import of glutamylases. Encouragingly, the FDA-approved CDK4/6 inhibitor Abemaciclib can effectively restore cilia function in JBTS cells with defective glutamylation. In summary, our study elucidates the regulatory mechanisms governing axoneme polyglutamylation and suggests that developing CDK6-specific inhibitors could be a promising therapeutic strategy to enhance cilia function in ciliopathy patients.
Collapse
Affiliation(s)
- Kai He
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Xiaobo Sun
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Chuan Chen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - San Luc
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Jielu Hao Robichaud
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Yingyi Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Yan Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Biyun Ji
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Pei-I Ku
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Radhika Subramanian
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Kun Ling
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Jinghua Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Robert M. and Billie Kelley Pirnie Translational Polycystic Kidney Disease Center, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
9
|
Belew MD, Chen J, Cheng Z. Emerging roles of cyclin-dependent kinase 7 in health and diseases. Trends Mol Med 2025; 31:138-151. [PMID: 39414519 PMCID: PMC11825286 DOI: 10.1016/j.molmed.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 10/18/2024]
Abstract
Cyclin-dependent kinase 7 (CDK7) regulates cell cycle and transcription, which are central for cancer progression. CDK7 inhibitors exhibit substantial anticancer activities in preclinical studies and are currently being evaluated in clinical trials. CDK7 is widely expressed in the body. However, the impact of CDK7 inhibition on normal tissues has received little attention. Here, we review the biological functions of CDK7, followed by its emerging roles in development, homeostasis and diseases. We discuss the regulatory mechanisms of CDK7 kinase activation and provide an overview of CDK7 substrates identified to date. Moreover, we highlight unanswered questions and propose key areas for future investigation. An advanced understanding of CDK7 will facilitate the pharmaceutical development of CDK7 inhibitors and help minimize undesirable adverse effects.
Collapse
Affiliation(s)
- Mahder Dawit Belew
- Department of Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd., Spokane, WA 99202-2131, USA
| | - Jingrui Chen
- Department of Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd., Spokane, WA 99202-2131, USA
| | - Zhaokang Cheng
- Department of Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd., Spokane, WA 99202-2131, USA.
| |
Collapse
|
10
|
Shanabag A, Armand J, Son E, Yang HW. Targeting CDK4/6 in breast cancer. Exp Mol Med 2025; 57:312-322. [PMID: 39930131 PMCID: PMC11873051 DOI: 10.1038/s12276-025-01395-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 03/04/2025] Open
Abstract
Dysregulation of the cell cycle machinery, particularly the overactivation of cyclin-dependent kinases 4 and 6 (CDK4/6), is a hallmark of breast cancer pathogenesis. The introduction of CDK4/6 inhibitors has transformed the treatment landscape for hormone receptor-positive breast cancer by effectively targeting abnormal cell cycle progression. However, despite their initial clinical success, drug resistance remains a significant challenge, with no reliable biomarkers available to predict treatment response or guide strategies for managing resistant populations. Consequently, numerous studies have sought to investigate the mechanisms driving resistance to optimize the therapeutic use of CDK4/6 inhibitors and improve patient outcomes. Here we examine the molecular mechanisms regulating the cell cycle, current clinical applications of CDK4/6 inhibitors in breast cancer, and key mechanisms contributing to drug resistance. Furthermore, we discuss emerging predictive biomarkers and highlight potential directions for overcoming resistance and enhancing therapeutic efficacy.
Collapse
Affiliation(s)
- Anusha Shanabag
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Jessica Armand
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Eugene Son
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Hee Won Yang
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
| |
Collapse
|
11
|
Chen X, Shibu G, Sokolsky BA, Soussana TN, Fisher L, Deochand DK, Dacic M, Mantel I, Ramirez DC, Bell RD, Zhang T, Donlin LT, Goodman SM, Gray NS, Chinenov Y, Fisher RP, Rogatsky I. Disrupting the RNA polymerase II transcription cycle through CDK7 inhibition ameliorates inflammatory arthritis. Sci Transl Med 2024; 16:eadq5091. [PMID: 39565872 PMCID: PMC11756345 DOI: 10.1126/scitranslmed.adq5091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/11/2024] [Accepted: 10/21/2024] [Indexed: 11/22/2024]
Abstract
Macrophages are key drivers of inflammation and tissue damage in autoimmune diseases including rheumatoid arthritis. The rate-limiting step for transcription of more than 70% of inducible genes in macrophages is RNA polymerase II (Pol II) promoter-proximal pause release; however, the specific role of Pol II early elongation control in inflammation, and whether it can be modulated therapeutically, is unknown. Genetic ablation of a pause-stabilizing negative elongation factor (NELF) in macrophages did not affect baseline Pol II occupancy but enhanced the transcriptional response of paused anti-inflammatory genes to lipopolysaccharide followed by secondary attenuation of inflammatory signaling in vitro and in the K/BxN serum transfer mouse model of arthritis. To pharmacologically disrupt the Pol II transcription cycle, we used two covalent inhibitors of the transcription factor II H-associated cyclin-dependent kinase 7 (CDK7), THZ1 and YKL-5-124. Both reduced Pol II pausing in murine and human macrophages, broadly suppressed induction of pro- but not anti-inflammatory genes, and rapidly reversed preestablished inflammatory macrophage polarization. In mice, CDK7 inhibition ameliorated both acute and chronic progressive inflammatory arthritis. Lastly, CDK7 inhibition down-regulated a pathogenic gene expression signature in synovial explants from patients with rheumatoid arthritis. We propose that interfering with Pol II early elongation by targeting CDK7 represents a therapeutic opportunity for rheumatoid arthritis and other inflammatory diseases.
Collapse
Affiliation(s)
- Xi Chen
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Gayathri Shibu
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Baila A. Sokolsky
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | | | - Logan Fisher
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Dinesh K. Deochand
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Marija Dacic
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ian Mantel
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Daniel C. Ramirez
- Department of Pathology and Laboratory Medicine, Hospital for Special Surgery, New York, NY 10021, USA
| | - Richard D. Bell
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- David Z. Rosensweig Genomics Center, Hospital for Special Surgery, New York, NY 10021, USA
| | - Tinghu Zhang
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Laura T. Donlin
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Susan M. Goodman
- Division of Rheumatology, Hospital for Special Surgery, New York, NY 10021, USA
| | - Nathanael S. Gray
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Yurii Chinenov
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- David Z. Rosensweig Genomics Center, Hospital for Special Surgery, New York, NY 10021, USA
| | - Robert P. Fisher
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10021, USA
| | - Inez Rogatsky
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
- David Z. Rosensweig Genomics Center, Hospital for Special Surgery, New York, NY 10021, USA
| |
Collapse
|
12
|
Ji W, Du G, Jiang J, Lu W, Mills CE, Yuan L, Jiang F, He Z, Bradshaw GA, Chung M, Jiang Z, Byun WS, Hinshaw SM, Zhang T, Gray NS. Discovery of bivalent small molecule degraders of cyclin-dependent kinase 7 (CDK7). Eur J Med Chem 2024; 276:116613. [PMID: 39004018 PMCID: PMC11316633 DOI: 10.1016/j.ejmech.2024.116613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024]
Abstract
Cyclin-dependent kinase 7, along with cyclin H and MAT1, forms the CDK-activating complex (CAK), which directs cell cycle progression via T-loop phosphorylation of cell cycle CDKs. Pharmacological inhibition of CDK7 leads to selective anti-cancer effects in cellular and in vivo models, motivating several ongoing clinical investigations of this target. Current CDK7 inhibitors are either reversible or covalent inhibitors of its catalytic activity. We hypothesized that small molecule targeted protein degradation (TPD) might result in differentiated pharmacology due to the loss of scaffolding functions. Here, we report the design and characterization of a potent CDK7 degrader that is comprised of an ATP-competitive CDK7 binder linked to a CRL2VHL recruiter. JWZ-5-13 effectively degrades CDK7 in multiple cancer cells and leads to a potent inhibition of cell proliferation. Additionally, compound JWZ-5-13 displayed bioavailability in a pharmacokinetic study conducted in mice. Therefore, JWZ-5-13 is a useful chemical probe to investigate the pharmacological consequences of CDK7 degradation.
Collapse
Affiliation(s)
- Wenzhi Ji
- Department of Chemical and Systems Biology, Chem-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Guangyan Du
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Jie Jiang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Wenchao Lu
- Department of Chemical and Systems Biology, Chem-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Caitlin E Mills
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Linjie Yuan
- Department of Chemical and Systems Biology, Chem-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Fen Jiang
- Department of Chemical and Systems Biology, Chem-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Zhixiang He
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Gary A Bradshaw
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Mirra Chung
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Zixuan Jiang
- Department of Chemical and Systems Biology, Chem-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Woong Sub Byun
- Department of Chemical and Systems Biology, Chem-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Stephen M Hinshaw
- Department of Chemical and Systems Biology, Chem-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Tinghu Zhang
- Department of Chemical and Systems Biology, Chem-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA.
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, Chem-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
13
|
Wu S, Xu J, Ma Y, Liang G, Wang J, Sun T. Advances in the mechanism of CDK4/6 inhibitor resistance in HR+/HER2- breast cancer. Ther Adv Med Oncol 2024; 16:17588359241282499. [PMID: 39371618 PMCID: PMC11450575 DOI: 10.1177/17588359241282499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/24/2024] [Indexed: 10/08/2024] Open
Abstract
Among women, breast cancer is the most prevalent form of a malignant tumour. Among the subtypes of breast cancer, hormone receptor (HR) positive and human epidermal growth factor receptor (HER2) negative kinds make up the biggest proportion. The advent of cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors, which are dependent on cell cycle proteins, has greatly enhanced the prognosis of patients with advanced HR+/HER2- breast cancer. This is a specific treatment that stops the growth of cancer cells by preventing them from dividing. Nevertheless, the drug resistance of the disease unavoidably impacts the effectiveness of treatment and the prognosis of patients. This report provides a thorough analysis of the current research advancements about the resistance mechanism of CDK4/6 inhibitors in HR+/HER2- breast cancer. It presents an in-depth discussion from numerous viewpoints, such as aberrant cell cycle regulation and changes in signalling pathways. In response to the drug resistance problem, subsequent treatment strategies are also being explored, including switching to other CDK4/6 inhibitor drugs, a combination of novel endocrine therapeutic agents, an optimal combination of targeted therapies and switching to chemotherapy. An in-depth study of the resistance mechanism can assist in identifying creative tactics that can overcome or postpone drug resistance, alleviate the problem of restricted treatment strategies following drug resistance and enhance the prognosis of patients.
Collapse
Affiliation(s)
- Sijia Wu
- Breast Medicine Section One, Liaoning Cancer Hospital, Shenyang, Liaoning, China
| | - Junnan Xu
- Breast Medicine Section One, Liaoning Cancer Hospital, Shenyang, Liaoning, China
| | - Yiwen Ma
- Breast Medicine Section One, Liaoning Cancer Hospital, Shenyang, Liaoning, China
| | - Guilian Liang
- Breast Medicine Section One, Liaoning Cancer Hospital, Shenyang, Liaoning, China
| | - Jiaxing Wang
- Breast Medicine Section One, Liaoning Cancer Hospital, Shenyang, Liaoning, China
| | - Tao Sun
- Breast Medicine Section One, Liaoning Cancer Hospital, Shenyang, Liaoning 110000, China
| |
Collapse
|
14
|
Liu J, He L, Jiang W, Xie P. Global trends and topics in CDK7 inhibitor research: a bibliometric analysis. Front Pharmacol 2024; 15:1426988. [PMID: 39386027 PMCID: PMC11461233 DOI: 10.3389/fphar.2024.1426988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Background CDK7 has been demonstrated to play a crucial role in the initiation and progression of malignancy. Therefore, targeting CDK7, which regulates the transcription process, has emerged as a new promising approach for treating cancer. Research on CDK7 inhibitors has significantly increased over the past 2 decades, with almost 600 related papers in the Web of Science Core Collection database. To effectively identify future research hotspots and potential future directions, it is crucial to systematically review and visually present the research on this topic from a comprehensive viewpoint, ensuring scientific reliability. Methods This study performed bibliometric analysis via CiteSpace and VOSviewer scientometrics analysis software to examine data on the publication of articles on CDK7 inhibitors over the past 2 decades; the data included country of publication, author names, institution names, scientific categories, cited journals, and keywords related to the field of CDK7 inhibitors. Results This bibliometric analysis included 426 publications from 41 different nations, referencing a total of 15,892 sources. Research associated with CDK7 inhibitors has rapidly expanded since 2016, and the US and China are the two countries with the highest publication output among the countries and institutes that produce literature on CDK7 inhibitors. Furthermore, the US is the country that most frequently engages in international cooperation. The evolution of keywords identifying antitumor strategies related to CDK7-mediated cellular transcription processes has been the research focus in recent years. Conclusion In this study, we identified research efforts and their evolving patterns and predicted advances in the CDK7 inhibitor field. The knowledge structure of CDK7 inhibitors encompasses pharmacological mechanisms, therapeutic targets, and cancer treatment strategies. The primary objectives of contemporary research are to discover the processes underlying cancer progression, identify specific signaling pathways, and develop effective clinical medicines.
Collapse
Affiliation(s)
| | | | | | - Ping Xie
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
15
|
Lin JX, Ge M, Liu CY, Holewinski R, Andresson T, Yu ZX, Gebregiorgis T, Spolski R, Li P, Leonard WJ. Tyrosine phosphorylation of both STAT5A and STAT5B is necessary for maximal IL-2 signaling and T cell proliferation. Nat Commun 2024; 15:7372. [PMID: 39191751 PMCID: PMC11349758 DOI: 10.1038/s41467-024-50925-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Cytokine-mediated STAT5 protein activation is vital for lymphocyte development and function. In vitro tyrosine phosphorylation of a C-terminal tyrosine is critical for activation of STAT5A and STAT5B; however, the importance of STAT5 tyrosine phosphorylation in vivo has not been assessed. Here we generate Stat5a and Stat5b tyrosine-to-phenylalanine mutant knockin mice and find they have greatly reduced CD8+ T-cell numbers and profoundly diminished IL-2-induced proliferation of these cells, and this correlates with reduced induction of Myc, pRB, a range of cyclins and CDKs, and a partial G1→S phase-transition block. These mutant CD8+ T cells also exhibit decreased IL-2-mediated activation of pERK and pAKT, which we attribute in part to diminished expression of IL-2Rβ and IL-2Rγ. Our findings thus demonstrate that tyrosine phosphorylation of both STAT5A and STAT5B is essential for maximal IL-2 signaling. Moreover, our transcriptomic and proteomic analyses elucidate the molecular basis of the IL-2-induced proliferation of CD8+ T cells.
Collapse
Affiliation(s)
- Jian-Xin Lin
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892-1674, USA.
| | - Meili Ge
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892-1674, USA
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, PR China
| | - Cheng-Yu Liu
- Transgenic Mouse Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892-8018, USA
| | - Ronald Holewinski
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Thorkell Andresson
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Zu-Xi Yu
- Pathology Core, National Heart Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tesfay Gebregiorgis
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892-1674, USA
| | - Rosanne Spolski
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892-1674, USA
| | - Peng Li
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892-1674, USA
- Amgen, Inc., 2301 Research Blvd., Rockville, MD, 20850, USA
| | - Warren J Leonard
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892-1674, USA.
| |
Collapse
|
16
|
Marschall M, Schütz M, Wild M, Socher E, Wangen C, Dhotre K, Rawlinson WD, Sticht H. Understanding the Cytomegalovirus Cyclin-Dependent Kinase Ortholog pUL97 as a Multifaceted Regulator and an Antiviral Drug Target. Cells 2024; 13:1338. [PMID: 39195228 PMCID: PMC11352327 DOI: 10.3390/cells13161338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Herpesviral protein kinases, such as the therapy-relevant pUL97 of human cytomegalovirus (HCMV), are important for viral replication efficiency as well as pathogenesis, and represent key antiviral drug targets. HCMV pUL97 is a viral cyclin-dependent kinase (CDK) ortholog, as it shares functional and structural properties with human CDKs. Recently, the formation of vCDK/pUL97-cyclin complexes and the phosphorylation of a variety of viral and cellular substrate proteins has been demonstrated. Genetic mapping and structural modeling approaches helped to define two pUL97 interfaces, IF1 and IF2, responsible for cyclin binding. In particular, the regulatory importance of interactions between vCDK/pUL97 and host cyclins as well as CDKs has been highlighted, both as determinants of virus replication and as a novel drug-targeting option. This aspect was substantiated by the finding that virus replication was impaired upon cyclin type H knock-down, and that such host-directed interference also affected viruses resistant to existing therapies. Beyond the formation of binary interactive complexes, a ternary pUL97-cyclin H-CDK7 complex has also been described, and in light of this, an experimental trans-stimulation of CDK7 activity by pUL97 appeared crucial for virus-host coregulation. In accordance with this understanding, several novel antiviral targeting options have emerged. These include kinase inhibitors directed to pUL97, to host CDKs, and to the pUL97-cyclin H interactive complexes. Importantly, a statistically significant drug synergy has recently been reported for antiviral treatment schemes using combinations of pharmacologically relevant CDK7 and vCDK/pUL97 inhibitors, including maribavir. Combined, such findings provide increased options for anti-HCMV control. This review focuses on regulatory interactions of vCDK/pUL97 with the host cyclin-CDK apparatus, and it addresses the functional relevance of these key effector complexes for viral replication and pathogenesis. On this basis, novel strategies of antiviral drug targeting are defined.
Collapse
Affiliation(s)
- Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.S.); (M.W.); (C.W.); (K.D.)
| | - Martin Schütz
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.S.); (M.W.); (C.W.); (K.D.)
| | - Markus Wild
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.S.); (M.W.); (C.W.); (K.D.)
| | - Eileen Socher
- Institute of Anatomy, Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Christina Wangen
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.S.); (M.W.); (C.W.); (K.D.)
| | - Kishore Dhotre
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.S.); (M.W.); (C.W.); (K.D.)
| | - William D. Rawlinson
- Serology and Virology Division, NSW Health Pathology Microbiology, Prince of Wales Hospital, and Schools of Biomedical Sciences, Women’s and Children’s Health, Medicine and Biotechnology and Biomolecular Sciences, University of New South Wales, High Street, Sydney 2050, Australia;
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, FAU, 91054 Erlangen, Germany;
| |
Collapse
|
17
|
Zhang H, Tu Y, Tao Z, Gao L, Huang S, Gao M, Mao J, Zhou Y, Li Y, Li J, Zhou Y, Xu T. Design, Synthesis, and Biological Evaluation of 2,4-Diaminopyrimidine Derivatives as Potent CDK7 Inhibitors. ACS Med Chem Lett 2024; 15:1213-1220. [PMID: 39140066 PMCID: PMC11318012 DOI: 10.1021/acsmedchemlett.4c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024] Open
Abstract
Developing selective CDK7 inhibitors has emerged as a promising approach for cancer treatment owing to the critical role of CDK7 in cancer progression. Starting from BTX-A51, a CK1α inhibitor that also targets CDK7 and CDK9, we designed and synthesized a series of 2,4-diaminopyrimidine derivatives as potent CDK7 inhibitors. The representative compound, 22, displayed significant enzymatic inhibitory activity and demonstrated a remarkable selectivity profile against a panel of kinases, including seven CDK subtypes. Modeling studies and molecular dynamics simulations revealed that the sulfone group of 22 significantly enhanced the binding affinity, while the acetyl group contributed to the increased selectivity of CDK7 against CDK9. Compound 22 effectively inhibited the phosphorylation of RNA polymerase II and CDK2 and resulted in G1/S phase cell cycle arrest and apoptosis in MV4-11 cells. It appears to be a promising lead compound for the development of a CDK7 inhibitor for cancer therapy.
Collapse
Affiliation(s)
- Hualin Zhang
- Department
of Medicinal Chemistry, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- Department
of Chemistry, College of Sciences, Shanghai
University, Shanghai 200444, China
| | - Yutong Tu
- Zhongshan
Institute for Drug Discovery, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, Guangdong 528400, China
- The
National Center for Drug Screening, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaofan Tao
- Department
of Medicinal Chemistry, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixin Gao
- The
National Center for Drug Screening, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shengjie Huang
- State
Key Laboratory of Bioactive Molecules and Druggability Assessment,
International Cooperative Laboratory of Traditional Chinese Medicine
Modernization and Innovative Drug Discovery of Chinese Ministry of
Education, Guangzhou City Key Laboratory of Precision Chemical Drug
Development, School of Pharmacy, Jinan University, 855 Xingye Avenue, Guangzhou 510632, China
| | - Mingshan Gao
- Department
of Medicinal Chemistry, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Jialuo Mao
- Zhongshan
Institute for Drug Discovery, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, Guangdong 528400, China
- The
National Center for Drug Screening, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
| | - Yang Zhou
- State
Key Laboratory of Bioactive Molecules and Druggability Assessment,
International Cooperative Laboratory of Traditional Chinese Medicine
Modernization and Innovative Drug Discovery of Chinese Ministry of
Education, Guangzhou City Key Laboratory of Precision Chemical Drug
Development, School of Pharmacy, Jinan University, 855 Xingye Avenue, Guangzhou 510632, China
| | - Yupeng Li
- Department
of Pharmaceutical Sciences, School of Pharmacy and Border Biomedical
Research Center, The University of Texas
at EI Paso, EI Paso, Texas 79902, United States
| | - Jia Li
- Zhongshan
Institute for Drug Discovery, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, Guangdong 528400, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yubo Zhou
- Zhongshan
Institute for Drug Discovery, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, Guangdong 528400, China
- The
National Center for Drug Screening, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
| | - Tianfeng Xu
- Department
of Medicinal Chemistry, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- School
of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced
Study, University of Chinese Academy of
Sciences, Hangzhou 310024, China
| |
Collapse
|
18
|
Zhang W, Liu Y, Jang H, Nussinov R. Slower CDK4 and faster CDK2 activation in the cell cycle. Structure 2024; 32:1269-1280.e2. [PMID: 38703777 PMCID: PMC11316634 DOI: 10.1016/j.str.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/08/2024] [Accepted: 04/09/2024] [Indexed: 05/06/2024]
Abstract
Dysregulation of cyclin-dependent kinases (CDKs) impacts cell proliferation, driving cancer. Here, we ask why the cyclin-D/CDK4 complex governs cell cycle progression through the longer G1 phase, whereas cyclin-E/CDK2 regulates the shorter G1/S phase transition. We consider available experimental cellular and structural data including cyclin-E's high-level burst, sustained duration of elevated cyclin-D expression, and explicit solvent molecular dynamics simulations of the inactive monomeric and complexed states, to establish the conformational tendencies along the landscape of the distinct activation scenarios of cyclin-D/CDK4 and cyclin-E/CDK2 in the G1 phase and G1/S transition of the cell cycle, respectively. These lead us to propose slower activation of cyclin-D/CDK4 and rapid activation of cyclin-E/CDK2. We provide the mechanisms through which this occurs, offering innovative CDK4 drug design considerations. Our insightful mechanistic work addresses a compelling cell cycle regulation question and illuminates the distinct activation speeds between the G1 and the G1/S phases, which are crucial for function.
Collapse
Affiliation(s)
- Wengang Zhang
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
19
|
Düster R, Anand K, Binder SC, Schmitz M, Gatterdam K, Fisher RP, Geyer M. Structural basis of Cdk7 activation by dual T-loop phosphorylation. Nat Commun 2024; 15:6597. [PMID: 39097586 PMCID: PMC11297931 DOI: 10.1038/s41467-024-50891-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024] Open
Abstract
Cyclin-dependent kinase 7 (Cdk7) is required in cell-cycle and transcriptional regulation owing to its function as both a CDK-activating kinase (CAK) and part of transcription factor TFIIH. Cdk7 forms active complexes by associating with Cyclin H and Mat1, and is regulated by two phosphorylations in the activation segment (T loop): the canonical activating modification at T170 and another at S164. Here we report the crystal structure of the human Cdk7/Cyclin H/Mat1 complex containing both T-loop phosphorylations. Whereas pT170 coordinates basic residues conserved in other CDKs, pS164 nucleates an arginine network unique to the ternary Cdk7 complex, involving all three subunits. We identify differential dependencies of kinase activity and substrate recognition on the individual phosphorylations. CAK function is unaffected by T-loop phosphorylation, whereas activity towards non-CDK substrates is increased several-fold by T170 phosphorylation. Moreover, dual T-loop phosphorylation stimulates multisite phosphorylation of the RNA polymerase II (RNAPII) carboxy-terminal domain (CTD) and SPT5 carboxy-terminal repeat (CTR) region. In human cells, Cdk7 activation is a two-step process wherein S164 phosphorylation precedes, and may prime, T170 phosphorylation. Thus, dual T-loop phosphorylation can regulate Cdk7 through multiple mechanisms, with pS164 supporting tripartite complex formation and possibly influencing processivity, while pT170 enhances activity towards key transcriptional substrates.
Collapse
Affiliation(s)
- Robert Düster
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kanchan Anand
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Sophie C Binder
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Maximilian Schmitz
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Karl Gatterdam
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Robert P Fisher
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
20
|
Chen J, Wei J, Xia P, Liu Y, Belew MD, Toohill R, Wu BJ, Cheng Z. Inhibition of cyclin-dependent kinase 7 mitigates doxorubicin cardiotoxicity and enhances anticancer efficacy. Cardiovasc Res 2024; 120:1024-1036. [PMID: 38646672 PMCID: PMC11288736 DOI: 10.1093/cvr/cvae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 01/16/2024] [Accepted: 02/29/2024] [Indexed: 04/23/2024] Open
Abstract
AIMS The anthracycline family of anticancer agents such as doxorubicin (DOX) can induce apoptotic death of cardiomyocytes and cause cardiotoxicity. We previously reported that DOX-induced apoptosis is accompanied by cardiomyocyte cell cycle re-entry. Cell cycle progression requires cyclin-dependent kinase 7 (CDK7)-mediated activation of downstream cell cycle CDKs. This study aims to determine whether CDK7 can be targeted for cardioprotection during anthracycline chemotherapy. METHODS AND RESULTS DOX exposure induced CDK7 activation in mouse heart and isolated cardiomyocytes. Cardiac-specific ablation of Cdk7 attenuated DOX-induced cardiac dysfunction and fibrosis. Treatment with the covalent CDK7 inhibitor THZ1 also protected against DOX-induced cardiomyopathy and apoptosis. DOX treatment induced activation of the proapoptotic CDK2-FOXO1-Bim axis in a CDK7-dependent manner. In response to DOX, endogenous CDK7 directly bound and phosphorylated CDK2 at Thr160 in cardiomyocytes, leading to full CDK2 kinase activation. Importantly, inhibition of CDK7 further suppressed tumour growth when used in combination with DOX in an immunocompetent mouse model of breast cancer. CONCLUSION Activation of CDK7 is necessary for DOX-induced cardiomyocyte apoptosis and cardiomyopathy. Our findings uncover a novel proapoptotic role for CDK7 in cardiomyocytes. Moreover, this study suggests that inhibition of CDK7 attenuates DOX-induced cardiotoxicity but augments the anticancer efficacy of DOX. Therefore, combined administration of CDK7 inhibitor and DOX may exhibit diminished cardiotoxicity but superior anticancer activity.
Collapse
MESH Headings
- Animals
- Doxorubicin/toxicity
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/metabolism
- Cardiotoxicity
- Cyclin-Dependent Kinases/metabolism
- Cyclin-Dependent Kinases/antagonists & inhibitors
- Apoptosis/drug effects
- Protein Kinase Inhibitors/pharmacology
- Cyclin-Dependent Kinase 2/metabolism
- Cyclin-Dependent Kinase 2/antagonists & inhibitors
- Mice, Inbred C57BL
- Cyclin-Dependent Kinase-Activating Kinase
- Female
- Phenylenediamines/pharmacology
- Signal Transduction/drug effects
- Phosphorylation
- Mice, Knockout
- Cardiomyopathies/chemically induced
- Cardiomyopathies/enzymology
- Cardiomyopathies/prevention & control
- Cardiomyopathies/pathology
- Cardiomyopathies/metabolism
- Antibiotics, Antineoplastic/toxicity
- Pyrimidines/pharmacology
- Humans
- Fibrosis
- Cell Line, Tumor
- Mammary Neoplasms, Experimental/drug therapy
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/enzymology
- Mammary Neoplasms, Experimental/metabolism
- Ventricular Function, Left/drug effects
Collapse
Affiliation(s)
- Jingrui Chen
- Department of Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd., Spokane, WA 99202-2131, USA
| | - Jing Wei
- Department of Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd., Spokane, WA 99202-2131, USA
| | - Peng Xia
- Department of Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd., Spokane, WA 99202-2131, USA
| | - Yuening Liu
- Department of Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd., Spokane, WA 99202-2131, USA
| | - Mahder Dawit Belew
- Department of Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd., Spokane, WA 99202-2131, USA
| | - Ryan Toohill
- Department of Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd., Spokane, WA 99202-2131, USA
| | - Boyang Jason Wu
- Department of Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd., Spokane, WA 99202-2131, USA
| | - Zhaokang Cheng
- Department of Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd., Spokane, WA 99202-2131, USA
| |
Collapse
|
21
|
Xue Y, Zhai J. Strategy of combining CDK4/6 inhibitors with other therapies and mechanisms of resistance. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2024; 17:189-207. [PMID: 39114502 PMCID: PMC11301413 DOI: 10.62347/hgni4903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/29/2023] [Indexed: 08/10/2024]
Abstract
Cell cycle-dependent protein kinase 4/6 (CDK4/6) is a crucial kinase that regulates the cell cycle, essential for cell division and proliferation. Hence, combining CDK4/6 inhibitors with other anti-tumor drugs is a pivotal clinical strategy. This strategy can efficiently inhibit the growth and division of tumor cells, reduce the side effects, and improve the quality of life of patients by reducing the dosage of combined anticancer drugs. Furthermore, the combination therapy strategy of CDK4/6 inhibitors could ameliorate the drug resistance of combined drugs and overcome the CDK4/6 resistance caused by CDK4/6 inhibitors. Various tumor treatment strategies combined with CDK4/6 inhibitors have entered the clinical trial stage, demonstrating their substantial clinical potential. This study reviews the research progress of CDK4/6 inhibitors from 2018 to 2022, the related resistance mechanism of CDK4/6 inhibitors, and the strategy of combination medication.
Collapse
Affiliation(s)
- Yingfei Xue
- Tianjin University, School of Pharmaceutical Science and Technology (SPST)Tianjin 300072, China
| | - Jie Zhai
- Department of Breast Surgical Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of SciencesHangzhou 310022, Zhejiang, China
| |
Collapse
|
22
|
Zhang H, Lin J, Zheng S, Ma L, Pang Z, Yin H, Meng C, Wang Y, Han Q, Zhang X, Li Z, Cao L, Liu L, Fei T, Gao D, Yang L, Peng X, Ding C, Wang S, Sheng R. CDKL3 is a targetable regulator of cell cycle progression in cancers. J Clin Invest 2024; 134:e178428. [PMID: 38963708 PMCID: PMC11324297 DOI: 10.1172/jci178428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/25/2024] [Indexed: 07/06/2024] Open
Abstract
Cell cycle regulation is largely abnormal in cancers. Molecular understanding and therapeutic targeting of the aberrant cell cycle are essential. Here, we identified that an underappreciated serine/threonine kinase, cyclin-dependent kinase-like 3 (CDKL3), crucially drives rapid cell cycle progression and cell growth in cancers. With regard to mechanism, CDKL3 localizes in the nucleus and associates with specific cyclin to directly phosphorylate retinoblastoma (Rb) for quiescence exit. In parallel, CDKL3 prevents the ubiquitin-proteasomal degradation of cyclin-dependent kinase 4 (CDK4) by direct phosphorylation on T172 to sustain G1 phase advancement. The crucial function of CDKL3 in cancers was demonstrated both in vitro and in vivo. We also designed, synthesized, and characterized a first-in-class CDKL3-specific inhibitor, HZ1. HZ1 exhibits greater potency than CDK4/6 inhibitor in pan-cancer treatment by causing cell cycle arrest and overcomes acquired resistance to CDK4/6 inhibitor. In particular, CDKL3 has significant clinical relevance in colon cancer, and the effectiveness of HZ1 was demonstrated by murine and patient-derived cancer models. Collectively, this work presents an integrated paradigm of cancer cell cycle regulation and suggests CDKL3 targeting as a feasible approach in cancer treatment.
Collapse
Affiliation(s)
- Haijiao Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Jiahui Lin
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Shaoqin Zheng
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Lanjing Ma
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Zhongqiu Pang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Hongyi Yin
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Chengcheng Meng
- Department of Pathology, the Fourth People’s Hospital of Shenyang, Shenyang, China
| | - Yinuo Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Qing Han
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Xi Zhang
- College of Sciences, Northeastern University, Shenyang, China
| | - Zexu Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Liu Cao
- College of Basic Medical Science, China Medical University, Shenyang, China
| | - Lijun Liu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Teng Fei
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Daming Gao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Liang Yang
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Xueqiang Peng
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Chen Ding
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Shixue Wang
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Ren Sheng
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
23
|
Zhang H, Lin G, Jia S, Wu J, Zhang Y, Tao Y, Huang W, Song M, Ding K, Ma D, Fan M. Design, synthesis and evaluation of thieno[3,2-d]pyrimidine derivatives as novel potent CDK7 inhibitors. Bioorg Chem 2024; 148:107456. [PMID: 38761706 DOI: 10.1016/j.bioorg.2024.107456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
The targeting of cyclin-dependent kinase 7 (CDK7) has become a highly desirable therapeutic approach in the field of oncology due to its dual role in regulating essential biological processes, encompassing cell cycle progression and transcriptional control. We have previously identified a highly selective thieno[3,2-d]pyrimidine-based CDK7 inhibitor with demonstrated efficacy and safety in animal model. In this study, we sought to optimize the thieno[3,2-d]pyrimidine core to discover a novel series of CDK7 inhibitors with improved potency and pharmacokinetic (PK) properties. Through extensive structure-activity relationship (SAR) studies, compound 20 has emerged as the lead candidate due to its potent inhibitory activity against CDK7 and remarkable efficacy on MDA-MB-453 cells, a representative triple negative breast cancer (TNBC) cell line. Furthermore, 20 has demonstrated favorable oral bioavailability and exhibited highly desirable pharmacokinetic (PK) properties, making it a promising lead candidate for further structural optimization.
Collapse
Affiliation(s)
- Hongjin Zhang
- Academy of Medical Engineering and Translational Medicine (AMT), Tianjin University, Tianjin 300072, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China
| | - Guohao Lin
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Suyun Jia
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China; Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 20032, China
| | - Jianbo Wu
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Ying Zhang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yanxin Tao
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Weixue Huang
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 20032, China
| | - Meiru Song
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Institute of Chemistry, Henan Academy of Sciences, Zhengzhou, Henan 450046, China
| | - Ke Ding
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 20032, China.
| | - Dawei Ma
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 20032, China.
| | - Mengyang Fan
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China.
| |
Collapse
|
24
|
Kwon MR, Park JS, Ko EJ, Park J, Ju EJ, Shin SH, Son GW, Lee HW, Park YY, Kang MH, Kim YJ, Kim BM, Lee HJ, Kim TW, Kim CJ, Song SY, Park SS, Jeong SY. Ibulocydine Inhibits Migration and Invasion of TNBC Cells via MMP-9 Regulation. Int J Mol Sci 2024; 25:6123. [PMID: 38892310 PMCID: PMC11173234 DOI: 10.3390/ijms25116123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Triple-negative breast cancer (TNBC) accounts for approximately 15-20% of all breast cancer types, indicating a poor survival prognosis with a more aggressive biology of metastasis to the lung and a short response duration to available therapies. Ibulocydine (IB) is a novel (cyclin-dependent kinase) CDK7/9 inhibitor prodrug displaying potent anti-cancer effects against various cancer cell types. We performed in vitro and in vivo experiments to determine whether IB inhibits metastasis and eventually overcomes the poor drug response in TNBC. The result showed that IB inhibited the growth of TNBC cells by inducing caspase-mediated apoptosis and blocking metastasis by reducing MMP-9 expression in vitro. Concurrently, in vivo experiments using the metastasis model showed that IB inhibited metastasis of MDA-MB-231-Luc cells to the lung. Collectively, these results demonstrate that IB inhibited the growth of TNBC cells and blocked metastasis by regulating MMP-9 expression, suggesting a novel therapeutic agent for metastatic TNBC.
Collapse
Affiliation(s)
- Mi-Ri Kwon
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea
- Asan Preclinical Evaluation Center for Cancer Therapeutix, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Ji-Soo Park
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun-Jung Ko
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea
- Asan Preclinical Evaluation Center for Cancer Therapeutix, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Jin Park
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea
- Asan Preclinical Evaluation Center for Cancer Therapeutix, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Eun-Jin Ju
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea
- Asan Preclinical Evaluation Center for Cancer Therapeutix, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Seol-Hwa Shin
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea
- Asan Preclinical Evaluation Center for Cancer Therapeutix, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Ga-Won Son
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea
- Asan Preclinical Evaluation Center for Cancer Therapeutix, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Hye-Won Lee
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea
- Asan Preclinical Evaluation Center for Cancer Therapeutix, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Yun-Yong Park
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Myoung-Hee Kang
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Yeon-Joo Kim
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Byeong-Moon Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Hee-Jin Lee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Tae-Won Kim
- Asan Preclinical Evaluation Center for Cancer Therapeutix, Asan Medical Center, Seoul 05505, Republic of Korea
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Chong-Jai Kim
- Asan Preclinical Evaluation Center for Cancer Therapeutix, Asan Medical Center, Seoul 05505, Republic of Korea
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Si-Yeol Song
- Asan Preclinical Evaluation Center for Cancer Therapeutix, Asan Medical Center, Seoul 05505, Republic of Korea
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Seok-Soon Park
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea
- Asan Preclinical Evaluation Center for Cancer Therapeutix, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Seong-Yun Jeong
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea
- Asan Preclinical Evaluation Center for Cancer Therapeutix, Asan Medical Center, Seoul 05505, Republic of Korea
- Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| |
Collapse
|
25
|
Song X, Fang C, Dai Y, Sun Y, Qiu C, Lin X, Xu R. Cyclin-dependent kinase 7 (CDK7) inhibitors as a novel therapeutic strategy for different molecular types of breast cancer. Br J Cancer 2024; 130:1239-1248. [PMID: 38355840 PMCID: PMC11014910 DOI: 10.1038/s41416-024-02589-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/06/2024] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Cyclin-dependent kinase (CDK) 7 is aberrantly overexpressed in many types of cancer and is an attractive target for cancer therapy due to its dual role in transcription and cell cycle progression. Moreover, CDK7 can directly modulate the activities of estrogen receptor (ER), which is a major driver in breast cancer. Breast cancer cells have exhibited high sensitivity to CDK7 inhibition in pre-clinical studies. METHODS In this review, we provide a comprehensive summary of the latest insights into CDK7 biology and recent advancements in CDK7 inhibitor development for breast cancer treatment. We also discuss the current application of CDK7 inhibitors in different molecular types of breast cancer to provide potential strategies for the treatment of breast cancer. RESULTS Significant progress has been made in the development of selective CDK7 inhibitors, which show efficacy in both triple-negative breast cancer (TNBC) and hormone receptor-positive breast cancer (HR+). Moreover, combined with other agents, CDK7 inhibitors may provide synergistic effects for endocrine therapy and chemotherapy. Thus, high-quality studies for developing potent CDK7 inhibitors and investigating their applications in breast cancer therapy are rapidly emerging. CONCLUSION CDK7 inhibitors have emerged as a promising therapeutic strategy and have demonstrated significant anti-cancer activity in different subtypes of breast cancer, especially those that have been resistant to current therapies.
Collapse
Affiliation(s)
- Xue Song
- Department of Breast Cancer, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Chen Fang
- Department of Breast Cancer, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Yan Dai
- Department of Breast Cancer, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Yang Sun
- Department of Breast Cancer, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Chang Qiu
- Department of Breast Cancer, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Xiaojie Lin
- Department of Breast Cancer, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Rui Xu
- Department of Breast Cancer, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China.
| |
Collapse
|
26
|
Niu P, Tao Y, Lin G, Xu H, Meng Q, Yang K, Huang W, Song M, Ding K, Ma D, Fan M. Design and Synthesis of Novel Macrocyclic Derivatives as Potent and Selective Cyclin-Dependent Kinase 7 Inhibitors. J Med Chem 2024; 67:6099-6118. [PMID: 38586950 DOI: 10.1021/acs.jmedchem.3c01832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The duality of function (cell cycle regulation and gene transcription) of cyclin-dependent kinase 7 (CDK7) makes it an attractive oncology target and the discovery of CDK7 inhibitors has been a long-term pursuit by academia and pharmaceutical companies. However, achieving selective leading compounds is still difficult owing to the similarities among the ATP binding pocket. Herein, we detail the design and synthesis of a series of macrocyclic derivatives with pyrazolo[1,5-a]-1,3,5-triazine core structure as potent and selective CDK7 inhibitors. The diverse manners of macrocyclization led to distinguished selectivity profiles of the CDK family. Molecular dynamics (MD) simulation explained the binding difference between 15- and 16-membered macrocyclic compounds. Further optimization generated compound 37 exhibiting good CDK7 inhibitory activity and high selectivity over other CDKs. This work clearly demonstrated macrocyclization is a versatile method to finely tune the selectivity profile of small molecules and MD simulation can be a valuable tool in prioritizing designs of the macrocycle.
Collapse
Affiliation(s)
- Pengpeng Niu
- Academy of Medical Engineering and Translational Medicine (AMT), Tianjin University, Tianjin 300072, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China
| | - Yanxin Tao
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Guohao Lin
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Huiqi Xu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Qingyuan Meng
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Kang Yang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Weixue Huang
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 20032, China
| | - Meiru Song
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Ke Ding
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 20032, China
| | - Dawei Ma
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 20032, China
| | - Mengyang Fan
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
27
|
Gong Y, Li H. CDK7 in breast cancer: mechanisms of action and therapeutic potential. Cell Commun Signal 2024; 22:226. [PMID: 38605321 PMCID: PMC11010440 DOI: 10.1186/s12964-024-01577-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
Cyclin-dependent kinase 7 (CDK7) serves as a pivotal regulator in orchestrating cellular cycle dynamics and gene transcriptional activity. Elevated expression levels of CDK7 have been ubiquitously documented across a spectrum of malignancies and have been concomitantly correlated with adverse clinical outcomes. This review delineates the biological roles of CDK7 and explicates the molecular pathways through which CDK7 exacerbates the oncogenic progression of breast cancer. Furthermore, we synthesize the extant literature to provide a comprehensive overview of the advancement of CDK7-specific small-molecule inhibitors, encapsulating both preclinical and clinical findings in breast cancer contexts. The accumulated evidence substantiates the conceptualization of CDK7 as a propitious therapeutic target in breast cancer management.
Collapse
Affiliation(s)
- Ying Gong
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Huiping Li
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| |
Collapse
|
28
|
Greber BJ. High-resolution cryo-EM of a small protein complex: The structure of the human CDK-activating kinase. Structure 2024:S0969-2126(24)00085-6. [PMID: 38565138 DOI: 10.1016/j.str.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/27/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024]
Abstract
The human CDK-activating kinase (CAK) is a multifunctional protein complex and key regulator of cell growth and division. Because of its critical functions in regulating the cell cycle and transcription initiation, it is a key target for multiple cancer drug discovery programs. However, the structure of the active human CAK, insights into its regulation, and its interactions with cellular substrates and inhibitors remained elusive until recently due to the lack of high-resolution structures of the intact complex. This review covers the progress in structure determination of the human CAK by cryogenic electron microscopy (cryo-EM), from early efforts to recent near-atomic resolution maps routinely resolved at 2Å or better. These results were enabled by the latest cryo-EM technologies introduced after the initial phase of the "resolution revolution" and allowed the application of high-resolution methods to new classes of molecular targets, including small protein complexes that were intractable using earlier technology.
Collapse
Affiliation(s)
- Basil J Greber
- Division of Structural Biology, The Institute of Cancer Research, London SW3 6JB, UK.
| |
Collapse
|
29
|
Düster R, Anand K, Binder SC, Schmitz M, Gatterdam K, Fisher RP, Geyer M. Structural basis of Cdk7 activation by dual T-loop phosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580246. [PMID: 38405971 PMCID: PMC10888979 DOI: 10.1101/2024.02.14.580246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Cyclin-dependent kinase 7 (Cdk7) occupies a central position in cell-cycle and transcriptional regulation owing to its function as both a CDK-activating kinase (CAK) and part of the general transcription factor TFIIH. Cdk7 forms an active complex upon association with Cyclin H and Mat1, and its catalytic activity is regulated by two phosphorylations in the activation segment (T loop): the canonical activating modification at T170 and another at S164. Here we report the crystal structure of the fully activated human Cdk7/Cyclin H/Mat1 complex containing both T-loop phosphorylations. Whereas pT170 coordinates a set of basic residues conserved in other CDKs, pS164 nucleates an arginine network involving all three subunits that is unique to the ternary Cdk7 complex. We identify differential dependencies of kinase activity and substrate recognition on individual phosphorylations within the Cdk7 T loop. The CAK function of Cdk7 is not affected by T-loop phosphorylation, whereas activity towards non-CDK substrates is increased several-fold by phosphorylation at T170. Moreover, dual T-loop phosphorylation at both T170 and S164 stimulates multi-site phosphorylation of transcriptional substrates-the RNA polymerase II (RNAPII) carboxy-terminal domain (CTD) and the SPT5 carboxy-terminal repeat (CTR) region. In human cells, Cdk7-regulatory phosphorylation is a two-step process in which phosphorylation of S164 precedes, and may prime, T170 phosphorylation. Thus, dual T-loop phosphorylation can regulate Cdk7 through multiple mechanisms, with pS164 supporting tripartite complex formation and possibly influencing Cdk7 processivity, while the canonical pT170 enhances kinase activity towards critical substrates involved in transcription.
Collapse
Affiliation(s)
- Robert Düster
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kanchan Anand
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Sophie C. Binder
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Maximilian Schmitz
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Karl Gatterdam
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Robert P. Fisher
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
30
|
Garralda E, Schram AM, Bedard PL, Schwartz GK, Yuen E, McNeely SC, Ribeiro S, Cunningham J, Wang Y, Urunuela A, Xu X, LoRusso P. A Phase I Dose-Escalation Study of LY3405105, a Covalent Inhibitor of Cyclin-Dependent Kinase 7, Administered to Patients With Advanced Solid Tumors. Oncologist 2024; 29:e131-e140. [PMID: 37531083 PMCID: PMC10769797 DOI: 10.1093/oncolo/oyad215] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/16/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND This study aimed to evaluate the safety, pharmacokinetics (PKs), and preliminary activity of LY3405105, a covalent inhibitor of cyclin-dependent kinase 7 (CDK7), in patients with advanced solid tumors. MATERIALS AND METHODS LY3405105 monotherapy was given once daily (QD; part A1) or thrice weekly (TIW; part A2) starting at 1 and 2 mg orally, respectively, and escalated per a Bayesian design in adult patients. The primary endpoint was safety, and secondary endpoints included PKs and antitumor activity. RESULTS Fifty-four patients were enrolled: 43 in part A1 and 11 in part A2. Seven patients had dose-limiting toxicities, all in part A1 (45 mg: n = 3; 35 mg: n = 3; 25 mg: n = 1). Thirty-five patients (64.8%) reported at least one treatment-related adverse event (TRAE). TRAEs (≥10%) were diarrhea, nausea, fatigue, vomiting, abdominal pain, anemia, asthenia, and decreased platelet count. QD dosing showed sustained exposure with less peak-trough fluctuation compared to TIW dosing. Median time to maximum concentration was 1-2 hours and half-life was 15-19 hours. CDK7-target occupancy in skin and peripheral blood on day 15 was dose-dependent and reached near maximal occupancy of 75% at ≥15 mg QD. The maximum tolerated dose (MTD) was 20 mg QD. Twelve patients in part A1 (27.9%) and 5 patients in part A2 (45.5%) had a best overall response of stable disease. No complete response or partial response was observed. CONCLUSION The MTD of LY3405105 monotherapy was 20 mg QD. The most common toxicities were gastrointestinal adverse events, myelosuppression, fatigue, and asthenia. Limited clinical activity was observed in this phase I trial, and there are no plans for further development. CLINICALTRIALS.GOV IDENTIFIER NCT03770494.
Collapse
Affiliation(s)
- Elena Garralda
- Department of Medical Oncology, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Alison M Schram
- Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | - Philippe L Bedard
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Gary K Schwartz
- Columbia University Vagelos School of Medicine, Herbert Irving Comprehensive Cancer Center, New York, NY, USA
| | - Eunice Yuen
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | | | | | - Yi Wang
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Xiaojian Xu
- Eli Lilly and Company, Indianapolis, IN, USA
| | | |
Collapse
|
31
|
Zhang H, Lin G, Jia S, Zhang Y, Wu J, Tao Y, Huang W, Song M, Ding K, Ma D, Fan M. Discovery and optimization of thieno[3,2-d]pyrimidine derivatives as highly selective inhibitors of cyclin-dependent kinase 7. Eur J Med Chem 2024; 263:115955. [PMID: 38000213 DOI: 10.1016/j.ejmech.2023.115955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/05/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023]
Abstract
Targeting cyclin-dependent kinase 7 (CDK7) has emerged as a highly sought-after therapeutic strategy in oncology due to its duality of function in regulating biological processes, including cell cycle progression and transcriptional control. Herein, we describe the design, optimization and characterization of a series of thieno[3,2-d]pyrimidine derivatives as potent CDK7 inhibitors. The involvement of thiophene as core structure plays critical role in leading to the remarkable selectivity and incorporation of a fluorine atom into the piperidine ring enhances metabolic stability. Structure-activity relationship (SAR) study generated compound 36 as lead compound with potent inhibitory activity against CDK7 and good kinome selectivity in vitro. Compound 36 demonstrated strong efficacy against a triple negative breast cancer (TNBC) cell line-derived xenograft (CDX) mouse model upon oral administration at 5 mg/kg once daily. Therefore, it exhibits immense potential as a lead candidate for further exploration in the development of cancer therapy.
Collapse
Affiliation(s)
- Hongjin Zhang
- Academy of Medical Engineering and Translational Medicine (AMT), Tianjin University, Tianjin, 300072, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310018, China
| | - Guohao Lin
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310018, China; Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
| | - Suyun Jia
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310018, China; School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, China; Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 20032, China
| | - Ying Zhang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310018, China; College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Jianbo Wu
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310018, China; College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Yanxin Tao
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310018, China; School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Weixue Huang
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 20032, China
| | - Meiru Song
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310018, China; Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
| | - Ke Ding
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 20032, China.
| | - Dawei Ma
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 20032, China.
| | - Mengyang Fan
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310018, China; Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China.
| |
Collapse
|
32
|
Antonarelli G, Taurelli Salimbeni B, Marra A, Esposito A, Locatelli MA, Trapani D, Pescia C, Fusco N, Curigliano G, Criscitiello C. The CDK4/6 inhibitors biomarker landscape: The most relevant biomarkers of response or resistance for further research and potential clinical utility. Crit Rev Oncol Hematol 2023; 192:104148. [PMID: 37783318 DOI: 10.1016/j.critrevonc.2023.104148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/04/2023] Open
Abstract
Cyclin-Dependent Kinase 4/6 inhibitors (CDK4/6is) in combination with Endocrine Therapy (ET) represent the standard frontline therapy for patients with Hormone Receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative metastatic Breast Cancer (mBC). Clinical activity and efficacy of CDK4/6is-based therapies have been proven both in the endocrine sensitive and resistant settings. Therapy resistance eventually underpins clinical progression to any CDK4/6is-based therapies, yet there is a lack of validated molecular biomarkers predictive of either intrinsic or acquired resistance to CDK4/6is in clinical practice. As the "post-CDK4/6is" landscape for the management of HR-positive/HER2-negative mBC is rapidly evolving with the introduction of novel therapies, there is an urgent need for the definition of clinically relevant molecular biomarkers of intrinsic/acquired resistance mechanisms to CDK4/6is. This narrative review outlines the role of currently approved CDK4/6is-based therapies, describes the most relevant molecular biomarkers of CDK4/6is-resistance, and ultimately provides a perspective on the clinical and research scenario.
Collapse
Affiliation(s)
- Gabriele Antonarelli
- Department of Oncology and Haemato-Oncology (DIPO), University of Milan, Milan, Italy; Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, Milan, Italy
| | - Beatrice Taurelli Salimbeni
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, Milan, Italy
| | - Antonio Marra
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, Milan, Italy
| | - Angela Esposito
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, Milan, Italy
| | - Marzia Adelia Locatelli
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, Milan, Italy
| | - Dario Trapani
- Department of Oncology and Haemato-Oncology (DIPO), University of Milan, Milan, Italy; Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, Milan, Italy
| | - Carlo Pescia
- Division of Pathology, European Institute of Oncology (IEO), IRCCS, Milan, Italy
| | - Nicola Fusco
- Department of Oncology and Haemato-Oncology (DIPO), University of Milan, Milan, Italy; Division of Pathology, European Institute of Oncology (IEO), IRCCS, Milan, Italy
| | - Giuseppe Curigliano
- Department of Oncology and Haemato-Oncology (DIPO), University of Milan, Milan, Italy; Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, Milan, Italy
| | - Carmen Criscitiello
- Department of Oncology and Haemato-Oncology (DIPO), University of Milan, Milan, Italy; Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, Milan, Italy.
| |
Collapse
|
33
|
Wilson GA, Vuina K, Sava G, Huard C, Meneguello L, Coulombe-Huntington J, Bertomeu T, Maizels RJ, Lauring J, Kriston-Vizi J, Tyers M, Ali S, Bertoli C, de Bruin RAM. Active growth signaling promotes senescence and cancer cell sensitivity to CDK7 inhibition. Mol Cell 2023; 83:4078-4092.e6. [PMID: 37977119 DOI: 10.1016/j.molcel.2023.10.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 07/25/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023]
Abstract
Tumor growth is driven by continued cellular growth and proliferation. Cyclin-dependent kinase 7's (CDK7) role in activating mitotic CDKs and global gene expression makes it therefore an attractive target for cancer therapies. However, what makes cancer cells particularly sensitive to CDK7 inhibition (CDK7i) remains unclear. Here, we address this question. We show that CDK7i, by samuraciclib, induces a permanent cell-cycle exit, known as senescence, without promoting DNA damage signaling or cell death. A chemogenetic genome-wide CRISPR knockout screen identified that active mTOR (mammalian target of rapamycin) signaling promotes samuraciclib-induced senescence. mTOR inhibition decreases samuraciclib sensitivity, and increased mTOR-dependent growth signaling correlates with sensitivity in cancer cell lines. Reverting a growth-promoting mutation in PIK3CA to wild type decreases sensitivity to CDK7i. Our work establishes that enhanced growth alone promotes CDK7i sensitivity, providing an explanation for why some cancers are more sensitive to CDK inhibition than normally growing cells.
Collapse
Affiliation(s)
- Gemma A Wilson
- Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Karla Vuina
- Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Georgina Sava
- Division of Cancer, Department of Surgery & Cancer, Imperial College London, London, UK
| | - Caroline Huard
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Leticia Meneguello
- Laboratory for Molecular Cell Biology, University College London, London, UK; UCL Cancer Institute, University College London, London, UK
| | - Jasmin Coulombe-Huntington
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada; Department of Bioengineering, McGill University, Montréal, QC, Canada
| | - Thierry Bertomeu
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Rory J Maizels
- Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Josh Lauring
- Janssen Research and Development, the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Janos Kriston-Vizi
- Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Mike Tyers
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada; Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Simak Ali
- Division of Cancer, Department of Surgery & Cancer, Imperial College London, London, UK
| | - Cosetta Bertoli
- Laboratory for Molecular Cell Biology, University College London, London, UK.
| | - Robertus A M de Bruin
- Laboratory for Molecular Cell Biology, University College London, London, UK; UCL Cancer Institute, University College London, London, UK.
| |
Collapse
|
34
|
Wang Z, Himanen SV, Haikala HM, Friedel CC, Vihervaara A, Barborič M. Inhibition of CDK12 elevates cancer cell dependence on P-TEFb by stimulation of RNA polymerase II pause release. Nucleic Acids Res 2023; 51:10970-10991. [PMID: 37811895 PMCID: PMC10639066 DOI: 10.1093/nar/gkad792] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/11/2023] [Accepted: 09/22/2023] [Indexed: 10/10/2023] Open
Abstract
P-TEFb and CDK12 facilitate transcriptional elongation by RNA polymerase II. Given the prominence of both kinases in cancer, gaining a better understanding of their interplay could inform the design of novel anti-cancer strategies. While down-regulation of DNA repair genes in CDK12-targeted cancer cells is being explored therapeutically, little is known about mechanisms and significance of transcriptional induction upon inhibition of CDK12. We show that selective targeting of CDK12 in colon cancer-derived cells activates P-TEFb via its release from the inhibitory 7SK snRNP. In turn, P-TEFb stimulates Pol II pause release at thousands of genes, most of which become newly dependent on P-TEFb. Amongst the induced genes are those stimulated by hallmark pathways in cancer, including p53 and NF-κB. Consequently, CDK12-inhibited cancer cells exhibit hypersensitivity to inhibitors of P-TEFb. While blocking P-TEFb triggers their apoptosis in a p53-dependent manner, it impedes cell proliferation irrespective of p53 by preventing induction of genes downstream of the DNA damage-induced NF-κB signaling. In summary, stimulation of Pol II pause release at the signal-responsive genes underlies the functional dependence of CDK12-inhibited cancer cells on P-TEFb. Our study establishes the mechanistic underpinning for combinatorial targeting of CDK12 with either P-TEFb or the induced oncogenic pathways in cancer.
Collapse
Affiliation(s)
- Zhijia Wang
- Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki FIN-00014, Finland
| | - Samu V Himanen
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Heidi M Haikala
- Translational Immunology Research Program (TRIMM), Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki FIN-00014, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki FIN-00014, Finland
| | - Caroline C Friedel
- Institute of Informatics, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
| | - Anniina Vihervaara
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Matjaž Barborič
- Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki FIN-00014, Finland
| |
Collapse
|
35
|
Gomes I, Abreu C, Costa L, Casimiro S. The Evolving Pathways of the Efficacy of and Resistance to CDK4/6 Inhibitors in Breast Cancer. Cancers (Basel) 2023; 15:4835. [PMID: 37835528 PMCID: PMC10571967 DOI: 10.3390/cancers15194835] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
The approval of cyclin-dependent kinase 4 and 6 inhibitors (CDK4/6i) in combination with endocrine therapy (ET) has remarkably improved the survival outcomes of patients with advanced hormone receptor-positive (HR+) breast cancer (BC), becoming the new standard of care treatment in these patients. Despite the efficacy of this therapeutic combination, intrinsic and acquired resistance inevitably occurs and represents a major clinical challenge. Several mechanisms associated with resistance to CDK4/6i have been identified, including both cell cycle-related and cell cycle-nonspecific mechanisms. This review discusses new insights underlying the mechanisms of action of CDK4/6i, which are more far-reaching than initially thought, and the currently available evidence of the mechanisms of resistance to CDK4/6i in BC. Finally, it highlights possible treatment strategies to improve CDK4/6i efficacy, summarizing the most relevant clinical data on novel combination therapies involving CDK4/6i.
Collapse
Affiliation(s)
- Inês Gomes
- Luis Costa Lab, Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisbon, Portugal;
| | - Catarina Abreu
- Oncology Division, Hospital de Santa Maria—Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisbon, Portugal;
| | - Luis Costa
- Luis Costa Lab, Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisbon, Portugal;
- Oncology Division, Hospital de Santa Maria—Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisbon, Portugal;
| | - Sandra Casimiro
- Luis Costa Lab, Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisbon, Portugal;
| |
Collapse
|
36
|
Villa F, Crippa A, Pelizzoni D, Ardizzoia A, Scartabellati G, Corbetta C, Cipriani E, Lavitrano M, Ardizzoia A. Progression after First-Line Cyclin-Dependent Kinase 4/6 Inhibitor Treatment: Analysis of Molecular Mechanisms and Clinical Data. Int J Mol Sci 2023; 24:14427. [PMID: 37833875 PMCID: PMC10572355 DOI: 10.3390/ijms241914427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 10/15/2023] Open
Abstract
Cyclin-dependent kinase 4/6 inhibitors (CDK4/6iss) are widely used in first-line metastatic breast cancer. For patients with progression under CDK4/6is, there is currently no standard treatment recommended at the category 1 level in international guidelines. The purpose of this article is to review the cellular mechanisms underlying the resistance to CDK4/6is, as well as treatment strategies and the clinical data about the efficacy of subsequent treatments after CDK4/6is-based therapy. In the first part, this review mainly discusses cell-cycle-specific and cell-cycle-non-specific resistance to CDK4/6is, with a focus on early and late progression. In the second part, this review analyzes potential therapeutic approaches and the available clinical data on them: switching to other CDK4/6is, to another single hormonal therapy, to other target therapies (PI3K, mTOR and AKT) and to chemotherapy.
Collapse
Affiliation(s)
- Federica Villa
- Medical Oncology, Oncology Department ASST Lecco, 23900 Lecco, Italy; (A.C.); (D.P.); (C.C.); (E.C.); (A.A.)
| | - Alessandra Crippa
- Medical Oncology, Oncology Department ASST Lecco, 23900 Lecco, Italy; (A.C.); (D.P.); (C.C.); (E.C.); (A.A.)
| | - Davide Pelizzoni
- Medical Oncology, Oncology Department ASST Lecco, 23900 Lecco, Italy; (A.C.); (D.P.); (C.C.); (E.C.); (A.A.)
| | - Alessandra Ardizzoia
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milano, Italy; (A.A.); (M.L.)
| | - Giulia Scartabellati
- Medical Oncology, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy;
- Department of Medical and Surgical Specialties, Medical Oncology, University of Brescia, 25121 Brescia, Italy
| | - Cristina Corbetta
- Medical Oncology, Oncology Department ASST Lecco, 23900 Lecco, Italy; (A.C.); (D.P.); (C.C.); (E.C.); (A.A.)
| | - Eleonora Cipriani
- Medical Oncology, Oncology Department ASST Lecco, 23900 Lecco, Italy; (A.C.); (D.P.); (C.C.); (E.C.); (A.A.)
| | - Marialuisa Lavitrano
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milano, Italy; (A.A.); (M.L.)
| | - Antonio Ardizzoia
- Medical Oncology, Oncology Department ASST Lecco, 23900 Lecco, Italy; (A.C.); (D.P.); (C.C.); (E.C.); (A.A.)
| |
Collapse
|
37
|
Deng Z, Richardson DR. The Myc Family and the Metastasis Suppressor NDRG1: Targeting Key Molecular Interactions with Innovative Therapeutics. Pharmacol Rev 2023; 75:1007-1035. [PMID: 37280098 DOI: 10.1124/pharmrev.122.000795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/07/2023] [Accepted: 05/01/2023] [Indexed: 06/08/2023] Open
Abstract
Cancer is a leading cause of death worldwide, resulting in ∼10 million deaths in 2020. Major oncogenic effectors are the Myc proto-oncogene family, which consists of three members including c-Myc, N-Myc, and L-Myc. As a pertinent example of the role of the Myc family in tumorigenesis, amplification of MYCN in childhood neuroblastoma strongly correlates with poor patient prognosis. Complexes between Myc oncoproteins and their partners such as hypoxia-inducible factor-1α and Myc-associated protein X (MAX) result in proliferation arrest and pro-proliferative effects, respectively. Interactions with other proteins are also important for N-Myc activity. For instance, the enhancer of zest homolog 2 (EZH2) binds directly to N-Myc to stabilize it by acting as a competitor against the ubiquitin ligase, SCFFBXW7, which prevents proteasomal degradation. Heat shock protein 90 may also be involved in N-Myc stabilization since it binds to EZH2 and prevents its degradation. N-Myc downstream-regulated gene 1 (NDRG1) is downregulated by N-Myc and participates in the regulation of cellular proliferation via associating with other proteins, such as glycogen synthase kinase-3β and low-density lipoprotein receptor-related protein 6. These molecular interactions provide a better understanding of the biologic roles of N-Myc and NDRG1, which can be potentially used as therapeutic targets. In addition to directly targeting these proteins, disrupting their key interactions may also be a promising strategy for anti-cancer drug development. This review examines the interactions between the Myc proteins and other molecules, with a special focus on the relationship between N-Myc and NDRG1 and possible therapeutic interventions. SIGNIFICANCE STATEMENT: Neuroblastoma is one of the most common childhood solid tumors, with a dismal five-year survival rate. This problem makes it imperative to discover new and more effective therapeutics. The molecular interactions between major oncogenic drivers of the Myc family and other key proteins; for example, the metastasis suppressor, NDRG1, may potentially be used as targets for anti-neuroblastoma drug development. In addition to directly targeting these proteins, disrupting their key molecular interactions may also be promising for drug discovery.
Collapse
Affiliation(s)
- Zhao Deng
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia (Z.D., D.R.R.), and Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan (D.R.R.)
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia (Z.D., D.R.R.), and Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan (D.R.R.)
| |
Collapse
|
38
|
Yu M, Wu W, Sun Y, Yan H, Zhang L, Wang Z, Gong Y, Wang T, Li Q, Song J, Wang M, Zhang J, Tang Y, Zhan J, Zhang H. FRMD8 targets both CDK4 activation and RB degradation to suppress colon cancer growth. Cell Rep 2023; 42:112886. [PMID: 37527040 DOI: 10.1016/j.celrep.2023.112886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/25/2023] [Accepted: 07/13/2023] [Indexed: 08/03/2023] Open
Abstract
Cyclin-dependent kinase 4 (CDK4) and retinoblastoma protein (RB) are both important cell-cycle regulators that function in different scenarios. Here, we report that FERM domain-containing 8 (FRMD8) inhibits CDK4 activation and stabilizes RB, thereby causing cell-cycle arrest and inhibiting colorectal cancer (CRC) cell growth. FRMD8 interacts separately with CDK7 and CDK4, and it disrupts the interaction of CDK7 with CDK4, subsequently inhibiting CDK4 activation. FRMD8 competes with MDM2 to bind RB and attenuates MDM2-mediated RB degradation. Frmd8 deficiency in mice accelerates azoxymethane/dextran-sodium-sulfate-induced colorectal adenoma formation. The FRMD8 promoter is hypermethylated, and low expression of FRMD8 predicts poor prognosis in CRC patients. Further, we identify an LKCHE-containing FRMD8 peptide that blocks MDM2 binding to RB and stabilizes RB. Combined application of the CDK4 inhibitor and FRMD8 peptide leads to marked suppression of CRC cell growth. Therefore, using an LKCHE-containing peptide to interfere with the MDM2-RB interaction may have therapeutic value in CDK4/6 inhibitor-resistant patients.
Collapse
Affiliation(s)
- Miao Yu
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Weijie Wu
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Yi Sun
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Haoyi Yan
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Lei Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Zhenbin Wang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Yuqing Gong
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Tianzhuo Wang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Qianchen Li
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Jiagui Song
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Mengyuan Wang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Jing Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Yan Tang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Jun Zhan
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China.
| | - Hongquan Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
39
|
Zhang W, Liu Y, Jang H, Nussinov R. Cell cycle progression mechanisms: slower cyclin-D/CDK4 activation and faster cyclin-E/CDK2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.16.553605. [PMID: 37790340 PMCID: PMC10542123 DOI: 10.1101/2023.08.16.553605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Dysregulation of cyclin-dependent kinases (CDKs) impacts cell proliferation, driving cancer. Here, we ask why the cyclin-D/CDK4 complex governs cell cycle progression through the longer G1 phase, whereas cyclin-E/CDK2 regulates the short G1/S phase transition. We consider the experimentally established high-level bursting of cyclin-E, and sustained duration of elevated cyclin-D expression in the cell, available experimental cellular and structural data, and comprehensive explicit solvent molecular dynamics simulations to provide the mechanistic foundation of the distinct activation scenarios of cyclin-D/CDK4 and cyclin-E/CDK2 in the G1 phase and G1/S transition of the cell cycle, respectively. These lead us to propose slower activation of cyclin-D/CDK4 and rapid activation of cyclin-E/CDK2. Importantly, we determine the mechanisms through which this occurs, offering innovative CDK4 drug design considerations. Our insightful mechanistic work addresses the compelling cell cycle regulation question and illuminates the distinct activation speeds in the G1 versus G1/S phases, which are crucial for cell function.
Collapse
Affiliation(s)
- Wengang Zhang
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, U.S.A
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, U.S.A
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, U.S.A
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, U.S.A
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
40
|
Zhao S, Zhang H, Yang N, Yang J. A narrative review about CDK4/6 inhibitors in the setting of drug resistance: updates on biomarkers and therapeutic strategies in breast cancer. Transl Cancer Res 2023; 12:1617-1634. [PMID: 37434680 PMCID: PMC10331716 DOI: 10.21037/tcr-22-2807] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 05/11/2023] [Indexed: 07/13/2023]
Abstract
Background and Objective Previous studies have demonstrated that cyclin-dependent kinase 4/6 (CDK4/6) inhibitors combined with endocrine therapy are able to effectively improve the prognosis of hormone receptor positive (HR+), human epidermal growth factor receptor 2 (HER2) negative advanced breast cancer (ABC). Five CDK4/6 inhibitors, palbociclib, ribociclib, abemaciclib, dalpiciclib, and trilaciclib have been approved for the treatment of this breast cancer subset at present. The efficacy and safety profile of adding these CDK4/6 inhibitors to endocrine therapies in HR+ breast cancer has been proved in a number of clinical trials. Besides, extending the application of CDK4/6 inhibitors to HER2+ or triple negative breast cancers (TNBCs) has also led to some clinical benefits. Methods A comprehensive, non-systematic review of the latest literature about CDK4/6 inhibitors resistance in breast cancer was conducted. The examined database was PubMed/MEDLINE, and the last search was run on October 1, 2022. Key Content and Findings In this review, the generation of CDK4/6 inhibitors resistance is related to gene alteration, pathway dysregulation, and tumor microenvironment change. With a deeper insight in the mechanisms of CDK4/6 inhibitor resistance, some biomarkers have presented the potential to predict drug resistance and showed prognostic value. Furthermore, in preclinical studies, some modified treatment strategies based on CDK4/6 inhibitors exhibited effectiveness on drug-resistant tumors, suggesting a preventable or reversible drug-resistant status. Conclusions This review clarified the current knowledge about mechanisms, the biomarkers to overcome the drug resistance of CDK4/6 inhibitors, and the latest clinical progresses about CDK4/6 inhibitors. Possible approaches to overcome CDK4/6 inhibitors resistance were further discussed. For example, using another CDK4/6 inhibitor, PI3K inhibitor, mTOR inhibitor, or a novel drug.
Collapse
Affiliation(s)
- Shidi Zhao
- Cancer Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Precision Medicine Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Haochen Zhang
- Cancer Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Precision Medicine Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Na Yang
- Cancer Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Precision Medicine Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jin Yang
- Cancer Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Precision Medicine Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
41
|
Constantin TA, Varela-Carver A, Greenland KK, de Almeida GS, Olden E, Penfold L, Ang S, Ormrod A, Leach DA, Lai CF, Ainscow EK, Bahl AK, Carling D, Fuchter MJ, Ali S, Bevan CL. The CDK7 inhibitor CT7001 (Samuraciclib) targets proliferation pathways to inhibit advanced prostate cancer. Br J Cancer 2023; 128:2326-2337. [PMID: 37076563 PMCID: PMC10241923 DOI: 10.1038/s41416-023-02252-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Current strategies to inhibit androgen receptor (AR) are circumvented in castration-resistant prostate cancer (CRPC). Cyclin-dependent kinase 7 (CDK7) promotes AR signalling, in addition to established roles in cell cycle and global transcription, providing a rationale for its therapeutic targeting in CRPC. METHODS The antitumour activity of CT7001, an orally bioavailable CDK7 inhibitor, was investigated across CRPC models in vitro and in xenograft models in vivo. Cell-based assays and transcriptomic analyses of treated xenografts were employed to investigate the mechanisms driving CT7001 activity, alone and in combination with the antiandrogen enzalutamide. RESULTS CT7001 selectively engages with CDK7 in prostate cancer cells, causing inhibition of proliferation and cell cycle arrest. Activation of p53, induction of apoptosis, and suppression of transcription mediated by full-length and constitutively active AR splice variants contribute to antitumour efficacy in vitro. Oral administration of CT7001 represses growth of CRPC xenografts and significantly augments growth inhibition achieved by enzalutamide. Transcriptome analyses of treated xenografts indicate cell cycle and AR inhibition as the mode of action of CT7001 in vivo. CONCLUSIONS This study supports CDK7 inhibition as a strategy to target deregulated cell proliferation and demonstrates CT7001 is a promising CRPC therapeutic, alone or in combination with AR-targeting compounds.
Collapse
Affiliation(s)
- Theodora A Constantin
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Anabel Varela-Carver
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Kyle K Greenland
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Gilberto Serrano de Almeida
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Ellen Olden
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Lucy Penfold
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Simon Ang
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Alice Ormrod
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Damien A Leach
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Chun-Fui Lai
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Edward K Ainscow
- Carrick Therapeutics, Nova UCD, Bellfield Innovation Park, Dublin, 4, Ireland
| | - Ash K Bahl
- Carrick Therapeutics, Nova UCD, Bellfield Innovation Park, Dublin, 4, Ireland
| | - David Carling
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Matthew J Fuchter
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, UK
| | - Simak Ali
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Charlotte L Bevan
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK.
| |
Collapse
|
42
|
López-Hernández MN, Vázquez-Ramos JM. Maize CDKA2;1a and CDKB1;1 kinases have different requirements for their activation and participate in substrate recognition. FEBS J 2023; 290:2463-2488. [PMID: 36259272 DOI: 10.1111/febs.16659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/13/2022] [Accepted: 10/18/2022] [Indexed: 05/04/2023]
Abstract
Cyclin-dependent kinases (CDKs), in association with cyclins, control cell cycle progression by phosphorylating a large number of substrates. In animals, activation of CDKs regularly requires both the association with a cyclin and then phosphorylation of a highly conserved threonine residue in the CDK activation loop (the classical mechanism), mediated by a CDK-activating kinase (CAK). In addition to this typical mechanism of activation, some CDKs can also be activated by the association of a cyclin to a monomeric CDK previously phosphorylated by CAK although not all CDKs can be activated by this mechanism. In animals and yeast, cyclin, in addition to being required for CDK activation, provides substrate specificity to the cyclin/CDK complex; however, in plants both the mechanisms of CDKs activation and the relevance of the CDK-associated cyclin for substrate targeting have been poorly studied. In this work, by co-expressing proteins in E. coli, we studied maize CDKA2;1a and CDKB1;1, two of the main types of CDKs that control the cell cycle in plants. These kinases could be activated by the classical mechanism and by the association of CycD2;2a to a phosphorylated intermediate in its activation loop, a previously unproven mechanism for the activation of plant CDKs. Unlike CDKA2;1a, CDKB1;1 did not require CAK for its activation, since it autophosphorylated in its activation loop. Phosphorylation of CDKB1;1 and association of CycD2;2 was not enough for its full activation as association of maize CKS, a scaffolding protein, differentially stimulated substrate phosphorylation. Our results suggest that both CDKs participate in substrate recognition.
Collapse
Affiliation(s)
| | - Jorge M Vázquez-Ramos
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Mexico
| |
Collapse
|
43
|
Gangemi CG, Sabapathy RT, Janovjak H. CDK6 activity in a recurring convergent kinase network motif. FASEB J 2023; 37:e22845. [PMID: 36884374 PMCID: PMC11977600 DOI: 10.1096/fj.202201344r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/30/2023] [Accepted: 02/15/2023] [Indexed: 03/09/2023]
Abstract
In humans, more than 500 kinases phosphorylate ~15% of all proteins in an emerging phosphorylation network. Convergent local interaction motifs, in which ≥two kinases phosphorylate the same substrate, underlie feedback loops and signal amplification events but have not been systematically analyzed. Here, we first report a network-wide computational analysis of convergent kinase-substrate relationships (cKSRs). In experimentally validated phosphorylation sites, we find that cKSRs are common and involve >80% of all human kinases and >24% of all substrates. We show that cKSRs occur over a wide range of stoichiometries, in many instances harnessing co-expressed kinases from family subgroups. We then experimentally demonstrate for the prototypical convergent CDK4/6 kinase pair how multiple inputs phosphorylate the tumor suppressor retinoblastoma protein (RB) and thereby hamper in situ analysis of the individual kinases. We hypothesize that overexpression of one kinase combined with a CDK4/6 inhibitor can dissect convergence. In breast cancer cells expressing high levels of CDK4, we confirm this hypothesis and develop a high-throughput compatible assay that quantifies genetically modified CDK6 variants and inhibitors. Collectively, our work reveals the occurrence, topology, and experimental dissection of convergent interactions toward a deeper understanding of kinase networks and functions.
Collapse
Affiliation(s)
- Christina G Gangemi
- Australian Regenerative Medicine Institute (ARMI), Faculty of Medicine, Nursing and Health SciencesMonash UniversityVictoriaClayton/MelbourneAustralia
- European Molecular Biology Laboratory Australia (EMBL Australia)Monash UniversityVictoriaClayton/MelbourneAustralia
- Flinders Health and Medical Research InstituteCollege of Medicine and Public Health, Flinders UniversitySouth AustraliaBedford Park/AdelaideAustralia
| | - Rahkesh T. Sabapathy
- Flinders Health and Medical Research InstituteCollege of Medicine and Public Health, Flinders UniversitySouth AustraliaBedford Park/AdelaideAustralia
| | - Harald Janovjak
- Australian Regenerative Medicine Institute (ARMI), Faculty of Medicine, Nursing and Health SciencesMonash UniversityVictoriaClayton/MelbourneAustralia
- European Molecular Biology Laboratory Australia (EMBL Australia)Monash UniversityVictoriaClayton/MelbourneAustralia
- Flinders Health and Medical Research InstituteCollege of Medicine and Public Health, Flinders UniversitySouth AustraliaBedford Park/AdelaideAustralia
| |
Collapse
|
44
|
Hope I, Endicott JA, Watt JE. Emerging approaches to CDK inhibitor development, a structural perspective. RSC Chem Biol 2023; 4:146-164. [PMID: 36794018 PMCID: PMC9906319 DOI: 10.1039/d2cb00201a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Aberrant activity of the cyclin-dependent kinase family is frequently noted in a number of diseases identifying them as potential targets for drug development. However, current CDK inhibitors lack specificity owing to the high sequence and structural conservation of the ATP binding cleft across family members, highlighting the necessity of finding novel modes of CDK inhibition. The wealth of structural information regarding CDK assemblies and inhibitor complexes derived from X-ray crystallographic studies has been recently complemented through the use of cryo-electron microscopy. These recent advances have provided insights into the functional roles and regulatory mechanisms of CDKs and their interaction partners. This review explores the conformational malleability of the CDK subunit, the importance of SLiM recognition sites in CDK complexes, the progress made in chemically induced CDK degradation and how these studies can contribute to CDK inhibitor design. Additionally, fragment-based drug discovery can be utilised to identify small molecules that bind to allosteric sites on the CDK surface employing interactions which mimic those of native protein-protein interactions. These recent structural advances in CDK inhibitor mechanisms and in chemical probes which do not occupy the orthosteric ATP binding site can provide important insights for targeted CDK therapies.
Collapse
Affiliation(s)
- Ian Hope
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Paul O'Gorman Building, Framlington Place Newcastle upon Tyne NE2 4HH UK
| | - Jane A Endicott
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Paul O'Gorman Building, Framlington Place Newcastle upon Tyne NE2 4HH UK
| | - Jessica E Watt
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Paul O'Gorman Building, Framlington Place Newcastle upon Tyne NE2 4HH UK
| |
Collapse
|
45
|
Prabhu SA, Moussa O, Gonçalves C, LaPierre JH, Chou H, Huang F, Richard VR, Ferruzo PYM, Guettler EM, Soria-Bretones I, Kirby L, Gagnon N, Su J, Silvester J, Krisna SS, Rose AAN, Sheppard KE, Cescon DW, Mallette FA, Zahedi RP, Borchers CH, Del Rincon SV, Miller WH. Inhibition of the MNK1/2-eIF4E Axis Augments Palbociclib-Mediated Antitumor Activity in Melanoma and Breast Cancer. Mol Cancer Ther 2023; 22:192-204. [PMID: 36722142 DOI: 10.1158/1535-7163.mct-22-0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 10/12/2022] [Accepted: 12/08/2022] [Indexed: 02/02/2023]
Abstract
Aberrant cell-cycle progression is characteristic of melanoma, and CDK4/6 inhibitors, such as palbociclib, are currently being tested for efficacy in this disease. Despite the promising nature of CDK4/6 inhibitors, their use as single agents in melanoma has shown limited clinical benefit. Herein, we discovered that treatment of tumor cells with palbociclib induces the phosphorylation of the mRNA translation initiation factor eIF4E. When phosphorylated, eIF4E specifically engenders the translation of mRNAs that code for proteins involved in cell survival. We hypothesized that cancer cells treated with palbociclib use upregulated phosphorylated eIF4E (phospho-eIF4E) to escape the antitumor benefits of this drug. Indeed, we found that pharmacologic or genetic disruption of MNK1/2 activity, the only known kinases for eIF4E, enhanced the ability of palbociclib to decrease clonogenic outgrowth. Moreover, a quantitative proteomics analysis of melanoma cells treated with combined MNK1/2 and CDK4/6 inhibitors showed downregulation of proteins with critical roles in cell-cycle progression and mitosis, including AURKB, TPX2, and survivin. We also observed that palbociclib-resistant breast cancer cells have higher basal levels of phospho-eIF4E, and that treatment with MNK1/2 inhibitors sensitized these palbociclib-resistant cells to CDK4/6 inhibition. In vivo we demonstrate that the combination of MNK1/2 and CDK4/6 inhibition significantly increases the overall survival of mice compared with either monotherapy. Overall, our data support MNK1/2 inhibitors as promising drugs to potentiate the antineoplastic effects of palbociclib and overcome therapy-resistant disease.
Collapse
Affiliation(s)
- Sathyen A Prabhu
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| | - Omar Moussa
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| | | | - Judith H LaPierre
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| | - Hsiang Chou
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada
| | - Fan Huang
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| | - Vincent R Richard
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Pault Y M Ferruzo
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | | | - Isabel Soria-Bretones
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Laura Kirby
- Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Natascha Gagnon
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada
| | - Jie Su
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada
| | - Jennifer Silvester
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | | | - April A N Rose
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montréal, Québec, Canada
| | - Karen E Sheppard
- Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia
| | - David W Cescon
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- University of Toronto, Toronto, Ontario, Canada
| | - Frédérick A Mallette
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
- Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Rene P Zahedi
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
- McGill Centre for Translational Research in Cancer, McGill University, Montréal, Québec, Canada
| | - Christoph H Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montréal, Québec, Canada
- McGill Centre for Translational Research in Cancer, McGill University, Montréal, Québec, Canada
| | - Sonia V Del Rincon
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
- McGill Centre for Translational Research in Cancer, McGill University, Montréal, Québec, Canada
| | - Wilson H Miller
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
- McGill Centre for Translational Research in Cancer, McGill University, Montréal, Québec, Canada
| |
Collapse
|
46
|
Uehara T, Watanabe S, Yamaguchi S, Eguchi N, Sakamoto N, Oda Y, Arimura H, Kaku T, Ohishi Y, Mizuno S. Translocation of nuclear chromatin distribution to the periphery reflects dephosphorylated threonine-821/826 of the retinoblastoma protein (pRb) in T24 cells treated with Bacillus Calmette-Guérin. Cytotechnology 2023; 75:49-62. [PMID: 36713061 PMCID: PMC9880130 DOI: 10.1007/s10616-022-00559-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/10/2022] [Indexed: 11/21/2022] Open
Abstract
The standard treatment for non-muscle-invasive bladder cancer is intravesical Bacillus Calmette-Guérin (BCG) therapy, which is considered the only intravesical therapy that reduces the risk of progression to muscle-invasive cancer. BCG unresponsiveness, in which intravesical BCG therapy is ineffective, has become a problem. It is thus important to evaluate the effectiveness of BCG treatment for patients as soon as possible in order to identify the optimal therapy. Urine cytology is a noninvasive, easy, and cost-effective method that has been used during BCG treatment, but primarily only to determine benign or malignant status; findings concerning the efficacy of BCG treatment based on urine cytology have not been reported. We investigated the relationship between BCG exposure and nuclear an important criterion in urine cytology, i.e., nuclear chromatin patterns. We used three types of cultured cells to evaluate nuclear chromatin patterns and the cell cycle, and we used T24 cells to evaluate the phosphorylation of retinoblastoma protein (pRb) in six-times of BCG exposures. The results revealed that after the second BCG exposure, (i) nuclear chromatin is distributed predominantly at the nuclear periphery and (ii) the dephosphorylation of threonine-821/826 in pRb occurs. This is the first report of a dynamic change in the nuclear chromatin pattern induced by exposure to BCG. Molecular findings also suggested a relationship between this phenomenon and cell-cycle proteins. Although these results are preliminary, they contribute to our understanding of the cytomorphological changes that occur with BCG exposure.
Collapse
Affiliation(s)
- Toshitaka Uehara
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
- Central Laboratory, Iizuka Hospital, 3-83 Yoshio-machi, Iizuka-shi, Fukuoka, 820-8505 Japan
| | - Sumiko Watanabe
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Shota Yamaguchi
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Natsuki Eguchi
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Norie Sakamoto
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Hidetaka Arimura
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Tsunehisa Kaku
- Fukuoka International University of Health and Welfare, 3-6-40, Momochihama, Sawara-ku, Fukuoka, 814-0001 Japan
- Fukuoka Sanno Hospital, 3-6-45, Momochihama, Sawara-ku, Fukuoka, 814-0001 Japan
| | - Yoshihiro Ohishi
- Central Laboratory, Iizuka Hospital, 3-83 Yoshio-machi, Iizuka-shi, Fukuoka, 820-8505 Japan
- Department of Pathology, Iizuka Hospital, 3-83 Yoshio-machi, Iizuka-shi, Fukuoka, 820-8505 Japan
| | - Shinichi Mizuno
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| |
Collapse
|
47
|
Ji J, Liu W, Xu Y, Xu Z, Lv M, Feng J, Lv J, He X, Zhang Z, Xie M, Jing A, Wang X, Ma J, Liu B. WXJ-202, a novel Ribociclib derivative, exerts antitumor effects against breast cancer through CDK4/6. Front Pharmacol 2023; 13:1072194. [PMID: 36744210 PMCID: PMC9894725 DOI: 10.3389/fphar.2022.1072194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/26/2022] [Indexed: 01/20/2023] Open
Abstract
Cyclin-dependent kinases 4 and 6 (CDK4/6) are key regulatory proteins in the cell division and proliferative cycle in humans. They are overactive in many malignant tumors, particularly in triple-negative breast cancer (TNBC). Inhibition of CDK4/6 targets can have anti-tumor effects. Here, we designed and synthesized a novel derivative of Ribociclib that could affect CDK4/6, named WXJ-202. This study aimed to investigate the effects of compound WXJ-202 on proliferation, apoptosis, and cell cycle arrest in human breast cancer cell lines and their molecular mechanisms. We assayed cell viability with methyl thiazolyl tetrazolium (MTT) assay. Clone formation, migration, and invasion ability were assayed by clone formation assay, wound healing assay, and transwell invasion assay. The effect of compound WXJ-202 on apoptosis and cell cycle was detected by flow cytometry analysis. Western blotting was performed to detect the expression of proteins related to the CDK4/6-Rb-E2F pathway. The anti-cancer effects were studied in vivo transplantation tumor models. WXJ-202 was shown to inhibit cell proliferation, colony formation, migration, and invasion, as well as induce apoptosis and cycle arrest in breast cancer cells. The levels of proteins related to the CDK4/6-Rb-E2F pathway, such as CDK4, CDK6, and p-Rb, were decreased. Finally, studies had shown that compound WXJ-202 exhibited significant anti-tumor activity in transplantation tumor models. In this research, the compound WXJ-202 was shown to have better anti-tumor cell proliferative effects and could be used as a potential candidate against TNBC tumors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Xiujun Wang
- *Correspondence: Xiujun Wang, ; Jinming Ma, ; Bin Liu,
| | - Jinming Ma
- *Correspondence: Xiujun Wang, ; Jinming Ma, ; Bin Liu,
| | - Bin Liu
- *Correspondence: Xiujun Wang, ; Jinming Ma, ; Bin Liu,
| |
Collapse
|
48
|
Donovan MG, Galbraith MD, Espinosa JM. Multi-omics investigation reveals functional specialization of transcriptional cyclin dependent kinases in cancer biology. Sci Rep 2022; 12:22505. [PMID: 36577800 PMCID: PMC9797569 DOI: 10.1038/s41598-022-26860-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022] Open
Abstract
Transcriptional addiction is recognized as a valid therapeutic target in cancer, whereby the dependency of cancer cells on oncogenic transcriptional regulators may be pharmacologically exploited. However, a comprehensive understanding of the key factors within the transcriptional machinery that might afford a useful therapeutic window remains elusive. Herein, we present a cross-omics investigation into the functional specialization of the transcriptional cyclin dependent kinases (tCDKs) through analysis of high-content genetic dependency, gene expression, patient survival, and drug response datasets. This analysis revealed specialization among tCDKs in terms of contributions to cancer cell fitness, clinical prognosis, and interaction with oncogenic signaling pathways. CDK7 and CDK9 stand out as the most relevant targets, albeit through distinct mechanisms of oncogenicity and context-dependent contributions to cancer survival and drug sensitivity. Genetic ablation of CDK9, but not CDK7, mimics the effect on cell viability the loss of key components of the transcriptional machinery. Pathway analysis of genetic co-dependency and drug sensitivity data show CDK7 and CDK9 have distinct relationships with major oncogenic signatures, including MYC and E2F targets, oxidative phosphorylation, and the unfolded protein response. Altogether, these results inform the improved design of therapeutic strategies targeting tCDKs in cancer.
Collapse
Affiliation(s)
- Micah G Donovan
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Matthew D Galbraith
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Joaquin M Espinosa
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
49
|
Gonzalez-Valero A, Reeves AG, Page ACS, Moon PJ, Miller E, Coulonval K, Crossley SWM, Xie X, He D, Musacchio PZ, Christian AH, McKenna JM, Lewis RA, Fang E, Dovala D, Lu Y, McGregor LM, Schirle M, Tallarico JA, Roger PP, Toste FD, Chang CJ. An Activity-Based Oxaziridine Platform for Identifying and Developing Covalent Ligands for Functional Allosteric Methionine Sites: Redox-Dependent Inhibition of Cyclin-Dependent Kinase 4. J Am Chem Soc 2022; 144:22890-22901. [PMID: 36484997 PMCID: PMC10124963 DOI: 10.1021/jacs.2c04039] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Activity-based protein profiling (ABPP) is a versatile strategy for identifying and characterizing functional protein sites and compounds for therapeutic development. However, the vast majority of ABPP methods for covalent drug discovery target highly nucleophilic amino acids such as cysteine or lysine. Here, we report a methionine-directed ABPP platform using Redox-Activated Chemical Tagging (ReACT), which leverages a biomimetic oxidative ligation strategy for selective methionine modification. Application of ReACT to oncoprotein cyclin-dependent kinase 4 (CDK4) as a representative high-value drug target identified three new ligandable methionine sites. We then synthesized a methionine-targeting covalent ligand library bearing a diverse array of heterocyclic, heteroatom, and stereochemically rich substituents. ABPP screening of this focused library identified 1oxF11 as a covalent modifier of CDK4 at an allosteric M169 site. This compound inhibited kinase activity in a dose-dependent manner on purified protein and in breast cancer cells. Further investigation of 1oxF11 found prominent cation-π and H-bonding interactions stabilizing the binding of this fragment at the M169 site. Quantitative mass-spectrometry studies validated 1oxF11 ligation of CDK4 in breast cancer cell lysates. Further biochemical analyses revealed cross-talk between M169 oxidation and T172 phosphorylation, where M169 oxidation prevented phosphorylation of the activating T172 site on CDK4 and blocked cell cycle progression. By identifying a new mechanism for allosteric methionine redox regulation on CDK4 and developing a unique modality for its therapeutic intervention, this work showcases a generalizable platform that provides a starting point for engaging in broader chemoproteomics and protein ligand discovery efforts to find and target previously undruggable methionine sites.
Collapse
Affiliation(s)
- Angel Gonzalez-Valero
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Audrey G. Reeves
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Annika C. S. Page
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Patrick J. Moon
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Edward Miller
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Katia Coulonval
- Faculté de Médecine, Institute of Interdisciplinary Research, Université Libre de Bruxelles, Campus Erasme, Brussels 1070, Belgium
| | - Steven W. M. Crossley
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Xiao Xie
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Dan He
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Patricia Z. Musacchio
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Alec H. Christian
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Jeffrey M. McKenna
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Richard A. Lewis
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Eric Fang
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Dustin Dovala
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Yipin Lu
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Lynn M. McGregor
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Markus Schirle
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - John A. Tallarico
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Pierre P. Roger
- Faculté de Médecine, Institute of Interdisciplinary Research, Université Libre de Bruxelles, Campus Erasme, Brussels 1070, Belgium
| | - F. Dean Toste
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| |
Collapse
|
50
|
Li ZM, Liu G, Gao Y, Zhao MG. Targeting CDK7 in oncology: The avenue forward. Pharmacol Ther 2022; 240:108229. [PMID: 35700828 DOI: 10.1016/j.pharmthera.2022.108229] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 12/14/2022]
Abstract
Cyclin-dependent kinase (CDK) 7 is best characterized for the ability to regulate biological processes, including the cell cycle and gene transcription. Abnormal CDK7 activity is observed in various tumours and represents a driving force for tumourigenesis. Therefore, CDK7 may be an appealing target for cancer treatment. Whereas, the enthusiasm for CDK7-targeted therapeutic strategy is mitigated due to the widely possessed belief that this protein is essential for normal cells. Indeed, the fact confronts the consensus. This is the first review to introduce the role of CDK7 in pan-cancers via a combined analysis of comprehensive gene information and (pre)clinical research results. We also discuss the recent advances in protein structure and summarize the understanding of mechanisms underlying CDK7 function. These endeavours highlight the pivotal roles of CDK7 in tumours and may contribute to the development of effective CDK7 inhibitors within the strategy of structure-based drug discovery for cancer therapy.
Collapse
Affiliation(s)
- Zhi-Mei Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Guan Liu
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xinsi Road 1, Xi'an 710038, Shaanxi, PR China
| | - Ya Gao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, Henan, PR China.
| | - Ming-Gao Zhao
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China; Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xinsi Road 1, Xi'an 710038, Shaanxi, PR China.
| |
Collapse
|