1
|
Miyake K, Otawa S, Kushima M, Yui H, Shinohara R, Horiuchi S, Akiyama Y, Ooka T, Kojima R, Yokomichi H, Yamagata Z. Maternal alcohol consumption during pregnancy and child development: Role of ADH1B and ALDH2 gene polymorphisms-The Yamanashi Adjunct Study of the Japan Environment and Children's Study. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2025; 49:117-127. [PMID: 39537314 PMCID: PMC11740163 DOI: 10.1111/acer.15487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The role of polymorphisms in genes regulating alcohol metabolism, particularly those modulating the impact of prenatal alcohol exposure on the neurodevelopment of offspring, remains inconclusive. Herein, we aimed to determine the involvement of ADH1B and ALDH2 gene polymorphisms in maternal alcohol consumption during pregnancy and the risk of developmental delay in offspring in a Japanese population. METHODS We analyzed 1727 mother-child pairs from the Yamanashi Adjunct Study of the Japan Environment and Children's Study. Maternal alcohol consumption during pregnancy was determined through a mid-pregnancy questionnaire and categorized into three groups: never-drinkers, those who quit drinking in early pregnancy, and current drinkers. Developmental delays in children were assessed in five domains using the Japanese version of the Ages and Stages Questionnaire, Third Edition (J-ASQ-3) at 3 years of age. We conducted a logistic regression analysis to explore the relationship between maternal drinking status during pregnancy and developmental delays in offspring with respect to maternal ADH1B (rs1229984) or ALDH2 (rs671) gene polymorphisms. RESULTS Children born to mothers who continued alcohol consumption during pregnancy had a higher risk of delayed communication skills at 3 years of age compared with children born to mothers who did not drink alcohol (adjusted odds ratio [OR], 5.82; 95% confidence interval, 1.84-18.38). Analysis by ALDH2 gene polymorphism revealed that alcohol consumption by mothers carrying the wild-type ALDH2 (*1/*1) increased the risk of delayed communication skills at 3 years of age, whereas alcohol consumption by mothers carrying a heterozygotic genotype of ALDH2 (*1/*2) enhanced the risk of developmental delay in all five domains of the J-ASQ-3. The impact of ADH1B gene polymorphism could not be clearly elucidated. CONCLUSIONS Our results suggest that alcohol consumption by pregnant females carrying the deficient variant ALDH2*2 genotype may increase the risk of developmental delay in their offspring.
Collapse
Affiliation(s)
- Kunio Miyake
- Department of Epidemiology and Environmental Medicine, Interdisciplinary Graduate School of Medicine and EngineeringUniversity of YamanashiChuoJapan
| | - Sanae Otawa
- Center for Birth Cohort StudiesUniversity of YamanashiChuoJapan
| | - Megumi Kushima
- Center for Birth Cohort StudiesUniversity of YamanashiChuoJapan
| | - Hideki Yui
- Center for Birth Cohort StudiesUniversity of YamanashiChuoJapan
| | - Ryoji Shinohara
- Center for Birth Cohort StudiesUniversity of YamanashiChuoJapan
| | - Sayaka Horiuchi
- Department of Epidemiology and Environmental Medicine, Interdisciplinary Graduate School of Medicine and EngineeringUniversity of YamanashiChuoJapan
| | - Yuka Akiyama
- Department of Health Sciences, Interdisciplinary Graduate School of Medicine and EngineeringUniversity of YamanashiChuoJapan
| | - Tadao Ooka
- Department of Health Sciences, Interdisciplinary Graduate School of Medicine and EngineeringUniversity of YamanashiChuoJapan
| | - Reiji Kojima
- Department of Health Sciences, Interdisciplinary Graduate School of Medicine and EngineeringUniversity of YamanashiChuoJapan
| | - Hiroshi Yokomichi
- Department of Epidemiology and Environmental Medicine, Interdisciplinary Graduate School of Medicine and EngineeringUniversity of YamanashiChuoJapan
| | - Zentaro Yamagata
- Center for Birth Cohort StudiesUniversity of YamanashiChuoJapan
- Department of Health Sciences, Interdisciplinary Graduate School of Medicine and EngineeringUniversity of YamanashiChuoJapan
| |
Collapse
|
2
|
Mishra S, Krawic C, Luczak MW, Zhitkovich A. Monoubiquitinated H2B, a Main Chromatin Target of Formaldehyde, Is Important for S-Phase Checkpoint Signaling and Genome Stability. Mol Carcinog 2024; 63:2414-2424. [PMID: 39254477 PMCID: PMC11567799 DOI: 10.1002/mc.23819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/17/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024]
Abstract
Formaldehyde (FA) is a human carcinogen with ubiquitous environmental exposures and significant endogenous formation. Genotoxic activity of FA stems from its reactivity with DNA-NH2 groups. Histone lysines are another source of aldehyde-reactive amino groups in chromatin, however, chromatin/histone damage responses to FA and their biological significance are poorly understood. We examined histone posttranslational modifications in FA-treated human lung cells and found that the majority of the most prominent small lysine modifications associated with active or inactive chromatin were unchanged. FA moderately decreased H3K9 and H3K27 acetylation and H2A-K119 monoubiquitination but caused surprisingly severe losses of H2B-K120 monoubiquitination, especially in primary and stem-like cells. H2Aub1 decreases reflected its slower ubiquitination linked to a lower ubiquitin availability due to K48-polyubiquitination of FA-damaged proteins. Depletion of H2Bub1 resulted from its rapid deubiquitination in part by ATXN7L3-associated deubiquitinases and was independent on DNA damage signaling, indicating a direct chromatin damage response. Manipulations of H2Bub1 abundance showed that it was important for robust ATM and ATR signaling, efficient S-phase checkpoint, and suppression of mitotic transmission of unreplicated DNA and formation of micronuclei. Our findings identified H2B deubiquitination as a major FA-induced chromatin damage response that regulates S-phase checkpoint signaling and genome stability.
Collapse
Affiliation(s)
- Sasmita Mishra
- Brown University, Department Pathology and Laboratory Medicine, Providence, RI, 02903, USA
| | - Casey Krawic
- Brown University, Department Pathology and Laboratory Medicine, Providence, RI, 02903, USA
| | | | - Anatoly Zhitkovich
- Brown University, Department Pathology and Laboratory Medicine, Providence, RI, 02903, USA
| |
Collapse
|
3
|
Lu Y, Travnickova J, Badonyi M, Rambow F, Coates A, Khan Z, Marques J, Murphy LC, Garcia-Martinez P, Marais R, Louphrasitthiphol P, Chan AHY, Schofield CJ, von Kriegsheim A, Marsh JA, Pavet V, Sansom OJ, Illingworth RS, Patton EE. ALDH1A3-acetaldehyde metabolism potentiates transcriptional heterogeneity in melanoma. Cell Rep 2024; 43:114406. [PMID: 38963759 PMCID: PMC11290356 DOI: 10.1016/j.celrep.2024.114406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 05/08/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024] Open
Abstract
Cancer cellular heterogeneity and therapy resistance arise substantially from metabolic and transcriptional adaptations, but how these are interconnected is poorly understood. Here, we show that, in melanoma, the cancer stem cell marker aldehyde dehydrogenase 1A3 (ALDH1A3) forms an enzymatic partnership with acetyl-coenzyme A (CoA) synthetase 2 (ACSS2) in the nucleus to couple high glucose metabolic flux with acetyl-histone H3 modification of neural crest (NC) lineage and glucose metabolism genes. Importantly, we show that acetaldehyde is a metabolite source for acetyl-histone H3 modification in an ALDH1A3-dependent manner, providing a physiologic function for this highly volatile and toxic metabolite. In a zebrafish melanoma residual disease model, an ALDH1-high subpopulation emerges following BRAF inhibitor treatment, and targeting these with an ALDH1 suicide inhibitor, nifuroxazide, delays or prevents BRAF inhibitor drug-resistant relapse. Our work reveals that the ALDH1A3-ACSS2 couple directly coordinates nuclear acetaldehyde-acetyl-CoA metabolism with specific chromatin-based gene regulation and represents a potential therapeutic vulnerability in melanoma.
Collapse
Affiliation(s)
- Yuting Lu
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK; Edinburgh Cancer Research, CRUK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Jana Travnickova
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK; Edinburgh Cancer Research, CRUK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Mihaly Badonyi
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Florian Rambow
- Department of Applied Computational Cancer Research, Institute for AI in Medicine (IKIM), University Hospital Essen, 45131 Essen, Germany; University of Duisburg-Essen, 45141 Essen, Germany
| | - Andrea Coates
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK; Edinburgh Cancer Research, CRUK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Zaid Khan
- Edinburgh Cancer Research, CRUK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Jair Marques
- Edinburgh Cancer Research, CRUK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Laura C Murphy
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Pablo Garcia-Martinez
- Insitute of Genetics and Cancer, The Univeristy of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Richard Marais
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK; Oncodrug Ltd, Alderley Park, Macclesfield SK10 4TG, UK
| | - Pakavarin Louphrasitthiphol
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK
| | - Alex H Y Chan
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 5JJ, UK
| | - Christopher J Schofield
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 5JJ, UK
| | - Alex von Kriegsheim
- Edinburgh Cancer Research, CRUK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Valeria Pavet
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK; Cancer Research UK Beatson Institute, CRUK Scotland Centre, Garscube Estate, Switchback Road, Bearsden Glasgow G61 1BD, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, CRUK Scotland Centre, Garscube Estate, Switchback Road, Bearsden Glasgow G61 1BD, UK; School of Cancer Sciences, University of Glasgow, Glasgow G12 0ZD, UK
| | - Robert S Illingworth
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4UU, UK
| | - E Elizabeth Patton
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK; Edinburgh Cancer Research, CRUK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XR, UK.
| |
Collapse
|
4
|
Vieiros M, Navarro-Tapia E, Ramos-Triguero A, García-Meseguer À, Martínez L, García-Algar Ó, Andreu-Fernández V. Analysis of alcohol-metabolizing enzymes genetic variants and RAR/RXR expression in patients diagnosed with fetal alcohol syndrome: a case-control study. BMC Genomics 2024; 25:610. [PMID: 38886650 PMCID: PMC11184718 DOI: 10.1186/s12864-024-10516-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/11/2024] [Indexed: 06/20/2024] Open
Abstract
Understanding the mechanisms underlying alcohol metabolism and its regulation, including the effect of polymorphisms in alcohol-metabolizing enzymes, is crucial for research on Fetal Alcohol Spectrum Disorders. The aim of this study was to identify specific single nucleotide polymorphisms in key alcohol-metabolizing enzymes in a cohort of 71 children, including children with fetal alcohol syndrome, children prenatally exposed to ethanol but without fetal alcohol spectrum disorder, and controls. We hypothesized that certain genetic variants related to alcohol metabolism may be fixed in these populations, giving them a particular alcohol metabolism profile. In addition, the difference in certain isoforms of these enzymes determines their affinity for alcohol, which also affects the metabolism of retinoic acid, which is key to the proper development of the central nervous system. Our results showed that children prenatally exposed to ethanol without fetal alcohol spectrum disorder traits had a higher frequency of the ADH1B*3 and ADH1C*1 alleles, which are associated with increased alcohol metabolism and therefore a protective factor against circulating alcohol in the fetus after maternal drinking, compared to FAS children who had an allele with a lower affinity for alcohol. This study also revealed the presence of an ADH4 variant in the FAS population that binds weakly to the teratogen, allowing increased circulation of the toxic agent and direct induction of developmental abnormalities in the fetus. However, both groups showed dysregulation in the expression of genes related to the retinoic acid pathway, such as retinoic acid receptor and retinoid X receptor, which are involved in the development, regeneration, and maintenance of the nervous system. These findings highlight the importance of understanding the interplay between alcohol metabolism, the retinoic acid pathway and genetic factors in the development of fetal alcohol syndrome.
Collapse
Affiliation(s)
- Melina Vieiros
- Grup de Recerca Infància i Entorn (GRIE), Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- IdiPAZ - Instituto de Investigación Hospital Universitario La Paz, Madrid, Spain
- Department de Cirurgia i Especialitats Mèdico-Quirúrgiques, Universitat de Barcelona, Barcelona, Spain
| | - Elisabet Navarro-Tapia
- IdiPAZ - Instituto de Investigación Hospital Universitario La Paz, Madrid, Spain.
- Faculty of Health Sciences, Valencian International University, Valencia, Spain.
| | - Anna Ramos-Triguero
- Grup de Recerca Infància i Entorn (GRIE), Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Àgueda García-Meseguer
- Grup de Recerca Infància i Entorn (GRIE), Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Leopoldo Martínez
- IdiPAZ - Instituto de Investigación Hospital Universitario La Paz, Madrid, Spain
- Department of Pediatric Surgery, Hospital Universitario La Paz, Madrid, Spain
| | - Óscar García-Algar
- Grup de Recerca Infància i Entorn (GRIE), Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Neonatology, Hospital Clínic-Maternitat, ICGON, BCNatal, Barcelona, Spain
| | - Vicente Andreu-Fernández
- Grup de Recerca Infància i Entorn (GRIE), Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Biosanitary Research Institute, Valencian International University, Valencia, Spain.
| |
Collapse
|
5
|
Bona N, Crossan GP. Fanconi anemia DNA crosslink repair factors protect against LINE-1 retrotransposition during mouse development. Nat Struct Mol Biol 2023; 30:1434-1445. [PMID: 37580626 PMCID: PMC10584689 DOI: 10.1038/s41594-023-01067-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/13/2023] [Indexed: 08/16/2023]
Abstract
Long interspersed nuclear element 1 (LINE-1) is the only autonomous retrotransposon in humans and new integrations are a major source of genetic variation between individuals. These events can also lead to de novo germline mutations, giving rise to heritable genetic diseases. Recently, a role for DNA repair in regulating these events has been identified. Here we find that Fanconi anemia (FA) DNA crosslink repair factors act in a common pathway to prevent retrotransposition. We purify recombinant SLX4-XPF-ERCC1, the crosslink repair incision complex, and find that it cleaves putative nucleic acid intermediates of retrotransposition. Mice deficient in upstream crosslink repair signaling (FANCA), a downstream component (FANCD2) or the nuclease XPF-ERCC1 show increased LINE-1 retrotransposition in vivo. Organisms limit retrotransposition through transcriptional silencing but this protection is attenuated during early development leaving the zygote vulnerable. We find that during this window of vulnerability, DNA crosslink repair acts as a failsafe to prevent retrotransposition. Together, our results indicate that the FA DNA crosslink repair pathway acts together to protect against mutation by restricting LINE-1 retrotransposition.
Collapse
|
6
|
Gong Y, Liang Y, Liu J, Wei J, Zhang S, Chen F, Zhang Q, Wang L, Lan H, Wu L, Ge W, Li S, Wang L, Shan H, He H. DDX24 Is Essential for Cell Cycle Regulation in Vascular Smooth Muscle Cells During Vascular Development via Binding to FANCA mRNA. Arterioscler Thromb Vasc Biol 2023; 43:1653-1667. [PMID: 37470182 DOI: 10.1161/atvbaha.123.319505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND The DEAD-box family is essential for tumorigenesis and embryogenesis. Previously, we linked the malfunction of DDX (DEAD-box RNA helicase)-24 to a special type of vascular malformation. Here, we aim to investigate the function of DDX24 in vascular smooth muscle cells (VSMCs) and embryonic vascular development. METHODS Cardiomyocyte (CMC) and VSMC-specific Ddx24 knockout mice were generated by crossing Tagln-Cre mice with Ddx24flox/flox transgenic mice. The development of blood vessels was explored by stereomicroscope photography and immunofluorescence staining. Flow cytometry and cell proliferation assays were used to verify the regulation of DDX24 on the function of VSMCs. RNA sequencing and RNA immunoprecipitation coupled with quantitative real-time polymerase chain reaction were combined to investigate DDX24 downstream regulatory molecules. RNA pull-down and RNA stability experiments were performed to explore the regulation mechanism of DDX24. RESULTS CMC/VSMC-specific Ddx24 knockout mice died before embryonic day 13.5 with defects in vessel formation and abnormal vascular remodeling in extraembryonic tissues. Ddx24 knockdown suppressed VSMC proliferation via cell cycle arrest, likely due to increased DNA damage. DDX24 protein bound to and stabilized the mRNA of FANCA (FA complementation group A) that responded to DNA damage. Consistent with the function of DDX24, depletion of FANCA also impacted cell cycle and DNA repair of VSMCs. Overexpression of FANCA was able to rescue the alterations caused by DDX24 deficiency. CONCLUSIONS Our study unveiled a critical role of DDX24 in VSMC-mediated vascular development, highlighting a potential therapeutic target for VSMC-related pathological conditions.
Collapse
Affiliation(s)
- Yujiao Gong
- Guangdong Provincial Engineering Research Center of Molecular Imaging (Y.G., J.W., S.Z., F.C., Q.Z., Lijie Wang, H.L., S.L., H.S., H.H.), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yan Liang
- Department of Obstetrics and Gynecology, Perinatal Medical Center (Y.L., J.L., Li Wang), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Jie Liu
- Department of Obstetrics and Gynecology, Perinatal Medical Center (Y.L., J.L., Li Wang), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Jiaxing Wei
- Guangdong Provincial Engineering Research Center of Molecular Imaging (Y.G., J.W., S.Z., F.C., Q.Z., Lijie Wang, H.L., S.L., H.S., H.H.), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Department of Interventional Medicine and Center for Interventional Medicine (J.W., H.S.), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Shushan Zhang
- Guangdong Provincial Engineering Research Center of Molecular Imaging (Y.G., J.W., S.Z., F.C., Q.Z., Lijie Wang, H.L., S.L., H.S., H.H.), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Fangbin Chen
- Guangdong Provincial Engineering Research Center of Molecular Imaging (Y.G., J.W., S.Z., F.C., Q.Z., Lijie Wang, H.L., S.L., H.S., H.H.), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Qianqian Zhang
- Guangdong Provincial Engineering Research Center of Molecular Imaging (Y.G., J.W., S.Z., F.C., Q.Z., Lijie Wang, H.L., S.L., H.S., H.H.), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Lijie Wang
- Guangdong Provincial Engineering Research Center of Molecular Imaging (Y.G., J.W., S.Z., F.C., Q.Z., Lijie Wang, H.L., S.L., H.S., H.H.), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Huimin Lan
- Guangdong Provincial Engineering Research Center of Molecular Imaging (Y.G., J.W., S.Z., F.C., Q.Z., Lijie Wang, H.L., S.L., H.S., H.H.), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Lily Wu
- Departments of Molecular and Medical Pharmacology (L. Wu), Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles
- Urology (L. Wu), Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles
- Pediatrics (L. Wu), Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles
| | - Wei Ge
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, China (W.G.)
| | - Shuai Li
- Guangdong Provincial Engineering Research Center of Molecular Imaging (Y.G., J.W., S.Z., F.C., Q.Z., Lijie Wang, H.L., S.L., H.S., H.H.), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Li Wang
- Department of Obstetrics and Gynecology, Perinatal Medical Center (Y.L., J.L., Li Wang), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Hong Shan
- Guangdong Provincial Engineering Research Center of Molecular Imaging (Y.G., J.W., S.Z., F.C., Q.Z., Lijie Wang, H.L., S.L., H.S., H.H.), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Department of Interventional Medicine and Center for Interventional Medicine (J.W., H.S.), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Huanhuan He
- Guangdong Provincial Engineering Research Center of Molecular Imaging (Y.G., J.W., S.Z., F.C., Q.Z., Lijie Wang, H.L., S.L., H.S., H.H.), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
7
|
Wang M, Brandt LTL, Wang X, Russell H, Mitchell E, Kamimae-Lanning AN, Brown JM, Dingler FA, Garaycoechea JI, Isobe T, Kinston SJ, Gu M, Vassiliou GS, Wilson NK, Göttgens B, Patel KJ. Genotoxic aldehyde stress prematurely ages hematopoietic stem cells in a p53-driven manner. Mol Cell 2023; 83:2417-2433.e7. [PMID: 37348497 PMCID: PMC7614878 DOI: 10.1016/j.molcel.2023.05.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 04/18/2023] [Accepted: 05/25/2023] [Indexed: 06/24/2023]
Abstract
Aged hematopoietic stem cells (HSCs) display diminished self-renewal and a myeloid differentiation bias. However, the drivers and mechanisms that underpin this fundamental switch are not understood. HSCs produce genotoxic formaldehyde that requires protection by the detoxification enzymes ALDH2 and ADH5 and the Fanconi anemia (FA) DNA repair pathway. We find that the HSCs in young Aldh2-/-Fancd2-/- mice harbor a transcriptomic signature equivalent to aged wild-type HSCs, along with increased epigenetic age, telomere attrition, and myeloid-biased differentiation quantified by single HSC transplantation. In addition, the p53 response is vigorously activated in Aldh2-/-Fancd2-/- HSCs, while p53 deletion rescued this aged HSC phenotype. To further define the origins of the myeloid differentiation bias, we use a GFP genetic reporter to find a striking enrichment of Vwf+ myeloid and megakaryocyte-lineage-biased HSCs. These results indicate that metabolism-derived formaldehyde-DNA damage stimulates the p53 response in HSCs to drive accelerated aging.
Collapse
Affiliation(s)
- Meng Wang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA; Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK; MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK.
| | - Laura T L Brandt
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Xiaonan Wang
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK; School of Public Health, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Holly Russell
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Emily Mitchell
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK; Wellcome Sanger Institute, Hinxton, UK
| | - Ashley N Kamimae-Lanning
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Jill M Brown
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Felix A Dingler
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Juan I Garaycoechea
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center, Utrecht, the Netherlands
| | - Tomoya Isobe
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Sarah J Kinston
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Muxin Gu
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - George S Vassiliou
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Nicola K Wilson
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Berthold Göttgens
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Ketan J Patel
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
8
|
Vijayraghavan S, Saini N. Aldehyde-Associated Mutagenesis─Current State of Knowledge. Chem Res Toxicol 2023. [PMID: 37363863 DOI: 10.1021/acs.chemrestox.3c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Aldehydes are widespread in the environment, with multiple sources such as food and beverages, industrial effluents, cigarette smoke, and additives. The toxic effects of exposure to several aldehydes have been observed in numerous studies. At the molecular level, aldehydes damage DNA, cross-link DNA and proteins, lead to lipid peroxidation, and are associated with increased disease risk including cancer. People genetically predisposed to aldehyde sensitivity exhibit severe health outcomes. In various diseases such as Fanconi's anemia and Cockayne syndrome, loss of aldehyde-metabolizing pathways in conjunction with defects in DNA repair leads to widespread DNA damage. Importantly, aldehyde-associated mutagenicity is being explored in a growing number of studies, which could offer key insights into how they potentially contribute to tumorigenesis. Here, we review the genotoxic effects of various aldehydes, focusing particularly on the DNA adducts underlying the mutagenicity of environmentally derived aldehydes. We summarize the chemical structures of the aldehydes and their predominant DNA adducts, discuss various methodologies, in vitro and in vivo, commonly used in measuring aldehyde-associated mutagenesis, and highlight some recent studies looking at aldehyde-associated mutation signatures and spectra. We conclude the Review with a discussion on the challenges and future perspectives of investigating aldehyde-associated mutagenesis.
Collapse
Affiliation(s)
- Sriram Vijayraghavan
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Natalie Saini
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| |
Collapse
|
9
|
Meek K, Yang YT, Takada M, Parys M, Richter M, Engleberg AI, Thaiwong T, Griffin RL, Schall PZ, Kramer AJ, Yuzbasiyan-Gurkan V. Identification of a Hypomorphic FANCG Variant in Bernese Mountain Dogs. Genes (Basel) 2022; 13:1693. [PMID: 36292578 PMCID: PMC9601343 DOI: 10.3390/genes13101693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 05/26/2024] Open
Abstract
Bernese mountain dogs (BMDs), have an overall cancer incidence of 50%, half of which is comprised of an otherwise rare tumor, histiocytic sarcoma (HS). While recent studies have identified driver mutations in the MAPK pathway, identification of key predisposing genes has been elusive. Studies have identified several loci to be associated with predisposition to HS in BMDs, including near the MTAP/CDKN2A region, but no causative coding variant has been identified. Here we report the presence of a coding polymorphism in the gene encoding FANCG, near the MTAP/CDKN2A locus. This variant is in a conserved region of the protein and appears to be specific to BMDs. Canine fibroblasts derived from dogs homozygous for this variant are hypersensitive to cisplatin. We show this canine FANCG variant and a previously defined hypomorphic FANCG allele in humans impart similar defects in DNA repair. However, our data also indicate that this variant is neither necessary nor sufficient for the development of HS. Furthermore, BMDs homozygous for this FANCG allele display none of the characteristic phenotypes associated with Fanconi anemia (FA) such as anemia, short stature, infertility, or an earlier age of onset for HS. This is similar to findings in FA deficient mice, which do not develop overt FA without secondary genetic mutations that exacerbate the FA deficit. In sum, our data suggest that dogs with deficits in the FA pathway are, like mice, innately resistant to the development of FA.
Collapse
Affiliation(s)
- Katheryn Meek
- Comparative Medicine and Integrative Biology Program, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
- Department of Microbiology and Molecular Genetics, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Ya-Ting Yang
- Comparative Medicine and Integrative Biology Program, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Marilia Takada
- Comparative Medicine and Integrative Biology Program, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Maciej Parys
- Comparative Medicine and Integrative Biology Program, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Marlee Richter
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Alexander I. Engleberg
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Tuddow Thaiwong
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48190, USA
| | - Rachel L. Griffin
- College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Peter Z. Schall
- Comparative Medicine and Integrative Biology Program, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Alana J. Kramer
- College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Vilma Yuzbasiyan-Gurkan
- Comparative Medicine and Integrative Biology Program, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
- Department of Microbiology and Molecular Genetics, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
10
|
Wang M, Dingler FA, Patel KJ. Genotoxic aldehydes in the hematopoietic system. Blood 2022; 139:2119-2129. [PMID: 35148375 DOI: 10.1182/blood.2019004316] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/24/2022] [Indexed: 11/20/2022] Open
Abstract
Reactive aldehydes are potent genotoxins that threaten the integrity of hematopoietic stem cells and blood production. To protect against aldehydes, mammals have evolved a family of enzymes to detoxify aldehydes, and the Fanconi anemia DNA repair pathway to process aldehyde-induced DNA damage. Loss of either protection mechanisms in humans results in defective hematopoiesis and predisposition to leukemia. This review will focus on the impact of genotoxic aldehydes on hematopoiesis, the sources of endogenous aldehydes, and potential novel protective pathways.
Collapse
Affiliation(s)
- Meng Wang
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
- Department of Haematology and
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom; and
| | - Felix A Dingler
- Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - K J Patel
- Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
11
|
Nadalutti CA, Prasad R, Wilson SH. Perspectives on formaldehyde dysregulation: Mitochondrial DNA damage and repair in mammalian cells. DNA Repair (Amst) 2021; 105:103134. [PMID: 34116475 PMCID: PMC9014805 DOI: 10.1016/j.dnarep.2021.103134] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/21/2021] [Accepted: 05/09/2021] [Indexed: 12/15/2022]
Abstract
Maintaining genome stability involves coordination between different subcellular compartments providing cells with DNA repair systems that safeguard against environmental and endogenous stresses. Organisms produce the chemically reactive molecule formaldehyde as a component of one-carbon metabolism, and cells maintain systems to regulate endogenous levels of formaldehyde under physiological conditions, preventing genotoxicity, among other adverse effects. Dysregulation of formaldehyde is associated with several diseases, including cancer and neurodegenerative disorders. In the present review, we discuss the complex topic of endogenous formaldehyde metabolism and summarize advances in research on fo dysregulation, along with future research perspectives.
Collapse
Affiliation(s)
- Cristina A Nadalutti
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Rajendra Prasad
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
12
|
Fanconi anemia proteins participate in a break-induced-replication-like pathway to counter replication stress. Nat Struct Mol Biol 2021; 28:487-500. [PMID: 34117478 DOI: 10.1038/s41594-021-00602-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 04/30/2021] [Indexed: 11/08/2022]
Abstract
Fanconi anemia (FA) is a devastating hereditary disease characterized by bone marrow failure (BMF) and acute myeloid leukemia (AML). As FA-deficient cells are hypersensitive to DNA interstrand crosslinks (ICLs), ICLs are widely assumed to be the lesions responsible for FA symptoms. Here, we show that FA-mutated cells are hypersensitive to persistent replication stress and that FA proteins play a role in the break-induced-replication (BIR)-like pathway for fork restart. Both the BIR-like pathway and ICL repair share almost identical molecular mechanisms of 53BP1-BRCA1-controlled signaling response, SLX4- and FAN1-mediated fork cleavage and POLD3-dependent DNA synthesis, suggesting that the FA pathway is intrinsically one of the BIR-like pathways. Replication stress not only triggers BMF in FA-deficient mice, but also specifically induces monosomy 7, which is associated with progression to AML in patients with FA, in FA-deficient cells.
Collapse
|
13
|
Animal models of Fanconi anemia: A developmental and therapeutic perspective on a multifaceted disease. Semin Cell Dev Biol 2021; 113:113-131. [PMID: 33558144 DOI: 10.1016/j.semcdb.2020.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/17/2020] [Accepted: 11/18/2020] [Indexed: 12/31/2022]
Abstract
Fanconi anemia (FA) is a genetic disorder characterized by developmental abnormalities, progressive bone marrow failure, and increased susceptibility to cancer. FA animal models have been useful to understand the pathogenesis of the disease. Herein, we review FA developmental models that have been developed to simulate human FA, focusing on zebrafish and mouse models. We summarize the recapitulated phenotypes observed in these in vivo models including bone, gametogenesis and sterility defects, as well as marrow failure. We also discuss the relevance of aldehydes in pathogenesis of FA, emphasizing on hematopoietic defects. In addition, we provide a summary of potential therapeutic agents, such as aldehyde scavengers, TGFβ inhibitors, and gene therapy for FA. The diversity of FA animal models makes them useful for understanding FA etiology and allows the discovery of new therapies.
Collapse
|
14
|
Housh K, Jha JS, Haldar T, Amin SBM, Islam T, Wallace A, Gomina A, Guo X, Nel C, Wyatt JW, Gates KS. Formation and repair of unavoidable, endogenous interstrand cross-links in cellular DNA. DNA Repair (Amst) 2021; 98:103029. [PMID: 33385969 PMCID: PMC8882318 DOI: 10.1016/j.dnarep.2020.103029] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023]
Abstract
Genome integrity is essential for life and, as a result, DNA repair systems evolved to remove unavoidable DNA lesions from cellular DNA. Many forms of life possess the capacity to remove interstrand DNA cross-links (ICLs) from their genome but the identity of the naturally-occurring, endogenous substrates that drove the evolution and retention of these DNA repair systems across a wide range of life forms remains uncertain. In this review, we describe more than a dozen chemical processes by which endogenous ICLs plausibly can be introduced into cellular DNA. The majority involve DNA degradation processes that introduce aldehyde residues into the double helix or reactions of DNA with endogenous low molecular weight aldehyde metabolites. A smaller number of the cross-linking processes involve reactions of DNA radicals generated by oxidation.
Collapse
Affiliation(s)
- Kurt Housh
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Jay S Jha
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Tuhin Haldar
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Saosan Binth Md Amin
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Tanhaul Islam
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Amanda Wallace
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Anuoluwapo Gomina
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Xu Guo
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Christopher Nel
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Jesse W Wyatt
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Kent S Gates
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States; University of Missouri, Department of Biochemistry, Columbia, MO 65211, United States.
| |
Collapse
|
15
|
A critical assessment of the potential of pharmacological modulation of aldehyde dehydrogenases to treat the diseases of bone loss. Eur J Pharmacol 2020; 886:173541. [PMID: 32896553 DOI: 10.1016/j.ejphar.2020.173541] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 12/19/2022]
Abstract
Chronic alcoholism (CA) decreases bone mass and increases the risk of hip fracture. Alcohol and its main metabolite, acetaldehyde impairs osteoblastogenesis by increasing oxidative stress. Aldehyde dehydrogenase (ALDH) is the rate-limiting enzyme in clearing acetaldehyde from the body. The clinical relevance of ALDH in skeletal function has been established by the discovery of single nucleotide polymorphism, SNP (rs671) in the ALDH2 gene giving rise to an inactive form of the enzyme (ALDH2*2) that causes increased serum acetaldehyde and osteoporosis in the affected individuals. Subsequent mouse genetics studies have replicated human phenotype in mice and confirmed the non-redundant role of ALDH2 in bone homeostasis. The activity of ALDH2 is amenable to pharmacological modulation. ALDH2 inhibition by disulfiram (DSF) and activation by alda-1 cause reduction and induction of bone formation, respectively. DSF also inhibits peak bone mass accrual in growing rats. On the other hand, DSF showed an anti-osteoclastogenic effect and protected mice from alcohol-induced osteopenia by inhibiting ALDH1a1 in bone marrow monocytes. Besides DSF, there are several classes of ALDH inhibitors with disparate skeletal effects. Alda-1, the ALDH2 activator induced osteoblast differentiation by increasing bone morphogenic protein 2 (BMP2) expression via ALDH2 activation. Alda-1 also restored ovariectomy-induced bone loss. The scope of structure-activity based studies with ALDH2 and the alda-1-like molecule could lead to the discovery of novel osteoanabolic molecules. This review will critically discuss the molecular mechanism of the ethanol and its principal metabolite, acetaldehyde in the context of ALDH2 in bone cells, and skeletal homeostasis.
Collapse
|
16
|
Rageul J, Kim H. Fanconi anemia and the underlying causes of genomic instability. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:693-708. [PMID: 31983075 PMCID: PMC7778457 DOI: 10.1002/em.22358] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/03/2020] [Accepted: 01/21/2020] [Indexed: 05/02/2023]
Abstract
Fanconi anemia (FA) is a rare genetic disorder, characterized by birth defects, progressive bone marrow failure, and a predisposition to cancer. This devastating disease is caused by germline mutations in any one of the 22 known FA genes, where the gene products are primarily responsible for the resolution of DNA interstrand cross-links (ICLs), a type of DNA damage generally formed by cytotoxic chemotherapeutic agents. However, the identity of endogenous mutagens that generate DNA ICLs remains largely elusive. In addition, whether DNA ICLs are indeed the primary cause behind FA phenotypes is still a matter of debate. Recent genetic studies suggest that naturally occurring reactive aldehydes are a primary source of DNA damage in hematopoietic stem cells, implicating that they could play a role in genome instability and FA. Emerging lines of evidence indicate that the FA pathway constitutes a general surveillance mechanism for the genome by protecting against a variety of DNA replication stresses. Therefore, understanding the DNA repair signaling that is regulated by the FA pathway, and the types of DNA lesions underlying the FA pathophysiology is crucial for the treatment of FA and FA-associated cancers. Here, we review recent advances in our understanding of the relationship between reactive aldehydes, bone marrow dysfunction, and FA biology in the context of signaling pathways triggered during FA-mediated DNA repair and maintenance of the genomic integrity. Environ. Mol. Mutagen. 2020. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Julie Rageul
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | - Hyungjin Kim
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
- Stony Brook Cancer Center, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York 11794, USA
- Correspondence to: Hyungjin Kim, Ph.D., Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Basic Sciences Tower 8-125, 100 Nicolls Rd., Stony Brook, NY 11794, Phone: 631-444-3134, FAX: 631-444-3218,
| |
Collapse
|
17
|
Serio RN, Gudas LJ. Modification of stem cell states by alcohol and acetaldehyde. Chem Biol Interact 2019; 316:108919. [PMID: 31846616 PMCID: PMC7036011 DOI: 10.1016/j.cbi.2019.108919] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/13/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022]
Abstract
Ethanol (EtOH) is a recreationally ingested compound that is both teratogenic and carcinogenic in humans. Because of its abundant consumption worldwide and the vital role of stem cells in the formation of birth defects and cancers, delineating the effects of EtOH on stem cell function is currently an active and urgent pursuit of scientific investigation to explicate some of the mechanisms contributing to EtOH toxicity. Stem cells represent a primordial, undifferentiated phase of development; thus encroachment on normal physiologic processes of differentiation into terminal lineages by EtOH can greatly alter the function of progenitors and terminally differentiated cells, leading to pathological consequences that manifest as fetal alcohol spectrum disorders and cancers. In this review we explore the disruptive role of EtOH in differentiation of stem cells. Our primary objective is to elucidate the mechanisms by which EtOH alters differentiation-related gene expression and lineage specifications, thus modifying stem cells to promote pathological outcomes. We additionally review the effects of a reactive metabolite of EtOH, acetaldehyde (AcH), in causing both differentiation defects in stem cells as well as genomic damage that incites cellular aging and carcinogenesis.
Collapse
Affiliation(s)
- Ryan N Serio
- Department of Pharmacology, Weill Cornell Graduate School of Medical Sciences of Cornell University, USA.
| | - Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Graduate School of Medical Sciences of Cornell University, USA; Department of Pharmacology, Weill Cornell Medical College of Cornell University, USA.
| |
Collapse
|
18
|
Serio RN, Lu C, Gross SS, Gudas LJ. Different Effects of Knockouts in ALDH2 and ACSS2 on Embryonic Stem Cell Differentiation. Alcohol Clin Exp Res 2019; 43:1859-1871. [PMID: 31283017 PMCID: PMC6722009 DOI: 10.1111/acer.14146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Ethanol (EtOH) is a teratogen that causes severe birth defects, but the mechanisms by which EtOH affects stem cell differentiation are unclear. Our goal here is to examine the effects of EtOH and its metabolites, acetaldehyde (AcH) and acetate, on embryonic stem cell (ESC) differentiation. METHODS We designed ESC lines in which aldehyde dehydrogenase (ALDH2, NCBI#11669) and acyl-CoA synthetase short-chain family member 2 (ACSS2, NCBI#60525) were knocked out by CRISPR-Cas9 technology. We selected these genes because of their key roles in EtOH oxidation in order to dissect the effects of EtOH metabolism on differentiation. RESULTS By using kinetic assays, we confirmed that AcH is primarily oxidized by ALDH2 rather than ALDH1A2. We found increases in mRNAs of differentiation-associated genes (Hoxa1, Cyp26a1, and RARβ2) upon EtOH treatment of WT and Acss2-/- ESCs, but not Aldh2-/- ESCs. The absence of ALDH2 reduced mRNAs of some pluripotency factors (Nanog, Sox2, and Klf4). Treatment of WT ESCs with AcH or 4-hydroxynonenal (4-HNE), another substrate of ALDH2, increased differentiation-associated transcripts compared to levels in untreated cells. mRNAs of genes involved in retinoic acid (RA) synthesis (Stra6 and Rdh10) were also increased by EtOH, AcH, and 4-HNE treatment. Retinoic acid receptor-γ (RARγ) is required for both EtOH- and AcH-mediated increases in Hoxa1 and Stra6, demonstrating the critical role of RA:RARγ signaling in AcH-induced ESC differentiation. CONCLUSIONS ACSS2 knockouts showed no changes in differentiation phenotype, while pluripotency-related transcripts were decreased in ALDH2 knockout ESCs. We demonstrate that AcH increases differentiation-associated mRNAs in ESCs via RARγ.
Collapse
Affiliation(s)
- Ryan N Serio
- Weill Cornell Graduate School of Medical Sciences of Cornell University, New York, NY
| | - Changyuan Lu
- Department of Pharmacology, Weill Cornell Medical College, New York, NY
| | - Steven S Gross
- Weill Cornell Graduate School of Medical Sciences of Cornell University, New York, NY
- Department of Pharmacology, Weill Cornell Medical College, New York, NY
| | - Lorraine J Gudas
- Weill Cornell Graduate School of Medical Sciences of Cornell University, New York, NY
- Department of Pharmacology, Weill Cornell Medical College, New York, NY
| |
Collapse
|
19
|
Moore ES, Daugherity EK, Karambizi DI, Cummings BP, Behling-Kelly E, Schaefer DMW, Southard TL, McFadden JW, Weiss RS. Sex-specific hepatic lipid and bile acid metabolism alterations in Fancd2-deficient mice following dietary challenge. J Biol Chem 2019; 294:15623-15637. [PMID: 31434739 DOI: 10.1074/jbc.ra118.005729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 08/15/2019] [Indexed: 12/13/2022] Open
Abstract
Defects in the Fanconi anemia (FA) DNA damage-response pathway result in genomic instability, developmental defects, hematopoietic failure, cancer predisposition, and metabolic disorders. The endogenous sources of damage contributing to FA phenotypes and the links between FA and metabolic disease remain poorly understood. Here, using mice lacking the Fancd2 gene, encoding a central FA pathway component, we investigated whether the FA pathway protects against metabolic challenges. Fancd2 -/- and wildtype (WT) mice were fed a standard diet (SD), a diet enriched in fat, cholesterol, and cholic acid (Paigen diet), or a diet enriched in lipid alone (high-fat diet (HFD)). Fancd2 -/- mice developed hepatobiliary disease and exhibited decreased survival when fed a Paigen diet but not a HFD. Male Paigen diet-fed mice lacking Fancd2 had significant biliary hyperplasia, increased serum bile acid concentration, and increased hepatic pathology. In contrast, female mice were similarly impacted by Paigen diet feeding regardless of Fancd2 status. Upon Paigen diet challenge, male Fancd2 -/- mice had altered expression of genes encoding hepatic bile acid transporters and cholesterol and fatty acid metabolism proteins, including Scp2/x, Abcg5/8, Abca1, Ldlr, Srebf1, and Scd-1 Untargeted lipidomic profiling in liver tissue revealed 132 lipid species, including sphingolipids, glycerophospholipids, and glycerolipids, that differed significantly in abundance depending on Fancd2 status in male mice. We conclude that the FA pathway has sex-specific impacts on hepatic lipid and bile acid metabolism, findings that expand the known functions of the FA pathway and may provide mechanistic insight into the metabolic disease predisposition in individuals with FA.
Collapse
Affiliation(s)
- Elizabeth S Moore
- Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853
| | - Erin K Daugherity
- Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853.,Center for Animal Resources and Education, Cornell University, Ithaca, New York 14853
| | - David I Karambizi
- Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853
| | - Bethany P Cummings
- Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853
| | - Erica Behling-Kelly
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York 14853
| | - Deanna M W Schaefer
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, Tennessee 37996
| | - Teresa L Southard
- Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853
| | - Joseph W McFadden
- Department of Animal Science, Cornell University, Ithaca, New York 14853
| | - Robert S Weiss
- Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853
| |
Collapse
|
20
|
Chu A, Najafzadeh P, Sullivan P, Cone B, Elshimali R, Shakeri H, Janzen C, Mah V, Wadehra M. Aldehyde dehydrogenase isoforms and inflammatory cell populations are differentially expressed in term human placentas affected by intrauterine growth restriction. Placenta 2019; 81:9-17. [PMID: 31138432 PMCID: PMC6719708 DOI: 10.1016/j.placenta.2019.03.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 03/21/2019] [Accepted: 03/28/2019] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Intrauterine growth restriction (IUGR) is a complication of pregnancy that has both short- and long-term sequelae for affected mothers and offspring. The pathophysiology of disease stems from poor nutrient and oxygen provision to the fetus, resulting in increased oxidative stress within the placenta. As the milieu within the local microenvironment alters macrophage differentiation, we hypothesized that macrophage plasticity may be altered in placentas associated with IUGR, and that macrophages would show hallmarks of lipid peroxidation including altered aldehyde metabolism. METHODS In human placentas taken from normal pregnancies resulting in appropriate-for-gestational-age (AGA) newborns and placentas associated with IUGR, placental macrophages were evaluated by immunohistochemistry and shown in IUGR to resemble pro-inflammatory activated M1-type macrophages. To link oxidative stress to macrophages, the expression of aldehyde dehydrogenase (ALDHs) isozymes ALDH1, ALDH2, and ALDH3 was assessed. RESULTS All three isozymes displayed preferential staining for distinct cellular populations within the term human placenta. ALDH1 and ALDH2 were strongly expressed in placental Hofbauer and decidual stromal cells. ALDH3, in contrast, was present in extravillous trophoblasts. Comparing AGA and IUGR-associated placentas, ALDH1 and ALDH2 trended to have greater expression in macrophage populations but lower expression in decidual cell populations in IUGR-associated placentas. ALDH3 had higher expression in IUGR-associated placentas but localized specifically to extravillous trophoblast populations. CONCLUSION Therefore, we speculate that specific ALDH isozymes have cell-specific functions related to differentiation, inflammation, or oxidative stress responses that are altered in IUGR-associated term human placentas. This family of isozymes may be a novel method to identify human placentas affected by placental insufficiency/IUGR.
Collapse
Affiliation(s)
- Alison Chu
- Department of Pediatrics, Division of Neonatology and Developmental Biology, David Geffen School of Medicine at UCLA, 10833 LeConte Avenue, Room B2-375 MDCC, Los Angeles, CA, 90095, USA.
| | - Parisa Najafzadeh
- Department of Pathology and Laboratory Medicine, 4525 MacDonald Research Laboratories, Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
| | - Peggy Sullivan
- Department of Pathology and Laboratory Medicine, 4525 MacDonald Research Laboratories, Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
| | - Brian Cone
- Department of Pathology and Laboratory Medicine, 4525 MacDonald Research Laboratories, Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Ryan Elshimali
- Department of Pathology and Laboratory Medicine, 4525 MacDonald Research Laboratories, Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
| | - Hania Shakeri
- Department of Pathology and Laboratory Medicine, 4525 MacDonald Research Laboratories, Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
| | - Carla Janzen
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Room 22-172, Los Angeles, CA, 90095, USA.
| | - Vei Mah
- Department of Pathology and Laboratory Medicine, 4525 MacDonald Research Laboratories, Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
| | - Madhuri Wadehra
- Department of Pathology and Laboratory Medicine, 4525 MacDonald Research Laboratories, Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, 8-684 Factor Building, Los Angeles, CA, 90095, USA; Center to Eliminate Cancer Health Disparities, Charles Drew University, 1731 East 120th Street, Los Angeles, CA, 90059, USA.
| |
Collapse
|
21
|
Sakai W, Sugasawa K. Importance of finding the bona fide target of the Fanconi anemia pathway. Genes Environ 2019; 41:6. [PMID: 30873250 PMCID: PMC6402094 DOI: 10.1186/s41021-019-0122-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/14/2019] [Indexed: 01/28/2023] Open
Abstract
Fanconi anemia (FA) is a rare genetic disease characterized by the deficiency of the cellular response and repair pathway for DNA interstrand crosslink (ICL) damage. Although recent studies have revealed the detailed molecular functions of FA proteins encoded by 22 genes, the mechanism of occurrence of endogenous ICLs in the human body remains poorly understood. In this short review, we summarize the potential endogenous sources of ICLs counteracted by FA proteins, and provide perspectives on the unanswered questions regarding FA.
Collapse
Affiliation(s)
- Wataru Sakai
- Biosignal Research Center, and Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501 Japan
| | - Kaoru Sugasawa
- Biosignal Research Center, and Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501 Japan
| |
Collapse
|
22
|
Haas OA. Primary Immunodeficiency and Cancer Predisposition Revisited: Embedding Two Closely Related Concepts Into an Integrative Conceptual Framework. Front Immunol 2019; 9:3136. [PMID: 30809233 PMCID: PMC6379258 DOI: 10.3389/fimmu.2018.03136] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/19/2018] [Indexed: 12/13/2022] Open
Abstract
Common understanding suggests that the normal function of a "healthy" immune system safe-guards and protects against the development of malignancies, whereas a genetically impaired one might increase the likelihood of their manifestation. This view is primarily based on and apparently supported by an increased incidence of such diseases in patients with specific forms of immunodeficiencies that are caused by high penetrant gene defects. As I will review and discuss herein, such constellations merely represent the tip of an iceberg. The overall situation is by far more varied and complex, especially if one takes into account the growing difficulties to define what actually constitutes an immunodeficiency and what defines a cancer predisposition. The enormous advances in genome sequencing, in bioinformatic analyses and in the functional in vitro and in vivo assessment of novel findings together with the availability of large databases provide us with a wealth of information that steadily increases the number of sequence variants that concur with clinically more or less recognizable immunological problems and their consequences. Since many of the newly identified hard-core defects are exceedingly rare, their tumor predisposing effect is difficult to ascertain. The analyses of large data sets, on the other hand, continuously supply us with low penetrant variants that, at least in statistical terms, are clearly tumor predisposing, although their specific relevance for the respective carriers still needs to be carefully assessed on an individual basis. Finally, defects and variants that affect the same gene families and pathways in both a constitutional and somatic setting underscore the fact that immunodeficiencies and cancer predisposition can be viewed as two closely related errors of development. Depending on the particular genetic and/or environmental context as well as the respective stage of development, the same changes can have either a neutral, predisposing and, in some instances, even a protective effect. To understand the interaction between the immune system, be it "normal" or "deficient" and tumor predisposition and development on a systemic level, one therefore needs to focus on the structure and dynamic functional organization of the entire immune system rather than on its isolated individual components alone.
Collapse
Affiliation(s)
- Oskar A. Haas
- Department of Clinical Genetics, Children's Cancer Research Institute, Vienna, Austria
| |
Collapse
|
23
|
Abstract
Fanconi anaemia (FA) is a genetic disorder that is characterized by bone marrow failure (BMF), developmental abnormalities and predisposition to cancer. Together with other proteins involved in DNA repair processes and cell division, the FA proteins maintain genome homeostasis, and germline mutation of any one of the genes that encode FA proteins causes FA. Monoallelic inactivation of some FA genes, such as FA complementation group D1 (FANCD1; also known as the breast and ovarian cancer susceptibility gene BRCA2), leads to adult-onset cancer predisposition but does not cause FA, and somatic mutations in FA genes occur in cancers in the general population. Carcinogenesis resulting from a dysregulated FA pathway is multifaceted, as FA proteins monitor multiple complementary genome-surveillance checkpoints throughout interphase, where monoubiquitylation of the FANCD2-FANCI heterodimer by the FA core complex promotes recruitment of DNA repair effectors to chromatin lesions to resolve DNA damage and mitosis. In this Review, we discuss how the FA pathway safeguards genome integrity throughout the cell cycle and show how studies of FA have revealed opportunities to develop rational therapeutics for this genetic disease and for malignancies that acquire somatic mutations within the FA pathway.
Collapse
Affiliation(s)
- Grzegorz Nalepa
- Department of Pediatrics, Section of Pediatric Hematology-Oncology, Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W Walnut Street, R4-421, Indianapolis, Indiana 46202, USA
- Riley Hospital for Children at Indiana University Health, 705 Riley Hospital Drive, Room 5900, Indianapolis, Indiana 46202, USA
- Department of Biochemistry, Indiana University School of Medicine
- Department of Medical and Molecular Genetics, Indiana University School of Medicine
| | - D Wade Clapp
- Riley Hospital for Children at Indiana University Health, 705 Riley Hospital Drive, Room 5900, Indianapolis, Indiana 46202, USA
- Department of Biochemistry, Indiana University School of Medicine
- Department of Microbiology and Immunology, Indiana University School of Medicine
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
| |
Collapse
|
24
|
Matsumoto A. [Importance of an Aldehyde Dehydrogenase 2 Polymorphism in Preventive Medicine]. Nihon Eiseigaku Zasshi 2018; 73:9-20. [PMID: 29386454 DOI: 10.1265/jjh.73.9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Unlike genetic alterations in other aldehyde dehydrogenase (ALDH) isozymes, a defective ALDH2 polymorphism (rs671), which is carried by almost half of East Asians, does not show a clear phenotype such as a shortened life span. However, impacts of a defective ALDH2 allele, ALDH2*2, on various disease risks have been reported. As ALDH2 is responsible for the detoxification of endogenous aldehydes, a negative effect of this polymorphism is predicted, but bidirectional effects have been actually observed and the mechanisms underlying such influences are often complex. One reason for this complexity may be the existence of compensatory aldehyde detoxification systems and the secondary effects of these systems. There are many issues to be addressed with regard to the ALDH2 polymorphism in the field of preventive medicine, including the following concerns. First, ALDH2 in the fetal stage plays a role in aldehyde detoxification; therefore, prenatal health effects of environmental aldehyde exposure are of concern for ALDH2*2-carrying fetuses. Second, ALDH2*2 carriers are at high risk of drinking-related cancers. However, their drinking habits result in less worsening of physiological findings, such as energy metabolism index and liver functions, compared with non-ALDH2*2 carriers, and therefore opportunities to detect excessive drinking can be lost. Third, personalized medicine such as personalized prescriptions for ALDH2*2 carriers will be required in the clinical setting, and accumulation of evidence is awaited. Lastly, since the ALDH2 polymorphism is not considered in workers' limits of exposure to aldehydes and their precursors, efforts to lower exposure levels beyond legal standards are required.
Collapse
Affiliation(s)
- Akiko Matsumoto
- Department of Social Medicine, Saga University School of Medicine
| |
Collapse
|
25
|
Horikoshi N, Pandita RK, Mujoo K, Hambarde S, Sharma D, Mattoo AR, Chakraborty S, Charaka V, Hunt CR, Pandita TK. β2-spectrin depletion impairs DNA damage repair. Oncotarget 2018; 7:33557-70. [PMID: 27248179 PMCID: PMC5085102 DOI: 10.18632/oncotarget.9677] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/20/2016] [Indexed: 12/22/2022] Open
Abstract
β2-Spectrin (β2SP/SPTBN1, gene SPTBN1) is a key TGF-β/SMAD3/4 adaptor and transcriptional cofactor that regulates TGF-β signaling and can contribute to liver cancer development. Here we report that cells deficient in β2-Spectrin (β2SP) are moderately sensitive to ionizing radiation (IR) and extremely sensitive to agents that cause interstrand cross-links (ICLs) or replication stress. In response to treatment with IR or ICL agents (formaldehyde, cisplatin, camptothecin, mitomycin), β2SP deficient cells displayed a higher frequency of cells with delayed γ-H2AX removal and a higher frequency of residual chromosome aberrations. Following hydroxyurea (HU)-induced replication stress, β2SP-deficient cells displayed delayed disappearance of γ-H2AX foci along with defective repair factor recruitment (MRE11, CtIP, RAD51, RPA, and FANCD2) as well as defective restart of stalled replication forks. Repair factor recruitment is a prerequisite for initiation of DNA damage repair by the homologous recombination (HR) pathway, which was also defective in β2SP deficient cells. We propose that β2SP is required for maintaining genomic stability following replication fork stalling, whether induced by either ICL damage or replicative stress, by facilitating fork regression as well as DNA damage repair by homologous recombination.
Collapse
Affiliation(s)
- Nobuo Horikoshi
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA.,Department of Radiation Oncology, University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Raj K Pandita
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA.,Department of Radiation Oncology, University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Kalpana Mujoo
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA
| | - Shashank Hambarde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA.,Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dharmendra Sharma
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA
| | - Abid R Mattoo
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA
| | - Sharmistha Chakraborty
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA.,Department of Radiation Oncology, University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Vijaya Charaka
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA
| | - Clayton R Hunt
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA.,Department of Radiation Oncology, University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Tej K Pandita
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA.,Department of Radiation Oncology, University of Texas Southwestern Medical School, Dallas, TX, USA
| |
Collapse
|
26
|
Garaycoechea JI, Crossan GP, Langevin F, Mulderrig L, Louzada S, Yang F, Guilbaud G, Park N, Roerink S, Nik-Zainal S, Stratton MR, Patel KJ. Alcohol and endogenous aldehydes damage chromosomes and mutate stem cells. Nature 2018; 553:171-177. [PMID: 29323295 PMCID: PMC6047743 DOI: 10.1038/nature25154] [Citation(s) in RCA: 275] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 11/21/2017] [Indexed: 12/13/2022]
Abstract
Haematopoietic stem cells renew blood. Accumulation of DNA damage in these cells promotes their decline, while misrepair of this damage initiates malignancies. Here we describe the features and mutational landscape of DNA damage caused by acetaldehyde, an endogenous and alcohol-derived metabolite. This damage results in DNA double-stranded breaks that, despite stimulating recombination repair, also cause chromosome rearrangements. We combined transplantation of single haematopoietic stem cells with whole-genome sequencing to show that this damage occurs in stem cells, leading to deletions and rearrangements that are indicative of microhomology-mediated end-joining repair. Moreover, deletion of p53 completely rescues the survival of aldehyde-stressed and mutated haematopoietic stem cells, but does not change the pattern or the intensity of genome instability within individual stem cells. These findings characterize the mutation of the stem-cell genome by an alcohol-derived and endogenous source of DNA damage. Furthermore, we identify how the choice of DNA-repair pathway and a stringent p53 response limit the transmission of aldehyde-induced mutations in stem cells.
Collapse
Affiliation(s)
- Juan I Garaycoechea
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Gerry P Crossan
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Frédéric Langevin
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Lee Mulderrig
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Sandra Louzada
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Fentang Yang
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Guillaume Guilbaud
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Naomi Park
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Sophie Roerink
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | | | | | - Ketan J Patel
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, Cambridge CB2 0QQ, UK
| |
Collapse
|
27
|
Gu S, Nguyen BN, Rao S, Li S, Shetty K, Rashid A, Shukla V, Deng CX, Mishra L, Mishra B. Alcohol, stem cells and cancer. Genes Cancer 2017; 8:695-700. [PMID: 29234487 PMCID: PMC5724803 DOI: 10.18632/genesandcancer.156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Dosage, gender, and genetic susceptibility to the effects of alcohol remained only partially elucidated. In this review, we summarize the current knowledge of the mechanisms underlying the role of alcohol in liver and gastrointestinal cancers. In addition, two recent pathways- DNA repair and TGF-β signaling which provide new insights into alcohol in the regulation of cancers and stem cells are also discussed here.
Collapse
Affiliation(s)
- Shoujun Gu
- Department of Surgery, Center for Translational Medicine, George Washington University, Washington, DC, USA
| | - Bao-Ngoc Nguyen
- Department of Surgery, Center for Translational Medicine, George Washington University, Washington, DC, USA
| | - Shuyun Rao
- Department of Surgery, Center for Translational Medicine, George Washington University, Washington, DC, USA
| | - Shulin Li
- Departments of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kirti Shetty
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Asif Rashid
- Departments of Gastroenterology and Liver Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Vivek Shukla
- Thoracic and Gastrointestinal Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Chu-Xia Deng
- Department of Surgery, Center for Translational Medicine, George Washington University, Washington, DC, USA.,Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Lopa Mishra
- Department of Surgery, Center for Translational Medicine, George Washington University, Washington, DC, USA.,Surgical Service, Veterans Affairs Medicale Center, Washington DC, USA
| | - Bibhuti Mishra
- Department of Surgery, Center for Translational Medicine, George Washington University, Washington, DC, USA
| |
Collapse
|
28
|
Cheung RS, Taniguchi T. Recent insights into the molecular basis of Fanconi anemia: genes, modifiers, and drivers. Int J Hematol 2017; 106:335-344. [PMID: 28631178 PMCID: PMC5904331 DOI: 10.1007/s12185-017-2283-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 06/14/2017] [Indexed: 02/06/2023]
Abstract
Fanconi anemia (FA), the most common form of inherited bone marrow failure, predisposes to leukemia and solid tumors. FA is caused by the genetic disruption of a cellular pathway that repairs DNA interstrand crosslinks. The impaired function of this pathway, and the genetic instability that results, is considered the main pathogenic mechanism behind this disease. The identification of breast cancer susceptibility genes (for example, BRCA1/FANCS and BRCA2/FANCD1) as being major players in the FA pathway has led to a surge in molecular studies, resulting in the concept of the FA-BRCA pathway. In this review, we discuss recent advances in the molecular pathogenesis of FA from three viewpoints: (a) new FA genes, (b) modifier pathways that influence the cellular and clinical phenotypes of FA and (c) non-canonical functions of FA genes that may drive disease progression independently of deficient DNA repair. Potential therapeutic approaches for FA that are relevant to each will also be proposed.
Collapse
Affiliation(s)
- Ronald S Cheung
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., C1-015, Seattle, WA, 98109-1024, USA
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., C1-015, Seattle, WA, 98109-1024, USA
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., C1-015, Seattle, WA, 98109-1024, USA
| | - Toshiyasu Taniguchi
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., C1-015, Seattle, WA, 98109-1024, USA.
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., C1-015, Seattle, WA, 98109-1024, USA.
- Department of Molecular Life Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.
| |
Collapse
|
29
|
Rao S, Zaidi S, Banerjee J, Jogunoori W, Sebastian R, Mishra B, Nguyen BN, Wu RC, White J, Deng C, Amdur R, Li S, Mishra L. Transforming growth factor-β in liver cancer stem cells and regeneration. Hepatol Commun 2017; 1:477-493. [PMID: 29404474 PMCID: PMC5678904 DOI: 10.1002/hep4.1062] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/27/2017] [Accepted: 06/01/2017] [Indexed: 12/11/2022] Open
Abstract
Cancer stem cells have established mechanisms that contribute to tumor heterogeneity as well as resistance to therapy. Over 40% of hepatocellular carcinomas (HCCs) are considered to be clonal and arise from a stem-like/cancer stem cell. Moreover, HCC is the second leading cause of cancer death worldwide, and an improved understanding of cancer stem cells and targeting these in this cancer are urgently needed. Multiple studies have revealed etiological patterns and multiple genes/pathways signifying initiation and progression of HCC; however, unlike the transforming growth factor β (TGF-β) pathway, loss of p53 and/or activation of β-catenin do not spontaneously drive HCC in animal models. Despite many advances in cancer genetics that include identifying the dominant role of TGF-β signaling in gastrointestinal cancers, we have not reached an integrated view of genetic mutations, copy number changes, driver pathways, and animal models that support effective targeted therapies for these common and lethal cancers. Moreover, pathways involved in stem cell transformation into gastrointestinal cancers remain largely undefined. Identifying the key mechanisms and developing models that reflect the human disease can lead to effective new treatment strategies. In this review, we dissect the evidence obtained from mouse and human liver regeneration, and mouse genetics, to provide insight into the role of TGF-β in regulating the cancer stem cell niche. (Hepatology Communications 2017;1:477-493).
Collapse
Affiliation(s)
- Shuyun Rao
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC
| | - Sobia Zaidi
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC
| | - Jaideep Banerjee
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC
| | - Wilma Jogunoori
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC
| | - Raul Sebastian
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC
| | - Bibhuti Mishra
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC.,Institute for Clinical Research, Veterans Affairs Medical Center Washington DC
| | - Bao-Ngoc Nguyen
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC
| | - Ray-Chang Wu
- Department of Biochemistry and Molecular Medicine George Washington University Washington DC
| | - Jon White
- Institute for Clinical Research, Veterans Affairs Medical Center Washington DC
| | - Chuxia Deng
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC.,Health Sciences University of Macau Taipa Macau China
| | - Richard Amdur
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC
| | - Shulin Li
- Department of Pediatrics The University of Texas MD Anderson Cancer Center Houston TX
| | - Lopa Mishra
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC.,Institute for Clinical Research, Veterans Affairs Medical Center Washington DC
| |
Collapse
|
30
|
Shin MJ, Cho Y, Davey Smith G. Alcohol Consumption, Aldehyde Dehydrogenase 2 Gene Polymorphisms, and Cardiovascular Health in Korea. Yonsei Med J 2017; 58:689-696. [PMID: 28540979 PMCID: PMC5447097 DOI: 10.3349/ymj.2017.58.4.689] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 12/11/2022] Open
Abstract
Alcohol consumption is a serious health issue in Korea in terms of the amount consumed and the behavior related to its consumption. Aldehyde dehydrogenase 2 (ALDH2) is a key enzyme in alcohol metabolism that degrades acetaldehyde to nontoxic acetic acid. The enzyme is coded by the ALDH2 gene, which is commonly polymorphic in East Asian populations. A point mutation in the ALDH2 gene (the rs671 allele) yields an inactive form of ALDH2 that causes acetaldehyde accumulation in the body after alcohol consumption, thereby inhibiting normal alcohol metabolism. Individuals who are homozygous for polymorphism in ALDH2 tend to refrain from drinking alcohol, decreasing their chances of developing alcoholism and exposure to the associated risks. Mendelian randomization (MR) studies have demonstrated that alcohol consumption predicted by ALDH2 genotype is causally related to cardiovascular risks. Moreover, recent MR studies suggest that the ALDH2 variant has mechanistic effects on some disease outcomes or mortality through increased blood levels of acetaldehyde, showing differences therein between heterozygotes (ALDH2*2*2) and homozygotes (ALDH2*1*2) in those who consume alcohol. Accordingly, consideration of ALDH2 genotype in alcohol prevention programs is warranted. In conclusion, strategies that incorporate genetic information and provide an evidential basis from which to help people make informed decisions on alcohol consumption are urgently required.
Collapse
Affiliation(s)
- Min Jeong Shin
- Department of Public Health Sciences, BK21PLUS Program in Embodiment: Health-Society Interaction, Graduate School, Korea University, Seoul, Korea.
| | - Yoonsu Cho
- Department of Public Health Sciences, BK21PLUS Program in Embodiment: Health-Society Interaction, Graduate School, Korea University, Seoul, Korea
- MRC Integrative Epidemiology Unit, School of Social & Community Medicine, University of Bristol, Bristol, UK
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, School of Social & Community Medicine, University of Bristol, Bristol, UK
| |
Collapse
|
31
|
Crouch JD, Brosh RM. Mechanistic and biological considerations of oxidatively damaged DNA for helicase-dependent pathways of nucleic acid metabolism. Free Radic Biol Med 2017; 107:245-257. [PMID: 27884703 PMCID: PMC5440220 DOI: 10.1016/j.freeradbiomed.2016.11.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/11/2016] [Accepted: 11/13/2016] [Indexed: 12/21/2022]
Abstract
Cells are under constant assault from reactive oxygen species that occur endogenously or arise from environmental agents. An important consequence of such stress is the generation of oxidatively damaged DNA, which is represented by a wide range of non-helix distorting and helix-distorting bulkier lesions that potentially affect a number of pathways including replication and transcription; consequently DNA damage tolerance and repair pathways are elicited to help cells cope with the lesions. The cellular consequences and metabolism of oxidatively damaged DNA can be quite complex with a number of DNA metabolic proteins and pathways involved. Many of the responses to oxidative stress involve a specialized class of enzymes known as helicases, the topic of this review. Helicases are molecular motors that convert the energy of nucleoside triphosphate hydrolysis to unwinding of structured polynucleic acids. Helicases by their very nature play fundamentally important roles in DNA metabolism and are implicated in processes that suppress chromosomal instability, genetic disease, cancer, and aging. We will discuss the roles of helicases in response to nuclear and mitochondrial oxidative stress and how this important class of enzymes help cells cope with oxidatively generated DNA damage through their functions in the replication stress response, DNA repair, and transcriptional regulation.
Collapse
Affiliation(s)
- Jack D Crouch
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, 251 Bayview Blvd, Baltimore, MD 21224, USA.
| |
Collapse
|
32
|
Botthof JG, Bielczyk-Maczyńska E, Ferreira L, Cvejic A. Loss of the homologous recombination gene rad51 leads to Fanconi anemia-like symptoms in zebrafish. Proc Natl Acad Sci U S A 2017; 114:E4452-E4461. [PMID: 28512217 PMCID: PMC5465903 DOI: 10.1073/pnas.1620631114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RAD51 is an indispensable homologous recombination protein, necessary for strand invasion and crossing over. It has recently been designated as a Fanconi anemia (FA) gene, following the discovery of two patients carrying dominant-negative mutations. FA is a hereditary DNA-repair disorder characterized by various congenital abnormalities, progressive bone marrow failure, and cancer predisposition. In this report, we describe a viable vertebrate model of RAD51 loss. Zebrafish rad51 loss-of-function mutants developed key features of FA, including hypocellular kidney marrow, sensitivity to cross-linking agents, and decreased size. We show that some of these symptoms stem from both decreased proliferation and increased apoptosis of embryonic hematopoietic stem and progenitor cells. Comutation of p53 was able to rescue the hematopoietic defects seen in the single mutants, but led to tumor development. We further demonstrate that prolonged inflammatory stress can exacerbate the hematological impairment, leading to an additional decrease in kidney marrow cell numbers. These findings strengthen the assignment of RAD51 as a Fanconi gene and provide more evidence for the notion that aberrant p53 signaling during embryogenesis leads to the hematological defects seen later in life in FA. Further research on this zebrafish FA model will lead to a deeper understanding of the molecular basis of bone marrow failure in FA and the cellular role of RAD51.
Collapse
Affiliation(s)
- Jan Gregor Botthof
- Department of Haematology, University of Cambridge, Addenbrookes Hospital, Cambridge CB2 0XY, United Kingdom
- Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge CB2 1QR, United Kingdom
| | - Ewa Bielczyk-Maczyńska
- Department of Haematology, University of Cambridge, Addenbrookes Hospital, Cambridge CB2 0XY, United Kingdom
- Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
- National Health Service Blood and Transplant, Cambridge CB2 0PT, United Kingdom
| | - Lauren Ferreira
- Department of Haematology, University of Cambridge, Addenbrookes Hospital, Cambridge CB2 0XY, United Kingdom
- Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge CB2 1QR, United Kingdom
| | - Ana Cvejic
- Department of Haematology, University of Cambridge, Addenbrookes Hospital, Cambridge CB2 0XY, United Kingdom;
- Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge CB2 1QR, United Kingdom
| |
Collapse
|
33
|
Ortega-Atienza S, Krawic C, Watts L, McCarthy C, Luczak MW, Zhitkovich A. 20S immunoproteasomes remove formaldehyde-damaged cytoplasmic proteins suppressing caspase-independent cell death. Sci Rep 2017; 7:654. [PMID: 28381880 PMCID: PMC5429636 DOI: 10.1038/s41598-017-00757-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/09/2017] [Indexed: 01/08/2023] Open
Abstract
Immunoproteasomes are known for their involvement in antigen presentation. However, their broad tissue presence and other evidence are indicative of nonimmune functions. We examined a role for immunoproteasomes in cellular responses to the endogenous and environmental carcinogen formaldehyde (FA) that binds to cytosolic and nuclear proteins producing proteotoxic stress and genotoxic DNA-histone crosslinks. We found that immunoproteasomes were important for suppression of a caspase-independent cell death and the long-term survival of FA-treated cells. All major genotoxic responses to FA, including replication inhibition and activation of the transcription factor p53 and the apical ATM and ATR kinases, were unaffected by immunoproteasome inactivity. Immunoproteasome inhibition enhanced activation of the cytosolic protein damage sensor HSF1, elevated levels of K48-polyubiquitinated cytoplasmic proteins and increased depletion of unconjugated ubiquitin. We further found that FA induced the disassembly of 26S immunoproteasomes, but not standard 26S proteasomes, releasing the 20S catalytic immunoproteasome. FA-treated cells also had higher amounts of small activators PA28αβ and PA28γ bound to 20S particles. Our findings highlight the significance of nonnuclear damage in FA injury and reveal a major role for immunoproteasomes in elimination of FA-damaged cytoplasmic proteins through ubiquitin-independent proteolysis.
Collapse
Affiliation(s)
- Sara Ortega-Atienza
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, 02912, USA
| | - Casey Krawic
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, 02912, USA
| | - Lauren Watts
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, 02912, USA
| | - Caitlin McCarthy
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, 02912, USA
| | - Michal W Luczak
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, 02912, USA
| | - Anatoly Zhitkovich
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
34
|
Tian FY, Hivert MF, Wen X, Xie C, Niu Z, Fan L, Gillman MW, Chen WQ. Tissue differences in DNA methylation changes at AHRR in full term low birth weight in maternal blood, placenta and cord blood in Chinese. Placenta 2017; 52:49-57. [PMID: 28454697 DOI: 10.1016/j.placenta.2017.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/08/2017] [Accepted: 02/14/2017] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Very few study addressed the relationship between Aryl-hydrocarbon receptor repressor (AHRR) DNA methylation and low birth weight, especially in multiple tissues of mother-infant pairs. In this study, we aimed to investigate AHRR DNA methylation modification in cord blood, placenta and maternal blood between full term low birth weight (FT-LBW) and full term normal birth weight (FT-NBW) newborns. METHODS We enrolled 90 FT-LBW and 90 FT-NBW mother-infant pairs, of which all placenta and cord blood samples were collected while 45 maternal blood samples of each group were collected. We measured AHRR DNA methylation (Chr5: 373013-373606) using Sequenom MassARRAY, and assessed associations between AHRR DNA methylation and FT-LBW using logistic regression adjusting for maternal age, education, family income, delivery mode, and passive smoking. RESULTS FT-LBW babies had 3% lower methylation at Chr5: 373378 (CpG 13) in cord blood, and 4-9% higher methylation levels at Chr5: 373315, 373378, 373423, 373476 and 373490/373494 (CpG 10; 13; 15; 16; 17/18 respectively) in maternal blood, comparing with FT-NBW. The methylation of Chr5: 373378 (CpG 13) remained significant association with FT-LBW both in cord blood (OR = 0.90; 95% CI: 0.82, 0.98) and maternal blood (OR = 1.14; 95% CI: 1.04, 1.25) further adjusting for each other in the same model. We observed no significant difference at any CpG sites in placenta. DISCUSSION AHRR DNA methylation of cord and maternal blood might be independently associated with FT-LBW in different ways.
Collapse
Affiliation(s)
- Fu-Ying Tian
- Department of Medical Statistics and Epidemiology, Guangzhou Key Laboratory of Environmental Pollution and Health Assessment, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Marie-France Hivert
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, 401 Park Drive, Suite 401, Boston, MA, USA; Diabetes Center, Massachusetts General Hospital, 50 Staniford Street, Boston, MA, USA; Department of Medicine, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, Québec, Canada; Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, 3001 12th Avenue North, Wing 9, Door 6, Sherbrooke, Québec, Canada.
| | - Xiaozhong Wen
- Division of Behavioral Medicine, Department of Pediatrics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.
| | - Chuanbo Xie
- Department of Cancer Prevention Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Zhongzheng Niu
- Department of Medical Statistics and Epidemiology, Guangzhou Key Laboratory of Environmental Pollution and Health Assessment, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Lijun Fan
- Department of Medical Statistics and Epidemiology, Guangzhou Key Laboratory of Environmental Pollution and Health Assessment, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Matthew W Gillman
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, 401 Park Drive, Suite 401, Boston, MA, USA.
| | - Wei-Qing Chen
- Department of Medical Statistics and Epidemiology, Guangzhou Key Laboratory of Environmental Pollution and Health Assessment, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
35
|
Chen J, Shukla V, Farci P, Andricovich J, Jogunoori W, Kwong LN, Katz LH, Shetty K, Rashid A, Su X, White J, Li L, Wang AY, Blechacz B, Raju GS, Davila M, Nguyen BN, Stroehlein JR, Chen J, Kim SS, Levin H, Machida K, Tsukamoto H, Michaely P, Tzatsos A, Mishra B, Amdur R, Mishra L. Loss of the transforming growth factor-β effector β2-Spectrin promotes genomic instability. Hepatology 2017; 65:678-693. [PMID: 28114741 PMCID: PMC5432427 DOI: 10.1002/hep.28927] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/13/2016] [Accepted: 10/08/2016] [Indexed: 12/15/2022]
Abstract
UNLABELLED Exposure to genotoxins such as ethanol-derived acetaldehyde leads to DNA damage and liver injury and promotes the development of cancer. We report here a major role for the transforming growth factor β/mothers against decapentaplegic homolog 3 adaptor β2-Spectrin (β2SP, gene Sptbn1) in maintaining genomic stability following alcohol-induced DNA damage. β2SP supports DNA repair through β2SP-dependent activation of Fanconi anemia complementation group D2 (Fancd2), a core component of the Fanconi anemia complex. Loss of β2SP leads to decreased Fancd2 levels and sensitizes β2SP mutants to DNA damage by ethanol treatment, leading to phenotypes that closely resemble those observed in animals lacking both aldehyde dehydrogenase 2 and Fancd2 and resemble human fetal alcohol syndrome. Sptbn1-deficient cells are hypersensitive to DNA crosslinking agents and have defective DNA double-strand break repair that is rescued by ectopic Fancd2 expression. Moreover, Fancd2 transcription in response to DNA damage/transforming growth factor β stimulation is regulated by the β2SP/mothers against decapentaplegic homolog 3 complex. CONCLUSION Dysfunctional transforming growth factor β/β2SP signaling impacts the processing of genotoxic metabolites by altering the Fanconi anemia DNA repair pathway. (Hepatology 2017;65:678-693).
Collapse
Affiliation(s)
- Jian Chen
- Department of Gastroenterology, Hepatology, and Nutrition, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vivek Shukla
- Department of Gastroenterology, Hepatology, and Nutrition, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA,Thoracic Oncology Section, Thoracic and Gastrointestinal Oncology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Patrizia Farci
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jaclyn Andricovich
- George Washington University, Department of Anatomy and Regenerative Biology, Washington, DC, 20052, USA
| | - Wilma Jogunoori
- Institute for Clinical Research, Veterans Affairs Medical Center, Washington, DC, 20422, USA
| | - Lawrence N Kwong
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lior H. Katz
- Department of Gastroenterology, Hepatology, and Nutrition, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA,Sheba Medical Center, Department of Gastroenterology, Tel Hashomer, 52621, Israel
| | - Kirti Shetty
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Asif Rashid
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaoping Su
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jon White
- Institute for Clinical Research, Veterans Affairs Medical Center, Washington, DC, 20422, USA
| | - Lei Li
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alan Yaoqi Wang
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Boris Blechacz
- Department of Gastroenterology, Hepatology, and Nutrition, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gottumukkala S. Raju
- Department of Gastroenterology, Hepatology, and Nutrition, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Marta Davila
- Department of Gastroenterology, Hepatology, and Nutrition, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bao-Ngoc Nguyen
- Department of Surgery, George Washington University, Washington, DC, USA
| | - John R. Stroehlein
- Department of Gastroenterology, Hepatology, and Nutrition, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sang Soo Kim
- National Cancer Center, Radiation Medicine Branch, Goyang, 410-769, Korea
| | - Heather Levin
- Department of Surgery, George Washington University, Washington, DC, USA
| | - Keigo Machida
- Southern California Research Center for ALPD and Cirrhosis, University of Southern California, Los Angeles, CA 90089, USA,Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033 USA
| | - Hidekazu Tsukamoto
- Southern California Research Center for ALPD and Cirrhosis, University of Southern California, Los Angeles, CA 90089, USA,Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089 USA,Department of Veterans Affairs, Greater Los Angeles Healthcare System, Los Angeles, CA 90089, USA
| | - Peter Michaely
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Alexandros Tzatsos
- George Washington University, Department of Anatomy and Regenerative Biology, Washington, DC, 20052, USA
| | - Bibhuti Mishra
- Institute for Clinical Research, Veterans Affairs Medical Center, Washington, DC, 20422, USA,Department of Surgery, George Washington University, Washington, DC, USA,Center for Translational Medicine, Department of Surgery, George Washington University, Washington DC 20037, USA
| | - Richard Amdur
- Department of Surgery, George Washington University, Washington, DC, USA,Center for Translational Medicine, Department of Surgery, George Washington University, Washington DC 20037, USA
| | - Lopa Mishra
- Institute for Clinical Research, Veterans Affairs Medical Center, Washington, DC, 20422, USA,Department of Surgery, George Washington University, Washington, DC, USA,Center for Translational Medicine, Department of Surgery, George Washington University, Washington DC 20037, USA,Contact Information for Correspondence: Lopa Mishra, M.D., Director, Center for Translational Medicine, Professor, Department of Surgery, MFA, VA & George Washington University, 2300 Eye Street NW, Ross Hall #554, Washington, DC 20037, Tel: 240-401-2916, Fax: 202-462-2006, ,
| |
Collapse
|
36
|
Brosh RM, Bellani M, Liu Y, Seidman MM. Fanconi Anemia: A DNA repair disorder characterized by accelerated decline of the hematopoietic stem cell compartment and other features of aging. Ageing Res Rev 2017; 33:67-75. [PMID: 27223997 DOI: 10.1016/j.arr.2016.05.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/06/2016] [Accepted: 05/13/2016] [Indexed: 01/05/2023]
Abstract
Fanconi Anemia (FA) is a rare autosomal genetic disorder characterized by progressive bone marrow failure (BMF), endocrine dysfunction, cancer, and other clinical features commonly associated with normal aging. The anemia stems directly from an accelerated decline of the hematopoietic stem cell compartment. Although FA is a complex heterogeneous disease linked to mutations in 19 currently identified genes, there has been much progress in understanding the molecular pathology involved. FA is broadly considered a DNA repair disorder and the FA gene products, together with other DNA repair factors, have been implicated in interstrand cross-link (ICL) repair. However, in addition to the defective DNA damage response, altered epigenetic regulation, and telomere defects, FA is also marked by elevated levels of inflammatory mediators in circulation, a hallmark of faster decline in not only other hereditary aging disorders but also normal aging. In this review, we offer a perspective of FA as a monogenic accelerated aging disorder, citing the latest evidence for its multi-factorial deficiencies underlying its unique clinical and cellular features.
Collapse
|
37
|
Impairment of fetal hematopoietic stem cell function in the absence of Fancd2. Exp Hematol 2016; 48:79-86. [PMID: 27915139 DOI: 10.1016/j.exphem.2016.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/23/2016] [Accepted: 11/24/2016] [Indexed: 12/12/2022]
Abstract
Fanconi anemia (FA) results from mutations in the genes necessary for DNA damage repair and often leads to progressive bone marrow failure. Although the exhaustion of the bone marrow leads to cytopenias in FA patients as they age, evidence from human FA and mouse model fetal livers suggests that hematopoietic defects originate in utero, which may lead to deficient seeding of the bone marrow. To address this possibility, we examined the consequences of loss of Fancd2, a central component of the FA pathway. Examination of embryonic day 14.5 (E14.5) Fancd2 knockout (KO) fetal livers showed a decrease in total cellularity and specific declines in long-term and short-term hematopoietic stem cell (LT-HSC and ST-HSC, respectively) numbers. Fancd2 KO fetal liver cells display similar functional defects to Fancd2 adult bone marrow cells, including reduced colony-forming units, increased mitomycin C sensitivity, increased LT-HSC apoptosis, and heavily impaired competitive repopulation, implying that these defects are intrinsic to the fetal liver and are not dependent on the accumulation of DNA damage during aging. Telomere shortening, an aging-related mechanism proposed to contribute to HSC apoptosis and bone marrow failure in FA, was not observed in Fancd2 KO fetal livers. In summary, loss of Fancd2 yields significant defects to fetal liver hematopoiesis, particularly the HSC population, which mimics key phenotypes from adult Fancd2 KO bone marrow independently of aging-accrued DNA damage.
Collapse
|
38
|
Metformin improves defective hematopoiesis and delays tumor formation in Fanconi anemia mice. Blood 2016; 128:2774-2784. [PMID: 27756748 DOI: 10.1182/blood-2015-11-683490] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 09/07/2016] [Indexed: 12/22/2022] Open
Abstract
Fanconi anemia (FA) is an inherited bone marrow failure disorder associated with a high incidence of leukemia and solid tumors. Bone marrow transplantation is currently the only curative therapy for the hematopoietic complications of this disorder. However, long-term morbidity and mortality remain very high, and new therapeutics are badly needed. Here we show that the widely used diabetes drug metformin improves hematopoiesis and delays tumor formation in Fancd2-/- mice. Metformin is the first compound reported to improve both of these FA phenotypes. Importantly, the beneficial effects are specific to FA mice and are not seen in the wild-type controls. In this preclinical model of FA, metformin outperformed the current standard of care, oxymetholone, by improving peripheral blood counts in Fancd2-/- mice significantly faster. Metformin increased the size of the hematopoietic stem cell compartment and enhanced quiescence in hematopoietic stem and progenitor cells. In tumor-prone Fancd2-/-Trp53+/- mice, metformin delayed the onset of tumors and significantly extended the tumor-free survival time. In addition, we found that metformin and the structurally related compound aminoguanidine reduced DNA damage and ameliorated spontaneous chromosome breakage and radials in human FA patient-derived cells. Our results also indicate that aldehyde detoxification might be one of the mechanisms by which metformin reduces DNA damage in FA cells.
Collapse
|
39
|
Katsuki Y, Takata M. Defects in homologous recombination repair behind the human diseases: FA and HBOC. Endocr Relat Cancer 2016; 23:T19-37. [PMID: 27550963 DOI: 10.1530/erc-16-0221] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 08/22/2016] [Indexed: 12/25/2022]
Abstract
Hereditary breast and ovarian cancer (HBOC) syndrome and a rare childhood disorder Fanconi anemia (FA) are caused by homologous recombination (HR) defects, and some of the causative genes overlap. Recent studies in this field have led to the exciting development of PARP inhibitors as novel cancer therapeutics and have clarified important mechanisms underlying genome instability and tumor suppression in HR-defective disorders. In this review, we provide an overview of the basic molecular mechanisms governing HR and DNA crosslink repair, highlighting BRCA2, and the intriguing relationship between HBOC and FA.
Collapse
Affiliation(s)
- Yoko Katsuki
- Laboratory of DNA Damage SignalingDepartment of Late Effects Studies, Radiation Biology Center, Kyoto University, Yoshidakonoecho, Sakyo-ku, Kyoto, Japan
| | - Minoru Takata
- Laboratory of DNA Damage SignalingDepartment of Late Effects Studies, Radiation Biology Center, Kyoto University, Yoshidakonoecho, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
40
|
Ortega-Atienza S, Rubis B, McCarthy C, Zhitkovich A. Formaldehyde Is a Potent Proteotoxic Stressor Causing Rapid Heat Shock Transcription Factor 1 Activation and Lys48-Linked Polyubiquitination of Proteins. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2857-2868. [PMID: 27639166 DOI: 10.1016/j.ajpath.2016.06.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 05/24/2016] [Accepted: 06/30/2016] [Indexed: 11/29/2022]
Abstract
Endogenous and exogenous formaldehyde (FA) has been linked to cancer, neurotoxicity, and other pathophysiologic effects. Molecular and cellular mechanisms that underlie FA-induced damage are poorly understood. In this study, we investigated whether proteotoxicity is an important, unrecognized factor in cell injury caused by FA. We found that irrespective of their cell cycle phases, all FA-treated human cells rapidly accumulated large amounts of proteins with proteasome-targeting K48-linked polyubiquitin, which was comparable with levels of polyubiquitination in proteasome-inhibited MG132 controls. Both nuclear and cytoplasmic proteins were damaged and underwent K48-polyubiquitination. There were no significant changes in the nonproteolytic K63-polyubiquitination of soluble and insoluble cellular proteins. FA also rapidly induced nuclear accumulation and Ser326 phosphorylation of the main heat shock-responsive transcription factor HSF1, which was not a result of protein polyubiquitination. Consistent with the activation of the functional heat shock response, FA strongly elevated the expression of HSP70 genes. In contrast to the responsiveness of the cytoplasmic protein damage sensor HSF1, FA did not activate the unfolded protein response in either the endoplasmic reticulum or mitochondria. Inhibition of HSP90 chaperone activity increased the levels of K48-polyubiquitinated proteins and diminished cell viability after FA treatment. Overall, our results indicate that FA is a strong proteotoxic agent, which helps explain its diverse pathologic effects, including injury in nonproliferative tissues.
Collapse
Affiliation(s)
- Sara Ortega-Atienza
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island
| | - Blazej Rubis
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island
| | - Caitlin McCarthy
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island
| | - Anatoly Zhitkovich
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island.
| |
Collapse
|
41
|
Van Wassenhove LD, Mochly-Rosen D, Weinberg KI. Aldehyde dehydrogenase 2 in aplastic anemia, Fanconi anemia and hematopoietic stem cells. Mol Genet Metab 2016; 119:28-36. [PMID: 27650066 PMCID: PMC5082284 DOI: 10.1016/j.ymgme.2016.07.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/13/2016] [Accepted: 07/13/2016] [Indexed: 12/26/2022]
Abstract
Maintenance of the hematopoietic stem cell (HSC) compartment depends on the ability to metabolize exogenously and endogenously generated toxins, and to repair cellular damage caused by such toxins. Reactive aldehydes have been demonstrated to cause specific genotoxic injury, namely DNA interstrand cross-links. Aldehyde dehydrogenase 2 (ALDH2) is a member of a 19 isoenzyme ALDH family with different substrate specificities, subcellular localization, and patterns of expression. ALDH2 is localized in mitochondria and is essential for the metabolism of acetaldehyde, thereby placing it directly downstream of ethanol metabolism. Deficiency in ALDH2 expression and function are caused by a single nucleotide substitution and resulting amino acid change, called ALDH2*2. This genetic polymorphism affects 35-45% of East Asians (about ~560 million people), and causes the well-known Asian flushing syndrome, which results in disulfiram-like reactions after ethanol consumption. Recently, the ALDH2*2 genotype has been found to be associated with marrow failure, with both an increased risk of sporadic aplastic anemia and more rapid progression of Fanconi anemia. This review discusses the unexpected interrelationship between aldehydes, ALDH2 and hematopoietic stem cell biology, and in particular its relationship to Fanconi anemia.
Collapse
Affiliation(s)
| | - Daria Mochly-Rosen
- Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kenneth I Weinberg
- Division of Stem Cell Biology and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
42
|
Dubois ÉL, Béliveau M, Masson JY. [Fanconi anemia animal models - How differences can teach us as much as similarities…]. Med Sci (Paris) 2016; 32:598-605. [PMID: 27406770 DOI: 10.1051/medsci/20163206023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Fanconi Anemia is a rare autosomal recessive genetic disease with heterogenous phenotypes including myelosuppression, congenital malformations and heightened cancer predisposition. FA cells are highly sensitive to cross-linking agents. Since the 90's, at least 19 FANC proteins (FANCA to FANCT) have been identified as working together in a unique pathway detecting and triggering the repair of DNA crosslinks. Since then, the creation of animal models in various species (nematode, fruit fly, zebrafish and mouse) contributed to a better understanding of the physiopathology of the disease. This review aims to summarize the main discoveries made in these in vivo models, as well as to discuss some controversies that arose from these studies.
Collapse
Affiliation(s)
- Émilie L Dubois
- Département de biologie moléculaire, biochimie médicale, et pathologie et Centre de Recherche sur le Cancer, Université Laval, Canada - CRCHU de Québec, axe oncologie, 9 McMahon, Québec, QC, G1R 3S3, Canada
| | - Mariline Béliveau
- Département de biologie moléculaire, biochimie médicale, et pathologie et Centre de Recherche sur le Cancer, Université Laval, Canada - CRCHU de Québec, axe oncologie, 9 McMahon, Québec, QC, G1R 3S3, Canada
| | - Jean-Yves Masson
- Département de biologie moléculaire, biochimie médicale, et pathologie et Centre de Recherche sur le Cancer, Université Laval, Canada - CRCHU de Québec, axe oncologie, 9 McMahon, Québec, QC, G1R 3S3, Canada
| |
Collapse
|
43
|
Yabe M, Yabe H, Morimoto T, Fukumura A, Ohtsubo K, Koike T, Yoshida K, Ogawa S, Ito E, Okuno Y, Muramatsu H, Kojima S, Matsuo K, Hira A, Takata M. The phenotype and clinical course of Japanese Fanconi Anaemia infants is influenced by patient, but not maternalALDH2genotype. Br J Haematol 2016; 175:457-461. [DOI: 10.1111/bjh.14243] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 05/25/2016] [Indexed: 01/04/2023]
Affiliation(s)
- Miharu Yabe
- Department of Cell Transplantation and Regenerative Medicine; Tokai University School of Medicine; Isehara Japan
| | - Hiromasa Yabe
- Department of Cell Transplantation and Regenerative Medicine; Tokai University School of Medicine; Isehara Japan
| | - Tsuyoshi Morimoto
- Department of Paediatrics; Tokai University School of Medicine; Isehara Japan
| | - Akiko Fukumura
- Department of Paediatrics; Tokai University School of Medicine; Isehara Japan
| | - Keisuke Ohtsubo
- Department of Paediatrics; Tokai University School of Medicine; Isehara Japan
| | - Takashi Koike
- Department of Paediatrics; Tokai University School of Medicine; Isehara Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumour Biology; Graduate School of Medicine; Kyoto University; Kyoto Japan
| | - Seishi Ogawa
- Department of Pathology and Tumour Biology; Graduate School of Medicine; Kyoto University; Kyoto Japan
| | - Etsuro Ito
- Department of Paediatrics; Hirosaki University Graduate School of Medicine; Hirosaki Japan
| | - Yusuke Okuno
- Department of Paediatrics; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Hideki Muramatsu
- Department of Paediatrics; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Seiji Kojima
- Department of Paediatrics; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Keitaro Matsuo
- Division of Molecular Medicine; Aichi Cancer Centre Research Institute; Nagoya Japan
| | - Asuka Hira
- Laboratory of DNA Damage Signalling; Department of Late Effects Studies; Radiation Biology Centre; Kyoto University; Kyoto Japan
| | - Minoru Takata
- Laboratory of DNA Damage Signalling; Department of Late Effects Studies; Radiation Biology Centre; Kyoto University; Kyoto Japan
| |
Collapse
|
44
|
Gygli PE, Chang JC, Gokozan HN, Catacutan FP, Schmidt TA, Kaya B, Goksel M, Baig FS, Chen S, Griveau A, Michowski W, Wong M, Palanichamy K, Sicinski P, Nelson RJ, Czeisler C, Otero JJ. Cyclin A2 promotes DNA repair in the brain during both development and aging. Aging (Albany NY) 2016; 8:1540-70. [PMID: 27425845 PMCID: PMC4993346 DOI: 10.18632/aging.100990] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/13/2016] [Indexed: 12/24/2022]
Abstract
Various stem cell niches of the brain have differential requirements for Cyclin A2. Cyclin A2 loss results in marked cerebellar dysmorphia, whereas forebrain growth is retarded during early embryonic development yet achieves normal size at birth. To understand the differential requirements of distinct brain regions for Cyclin A2, we utilized neuroanatomical, transgenic mouse, and mathematical modeling techniques to generate testable hypotheses that provide insight into how Cyclin A2 loss results in compensatory forebrain growth during late embryonic development. Using unbiased measurements of the forebrain stem cell niche, we parameterized a mathematical model whereby logistic growth instructs progenitor cells as to the cell-types of their progeny. Our data was consistent with prior findings that progenitors proliferate along an auto-inhibitory growth curve. The growth retardation inCCNA2-null brains corresponded to cell cycle lengthening, imposing a developmental delay. We hypothesized that Cyclin A2 regulates DNA repair and that CCNA2-null progenitors thus experienced lengthened cell cycle. We demonstrate that CCNA2-null progenitors suffer abnormal DNA repair, and implicate Cyclin A2 in double-strand break repair. Cyclin A2's DNA repair functions are conserved among cell lines, neural progenitors, and hippocampal neurons. We further demonstrate that neuronal CCNA2 ablation results in learning and memory deficits in aged mice.
Collapse
Affiliation(s)
- Patrick E. Gygli
- Department of Pathology, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Joshua C. Chang
- Mathematical Biosciences Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Hamza N. Gokozan
- Department of Pathology, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Fay P. Catacutan
- Department of Pathology, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Theresa A. Schmidt
- Department of Pathology, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Behiye Kaya
- Department of Pathology, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Mustafa Goksel
- Department of Pathology, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Faisal S. Baig
- Department of Pathology, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Shannon Chen
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Amelie Griveau
- Department of Pediatrics, University of California, San Francisco School of Medicine, San Francisco, CA 94143, USA
| | - Wojciech Michowski
- Department of Genetics, Harvard Medical School and Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02115, USA
| | - Michael Wong
- Department of Pediatrics, University of California, San Francisco School of Medicine, San Francisco, CA 94143, USA
| | - Kamalakannan Palanichamy
- Department of Radiation Oncology, The Ohio State University College of Medicine. Columbus, OH 43210, USA
| | - Piotr Sicinski
- Department of Genetics, Harvard Medical School and Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02115, USA
| | - Randy J. Nelson
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Catherine Czeisler
- Department of Pathology, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - José J. Otero
- Department of Pathology, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| |
Collapse
|
45
|
Xie MZ, Shoulkamy MI, Salem AMH, Oba S, Goda M, Nakano T, Ide H. Aldehydes with high and low toxicities inactivate cells by damaging distinct cellular targets. Mutat Res 2016; 786:41-51. [PMID: 26917342 DOI: 10.1016/j.mrfmmm.2016.02.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 10/22/2022]
Abstract
Aldehydes are genotoxic and cytotoxic molecules and have received considerable attention for their associations with the pathogenesis of various human diseases. In addition, exposure to anthropogenic aldehydes increases human health risks. The general mechanism of aldehyde toxicity involves adduct formation with biomolecules such as DNA and proteins. Although the genotoxic effects of aldehydes such as mutations and chromosomal aberrations are directly related to DNA damage, the role of DNA damage in the cytotoxic effects of aldehydes is poorly understood because concurrent protein damage by aldehydes has similar effects. In this study, we have analysed how saturated and α,β-unsaturated aldehydes exert cytotoxic effects through DNA and protein damage. Interestingly, DNA repair is essential for alleviating the cytotoxic effect of weakly toxic aldehydes such as saturated aldehydes but not highly toxic aldehydes such as long α,β-unsaturated aldehydes. Thus, highly toxic aldehydes inactivate cells exclusively by protein damage. Our data suggest that DNA interstrand crosslinks, but not DNA-protein crosslinks and DNA double-strand breaks, are the critical cytotoxic DNA damage induced by aldehydes. Further, we show that the depletion of intracellular glutathione and the oxidation of thioredoxin 1 partially account for the DNA damage-independent cytotoxicity of aldehydes. On the basis of these findings, we have proposed a mechanistic model of aldehyde cytotoxicity mediated by DNA and protein damage.
Collapse
Affiliation(s)
- Ming-Zhang Xie
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Mahmoud I Shoulkamy
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan; Department of Zoology, Biological Science Building, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Amir M H Salem
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan; Department of Pathology, Medical Research Division, National Research Centre, El-Bohouth St., Dokki, Giza 12311, Egypt
| | - Shunya Oba
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Mizuki Goda
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Toshiaki Nakano
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Hiroshi Ide
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan.
| |
Collapse
|
46
|
Ortega-Atienza S, Wong VC, DeLoughery Z, Luczak MW, Zhitkovich A. ATM and KAT5 safeguard replicating chromatin against formaldehyde damage. Nucleic Acids Res 2016; 44:198-209. [PMID: 26420831 PMCID: PMC4705693 DOI: 10.1093/nar/gkv957] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/09/2015] [Accepted: 09/10/2015] [Indexed: 01/18/2023] Open
Abstract
Many carcinogens damage both DNA and protein constituents of chromatin, and it is unclear how cells respond to this compound injury. We examined activation of the main DNA damage-responsive kinase ATM and formation of DNA double-strand breaks (DSB) by formaldehyde (FA) that forms histone adducts and replication-blocking DNA-protein crosslinks (DPC). We found that low FA doses caused a strong and rapid activation of ATM signaling in human cells, which was ATR-independent and restricted to S-phase. High FA doses inactivated ATM via its covalent dimerization and formation of larger crosslinks. FA-induced ATM signaling showed higher CHK2 phosphorylation but much lower phospho-KAP1 relative to DSB inducers. Replication blockage by DPC did not produce damaged forks or detectable amounts of DSB during the main wave of ATM activation, which did not require MRE11. Chromatin-monitoring KAT5 (Tip60) acetyltransferase was responsible for acetylation and activation of ATM by FA. KAT5 and ATM were equally important for triggering of intra-S-phase checkpoint and ATM signaling promoted recovery of normal human cells after low-dose FA. Our results revealed a major role of the KAT5-ATM axis in protection of replicating chromatin against damage by the endogenous carcinogen FA.
Collapse
Affiliation(s)
- Sara Ortega-Atienza
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912, USA
| | - Victor C Wong
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912, USA
| | - Zachary DeLoughery
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912, USA
| | - Michal W Luczak
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912, USA
| | - Anatoly Zhitkovich
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912, USA
| |
Collapse
|
47
|
Federico MB, Vallerga MB, Radl A, Paviolo NS, Bocco JL, Di Giorgio M, Soria G, Gottifredi V. Chromosomal Integrity after UV Irradiation Requires FANCD2-Mediated Repair of Double Strand Breaks. PLoS Genet 2016; 12:e1005792. [PMID: 26765540 PMCID: PMC4712966 DOI: 10.1371/journal.pgen.1005792] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 12/17/2015] [Indexed: 12/29/2022] Open
Abstract
Fanconi Anemia (FA) is a rare autosomal recessive disorder characterized by hypersensitivity to inter-strand crosslinks (ICLs). FANCD2, a central factor of the FA pathway, is essential for the repair of double strand breaks (DSBs) generated during fork collapse at ICLs. While lesions different from ICLs can also trigger fork collapse, the contribution of FANCD2 to the resolution of replication-coupled DSBs generated independently from ICLs is unknown. Intriguingly, FANCD2 is readily activated after UV irradiation, a DNA-damaging agent that generates predominantly intra-strand crosslinks but not ICLs. Hence, UV irradiation is an ideal tool to explore the contribution of FANCD2 to the DNA damage response triggered by DNA lesions other than ICL repair. Here we show that, in contrast to ICL-causing agents, UV radiation compromises cell survival independently from FANCD2. In agreement, FANCD2 depletion does not increase the amount of DSBs generated during the replication of UV-damaged DNA and is dispensable for UV-induced checkpoint activation. Remarkably however, FANCD2 protects UV-dependent, replication-coupled DSBs from aberrant processing by non-homologous end joining, preventing the accumulation of micronuclei and chromatid aberrations including non-homologous chromatid exchanges. Hence, while dispensable for cell survival, FANCD2 selectively safeguards chromosomal stability after UV-triggered replication stress.
Collapse
Affiliation(s)
- María Belén Federico
- Cell Cycle and Genomic Stability Laboratory, Fundación Instituto Leloir, IIBBA/ CONICET, Buenos Aires, Argentina
| | - María Belén Vallerga
- Cell Cycle and Genomic Stability Laboratory, Fundación Instituto Leloir, IIBBA/ CONICET, Buenos Aires, Argentina
| | - Analía Radl
- Laboratorio de Dosimetría Biológica, Autoridad Regulatoria Nuclear, Buenos Aires, Argentina
| | - Natalia Soledad Paviolo
- Cell Cycle and Genomic Stability Laboratory, Fundación Instituto Leloir, IIBBA/ CONICET, Buenos Aires, Argentina
| | - José Luis Bocco
- Centro de Investigaciones en Bioquímica Clínica e Inmunología/ CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Marina Di Giorgio
- Laboratorio de Dosimetría Biológica, Autoridad Regulatoria Nuclear, Buenos Aires, Argentina
| | - Gastón Soria
- Centro de Investigaciones en Bioquímica Clínica e Inmunología/ CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Vanesa Gottifredi
- Cell Cycle and Genomic Stability Laboratory, Fundación Instituto Leloir, IIBBA/ CONICET, Buenos Aires, Argentina
| |
Collapse
|
48
|
Duxin JP, Walter JC. What is the DNA repair defect underlying Fanconi anemia? Curr Opin Cell Biol 2015; 37:49-60. [PMID: 26512453 PMCID: PMC4688103 DOI: 10.1016/j.ceb.2015.09.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 09/15/2015] [Indexed: 12/14/2022]
Abstract
Fanconi anemia (FA) is a rare human genetic disease characterized by bone marrow failure, cancer predisposition, and genomic instability. It has been known for many years that FA patient-derived cells are exquisitely sensitive to DNA interstrand cross-linking agents such as cisplatin and mitomycin C. On this basis, it was widely assumed that failure to repair endogenous interstrand cross-links (ICLs) causes FA, although the endogenous mutagen that generates these lesions remained elusive. Recent genetic evidence now suggests that endogenous aldehydes are the driving force behind FA. Importantly, aldehydes cause a variety of DNA lesions, including ICLs and DNA protein cross-links (DPCs), re-kindling the debate about which DNA lesions cause FA. In this review, we discuss new developments in our understanding of DPC and ICL repair, and how these findings bear on the question of which DNA lesion underlies FA.
Collapse
Affiliation(s)
- Julien P Duxin
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute.
| |
Collapse
|
49
|
Schwab RA, Nieminuszczy J, Shah F, Langton J, Lopez Martinez D, Liang CC, Cohn MA, Gibbons RJ, Deans AJ, Niedzwiedz W. The Fanconi Anemia Pathway Maintains Genome Stability by Coordinating Replication and Transcription. Mol Cell 2015; 60:351-61. [PMID: 26593718 PMCID: PMC4644232 DOI: 10.1016/j.molcel.2015.09.012] [Citation(s) in RCA: 278] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/20/2015] [Accepted: 09/16/2015] [Indexed: 01/27/2023]
Abstract
DNA replication stress can cause chromosomal instability and tumor progression. One key pathway that counteracts replication stress and promotes faithful DNA replication consists of the Fanconi anemia (FA) proteins. However, how these proteins limit replication stress remains largely elusive. Here we show that conflicts between replication and transcription activate the FA pathway. Inhibition of transcription or enzymatic degradation of transcription-associated R-loops (DNA:RNA hybrids) suppresses replication fork arrest and DNA damage occurring in the absence of a functional FA pathway. Furthermore, we show that simple aldehydes, known to cause leukemia in FA-deficient mice, induce DNA:RNA hybrids in FA-depleted cells. Finally, we demonstrate that the molecular mechanism by which the FA pathway limits R-loop accumulation requires FANCM translocase activity. Failure to activate a response to physiologically occurring DNA:RNA hybrids may critically contribute to the heightened cancer predisposition and bone marrow failure of individuals with mutated FA proteins. Replication and transcription collisions cause genome instability in FA A functional FA pathway protects cells from unscheduled accumulation of R-loops Transcription inhibition or R-loop removal restores normal replication in FA cells FANCM resolves R-loops via its translocase activity
Collapse
Affiliation(s)
- Rebekka A Schwab
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Jadwiga Nieminuszczy
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Fenil Shah
- Genome Stability Unit, St. Vincent's Institute, Fitzroy, VIC 3065, Australia
| | - Jamie Langton
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | | | - Chih-Chao Liang
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Martin A Cohn
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Richard J Gibbons
- Medical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Andrew J Deans
- Genome Stability Unit, St. Vincent's Institute, Fitzroy, VIC 3065, Australia
| | - Wojciech Niedzwiedz
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK.
| |
Collapse
|
50
|
Pontel LB, Rosado IV, Burgos-Barragan G, Garaycoechea JI, Yu R, Arends MJ, Chandrasekaran G, Broecker V, Wei W, Liu L, Swenberg JA, Crossan GP, Patel KJ. Endogenous Formaldehyde Is a Hematopoietic Stem Cell Genotoxin and Metabolic Carcinogen. Mol Cell 2015; 60:177-188. [PMID: 26412304 PMCID: PMC4595711 DOI: 10.1016/j.molcel.2015.08.020] [Citation(s) in RCA: 280] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 07/10/2015] [Accepted: 08/21/2015] [Indexed: 12/18/2022]
Abstract
Endogenous formaldehyde is produced by numerous biochemical pathways fundamental to life, and it can crosslink both DNA and proteins. However, the consequences of its accumulation are unclear. Here we show that endogenous formaldehyde is removed by the enzyme alcohol dehydrogenase 5 (ADH5/GSNOR), and Adh5(-/-) mice therefore accumulate formaldehyde adducts in DNA. The repair of this damage is mediated by FANCD2, a DNA crosslink repair protein. Adh5(-/-)Fancd2(-/-) mice reveal an essential requirement for these protection mechanisms in hematopoietic stem cells (HSCs), leading to their depletion and precipitating bone marrow failure. More widespread formaldehyde-induced DNA damage also causes karyomegaly and dysfunction of hepatocytes and nephrons. Bone marrow transplantation not only rescued hematopoiesis but, surprisingly, also preserved nephron function. Nevertheless, all of these animals eventually developed fatal malignancies. Formaldehyde is therefore an important source of endogenous DNA damage that is counteracted in mammals by a conserved protection mechanism.
Collapse
Affiliation(s)
- Lucas B Pontel
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Ivan V Rosado
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; Instituto de Biomedicina de Sevilla (IBiS) Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | | | - Juan I Garaycoechea
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Rui Yu
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Mark J Arends
- University of Edinburgh Division of Pathology, Edinburgh Cancer Research Centre, Institute of Genetics & Molecular Medicine, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | | | - Verena Broecker
- Department of Histopathology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, University of Cambridge, Hills Road, Cambridge CB2 2QQ, UK
| | - Wei Wei
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Limin Liu
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - James A Swenberg
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Gerry P Crossan
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Ketan J Patel
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 2QQ, UK.
| |
Collapse
|