1
|
Nihira NT, Kudo R, Ohta T. Inflammation and tumor immune escape in response to DNA damage. Semin Cancer Biol 2025; 110:36-45. [PMID: 39938581 DOI: 10.1016/j.semcancer.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/08/2025] [Accepted: 02/03/2025] [Indexed: 02/14/2025]
Abstract
Senescent and cancer cells share common inflammatory characteristics, including factors of the senescence-associated secretory phenotype (SASP) and the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway. Inflammation in the tumor microenvironment not only provides an opportunity for immune cells to attack cancer cells, but also promotes cancer invasion and metastasis. Immune checkpoint molecule PD-L1 is transcriptionally induced by inflammation, and the immunological state of PD-L1-positive tumors influences the efficacy of Immune checkpoint inhibitors (ICIs). ICIs are effective against the PD-L1-positive "hot" tumors; however, the non-immunoactive "cold" tumors that express PD-L1 rarely respond to ICIs, suggesting that converting PD-L1-positive "cold" tumors into "hot" tumors would improve the efficacy of ICIs. To eliminate cancer via the innate immune system, a therapeutic strategy for manipulating inflammatory responses must be established. To date, the molecular mechanisms of inflammation-induced tumorigenesis are not yet fully understood. However, it is becoming clear that the regulatory mechanisms of inflammation in cancer via the cGAS-STING pathway play an important role in both cancer and sensescent cells. In this review, we focus on inflammation and immune escape triggered by DNA damage in cancer and senescent cells.
Collapse
Affiliation(s)
- Naoe Taira Nihira
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Rei Kudo
- Division of Cancer RNA Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Tomohiko Ohta
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, Japan.
| |
Collapse
|
2
|
Song H, Wang G, Gao G, Xia H, Jiao L, Wu K. A Systematic Analysis of Expression and Function of RAS GTPase-Activating Proteins (RASGAPs) in Urological Cancers: A Mini-Review. Cancers (Basel) 2025; 17:1485. [PMID: 40361412 PMCID: PMC12071082 DOI: 10.3390/cancers17091485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/14/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
The RAS signaling pathway is one of the most commonly dysregulated pathways in urological cancers. This pathway can be regulated by RASGAPs, which catalyze the hydrolysis of RAS-GTP to RAS-GDP. As such, the loss of RASGAPs can promote the activation of the RAS signaling pathway. Dysregulation of RASGAPs significantly contributes to the progression of urological cancers, including prostate cancer, bladder cancer, and renal cell carcinoma. Furthermore, alterations in RASGAP expression may influence sensitivity to chemotherapy, radiotherapy, and targeted therapies, suggesting their potential as therapeutic targets. Despite the challenges involved, a deeper understanding of the complexity of the RAS signaling network, along with the evolution of personalized medicine, holds promise for delivering more precise and effective treatment options targeting RASGAPs in urological cancers.
Collapse
Affiliation(s)
- Hao Song
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (H.S.); (G.W.); (G.G.); (H.X.)
| | - Guojing Wang
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (H.S.); (G.W.); (G.G.); (H.X.)
| | - Guoqiang Gao
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (H.S.); (G.W.); (G.G.); (H.X.)
| | - Huayu Xia
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (H.S.); (G.W.); (G.G.); (H.X.)
| | - Lianying Jiao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China;
| | - Kaijie Wu
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (H.S.); (G.W.); (G.G.); (H.X.)
| |
Collapse
|
3
|
Kumagai S, Momoi Y, Nishikawa H. Immunogenomic cancer evolution: A framework to understand cancer immunosuppression. Sci Immunol 2025; 10:eabo5570. [PMID: 40153489 DOI: 10.1126/sciimmunol.abo5570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 06/26/2024] [Accepted: 03/05/2025] [Indexed: 03/30/2025]
Abstract
The process of tumor development involves tumor cells eluding detection and suppression of immune responses, which can cause decreased tumor cell antigenicity, expression of immunosuppressive molecules, and immunosuppressive cell recruitment to the tumor microenvironment (TME). Immunologically and genomically integrated analysis (immunogenomic analysis) of patient specimens has revealed that oncogenic aberrant signaling is involved in both carcinogenesis and immune evasion. In noninflamed cancers such as epidermal growth factor receptor (EGFR)-mutated lung cancers, genetic abnormalities in cancer cells contribute to the formation of an immunosuppressive TME by recruiting immunosuppressive cells, which cannot be fully explained by the cancer immunoediting hypothesis. This review summarizes the latest findings regarding the links between cancer genetic abnormalities and immunosuppression causing clinical resistance to immunotherapy. We propose the concepts of immunogenomic cancer evolution, in which cancer cell genomic evolution shapes the immunosuppressive TME, and immunogenomic precision medicine, in which cancer immunotherapy can be combined with molecularly targeted reagents that modulate the immunosuppressive TME.
Collapse
Affiliation(s)
- Shogo Kumagai
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo 104-0045, Japan
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba 277-8577, Japan
- Division of Cellular Signaling, Research Institute, National Cancer Center, Tokyo 104-0045, Japan
| | - Yusaku Momoi
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo 104-0045, Japan
- Department of Tumor Pathology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo 104-0045, Japan
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Division of Cancer Immune Multicellular System Regulation, Center for Cancer Immunotherapy and Immunology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
- Kindai University Faculty of Medicine, Osaka-sayama 589-8511, Japan
| |
Collapse
|
4
|
Zhang B, Zhang H, Qin Y. A Primer on the Role of TP53 Mutation and Targeted Therapy in Endometrial Cancer. FRONT BIOSCI-LANDMRK 2025; 30:25447. [PMID: 39862074 DOI: 10.31083/fbl25447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 01/27/2025]
Abstract
Endometrial Cancer (EC) is one of the most common gynecological malignancies, ranking first in developed countries and regions. The occurrence and development of EC is closely associated with genetic mutations. TP53 mutation, in particular, can lead to the dysfunction of numerous regulatory factors and alteration of the tumor microenvironment (TME). The changes in the TME subsequently promote the development of tumors and assist in immune escape by tumor cells, making it more challenging to treat EC and resulting in a poor prognosis. Therefore, it is important to understand the effects of TP53 mutation in EC and to conduct further research in relation to the targeting of TP53 mutations. This article reviews current research progress on the role of TP53 mutations in regulating the TME and in the mechanism of EC tumorigenesis, as well as progress on drugs that target TP53 mutations.
Collapse
Affiliation(s)
- Bohao Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou Hospital of Zhengzhou University, 450000 Zhengzhou, Henan, China
| | - Haozhe Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou Hospital of Zhengzhou University, 450000 Zhengzhou, Henan, China
| | - Yanru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou Hospital of Zhengzhou University, 450000 Zhengzhou, Henan, China
| |
Collapse
|
5
|
Hwang SH, Baek SH, Lee MJ, Kook Y, Bae SJ, Ahn SG, Jeong J. Clinical Relevance of TP53 Mutation and Its Characteristics in Breast Cancer with Long-Term Follow-Up Date. Cancers (Basel) 2024; 16:3899. [PMID: 39682089 DOI: 10.3390/cancers16233899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND The TP53 mutation is one of the most frequently identified mutations in human cancers and is typically associated with a poor prognosis. However, there are conflicting findings regarding its impact. We aimed to clarify the clinical relevance of TP53 mutations across all breast cancer subtypes and treatments utilizing long-term follow-up data. METHODS We retrospectively identified the data of breast cancer patients who underwent TP53 mutation testing. Stratified log-rank tests and Cox regression analysis were performed to compare oncologic outcomes based on TP53 mutation status and the characteristics of these mutations, including types and locations. Mutations in exons 5-9 were identified using polymerase chain reaction-denaturing high-performance liquid chromatography (PCR-DHPLC) and direct sequencing. RESULTS Between January 2007 and December 2015, 650 breast cancer patients underwent TP53 mutation testing in Gangnam Severance Hospital. The TP53 mutations were identified in 172 patients (26.5%), with 34 (19.8%) exhibiting missense hotspot mutations. Patients with TP53 mutations (TP53-mutated group) had worse prognosis, demonstrated by a 10-year recurrence-free survival (RFS) rate of 83.5% compared to 86.6% in patients without mutations (HR, 1.67; p = 0.026) and a 10-year overall survival (OS) rate of 88.1% versus 91.0% (HR, 3.02; p = 0.003). However, subgroup analyses within the TP53-mutated group did not reveal significant differences in oncologic outcomes based on mutation types and locations. CONCLUSIONS Our findings establish that TP53 mutations are linked to poorer oncologic outcomes in breast cancer across all subtypes. Yet, within the TP53-mutated group, the specific characteristics of TP53 mutations do not influence oncologic outcomes.
Collapse
Affiliation(s)
- Seung Hyun Hwang
- Institute for Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
- Department of Breast and Thyroid Surgery, Sam Hospital, Anyang 14030, Republic of Korea
| | - Seung Ho Baek
- Institute for Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Min Ji Lee
- Institute for Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Yoonwon Kook
- Institute for Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Soong June Bae
- Institute for Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Sung Gwe Ahn
- Institute for Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Joon Jeong
- Institute for Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| |
Collapse
|
6
|
Ahmadi SE, Rahimian E, Rahimi S, Zarandi B, Bahraini M, Soleymani M, Safdari SM, Shabannezhad A, Jaafari N, Safa M. From regulation to deregulation of p53 in hematologic malignancies: implications for diagnosis, prognosis and therapy. Biomark Res 2024; 12:137. [PMID: 39538363 PMCID: PMC11565275 DOI: 10.1186/s40364-024-00676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The p53 protein, encoded by the TP53 gene, serves as a critical tumor suppressor, playing a vital role in maintaining genomic stability and regulating cellular responses to stress. Dysregulation of p53 is frequently observed in hematological malignancies, significantly impacting disease progression and patient outcomes. This review aims to examine the regulatory mechanisms of p53, the implications of TP53 mutations in various hematological cancers, and emerging therapeutic strategies targeting p53. We conducted a comprehensive literature review to synthesize recent findings related to p53's multifaceted role in hematologic cancers, focusing on its regulatory pathways and therapeutic potential. TP53 mutations in hematological malignancies often lead to treatment resistance and poor prognosis. Current therapeutic strategies, including p53 reactivation and gene therapy, show promise in improving treatment outcomes. Understanding the intricacies of p53 regulation and the consequences of its mutations is essential for developing effective diagnostic and therapeutic strategies in hematological malignancies, ultimately enhancing patient care and survival.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elahe Rahimian
- Department of Medical Translational Oncology, National Center for Tumor Diseases (NCT) Dresden, Dresden, Germany
| | - Samira Rahimi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahman Zarandi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehran Bahraini
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maral Soleymani
- Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Mehrab Safdari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ashkan Shabannezhad
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Jaafari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Li X, Pu Z, Xu G, Yang Y, Cui Y, Zhou X, Wang C, Zhong Z, Zhou S, Yin J, Shan F, Yang C, Jiao L, Chen D, Huang J. Hypoxia-Induced Myocardial Hypertrophy Companies with Apoptosis Enhancement and p38-MAPK Pathway Activation. High Alt Med Biol 2024; 25:186-196. [PMID: 38647652 DOI: 10.1089/ham.2023.0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Li, Xiaoxu, Zhijun Pu, Gang Xu, Yidong Yang, Yu Cui, Xiaoying Zhou, Chenyuan Wang, Zhifeng Zhong, Simin Zhou, Jun Yin, Fabo Shan, Chengzhong Yang, Li Jiao, Dewei Chen, and Jian Huang. Hypoxia-induced myocardial hypertrophy companies with apoptosis enhancement and p38-MAPK pathway activation. High Alt Med Biol. 25:186-196, 2024. Background: Right ventricular function and remodeling are closely associated with symptom severity and patient survival in hypoxic pulmonary hypertension. However, the detailed molecular mechanisms underlying hypoxia-induced myocardial hypertrophy remain unclear. Methods: In Sprague-Dawley rats, hemodynamics were assessed under both normoxia and hypobaric hypoxia at intervals of 7 (H7), 14 (H14), and 28 (H28) days. Morphological changes in myocardial tissue were examined using hematoxylin and eosin (HE) staining, while myocardial hypertrophy was evaluated with wheat germ agglutinin (WGA) staining. Apoptosis was determined through TUNEL assays. To further understand the mechanism of myocardial hypertrophy, RNA sequencing was conducted, with findings validated via Western blot analysis. Results: The study demonstrated increased hypoxic pulmonary hypertension and improved right ventricular diastolic and systolic function in the rat models. Significant elevations in pulmonary arterial systolic pressure (PASP), mean pulmonary arterial pressure (mPAP), right ventricular mean pressure (RVMP), and the absolute value of +dp/dtmax were observed in the H14 and H28 groups compared with controls. In addition, right ventricular systolic pressure (RVSP), -dp/dtmax, and the mean dp/dt during isovolumetric relaxation period were notably higher in the H28 group. Heart rate increased in the H14 group, whereas the time constant of right ventricular isovolumic relaxation (tau) was reduced in both H14 and H28 groups. Both the right heart hypertrophy index and the heart weight/body weight ratio (HW/BW) were elevated in the H14 and H28 groups. Myocardial cell cross-sectional area also increased, as shown by HE and WGA staining. Western blot results revealed upregulated HIF-1α levels and enhanced HIF-2α expression in the H7 group. In addition, phosphorylation of p38 and c-fos was augmented in the H28 group. The H28 group showed elevated levels of Cytochrome C (Cyto C), whereas the H14 and H28 groups exhibited increased levels of Cleaved Caspase-3 and the Bax/Bcl-2 ratio. TUNEL analysis revealed a rise in apoptosis with the extension of hypoxia duration in the right ventricle. Conclusions: The study established a link between apoptosis and p38-MAPK pathway activation in hypoxia-induced myocardial hypertrophy, suggesting their significant roles in this pathological process.
Collapse
Affiliation(s)
- Xiaoxu Li
- Department of High Altitude Physiology & Pathology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Key Laboratory of High-Altitude Medicine, Chongqing, China
| | - Zhijun Pu
- Department of High Altitude Physiology & Pathology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Key Laboratory of High-Altitude Medicine, Chongqing, China
| | - Gang Xu
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Key Laboratory of High-Altitude Medicine, Chongqing, China
| | - Yidong Yang
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Key Laboratory of High-Altitude Medicine, Chongqing, China
| | - Yu Cui
- Department of High Altitude Physiology & Pathology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Key Laboratory of High-Altitude Medicine, Chongqing, China
| | - Xiaoying Zhou
- Department of High Altitude Physiology & Pathology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Key Laboratory of High-Altitude Medicine, Chongqing, China
| | - Chenyuan Wang
- Department of High Altitude Physiology & Pathology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Key Laboratory of High-Altitude Medicine, Chongqing, China
| | - Zhifeng Zhong
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Key Laboratory of High-Altitude Medicine, Chongqing, China
| | - Simin Zhou
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Key Laboratory of High-Altitude Medicine, Chongqing, China
| | - Jun Yin
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Key Laboratory of High-Altitude Medicine, Chongqing, China
| | - Fabo Shan
- State Key Laboratory of Trauma, Burn and Combined Injury, Da-ping Hospital, Army Medical University, Chongqing, China
| | - Chengzhong Yang
- Department of High Altitude Physiology & Pathology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Key Laboratory of High-Altitude Medicine, Chongqing, China
| | - Li Jiao
- Department of High Altitude Physiology & Pathology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Key Laboratory of High-Altitude Medicine, Chongqing, China
| | - Dewei Chen
- Department of High Altitude Physiology & Pathology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Key Laboratory of High-Altitude Medicine, Chongqing, China
| | - Jian Huang
- Department of High Altitude Physiology & Pathology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Key Laboratory of High-Altitude Medicine, Chongqing, China
| |
Collapse
|
8
|
Shah NN, Dave BP, Shah KC, Shah DD, Maheshwari KG, Chorawala MR, Parekh PS, Jani M. Disabled-2, a versatile tissue matrix multifunctional scaffold protein with multifaceted signaling: Unveiling its potential in the cancer battle. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5533-5557. [PMID: 38502243 DOI: 10.1007/s00210-024-03037-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 03/01/2024] [Indexed: 03/21/2024]
Abstract
A multifunctional scaffold protein termed Disabled-2 (Dab2) has recently gained attention in the scientific community and has emerged as a promising candidate in the realm of cancer research. Dab2 protein is involved in a variety of signaling pathways, due to which its significance in the pathogenesis of several carcinomas has drawn considerable attention. Dab2 is essential for controlling the advancement of cancer because it engages in essential signaling pathways such as the Wnt/β-catenin, epidermal growth factor receptor (EGFR), and transforming growth factor-beta (TGF-β) pathways. Dab2 can also repress epithelial-mesenchymal transition (EMT) which is involved in tumor progression with metastatic expansion and adds another layer of significance to its possible impact on cancer spread. Furthermore, the role of Dab2 in processes such as cell growth, differentiation, apoptosis, invasion, and metastasis has been explored in certain investigative studies suggesting its significance. The present review examines the role of Dab2 in the pathogenesis of various cancer subtypes including breast cancer, ovarian cancer, gastric cancer, prostate cancer, and bladder urothelial carcinoma and also sheds some light on its potential to act as a therapeutic target and a prognostic marker in the treatment of various carcinomas. By deciphering this protein's diverse signaling, we hope to provide useful insights that may pave the way for novel therapeutic techniques and tailored treatment approaches in cancer management. Preclinical and clinical trial data on the impact of Dab2 regulation in cancer have also been included, allowing us to delineate role of Dab2 in tumor suppressor function, as well as its correlation with disease stage classification and potential therapy options. However, we observed that there is very scarce data in the form of studies on the evaluation of Dab2 role and treatment function in carcinomas, and further research into this matter could prove beneficial in the generation of novel therapeutic agents for patient-centric and tailored therapy, as well as early prognosis of carcinomas.
Collapse
Affiliation(s)
- Nidhi N Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Bhavarth P Dave
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Kashvi C Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Disha D Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Kunal G Maheshwari
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India.
| | - Priyajeet S Parekh
- AV Pharma LLC, 1545 University Blvd N Ste A, Jacksonville, FL, 32211, USA
| | - Maharsh Jani
- Anand Niketan Shilaj, Ahmedabad, 380059, Gujarat, India
| |
Collapse
|
9
|
Efe G, Rustgi AK, Prives C. p53 at the crossroads of tumor immunity. NATURE CANCER 2024; 5:983-995. [PMID: 39009816 DOI: 10.1038/s43018-024-00796-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 06/03/2024] [Indexed: 07/17/2024]
Abstract
The p53 tumor suppressor protein has a plethora of cell-intrinsic functions and consequences that impact diverse cell types and tissues. Recent studies are beginning to unravel how wild-type and mutant p53 work in distinct ways to modulate tumor immunity. This sets up a disequilibrium between tumor immunosurveillance and escape therefrom. The ability to exploit this emerging knowledge for translational approaches may shape immunotherapy and targeted therapeutics in the future, especially in combinatorial settings.
Collapse
Affiliation(s)
- Gizem Efe
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Anil K Rustgi
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
- Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| | - Carol Prives
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| |
Collapse
|
10
|
Pignata S, Califano D, Lorusso D, Arenare L, Bartoletti M, De Giorgi U, Andreetta C, Pisano C, Scambia G, Lombardi D, Farolfi A, Cinieri S, Passarelli A, Salutari V, De Angelis C, Mignogna C, Priolo D, Capoluongo ED, Tamberi S, Scaglione GL, Arcangeli V, De Cecio R, Scognamiglio G, Greco F, Spina A, Turinetto M, Russo D, Carbone V, Casartelli C, Schettino C, Perrone F. MITO END-3: efficacy of avelumab immunotherapy according to molecular profiling in first-line endometrial cancer therapy. Ann Oncol 2024; 35:667-676. [PMID: 38704093 DOI: 10.1016/j.annonc.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/28/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Immunotherapy combined with chemotherapy significantly improves progression-free survival (PFS) compared to first-line chemotherapy alone in advanced endometrial cancer (EC), with a much larger effect size in microsatellite instability-high (MSI-H) cases. New biomarkers might help to select patients who may have benefit among those with a microsatellite-stable (MSS) tumor. PATIENTS AND METHODS In a pre-planned translational analysis of the MITO END-3 trial, we assessed the significance of genomic abnormalities in patients randomized to standard carboplatin/paclitaxel without or with avelumab. RESULTS Out of 125 randomized patients, 109 had samples eligible for next-generation sequencing analysis, and 102 had MSI tested. According to The Cancer Genome Atlas (TCGA), there were 29 cases with MSI-H, 26 with MSS TP53 wild type (wt), 47 with MSS TP53 mutated (mut), and 1 case with POLE mutation. Four mutated genes were present in >30% of cases: TP53, PIK3CA, ARID1A, and PTEN. Eleven patients (10%) had a BRCA1/2 mutation (five in MSI-H and six in MSS). High tumor mutational burden (≥10 muts/Mb) was observed in all MSI-H patients, in 4 out of 47 MSS/TP53 mut, and no case in the MSS/TP53 wt category. The effect of avelumab on PFS significantly varied according to TCGA categories, being favorable in MSI-H and worst in MSS/TP53 mut (P interaction = 0.003); a similar non-significant trend was seen in survival analysis. ARID1A and PTEN also showed a statistically significant interaction with treatment effect, which was better in the presence of the mutation (ARID1A P interaction = 0.01; PTEN P interaction = 0.002). CONCLUSION The MITO END-3 trial results suggest that TP53 mutation is associated with a poor effect of avelumab, while mutations of PTEN and ARID1A are related to a positive effect of the drug in patients with advanced EC.
Collapse
Affiliation(s)
- S Pignata
- Uro-Gynecological Medical Oncology, Istituto Nazionale Tumori, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione G Pascale, Naples.
| | - D Califano
- Microenvironment Molecular Targets Unit, Istituto Nazionale Tumori, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione G Pascale, Naples
| | - D Lorusso
- Gynecologic Oncology Unit, Fondazione Policlinico Universitario A Gemelli, IRCCS, Rome; Catholic University of Sacred Heart, Rome
| | - L Arenare
- Clinical Trial Unit, Istituto Nazionale Tumori, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione G Pascale, Naples
| | - M Bartoletti
- Unit of Medical Oncology and Cancer Prevention, Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano
| | - U De Giorgi
- Dipartimento Oncologico, IRCCS Istituto Romagnolo per lo studio dei Tumori (IRST Dino Amadori), Meldola
| | - C Andreetta
- Dipartimento di Oncologia, ASU FC S. Maria della Misericordia-Udine, Meldola
| | - C Pisano
- Uro-Gynecological Medical Oncology, Istituto Nazionale Tumori, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione G Pascale, Naples
| | - G Scambia
- Gynecologic Oncology Unit, Fondazione Policlinico Universitario A Gemelli, IRCCS, Rome; Catholic University of Sacred Heart, Rome
| | - D Lombardi
- Unit of Medical Oncology and Cancer Prevention, Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano
| | - A Farolfi
- Clinical and Experimental Oncology Unit, Istituto Romagnolo per lo Studio dei Tumori Dino Amadori, IRCCS, Meldola
| | - S Cinieri
- U.O.C. Oncologia Medica-Ospedale Senatore Antonio Perrino, Brindisi
| | - A Passarelli
- Uro-Gynecological Medical Oncology, Istituto Nazionale Tumori, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione G Pascale, Naples
| | - V Salutari
- Gynecologic Oncology Unit, Fondazione Policlinico Universitario A Gemelli, IRCCS, Rome
| | - C De Angelis
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples
| | - C Mignogna
- Division of Anatomic Pathology and Cytopathology, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Naples
| | - D Priolo
- Oncology Unit, S Vincenzo Hospital, Taormina
| | - E D Capoluongo
- Department of Molecular Medicine and Medical Biotechnology, Università degli Studi di Napoli Federico II, Naples; Azienda Ospedaliera per L'Emergenza, Catania
| | - S Tamberi
- Oncology Unit, Santa Maria Hospital, Ravenna AUSL Romagna, Ravenna
| | - G L Scaglione
- Istituto Dermopatico Dell'Immacolata IDI-IRCSS, Rome
| | - V Arcangeli
- UO Oncologia-Ospedale degli Infermi Rimini, Rimini
| | - R De Cecio
- Division of Anatomic Pathology and Cytopathology, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Naples
| | - G Scognamiglio
- Division of Anatomic Pathology and Cytopathology, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Naples
| | - F Greco
- Medical Oncology Unit, AULSS 9 Regione Veneto, Scaligera-Ospedale Generale Mater Salutis, Legnago
| | - A Spina
- Microenvironment Molecular Targets Unit, Istituto Nazionale Tumori, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione G Pascale, Naples
| | - M Turinetto
- Department of Oncology, University of Turin, Ordine Mauriziano Hospital, Turin
| | - D Russo
- Microenvironment Molecular Targets Unit, Istituto Nazionale Tumori, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione G Pascale, Naples
| | - V Carbone
- Gynecologic Oncology Unit, Fondazione Policlinico Universitario A Gemelli, IRCCS, Rome
| | - C Casartelli
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - C Schettino
- Clinical Trial Unit, Istituto Nazionale Tumori, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione G Pascale, Naples
| | - F Perrone
- Clinical Trial Unit, Istituto Nazionale Tumori, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione G Pascale, Naples
| |
Collapse
|
11
|
Mohammed Bakheet M, Mohssin Ali H, Jalil Talab T. Evaluation of some proinflammatory cytokines and biochemical parameters in pre and postmenopausal breast cancer women. Cytokine 2024; 179:156632. [PMID: 38701734 DOI: 10.1016/j.cyto.2024.156632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/08/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024]
Abstract
The study was planned to evaluate the differences in certain proinflammatory cytokines(IL-6, TNF-α) with CRP and biochemical parameters (E2, D3, LDH, GGT, TSB, Ca, Ph, uric acid), between women with pre- and postmenopausal breast cancer and seemingly healthy women in Iraqi women as controls; at medical city in teaching Oncology hospital,70 breast cancer patients women their ages ranged (47.51 ± 1.18) and 20 healthy women with age (44.45 ± 2.66) begun from September (2020) to February (2021). The aims of this study to investigate the evaluation of chemotherapy effects especially doxorubicin and cyclophosphamide only use in this study in pre and postmenopausal breast cancer women on proinflammatory cytokines(IL-6, TNF-α) with CRP and on biochemical parameters(E2, D3, LDH, GGT, TSB, Ca, Ph, uric acid) in pre and postmenapausal breast cancer women. The patients were divided into five groups and each group contains 14 patients women with breast cancer during pre and postmenopausal periods. The control groups were divided into 10 pre and 10 postmenopausal women(Fig. 1). The results of proinflammatory cytokines of and biochemical parameters in premenopausal groups were as the levels of IL-6 (pg/ml),TNF-α(pg/ml) and CRP (ng/ml) showed significant increase differences (P < 0.01)among breast cancer treated (BCT) groups in comparison with control groups,While the Liver enzymes GGT,LDH and TSB showed highly significant increase (P < 0.01) in BCT groups, Estrogen levels (pg/ml) and D3(ng/ml) increased significantly (P < 0.01)among BCT groups. Blood serum calcium and phosphorus with uric acid levels (mg/dl) showed significant difference (P < 0.01); While the result in postmenopausal of IL-6(pg/ml), TNF-α (pg/ml) and CRP (ng/ml) showed highly significant differences (P < 0.01)among BCT groups.While GGT(IU/L), LDH(IU/L) and TSB (mg/dl) enzymes were increased significantly (p < 0.01), Estrogen (pg/ml) and D3(ng/ml) levels showed significant increase (P < 0.01) among BCT groups.Blood calcium and phosphorus showed significant increase (P < 0.01) while uric acid was non-significant increase (P > 0.05).
Collapse
Affiliation(s)
| | - Hiba Mohssin Ali
- Department of Biology, College of Science, Mustansiriyah University, Bagdad, Iraq.
| | - Tabarak Jalil Talab
- Department of Biology, College of Science, Mustansiriyah University, Bagdad, Iraq.
| |
Collapse
|
12
|
De Florian Fania R, Bellazzo A, Collavin L. An update on the tumor-suppressive functions of the RasGAP protein DAB2IP with focus on therapeutic implications. Cell Death Differ 2024; 31:844-854. [PMID: 38902547 PMCID: PMC11239834 DOI: 10.1038/s41418-024-01332-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024] Open
Abstract
The dynamic crosstalk between tumor and stromal cells is a major determinant of cancer aggressiveness. The tumor-suppressor DAB2IP (Disabled homolog 2 interacting protein) plays an important role in this context, since it modulates cell responses to multiple extracellular inputs, including inflammatory cytokines and growth factors. DAB2IP is a RasGAP and negatively controls Ras-dependent mitogenic signals. In addition, it modulates other major oncogenic pathways, including TNFα/NF-κB, WNT/β-catenin, PI3K/AKT, and androgen receptor signaling. In line with its tumor-suppressive role, DAB2IP is frequently inactivated in cancer by transcriptional and post-transcriptional mechanisms, including promoter methylation, microRNA-mediated downregulation, and protein-protein interactions. Intriguingly, some observations suggest that downregulation of DAB2IP in cells of the tumor stroma could foster establishment of a pro-metastatic microenvironment. This review summarizes recent insights into the tumor-suppressive functions of DAB2IP and the consequences of its inactivation in cancer. In particular, we explore potential approaches aimed at reactivating DAB2IP, or augmenting its expression levels, as a novel strategy in cancer treatment. We suggest that reactivation or upregulation of DAB2IP would concurrently attenuate multiple oncogenic pathways in both cancer cells and the tumor microenvironment, with implications for improved treatment of a broad spectrum of tumors.
Collapse
Affiliation(s)
| | - Arianna Bellazzo
- Unit of Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Via Franco Gallini, 2, 33081, Aviano, Italy
| | - Licio Collavin
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy.
| |
Collapse
|
13
|
Shah NN, Dave BP, Shah KC, Shah DD, Maheshwari KG, Chorawala MR. Disable 2, A Versatile Tissue Matrix Multifunctional Scaffold Protein with Multifaceted Signaling: Unveiling Role in Breast Cancer for Therapeutic Revolution. Cell Biochem Biophys 2024; 82:501-520. [PMID: 38594547 DOI: 10.1007/s12013-024-01261-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2024] [Indexed: 04/11/2024]
Abstract
The Disabled-2 (DAB2) protein, found in 80-90% of various tumors, including breast cancer, has been identified as a potential tumor suppressor protein. On the contrary, some hypothesis suggests that DAB2 is associated with the modulation of the Ras/MAPK pathway by endocytosing the Grb/Sos1 signaling complex, which produces oncogenes and chemoresistance to anticancer drugs, leading to increased tumor growth and metastasis. DAB2 has multiple functions in several disorders and is typically under-regulated in several cancers, making it a potential target for treatment of cancer therapy. The primary function of DAB2 is the modulation of transforming growth factor- β (TGF-β) mediated endocytosis, which is involved in several mechanisms of cancer development, including tumor suppression through promoting apoptosis and suppressing cell proliferation. In this review, we will discuss in detail the mechanisms through which DAB2 leads to breast cancer and various advancements in employing DAB2 in the treatment of breast cancer. Additionally, we outlined its role in other diseases. We propose that upregulating DAB2 could be a novel approach to the therapeutics of breast cancer.
Collapse
Affiliation(s)
- Nidhi N Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Bhavarth P Dave
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Kashvi C Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Disha D Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Kunal G Maheshwari
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India.
| |
Collapse
|
14
|
Ibusuki R, Iwama E, Shimauchi A, Tsutsumi H, Yoneshima Y, Tanaka K, Okamoto I. TP53 gain-of-function mutations promote osimertinib resistance via TNF-α-NF-κB signaling in EGFR-mutated lung cancer. NPJ Precis Oncol 2024; 8:60. [PMID: 38431700 PMCID: PMC10908812 DOI: 10.1038/s41698-024-00557-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
EGFR tyrosine kinase inhibitors (TKIs) are effective against EGFR-mutated lung cancer, but tumors eventually develop resistance to these drugs. Although TP53 gain-of-function (GOF) mutations promote carcinogenesis, their effect on EGFR-TKI efficacy has remained unclear. We here established EGFR-mutated lung cancer cell lines that express wild-type (WT) or various mutant p53 proteins with CRISPR-Cas9 technology and found that TP53-GOF mutations promote early development of resistance to the EGFR-TKI osimertinib associated with sustained activation of ERK and expression of c-Myc. Gene expression analysis revealed that osimertinib activates TNF-α-NF-κB signaling specifically in TP53-GOF mutant cells. In such cells, osimertinib promoted interaction of p53 with the NF-κB subunit p65, translocation of the resulting complex to the nucleus and its binding to the TNF promoter, and TNF-α production. Concurrent treatment of TP53-GOF mutant cells with the TNF-α inhibitor infliximab suppressed acquisition of osimertinib resistance as well as restored osimertinib sensitivity in resistant cells in association with attenuation of ERK activation and c-Myc expression. Our findings indicate that induction of TNF-α expression by osimertinib in TP53-GOF mutant cells contributes to the early development of osimertinib resistance, and that TNF-α inhibition may therefore be an effective strategy to overcome such resistance in EGFR-mutant lung cancer with TP53-GOF mutations.
Collapse
Affiliation(s)
- Ritsu Ibusuki
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiji Iwama
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Atsushi Shimauchi
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hirono Tsutsumi
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuto Yoneshima
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kentaro Tanaka
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Isamu Okamoto
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
15
|
Song B, Yang P, Zhang S. Cell fate regulation governed by p53: Friends or reversible foes in cancer therapy. Cancer Commun (Lond) 2024; 44:297-360. [PMID: 38311377 PMCID: PMC10958678 DOI: 10.1002/cac2.12520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
Cancer is a leading cause of death worldwide. Targeted therapies aimed at key oncogenic driver mutations in combination with chemotherapy and radiotherapy as well as immunotherapy have benefited cancer patients considerably. Tumor protein p53 (TP53), a crucial tumor suppressor gene encoding p53, regulates numerous downstream genes and cellular phenotypes in response to various stressors. The affected genes are involved in diverse processes, including cell cycle arrest, DNA repair, cellular senescence, metabolic homeostasis, apoptosis, and autophagy. However, accumulating recent studies have continued to reveal novel and unexpected functions of p53 in governing the fate of tumors, for example, functions in ferroptosis, immunity, the tumor microenvironment and microbiome metabolism. Among the possibilities, the evolutionary plasticity of p53 is the most controversial, partially due to the dizzying array of biological functions that have been attributed to different regulatory mechanisms of p53 signaling. Nearly 40 years after its discovery, this key tumor suppressor remains somewhat enigmatic. The intricate and diverse functions of p53 in regulating cell fate during cancer treatment are only the tip of the iceberg with respect to its equally complicated structural biology, which has been painstakingly revealed. Additionally, TP53 mutation is one of the most significant genetic alterations in cancer, contributing to rapid cancer cell growth and tumor progression. Here, we summarized recent advances that implicate altered p53 in modulating the response to various cancer therapies, including chemotherapy, radiotherapy, and immunotherapy. Furthermore, we also discussed potential strategies for targeting p53 as a therapeutic option for cancer.
Collapse
Affiliation(s)
- Bin Song
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
| | - Ping Yang
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
| | - Shuyu Zhang
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
- The Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduSichuanP. R. China
- Laboratory of Radiation MedicineNHC Key Laboratory of Nuclear Technology Medical TransformationWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduSichuanP. R. China
| |
Collapse
|
16
|
Zhu KL, Su F, Yang JR, Xiao RW, Wu RY, Cao MY, Ling XL, Zhang T. TP53 to mediate immune escape in tumor microenvironment: an overview of the research progress. Mol Biol Rep 2024; 51:205. [PMID: 38270700 PMCID: PMC10811008 DOI: 10.1007/s11033-023-09097-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/04/2023] [Indexed: 01/26/2024]
Abstract
Increasing evidence suggests that key cancer-causing driver genes continue to exert a sustained influence on the tumor microenvironment (TME), highlighting the importance of immunotherapeutic targeting of gene mutations in governing tumor progression. TP53 is a prominent tumor suppressor that encodes the p53 protein, which controls the initiation and progression of different tumor types. Wild-type p53 maintains cell homeostasis and genomic instability through complex pathways, and mutant p53 (Mut p53) promotes tumor occurrence and development by regulating the TME. To date, it has been wildly considered that TP53 is able to mediate tumor immune escape. Herein, we summarized the relationship between TP53 gene and tumors, discussed the mechanism of Mut p53 mediated tumor immune escape, and summarized the progress of applying p53 protein in immunotherapy. This study will provide a basic basis for further exploration of therapeutic strategies targeting p53 protein.
Collapse
Affiliation(s)
- Kai-Li Zhu
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Fei Su
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Jing-Ru Yang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Ruo-Wen Xiao
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Rui-Yue Wu
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Meng-Yue Cao
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Xiao-Ling Ling
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| | - Tao Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| |
Collapse
|
17
|
Zhao M, Wang T, Gleber-Netto FO, Chen Z, McGrail DJ, Gomez JA, Ju W, Gadhikar MA, Ma W, Shen L, Wang Q, Tang X, Pathak S, Raso MG, Burks JK, Lin SY, Wang J, Multani AS, Pickering CR, Chen J, Myers JN, Zhou G. Mutant p53 gains oncogenic functions through a chromosomal instability-induced cytosolic DNA response. Nat Commun 2024; 15:180. [PMID: 38167338 PMCID: PMC10761733 DOI: 10.1038/s41467-023-44239-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Inactivating TP53 mutations leads to a loss of function of p53, but can also often result in oncogenic gain-of-function (GOF) of mutant p53 (mutp53) proteins which promotes tumor development and progression. The GOF activities of TP53 mutations are well documented, but the mechanisms involved remain poorly understood. Here, we study the mutp53 interactome and find that by targeting minichromosome maintenance complex components (MCMs), GOF mutp53 predisposes cells to replication stress and chromosomal instability (CIN), leading to a tumor cell-autonomous and cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING)-dependent cytosolic DNA response that activates downstream non-canonical nuclear factor kappa light chain enhancer of activated B cell (NC-NF-κB) signaling. Consequently, GOF mutp53-MCMs-CIN-cytosolic DNA-cGAS-STING-NC-NF-κB signaling promotes tumor cell metastasis and an immunosuppressive tumor microenvironment through antagonizing interferon signaling and regulating genes associated with pro-tumorigenic inflammation. Our findings have important implications for understanding not only the GOF activities of TP53 mutations but also the genome-guardian role of p53 and its inactivation during tumor development and progression.
Collapse
Affiliation(s)
- Mei Zhao
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Tianxiao Wang
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Head and Neck Surgery, Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, 100142, Beijing, China
| | - Frederico O Gleber-Netto
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Zhen Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Daniel J McGrail
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, 44195, USA
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Javier A Gomez
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wutong Ju
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mayur A Gadhikar
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wencai Ma
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Li Shen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Qi Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ximing Tang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sen Pathak
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Maria Gabriela Raso
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jared K Burks
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Shiaw-Yih Lin
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Asha S Multani
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Curtis R Pickering
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Surgery-Otolaryngology, Yale School of Medicine, New Haven, CT, 06250, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jeffrey N Myers
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Ge Zhou
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
18
|
Wu J, Yang Q, Zhu Y, Xia T, Yi L, Wang J, Ren X. DNAJA1 promotes proliferation and metastasis of breast cancer by activating mutant P53/NF-κB pathway. Pathol Res Pract 2023; 252:154921. [PMID: 37977037 DOI: 10.1016/j.prp.2023.154921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE Breast cancer is one of the most common tumors with high malignancy and metastatic rate. DNAJA1 is closely related to tumor progress in several tumors. However, the role and mechanisms of DNAJA1 in the metastasis and proliferation of breast cancer are unknown. METHODS Immunohistochemistry and western blot were used to detect the protein expression genes. In vivo and vitro experiments were performed to evaluate the proliferation, invasive and metastatic abilities of breast cancer cells. RESULTS DNAJA1 was high expressed in 234 cases of breast cancer tissues and associated with metastasis, p53 expression and poor survival for patients. Knock down of DNAJA1 decreased the number of plate clone formation and the OD value of CCK8 assays in breast cancer cells. Depletion of DNAJA1 also in decreased the invasive abilities of breast cancer cells. In vivo, knock down DNAJA1 decreased the growth of subcutaneous tumor and lung metastatic nodes. Mechanically, DNAJA1 could bind with P53-R175H and reduced its degradation. Up regulation of DNAJA1 in mutant P53-R175H breast cancer cell promoted the nuclear translocation of p65, activated NF-κB pathway and enhanced the transcription of its downstream genes such as MMP9, CXCL10 et al. Blockade of NF-κB pathway effectively rescued the effects of DNAJA1 on proliferation and metastasis in breast cancer. CONCLUSION Our study reveals that DNAJA1 is up regulated in breast cancer and promotes breast cancer cells proliferation and metastasis via P53-R175H/NF-κB pathway. It might be a potential prognosis marker for the breast cancer patients.
Collapse
Affiliation(s)
- Jiao Wu
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, People's Republic of China; Department of Pathology, Southwest Medical University, Luzhou 646000, Sichuan Province, People's Republic of China
| | - Qiao Yang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, People's Republic of China; Department of Pathology, Southwest Medical University, Luzhou 646000, Sichuan Province, People's Republic of China
| | - Ye Zhu
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, People's Republic of China; Department of gastroenterology, The People' Hospital of Leshan, Leshan 644000, Sichuan Province, People's Republic of China; Precision Pathology Diagnosis for Serious Diseases Key Laboratory of Luzhou, Luzhou 646000, Sichuan Province, People's Republic of China
| | - Tian Xia
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, People's Republic of China; Precision Pathology Diagnosis for Serious Diseases Key Laboratory of Luzhou, Luzhou 646000, Sichuan Province, People's Republic of China
| | - Lizhi Yi
- Department of gastroenterology, The People' Hospital of Leshan, Leshan 644000, Sichuan Province, People's Republic of China
| | - Jianmei Wang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, People's Republic of China; Department of Pathology, Southwest Medical University, Luzhou 646000, Sichuan Province, People's Republic of China; Precision Pathology Diagnosis for Serious Diseases Key Laboratory of Luzhou, Luzhou 646000, Sichuan Province, People's Republic of China.
| | - Xiaoli Ren
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, People's Republic of China; Department of Pathology, Southwest Medical University, Luzhou 646000, Sichuan Province, People's Republic of China; Precision Pathology Diagnosis for Serious Diseases Key Laboratory of Luzhou, Luzhou 646000, Sichuan Province, People's Republic of China.
| |
Collapse
|
19
|
Seregin AA, Smirnova LP, Dmitrieva EM, Zavialova MG, Simutkin GG, Ivanova SA. Differential Expression of Proteins Associated with Bipolar Disorder as Identified Using the PeptideShaker Software. Int J Mol Sci 2023; 24:15250. [PMID: 37894929 PMCID: PMC10607299 DOI: 10.3390/ijms242015250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
The prevalence of bipolar disorder (BD) in modern society is growing rapidly, but due to the lack of paraclinical criteria, its differential diagnosis with other mental disorders is somewhat challenging. In this regard, the relevance of proteomic studies is increasing due to the development of methods for processing large data arrays; this contributes to the discovery of protein patterns of pathological processes and the creation of new methods of diagnosis and treatment. It seems promising to search for proteins involved in the pathogenesis of BD in an easily accessible material-blood serum. Sera from BD patients and healthy individuals were purified via affinity chromatography to isolate 14 major proteins and separated using 1D SDS-PAGE. After trypsinolysis, the proteins in the samples were identified via HPLC/mass spectrometry. Mass spectrometric data were processed using the OMSSA and X!Tandem search algorithms using the UniProtKB database, and the results were analyzed using PeptideShaker. Differences in proteomes were assessed via an unlabeled NSAF-based analysis using a two-tailed Bonferroni-adjusted t-test. When comparing the blood serum proteomes of BD patients and healthy individuals, 10 proteins showed significant differences in NSAF values. Of these, four proteins were predominantly present in BD patients with the maximum NSAF value: 14-3-3 protein zeta/delta; ectonucleoside triphosphate diphosphohydrolase 7; transforming growth factor-beta-induced protein ig-h3; and B-cell CLL/lymphoma 9 protein. Further exploration of the role of these proteins in BD is warranted; conducting such studies will help develop new paraclinical criteria and discover new targets for BD drug therapy.
Collapse
Affiliation(s)
- Alexander A. Seregin
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634014, Russia; (A.A.S.)
| | - Liudmila P. Smirnova
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634014, Russia; (A.A.S.)
| | - Elena M. Dmitrieva
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634014, Russia; (A.A.S.)
| | | | - German G. Simutkin
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634014, Russia; (A.A.S.)
| | - Svetlana A. Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634014, Russia; (A.A.S.)
| |
Collapse
|
20
|
Zhang Y, Chen Y, Chen R, Zhou H, Lin Y, Li B, Song H, Zhou G, Dong M, Xu H. YTHDF3as a prognostic predictive biomarker of thyroid cancer and its correlation with immune infiltration. BMC Cancer 2023; 23:882. [PMID: 37726690 PMCID: PMC10507848 DOI: 10.1186/s12885-023-11361-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023] Open
Abstract
PURPOSE Thyroid cancer (TC) is one of the most common endocrine malignancies, and its morbidity continues to rise. N6-methyladenosine (m6A) RNA methylation, an epigenetic modification, is an important regulator of gene expression in TC. Therefore, it's worth finding the characteristics and predictive value of the m6A RNA methylation regulators in thyroid cancer (TC). METHOD RNA-seq data of TC was downloaded from the Cancer Genome Atlas (TCGA) database to screen out the differential expressed regulators. The absolute contraction selection operator (Lasso) Cox regression was used to construct the risk model of m6A methylation regulators. The predictive value of the risk scoring model was evaluated by Kaplan Meier (K-M) analysis and receiver operating characteristic (ROC) curves. The underlying mechanism of m6A methylation regulators in TC was predicted by gene set enrichment analysis (GSEA). Further validation was performed by using immunohistochemistry (IHC) and q-PCR. The correlation between risk-related gene and immune infiltration was evaluated by Tumour Immune Estimation Resource (TIMER). RESULTS IGF2BP2, YTHDF1 and YTHDF3 were screened out as strong independent prognostic factors of TC. Then a risk score model was established to further screen the predictors. Finally, according to the results of overall survival (OS) and clinical characteristics of TC, YTHDF3 was screened out as a potential predictor. Meanwhile, IHC and qPCR confirmed that YTHDF3 was expressed differential in TC. The expression of YTHDF3 was positively associated with the infiltration level of CD4+ T cells and macrophages. It was strongly correlated with a variety of immune markers in TC. CONCLUSION We confirmed that YTHDF3 can be used as a potential prognostic biomarker of TC. It not only plays a decisive role in the initiation and development of TC, but also provides a new perspective for understanding the modification of m6A RNA in TC.
Collapse
Affiliation(s)
- Yihan Zhang
- Department of Endocrinology and Metabolism, Center for Microbiota and Immunological Diseases, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Chen
- Department of Endocrinology and Metabolism, Changhai Hospital of Shanghai, Shanghai, China
| | - Ruihua Chen
- Department of Endocrinology and Metabolism, Center for Microbiota and Immunological Diseases, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Zhou
- Department of Endocrinology and Metabolism, Center for Microbiota and Immunological Diseases, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Lin
- Department of Endocrinology and Metabolism, Center for Microbiota and Immunological Diseases, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bingxin Li
- Department of Endocrinology and Metabolism, Center for Microbiota and Immunological Diseases, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huaidong Song
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoqiang Zhou
- Department of General Surgery, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, China.
| | - Mei Dong
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Huanbai Xu
- Department of Endocrinology and Metabolism, Center for Microbiota and Immunological Diseases, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
21
|
Carlsen L, Zhang S, Tian X, De La Cruz A, George A, Arnoff TE, El-Deiry WS. The role of p53 in anti-tumor immunity and response to immunotherapy. Front Mol Biosci 2023; 10:1148389. [PMID: 37602328 PMCID: PMC10434531 DOI: 10.3389/fmolb.2023.1148389] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/04/2023] [Indexed: 08/22/2023] Open
Abstract
p53 is a transcription factor that regulates the expression of genes involved in tumor suppression. p53 mutations mediate tumorigenesis and occur in approximately 50% of human cancers. p53 regulates hundreds of target genes that induce various cell fates including apoptosis, cell cycle arrest, and DNA damage repair. p53 also plays an important role in anti-tumor immunity by regulating TRAIL, DR5, TLRs, Fas, PKR, ULBP1/2, and CCL2; T-cell inhibitory ligand PD-L1; pro-inflammatory cytokines; immune cell activation state; and antigen presentation. Genetic alteration of p53 can contribute to immune evasion by influencing immune cell recruitment to the tumor, cytokine secretion in the TME, and inflammatory signaling pathways. In some contexts, p53 mutations increase neoantigen load which improves response to immune checkpoint inhibition. Therapeutic restoration of mutated p53 can restore anti-cancer immune cell infiltration and ameliorate pro-tumor signaling to induce tumor regression. Indeed, there is clinical evidence to suggest that restoring p53 can induce an anti-cancer immune response in immunologically cold tumors. Clinical trials investigating the combination of p53-restoring compounds or p53-based vaccines with immunotherapy have demonstrated anti-tumor immune activation and tumor regression with heterogeneity across cancer type. In this Review, we discuss the impact of wild-type and mutant p53 on the anti-tumor immune response, outline clinical progress as far as activating p53 to induce an immune response across a variety of cancer types, and highlight open questions limiting effective clinical translation.
Collapse
Affiliation(s)
- Lindsey Carlsen
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Legorreta Cancer Center, Brown University, Providence, RI, United States
- Pathobiology Graduate Program, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Shengliang Zhang
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Legorreta Cancer Center, Brown University, Providence, RI, United States
| | - Xiaobing Tian
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Legorreta Cancer Center, Brown University, Providence, RI, United States
| | - Arielle De La Cruz
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Legorreta Cancer Center, Brown University, Providence, RI, United States
| | - Andrew George
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Legorreta Cancer Center, Brown University, Providence, RI, United States
| | - Taylor E. Arnoff
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Legorreta Cancer Center, Brown University, Providence, RI, United States
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Legorreta Cancer Center, Brown University, Providence, RI, United States
- Pathobiology Graduate Program, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Hematology-Oncology Division, Department of Medicine, Lifespan Health System and Warren Alpert Medical School, Brown University, Providence, RI, United States
| |
Collapse
|
22
|
Apollonio M, Bellazzo A, Franco N, Lombardi S, Senigagliesi B, Casalis L, Parisse P, Thalhammer A, Baj G, De Florian Fania R, Del Sal G, Collavin L. The Tumor Suppressor DAB2IP Is Regulated by Cell Contact and Contributes to YAP/TAZ Inhibition in Confluent Cells. Cancers (Basel) 2023; 15:3379. [PMID: 37444489 DOI: 10.3390/cancers15133379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
External and internal mechanical forces modulate cell morphology, movement, proliferation and metabolism, and represent crucial inputs for tissue homeostasis. The transcriptional regulators YAP and TAZ are important effectors of mechanical signaling and are frequently activated in solid tumors, correlating with metastasis, chemoresistance, and shorter patient survival. YAP/TAZ activity is controlled by various pathways that sense cell shape, polarity, contacts, and mechanical tension. In tumors, aberrant YAP/TAZ activation may result from cancer-related alterations of such regulatory networks. The tumor suppressor DAB2IP is a Ras-GAP and scaffold protein that negatively modulates multiple oncogenic pathways and is frequently downregulated or inactivated in solid tumors. Here, we provide evidence that DAB2IP expression is sustained by cell confluency. We also find that DAB2IP depletion in confluent cells alters their morphology, reducing cell packing while increasing cell stiffness. Finally, we find that DAB2IP depletion in confluent cells favors YAP/TAZ nuclear localization and transcriptional activity, while its ectopic expression in subconfluent cells increases YAP/TAZ retention in the cytoplasm. Together, these data suggest that DAB2IP may function as a sensor of cell interactions, contributing to dampening cellular responses to oncogenic inputs in confluent cells and that DAB2IP loss-of-function would facilitate YAP/TAZ activation in intact epithelia, accelerating oncogenic transformation.
Collapse
Affiliation(s)
- Mattia Apollonio
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Arianna Bellazzo
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Nicoletta Franco
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Silvia Lombardi
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | | | - Loredana Casalis
- Elettra-Sincrotrone Trieste, Area Science Park Basovizza, 34149 Trieste, Italy
| | - Pietro Parisse
- Elettra-Sincrotrone Trieste, Area Science Park Basovizza, 34149 Trieste, Italy
- Institute of Materials (IOM), Italian National Research Council (CNR), Area Science Park Basovizza, 34149 Trieste, Italy
| | - Agnes Thalhammer
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Gabriele Baj
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | | | - Giannino Del Sal
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
- ICGEB-Area Science Park Padriciano, 34149 Trieste, Italy
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), 20139 Milan, Italy
| | - Licio Collavin
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| |
Collapse
|
23
|
Akintunde J, Olayinka M, Ugbaja V, Akinfenwa C, Akintola T, Akamo A, Bello I. Downregulation of inflammatory erectile dysfunction by Mantisa religiosa egg-cake through NO-cGMP-PKG dependent NF-kB signaling cascade activated by mixture of salt intake. Toxicol Rep 2023; 10:633-646. [PMID: 37250529 PMCID: PMC10220466 DOI: 10.1016/j.toxrep.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/06/2023] [Accepted: 05/13/2023] [Indexed: 05/31/2023] Open
Abstract
We hypothesized whether 10% praying-mantis-egg-cake (10% PMEC) can be applied against inflammatory-erectile-dysfunction and whether it could be linked to NO-cGMP-dependent PKG signaling cascade. Ninety male albino-rats were randomly distributed into nine (n = 10) groups. Group I was given distilled water. Group II and III were pre-treated with 80 mg/kg NaCl and 75 mg/kg MSG, respectively. Group IV was pre-treated with 80 mg/kg NaCl + 75 mg/kg MSG. Group V was administered with 80 mg/kg NaCl+ 3 mg/kg Amylopidin. Group VI was given 80 mg/kg NaCl + 10% PMEC. Group VII was treated with 75 mg/kg MSG + 10% PMEC. Group VIII was treated with 80 mg/kg NaCl+ 75 mg/kg MSG + 10% PMEC. Group IX was post-treated with 10% PMEC for 14 days. Penile PDE-51, arginase, ATP hydrolytic, cholinergic, dopaminergic (MAO-A) and adenosinergic (ADA) enzymes were hyperactive on intoxication with NaCl and MSG. The erectile dysfunction caused by inflammation was linked to alteration of NO-cGMP-dependent PKG signaling cascade via up-regulation of key cytokines and chemokine (MCP-1). These lesions were prohibited by protein-rich-cake (10% PMEC). Thus, protein-rich-cake (10% PMEC) by a factor of 4 (25%) inhibited penile cytokines/MCP-1 on exposure to mixture of salt-intake through NO-cGMP-PKG dependent-NF-KB signaling cascade in rats.
Collapse
Affiliation(s)
- J.K. Akintunde
- Molecular Toxicology and Biomedical, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - M.C. Olayinka
- Molecular Toxicology and Biomedical, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - V.C. Ugbaja
- Molecular Toxicology and Biomedical, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - C.A. Akinfenwa
- Molecular Toxicology and Biomedical, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - T.E. Akintola
- Molecular Toxicology and Biomedical, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - A.J. Akamo
- Molecular Toxicology and Biomedical, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - I.J. Bello
- School of Applied Sciences, Adeyemi Federal University of Education, Ondo, Nigeria
| |
Collapse
|
24
|
Feng R, Yin Y, Wei Y, Li Y, Li L, Zhu R, Yu X, Liu Y, Zhao Y, Liu Z. Mutant p53 activates hnRNPA2B1-AGAP1-mediated exosome formation to promote esophageal squamous cell carcinoma progression. Cancer Lett 2023; 562:216154. [PMID: 37030635 DOI: 10.1016/j.canlet.2023.216154] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/10/2023]
Abstract
p53 mutations predispose cancer cell development, promote their survival and metastasis, and lead to ineffective therapeutic responses and unfavorable prognosis. No drug that abrogates the oncogenic functions of mutant p53 has been approved for cancer treatment. Here, we performed whole-genome sequencing of 663 esophageal squamous cell carcinoma (ESCC) tumor tissues and paired normal tissues. The results indicated that ESCC samples from our cohort had a more dispersed distribution of TP53 mutants and a higher proportion of nonsense mutants than European and American ESCC samples in the International Agency for Research on Cancer (IARC) database. The most frequent p53 mutations disrupt the inhibition of proliferation, migration, and invasion mediated by wild-type p53 in ESCC. Furthermore, p53 mutations alter its protein nucleoplasmic localization and protein stability. The p53 mutation G245S (p53-G245S) interacts with heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) to increase protein translation of phosphatidylinositol-dependent Arf GAP (AGAP1) by promoting AGAP1 mRNA stability. AGAP1 promotes cancer cell proliferation and metastasis by enhancing exosome formation. Furthermore, we explored the combination of the HSP90 inhibitor HSP90i and the AGAP1 inhibitor QS11 could inhibit ESCC cell proliferation and metastasis. Thus, the p53-G245S/hnRNPA2B1/AGAP1 axis promotes ESCC progression by enhancing exosome formation, and the combination of an HSP90 inhibitor and an AGAP1 inhibitor may serve as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Riyue Feng
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yin Yin
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuge Wei
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yang Li
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lei Li
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Rui Zhu
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiao Yu
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuhao Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yahui Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
25
|
Wang H, Guo M, Wei H, Chen Y. Targeting p53 pathways: mechanisms, structures, and advances in therapy. Signal Transduct Target Ther 2023; 8:92. [PMID: 36859359 PMCID: PMC9977964 DOI: 10.1038/s41392-023-01347-1] [Citation(s) in RCA: 323] [Impact Index Per Article: 161.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/19/2022] [Accepted: 02/07/2023] [Indexed: 03/03/2023] Open
Abstract
The TP53 tumor suppressor is the most frequently altered gene in human cancers, and has been a major focus of oncology research. The p53 protein is a transcription factor that can activate the expression of multiple target genes and plays critical roles in regulating cell cycle, apoptosis, and genomic stability, and is widely regarded as the "guardian of the genome". Accumulating evidence has shown that p53 also regulates cell metabolism, ferroptosis, tumor microenvironment, autophagy and so on, all of which contribute to tumor suppression. Mutations in TP53 not only impair its tumor suppressor function, but also confer oncogenic properties to p53 mutants. Since p53 is mutated and inactivated in most malignant tumors, it has been a very attractive target for developing new anti-cancer drugs. However, until recently, p53 was considered an "undruggable" target and little progress has been made with p53-targeted therapies. Here, we provide a systematic review of the diverse molecular mechanisms of the p53 signaling pathway and how TP53 mutations impact tumor progression. We also discuss key structural features of the p53 protein and its inactivation by oncogenic mutations. In addition, we review the efforts that have been made in p53-targeted therapies, and discuss the challenges that have been encountered in clinical development.
Collapse
Affiliation(s)
- Haolan Wang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hudie Wei
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
26
|
Asl ER, Rostamzadeh D, Duijf PHG, Mafi S, Mansoori B, Barati S, Cho WC, Mansoori B. Mutant P53 in the formation and progression of the tumor microenvironment: Friend or foe. Life Sci 2023; 315:121361. [PMID: 36608871 DOI: 10.1016/j.lfs.2022.121361] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 01/07/2023]
Abstract
TP53 is the most frequently mutated gene in human cancer. It encodes the tumor suppressor protein p53, which suppresses tumorigenesis by acting as a critical transcription factor that can induce the expression of many genes controlling a plethora of fundamental cellular processes, including cell cycle progression, survival, apoptosis, and DNA repair. Missense mutations are the most frequent type of mutations in the TP53 gene. While these can have variable effects, they typically impair p53 function in a dominant-negative manner, thereby altering intra-cellular signaling pathways and promoting cancer development. Additionally, it is becoming increasingly apparent that p53 mutations also have non-cell autonomous effects that influence the tumor microenvironment (TME). The TME is a complex and heterogeneous milieu composed of both malignant and non-malignant cells, including cancer-associated fibroblasts (CAFs), adipocytes, pericytes, different immune cell types, such as tumor-associated macrophages (TAMs) and T and B lymphocytes, as well as lymphatic and blood vessels and extracellular matrix (ECM). Recently, a large body of evidence has demonstrated that various types of p53 mutations directly affect TME. They fine-tune the inflammatory TME and cell fate reprogramming, which affect cancer progression. Notably, re-educating the p53 signaling pathway in the TME may be an effective therapeutic strategy in combating cancer. Therefore, it is timely to here review the recent advances in our understanding of how TP53 mutations impact the fate of cancer cells by reshaping the TME.
Collapse
Affiliation(s)
- Elmira Roshani Asl
- Department of Biochemistry, Saveh University of Medical Sciences, Saveh, Iran
| | - Davoud Rostamzadeh
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj, Iran; Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Pascal H G Duijf
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia; Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, Australia; Centre for Data Science, Queensland University of Technology, Brisbane, QLD, Australia; Cancer and Aging Research Program, Queensland University of Technology, Brisbane, QLD, Australia; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Sahar Mafi
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj, Iran; Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Behnaz Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Barati
- Department of Anatomy, Saveh University of Medical Sciences, Saveh, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, Hong Kong
| | - Behzad Mansoori
- The Wistar Institute, Molecular & Cellular Oncogenesis Program, Philadelphia, PA, United States.
| |
Collapse
|
27
|
Xiao H, Wang G, Zhao M, Shuai W, Ouyang L, Sun Q. Ras superfamily GTPase activating proteins in cancer: Potential therapeutic targets? Eur J Med Chem 2023; 248:115104. [PMID: 36641861 DOI: 10.1016/j.ejmech.2023.115104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
To search more therapeutic strategies for Ras-mutant tumors, regulators of the Ras superfamily involved in the GTP/GDP (guanosine triphosphate/guanosine diphosphate) cycle have been well concerned for their anti-tumor potentials. GTPase activating proteins (GAPs) provide the catalytic group necessary for the hydrolysis of GTPs, which accelerate the switch by cycling between GTP-bound active and GDP-bound inactive forms. Inactivated GAPs lose their function in activating GTPase, leading to the continuous activation of downstream signaling pathways, uncontrolled cell proliferation, and eventually carcinogenesis. A growing number of evidence has shown the close link between GAPs and human tumors, and as a result, GAPs are believed as potential anti-tumor targets. The present review mainly summarizes the critically important role of GAPs in human tumors by introducing the classification, function and regulatory mechanism. Moreover, we comprehensively describe the relationship between dysregulated GAPs and the certain type of tumor. Finally, the current status, research progress, and clinical value of GAPs as therapeutic targets are also discussed, as well as the challenges and future direction in the cancer therapy.
Collapse
Affiliation(s)
- Huan Xiao
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Min Zhao
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Wen Shuai
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
28
|
Bakr S, Brennan K, Mukherjee P, Argemi J, Hernaez M, Gevaert O. Identifying key multifunctional components shared by critical cancer and normal liver pathways via SparseGMM. CELL REPORTS METHODS 2023; 3:100392. [PMID: 36814838 PMCID: PMC9939431 DOI: 10.1016/j.crmeth.2022.100392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/16/2022] [Accepted: 12/21/2022] [Indexed: 01/19/2023]
Abstract
Despite the abundance of multimodal data, suitable statistical models that can improve our understanding of diseases with genetic underpinnings are challenging to develop. Here, we present SparseGMM, a statistical approach for gene regulatory network discovery. SparseGMM uses latent variable modeling with sparsity constraints to learn Gaussian mixtures from multiomic data. By combining coexpression patterns with a Bayesian framework, SparseGMM quantitatively measures confidence in regulators and uncertainty in target gene assignment by computing gene entropy. We apply SparseGMM to liver cancer and normal liver tissue data and evaluate discovered gene modules in an independent single-cell RNA sequencing (scRNA-seq) dataset. SparseGMM identifies PROCR as a regulator of angiogenesis and PDCD1LG2 and HNF4A as regulators of immune response and blood coagulation in cancer. Furthermore, we show that more genes have significantly higher entropy in cancer compared with normal liver. Among high-entropy genes are key multifunctional components shared by critical pathways, including p53 and estrogen signaling.
Collapse
Affiliation(s)
- Shaimaa Bakr
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
- Stanford Center for Biomedical Informatics Research, Department of Medicine and Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Kevin Brennan
- Stanford Center for Biomedical Informatics Research, Department of Medicine and Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Pritam Mukherjee
- Stanford Center for Biomedical Informatics Research, Department of Medicine and Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Josepmaria Argemi
- Liver Unit, Clinica Universidad de Navarra, Hepatology Program, Center for Applied Medical Research, 31008 Pamplona, Navarra, Spain
| | - Mikel Hernaez
- Center for Applied Medical Research, University of Navarra, 31009 Pamplona, Navarra, Spain
| | - Olivier Gevaert
- Stanford Center for Biomedical Informatics Research, Department of Medicine and Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
29
|
Mutant p53 in cancer: from molecular mechanism to therapeutic modulation. Cell Death Dis 2022; 13:974. [PMID: 36400749 PMCID: PMC9674619 DOI: 10.1038/s41419-022-05408-1] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022]
Abstract
TP53, a crucial tumor suppressor gene, is the most commonly mutated gene in human cancers. Aside from losing its tumor suppressor function, mutant p53 (mutp53) often acquires inherent, novel oncogenic functions, which is termed "gain-of-function". Emerging evidence suggests that mutp53 is highly associated with advanced malignancies and poor prognosis, which makes it a target for development of novel cancer therapies. Herein, we provide a summary of our knowledge of the mutp53 types and mutp53 spectrum in cancers. The mechanisms of mutp53 accumulation and gain-of-function are also summarized. Furthermore, we discuss the gain-of-function of mutp53 in cancers: genetic instability, ferroptosis, microenvironment, and stemness. Importantly, the role of mutp53 in the clinic is also discussed, particularly with regard to chemotherapy and radiotherapy. Last, emphasis is given to emerging strategies on how to target mutp53 for tumor therapy. Thus, this review will contribute to better understanding of the significance of mutp53 as a target for therapeutic strategies.
Collapse
|
30
|
Vadakekolathu J, Boocock DJ, Pandey K, Guinn BA, Legrand A, Miles AK, Coveney C, Ayala R, Purcell AW, McArdle SE. Multi-Omic Analysis of Two Common P53 Mutations: Proteins Regulated by Mutated P53 as Potential Targets for Immunotherapy. Cancers (Basel) 2022; 14:cancers14163975. [PMID: 36010968 PMCID: PMC9406384 DOI: 10.3390/cancers14163975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 12/05/2022] Open
Abstract
Simple Summary TP53 is the most frequently mutated gene in many cancers, but it has failed to be a very effective target for treatment to date. To overcome this, we have examined what else changes in cells when the TP53 gene is mutated. We modified cells that had no TP53 expression to have one of the two most common mutations, either R175H or R273H. We examined how the presence of these TP53 mutations caused cellular changes including microscopic, gene expression and peptide presentation to the immune system. This has allowed us to identify new (secondary) targets that could be used to facilitate the treatment of tumors that harbor p53 mutations. Abstract The p53 protein is mutated in more than 50% of human cancers. Mutated p53 proteins not only lose their normal function but often acquire novel oncogenic functions, a phenomenon termed mutant p53 gain-of-function. Mutant p53 has been shown to affect the transcription of a range of genes, as well as protein–protein interactions with transcription factors and other effectors; however, no one has intensively investigated and identified these proteins, or their MHC presented epitopes, from the viewpoint of their ability to act as targets for immunotherapeutic interventions. We investigated the molecular changes that occurred after the TP53 null osteosarcoma cells, SaOS-2, were transfected with one of two conformational p53-mutants, either R175H or R273H. We then examined the phenotypic and functional changes using macroscopic observations, proliferation, gene expression and proteomics alongside immunopeptidome profiling of peptide antigen presentation in the context of major histocompatibility complex (MHC) class I molecules. We identified several candidate proteins in both TP53 mutant cell lines with differential expression when compared to the TP53 null vector control, SaOS-V. Quantitative SWATH proteomics combined with immune-peptidome analysis of the class-I eluted peptides identified several epitopes presented on pMHC and in silico analysis shortlisted which antigens were expressed in a range of cancerous but not adjacent healthy tissues. Out of all the candidates, KLC1 and TOP2A showed high levels of expression in every tumor type examined. From these proteins, three A2 and four pan HLA-A epitopes were identified in both R175H and R273H from TOP2A. We have now provided a short list of future immunotherapy targets for the treatment of cancers harboring mutated TP53.
Collapse
Affiliation(s)
- Jayakumar Vadakekolathu
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham NG11 8NS, UK or
| | - David J. Boocock
- Centre for Health, Ageing and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham NG1 4FQ, UK
| | - Kirti Pandey
- Infection and Immunology Program, Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Barbara-ann Guinn
- Department of Biomedical Sciences, University of Hull, Hull HU6 7RX, UK
| | - Antoine Legrand
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham NG11 8NS, UK or
| | - Amanda K. Miles
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham NG11 8NS, UK or
- Centre for Health, Ageing and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham NG1 4FQ, UK
| | - Clare Coveney
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham NG11 8NS, UK or
| | - Rochelle Ayala
- Infection and Immunology Program, Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Anthony W. Purcell
- Infection and Immunology Program, Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Stephanie E. McArdle
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham NG11 8NS, UK or
- Centre for Health, Ageing and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham NG1 4FQ, UK
- Correspondence:
| |
Collapse
|
31
|
Cytokine chemokine network in tumor microenvironment: Impact on CSC properties and therapeutic applications. Cytokine 2022; 156:155916. [DOI: 10.1016/j.cyto.2022.155916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/27/2022] [Accepted: 05/16/2022] [Indexed: 12/21/2022]
|
32
|
Navalkar A, Paul A, Sakunthala A, Pandey S, Dey AK, Saha S, Sahoo S, Jolly MK, Maiti TK, Maji SK. Oncogenic gain of function due to p53 amyloids by aberrant alteration of cell cycle and proliferation. J Cell Sci 2022; 135:276165. [PMID: 35796018 DOI: 10.1242/jcs.259500] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 07/04/2022] [Indexed: 11/20/2022] Open
Abstract
Transcription factor p53 has been shown to aggregate into cytoplasmic/nuclear inclusions, compromising its native tumor suppressive functions. Recently, p53 is shown to form amyloids, which play a role in conferring cancerous properties to cells leading to tumorigenesis. However, the exact pathways involved in p53 amyloid-mediated cellular transformations are unknown. Here, using an in cellulo model of full-length p53 amyloid formation, we demonstrate the mechanism of loss of p53 tumor-suppressive function with concomitant oncogenic gain-of functions. Global gene expression profiling of cells suggests that p53 amyloid formation dysregulates the genes associated with cell cycle, proliferation, apoptosis, senescence along with major signaling pathways. This is further supported by the proteome analysis, showing a significant alteration in levels of p53 target proteins and enhanced metabolism, which enables the survival of cells. Our data indicate that specifically targeting the key molecules in pathways affected by p53 amyloid formation such as cyclin-dependent kinase-1, leads to loss of oncogenic phenotype and induces apoptosis of cells. Overall, our work establishes the mechanism of the transformation of cells due to p53 amyloids leading to cancer pathogenesis.
Collapse
Affiliation(s)
- Ambuja Navalkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Ajoy Paul
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Arunima Sakunthala
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Satyaprakash Pandey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Amit Kumar Dey
- Functional Proteomics Laboratory, Regional Centre for Biotechnology, Faridabad, 121001, India
| | - Sandhini Saha
- Functional Proteomics Laboratory, Regional Centre for Biotechnology, Faridabad, 121001, India
| | - Sarthak Sahoo
- Centre for BioSystems Science and Engineering (BSSE), Indian Institute of Science, Bengaluru 560012, India
| | - Mohit K Jolly
- Centre for BioSystems Science and Engineering (BSSE), Indian Institute of Science, Bengaluru 560012, India
| | - Tushar K Maiti
- Functional Proteomics Laboratory, Regional Centre for Biotechnology, Faridabad, 121001, India
| | - Samir K Maji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| |
Collapse
|
33
|
Xiao R, You L, Zhang L, Guo X, Guo E, Zhao F, Yang B, Li X, Fu Y, Lu F, Wang Z, Liu C, Peng W, Li W, Yang X, Dou Y, Liu J, Wang W, Qin T, Cui Y, Zhang X, Li F, Jin Y, Zeng Q, Wang B, Mills GB, Chen G, Sheng X, Sun C. Inhibiting the IRE1α Axis of the Unfolded Protein Response Enhances the Antitumor Effect of AZD1775 in TP53 Mutant Ovarian Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105469. [PMID: 35619328 PMCID: PMC9313493 DOI: 10.1002/advs.202105469] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 04/13/2022] [Indexed: 05/30/2023]
Abstract
Targeting the G2/M checkpoint mediator WEE1 has been explored as a novel treatment strategy in ovarian cancer, but mechanisms underlying its efficacy and resistance remains to be understood. Here, it is demonstrated that the WEE1 inhibitor AZD1775 induces endoplasmic reticulum stress and activates the protein kinase RNA-like ER kinase (PERK) and inositol-required enzyme 1α (IRE1α) branches of the unfolded protein response (UPR) in TP53 mutant (mtTP53) ovarian cancer models. This is facilitated through NF-κB mediated senescence-associated secretory phenotype. Upon AZD1775 treatment, activated PERK promotes apoptotic signaling via C/EBP-homologous protein (CHOP), while IRE1α-induced splicing of XBP1 (XBP1s) maintains cell survival by repressing apoptosis. This leads to an encouraging synergistic antitumor effect of combining AZD1775 and an IRE1α inhibitor MKC8866 in multiple cell lines and preclinical models of ovarian cancers. Taken together, the data reveal an important dual role of the UPR signaling network in mtTP53 ovarian cancer models in response to AZD1775 and suggest that inhibition of the IRE1α-XBP1s pathway may enhance the efficacy of AZD1775 in the clinics.
Collapse
Affiliation(s)
- Rourou Xiao
- National Clinical Research Center for Gynecology and ObstetricsTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Cancer Biology Research CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Department of Gynecology and Obstetrics, Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Lixin You
- National Clinical Research Center for Gynecology and ObstetricsTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Cancer Biology Research CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Department of Gynecology and Obstetrics, Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Li Zhang
- National Clinical Research Center for Gynecology and ObstetricsTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Cancer Biology Research CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Department of Gynecology and Obstetrics, Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Xichen Guo
- Key Laboratory of Environment and HealthMinistry of Education & Ministry of Environmental Protectionand State Key Laboratory of Environmental Health (Incubation)School of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Ensong Guo
- National Clinical Research Center for Gynecology and ObstetricsTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Cancer Biology Research CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Department of Gynecology and Obstetrics, Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Faming Zhao
- Key Laboratory of Environment and HealthMinistry of Education & Ministry of Environmental Protectionand State Key Laboratory of Environmental Health (Incubation)School of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Bin Yang
- National Clinical Research Center for Gynecology and ObstetricsTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Cancer Biology Research CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Department of Gynecology and Obstetrics, Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Xi Li
- National Clinical Research Center for Gynecology and ObstetricsTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Cancer Biology Research CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Department of Gynecology and Obstetrics, Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Yu Fu
- National Clinical Research Center for Gynecology and ObstetricsTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Cancer Biology Research CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Department of Gynecology and Obstetrics, Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Funian Lu
- National Clinical Research Center for Gynecology and ObstetricsTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Cancer Biology Research CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Department of Gynecology and Obstetrics, Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Zizhuo Wang
- National Clinical Research Center for Gynecology and ObstetricsTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Cancer Biology Research CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Department of Gynecology and Obstetrics, Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Chen Liu
- National Clinical Research Center for Gynecology and ObstetricsTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Cancer Biology Research CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Department of Gynecology and Obstetrics, Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Wenju Peng
- National Clinical Research Center for Gynecology and ObstetricsTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Cancer Biology Research CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Department of Gynecology and Obstetrics, Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Wenting Li
- National Clinical Research Center for Gynecology and ObstetricsTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Cancer Biology Research CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Department of Gynecology and Obstetrics, Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Xiaohang Yang
- National Clinical Research Center for Gynecology and ObstetricsTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Cancer Biology Research CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Department of Gynecology and Obstetrics, Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Yingyu Dou
- National Clinical Research Center for Gynecology and ObstetricsTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Cancer Biology Research CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Department of Gynecology and Obstetrics, Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Jingbo Liu
- National Clinical Research Center for Gynecology and ObstetricsTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Cancer Biology Research CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Department of Gynecology and Obstetrics, Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Wei Wang
- National Clinical Research Center for Gynecology and ObstetricsTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Cancer Biology Research CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Department of Gynecology and Obstetrics, Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Tianyu Qin
- National Clinical Research Center for Gynecology and ObstetricsTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Cancer Biology Research CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Department of Gynecology and Obstetrics, Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Yaoyuan Cui
- National Clinical Research Center for Gynecology and ObstetricsTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Cancer Biology Research CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Department of Gynecology and Obstetrics, Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Xiaoxiao Zhang
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Zhengzhou UniversityZheng Zhou450052China
| | - Fuxia Li
- Department of gynecologyFirst Affiliated HospitalShihezi University School of MedicineShiheziXinjiang832000P. R. China
| | - Yang Jin
- Department of BiosciencesUniversity of OsloOslo0371Norway
| | - Qingping Zeng
- Fosun OrinoveInc.Unit 211, Building A4, 218 Xinhu StreetSuzhou215000China
| | - Beibei Wang
- National Clinical Research Center for Gynecology and ObstetricsTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Cancer Biology Research CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Department of Gynecology and Obstetrics, Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Gordon B. Mills
- Department of CellDevelopment and Cancer BiologyKnight Cancer InstituteOregon Health and Sciences UniversityPortlandOR97201USA
| | - Gang Chen
- National Clinical Research Center for Gynecology and ObstetricsTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Cancer Biology Research CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Department of Gynecology and Obstetrics, Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Xia Sheng
- Key Laboratory of Environment and HealthMinistry of Education & Ministry of Environmental Protectionand State Key Laboratory of Environmental Health (Incubation)School of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Chaoyang Sun
- National Clinical Research Center for Gynecology and ObstetricsTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Cancer Biology Research CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Department of Gynecology and Obstetrics, Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| |
Collapse
|
34
|
Li Z, Spoelstra NS, Sikora MJ, Sams SB, Elias A, Richer JK, Lee AV, Oesterreich S. Mutual exclusivity of ESR1 and TP53 mutations in endocrine resistant metastatic breast cancer. NPJ Breast Cancer 2022; 8:62. [PMID: 35538119 PMCID: PMC9090919 DOI: 10.1038/s41523-022-00426-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/31/2022] [Indexed: 12/12/2022] Open
Abstract
Both TP53 and ESR1 mutations occur frequently in estrogen receptor positive (ER+) metastatic breast cancers (MBC) and their distinct roles in breast cancer tumorigenesis and progression are well appreciated. Recent clinical studies discovered mutual exclusivity between TP53 and ESR1 mutations in metastatic breast cancers; however, mechanisms underlying this intriguing clinical observation remain largely understudied and unknown. Here, we explored the interplay between TP53 and ESR1 mutations using publicly available clinical and experimental data sets. We first confirmed the robust mutational exclusivity using six independent cohorts with 1,056 ER+ MBC samples and found that the exclusivity broadly applies to all ER+ breast tumors regardless of their clinical and distinct mutational features. ESR1 mutant tumors do not exhibit differential p53 pathway activity, whereas we identified attenuated ER activity and expression in TP53 mutant tumors, driven by a p53-associated E2 response gene signature. Further, 81% of these p53-associated E2 response genes are either direct targets of wild-type (WT) p53-regulated transactivation or are mutant p53-associated microRNAs, representing bimodal mechanisms of ER suppression. Lastly, we analyzed the very rare cases with co-occurrences of TP53 and ESR1 mutations and found that their simultaneous presence was also associated with reduced ER activity. In addition, tumors with dual mutations showed higher levels of total and PD-L1 positive macrophages. In summary, our study utilized multiple publicly available sources to explore the mechanism underlying the mutual exclusivity between ESR1 and TP53 mutations, providing further insights and testable hypotheses of the molecular interplay between these two pivotal genes in ER+ MBC.
Collapse
Affiliation(s)
- Zheqi Li
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Women's Cancer Research Center, Magee Women's Research Institute, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Nicole S Spoelstra
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Matthew J Sikora
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sharon B Sams
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anthony Elias
- School of Medicine, Division of Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jennifer K Richer
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Adrian V Lee
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Women's Cancer Research Center, Magee Women's Research Institute, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Steffi Oesterreich
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
- Women's Cancer Research Center, Magee Women's Research Institute, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
35
|
Zavileyskiy L, Bunik V. Regulation of p53 Function by Formation of Non-Nuclear Heterologous Protein Complexes. Biomolecules 2022; 12:biom12020327. [PMID: 35204825 PMCID: PMC8869670 DOI: 10.3390/biom12020327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 01/10/2023] Open
Abstract
A transcription factor p53 is activated upon cellular exposure to endogenous and exogenous stresses, triggering either homeostatic correction or cell death. Depending on the stress level, often measurable as DNA damage, the dual outcome is supported by p53 binding to a number of regulatory and metabolic proteins. Apart from the nucleus, p53 localizes to mitochondria, endoplasmic reticulum and cytosol. We consider non-nuclear heterologous protein complexes of p53, their structural determinants, regulatory post-translational modifications and the role in intricate p53 functions. The p53 heterologous complexes regulate the folding, trafficking and/or action of interacting partners in cellular compartments. Some of them mainly sequester p53 (HSP proteins, G6PD, LONP1) or its partners (RRM2B, PRKN) in specific locations. Formation of other complexes (with ATP2A2, ATP5PO, BAX, BCL2L1, CHCHD4, PPIF, POLG, SOD2, SSBP1, TFAM) depends on p53 upregulation according to the stress level. The p53 complexes with SIRT2, MUL1, USP7, TXN, PIN1 and PPIF control regulation of p53 function through post-translational modifications, such as lysine acetylation or ubiquitination, cysteine/cystine redox transformation and peptidyl-prolyl cis-trans isomerization. Redox sensitivity of p53 functions is supported by (i) thioredoxin-dependent reduction of p53 disulfides, (ii) inhibition of the thioredoxin-dependent deoxyribonucleotide synthesis by p53 binding to RRM2B and (iii) changed intracellular distribution of p53 through its oxidation by CHCHD4 in the mitochondrial intermembrane space. Increasing knowledge on the structure, function and (patho)physiological significance of the p53 heterologous complexes will enable a fine tuning of the settings-dependent p53 programs, using small molecule regulators of specific protein–protein interactions of p53.
Collapse
Affiliation(s)
- Lev Zavileyskiy
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Victoria Bunik
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Department of Biokinetics, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Department of Biochemistry, Sechenov University, 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
36
|
Feng S, Huang Q, Deng J, Jia W, Gong J, Xie D, Shen J, Liu L. DAB2IP suppresses tumor malignancy by inhibiting GRP75-driven p53 ubiquitination in colon cancer. Cancer Lett 2022; 532:215588. [PMID: 35150809 DOI: 10.1016/j.canlet.2022.215588] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 02/07/2023]
Abstract
Increasing evidence has shown that DAB2IP acts as a tumor suppressor and plays an inhibitory role in many signals associated with tumorigenesis. However, the underlying mechanism of this function remains unclear. Our study shows that DAB2IP was positively associated with a good prognosis in patients with colorectal cancer and wild-type p53 expression. An in vitro assay showed that DAB2IP elicited potent tumor-suppressive effects by inhibiting cell invasiveness and colony formation and promoting cell apoptosis in wild-type p53 colon cancer cells. In addition, DAB2IP improved the stability of wild-type p53 by inhibiting its degradation in a ubiquitin-proteasome-dependent manner. Using mass spectrometry profiling, we revealed that DAB2IP and p53 interacted with the ubiquitin ligase-related protein GRP75. Mechanistically, DAB2IP is competitively bound to GRP75, thus reducing GRP75-driven p53 ubiquitination and degradation. Moreover, the Ras-GAP domain was required for the DAB2IP-GRP75 interaction and DAB2IP-mediated p53 ubiquitination. Finally, animal experiments revealed that DAB2IP inhibited tumor progression in vivo. In conclusion, our study presents a novel function of DAB2IP in GRP75-driven wild-type p53 degradation, providing new insight into DAB2IP-induced tumor suppression and a novel molecular interpretation of the p53 pathway.
Collapse
Affiliation(s)
- Shengjie Feng
- Department of Gastrointestinal Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Gastrointestinal Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Qingwen Huang
- Department of Gastrointestinal Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Gastrointestinal Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Jiao Deng
- Department of Gastrointestinal Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Gastrointestinal Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Weiyi Jia
- Department of Gastrointestinal Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Gastrointestinal Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Jianping Gong
- Department of Gastrointestinal Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Gastrointestinal Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Daxing Xie
- Department of Gastrointestinal Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Gastrointestinal Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Jie Shen
- Department of Gastrointestinal Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Gastrointestinal Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| | - Liang Liu
- Department of Gastrointestinal Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Gastrointestinal Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| |
Collapse
|
37
|
Rangel R, Pickering CR, Sikora AG, Spiotto MT. Genetic Changes Driving Immunosuppressive Microenvironments in Oral Premalignancy. Front Immunol 2022; 13:840923. [PMID: 35154165 PMCID: PMC8829003 DOI: 10.3389/fimmu.2022.840923] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 12/25/2022] Open
Abstract
Oral premalignant lesions (OPLs) are the precursors to oral cavity cancers, and have variable rates of progression to invasive disease. As an intermediate state, OPLs have acquired a subset of the genomic alterations while arising in an oral inflammatory environment. These specific genomic changes may facilitate the transition to an immune microenvironment that permits malignant transformation. Here, we will discuss mechanisms by which OPLs develop an immunosuppressive microenvironment that facilitates progression to invasive cancer. We will describe how genomic alterations and immune microenvironmental changes co-evolve and cooperate to promote OSCC progression. Finally, we will describe how these immune microenvironmental changes provide specific and unique evolutionary vulnerabilities for targeted therapies. Therefore, understanding the genomic changes that drive immunosuppressive microenvironments may eventually translate into novel biomarker and/or therapeutic approaches to limit the progression of OPLs to potential lethal oral cancers.
Collapse
Affiliation(s)
- Roberto Rangel
- Department of Head and Neck Surgery, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Curtis R. Pickering
- Department of Head and Neck Surgery, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Andrew G. Sikora
- Department of Head and Neck Surgery, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Michael T. Spiotto
- Department of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
38
|
Zhou Y, Yang Z, Zhang H, Li H, Zhang M, Wang H, Zhang M, Qiu P, Zhang R, Liu J. DNMT3A facilitates colorectal cancer progression via regulating DAB2IP mediated MEK/ERK activation. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166353. [DOI: 10.1016/j.bbadis.2022.166353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/16/2022]
|
39
|
McCann JJ, Vasilevskaya IA, McNair C, Gallagher P, Neupane NP, de Leeuw R, Shafi AA, Dylgjeri E, Mandigo AC, Schiewer MJ, Knudsen KE. Mutant p53 elicits context-dependent pro-tumorigenic phenotypes. Oncogene 2022; 41:444-458. [PMID: 34773073 PMCID: PMC8755525 DOI: 10.1038/s41388-021-01903-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022]
Abstract
The tumor suppressor gene TP53 is the most frequently mutated gene in numerous cancer types, including prostate cancer (PCa). Specifically, missense mutations in TP53 are selectively enriched in PCa, and cluster to particular "hot spots" in the p53 DNA binding domain with mutation at the R273 residue occurring most frequently. While this residue is similarly mutated to R273C-p53 or R273H-p53 in all cancer types examined, in PCa selective enrichment of R273C-p53 is observed. Importantly, examination of clinical datasets indicated that TP53 heterozygosity can either be maintained or loss of heterozygosity (LOH) occurs. Thus, to mimic tumor-associated mutant p53, R273C-p53 and R273H-p53 isogenic PCa models were developed in the presence or absence of wild-type p53. In the absence of wild-type p53, both R273C-p53 and R273H-p53 exhibited similar loss of DNA binding, transcriptional profiles, and loss of canonical tumor suppressor functions associated with wild-type p53. In the presence of wild-type p53 expression, both R273C-p53 and R273H-p53 supported canonical p53 target gene expression yet elicited distinct cistromic and transcriptional profiles when compared to each other. Moreover, heterozygous modeling of R273C-p53 or R273H-p53 expression resulted in distinct phenotypic outcomes in vitro and in vivo. Thus, mutant p53 acts in a context-dependent manner to elicit pro-tumorigenic transcriptional profiles, providing critical insight into mutant p53-mediated prostate cancer progression.
Collapse
Affiliation(s)
- Jennifer J. McCann
- grid.265008.90000 0001 2166 5843Department of Cancer Biology, Sidney Kimmel Medical College, Philadelphia, PA USA
| | - Irina A. Vasilevskaya
- grid.265008.90000 0001 2166 5843Department of Cancer Biology, Sidney Kimmel Medical College, Philadelphia, PA USA
| | - Christopher McNair
- grid.265008.90000 0001 2166 5843Department of Cancer Biology, Sidney Kimmel Medical College, Philadelphia, PA USA
| | - Peter Gallagher
- grid.265008.90000 0001 2166 5843Department of Cancer Biology, Sidney Kimmel Medical College, Philadelphia, PA USA
| | - Neermala Poudel Neupane
- grid.265008.90000 0001 2166 5843Department of Cancer Biology, Sidney Kimmel Medical College, Philadelphia, PA USA
| | - Renée de Leeuw
- grid.265008.90000 0001 2166 5843Department of Cancer Biology, Sidney Kimmel Medical College, Philadelphia, PA USA
| | - Ayesha A. Shafi
- grid.265008.90000 0001 2166 5843Department of Cancer Biology, Sidney Kimmel Medical College, Philadelphia, PA USA
| | - Emanuela Dylgjeri
- grid.265008.90000 0001 2166 5843Department of Cancer Biology, Sidney Kimmel Medical College, Philadelphia, PA USA
| | - Amy C. Mandigo
- grid.265008.90000 0001 2166 5843Department of Cancer Biology, Sidney Kimmel Medical College, Philadelphia, PA USA
| | - Matthew J. Schiewer
- grid.265008.90000 0001 2166 5843Department of Cancer Biology, Sidney Kimmel Medical College, Philadelphia, PA USA
| | - Karen E. Knudsen
- grid.265008.90000 0001 2166 5843Department of Cancer Biology, Sidney Kimmel Medical College, Philadelphia, PA USA
| |
Collapse
|
40
|
Mitotic phosphorylation of tumor suppressor DAB2IP maintains spindle assembly checkpoint and chromosomal stability through activating PLK1-Mps1 signal pathway and stabilizing mitotic checkpoint complex. Oncogene 2022; 41:489-501. [PMID: 34775484 PMCID: PMC8782720 DOI: 10.1038/s41388-021-02106-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/19/2021] [Accepted: 10/27/2021] [Indexed: 11/09/2022]
Abstract
Chromosomal instability (CIN) is a driving force for cancer development. The most common causes of CIN include the dysregulation of the spindle assembly checkpoint (SAC), which is a surveillance mechanism that prevents premature chromosome separation during mitosis by targeting anaphase-promoting complex/cyclosome (APC/C). DAB2IP is frequently silenced in advanced prostate cancer (PCa) and is associated with aggressive phenotypes of PCa. Our previous study showed that DAB2IP activates PLK1 and functions in mitotic regulation. Here, we report the novel mitotic phosphorylation of DAB2IP by Cdks, which mediates DAB2IP's interaction with PLK1 and the activation of the PLK1-Mps1 pathway. DAB2IP interacts with Cdc20 in a phosphorylation-independent manner. However, the phosphorylation of DAB2IP inhibits the ubiquitylation of Cdc20 in response to SAC, and blocks the premature release of the APC/C-MCC. The PLK1-Mps1 pathway plays an important role in mitotic checkpoint complex (MCC) assembly. It is likely that DAB2IP acts as a scaffold to aid PLK1-Mps1 in targeting Cdc20. Depletion or loss of the Cdks-mediated phosphorylation of DAB2IP destabilizes the MCC, impairs the SAC, and increases chromosome missegregation and subsequent CIN, thus contributing to tumorigenesis. Collectively, these results demonstrate the mechanism of DAB2IP in SAC regulation and provide a rationale for targeting the SAC to cause lethal CIN against DAB2IP-deficient aggressive PCa, which exhibits a weak SAC.
Collapse
|
41
|
Duits DEM, de Visser KE. Impact of cancer cell-intrinsic features on neutrophil behavior. Semin Immunol 2021; 57:101546. [PMID: 34887163 DOI: 10.1016/j.smim.2021.101546] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022]
Abstract
Neutrophils are multifaceted innate immune cells that play a significant role in the progression of cancer by exerting both pro- and anti-tumorigenic functions. The crosstalk between cancer cells and neutrophils is complex and emerging evidence is pointing at cancer cell-intrinsic programs regulating neutrophil abundance, phenotype and function. Cancer cell-derived soluble mediators are key players in modulating the interaction with neutrophils. Here, we review how intrinsic features of cancer cells, including cancer cell genetics, epigenetics, signaling, and metabolism, manipulate neutrophil behavior and how to target these processes to impact cancer progression. A molecular understanding of cancer cell-intrinsic properties that shape the crosstalk with neutrophils will provide novel therapeutic strategies for personalized immunomodulation in cancer patients.
Collapse
Affiliation(s)
- Danique E M Duits
- Division of Tumor Biology & Immunology, Oncode Institute, Netherlands Cancer Institute, 1066CX, Amsterdam, The Netherlands
| | - Karin E de Visser
- Division of Tumor Biology & Immunology, Oncode Institute, Netherlands Cancer Institute, 1066CX, Amsterdam, The Netherlands; Department of Immunology, Leiden University Medical Center, 2333ZA, Leiden, The Netherlands.
| |
Collapse
|
42
|
Shi D, Jiang P. A Different Facet of p53 Function: Regulation of Immunity and Inflammation During Tumor Development. Front Cell Dev Biol 2021; 9:762651. [PMID: 34733856 PMCID: PMC8558413 DOI: 10.3389/fcell.2021.762651] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
As a key transcription factor, the evolutionarily conserved tumor suppressor p53 (encoded by TP53) plays a central role in response to various cellular stresses. A variety of biological processes are regulated by p53 such as cell cycle arrest, apoptosis, senescence and metabolism. Besides these well-known roles of p53, accumulating evidence show that p53 also regulates innate immune and adaptive immune responses. p53 influences the innate immune system by secreted factors that modulate macrophage function to suppress tumourigenesis. Dysfunction of p53 in cancer affects the activity and recruitment of T and myeloid cells, resulting in immune evasion. p53 can also activate key regulators in immune signaling pathways which support or impede tumor development. Hence, it seems that the tumor suppressor p53 exerts its tumor suppressive effect to a considerable extent by modulating the immune response. In this review, we concisely discuss the emerging connections between p53 and immune responses, and their impact on tumor progression. Understanding the role of p53 in regulation of immunity will help to developing more effective anti-tumor immunotherapies for patients with TP53 mutation or depletion.
Collapse
Affiliation(s)
- Di Shi
- School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Peng Jiang
- School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| |
Collapse
|
43
|
Albelwi FF, Teleb M, Abu-Serie MM, Moaty MNAA, Alsubaie MS, Zakaria MA, El Kilany Y, Aouad MR, Hagar M, Rezki N. Halting Tumor Progression via Novel Non-Hydroxamate Triazole-Based Mannich Bases MMP-2/9 Inhibitors; Design, Microwave-Assisted Synthesis, and Biological Evaluation. Int J Mol Sci 2021; 22:ijms221910324. [PMID: 34638665 PMCID: PMC8508768 DOI: 10.3390/ijms221910324] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 02/07/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are key signaling modulators in the tumor microenvironment. Among MMPs, MMP-2 and MMP-9 are receiving renewed interest as validated druggable targets for halting different tumor progression events. Over the last decades, a diverse range of MMP-2/9 inhibitors has been identified starting from the early hydroxamic acid-based peptidomimetics to the next generation non-hydroxamates. Herein, focused 1,2,4-triazole-1,2,3-triazole molecular hybrids with varying lengths and decorations, mimicking the thematic features of non-hydroxamate inhibitors, were designed and synthesized using efficient protocols and were alkylated with pharmacophoric amines to develop new Mannich bases. After full spectroscopic characterization the newly synthesized triazoles tethering Mannich bases were subjected to safety assessment via MTT assay against normal human fibroblasts, then evaluated for their potential anticancer activities against colon (Caco-2) and breast (MDA-MB 231) cancers. The relatively lengthy bis-Mannich bases 15 and 16 were safer and more potent than 5-fluorouracil with sub-micromolar IC50 and promising selectivity to the screened cancer cell lines rather than normal cells. Both compounds upregulated p53 (2–5.6-fold) and suppressed cyclin D expression (0.8–0.2-fold) in the studied cancers, and thus, induced apoptosis. 15 was superior to 16 in terms of cytotoxic activities, p53 induction, and cyclin D suppression. Mechanistically, both were efficient MMP-2/9 inhibitors with comparable potencies to the reference prototype hydroxamate-based MMP inhibitor NNGH at their anticancer IC50 concentrations. 15 (IC50 = 0.143 µM) was 4-fold more potent than NNGH against MMP-9 with promising selectivity (3.27-fold) over MMP-2, whereas 16 was comparable to NNGH. Concerning MMP-2, 16 (IC50 = 0.376 µM) was 1.2-fold more active than 15. Docking simulations predicted their possible binding modes and highlighted the possible structural determinants of MMP-2/9 inhibitory activities. Computational prediction of their physicochemical properties, ADMET, and drug-likeness metrics revealed acceptable drug-like criteria.
Collapse
Affiliation(s)
- Fawzia Faleh Albelwi
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia; (F.F.A.); (M.R.A.)
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt;
| | - Marwa M. Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt;
| | - Mohamed Nabil Abd Al Moaty
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (M.N.A.A.M.); (M.S.A.); (M.A.Z.); (Y.E.K.)
| | - Mai S. Alsubaie
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (M.N.A.A.M.); (M.S.A.); (M.A.Z.); (Y.E.K.)
| | - Mohamed A. Zakaria
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (M.N.A.A.M.); (M.S.A.); (M.A.Z.); (Y.E.K.)
| | - Yeldez El Kilany
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (M.N.A.A.M.); (M.S.A.); (M.A.Z.); (Y.E.K.)
| | - Mohamed Reda Aouad
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia; (F.F.A.); (M.R.A.)
| | - Mohamed Hagar
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (M.N.A.A.M.); (M.S.A.); (M.A.Z.); (Y.E.K.)
- Correspondence: (M.H.); (N.R.)
| | - Nadjet Rezki
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia; (F.F.A.); (M.R.A.)
- Correspondence: (M.H.); (N.R.)
| |
Collapse
|
44
|
Li H, Zhou Y, Wang M, Wang H, Zhang Y, Peng R, Zhang R, Zhang M, Zhang M, Qiu P, Liu L, Zhao Q, Liu J. DOC-2/DAB2 interactive protein destabilizes c-Myc to impair the growth and self-renewal of colon tumor-repopulating cells. Cancer Sci 2021; 112:4593-4603. [PMID: 34449943 PMCID: PMC8586666 DOI: 10.1111/cas.15120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/21/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal carcinoma (CRC) remains a huge challenge in clinical treatment due to tumor metastasis and recurrence. Stem cell-like colon tumor-repopulating cells (TRCs) are a subpopulation of cancer cells with highly tumorigenic and chemotherapy resistant properties. The core transcription factor c-Myc is essential for maintaining cancer stem-like cell phenotypes, yet its roles and regulatory mechanisms remain unclear in colon TRCs. We report that elevated c-Myc protein supported formation and growth of TRC spheroids. The tumor suppressor DOC-2/DAB2 interactive protein (DAB2IP) suppressed c-Myc expression to inhibit TRC expansion and self-renewal. Particularly, DAB2IP disrupted c-Myc stability through glycogen synthase kinase 3β/protein phosphatase 2A-B56α-mediated phosphorylation and dephosphorylation cascade on c-Myc protein, leading to its eventual degradation through the ubiquitin-proteasome pathway. The expression of DAB2IP was negatively correlated with c-Myc in CRC specimens. Overall, our results improved mechanistic insight into how DAB2IP suppressed TRC growth and self-renewal.
Collapse
Affiliation(s)
- Haiou Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Yunjiao Zhou
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Meng Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Haizhou Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Yangyang Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Ruyi Peng
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Ruike Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Meng Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Mengna Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Peishan Qiu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Lan Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Jing Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| |
Collapse
|
45
|
Zhang C, Liu J, Xu D, Zhang T, Hu W, Feng Z. Gain-of-function mutant p53 in cancer progression and therapy. J Mol Cell Biol 2021; 12:674-687. [PMID: 32722796 PMCID: PMC7749743 DOI: 10.1093/jmcb/mjaa040] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/28/2020] [Accepted: 07/08/2020] [Indexed: 12/21/2022] Open
Abstract
p53 is a key tumor suppressor, and loss of p53 function is frequently a prerequisite for cancer development. The p53 gene is the most frequently mutated gene in human cancers; p53 mutations occur in >50% of all human cancers and in almost every type of human cancers. Most of p53 mutations in cancers are missense mutations, which produce the full-length mutant p53 (mutp53) protein with only one amino acid difference from wild-type p53 protein. In addition to loss of the tumor-suppressive function of wild-type p53, many mutp53 proteins acquire new oncogenic activities independently of wild-type p53 to promote cancer progression, termed gain-of-function (GOF). Mutp53 protein often accumulates to very high levels in cancer cells, which is critical for its GOF. Given the high mutation frequency of the p53 gene and the GOF activities of mutp53 in cancer, therapies targeting mutp53 have attracted great interest. Further understanding the mechanisms underlying mutp53 protein accumulation and GOF will help develop effective therapies treating human cancers containing mutp53. In this review, we summarize the recent advances in the studies on mutp53 regulation and GOF as well as therapies targeting mutp53 in human cancers.
Collapse
Affiliation(s)
- Cen Zhang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Juan Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Dandan Xu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Tianliang Zhang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Zhaohui Feng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA
| |
Collapse
|
46
|
Xia Y, Li X, Sun W. Applications of Recombinant Adenovirus-p53 Gene Therapy for Cancers in the Clinic in China. Curr Gene Ther 2021; 20:127-141. [PMID: 32951572 DOI: 10.2174/1566523220999200731003206] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/30/2020] [Accepted: 07/10/2020] [Indexed: 01/30/2023]
Abstract
Suppression of TP53 function is nearly ubiquitous in human cancers, and a significant fraction of cancers have mutations in the TP53 gene itself. Therefore, the wild-type TP53 gene has become an important target gene for transformation research of cancer gene therapy. In 2003, the first anti-tumor gene therapy drug rAd-p53 (recombinant human p53 adenovirus), trade name Gendicine™, was approved by the China Food and Drug Administration (CFDA) for treatment of head and neck squamous cell carcinoma (HNSCC) in combination with radiotherapy. The recombinant human TP53 gene is delivered into cancer cells by an adenovirus vector constructed to express the functional p53 protein. Although the only currently approved used of Gendicine is in combination with radiotherapy for treatment of HNSCC, clinical studies have been carried out for more than 20 other applications of Gendicine in treating cancer, including treatment of advanced lung cancer, advanced liver cancer, malignant gynecological tumors, and soft tissue sarcomas. Currently more than 30,000 patients have been treated with Gendicine. This review provides an overview of the clinical applications of Gendicine in China. We summarize a total of 48 studies with 2,561 patients with solid tumors, including 34 controlled clinical studies and 14 open clinical studies, i.e., clinical studies without a control group. There are 11 studies for head and neck cancer, 10 for liver cancer, 6 for malignant gynecological tumors, 4 for non-small cell lung cancer, 4 for soft tissue sarcoma, 4 for malignant effusion, 2 for gastrointestinal tumors, and 7 for other types of cancer. In all the reported clinical studies, the most common side effect was self-limited fever. Intratumoral injection and intra-arterial infusion were the most common routes of administration. Overall, Gendicine combined with chemotherapy, radiotherapy, or other conventional treatment regimens demonstrated significantly higher response rates compared to standard therapies alone. Some of the published studies also showed that Gendicine combination regimens demonstrated longer progression-free survival times than conventional treatments alone. To date, Gendicine has been clinically used in China for treatment of cancers other than HNSCC for more than ten years, mainly for patients with advanced or unresectable malignant tumors. However, the establishment of standard treatment regimens using TP53 gene therapy is still needed in order to advance its use in clinical practice.
Collapse
Affiliation(s)
- Yu Xia
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China
| | - Xiuqin Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China
| | - Wei Sun
- Radiology Department, Shengjing Hospital of China Medical University, Sanhao, China
| |
Collapse
|
47
|
Mutated p53 in HGSC-From a Common Mutation to a Target for Therapy. Cancers (Basel) 2021; 13:cancers13143465. [PMID: 34298679 PMCID: PMC8304959 DOI: 10.3390/cancers13143465] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Ovarian high-grade serous cancer (HGSC), the most common and the deadliest subtype of epithelial ovarian cancer, is characterized by frequent mutations in the TP53 tumor suppressor gene, encoding for the p53 protein in nearly 100% of cases. This makes p53 the focus of many studies trying to understand its role in HGSC. The aim of our review paper is to provide updates on the latest findings related to the role of mutant p53 in HGSC. This includes the clinical outcomes of TP53 mutations in HGSC, upstream regulators and downstream effectors of p53, its function in the earliest stages of HGSC development and in the interplay between the tumor cells and their microenvironment. We summarize with the likelihood of p53 mutants to serve as biomarkers for early diagnosis and as targets for therapy in HGSC. Abstract Mutations in tumor suppressor gene TP53, encoding for the p53 protein, are the most ubiquitous genetic variation in human ovarian HGSC, the most prevalent and lethal histologic subtype of epithelial ovarian cancer (EOC). The majority of TP53 mutations are missense mutations, leading to loss of tumor suppressive function of p53 and gain of new oncogenic functions. This review presents the clinical relevance of TP53 mutations in HGSC, elaborating on several recently identified upstream regulators of mutant p53 that control its expression and downstream target genes that mediate its roles in the disease. TP53 mutations are the earliest genetic alterations during HGSC pathogenesis, and we summarize current information related to p53 function in the pathogenesis of HGSC. The role of p53 is cell autonomous, and in the interaction between cancer cells and its microenvironment. We discuss the reduction in p53 expression levels in tumor associated fibroblasts that promotes cancer progression, and the role of mutated p53 in the interaction between the tumor and its microenvironment. Lastly, we discuss the potential of TP53 mutations to serve as diagnostic biomarkers and detail some more advanced efforts to use mutated p53 as a therapeutic target in HGSC.
Collapse
|
48
|
Sp N, Kang DY, Lee JM, Bae SW, Jang KJ. Potential Antitumor Effects of 6-Gingerol in p53-Dependent Mitochondrial Apoptosis and Inhibition of Tumor Sphere Formation in Breast Cancer Cells. Int J Mol Sci 2021; 22:4660. [PMID: 33925065 PMCID: PMC8124719 DOI: 10.3390/ijms22094660] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/11/2022] Open
Abstract
Hormone-specific anticancer drugs for breast cancer treatment can cause serious side effects. Thus, treatment with natural compounds has been considered a better approach as this minimizes side effects and has multiple targets. 6-Gingerol is an active polyphenol in ginger with various modalities, including anticancer activity, although its mechanism of action remains unknown. Increases in the level of reactive oxygen species (ROS) can lead to DNA damage and the induction of DNA damage response (DDR) mechanism, leading to cell cycle arrest apoptosis and tumorsphere suppression. Epidermal growth factor receptor (EGFR) promotes tumor growth by stimulating signaling of downstream targets that in turn activates tumor protein 53 (p53) to promote apoptosis. Here we assessed the effect of 6-gingerol treatment on MDA-MB-231 and MCF-7 breast cancer cell lines. 6-Gingerol induced cellular and mitochondrial ROS that elevated DDR through ataxia-telangiectasia mutated and p53 activation. 6-Gingerol also induced G0/G1 cell cycle arrest and mitochondrial apoptosis by mediating the BAX/BCL-2 ratio and release of cytochrome c. It also exhibited a suppression ability of tumorsphere formation in breast cancer cells. EGFR/Src/STAT3 signaling was also determined to be responsible for p53 activation and that 6-gingerol induced p53-dependent intrinsic apoptosis in breast cancer cells. Therefore, 6-gingerol may be used as a candidate drug against hormone-dependent breast cancer cells.
Collapse
Affiliation(s)
- Nipin Sp
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju 27478, Korea; (N.S.); (D.Y.K.)
| | - Dong Young Kang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju 27478, Korea; (N.S.); (D.Y.K.)
| | - Jin-Moo Lee
- Pharmacological Research Division, National Institute of Food and Drug Safety Evaluation, Osong Health Technology Administration Complex, Cheongju 28159, Korea;
| | - Se Won Bae
- Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Korea;
| | - Kyoung-Jin Jang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju 27478, Korea; (N.S.); (D.Y.K.)
| |
Collapse
|
49
|
Abstract
In this review, Pilley et al. examine the impact of different p53 mutations and focus on how heterogeneity of p53 status can affect relationships between cells within a tumor. p53 is an important tumor suppressor, and the complexities of p53 function in regulating cancer cell behaviour are well established. Many cancers lose or express mutant forms of p53, with evidence that the type of alteration affecting p53 may differentially impact cancer development and progression. It is also clear that in addition to cell-autonomous functions, p53 status also affects the way cancer cells interact with each other. In this review, we briefly examine the impact of different p53 mutations and focus on how heterogeneity of p53 status can affect relationships between cells within a tumor.
Collapse
Affiliation(s)
- Steven Pilley
- The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Tristan A Rodriguez
- National Heart and Lung Institute, Imperial College, Hammersmith Hospital Campus, London W12 0NN, United Kingdom
| | | |
Collapse
|
50
|
Kim EY, Kim JE, Choi B, Kweon J, Park SO, Lee HS, Lee EJ, Oh S, Shin HR, Choi H, Kim Y, Chang EJ. AWP1 Restrains the Aggressive Behavior of Breast Cancer Cells Induced by TNF-α. Front Oncol 2021; 11:631469. [PMID: 33816268 PMCID: PMC8012775 DOI: 10.3389/fonc.2021.631469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/02/2021] [Indexed: 11/17/2022] Open
Abstract
TNF-α plays a crucial role in cancer initiation and progression by enhancing cancer cell proliferation, survival, and migration. Even though the known functional role of AWP1 (zinc finger AN1 type-6, ZFAND6) is as a key mediator of TNF-α signaling, its potential role in the TNF-α-dependent responses of cancer cells remains unclear. In our current study, we found that an AWP1 knockdown using short hairpin RNAs increases the migratory potential of non-aggressive MCF-7 breast cancer cells with no significant alteration of their proliferation in response to TNF-α. A CRISPR/Cas9-mediated AWP1 knockout in MCF-7 cells led to mesenchymal cell type morphological changes and an accelerated motility. TNF-α administration further increased this migratory capacity of these AWP1-depleted cells through the activation of NF-κB accompanied by increased epithelial-mesenchymal transition-related gene expression. In particular, an AWP1 depletion augmented the expression of Nox1, reactive oxygen species (ROS) generating enzymes, and ROS levels and subsequently promoted the migratory potential of MCF-7 cells mediated by TNF-α. These TNF-α-mediated increases in the chemotactic migration of AWP1 knockout cells were completely abrogated by an NF-κB inhibitor and a ROS scavenger. Our results suggest that a loss-of-function of AWP1 alters the TNF-α response of non-aggressive breast cancer cells by potentiating ROS-dependent NF-κB activation.
Collapse
Affiliation(s)
- Eun-Young Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Ji-Eun Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Bongkun Choi
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jiyeon Kweon
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Si-On Park
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hee-Seop Lee
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Eun-Jin Lee
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Soyoon Oh
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Ha Rim Shin
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyuksu Choi
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Yongsub Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Eun-Ju Chang
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|