1
|
Benz C, Maassen L, Simonetti L, Mihalic F, Lindqvist R, Tsitsa I, Konstantinou A, Jemth P, Överby AK, Davey NE, Ivarsson Y. Defining short linear motif binding determinants by phage display-based deep mutational scanning. Protein Sci 2025; 34:e70174. [PMID: 40411416 PMCID: PMC12102759 DOI: 10.1002/pro.70174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 05/01/2025] [Accepted: 05/04/2025] [Indexed: 05/26/2025]
Abstract
Deep mutational scanning (DMS) has emerged as a powerful approach for evaluating the effects of mutations on binding or function. Here, we developed a DMS by phage display protocol to define the specificity determinants of short linear motifs (SLiMs) binding to peptide-binding domains. We first designed a benchmarking DMS library to evaluate the performance of the approach on well-known ligands for 11 different peptide-binding domains, including the talin-1 PTB domain, the G3BP1 NTF2 domain, and the MDM2 SWIB domain. Comparison with a set of reference motifs from the eukaryotic linear motif (ELM) database confirmed that the DMS by phage display analysis correctly identifies known motif binding determinants and provides novel insights into specificity determinants, including defining a non-canonical talin-1 PTB binding motif with a putative extended conformation. A second DMS library was designed, aiming to provide information on the binding determinants for 19 SLiM-based interactions between human and SARS-CoV-2 proteins. The analysis confirmed the affinity determining residues of viral peptides binding to host proteins and refined the consensus motifs in human peptides binding to five domains from SARS-CoV-2 proteins, including the non-structural protein (NSP) 9. The DMS analysis further pinpointed mutations that increased the affinity of ligands for NSP3 and NSP9. An affinity-improved cell-permeable NSP9-binding peptide was found to exert stronger antiviral effects than the wild-type peptide. Our study demonstrates that DMS by phage display can efficiently be multiplexed and applied to refine binding determinants and shows how the results can guide peptide-engineering efforts.
Collapse
Affiliation(s)
- Caroline Benz
- Department of Chemistry – BMCUppsala UniversityUppsalaSweden
| | - Lars Maassen
- Department of Chemistry – BMCUppsala UniversityUppsalaSweden
| | | | - Filip Mihalic
- Department of Medical Biochemistry and MicrobiologyUppsala University, BMCUppsalaSweden
| | - Richard Lindqvist
- Department of Clinical MicrobiologyUmeå UniversityUmeåSweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS)Umeå UniversityUmeåSweden
| | - Ifigenia Tsitsa
- Division of Cancer BiologyThe Institute of Cancer ResearchLondonUK
| | | | - Per Jemth
- Department of Medical Biochemistry and MicrobiologyUppsala University, BMCUppsalaSweden
| | - Anna K. Överby
- Department of Clinical MicrobiologyUmeå UniversityUmeåSweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS)Umeå UniversityUmeåSweden
| | - Norman E. Davey
- Division of Cancer BiologyThe Institute of Cancer ResearchLondonUK
| | - Ylva Ivarsson
- Department of Chemistry – BMCUppsala UniversityUppsalaSweden
| |
Collapse
|
2
|
Shi S, Li X, Alderman C, Wick L, Huang W, Foulon N, Zhang L, Rossi J, Hu W, Cui S, Zheng H, Taylor DJ, Ford HL, Zhao R. Cryo-EM structures reveal the PP2A-B55α and Eya3 interaction that can be disrupted by a peptide inhibitor. J Biol Chem 2025:110287. [PMID: 40414499 DOI: 10.1016/j.jbc.2025.110287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 05/01/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025] Open
Abstract
We have previously shown that Eya3 recruits PP2A-B55α to dephosphorylate pT58 on Myc, increasing Myc stability and enhancing primary tumor growth of triple-negative breast cancer (TNBC). However, the molecular details of how Eya3 recruits PP2A-B55α remain unclear. Here we determined the cryo-EM structures of PP2A-B55α bound with Eya3, with an inhibitory peptide B55i, and in its unbound state. These studies demonstrate that Eya3 binds B55α through an extended peptide in the NTD of Eya3. The Eya3 peptide, PP2A-B55α substrates, and protein/peptide inhibitors including B55i bind to a similar area on the B55α surface but the molecular details of the binding differ. We further demonstrated that the B55i peptide inhibits the B55α and Eya3 interaction in vitro. The B55i peptide expressed on a plasmid increases Myc pT58 and decreases Myc protein levels in TNBC cells, suggesting the potential of B55i or similar peptides as therapies for TNBC.
Collapse
Affiliation(s)
- Shasha Shi
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Xueni Li
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Christopher Alderman
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Lars Wick
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; Cancer Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Wei Huang
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106
| | - North Foulon
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Lingdi Zhang
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - John Rossi
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Wenxin Hu
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Shouqing Cui
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106
| | - Hongjin Zheng
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Derek J Taylor
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106
| | - Heide L Ford
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; Cancer Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; Cancer Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
3
|
Jo SH, Park HJ, Jung H, Lee GS, Moon JH, Kim HS, Lee HJ, Jung C, Cho HS. PROTEIN PHOSPHATASE 2A B'η drives spliceosome subunit dephosphorylation to mediate alternative splicing following heat stress. THE PLANT CELL 2025; 37:koaf117. [PMID: 40359319 DOI: 10.1093/plcell/koaf117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 03/13/2025] [Indexed: 05/15/2025]
Abstract
Dephosphorylation of spliceosome components is an essential regulatory step for intron removal from pre-mRNA, thereby controlling gene expression. However, the specific phosphatase responsible for this dephosphorylation step has not been identified. Here, we show that Arabidopsis thaliana (Arabidopsis) PROTEIN PHOSPHATASE 2A B'η (PP2A B'η), a B subunit of PP2A, interacts with the splicing factors PRP18a, PRP16, and RH2 and facilitates their dephosphorylation by recognizing substrates through a conserved binding motif. This dephosphorylation is crucial for proper splicing of retained introns in heat stress-responsive genes, which is mediated by the PP2A interactor PRE-MRNA PROCESSING FACTOR 18a. Genetic inactivation of PP2A B'η abolished thermotolerance during seed germination and resulted in widespread intron retention in heat stress-responsive genes. Conversely, overexpression of PP2A B'η conferred enhanced thermotolerance, accompanied by the efficient removal of retained introns under heat stress. We demonstrate that a B regulatory subunit of PP2A plays a central role in dephosphorylating spliceosome components, regulating alternative splicing, facilitating acclimation to heat stress, and targeting specific spliceosome subunits that activate pre-mRNA splicing.
Collapse
Affiliation(s)
- Seung Hee Jo
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Hyun Ji Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Haemyeong Jung
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Ga Seul Lee
- Core Research Facility & Analysis Center, KRIBB, Daejeon 34141, Republic of Korea
| | - Jeong Hee Moon
- Core Research Facility & Analysis Center, KRIBB, Daejeon 34141, Republic of Korea
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Hyo-Jun Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, UST, Daejeon 34113, Korea
| | - Choonkyun Jung
- Department of International Agricultural Technology and Crop Biotechnology Institute/Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
- Department of Agriculture, Forestry, and Bioresources and Integrated Major in Global Smart Farm, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Hye Sun Cho
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Korea
| |
Collapse
|
4
|
Padi SKR, Godek RJ, Peti W, Page R. Cryo-EM structures of PP2A:B55 with p107 and Eya3 define substrate recruitment. Nat Struct Mol Biol 2025:10.1038/s41594-025-01535-3. [PMID: 40247147 DOI: 10.1038/s41594-025-01535-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 03/13/2025] [Indexed: 04/19/2025]
Abstract
Phosphoprotein phosphatases (PPPs) achieve specificity by binding substrates and regulators using PPP-specific short motifs. Protein phosphatase 2A (PP2A) is a highly conserved phosphatase that regulates cell signaling and is a tumor suppressor. Here, we use cryo-electron microscopy and nuclear magnetic resonance (NMR) spectroscopy to investigate the mechanisms of human p107 substrate and Eya3 regulator recruitment to the PP2A:B55 holoenzyme. We show that, while they associate with B55 using a common set of interaction pockets, the mechanism of substrate and regulator binding differs and is distinct from that observed for PP2A:B56 and other PPPs. We also identify the core B55 recruitment motif in Eya3 proteins, a sequence conserved amongst the Eya family. Lastly, using NMR-based dephosphorylation assays, we demonstrate how B55 recruitment directs PP2A:B55 fidelity through the selective dephosphorylation of specific phosphosites. As PP2A:B55 orchestrates mitosis and DNA damage repair, these data provide a roadmap for pursuing new avenues to therapeutically target this complex by individually blocking a subset of regulators that use different B55 interaction sites.
Collapse
Affiliation(s)
- Sathish K R Padi
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA
| | - Rachel J Godek
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Wolfgang Peti
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA
| | - Rebecca Page
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
5
|
Skamagki M, Zhang C, Hacisuleyman E, Galleti G, Wu C, Vinagolu RK, Cha H, Ata D, Kim J, Weiskittel T, Diop M, Aung T, Del Latto M, Kim AS, Li Z, Miele M, Zhao R, Tang LH, Hendrickson RC, Romesser PB, Smith JJ, Giannakakou P, Darnell RB, Bott MJ, Li H, Kim K. Aging-dependent dysregulation of EXOSC2 is maintained in cancer as a dependency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.04.647279. [PMID: 40236131 PMCID: PMC11996493 DOI: 10.1101/2025.04.04.647279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Reprogramming of aged donor tissue cells into induced pluripotent stem cells (A-iPSC) preserved the epigenetic memory of aged-donor tissue, defined as genomic instability and poor tissue differentiation in our previous study. The unbalanced expression of RNA exosome subunits affects the RNA degradation complex function and is associated with geriatric diseases including premature aging and cancer progression. We hypothesized that the age-dependent progressive subtle dysregulation of EXOSC2 (exosome component 2) causes the aging traits (abnormal cell cycle and poor tissue differentiation). We used embryonic stem cells as a tool to study EXOSC2 function as the aging trait epigenetic memory determined in A-iPSC because these aging traits could not be studied in senesced aged cells or immortalized cancer cells. We found that the regulatory subunit of PP2A phosphatase, PPP2R5E, is a key target of EXOSC2 and this regulation is preserved in stem cells and cancer.
Collapse
|
6
|
Chrupcala ML, Moseley JB. PP2A-B56 regulates Mid1 protein levels for proper cytokinesis in fission yeast. Mol Biol Cell 2025; 36:ar52. [PMID: 40042941 PMCID: PMC12005099 DOI: 10.1091/mbc.e24-08-0382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 03/12/2025] Open
Abstract
Protein phosphorylation regulates many steps in the cell division process including cytokinesis. In fission yeast cells, the anillin-like protein Mid1 sets the cell division plane and is regulated by phosphorylation. Multiple protein kinases act on Mid1, but no protein phosphatases have been shown to regulate Mid1. Here, we discovered that the conserved protein phosphatase PP2A-B56 is required for proper cytokinesis by promoting Mid1 protein levels. We find that par1∆ cells lacking the primary B56 subunit divide asymmetrically due to the assembly of misplaced cytokinetic rings that slide toward cell tips. These par1∆ mutants have reduced whole-cell levels of Mid1 protein, leading to reduced Mid1 at the cytokinetic ring. Restoring proper Mid1 expression suppresses par1∆ cytokinesis defects. This work identifies a new PP2A-B56 pathway regulating cytokinesis through Mid1, with implications for control of cytokinesis in other organisms.
Collapse
Affiliation(s)
- Madeline L. Chrupcala
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, NH
| | - James B. Moseley
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, NH
| |
Collapse
|
7
|
Peti W, Padi SKR, Page R. Combining cryo-electron microscopy (cryo-EM) with orthogonal solution state methods to define the molecular basis of the phosphoprotein phosphatase family regulation and substrate specificity. Curr Opin Struct Biol 2025; 91:102992. [PMID: 39951957 PMCID: PMC11885005 DOI: 10.1016/j.sbi.2025.102992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 02/17/2025]
Abstract
Protein phosphatases are dynamic enzymes that exhibit complex regulatory mechanisms, with disruptions in these regulatory processes associated with disease. It is now clear that many phosphatases assemble into large macromolecular complexes via the interaction of phosphatase-specific regulatory proteins and substrates containing short linear motifs (SLiMs) or short helical motifs (SHelMs). Here, we review how cryo-electron microscopy (cryo-EM) integrated with orthogonal methods to study dynamic protein-protein interactions (NMR spectroscopy, hydrogen-deuterium exchange mass spectrometry, among others) is leading to new discoveries about the mechanisms controlling phosphatase assembly, substrate recruitment and dephosphorylation and, in turn, are providing novel strategies for targeting phosphatase-related diseases. This review focuses on the recently determined structures and regulation of the phosphoprotein phosphatase (PPP) family of ser/thr phosphatases-PP1, PP2A, Calcineurin and PP5.
Collapse
Affiliation(s)
- Wolfgang Peti
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, USA.
| | - Sathish K R Padi
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, USA
| | - Rebecca Page
- Department of Cell Biology, University of Connecticut Health Center, Farmington, USA.
| |
Collapse
|
8
|
Allan LA, Corno A, Valverde JM, Toth R, Ly T, Saurin AT. A chemical-genetic system to rapidly inhibit the PP2A-B56 phosphatase reveals a role at metaphase kinetochores. Nat Commun 2025; 16:3069. [PMID: 40157924 PMCID: PMC11954910 DOI: 10.1038/s41467-025-58185-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 03/14/2025] [Indexed: 04/01/2025] Open
Abstract
Serine-threonine phosphatases have been challenging to study because of the lack of specific inhibitors. Their catalytic domains are druggable, but these are shared or very similar between individual phosphatase complexes, precluding their specific inhibition. Instead, phosphatase complexes often achieve specificity by interacting with short linear motifs (SLiMs) in substrates or their binding partners. We develop here a chemical-genetic system to rapidly inhibit these interactions within the PP2A-B56 family. Drug-inducible recruitment of ectopic SLiMs ("directSLiMs") is used to rapidly block the SLiM-binding pocket on the B56 regulatory subunit, thereby displacing endogenous interactors and inhibiting PP2A-B56 activity within seconds. We use this system to characterise PP2A-B56 substrates during mitosis and to identify a role for PP2A-B56 in allowing metaphase kinetochores to properly sense tension and maintain microtubule attachments. The directSLiMs approach can be used to inhibit any other phosphatase, enzyme or protein that uses a critical SLiM-binding interface, providing a powerful strategy to inhibit and characterise proteins once considered "undruggable".
Collapse
Affiliation(s)
- Lindsey A Allan
- Division of Cancer Research, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK
| | - Andrea Corno
- Division of Cancer Research, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK
| | - Juan Manuel Valverde
- Division of Cancer Research, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK
| | - Rachel Toth
- MRC Protein Phosphorylation and Ubiquitylation Unit Reagents and Services Laboratory, School of Life Sciences, University of Dundee, Dundee, UK
| | - Tony Ly
- Molecular Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Adrian T Saurin
- Division of Cancer Research, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK.
| |
Collapse
|
9
|
Verbinnen I, Douzgou Houge S, Hsieh TC, Lesmann H, Kirchhoff A, Geneviève D, Brimble E, Lenaerts L, Haesen D, Levy RJ, Thevenon J, Faivre L, Marco E, Chong JX, Bamshad M, Patterson K, Mirzaa GM, Foss K, Dobyns W, White SM, Pais L, O'Heir E, Itzikowitz R, Donald KA, Van der Merwe C, Mussa A, Cervini R, Giorgio E, Roscioli T, Dias KR, Evans CA, Brown NJ, Ruiz A, Trujillo Quintero JP, Rabin R, Pappas J, Yuan H, Lachlan K, Thomas S, Devlin A, Wright M, Martin R, Karwowska J, Posmyk R, Chatron N, Stark Z, Heath O, Delatycki M, Buchert R, Korenke GC, Ramsey K, Narayanan V, Grange DK, Weisenberg JL, Haack TB, Karch S, Kipkemoi P, Mangi M, Bindels de Heus KGCB, de Wit MCY, Barakat TS, Lim D, Van Winckel G, Spillmann RC, Shashi V, Jacob M, Stehr AM, Krawitz P, Douzgos Houge G, Janssens V. Pathogenic de novo variants in PPP2R5C cause a neurodevelopmental disorder within the Houge-Janssens syndrome spectrum. Am J Hum Genet 2025; 112:554-571. [PMID: 39978342 PMCID: PMC11947181 DOI: 10.1016/j.ajhg.2025.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/28/2025] [Accepted: 01/28/2025] [Indexed: 02/22/2025] Open
Abstract
Pathogenic variants resulting in protein phosphatase 2A (PP2A) dysfunction result in mild to severe neurodevelopmental delay. PP2A is a trimer of a catalytic (C) subunit, scaffolding (A) subunit, and substrate binding/regulatory (B) subunit, encoded by 19 different genes. De novo missense variants in PPP2R5D (B56δ) or PPP2R1A (Aα) and de novo missense and loss-of-function variants in PPP2CA (Cα) lead to syndromes with overlapping phenotypic features, known as Houge-Janssens syndrome (HJS) types 1, 2, and 3, respectively. Here, we describe an additional condition in the HJS spectrum in 26 individuals with variants in PPP2R5C, encoding the regulatory B56γ subunit. Most changes were de novo and of the missense type. The clinical features were well within the HJS spectrum with strongest resemblance to HJS type 1, caused by B56δ variants. Common features were neurodevelopmental delay and hypotonia, with a high risk of epilepsy, behavioral problems, and mildly dysmorphic facial features. Head circumferences were above average or macrocephalic. The degree of intellectual disability was, on average, milder than in other HJS types. All variants affected either substrate binding (2/19), C-subunit binding (2/19), or both (15/19). Five variants were recurrent. Catalytic activity of the phosphatase was variably affected by the variants. Of note, PPP2R5C total loss-of-function variants could be inherited from a non-symptomatic parent. This implies that a dominant-negative mechanism on substrate dephosphorylation or general PP2A function is the most likely pathogenic mechanism.
Collapse
Affiliation(s)
- Iris Verbinnen
- Laboratory of Protein Phosphorylation and Proteomics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium; KU Leuven Institute for Rare Diseases (Leuven.IRD), Leuven, Belgium
| | - Sofia Douzgou Houge
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Tzung-Chien Hsieh
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Hellen Lesmann
- Institute of Human Genetics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Aron Kirchhoff
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - David Geneviève
- Montpellier University, INSERM U1183, Centre de Référence Anomalies du développement et syndromes malformatifs, ERN ITHACA, Génétique clinique, CHU Montpellier, Montpellier, France
| | | | - Lisa Lenaerts
- Laboratory of Protein Phosphorylation and Proteomics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Dorien Haesen
- Laboratory of Protein Phosphorylation and Proteomics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Rebecca J Levy
- Department of Neurology and Neurological Sciences, Stanford Medicine, Stanford, CA, USA
| | - Julien Thevenon
- CNRS UMR 5309, INSERM U1209, Institute of Advanced Biosciences, Université Grenoble-Alpes, Service Génomique et Procréation, Centre Hospitalo-Universitaire Grenoble Alpes, Cedex Grenoble, France
| | - Laurence Faivre
- Centre de génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, FHU TRANSLAD, Hôpital d'enfants, CHU Dijon Bourgogne, Dijon, France; UMR1231 GAD, Inserm - Université Bourgogne-Franche Comté, Dijon, France
| | | | - Jessica X Chong
- Division of Genetic Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Mike Bamshad
- Division of Genetic Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA; Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Karynne Patterson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Ghayda M Mirzaa
- Division of Genetic Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Kimberly Foss
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William Dobyns
- Department of Pediatrics, Division of Genetics and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Susan M White
- Victorian Clinical Genetics Services (VCGS), Royal Children's Hospital, Parkville, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Lynn Pais
- Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Emily O'Heir
- Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Raphaela Itzikowitz
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, and the Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Kirsten A Donald
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, and the Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Celia Van der Merwe
- Stanley Center for Psychiatric Research, The Broad Institute, Cambridge, MA, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Alessandro Mussa
- Department of Public Health and Pediatric Sciences, University of Torino, Regina Margherita Children's Hospital, Torino, Italy
| | - Raffaela Cervini
- Child Neuropsychiatry Department, Maria Vittoria Hospital, Torino, Italy
| | - Elisa Giorgio
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; IRCCS Mondino Foundation, Neurogenetics Research Centre, Pavia, Italy
| | - Tony Roscioli
- Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia; Centre for Clinical Genetics, Sydney Children's Hospital, Sydney, NSW, Australia; New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Kerith-Rae Dias
- Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia; Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2031, Australia
| | - Carey-Anne Evans
- Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia; New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Natasha J Brown
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, University of Melbourne, Parkville, VIC, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Anna Ruiz
- Genetics Laboratory, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, 08208 Sabadell, Spain
| | - Juan Pablo Trujillo Quintero
- Unitat de Genètica Clínica, Servei de Medicina Pediàtrica, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, 08208 Sabadell, Spain
| | - Rachel Rabin
- Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, USA
| | - John Pappas
- Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, USA
| | - Hai Yuan
- Department of Pediatrics, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Katherine Lachlan
- Wessex Clinical Genetics Service, University Hospital Southampton, Princess Anne Hospital, Southampton SO16 5YA, UK
| | - Simon Thomas
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; Wessex Regional Genetics Laboratory, Salisbury NSF Foundation Trust, Salisbury District Hospital, Salisbury, UK
| | - Anita Devlin
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK; Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | | | - Richard Martin
- The Newcastle upon Tyne Hospitals NHS Foundation Trust, Institute of Genetic Medicine, Newcastle upon Tyne, UK
| | - Joanna Karwowska
- Department of Clinical Genetics, Medical University in Bialystok, Bialystok, Poland
| | - Renata Posmyk
- Department of Clinical Genetics, Medical University in Bialystok, Bialystok, Poland
| | - Nicolas Chatron
- Hospices Civils de Lyon, Groupe Hospitalier Est, Service de génétique, Bron, France; Université de Lyon, University Lyon 1, CNRS, INSERM, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, Lyon, France
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, University of Melbourne, Parkville, VIC, Australia; Australian Genomics Health Alliance, Melbourne, VIC, Australia; Department of Paediatrics, Melbourne Medical School, University of Melbourne, Melbourne, VIC, Australia
| | - Oliver Heath
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, University of Melbourne, Parkville, VIC, Australia
| | - Martin Delatycki
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, University of Melbourne, Parkville, VIC, Australia; Department of Paediatrics, Melbourne Medical School, University of Melbourne, Melbourne, VIC, Australia; Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - Rebecca Buchert
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Georg-Christoph Korenke
- Klinik für Neuropädiatrie und angeborene Stoffwechselerkrankungen, Klinikum Oldenburg, Oldenburg, Germany
| | - Keri Ramsey
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Vinodh Narayanan
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Dorothy K Grange
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, One Children's Place, St. Louis, MO, USA
| | - Judith L Weisenberg
- Department of Pediatric Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany; Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Stephanie Karch
- Division of Pediatric Neurology and Metabolic Medicine, Department of Pediatrics I, Medical Faculty of Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Patricia Kipkemoi
- Neuroscience Unit, KEMRI-Wellcome Trust, Center for Geographic Medicine Research Coast, Kilifi, Kenya
| | - Moses Mangi
- Neuroscience Unit, KEMRI-Wellcome Trust, Center for Geographic Medicine Research Coast, Kilifi, Kenya
| | - Karen G C B Bindels de Heus
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, the Netherlands; ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Marie-Claire Y de Wit
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Neurology and Pediatric Neurology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Tahsin Stefan Barakat
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Discovery Unit, Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Derek Lim
- Department of Clinical Genetics, Lavender House, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | | | - Rebecca C Spillmann
- Department of Pediatrics-Medical Genetics, Duke University School of Medicine, Durham, NC, USA
| | - Vandana Shashi
- Department of Pediatrics-Medical Genetics, Duke University School of Medicine, Durham, NC, USA
| | - Maureen Jacob
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Antonia M Stehr
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Peter Krawitz
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | | | - Veerle Janssens
- Laboratory of Protein Phosphorylation and Proteomics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium; KU Leuven Institute for Rare Diseases (Leuven.IRD), Leuven, Belgium.
| |
Collapse
|
10
|
Subbanna MS, Winters MJ, Örd M, Davey NE, Pryciak PM. A quantitative intracellular peptide-binding assay reveals recognition determinants and context dependence of short linear motifs. J Biol Chem 2025; 301:108225. [PMID: 39864625 PMCID: PMC11879687 DOI: 10.1016/j.jbc.2025.108225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 01/28/2025] Open
Abstract
Transient protein-protein interactions play key roles in controlling dynamic cellular responses. Many examples involve globular protein domains that bind to peptide sequences known as short linear motifs (SLiMs), which are enriched in intrinsically disordered regions of proteins. Here we describe a novel functional assay for measuring SLiM binding, called systematic intracellular motif-binding analysis (SIMBA). In this method, binding of a foreign globular domain to its cognate SLiM peptide allows yeast cells to proliferate by blocking a growth arrest signal. A high-throughput application of the SIMBA method involving competitive growth and deep sequencing provides rapid quantification of the relative binding strength for thousands of SLiM sequence variants and a comprehensive interrogation of SLiM sequence features that control their recognition and potency. We show that multiple distinct classes of SLiM-binding domains can be analyzed by this method and that the relative binding strength of peptides in vivo correlates with their biochemical affinities measured in vitro. Deep mutational scanning provides high-resolution definitions of motif recognition determinants and reveals how sequence variations at noncore positions can modulate binding strength. Furthermore, mutational scanning of multiple parent peptides that bind human tankyrase ARC or YAP WW domains identifies distinct binding modes and uncovers context effects in which the preferred residues at one position depend on residues elsewhere. The findings establish SIMBA as a fast and incisive approach for interrogating SLiM recognition via massively parallel quantification of protein-peptide binding strength in vivo.
Collapse
Affiliation(s)
- Mythili S Subbanna
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Matthew J Winters
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Mihkel Örd
- University of Cambridge, Cancer Research UK Cambridge Institute, Cambridge, UK; Division of Cancer Biology, The Institute of Cancer Research, London, UK
| | - Norman E Davey
- Division of Cancer Biology, The Institute of Cancer Research, London, UK
| | - Peter M Pryciak
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA.
| |
Collapse
|
11
|
Luperchio AM, Salamango DJ. Defining the Protein Phosphatase 2A (PP2A) Subcomplexes That Regulate FoxO Transcription Factor Localization. Cells 2025; 14:342. [PMID: 40072071 PMCID: PMC11899004 DOI: 10.3390/cells14050342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/15/2025] Open
Abstract
The family of forkhead box O (FoxO) transcription factors regulate cellular processes involved in glucose metabolism, stress resistance, DNA damage repair, and tumor suppression. FoxO transactivation activity is tightly regulated by a complex network of signaling pathways and post-translational modifications. While it has been well established that phosphorylation promotes FoxO cytoplasmic retention and inactivation, the mechanism underlying dephosphorylation and nuclear translocation is less clear. Here, we investigate the role of protein phosphatase 2A (PP2A) in regulating this process. We demonstrate that PP2A and AMP-activated protein kinase (AMPK) combine to regulate nuclear translocation of multiple FoxO family members following inhibition of metabolic signaling or induction of oxidative stress. Moreover, chemical inhibitor studies indicate that nuclear accumulation of FoxO proteins occurs through inhibition of nuclear export as opposed to promoting nuclear import as previously speculated. Functional, genetic, and biochemical studies combine to identify the PP2A complexes that regulate FoxO nuclear translocation, and the binding motif required. Mutating the FoxO-PP2A interface to enhance or diminish PP2A binding alters nuclear translocation kinetics accordingly. Together, these studies shed light on the molecular mechanisms regulating FoxO nuclear translocation and provide insights into how FoxO regulation is integrated with metabolic and stress-related stimuli.
Collapse
Affiliation(s)
| | - Daniel J. Salamango
- Department of Microbiology, Immunology, and Molecular Genetics, UT Health Science Center, San Antonio, TX 78229, USA;
| |
Collapse
|
12
|
Chrupcala ML, Moseley JB. PP2A-B56 regulates Mid1 protein levels for proper cytokinesis in fission yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.28.601230. [PMID: 38979265 PMCID: PMC11230426 DOI: 10.1101/2024.06.28.601230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Protein phosphorylation regulates many steps in the cell division process including cytokinesis. In fission yeast cells, the anillin-like protein Mid1 sets the cell division plane and is regulated by phosphorylation. Multiple protein kinases act on Mid1, but no protein phosphatases have been shown to regulate Mid1. Here, we discovered that the conserved protein phosphatase PP2A-B56 is required for proper cytokinesis by promoting Mid1 protein levels. We find that par1Δ cells lacking the primary B56 subunit divide asymmetrically due to the assembly of misplaced cytokinetic rings that slide towards cell tips. These par1Δ mutants have reduced whole-cell levels of Mid1 protein, leading to reduced Mid1 at the cytokinetic ring. Restoring proper Mid1 expression suppresses par1Δ cytokinesis defects. This work identifies a new PP2A-B56 pathway regulating cytokinesis through Mid1, with implications for control of cytokinesis in other organisms.
Collapse
Affiliation(s)
- Madeline L. Chrupcala
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover NH
| | - James B. Moseley
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover NH
| |
Collapse
|
13
|
He Y, Tang X, Fu H, Tang Y, Lin H, Deng X. Arabidopsis KNL1 recruits type one protein phosphatase to kinetochores to silence the spindle assembly checkpoint. SCIENCE ADVANCES 2025; 11:eadq4033. [PMID: 39908360 PMCID: PMC11797493 DOI: 10.1126/sciadv.adq4033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 01/06/2025] [Indexed: 02/07/2025]
Abstract
Proper chromosome segregation during cell division is essential for genomic integrity and organismal development. This process is monitored by the spindle assembly checkpoint (SAC), which delays anaphase onset until all chromosomes are properly attached to the mitotic spindle. The kinetochore protein KNL1 plays a critical role in recruiting SAC proteins. Here, we reveal that Arabidopsis KNL1 regulates SAC silencing through the direct recruitment of type one protein phosphatase (TOPP) to kinetochores. We show that KNL1 interacts with all nine TOPPs via a conserved RVSF motif in its N terminus, and this interaction is required for the proper localization of TOPPs to kinetochores during mitosis. Disrupting KNL1-TOPP interaction leads to persistent SAC activation, resulting in a severe metaphase arrest and defects in plant growth and development. Our findings highlight the evolutionary conservation of KNL1 in coordinating kinetochore-localized phosphatase to ensure timely SAC silencing and faithful chromosome segregation in Arabidopsis.
Collapse
Affiliation(s)
- Ying He
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xiaoya Tang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Hao Fu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yihang Tang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Honghui Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xingguang Deng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
14
|
Shi S, Li X, Alderman C, Huang W, Wick L, Foulon N, Rossi J, Hu W, Cui S, Zheng H, Taylor DJ, Ford HL, Zhao R. Cryo-EM structures reveal the PP2A-B55α and Eya3 interaction that can be disrupted by a peptide inhibitor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.04.636346. [PMID: 39975004 PMCID: PMC11838537 DOI: 10.1101/2025.02.04.636346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
We have previously shown that Eya3 recruits PP2A-B55α to dephosphorylate pT58 on Myc, increasing Myc stability and enhancing primary tumor growth of triple-negative breast cancer (TNBC). However, the molecular details of how Eya3 recruits PP2A-B55α remain unclear. Here we determined the cryo-EM structures of PP2A-B55α bound with Eya3, with an inhibitory peptide B55i, and in its unbound state. These studies demonstrate that Eya3 binds B55α through an extended peptide in the NTD of Eya3. The Eya3 peptide and other PP2A-B55α substrates and protein/peptide inhibitors including B55i bind to a similar area on the B55α surface but the molecular details of the binding differ. We further demonstrated that the B55i peptide inhibits the B55α and Eya3 interaction in vitro. B55i peptide expressed on a plasmid increases pT58 and decreases Myc protein level in TNBC cells, suggesting the potential of B55i or similar peptides as therapies for TNBC.
Collapse
|
15
|
Claes Z, Lemaire S, Bollen M. Protocol for analyzing protein-protein interactions by split-luciferase complementation assays in human cell lysates. STAR Protoc 2024; 5:103328. [PMID: 39369386 PMCID: PMC11490698 DOI: 10.1016/j.xpro.2024.103328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/26/2024] [Accepted: 08/28/2024] [Indexed: 10/08/2024] Open
Abstract
Here, we present a lysate-based split-luciferase assay for examining protein-protein interactions (PPIs) in HEK293T cell lysates, exemplified by interactions between subunits of protein phosphatase PP1. We describe steps for storing and re-using lysates, sensor design, assay setup/optimization, and high-throughput screening of compound libraries. We then detail procedures for applying the assay as a research tool to characterize the dynamics of PPIs, which we illustrate with specific examples. For complete details on the use and execution of this protocol, please refer to Claes and Bollen.1.
Collapse
Affiliation(s)
- Zander Claes
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium.
| | - Sarah Lemaire
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Mathieu Bollen
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium.
| |
Collapse
|
16
|
Kück U, Pöggeler S. STRIPAK, a fundamental signaling hub of eukaryotic development. Microbiol Mol Biol Rev 2024; 88:e0020523. [PMID: 39526753 DOI: 10.1128/mmbr.00205-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
SUMMARYThe striatin-interacting phosphatase and kinase (STRIPAK) complex is involved in the regulation of many developmental processes in eukaryotic microorganisms and all animals, including humans. STRIPAK is a component of protein phosphatase 2A (PP2A), a highly conserved serine-threonine phosphatase composed of catalytic subunits (PP2Ac), a scaffolding subunit (PP2AA) and various substrate-directing B regulatory subunits. In particular, the B''' regulatory subunit called striatin has evoked major interest over the last 20 years. Studies in fungal systems have contributed substantially to our current knowledge about STRIPAK composition, assembly, and cellular localization, as well as its regulatory role in autophagy and the morphology of fungal development. STRIPAK represents a signaling hub with many kinases and thus integrates upstream and downstream information from many conserved eukaryotic signaling pathways. A profound understanding of STRIPAK's regulatory role in fungi opens the gateway to understanding the multifarious functions carried out by STRIPAK in higher eukaryotes, including its contribution to malignant cell growth.
Collapse
Affiliation(s)
- Ulrich Kück
- Allgemeine & Molekulare Botanik, Ruhr-University, Bochum, Germany
| | - Stefanie Pöggeler
- Department of Genetics of Eukaryotic Microorganisms, Institute of Microbiology and Genetics, Georg-August-University, Göttingen, Germany
- Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University, Göttingen, Germany
| |
Collapse
|
17
|
Klemm C, Ólafsson G, Wood HR, Mellor C, Zabet NR, Thorpe PH. Proteome-wide forced interactions reveal a functional map of cell-cycle phospho-regulation in S. cerevisiae. Nucleus 2024; 15:2420129. [PMID: 39618027 PMCID: PMC11622623 DOI: 10.1080/19491034.2024.2420129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 12/08/2024] Open
Abstract
Dynamic protein phosphorylation and dephosphorylation play an essential role in cell cycle progression. Kinases and phosphatases are generally highly conserved across eukaryotes, underlining their importance for post-translational regulation of substrate proteins. In recent years, advances in phospho-proteomics have shed light on protein phosphorylation dynamics throughout the cell cycle, and ongoing progress in bioinformatics has significantly improved annotation of specific phosphorylation events to a given kinase. However, the functional impact of individual phosphorylation events on cell cycle progression is often unclear. To address this question, we used the Synthetic Physical Interactions (SPI) method, which enables the systematic recruitment of phospho-regulators to most yeast proteins. Using this method, we identified several putative novel targets involved in chromosome segregation and cytokinesis. The SPI method monitors cell growth and, therefore, serves as a tool to determine the impact of protein phosphorylation on cell cycle progression.
Collapse
Affiliation(s)
- Cinzia Klemm
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Department of Bioengineering, Imperial College London, London, UK
| | - Guðjón Ólafsson
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Henry Richard Wood
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Caitlin Mellor
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Nicolae Radu Zabet
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Peter Harold Thorpe
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
18
|
Vasiliūnaitė E, Repšytė M, Kramer EM, Lang J, Jelinek C, Ulrich RG, Buck CB, Gedvilaitė A. Novel polyomavirus in the endangered garden dormouse Eliomys quercinus. Virol J 2024; 21:309. [PMID: 39605065 PMCID: PMC11603729 DOI: 10.1186/s12985-024-02581-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND The garden dormouse (Eliomys quercinus) has experienced a significant population decline across Europe in recent decades. While habitat loss and climate change are often cited as primary factors, pathogen exposure, either to novel or to previously known, may play a role in such a decline. This study aimed to investigate the presence of polyomaviruses in garden dormice, given that these viruses are highly prevalent and can cause disease, particularly in immunocompromised individuals. METHODS The carcasses of garden dormice (n = 89) were collected throughout Germany. Kidney samples were tested for the presence of polyomavirus DNA using nested degenerate and specific diagnostic PCRs. Seroprevalence was assessed from chest cavity fluid samples through an enzyme-linked immunosorbent assay using polyomavirus VP1 virus-like particles produced in yeast. RESULTS A new polyomavirus, related to chimpanzee (Pan troglodytes) polyomaviruses 4 and 5 and human Merkel cell polyomavirus, was identified in the garden dormouse. Two 5,380 bp-length complete viral genomes were sequenced from dormice kidney samples (sequences PQ246041 and PQ246042). Genes encoding the putative structural proteins VP1, VP2, and VP3, as well as the Large, Middle, and small T antigens, containing conserved functional domains were identified. Polyomavirus DNA was detected in 2 of 74 dormice (2.7%, 95% confidence interval: 0-6.4%) through PCR, while 12 of 69 animals (17.4%, 95% confidence interval: 8.4-26.3%) tested positive for polyomavirus-specific antibodies. CONCLUSIONS In conclusion, here we describe a novel polyomavirus in the garden dormouse with molecular and serological detection. Pairwise sequence comparison and phylogenetic analysis suggest that this novel virus may represent a novel species within the genus Alphapolyomavirus. Future work should examine if this virus is garden dormouse-specific and whether it is associated with disease in dormice.
Collapse
Affiliation(s)
- Emilija Vasiliūnaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, Vilnius, LT-10257, Lithuania.
| | - Monika Repšytė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, Vilnius, LT-10257, Lithuania
| | - Eva Marie Kramer
- Clinic for Birds, Reptiles, Amphibians and Fish, Working Group for Wildlife Research, Justus-Liebig-University Gießen, Frankfurter Strasse 104, D-35392, Gießen, Germany
| | - Johannes Lang
- Clinic for Birds, Reptiles, Amphibians and Fish, Working Group for Wildlife Research, Justus-Liebig-University Gießen, Frankfurter Strasse 104, D-35392, Gießen, Germany
| | - Christine Jelinek
- Clinic for Birds, Reptiles, Amphibians and Fish, Working Group for Wildlife Research, Justus-Liebig-University Gießen, Frankfurter Strasse 104, D-35392, Gießen, Germany
| | - Rainer G Ulrich
- Friedrich-Loeffler-Institut (FLI) Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Gießen, Germany
| | - Christopher B Buck
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892-4263, USA
| | - Alma Gedvilaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, Vilnius, LT-10257, Lithuania
| |
Collapse
|
19
|
Song C, Zhang M, Kruse T, Møller MH, López-Méndez B, Zhang Y, Zhai Y, Wang Y, Lei T, Kettenbach AN, Nilsson J, Zhang G. Self-priming of Plk1 binding to BubR1 ensures accurate mitotic progression. Commun Biol 2024; 7:1473. [PMID: 39516273 PMCID: PMC11549336 DOI: 10.1038/s42003-024-07205-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Plk1 is a key mitotic kinase that localizes to distinct subcellular structures to promote accurate mitotic progression. Plk1 recruitment depends on direct interaction between polo-box domain (PBD) on Plk1 and PBD binding motif (PBD BM) on the interactors. However, recent study showed that PBD BM alone is not enough for stable binding between CENP-U and Plk1 highlighting the complexity of the interaction which warrants further investigation. An important interactor for Plk1 during mitosis is the checkpoint protein BubR1. Plk1 bound to BubR1 via PBD interaction with pT620 phosphorylates BubR1 S676/T680 to promote BubR1-PP2A/B56 interaction. The BubR1-PP2A/B56 complex counteracts the destablizing effect on kinetochore-microtubule attachments by mitotic kinases to promote mitotic progression. Here we show that Plk1 phosphorylates T600/T608 on BubR1 and the double phosphorylation is critical for BubR1-Plk1 interaction. A similar mechanism for Plk1-Bub1 interaction also exists indicating a general principle for Plk1 kinetochore recruitment through self-priming. Mechanistically preventing BubR1 T600/T608 phosphorylation impairs chromosome congression and checkpoint silencing by reducing Plk1 and PP2A/B56 binding to BubR1. Increasing the binding affinity towards Plk1 and PP2A/B56 in BubR1 through protein engineering bypasses the requirement of T600/T608 phosphorylation for mitotic progression. These results reveal a new layer of regulation for accurate mitotic progression.
Collapse
Affiliation(s)
- Chunlin Song
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Mingzhe Zhang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Thomas Kruse
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mads Harder Møller
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Blanca López-Méndez
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yuqing Zhang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yujing Zhai
- School of Public Health, Qingdao University, Qingdao, China
| | - Ying Wang
- School of Public Health, Qingdao University, Qingdao, China
| | - Tingting Lei
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, 03755, USA
| | - Jakob Nilsson
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gang Zhang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.
| |
Collapse
|
20
|
Subbanna MS, Winters MJ, Örd M, Davey NE, Pryciak PM. A quantitative intracellular peptide binding assay reveals recognition determinants and context dependence of short linear motifs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.621084. [PMID: 39553988 PMCID: PMC11565833 DOI: 10.1101/2024.10.30.621084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Transient protein-protein interactions play key roles in controlling dynamic cellular responses. Many examples involve globular protein domains that bind to peptide sequences known as Short Linear Motifs (SLiMs), which are enriched in intrinsically disordered regions of proteins. Here we describe a novel functional assay for measuring SLiM binding, called Systematic Intracellular Motif Binding Analysis (SIMBA). In this method, binding of a foreign globular domain to its cognate SLiM peptide allows yeast cells to proliferate by blocking a growth arrest signal. A high-throughput application of the SIMBA method involving competitive growth and deep sequencing provides rapid quantification of the relative binding strength for thousands of SLiM sequence variants, and a comprehensive interrogation of SLiM sequence features that control their recognition and potency. We show that multiple distinct classes of SLiM-binding domains can be analyzed by this method, and that the relative binding strength of peptides in vivo correlates with their biochemical affinities measured in vitro. Deep mutational scanning provides high-resolution definitions of motif recognition determinants and reveals how sequence variations at non-core positions can modulate binding strength. Furthermore, mutational scanning of multiple parent peptides that bind human tankyrase ARC or YAP WW domains identifies distinct binding modes and uncovers context effects in which the preferred residues at one position depend on residues elsewhere. The findings establish SIMBA as a fast and incisive approach for interrogating SLiM recognition via massively parallel quantification of protein-peptide binding strength in vivo.
Collapse
Affiliation(s)
- Mythili S. Subbanna
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Matthew J. Winters
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Mihkel Örd
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge CB2 0RE, UK
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Norman E. Davey
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Peter M. Pryciak
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
21
|
Choy MS, Nguyen HT, Kumar GS, Peti W, Kettenbach AN, Page R. A protein phosphatase 1 specific phosphatase targeting peptide (PhosTAP) to identify the PP1 phosphatome. Proc Natl Acad Sci U S A 2024; 121:e2415383121. [PMID: 39446389 PMCID: PMC11536154 DOI: 10.1073/pnas.2415383121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
Phosphoprotein phosphatases (PPPs) are the key serine/threonine phosphatases that regulate all essential signaling cascades. In particular, Protein Phosphatase 1 (PP1) dephosphorylates ~80% of all ser/thr phosphorylation sites. Here, we developed a phosphatase targeting peptide (PhosTAP) that binds all PP1 isoforms and does so with a stronger affinity than any other known PP1 regulator. This PhosTAP can be used as a PP1 recruitment tool for Phosphorylation Targeting Chimera (PhosTAC)-type recruitment in in vitro and cellular experiments, as well as in phosphoproteomics experiments to identify PP1-specific substrates and phosphosites. The latter is especially important to further our understanding of cellular signaling, as the identification of substrates and especially phosphosites that are targeted by specific phosphatases lags behind that of their kinase counterparts. Using PhosTAP-based proteomics, we show that, counter to our current understanding, many PP1 regulators are also substrates, that the number of residues between regulator PP1-binding and phosphosites vary significantly, and that PP1 counteracts the activities of mitotic kinases. Finally, we also found that Haspin kinase is a direct substrate of PP1 and that its PP1-dependent dephosphorylation modulates its activity during anaphase. Together, we show that PP1-specific PhosTAPs are a powerful tool for +studying PP1 activity in vitro and in cells.
Collapse
Affiliation(s)
- Meng S. Choy
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT06030
| | - Hieu T. Nguyen
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH03755
| | - Ganesan S. Kumar
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT06030
- National Institute of Immunology, New Delhi110067, India
| | - Wolfgang Peti
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT06030
| | - Arminja N. Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH03755
- Dartmouth Cancer Center, Lebanon, NH03756
| | - Rebecca Page
- Department of Cell Biology, UConn Health, Farmington, CT06030
| |
Collapse
|
22
|
Xiao Y, Wei L, Su J, Lei H, Sun F, Li M, Li S, Wang X, Zheng J, Wang JZ. A tau dephosphorylation-targeting chimeraselectively recruits protein phosphatase-1 to ameliorate Alzheimer's disease and tauopathies. Cell Chem Biol 2024; 31:1787-1799.e6. [PMID: 39353434 DOI: 10.1016/j.chembiol.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/12/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024]
Abstract
Abnormal accumulation of hyperphosphorylated tau (pTau) is a major cause of neurodegeneration in Alzheimer's disease (AD) and related tauopathies. Therefore, reducing pTau holds therapeutic promise for these diseases. Here, we developed a chimeric peptide, named D20, for selective facilitation of tau dephosphorylation by recruiting protein phosphatase 1 (PP1) to tau. PP1 is one of the active phosphatases that dephosphorylates tau. In both cultured primary hippocampal neurons and mouse models for AD or related tauopathies, we demonstrated that single-dose D20 treatment significantly reduced pTau by dephosphorylation at multiple AD-related sites and total tau (tTau) levels were also decreased. Multiple-dose administration of D20 through tail vein injection in 3xTg AD mice effectively ameliorated tau-associated pathologies with improved cognitive functions. Importantly, at therapeutic doses, D20 did not cause detectable toxicity in cultured neurons, neural cells, or peripheral organs in mice. These results suggest that D20 is a promising drug candidate for AD and related tauopathies.
Collapse
Affiliation(s)
- Yue Xiao
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Institute of Artificial Intelligence, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Linyu Wei
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Physiology and Pathophysiology, Xinxiang Medical University, Xinxiang 453004, China
| | - Jingfen Su
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huiyang Lei
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fei Sun
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mengzhu Li
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shihong Li
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Institute of Artificial Intelligence, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Jie Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100083, China; Beijing Life Science Academy, Beijing 102209, China.
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
23
|
Kruse T, Garvanska DH, Varga JK, Garland W, McEwan BC, Hein JB, Weisser MB, Benavides-Puy I, Chan CB, Sotelo-Parrilla P, Mendez BL, Jeyaprakash AA, Schueler-Furman O, Jensen TH, Kettenbach AN, Nilsson J. Substrate recognition principles for the PP2A-B55 protein phosphatase. SCIENCE ADVANCES 2024; 10:eadp5491. [PMID: 39356758 PMCID: PMC11446282 DOI: 10.1126/sciadv.adp5491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024]
Abstract
The PP2A-B55 phosphatase regulates a plethora of signaling pathways throughout eukaryotes. How PP2A-B55 selects its substrates presents a severe knowledge gap. By integrating AlphaFold modeling with comprehensive high-resolution mutational scanning, we show that α helices in substrates bind B55 through an evolutionary conserved mechanism. Despite a large diversity in sequence and composition, these α helices share key amino acid determinants that engage discrete hydrophobic and electrostatic patches. Using deep learning protein design, we generate a specific and potent competitive peptide inhibitor of PP2A-B55 substrate interactions. With this inhibitor, we uncover that PP2A-B55 regulates the nuclear exosome targeting (NEXT) complex by binding to an α-helical recruitment module in the RNA binding protein 7 (RBM7), a component of the NEXT complex. Collectively, our findings provide a framework for the understanding and interrogation of PP2A-B55 function in health and disease.
Collapse
Affiliation(s)
- Thomas Kruse
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Dimitriya H. Garvanska
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Julia K. Varga
- Department of Microbiology and Molecular Genetics, Institute for Biomedical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - William Garland
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, Aarhus, Denmark
| | - Brennan C. McEwan
- Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Jamin B. Hein
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Melanie Bianca Weisser
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Iker Benavides-Puy
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Camilla Bachman Chan
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | | | - Blanca Lopez Mendez
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - A. Arockia Jeyaprakash
- Gene Center Munich, Ludwig-Maximilians–Universität München, Munich 81377, Germany
- Wellcome Centre for Cell Biology, University of Edinburg, Edinburgh EH9 3BF, UK
| | - Ora Schueler-Furman
- Department of Microbiology and Molecular Genetics, Institute for Biomedical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, Aarhus, Denmark
| | - Arminja N. Kettenbach
- Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Jakob Nilsson
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| |
Collapse
|
24
|
Hu Y, Delviks-Frankenberry KA, Wu C, Arizaga F, Pathak VK, Xiong Y. Structural insights into PPP2R5A degradation by HIV-1 Vif. Nat Struct Mol Biol 2024; 31:1492-1501. [PMID: 38789685 DOI: 10.1038/s41594-024-01314-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 04/11/2024] [Indexed: 05/26/2024]
Abstract
HIV-1 Vif recruits host cullin-RING-E3 ubiquitin ligase and CBFβ to degrade the cellular APOBEC3 antiviral proteins through diverse interactions. Recent evidence has shown that Vif also degrades the regulatory subunits PPP2R5(A-E) of cellular protein phosphatase 2A to induce G2/M cell cycle arrest. As PPP2R5 proteins bear no functional or structural resemblance to A3s, it is unclear how Vif can recognize different sets of proteins. Here we report the cryogenic-electron microscopy structure of PPP2R5A in complex with HIV-1 Vif-CBFβ-elongin B-elongin C at 3.58 Å resolution. The structure shows PPP2R5A binds across the Vif molecule, with biochemical and cellular studies confirming a distinct Vif-PPP2R5A interface that partially overlaps with those for A3s. Vif also blocks a canonical PPP2R5A substrate-binding site, indicating that it suppresses the phosphatase activities through both degradation-dependent and degradation-independent mechanisms. Our work identifies critical Vif motifs regulating the recognition of diverse A3 and PPP2R5A substrates, whereby disruption of these host-virus protein interactions could serve as potential targets for HIV-1 therapeutics.
Collapse
Affiliation(s)
- Yingxia Hu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Krista A Delviks-Frankenberry
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Chunxiang Wu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Fidel Arizaga
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Vinay K Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA.
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
25
|
Zhou S, Cheng K, Peng Y, Liu Y, Hu Q, Zeng S, Qi X, Yu L. Regulation mechanism of endoplasmic reticulum stress on metabolic enzymes in liver diseases. Pharmacol Res 2024; 207:107332. [PMID: 39089398 DOI: 10.1016/j.phrs.2024.107332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
The endoplasmic reticulum (ER) plays a pivotal role in protein folding and secretion, Ca2+ storage, and lipid synthesis in eukaryotic cells. When the burden of protein synthesis and folding required to be handled exceeds the processing capacity of the ER, the accumulation of misfolded/unfolded proteins triggers ER stress. In response to short-term ER stress, the unfolded protein response (UPR) is activated to allow cells to survive. When ER stress is severe and sustained, it typically provokes cell death through multiple approaches. It is well documented that ER stress and metabolic deregulation are functionally intertwined, both are considered contributing factors to the pathogenesis of liver diseases, including non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), ischemia/reperfusion (I/R) injury, viral hepatitis, liver fibrosis, and hepatocellular carcinoma (HCC). Hepatocytes are rich in smooth and rough ER, which harbor metabolic enzymes that are capable of sensing alterations in various nutritional status and external stimuli. Extensive research has focused on the molecular mechanism linking ER stress with metabolic enzymes. The purpose of this review is to summarize the current knowledge regarding the effects of ER stress on metabolic enzymes in various liver diseases and to provide potential therapeutic strategies for chronic liver diseases via targeting UPR.
Collapse
Affiliation(s)
- Shaojun Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Kaiwen Cheng
- Medical Research Center, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing 312000, China
| | - Yi Peng
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuxi Liu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Qingqing Hu
- The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Jinhua 322023, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Xuchen Qi
- Department of Pharmacy, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing 312000, China; Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310020, China.
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China; Department of Pharmacy, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing 312000, China; Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou 310024, China; Department of Pharmacy, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.
| |
Collapse
|
26
|
DeMarco AG, Dibble MG, Hall MC. Inducible degradation-coupled phosphoproteomics identifies PP2A Rts1 as a novel eisosome regulator. Front Cell Dev Biol 2024; 12:1451027. [PMID: 39234563 PMCID: PMC11371571 DOI: 10.3389/fcell.2024.1451027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/02/2024] [Indexed: 09/06/2024] Open
Abstract
Introduction Reversible protein phosphorylation is an abundant post-translational modification dynamically regulated by opposing kinases and phosphatases. Protein phosphorylation has been extensively studied in cell division, where waves of cyclin-dependent kinase activity, peaking in mitosis, drive the sequential stages of the cell cycle. Here we developed and employed a strategy to specifically probe kinase or phosphatase substrates at desired times or experimental conditions in the model organism Saccharomyces cerevisiae. Methods We combined auxin-inducible degradation (AID) with mass spectrometry-based phosphoproteomics, which allowed us to arrest physiologically normal cultures in mitosis prior to rapid phosphatase degradation and phosphoproteome analysis. Results and discussion Our results revealed that protein phosphatase 2A coupled with its B56 regulatory subunit, Rts1 (PP2ARts1), is involved in dephosphorylation of numerous proteins in mitosis, highlighting the need for phosphatases to selectively maintain certain proteins in a hypophosphorylated state in the face of high mitotic kinase activity. Unexpectedly, we observed elevated phosphorylation at many sites on several subunits of the fungal eisosome complex following rapid Rts1 degradation. Eisosomes are dynamic polymeric assemblies that create furrows in the plasma membrane important in regulating nutrient import, lipid metabolism, and stress responses, among other things. We found that PP2ARts1-mediated dephosphorylation of eisosomes promotes their plasma membrane association and we provide evidence that this regulation impacts eisosome roles in metabolic homeostasis. The combination of rapid, inducible protein degradation with proteomic profiling offers several advantages over common protein disruption methods for characterizing substrates of regulatory enzymes involved in dynamic biological processes.
Collapse
Affiliation(s)
- Andrew G DeMarco
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Marcella G Dibble
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Mark C Hall
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
- Institute for Cancer Research, Purdue University, West Lafayette, IN, United States
- Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
- Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
27
|
Wasserman JS, Faezov B, Patel KR, Kurimchak AM, Palacio SM, Glass DJ, Fowle H, McEwan BC, Xu Q, Zhao Z, Cressey L, Johnson N, Duncan JS, Kettenbach AN, Dunbrack RL, Graña X. FAM122A ensures cell cycle interphase progression and checkpoint control by inhibiting B55α/PP2A through helical motifs. Nat Commun 2024; 15:5776. [PMID: 38982062 PMCID: PMC11233601 DOI: 10.1038/s41467-024-50015-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/26/2024] [Indexed: 07/11/2024] Open
Abstract
The Ser/Thr protein phosphatase 2 A (PP2A) regulates the dephosphorylation of many phosphoproteins. Substrate recognition are mediated by B regulatory subunits. Here, we report the identification of a substrate conserved motif [RK]-V-x-x-[VI]-R in FAM122A, an inhibitor of B55α/PP2A. This motif is necessary for FAM122A binding to B55α, and computational structure prediction suggests the motif, which is helical, blocks substrate docking to the same site. In this model, FAM122A also spatially constrains substrate access by occluding the catalytic subunit. Consistently, FAM122A functions as a competitive inhibitor as it prevents substrate binding and dephosphorylation of CDK substrates by B55α/PP2A in cell lysates. FAM122A deficiency in human cell lines reduces the proliferation rate, cell cycle progression, and hinders G1/S and intra-S phase cell cycle checkpoints. FAM122A-KO in HEK293 cells attenuates CHK1 and CHK2 activation in response to replication stress. Overall, these data strongly suggest that FAM122A is a short helical motif (SHeM)-dependent, substrate-competitive inhibitor of B55α/PP2A that suppresses multiple functions of B55α in the DNA damage response and in timely progression through the cell cycle interphase.
Collapse
Affiliation(s)
- Jason S Wasserman
- Fels Cancer Institute for Personalized Medicine. Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Bulat Faezov
- Fox Chase Cancer Center, Temple Health, Philadelphia, PA, USA
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Kishan R Patel
- Fels Cancer Institute for Personalized Medicine. Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | | | - Seren M Palacio
- Fels Cancer Institute for Personalized Medicine. Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - David J Glass
- Fox Chase Cancer Center, Temple Health, Philadelphia, PA, USA
| | - Holly Fowle
- Fels Cancer Institute for Personalized Medicine. Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Brennan C McEwan
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Medical Center Drive, Lebanon, NH, USA
| | - Qifang Xu
- Fox Chase Cancer Center, Temple Health, Philadelphia, PA, USA
| | - Ziran Zhao
- Fels Cancer Institute for Personalized Medicine. Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Lauren Cressey
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Medical Center Drive, Lebanon, NH, USA
| | - Neil Johnson
- Fox Chase Cancer Center, Temple Health, Philadelphia, PA, USA
| | - James S Duncan
- Fox Chase Cancer Center, Temple Health, Philadelphia, PA, USA
| | - Arminja N Kettenbach
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Medical Center Drive, Lebanon, NH, USA
| | | | - Xavier Graña
- Fels Cancer Institute for Personalized Medicine. Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA.
- Fox Chase Cancer Center, Temple Health, Philadelphia, PA, USA.
| |
Collapse
|
28
|
Mayer A, Derua R, Spahn E, Verbinnen I, Zhang Y, Wadzinski B, Swingle MR, Honkanen R, Janssens V, Xia H. The role of liprin-α1 phosphorylation in its liquid-liquid phase separation: regulation by PPP2R5D/PP2A holoenzyme. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599485. [PMID: 38948786 PMCID: PMC11213027 DOI: 10.1101/2024.06.18.599485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Liprin-α1 is a widely expressed scaffolding protein responsible for regulating cellular processes such as focal adhesion, cell motility, and synaptic transmission. Liprin-α1 interacts with many proteins including ELKS, GIT1, liprin-β, and LAR-family receptor tyrosine protein phosphatase. Through these protein-protein interactions, liprin-α1 assembles large higher-order molecular complexes; however, the regulation of this complex assembly/disassembly is unknown. Liquid-liquid phase separation (LLPS) is a process that concentrates proteins within cellular nano-domains to facilitate efficient spatiotemporal signaling in response to signaling cascades. While there is no report that liprin-α1 spontaneously undergoes LLPS, we found that GFP-liprin-α1 expressed in HEK293 cells occasionally forms droplet-like condensates. MS-based interactomics identified Protein Phosphatase 2A (PP2A)/B56δ (PPP2R5D) trimers as specific interaction partners of liprin-α1 through a canonical Short Linear Interaction Motif (SLiM) in its N-terminal dimerization domain. Mutation of this SLiM nearly abolished PP2A interaction, and resulted in significantly increased LLPS. GFP-liprin-α1 showed significantly increased droplet formation in HEK293 cells devoid of B56δ (PPP2R5D knockout), suggesting that PPP2R5D/PP2A holoenzyme inhibits liprin-α1 LLPS. Guided by reported liprin-α1 Ser/Thr phosphorylation sites, we found liprin-α1 phospho-mimetic mutant at serine 763 (S763E) is sufficient to drive its LLPS. Domain mapping studies of liprin-α1 indicated that the intrinsically disordered region, the N-terminal dimerization domain, and the SAM domains are all necessary for liprin-α1 LLPS. Finally, expression of p.E420K, a human PPP2R5D variant causing Houge-Janssens Syndrome type 1 (also known as Jordan's Syndrome), significantly compromised suppression of liprin-α1 LLPS. Our work identified B56δ-PP2A holoenzyme as an inhibitor of liprin-α1 LLPS via regulation at multiple phosphorylation sites.
Collapse
|
29
|
Su J, Xiao Y, Wei L, Lei H, Sun F, Wang W, Yin J, Xiong R, Li S, Zhang P, Zhou Y, Wang X, Zheng J, Wang JZ. Generation of tau dephosphorylation-targeting chimeras for the treatment of Alzheimer's disease and related tauopathies. Sci Bull (Beijing) 2024; 69:1137-1152. [PMID: 38341350 DOI: 10.1016/j.scib.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/06/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024]
Abstract
Abnormal hyperphosphorylation and accumulation of tau protein play a pivotal role in neurodegeneration in Alzheimer's disease (AD) and many other tauopathies. Selective elimination of hyperphosphorylated tau is promising for the therapy of these diseases. We have conceptualized a strategy, named dephosphorylation-targeting chimeras (DEPTACs), for specifically hijacking phosphatases to tau to debilitate its hyperphosphorylation. Here, we conducted the step-by-step optimization of each constituent motif to generate DEPTACs with reasonable effectiveness in facilitating the dephosphorylation and subsequent clearance of pathological tau. Specifically, for one of the selected chimeras, D16, we demonstrated its significant efficiency in rescuing the neurodegeneration caused by neurotoxic K18-tau seeds in vitro. Moreover, intravenous administration of D16 also alleviated tau pathologies in the brain and improved memory deficits in AD mice. These results suggested DEPTACs as targeted modulators of tau phosphorylation, which hold therapeutic potential for AD and other tauopathies.
Collapse
Affiliation(s)
- Jingfen Su
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yue Xiao
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Linyu Wei
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Huiyang Lei
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fei Sun
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Weixia Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jun Yin
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430030, China
| | - Rui Xiong
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shihong Li
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Pei Zhang
- The Core Facility and Technical Support, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430030, China
| | - Ying Zhou
- Research Center for Medicine and Structural Biology, Wuhan University, Wuhan 430030, China
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Jie Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Beijing 100083, China.
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226000, China.
| |
Collapse
|
30
|
Brewer A, Sathe G, Pflug BE, Clarke RG, Macartney TJ, Sapkota GP. Mapping the substrate landscape of protein phosphatase 2A catalytic subunit PPP2CA. iScience 2024; 27:109302. [PMID: 38450154 PMCID: PMC10915630 DOI: 10.1016/j.isci.2024.109302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/18/2023] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
Protein phosphatase 2A (PP2A) is an essential Ser/Thr phosphatase. The PP2A holoenzyme complex comprises a scaffolding (A), regulatory (B), and catalytic (C) subunit, with PPP2CA being the principal catalytic subunit. The full scope of PP2A substrates in cells remains to be defined. To address this, we employed dTAG proteolysis-targeting chimeras to efficiently and selectively degrade dTAG-PPP2CA in homozygous knock-in HEK293 cells. Unbiased global phospho-proteomics identified 2,204 proteins with significantly increased phosphorylation upon dTAG-PPP2CA degradation, implicating them as potential PPP2CA substrates. A vast majority of these are novel. Bioinformatic analyses revealed involvement of the potential PPP2CA substrates in spliceosome function, cell cycle, RNA transport, and ubiquitin-mediated proteolysis. We identify a pSP/pTP motif as a predominant target for PPP2CA and confirm some of our phospho-proteomic data with immunoblotting. We provide an in-depth atlas of potential PPP2CA substrates and establish targeted degradation as a robust tool to unveil phosphatase substrates in cells.
Collapse
Affiliation(s)
- Abigail Brewer
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Gajanan Sathe
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Billie E. Pflug
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Rosemary G. Clarke
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Thomas J. Macartney
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Gopal P. Sapkota
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
31
|
Kruse T, Garvanska DH, Varga J, Garland W, McEwan B, Hein JB, Weisser MB, Puy IB, Chan CB, Parrila PS, Mendez BL, Arulanandam J, Schueler-Furman O, Jensen TH, Kettenbach A, Nilsson J. Substrate recognition principles for the PP2A-B55 protein phosphatase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.10.579793. [PMID: 38370611 PMCID: PMC10871369 DOI: 10.1101/2024.02.10.579793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The PP2A-B55 phosphatase regulates a plethora of signaling pathways throughout eukaryotes. How PP2A-B55 selects its substrates presents a severe knowledge gap. By integrating AlphaFold modelling with comprehensive high resolution mutational scanning, we show that α-helices in substrates bind B55 through an evolutionary conserved mechanism. Despite a large diversity in sequence and composition, these α-helices share key amino acid determinants that engage discrete hydrophobic and electrostatic patches. Using deep learning protein design, we generate a specific and potent competitive peptide inhibitor of PP2A-B55 substrate interactions. With this inhibitor, we uncover that PP2A-B55 regulates the nuclear exosome targeting complex by binding to an α-helical recruitment module in RBM7. Collectively, our findings provide a framework for the understanding and interrogation of PP2A-B55 in health and disease.
Collapse
Affiliation(s)
- Thomas Kruse
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Dimitriya H Garvanska
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Julia Varga
- Department of Microbiology and Molecular Genetics, Institute for Biomedical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112001, Israel
| | - William Garland
- Department of Molecular Biology and Genetics, Universitetsbyen 81, Aarhus University, Aarhus, Denmark
| | - Brennan McEwan
- Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Jamin B Hein
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- Current address: Amgen Research Copenhagen, Rønnegade 8, 5, 2100 Copenhagen, Denmark
| | - Melanie Bianca Weisser
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Iker Benavides Puy
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Camilla Bachman Chan
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Paula Sotelo Parrila
- Gene Center Munich, Ludwig-Maximilians- Universität München, Munich, 81377, Germany
| | - Blanca Lopez Mendez
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Jeyaprakash Arulanandam
- Gene Center Munich, Ludwig-Maximilians- Universität München, Munich, 81377, Germany
- Wellcome Centre for Cell Biology, University of Edinburg, Edinburgh, EH9 3BF, UK
| | - Ora Schueler-Furman
- Department of Microbiology and Molecular Genetics, Institute for Biomedical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112001, Israel
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Universitetsbyen 81, Aarhus University, Aarhus, Denmark
| | - Arminja Kettenbach
- Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Jakob Nilsson
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| |
Collapse
|
32
|
Liang LJ, Yang FY, Wang D, Zhang YF, Yu H, Wang Z, Sun BB, Liu YT, Wang GZ, Zhou GB. CIP2A induces PKM2 tetramer formation and oxidative phosphorylation in non-small cell lung cancer. Cell Discov 2024; 10:13. [PMID: 38321019 PMCID: PMC10847417 DOI: 10.1038/s41421-023-00633-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/30/2023] [Indexed: 02/08/2024] Open
Abstract
Tumor cells are usually considered defective in mitochondrial respiration, but human non-small cell lung cancer (NSCLC) tumor tissues are shown to have enhanced glucose oxidation relative to adjacent benign lung. Here, we reported that oncoprotein cancerous inhibitor of protein phosphatase 2A (CIP2A) inhibited glycolysis and promoted oxidative metabolism in NSCLC cells. CIP2A bound to pyruvate kinase M2 (PKM2) and induced the formation of PKM2 tetramer, with serine 287 as a novel phosphorylation site essential for PKM2 dimer-tetramer switching. CIP2A redirected PKM2 to mitochondrion, leading to upregulation of Bcl2 via phosphorylating Bcl2 at threonine 69. Clinically, CIP2A level in tumor tissues was positively correlated with the level of phosphorylated PKM2 S287. CIP2A-targeting compounds synergized with glycolysis inhibitor in suppressing cell proliferation in vitro and in vivo. These results indicated that CIP2A facilitates oxidative phosphorylation by promoting tetrameric PKM2 formation, and targeting CIP2A and glycolysis exhibits therapeutic potentials in NSCLC.
Collapse
Affiliation(s)
- Li-Jun Liang
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Thoracic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fu-Ying Yang
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Di Wang
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan-Fei Zhang
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Basic Medicine, Anhui Medical College, Hefei, Anhui, China
| | - Hong Yu
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Pharmacology, University of Texas Health Science at San Antonio, San Antonio, TX, USA
| | - Zheng Wang
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bei-Bei Sun
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu-Tao Liu
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Gui-Zhen Wang
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Guang-Biao Zhou
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
33
|
Wu CG, Balakrishnan VK, Merrill RA, Parihar PS, Konovolov K, Chen YC, Xu Z, Wei H, Sundaresan R, Cui Q, Wadzinski BE, Swingle MR, Musiyenko A, Chung WK, Honkanen RE, Suzuki A, Huang X, Strack S, Xing Y. B56δ long-disordered arms form a dynamic PP2A regulation interface coupled with global allostery and Jordan's syndrome mutations. Proc Natl Acad Sci U S A 2024; 121:e2310727120. [PMID: 38150499 PMCID: PMC10769853 DOI: 10.1073/pnas.2310727120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023] Open
Abstract
Intrinsically disordered regions (IDR) and short linear motifs (SLiMs) play pivotal roles in the intricate signaling networks governed by phosphatases and kinases. B56δ (encoded by PPP2R5D) is a regulatory subunit of protein phosphatase 2A (PP2A) with long IDRs that harbor a substrate-mimicking SLiM and multiple phosphorylation sites. De novo missense mutations in PPP2R5D cause intellectual disabilities (ID), macrocephaly, Parkinsonism, and a broad range of neurological symptoms. Our single-particle cryo-EM structures of the PP2A-B56δ holoenzyme reveal that the long, disordered arms at the B56δ termini fold against each other and the holoenzyme core. This architecture suppresses both the phosphatase active site and the substrate-binding protein groove, thereby stabilizing the enzyme in a closed latent form with dual autoinhibition. The resulting interface spans over 190 Å and harbors unfavorable contacts, activation phosphorylation sites, and nearly all residues with ID-associated mutations. Our studies suggest that this dynamic interface is coupled to an allosteric network responsive to phosphorylation and altered globally by mutations. Furthermore, we found that ID mutations increase the holoenzyme activity and perturb the phosphorylation rates, and the severe variants significantly increase the mitotic duration and error rates compared to the normal variant.
Collapse
Affiliation(s)
- Cheng-Guo Wu
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI53705
- Biophysics Program, University of Wisconsin at Madison, Madison, WI53706
| | - Vijaya K. Balakrishnan
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI53705
| | - Ronald A. Merrill
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA52242
| | - Pankaj S. Parihar
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI53705
| | - Kirill Konovolov
- Chemistry Department, University of Wisconsin at Madison, Madison, WI53706
| | - Yu-Chia Chen
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI53705
- Molecular and Cellular Pharmacology Program, University of Wisconsin at Madison, Madison, WI53706
| | - Zhen Xu
- Protein and Crystallography Facility, University of Iowa, Iowa City, IA52242
| | - Hui Wei
- The Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY10027
| | - Ramya Sundaresan
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI53705
| | - Qiang Cui
- Department of Chemistry, Boston University, Boston, MA02215
| | | | - Mark R. Swingle
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL36688
| | - Alla Musiyenko
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL36688
| | - Wendy K. Chung
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA02215
| | - Richard E. Honkanen
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL36688
| | - Aussie Suzuki
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI53705
- Biophysics Program, University of Wisconsin at Madison, Madison, WI53706
- Molecular and Cellular Pharmacology Program, University of Wisconsin at Madison, Madison, WI53706
| | - Xuhui Huang
- Biophysics Program, University of Wisconsin at Madison, Madison, WI53706
- Chemistry Department, University of Wisconsin at Madison, Madison, WI53706
| | - Stefan Strack
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA52242
| | - Yongna Xing
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI53705
- Biophysics Program, University of Wisconsin at Madison, Madison, WI53706
| |
Collapse
|
34
|
Padi SKR, Vos MR, Godek RJ, Fuller JR, Kruse T, Hein JB, Nilsson J, Kelker MS, Page R, Peti W. Cryo-EM structures of PP2A:B55-FAM122A and PP2A:B55-ARPP19. Nature 2024; 625:195-203. [PMID: 38123684 PMCID: PMC10765524 DOI: 10.1038/s41586-023-06870-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023]
Abstract
Progression through the cell cycle is controlled by regulated and abrupt changes in phosphorylation1. Mitotic entry is initiated by increased phosphorylation of mitotic proteins, a process driven by kinases2, whereas mitotic exit is achieved by counteracting dephosphorylation, a process driven by phosphatases, especially PP2A:B553. Although the role of kinases in mitotic entry is well established, recent data have shown that mitosis is only successfully initiated when the counterbalancing phosphatases are also inhibited4. Inhibition of PP2A:B55 is achieved by the intrinsically disordered proteins ARPP195,6 and FAM122A7. Despite their critical roles in mitosis, the mechanisms by which they achieve PP2A:B55 inhibition is unknown. Here, we report the single-particle cryo-electron microscopy structures of PP2A:B55 bound to phosphorylated ARPP19 and FAM122A. Consistent with our complementary NMR spectroscopy studies, both intrinsically disordered proteins bind PP2A:B55, but do so in highly distinct manners, leveraging multiple distinct binding sites on B55. Our extensive structural, biophysical and biochemical data explain how substrates and inhibitors are recruited to PP2A:B55 and provide a molecular roadmap for the development of therapeutic interventions for PP2A:B55-related diseases.
Collapse
Affiliation(s)
- Sathish K R Padi
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA
| | - Margaret R Vos
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Rachel J Godek
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | | | - Thomas Kruse
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Jamin B Hein
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Nilsson
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | | | - Rebecca Page
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA.
| | - Wolfgang Peti
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
35
|
Li C, Zhang P, Hong PP, Niu GJ, Wang XP, Zhao XF, Wang JX. White spot syndrome virus hijacks host PP2A-FOXO axes to promote its propagation. Int J Biol Macromol 2024; 256:128333. [PMID: 38007022 DOI: 10.1016/j.ijbiomac.2023.128333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023]
Abstract
Viruses have developed superior strategies to escape host defenses or exploit host components and enable their infection. The forkhead box transcription factor O family proteins (FOXOs) are reportedly utilized by human cytomegalovirus during their reactivation in mammals, but if FOXOs are exploited by viruses during their infection remains unclear. In the present study, we found that the FOXO of kuruma shrimp (Marsupenaeus japonicus) was hijacked by white spot syndrome virus (WSSV) during infection. Mechanistically, the expression of leucine carboxyl methyl transferase 1 (LCMT1) was up-regulated during the early stages of WSSV infection, which activated the protein phosphatase 2A (PP2A) by methylation, leading to dephosphorylation of FOXO and translocation into the nucleus. The FOXO directly promoted transcription of the immediate early gene, wsv079 of WSSV, which functioned as a transcriptional activator to initiate the expression of viral early and late genes. Thus, WSSV utilized the host LCMT1-PP2A-FOXO axis to promote its replication during the early infection stage. We also found that, during the late stages of WSSV infection, the envelope protein of WSSV (VP26) promoted PP2A activity by directly binding to FOXO and the regulatory subunit of PP2A (B55), which further facilitated FOXO dephosphorylation and WSSV replication via the VP26-PP2A-FOXO axis in shrimp. Overall, this study reveals novel viral strategies by which WSSV hijacks host LCMT1-PP2A-FOXO or VP26-PP2A-FOXO axes to promote its propagation, and provides clinical targets for WSSV control in shrimp aquaculture.
Collapse
Affiliation(s)
- Cang Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Peng Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Pan-Pan Hong
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Guo-Juan Niu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Xiao-Pei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
36
|
Zeke A, Alexa A, Reményi A. Discovery and Characterization of Linear Motif Mediated Protein-Protein Complexes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 3234:59-71. [PMID: 38507200 DOI: 10.1007/978-3-031-52193-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
There are myriads of protein-protein complexes that form within the cell. In addition to classical binding events between globular domains, many protein-protein interactions involve short disordered protein regions. The latter contain so-called linear motifs binding specifically to ordered protein domain surfaces. Linear binding motifs are classified based on their consensus sequence, where only a few amino acids are conserved. In this chapter we will review experimental and in silico techniques that can be used for the discovery and characterization of linear motif mediated protein-protein complexes involved in cellular signaling, protein level and gene expression regulation.
Collapse
Affiliation(s)
- András Zeke
- Institute of Organic Chemistry, HUN-REN Research Center for Natural Sciences, Budapest, Hungary
| | - Anita Alexa
- Institute of Organic Chemistry, HUN-REN Research Center for Natural Sciences, Budapest, Hungary
| | - Attila Reményi
- Institute of Organic Chemistry, HUN-REN Research Center for Natural Sciences, Budapest, Hungary.
| |
Collapse
|
37
|
Claes Z, Bollen M. A split-luciferase lysate-based approach to identify small-molecule modulators of phosphatase subunit interactions. Cell Chem Biol 2023; 30:1666-1679.e6. [PMID: 37625414 DOI: 10.1016/j.chembiol.2023.07.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/31/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023]
Abstract
An emerging strategy for the therapeutic targeting of protein phosphatases involves the use of compounds that interfere with the binding of regulatory subunits or substrates. However, high-throughput screening strategies for such interfering molecules are scarce. Here, we report on the conversion of the NanoBiT split-luciferase system into a robust assay for the quantification of phosphatase subunit and substrate interactions in cell lysates. The assay is suitable to screen small-molecule libraries for interfering compounds. We designed and validated split-luciferase sensors for a broad range of PP1 and PP2A holoenzymes, including sensors that selectively report on weak interaction sites. To facilitate efficient hit triaging in large-scale screening campaigns, deselection procedures were developed to eliminate assay-interfering molecules with high fidelity. As a proof-of-principle, we successfully applied the split-luciferase screening tool to identify small-molecule disruptors of the interaction between the C-terminus of PP1β and the ankyrin-repeat domain of the myosin-phosphatase targeting subunit MYPT1.
Collapse
Affiliation(s)
- Zander Claes
- Laboratory of Biosignaling and Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, 3000 Leuven, Belgium
| | - Mathieu Bollen
- Laboratory of Biosignaling and Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
38
|
Fujiwara K, Maekawa M, Iimori Y, Ogawa A, Urano T, Kono N, Takeda H, Higashiyama S, Arita M, Murai J. The crucial role of single-stranded DNA binding in enhancing sensitivity to DNA-damaging agents for Schlafen 11 and Schlafen 13. iScience 2023; 26:108529. [PMID: 38125019 PMCID: PMC10730379 DOI: 10.1016/j.isci.2023.108529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/19/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Schlafen (SLFN) 11 enhances cellular sensitivity to various DNA-damaging anticancer agents. Among the human SLFNs (SLFN5/11/12/13/14), SLFN11 is unique in its drug sensitivity and ability to block replication under DNA damage. In biochemical analysis, SLFN11 binds single-stranded DNA (ssDNA), and this binding is enhanced by the dephosphorylation of SLFN11. In this study, human cell-based assays demonstrated that a point mutation at the ssDNA-binding site of SLFN11 or a constitutive phosphorylation mutant abolished SLFN11-dependent drug sensitivity. Additionally, we discovered that nuclear SLFN13 with a point mutation mimicking the DNA-binding site of SLFN11 was recruited to chromatin, blocked replication, and enhanced drug sensitivity. Through generating multiple mutants and structure analyses of SLFN11 and SLFN13, we identified protein phosphatase 2A as a binding partner of SLFN11 and the putative binding motif in SLFN11. These findings provide crucial insights into the unique characteristics of SLFN11, contributing to a better understanding of its mechanisms.
Collapse
Affiliation(s)
- Kohei Fujiwara
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Minato-Ku, Tokyo 105-8512, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Masashi Maekawa
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Minato-Ku, Tokyo 105-8512, Japan
| | - Yuki Iimori
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
| | - Akane Ogawa
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
| | - Takeshi Urano
- Department of Biochemistry, Faculty of Medicine, Shimane University, Izumo, Shimane 693-8501, Japan
- Center for Vaccines and Therapeutic Antibodies for Emerging Infectious Diseases, Shimane University, Izumo, Shimane 693-8501, Japan
| | - Nobuaki Kono
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa 252-0882, Japan
| | - Hiroyuki Takeda
- Division of Proteo-Drug-Discovery, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Shigeki Higashiyama
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295, Japan
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
- Department of Oncogenesis and Tumor Regulation, Osaka International Cancer Institute, Chuo-Ku, Osaka 541-8567, Japan
| | - Makoto Arita
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Minato-Ku, Tokyo 105-8512, Japan
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
- Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo, Japan
- Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Junko Murai
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295, Japan
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| |
Collapse
|
39
|
Xie L, Bowman ME, Louie GV, Zhang C, Ardejani MS, Huang X, Chu Q, Donaldson CJ, Vaughan JM, Shan H, Powers ET, Kelly JW, Lyumkis D, Noel JP, Saghatelian A. Biochemistry and Protein Interactions of the CYREN Microprotein. Biochemistry 2023; 62:3050-3060. [PMID: 37813856 PMCID: PMC12060184 DOI: 10.1021/acs.biochem.3c00397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Over the past decade, advances in genomics have identified thousands of additional protein-coding small open reading frames (smORFs) missed by traditional gene finding approaches. These smORFs encode peptides and small proteins, commonly termed micropeptides or microproteins. Several of these newly discovered microproteins have biological functions and operate through interactions with proteins and protein complexes within the cell. CYREN1 is a characterized microprotein that regulates double-strand break repair in mammalian cells through interaction with Ku70/80 heterodimer. Ku70/80 binds to and stabilizes double-strand breaks and recruits the machinery needed for nonhomologous end join repair. In this study, we examined the biochemical properties of CYREN1 to better understand and explain its cellular protein interactions. Our findings support that CYREN1 is an intrinsically disordered microprotein and this disordered structure allows it to enriches several proteins, including a newly discovered interaction with SF3B1 via a distinct short linear motif (SLiMs) on CYREN1. Since many microproteins are predicted to be disordered, CYREN1 is an exemplar of how microproteins interact with other proteins and reveals an unknown scaffolding function of this microprotein that may link NHEJ and splicing.
Collapse
Affiliation(s)
- Lina Xie
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, USA
| | - Marianne E Bowman
- Jack H Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Gordon V Louie
- Jack H Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Cheng Zhang
- Laboratory of Genetics, The Salk Institute for Biological Studies; Graduate School of Biological Sciences, Section of Molecular Biology, University of California San Diego; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Maziar S. Ardejani
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Xuemei Huang
- University of California, San Diego, Department of Chemistry and Biochemistry, 9500 Gilman Drive, La Jolla, CA, USA
| | - Qian Chu
- Department of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Cynthia J Donaldson
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, USA
| | - Joan M Vaughan
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, USA
| | - Huanqi Shan
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, USA
| | - Evan T. Powers
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Jeffery W. Kelly
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Dimitry Lyumkis
- Laboratory of Genetics, The Salk Institute for Biological Studies; Graduate School of Biological Sciences, Section of Molecular Biology, University of California San Diego; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Joseph P. Noel
- Jack H Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Alan Saghatelian
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, USA
| |
Collapse
|
40
|
DeMarco AG, Dibble MG, Hall MC. Inducible degradation-coupled phosphoproteomics identifies PP2A Rts1 as a novel eisosome regulator. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563668. [PMID: 37961087 PMCID: PMC10634780 DOI: 10.1101/2023.10.24.563668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Reversible protein phosphorylation is an abundant post-translational modification dynamically regulated by opposing kinases and phosphatases. Protein phosphorylation has been extensively studied in cell division, where waves of cyclin-dependent kinase activity, peaking in mitosis, drive the sequential stages of the cell cycle. Here we developed and employed a strategy to specifically probe kinase or phosphatase substrates at desired times or experimental conditions in the model organism Saccharomyces cerevisiae. We combined auxin-inducible degradation (AID) with mass spectrometry-based phosphoproteomics, which allowed us to arrest physiologically normal cultures in mitosis prior to rapid phosphatase degradation and phosphoproteome analysis. Our results revealed that protein phosphatase 2A coupled with its B56 regulatory subunit, Rts1 (PP2ARts1), is involved in dephosphorylation of numerous proteins in mitosis, highlighting the need for phosphatases to selectively maintain certain proteins in a hypophosphorylated state in the face of high mitotic kinase activity. Unexpectedly, we observed elevated phosphorylation at many sites on several subunits of the fungal eisosome complex following rapid Rts1 degradation. Eisosomes are dynamic polymeric assemblies that create furrows in the plasma membrane important in regulating nutrient import, lipid metabolism, and stress responses, among other things. We found that PP2ARts1-mediated dephosphorylation of eisosomes promotes their plasma membrane association and we provide evidence that this regulation impacts eisosome roles in metabolic homeostasis. The combination of rapid, inducible protein degradation with proteomic profiling offers several advantages over common protein disruption methods for characterizing substrates of regulatory enzymes involved in dynamic biological processes.
Collapse
Affiliation(s)
- Andrew G. DeMarco
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907
| | - Marcella G. Dibble
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907
| | - Mark C. Hall
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907
- Institute for Cancer Research, Purdue University, West Lafayette, IN, 47907
| |
Collapse
|
41
|
Corno A, Cordeiro MH, Allan LA, Lim Q, Harrington E, Smith RJ, Saurin AT. A bifunctional kinase-phosphatase module balances mitotic checkpoint strength and kinetochore-microtubule attachment stability. EMBO J 2023; 42:e112630. [PMID: 37712330 PMCID: PMC10577578 DOI: 10.15252/embj.2022112630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023] Open
Abstract
Two major mechanisms safeguard genome stability during mitosis: the mitotic checkpoint delays mitosis until all chromosomes have attached to microtubules, and the kinetochore-microtubule error-correction pathway keeps this attachment process free from errors. We demonstrate here that the optimal strength and dynamics of these processes are set by a kinase-phosphatase pair (PLK1-PP2A) that engage in negative feedback from adjacent phospho-binding motifs on the BUB complex. Uncoupling this feedback to skew the balance towards PLK1 produces a strong checkpoint, hypostable microtubule attachments and mitotic delays. Conversely, skewing the balance towards PP2A causes a weak checkpoint, hyperstable microtubule attachments and chromosome segregation errors. These phenotypes are associated with altered BUB complex recruitment to KNL1-MELT motifs, implicating PLK1-PP2A in controlling auto-amplification of MELT phosphorylation. In support, KNL1-BUB disassembly becomes contingent on PLK1 inhibition when KNL1 is engineered to contain excess MELT motifs. This elevates BUB-PLK1/PP2A complex levels on metaphase kinetochores, stabilises kinetochore-microtubule attachments, induces chromosome segregation defects and prevents KNL1-BUB disassembly at anaphase. Together, these data demonstrate how a bifunctional PLK1/PP2A module has evolved together with the MELT motifs to optimise BUB complex dynamics and ensure accurate chromosome segregation.
Collapse
Affiliation(s)
- Andrea Corno
- Cellular and Systems Medicine, School of MedicineUniversity of DundeeDundeeUK
| | - Marilia H Cordeiro
- Cellular and Systems Medicine, School of MedicineUniversity of DundeeDundeeUK
| | - Lindsey A Allan
- Cellular and Systems Medicine, School of MedicineUniversity of DundeeDundeeUK
| | - Qian‐Wei Lim
- Cellular and Systems Medicine, School of MedicineUniversity of DundeeDundeeUK
| | - Elena Harrington
- Cellular and Systems Medicine, School of MedicineUniversity of DundeeDundeeUK
| | - Richard J Smith
- Cellular and Systems Medicine, School of MedicineUniversity of DundeeDundeeUK
| | - Adrian T Saurin
- Cellular and Systems Medicine, School of MedicineUniversity of DundeeDundeeUK
| |
Collapse
|
42
|
Peris I, Romero-Murillo S, Vicente C, Narla G, Odero MD. Regulation and role of the PP2A-B56 holoenzyme family in cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188953. [PMID: 37437699 DOI: 10.1016/j.bbcan.2023.188953] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
Protein phosphatase 2A (PP2A) inactivation is common in cancer, leading to sustained activation of pro-survival and growth-promoting pathways. PP2A consists of a scaffolding A-subunit, a catalytic C-subunit, and a regulatory B-subunit. The functional complexity of PP2A holoenzymes arises mainly through the vast repertoire of regulatory B-subunits, which determine both their substrate specificity and their subcellular localization. Therefore, a major challenge for developing more effective therapeutic strategies for cancer is to identify the specific PP2A complexes to be targeted. Of note, the development of small molecules specifically directed at PP2A-B56α has opened new therapeutic avenues in both solid and hematological tumors. Here, we focus on the B56/PR61 family of PP2A regulatory subunits, which have a central role in directing PP2A tumor suppressor activity. We provide an overview of the mechanisms controlling the formation and regulation of these complexes, the pathways they control, and the mechanisms underlying their deregulation in cancer.
Collapse
Affiliation(s)
- Irene Peris
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain; Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| | - Silvia Romero-Murillo
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain; Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain
| | - Carmen Vicente
- Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Maria D Odero
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain; Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
43
|
Padi SK, Vos MR, Godek RJ, Fuller JR, Kruse T, Hein JB, Nilsson J, Kelker MS, Page R, Peti W. Cryo-EM structures of PP2A:B55-FAM122A and PP2A:B55-ARPP19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.31.555365. [PMID: 37693408 PMCID: PMC10491220 DOI: 10.1101/2023.08.31.555365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Progression through the cell cycle is controlled by regulated and abrupt changes in phosphorylation.1 Mitotic entry is initiated by increased phosphorylation of mitotic proteins, a process driven by kinases,2 while mitotic exit is achieved by counteracting dephosphorylation, a process driven by phosphatases, especially PP2A:B55.3 While the role of kinases in mitotic entry is well-established, recent data have shown that mitosis is only successfully initiated when the counterbalancing phosphatases are also inhibited.4 For PP2A:B55, inhibition is achieved by the two intrinsically disordered proteins (IDPs), ARPP19 (phosphorylation-dependent)6,7 and FAM122A5 (inhibition is phosphorylation-independent). Despite their critical roles in mitosis, the mechanisms by which they achieve PP2A:B55 inhibition is unknown. Here, we report the cryo-electron microscopy structures of PP2A:B55 bound to phosphorylated ARPP19 and FAM122A. Consistent with our complementary NMR spectroscopy studies both IDPs bind PP2A:B55, but do so in highly distinct manners, unexpectedly leveraging multiple distinct binding sites on B55. Our extensive structural, biophysical and biochemical data explain how substrates and inhibitors are recruited to PP2A:B55 and provides a molecular roadmap for the development of therapeutic interventions for PP2A:B55 related diseases.
Collapse
Affiliation(s)
- Sathish K.R. Padi
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, USA
| | - Margaret R. Vos
- Department of Cell Biology, University of Connecticut Health Center, Farmington, USA
| | - Rachel J. Godek
- Department of Cell Biology, University of Connecticut Health Center, Farmington, USA
| | | | - Thomas Kruse
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Jamin B. Hein
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Nilsson
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | | | - Rebecca Page
- Department of Cell Biology, University of Connecticut Health Center, Farmington, USA
| | - Wolfgang Peti
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, USA
| |
Collapse
|
44
|
Rasool RU, O'Connor CM, Das CK, Alhusayan M, Verma BK, Islam S, Frohner IE, Deng Q, Mitchell-Velasquez E, Sangodkar J, Ahmed A, Linauer S, Mudrak I, Rainey J, Zawacki KP, Suhan TK, Callahan CG, Rebernick R, Natesan R, Siddiqui J, Sauter G, Thomas D, Wang S, Taylor DJ, Simon R, Cieslik M, Chinnaiyan AM, Busino L, Ogris E, Narla G, Asangani IA. Loss of LCMT1 and biased protein phosphatase 2A heterotrimerization drive prostate cancer progression and therapy resistance. Nat Commun 2023; 14:5253. [PMID: 37644036 PMCID: PMC10465527 DOI: 10.1038/s41467-023-40760-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
Loss of the tumor suppressive activity of the protein phosphatase 2A (PP2A) is associated with cancer, but the underlying molecular mechanisms are unclear. PP2A holoenzyme comprises a heterodimeric core, a scaffolding A subunit and a catalytic C subunit, and one of over 20 distinct substrate-directing regulatory B subunits. Methylation of the C subunit regulates PP2A heterotrimerization, affecting B subunit binding and substrate specificity. Here, we report that the leucine carboxy methyltransferase (LCMT1), which methylates the L309 residue of the C subunit, acts as a suppressor of androgen receptor (AR) addicted prostate cancer (PCa). Decreased methyl-PP2A-C levels in prostate tumors is associated with biochemical recurrence and metastasis. Silencing LCMT1 increases AR activity and promotes castration-resistant prostate cancer growth. LCMT1-dependent methyl-sensitive AB56αCme heterotrimers target AR and its critical coactivator MED1 for dephosphorylation, resulting in the eviction of the AR-MED1 complex from chromatin and loss of target gene expression. Mechanistically, LCMT1 is regulated by S6K1-mediated phosphorylation-induced degradation requiring the β-TRCP, leading to acquired resistance to anti-androgens. Finally, feedforward stabilization of LCMT1 by small molecule activator of phosphatase (SMAP) results in attenuation of AR-signaling and tumor growth inhibition in anti-androgen refractory PCa. These findings highlight methyl-PP2A-C as a prognostic marker and that the loss of LCMT1 is a major determinant in AR-addicted PCa, suggesting therapeutic potential for AR degraders or PP2A modulators in prostate cancer treatment.
Collapse
Affiliation(s)
- Reyaz Ur Rasool
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA, 19104, USA
| | - Caitlin M O'Connor
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Chandan Kanta Das
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA, 19104, USA
| | - Mohammed Alhusayan
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA, 19104, USA
| | - Brijesh Kumar Verma
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA, 19104, USA
| | - Sehbanul Islam
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA, 19104, USA
| | - Ingrid E Frohner
- Center for Medical Biochemistry, Max Perutz Labs, Medical University of Vienna, Dr. Bohr-Gasse 9/2, Vienna, 1030, Austria
| | - Qu Deng
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA, 19104, USA
| | - Erick Mitchell-Velasquez
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA, 19104, USA
| | - Jaya Sangodkar
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Aqila Ahmed
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sarah Linauer
- Center for Medical Biochemistry, Max Perutz Labs, Medical University of Vienna, Dr. Bohr-Gasse 9/2, Vienna, 1030, Austria
| | - Ingrid Mudrak
- Center for Medical Biochemistry, Max Perutz Labs, Medical University of Vienna, Dr. Bohr-Gasse 9/2, Vienna, 1030, Austria
| | - Jessica Rainey
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA, 19104, USA
| | - Kaitlin P Zawacki
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Tahra K Suhan
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Catherine G Callahan
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ryan Rebernick
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Ramakrishnan Natesan
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA, 19104, USA
| | - Javed Siddiqui
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Dafydd Thomas
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Shaomeng Wang
- Departments of Internal Medicine, Pharmacology, and Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Derek J Taylor
- Department of Biochemistry Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Marcin Cieslik
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Arul M Chinnaiyan
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Luca Busino
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA, 19104, USA
| | - Egon Ogris
- Center for Medical Biochemistry, Max Perutz Labs, Medical University of Vienna, Dr. Bohr-Gasse 9/2, Vienna, 1030, Austria.
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Irfan A Asangani
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA, 19104, USA.
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
45
|
Yu H, Zaveri S, Sattar Z, Schaible M, Perez Gandara B, Uddin A, McGarvey LR, Ohlmeyer M, Geraghty P. Protein Phosphatase 2A as a Therapeutic Target in Pulmonary Diseases. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1552. [PMID: 37763671 PMCID: PMC10535831 DOI: 10.3390/medicina59091552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023]
Abstract
New disease targets and medicinal chemistry approaches are urgently needed to develop novel therapeutic strategies for treating pulmonary diseases. Emerging evidence suggests that reduced activity of protein phosphatase 2A (PP2A), a complex heterotrimeric enzyme that regulates dephosphorylation of serine and threonine residues from many proteins, is observed in multiple pulmonary diseases, including lung cancer, smoke-induced chronic obstructive pulmonary disease, alpha-1 antitrypsin deficiency, asthma, and idiopathic pulmonary fibrosis. Loss of PP2A responses is linked to many mechanisms associated with disease progressions, such as senescence, proliferation, inflammation, corticosteroid resistance, enhanced protease responses, and mRNA stability. Therefore, chemical restoration of PP2A may represent a novel treatment for these diseases. This review outlines the potential impact of reduced PP2A activity in pulmonary diseases, endogenous and exogenous inhibitors of PP2A, details the possible PP2A-dependent mechanisms observed in these conditions, and outlines potential therapeutic strategies for treatment. Substantial medicinal chemistry efforts are underway to develop therapeutics targeting PP2A activity. The development of specific activators of PP2A that selectively target PP2A holoenzymes could improve our understanding of the function of PP2A in pulmonary diseases. This may lead to the development of therapeutics for restoring normal PP2A responses within the lung.
Collapse
Affiliation(s)
- Howard Yu
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Sahil Zaveri
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Zeeshan Sattar
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Michael Schaible
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Brais Perez Gandara
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Anwar Uddin
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Lucas R. McGarvey
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | | | - Patrick Geraghty
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| |
Collapse
|
46
|
Nguyen H, Kettenbach AN. Substrate and phosphorylation site selection by phosphoprotein phosphatases. Trends Biochem Sci 2023; 48:713-725. [PMID: 37173206 PMCID: PMC10523993 DOI: 10.1016/j.tibs.2023.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023]
Abstract
Dynamic protein phosphorylation and dephosphorylation are essential regulatory mechanisms that ensure proper cellular signaling and biological functions. Deregulation of either reaction has been implicated in several human diseases. Here, we focus on the mechanisms that govern the specificity of the dephosphorylation reaction. Most cellular serine/threonine dephosphorylation is catalyzed by 13 highly conserved phosphoprotein phosphatase (PPP) catalytic subunits, which form hundreds of holoenzymes by binding to regulatory and scaffolding subunits. PPP holoenzymes recognize phosphorylation site consensus motifs and interact with short linear motifs (SLiMs) or structural elements distal to the phosphorylation site. We review recent advances in understanding the mechanisms of PPP site-specific dephosphorylation preference and substrate recruitment and highlight examples of their interplay in the regulation of cell division.
Collapse
Affiliation(s)
- Hieu Nguyen
- Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Arminja N Kettenbach
- Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA; Dartmouth Cancer Center, Lebanon, NH 03756, USA.
| |
Collapse
|
47
|
Heidari B, Nemie-Feyissa D, Lillo C. Distinct Clades of Protein Phosphatase 2A Regulatory B'/B56 Subunits Engage in Different Physiological Processes. Int J Mol Sci 2023; 24:12255. [PMID: 37569631 PMCID: PMC10418862 DOI: 10.3390/ijms241512255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Protein phosphatase 2A (PP2A) is a strongly conserved and major protein phosphatase in all eukaryotes. The canonical PP2A complex consists of a catalytic (C), scaffolding (A), and regulatory (B) subunit. Plants have three groups of evolutionary distinct B subunits: B55, B' (B56), and B''. Here, the Arabidopsis B' group is reviewed and compared with other eukaryotes. Members of the B'α/B'β clade are especially important for chromatid cohesion, and dephosphorylation of transcription factors that mediate brassinosteroid (BR) signaling in the nucleus. Other B' subunits interact with proteins at the cell membrane to dampen BR signaling or harness immune responses. The transition from vegetative to reproductive phase is influenced differentially by distinct B' subunits; B'α and B'β being of little importance, whereas others (B'γ, B'ζ, B'η, B'θ, B'κ) promote transition to flowering. Interestingly, the latter B' subunits have three motifs in a conserved manner, i.e., two docking sites for protein phosphatase 1 (PP1), and a POLO consensus phosphorylation site between these motifs. This supports the view that a conserved PP1-PP2A dephosphorelay is important in a variety of signaling contexts throughout eukaryotes. A profound understanding of these regulators may help in designing future crops and understand environmental issues.
Collapse
Affiliation(s)
| | | | - Cathrine Lillo
- IKBM, Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4036 Stavanger, Norway; (B.H.); (D.N.-F.)
| |
Collapse
|
48
|
Kieft R, Zhang Y, Yan H, Schmitz RJ, Sabatini R. Knockout of protein phosphatase 1 in Leishmania major reveals its role during RNA polymerase II transcription termination. Nucleic Acids Res 2023; 51:6208-6226. [PMID: 37194692 PMCID: PMC10325913 DOI: 10.1093/nar/gkad394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/18/2023] Open
Abstract
The genomes of kinetoplastids are organized into polycistronic transcription units that are flanked by a modified DNA base (base J, beta-D-glucosyl-hydroxymethyluracil). Previous work established a role of base J in promoting RNA polymerase II (Pol II) termination in Leishmania major and Trypanosoma brucei. We recently identified a PJW/PP1 complex in Leishmania containing a J-binding protein (JBP3), PP1 phosphatase 1, PP1 interactive-regulatory protein (PNUTS) and Wdr82. Analyses suggested the complex regulates transcription termination by recruitment to termination sites via JBP3-base J interactions and dephosphorylation of proteins, including Pol II, by PP1. However, we never addressed the role of PP1, the sole catalytic component, in Pol II transcription termination. We now demonstrate that deletion of the PP1 component of the PJW/PP1 complex in L. major, PP1-8e, leads to readthrough transcription at the 3'-end of polycistronic gene arrays. We show PP1-8e has in vitro phosphatase activity that is lost upon mutation of a key catalytic residue and associates with PNUTS via the conserved RVxF motif. Additionally, purified PJW complex with associated PP1-8e, but not complex lacking PP1-8e, led to dephosphorylation of Pol II, suggesting a direct role of PNUTS/PP1 holoenzymes in regulating transcription termination via dephosphorylating Pol II in the nucleus.
Collapse
Affiliation(s)
- Rudo Kieft
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA30602, USA
| | - Yang Zhang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA30602, USA
| | - Haidong Yan
- Department of Genetics, University of Georgia, Athens, GA30602, USA
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA30602, USA
| | - Robert Sabatini
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA30602, USA
| |
Collapse
|
49
|
Wang Y, Chiappetta G, Guérois R, Liu Y, Romero S, Boesch DJ, Krause M, Dessalles CA, Babataheri A, Barakat AI, Chen B, Vinh J, Polesskaya A, Gautreau AM. PPP2R1A regulates migration persistence through the NHSL1-containing WAVE Shell Complex. Nat Commun 2023; 14:3541. [PMID: 37322026 PMCID: PMC10272187 DOI: 10.1038/s41467-023-39276-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 06/06/2023] [Indexed: 06/17/2023] Open
Abstract
The RAC1-WAVE-Arp2/3 signaling pathway generates branched actin networks that power lamellipodium protrusion of migrating cells. Feedback is thought to control protrusion lifetime and migration persistence, but its molecular circuitry remains elusive. Here, we identify PPP2R1A by proteomics as a protein differentially associated with the WAVE complex subunit ABI1 when RAC1 is activated and downstream generation of branched actin is blocked. PPP2R1A is found to associate at the lamellipodial edge with an alternative form of WAVE complex, the WAVE Shell Complex, that contains NHSL1 instead of the Arp2/3 activating subunit WAVE, as in the canonical WAVE Regulatory Complex. PPP2R1A is required for persistence in random and directed migration assays and for RAC1-dependent actin polymerization in cell extracts. PPP2R1A requirement is abolished by NHSL1 depletion. PPP2R1A mutations found in tumors impair WAVE Shell Complex binding and migration regulation, suggesting that the coupling of PPP2R1A to the WAVE Shell Complex is essential to its function.
Collapse
Affiliation(s)
- Yanan Wang
- Laboratory of Structural Biology of the Cell (BIOC), CNRS UMR7654, École Polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Giovanni Chiappetta
- Biological Mass Spectrometry and Proteomics (SMBP), ESPCI Paris, Université PSL, LPC CNRS UMR8249, 75005, Paris, France
| | - Raphaël Guérois
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Yijun Liu
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Stéphane Romero
- Laboratory of Structural Biology of the Cell (BIOC), CNRS UMR7654, École Polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Daniel J Boesch
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Matthias Krause
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Claire A Dessalles
- LadHyX, École Polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Avin Babataheri
- LadHyX, École Polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Abdul I Barakat
- LadHyX, École Polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Baoyu Chen
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Joelle Vinh
- Biological Mass Spectrometry and Proteomics (SMBP), ESPCI Paris, Université PSL, LPC CNRS UMR8249, 75005, Paris, France
| | - Anna Polesskaya
- Laboratory of Structural Biology of the Cell (BIOC), CNRS UMR7654, École Polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France.
| | - Alexis M Gautreau
- Laboratory of Structural Biology of the Cell (BIOC), CNRS UMR7654, École Polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France.
| |
Collapse
|
50
|
Konovalov KA, Wu CG, Qiu Y, Balakrishnan VK, Parihar PS, O’Connor MS, Xing Y, Huang X. Disease mutations and phosphorylation alter the allosteric pathways involved in autoinhibition of protein phosphatase 2A. J Chem Phys 2023; 158:215101. [PMID: 37260014 PMCID: PMC10238128 DOI: 10.1063/5.0150272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/16/2023] [Indexed: 06/02/2023] Open
Abstract
Mutations in protein phosphatase 2A (PP2A) are connected to intellectual disability and cancer. It has been hypothesized that these mutations might disrupt the autoinhibition and phosphorylation-induced activation of PP2A. Since they are located far from both the active and substrate binding sites, it is unclear how they exert their effect. We performed allosteric pathway analysis based on molecular dynamics simulations and combined it with biochemical experiments to investigate the autoinhibition of PP2A. In the wild type (WT), the C-arm of the regulatory subunit B56δ obstructs the active and substrate binding sites exerting a dual autoinhibition effect. We find that the disease mutant, E198K, severely weakens the allosteric pathways that stabilize the C-arm in the WT. Instead, the strongest allosteric pathways in E198K take a different route that promotes exposure of the substrate binding site. To facilitate the allosteric pathway analysis, we introduce a path clustering algorithm for lumping pathways into channels. We reveal remarkable similarities between the allosteric channels of E198K and those in phosphorylation-activated WT, suggesting that the autoinhibition can be alleviated through a conserved mechanism. In contrast, we find that another disease mutant, E200K, which is in spatial proximity of E198, does not repartition the allosteric pathways leading to the substrate binding site; however, it may still induce exposure of the active site. This finding agrees with our biochemical data, allowing us to predict the activity of PP2A with the phosphorylated B56δ and provide insight into how disease mutations in spatial proximity alter the enzymatic activity in surprisingly different mechanisms.
Collapse
Affiliation(s)
- Kirill A. Konovalov
- Department of Chemistry, Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | - Yunrui Qiu
- Department of Chemistry, Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Vijaya Kumar Balakrishnan
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Pankaj Singh Parihar
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Michael S. O’Connor
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Yongna Xing
- Authors to whom correspondence should be addressed: and
| | - Xuhui Huang
- Authors to whom correspondence should be addressed: and
| |
Collapse
|