1
|
Ahmad ST, Li Y, Garcia-Lopez J, Gudenas BL, Hadley J, Paul L, Wu SC, Refaat A, Kojic M, Batts M, Soliman T, Pitre A, Arnskötter F, Zindy F, Jones A, Twarog NR, Mayasundari A, Bianski B, Tinkle C, Shirinifard A, Janke L, Lu M, Lewis SA, Onar-Thomas A, Pfister SM, Gajjar A, Baker SJ, Roussel MF, Rankovic Z, Robinson GW, Orr BA, Wainwright B, Shelat AA, Waszak SM, Kutscher LM, Lin H, Northcott PA. Genetic modeling of ELP1-associated Sonic hedgehog medulloblastoma identifies MDM2 as a selective therapeutic target. Cancer Cell 2025:S1535-6108(25)00173-4. [PMID: 40378836 DOI: 10.1016/j.ccell.2025.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 02/23/2025] [Accepted: 04/28/2025] [Indexed: 05/19/2025]
Abstract
Germline loss-of-function (LOF) variants in Elongator acetyltransferase complex subunit 1 (ELP1) are the most prevalent predisposing genetic events in childhood medulloblastoma (MB), accounting for ∼30% of the Sonic hedgehog (SHH) 3 subtype. The mechanism(s) by which germline ELP1 deficiency provokes SHH-MB pathogenesis remain unknown. Genetically engineered mice mimicking heterozygous Elp1 LOF (Elp1HET) seen in affected germline carriers exhibit hallmark features of premalignancy in cerebellar granule neuron progenitors (GNPs), including increased DNA replication stress, genomic instability, accelerated cell cycle, and stalled differentiation. Orthotopic transplantation of Elp1HET GNPs harboring somatic Ptch1 inactivation yields SHH-MB-like tumors with compromised p53 signaling, providing a plausible explanation for the exclusivity of ELP1-associated MBs in the SHH-3 subtype. Preclinical treatment of ELP1-mutant patient-derived xenografts with an FDA-approved MDM2 inhibitor reactivates p53-dependent apoptosis and extends survival. Our findings functionally substantiate the role of ELP1 deficiency in SHH-MB predisposition and nominate therapeutics targeting MDM2 as a rational treatment option.
Collapse
Affiliation(s)
- Shiekh Tanveer Ahmad
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yiran Li
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jesus Garcia-Lopez
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brian L Gudenas
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jennifer Hadley
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Leena Paul
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stephanie C Wu
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Alaa Refaat
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Marija Kojic
- Frazer Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Melissa Batts
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Taha Soliman
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Aaron Pitre
- Cell and Tissue Imaging Shared Resource, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Frederik Arnskötter
- Hopp Children's Cancer Center Heidelberg (KiTZ), JRG Developmental Origins of Pediatric Cancers, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Frederique Zindy
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Alun Jones
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Nathaniel R Twarog
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Anand Mayasundari
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brandon Bianski
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Christopher Tinkle
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Abbas Shirinifard
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Laura Janke
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Meifen Lu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sara A Lewis
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Arzu Onar-Thomas
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Division Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Department of Pediatric Hematology and Oncology, Heidelberg University Hospital and National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Amar Gajjar
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Suzanne J Baker
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Martine F Roussel
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Zoran Rankovic
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Giles W Robinson
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brent A Orr
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brandon Wainwright
- Frazer Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Anang A Shelat
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sebastian M Waszak
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland; Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA 94143, USA
| | - Lena M Kutscher
- Hopp Children's Cancer Center Heidelberg (KiTZ), JRG Developmental Origins of Pediatric Cancers, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Hong Lin
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Paul A Northcott
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
2
|
Kumari K, Rai GP, Shriya S, Khan N, Ola MS, Shanker A, Haque R. Coevolutionary dynamics of 53BP1 and its impact on TP53 interaction for DNA damage repair. Comput Biol Chem 2025; 118:108508. [PMID: 40382899 DOI: 10.1016/j.compbiolchem.2025.108508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/26/2025] [Accepted: 05/09/2025] [Indexed: 05/20/2025]
Abstract
The p53-binding protein 1 (53BP1) is essential for DNA damage repair via non-homologous end joining (NHEJ) and plays a crucial role in maintaining genomic stability by interacting with the tumor suppressor protein p53, a key regulator of the DNA damage response (DDR). This study investigates the role of coevolution within 53BP1 and its impact on structural integrity and binding affinity with p53. Through multiple sequence alignment and phylogenetic analysis, we identified 72 coevolving groups of amino acid residues, five of which were mapped to the BRCT domain of 53BP1. Mutational effects on these residues were assessed using point mutation mapping and stability analysis via DynaMut, with a detailed evaluation of groups 12 and 16. Docking studies revealed that coevolution-induced modifications enhanced 53BP1-p53 interactions, with group 12 exhibiting the highest binding affinity (-9.9 kcal/mol), followed by group 16 (-9 kcal/mol), both outperforming the wild-type (-8.9 kcal/mol). These modifications resulted in novel interactions that contributed to overall structural stability. Our findings highlight the significance of coevolution in shaping protein-protein interactions and maintaining the structural and functional integrity of 53BP1 protein.
Collapse
Affiliation(s)
- Komal Kumari
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar 824236, India
| | - Gyan Prakash Rai
- Department of Bioinformatics, Central University of South Bihar, Gaya, Bihar 824236, India
| | - Srishti Shriya
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar 824236, India
| | - Nooruddin Khan
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Mohammad Shamsul Ola
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Asheesh Shanker
- Department of Bioinformatics, Central University of South Bihar, Gaya, Bihar 824236, India.
| | - Rizwanul Haque
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar 824236, India.
| |
Collapse
|
3
|
Tian J, Li J, Liu F, Wang C, Sun B, Yan J, Zhu B, Qin Y, Fang S, Zhang H, Chen G. DSCC1 restrains 53BP1/RIF1 signaling at DNA double-strand breaks to promote homologous recombination repair. Cell Rep 2025; 44:115452. [PMID: 40117291 DOI: 10.1016/j.celrep.2025.115452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 01/09/2025] [Accepted: 02/28/2025] [Indexed: 03/23/2025] Open
Abstract
Mammalian DNA double-strand breaks (DSBs) are repaired by homologous recombination (HR) and non-homologous end joining (NHEJ). HR occurs in the S/G2 phase, while NHEJ dominates in G1 phase. 53BP1 promotes NHEJ by recruiting RIF1 to DSBs in G1, but its inhibition during S/G2 remains unclear. Here, we identify DNA replication and sister chromatid cohesion 1 (DSCC1) as a key regulator that antagonizes 53BP1/RIF1 signaling in a cell-cycle-dependent manner. ATR-mediated phosphorylation of DSCC1 at Thr181 leads to its recruitment to DSB sites and promotes HR by facilitating DNA end resection. During S/G2, E2F1-induced DSCC1 expression is phosphorylated by cyclin-dependent kinase 2 (CDK2), enabling DSCC1 to interact with 53BP1 and restrain ataxia telangiectasia mutated (ATM)-mediated 53BP1 phosphorylation, consequently preventing RIF1 recruitment. Pathologically, DSCC1 is elevated in ovarian cancer, conferring poly (ADP-ribose) polymerase (PARP) inhibitor resistance. Thus, DSCC1 plays a crucial role in DSB repair pathway choice toward HR repair during S/G2 phase, providing a potential target to optimize PARP inhibitor therapy in BRCA1/2-proficient cancers.
Collapse
Affiliation(s)
- Jiaxin Tian
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Jiaheng Li
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, P.R. China; College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei 071002, P.R. China
| | - Fengqi Liu
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Cong Wang
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Binghe Sun
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Jin Yan
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Bo Zhu
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Yu Qin
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Shentong Fang
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China.
| | - Haoxing Zhang
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, P.R. China.
| | - Guo Chen
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China.
| |
Collapse
|
4
|
Huang J, Liu F, Xu ZF, Xiang HL, Yuan Q, Zhang C. Minichromosome maintenance 4 plays a key role in protecting against acute kidney injury by regulating tubular epithelial cells survival and regeneration. J Adv Res 2025:S2090-1232(25)00192-4. [PMID: 40107353 DOI: 10.1016/j.jare.2025.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 02/19/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025] Open
Abstract
INTRODUCTION Minichromosome maintenance 4 (MCM4), a constituent of the MCM family, playing a pivotal role in DNA replication. Although MCM4 expression has been widely linked to various malignant tumors, its role in kidney diseases is not well-studied. This study primarily investigates the role and underlying mechanism of MCM4 in acute kidney injury (AKI). OBJECTIVES Characterizing a novel target of MCM4 in patients with AKI. METHODS We used CRISPR/Cas9 gene editing to delete MCM4 gene in tubular cells from C57BL/6J mice. Adeno-associated virus 9 harboring MCM4 was administered via intraparenchymal injection into the kidney to enhance MCM4 expression in vivo. These mice were used to established cisplatin- and ischemic reperfusion injury (IRI)-induced AKI mouse models, for detecting the functional role of MCM4 in the pathological process of AKI. RESULTS MCM4 level was increased in the tubules of cisplatin- and IRI-induced AKI mouse models. Compare to wide-type mice, MCM4 knockout mice demonstrated greater degree of histological damage and a higher ratio of apoptotic tubular cells, as well as kidney dysfunction upon cisplatin- and IRI-induced AKI models. Conversely, MCM4 overexpression ameliorated the severity of kidney injury and promoted regenerative capacity of tubular cells during AKI development. Mechanically, loss of MCM4 induced the expression of p53-binding protein 1, activating the p53/p21 pathway and exacerbating AKI progression. Additional, MAD2B, as an upstream molecule of MCM4, regulates the transcription level of MCM4 by affecting the level of E2F1. CONCLUSIONS These findings demonstrate that MCM4 upregulation during AKI development is an adaptive response that preserves tubular cell regenerative capacity and limits the severity of renal injury, thus highlighting the potential value of MCM4 as a biomarker or therapeutic target in patients with AKI.
Collapse
Affiliation(s)
- Jing Huang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Feng Liu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhi-Feng Xu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hui-Ling Xiang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qian Yuan
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
5
|
Chiolo I, Altmeyer M, Legube G, Mekhail K. Nuclear and genome dynamics underlying DNA double-strand break repair. Nat Rev Mol Cell Biol 2025:10.1038/s41580-025-00828-1. [PMID: 40097581 DOI: 10.1038/s41580-025-00828-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2025] [Indexed: 03/19/2025]
Abstract
Changes in nuclear shape and in the spatial organization of chromosomes in the nucleus commonly occur in cancer, ageing and other clinical contexts that are characterized by increased DNA damage. However, the relationship between nuclear architecture, genome organization, chromosome stability and health remains poorly defined. Studies exploring the connections between the positioning and mobility of damaged DNA relative to various nuclear structures and genomic loci have revealed nuclear and cytoplasmic processes that affect chromosome stability. In this Review, we discuss the dynamic mechanisms that regulate nuclear and genome organization to promote DNA double-strand break (DSB) repair, genome stability and cell survival. Genome dynamics that support DSB repair rely on chromatin states, repair-protein condensates, nuclear or cytoplasmic microtubules and actin filaments, kinesin or myosin motor proteins, the nuclear envelope, various nuclear compartments, chromosome topology, chromatin loop extrusion and diverse signalling cues. These processes are commonly altered in cancer and during natural or premature ageing. Indeed, the reshaping of the genome in nuclear space during DSB repair points to new avenues for therapeutic interventions that may take advantage of new cancer cell vulnerabilities or aim to reverse age-associated defects.
Collapse
Affiliation(s)
- Irene Chiolo
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA.
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich (UZH), Zurich, Switzerland.
| | - Gaëlle Legube
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France.
| | - Karim Mekhail
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Miller KN, Li B, Pierce-Hoffman HR, Patel S, Lei X, Rajesh A, Teneche MG, Havas AP, Gandhi A, Macip CC, Lyu J, Victorelli SG, Woo SH, Lagnado AB, LaPorta MA, Liu T, Dasgupta N, Li S, Davis A, Korotkov A, Hultenius E, Gao Z, Altman Y, Porritt RA, Garcia G, Mogler C, Seluanov A, Gorbunova V, Kaech SM, Tian X, Dou Z, Chen C, Passos JF, Adams PD. p53 enhances DNA repair and suppresses cytoplasmic chromatin fragments and inflammation in senescent cells. Nat Commun 2025; 16:2229. [PMID: 40044657 PMCID: PMC11882782 DOI: 10.1038/s41467-025-57229-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/13/2025] [Indexed: 03/09/2025] Open
Abstract
Genomic instability and inflammation are distinct hallmarks of aging, but the connection between them is poorly understood. Here we report a mechanism directly linking genomic instability and inflammation in senescent cells through a mitochondria-regulated molecular circuit involving p53 and cytoplasmic chromatin fragments (CCF) that are enriched for DNA damage signaling marker γH2A.X. We show that p53 suppresses CCF accumulation and its downstream inflammatory phenotype. p53 activation suppresses CCF formation linked to enhanced DNA repair and genome integrity. Activation of p53 in aged mice by pharmacological inhibition of MDM2 reverses transcriptomic signatures of aging and age-associated accumulation of monocytes and macrophages in liver. Mitochondrial ablation in senescent cells suppresses CCF formation and activates p53 in an ATM-dependent manner, suggesting that mitochondria-dependent formation of γH2A.X + CCF dampens nuclear DNA damage signaling and p53 activity. These data provide evidence for a mitochondria-regulated p53 signaling circuit in senescent cells that controls DNA repair, genome integrity, and senescence- and age-associated inflammation, with relevance to therapeutic targeting of age-associated disease.
Collapse
Affiliation(s)
- Karl N Miller
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA.
| | - Brightany Li
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | | | - Shreeya Patel
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Xue Lei
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Adarsh Rajesh
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Marcos G Teneche
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Aaron P Havas
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Armin Gandhi
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Carolina Cano Macip
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Jun Lyu
- Laboratory of Biochemistry and Molecular Biology; National Cancer Institute; National Institutes of Health, Bethesda, MD, USA
| | - Stella G Victorelli
- Department of Physiology and Biomedical Engineering; Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging; Mayo Clinic, Rochester, MN, USA
| | - Seung-Hwa Woo
- Department of Physiology and Biomedical Engineering; Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging; Mayo Clinic, Rochester, MN, USA
| | - Anthony B Lagnado
- Department of Physiology and Biomedical Engineering; Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging; Mayo Clinic, Rochester, MN, USA
| | - Michael A LaPorta
- NOMIS Center for Immunobiology and Microbial Pathogenesis; Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Tianhui Liu
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Nirmalya Dasgupta
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
- Center for Cancer Therapy; La Jolla Institute of Immunology, La Jolla, CA, USA
| | - Sha Li
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Andrew Davis
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Anatoly Korotkov
- Departments of Biology and Medicine; University of Rochester, Rochester, NY, USA
| | - Erik Hultenius
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Zichen Gao
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Yoav Altman
- Shared Resources; NCI-designated Cancer Center; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Rebecca A Porritt
- Shared Resources; NCI-designated Cancer Center; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Guillermina Garcia
- Shared Resources; NCI-designated Cancer Center; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Carolin Mogler
- Institute of Pathology; School of Medicine and Health; Technical University Munich (TUM), Munich, Germany
| | - Andrei Seluanov
- Departments of Biology and Medicine; University of Rochester, Rochester, NY, USA
| | - Vera Gorbunova
- Departments of Biology and Medicine; University of Rochester, Rochester, NY, USA
| | - Susan M Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis; Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Xiao Tian
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Zhixun Dou
- Center for Regenerative Medicine, Department of Medicine; Massachusetts General Research Institute, Boston, MA, USA
- Harvard Stem Cell Institute; Harvard University, Cambridge, MA, USA
| | - Chongyi Chen
- Laboratory of Biochemistry and Molecular Biology; National Cancer Institute; National Institutes of Health, Bethesda, MD, USA
| | - João F Passos
- Department of Physiology and Biomedical Engineering; Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging; Mayo Clinic, Rochester, MN, USA
| | - Peter D Adams
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA.
| |
Collapse
|
7
|
Yuan F, Xu J, Xuan L, Deng C, Wang W, Yang R. USP14 inhibition by degrasyn induces YAP1 degradation and suppresses the progression of radioresistant esophageal cancer. Neoplasia 2025; 60:101101. [PMID: 39675091 PMCID: PMC11699344 DOI: 10.1016/j.neo.2024.101101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Radiotherapy is a major modality for esophageal cancer (ESCA) treatment, yet radioresistance severely hampers its therapeutic efficacy. Ubiquitin-specific peptidase 14 (USP14) is a novel deubiquitinase and can mediate cancer cells' response to irradiation, although the underlying mechanism remains unclear, including in ESCA. METHODS To evaluate the expression of USP14 in ESCA tissues or cells, we used RNA-Seq, immunoblotting, co-immunoprecipitation (Co-IP), ubiquitination, quantitative real-time polymerase chain reaction (qRT-PCR), and immunofluorescence assays in this investigation. Additionally, we used CCK8, cloning, and migration tests to examine the proliferation and migration of ESCA cells. We also used transplantation tumor mouse model to investigate the course of the cancer cell growth. Finally, we looked into the biological processes linked to USP14 using gene set enrichment analysis (GSEA), which was later verified. RESULTS We observed a significant upregulation of USP14 in human ESCA tissues and cell lines, especially in those with radioresistance. Moreover, USP14 knockdown significantly restrained the proliferation and inhibited the radiation tolerance of ESCC cells. Here, we identified a potential inhibitor of USP14, Degrasyn (DGS), and investigated its regulatory effects on ESCA radioresistance and progression. We found that DGS had marked antiproliferative effects in radiosensitive ESCA cell lines. Notably, a low dose of DGS significantly enhanced the sensitivity of radioresistant ESCA cells to irradiation, as shown by the significantly reduced cell proliferation, migration, and invasion. Furthermore, the combination of DGS and X-ray irradiation strongly induced DNA damage in radioresistant ESCA cell lines by increasing the phosphorylation levels of H2AX (γ-H2AX) and checkpoint kinase 1/ataxia-telangiectasia-mutated-and-Rad3-related kinase (CHK1/ATR) signaling. Animal experiments confirmed the effective role of the DGS and X-ray combined treatment in reducing tumor growth and irradiation tolerance of ESCA in vivo with undetectable toxicity. Importantly, the promotive and malignant biological behaviors of ESCA cells suppressed by the DGS/X-ray combination treatment were almost eliminated by USP14 overexpression, along with the abolished DNA damage process. Mechanistically, we found that USP14 could interact with Yes-associated protein 1 (YAP1) and induce its deubiquitination in radioresistant ESCA cells. Interestingly, we discovered that DGS/X-ray co-therapy significantly reduced the stability of YAP1 and induced its ubiquitination in radioresistant ESCA cells. More importantly, the proliferation, epithelial-mesenchymal tansition (EMT) process, and DNA damage regulated by DGS/X-ray and USP14 knockdown were significantly eliminated when YAP1 was overexpressed in radioresistant ESCA cells. CONCLUSIONS These data revealed the potential role of DGS/X-ray co-therapy in controlling ESCA resistance to radiotherapy by inhibiting the USP14/YAP1 axis, providing a candidate strategy for ESCA treatment.
Collapse
Affiliation(s)
- Fang Yuan
- Departments of Thoracic Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Juan Xu
- Departments of Head and Neck Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Lingmei Xuan
- Departments of Gynecological Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Chan Deng
- Departments of Thoracic Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Wei Wang
- Departments of Head and Neck Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Rong Yang
- Departments of Gynecological Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China.
| |
Collapse
|
8
|
Fulcher LJ, Sobajima T, Batley C, Gibbs-Seymour I, Barr FA. MDM2 functions as a timer reporting the length of mitosis. Nat Cell Biol 2025; 27:262-272. [PMID: 39789219 PMCID: PMC11821534 DOI: 10.1038/s41556-024-01592-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 12/09/2024] [Indexed: 01/12/2025]
Abstract
Delays in mitosis trigger p53-dependent arrest in G1 of the next cell cycle, thus preventing repeated cycles of chromosome instability and aneuploidy. Here we show that MDM2, the p53 ubiquitin ligase, is a key component of the timer mechanism triggering G1 arrest in response to prolonged mitosis. This timer function arises due to the attenuation of protein synthesis in mitosis. Because MDM2 has a short half-life and ongoing protein synthesis is therefore necessary to maintain its steady-state concentration, the amount of MDM2 gradually falls during mitosis but normally remains above a critical threshold for p53 regulation at the onset of G1. When mitosis is extended by prolonged spindle assembly checkpoint activation, the amount of MDM2 drops below this threshold, stabilizing p53. Subsequent p53-dependent p21 accumulation then channels G1 cells into a sustained cell-cycle arrest, whereas abrogation of the response in p53-deficient cells allows them to bypass this crucial defence mechanism.
Collapse
Affiliation(s)
- Luke J Fulcher
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Caleb Batley
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Francis A Barr
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
9
|
Meyer‐Gerards C, Bazzi H. Developmental and tissue-specific roles of mammalian centrosomes. FEBS J 2025; 292:709-726. [PMID: 38935637 PMCID: PMC11839934 DOI: 10.1111/febs.17212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/08/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024]
Abstract
Centrosomes are dominant microtubule organizing centers in animal cells with a pair of centrioles at their core. They template cilia during interphase and help organize the mitotic spindle for a more efficient cell division. Here, we review the roles of centrosomes in the early developing mouse and during organ formation. Mammalian cells respond to centrosome loss-of-function by activating the mitotic surveillance pathway, a timing mechanism that, when a defined mitotic duration is exceeded, leads to p53-dependent cell death in the descendants. Mouse embryos without centrioles are highly susceptible to this pathway and undergo embryonic arrest at mid-gestation. The complete loss of the centriolar core results in earlier and more severe phenotypes than that of other centrosomal proteins. Finally, different developing tissues possess varying thresholds and mount graded responses to the loss of centrioles that go beyond the germ layer of origin.
Collapse
Affiliation(s)
- Charlotte Meyer‐Gerards
- Department of Cell Biology of the Skin, Medical FacultyUniversity of CologneGermany
- Department of Dermatology and Venereology, Medical FacultyUniversity of CologneGermany
- The Cologne Cluster of Excellence in Cellular Stress Responses in Aging‐associated Diseases (CECAD), Medical FacultyUniversity of CologneGermany
- Graduate School for Biological SciencesUniversity of CologneGermany
- Center for Molecular Medicine Cologne (CMMC), Medical FacultyUniversity of CologneGermany
| | - Hisham Bazzi
- Department of Cell Biology of the Skin, Medical FacultyUniversity of CologneGermany
- Department of Dermatology and Venereology, Medical FacultyUniversity of CologneGermany
- The Cologne Cluster of Excellence in Cellular Stress Responses in Aging‐associated Diseases (CECAD), Medical FacultyUniversity of CologneGermany
- Center for Molecular Medicine Cologne (CMMC), Medical FacultyUniversity of CologneGermany
- Present address:
Cell & Developmental BiologyUniversity of Michigan Medical SchoolAnn ArborMIUSA
| |
Collapse
|
10
|
Kim MA, Kim B, Jeon J, Lee J, Jang H, Baek M, Seo SU, Shin D, Dutta A, Lee KY. Tousled-like kinase loss confers PARP inhibitor resistance in BRCA1-mutated cancers by impeding non-homologous end joining repair. Mol Med 2025; 31:18. [PMID: 39844055 PMCID: PMC11753094 DOI: 10.1186/s10020-025-01066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/03/2025] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Double-strand breaks (DSBs) are primarily repaired through non-homologous end joining (NHEJ) and homologous recombination (HR). Given that DSBs are highly cytotoxic, PARP inhibitors (PARPi), a prominent class of anticancer drugs, are designed to target tumors with HR deficiency (HRD), such as those harboring BRCA mutations. However, many tumor cells acquire resistance to PARPi, often by restoring HR in HRD cells through the inactivation of NHEJ. Therefore, identifying novel regulators of NHEJ could provide valuable insights into the mechanisms underlying PARPi resistance. METHODS Cellular DSBs were assessed using neutral comet assays and phospho-H2AX immunoblotting. Fluorescence-based reporter assays quantified repair via NHEJ or HR. The recruitment of proteins that promote NHEJ and HR to DSBs was analyzed using immunostaining, live-cell imaging following laser-induced microirradiation, and FokI-inducible single DSB generation. Loss-of-function experiments were performed in multiple human cancer cell lines using siRNA-mediated knockdown or CRISPR-Cas9 gene knockout. Cell viability assays were conducted to evaluate resistance to PARP inhibitors. Additionally, bioinformatic analyses of public databases were performed to investigate the association between TLK expression and BRCA1 status. RESULTS We demonstrate that human tousled-like kinase (TLK) orthologs are essential for NHEJ-mediated repair of DSBs and for PARPi sensitivity in cells with BRCA1 mutation. TLK1 and TLK2 exhibit redundant roles in promoting NHEJ, and their deficiency results in a significant accumulation of DSBs. TLKs are required for the proper localization of 53BP1, a key factor in promoting the NHEJ pathway. Consequently, TLK deficiency induces PARPi resistance in triple-negative breast cancer (TNBC) and ovarian cancer (OVCA) cell lines with BRCA1 deficiency, as TLK deficiency in BRCA1-depleted cells, impairs 53BP1 recruitment to DSBs and reduces NHEJ efficiency, while restoring HR. CONCLUSIONS We have identified TLK proteins as novel regulators of NHEJ repair and PARPi sensitivity in BRCA1-depleted cells, suggesting that TLK repression may represent a previously unrecognized mechanism by which BRCA1 mutant cancers acquire PARPi resistance.
Collapse
Affiliation(s)
- Min-Ah Kim
- Research Institute, National Cancer Center, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea
| | - Banseok Kim
- Research Institute, National Cancer Center, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea
| | - Jihyeon Jeon
- Research Institute, National Cancer Center, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea
| | - Jonghyun Lee
- Research Institute, National Cancer Center, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea
| | - Hyeji Jang
- Research Institute, National Cancer Center, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea
| | - Minjae Baek
- Research Institute, National Cancer Center, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea
| | - Sang-Uk Seo
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Dongkwan Shin
- Research Institute, National Cancer Center, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea
| | - Anindya Dutta
- Department of Genetics, University of Alabama, Birmingham, AL, 35233, USA
| | - Kyung Yong Lee
- Research Institute, National Cancer Center, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea.
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea.
| |
Collapse
|
11
|
Brechbuhl HM, Han A, Paul KV, Nemkov T, Ramachandran S, Ward A, Jacobsen BM, Hansen K, Sartorius CA, D’Alessandro A, Kabos P. Metabolic Switch in Endocrine Resistant Estrogen Receptor Positive Breast Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.28.630631. [PMID: 39763830 PMCID: PMC11703175 DOI: 10.1101/2024.12.28.630631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Purpose The development of endocrine resistance remains a significant challenge in the clinical management of estrogen receptor-positive (ER+) breast cancer. Metabolic reprogramming is a prominent component of endocrine resistance and a potential therapeutic intervention point. However, a limited understanding of which metabolic changes are conserved across the heterogeneous landscape of ER+ breast cancer or how metabolic changes factor into ER DNA binding patterns hinder our ability to target metabolic adaptation as a treatment strategy. This study uses dimethyl fumarate (DMF) to restore tamoxifen (Tam) and fulvestrant (Fulv) sensitivity in endocrine-resistant cell lines and investigates how metabolic changes influence ER DNA-binding patterns. Experimental Design To address the challenge of metabolic adaptation in anti-endocrine resistance, we generated Tam and Fulv resistance in six ER+ breast cancer (BC) cell lines, representing ductal (MCF7, T47D, ZR75-1, and UCD12), lobular (MDA-MB-134--VI), and HER2 amplified (BT474) BC molecular phenotypes. Metabolomic profiling, RNA sequencing, proteomics, and CUT&RUN assays were completed to characterize metabolic shifts, transcriptional and protein changes, and ER DNA-binding patterns in resistant cells. Dimethyl fumarate was assessed for its ability to reverse Tam and Fulv resistance, restore tricarboxylic acid cycle (TCA) cycle function, and restore parental cell (endocrine sensitive) ER DNA binding patterns. Results Tamoxifen-resistant (TamR) and fulvestrant-resistant (FulvR) cells exhibited disrupted TCA cycle activity, reduced glutathione levels, and altered nucleotide and amino acid metabolism. DMF treatment replenished TCA cycle intermediates and reversed resistance in both TamR and FulvR cells. DMF also increased mevalonate pathway enzyme expression in both TamR and FulvR cells, with TamR cells upregulating enzymes in the cholesterol synthesis phase and FulvR enhancing enzymes in the early part of the pathway. DMF restored ER DNA-binding patterns in TamR cells to resemble parental cells, re-sensitizing them to Tam. In FulvR cells, DMF reversed resistance by modulating ER-cofactor interactions but did not restore parental ER DNA-binding signatures. Conclusions Our findings provide new insights into how metabolic reprogramming affects ER DNA-binding activity in endocrine-resistant breast cancer. We demonstrate how altering metabolism can reprogram ER signaling and influence resistance mechanisms by targeting metabolic vulnerabilities, such as TCA cycle disruptions. Additionally, our data provide a comprehensive metabolomic, RNA-seq, and CUT&RUN data set relevant to tumor metabolic adaptation leading to acquired endocrine resistance in highly utilized ER+ breast cancer cell lines. This study improves our understanding of how metabolic states alter ER function in endocrine-resistant breast cancer.
Collapse
Affiliation(s)
- Heather M. Brechbuhl
- Department of Medicine, Division of Medical Oncology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado USA
| | - Amy Han
- Department of Medicine, Division of Medical Oncology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado USA
| | - Kiran Vinod Paul
- Department of Medicine, Division of Medical Oncology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado USA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado USA
| | - Srinivas Ramachandran
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado USA
| | - Ashley Ward
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado USA
| | - Britta M. Jacobsen
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado USA
| | - Kirk Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado USA
| | - Carol A. Sartorius
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado USA
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado USA
| | - Peter Kabos
- Department of Medicine, Division of Medical Oncology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado USA
| |
Collapse
|
12
|
Yang S, Wang R, Liu L, Xu F, Zhao X, Yao Z, Zhang J, Cheng X, Xu A, Wu L, Zhao G. RRM1 promotes homologous recombination and radio/chemo-sensitivity via enhancing USP11 and E2F1-mediated RAD51AP1 transcription. Cell Death Discov 2024; 10:496. [PMID: 39695160 DOI: 10.1038/s41420-024-02267-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/21/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024] Open
Abstract
Ribonucleotide reductase M1 (RRM1), the catalytic subunit of ribonucleotide reductase, plays a pivotal role in converting ribonucleotides (NTP) into deoxyribonucleotides (dNTP), essential for DNA replication and repair. Elevated RRM1 expression is associated with various human cancers, correlating with poorer prognosis and reduced overall survival rates. Our previous study found that RRM1 will enter the nucleus to promote DNA damage repair. However, the underlying mechanism remains elusive. Here, we unveil a novel role of RRM1 in promoting homologous recombination (HR) by upregulating the expression of RAD51AP1, a critical HR factor, in an E2F1-dependent manner. We demonstrate that RRM1 interacts with USP11 in the cytoplasm, and the recruitment of RRM1 to LaminB1 induced by ionizing radiation (IR) facilitates the binding of USP11 to the nuclear pore complex (NPC), promoting USP11 entry into the nucleus. Upon nuclear translocation, USP11 binds to E2F1 and inhibits the ubiquitin-mediated degradation of E2F1, thereby enhancing the transcriptional expression of RAD51AP1. Moreover, a specific RRM1 mutant lacking amino acids 731-793, crucial for its interaction with USP11 and recruitment to LaminB1, exhibits a dominant-negative effect on RAD51AP1 expression and HR. Truncations of RRM1 fail to inhibit the ubiquitin-mediated degradation of E2F1 and cannot promote the E2F1-mediated transactivation of RAD51AP1. Lastly, the full length of RRM1, not truncations, enhances tumor cells' sensitivity to IR, underscoring its importance in radiotherapy resistance. Collectively, our results suggest a novel function of RRM1 in promoting HR-mediated DSB repair through positive regulation of RAD51AP1 transcription by direct interaction with USP11 and promoting subsequent USP11-mediated deubiquitination of E2F1. Our findings elucidate a previously unknown mechanism whereby RRM1 promotes HR-mediated DNA repair, presenting a potential therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Shuai Yang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Ruru Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Lingling Liu
- University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Feng Xu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- University of Science and Technology of China, Hefei, Anhui, China
| | - Xipeng Zhao
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- University of Science and Technology of China, Hefei, Anhui, China
| | - Zhicheng Yao
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- University of Science and Technology of China, Hefei, Anhui, China
| | - Jie Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- University of Science and Technology of China, Hefei, Anhui, China
| | - Xu Cheng
- University of Science and Technology of China, Hefei, Anhui, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - An Xu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Lijun Wu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| | - Guoping Zhao
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.
| |
Collapse
|
13
|
Kanke KL, Rayner RE, Bozik J, Abel E, Venugopalan A, Suu M, Nouri R, Stack JT, Guo G, Vetter TA, Cormet-Boyaka E, Hester ME, Vaidyanathan S. Single-stranded DNA with internal base modifications mediates highly efficient knock-in in primary cells using CRISPR-Cas9. Nucleic Acids Res 2024; 52:13561-13576. [PMID: 39569586 DOI: 10.1093/nar/gkae1069] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/22/2024] Open
Abstract
Single-stranded DNA (ssDNA) templates along with Cas9 have been used for knocking-in exogenous sequences in the genome but suffer from low efficiency. Here, we show that ssDNA with chemical modifications in 12-19% of internal bases, which we denote as enhanced ssDNA (esDNA), improve knock-in (KI) by 2-3-fold compared to end-modified ssDNA in airway basal stem cells (ABCs), CD34 + hematopoietic cells (CD34 + cells), T-cells and endothelial cells. Over 50% of alleles showed KI in three clinically relevant loci (CFTR, HBB and CCR5) in ABCs using esDNA and up to 70% of alleles showed KI in the HBB locus in CD34 + cells in the presence of a DNA-PKcs inhibitor. This level of correction is therapeutically relevant and is comparable to adeno-associated virus-based templates. The esDNA templates did not improve KI in induced pluripotent stem cells (iPSCs). This may be due to the absence of the nuclease TREX1 in iPSCs. Indeed, knocking out TREX1 in other cells improved KI using unmodified ssDNA. esDNA can be used to modify 20-30 bp regions in primary cells for therapeutic applications and biological modeling. The use of this approach for gene length insertions will require new methods to produce long chemically modified ssDNA in scalable quantities.
Collapse
Affiliation(s)
- Karen L Kanke
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43215, USA
| | - Rachael E Rayner
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Jack Bozik
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43215, USA
| | - Eli Abel
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43215, USA
| | - Aparna Venugopalan
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43215, USA
| | - Ma Suu
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43215, USA
| | - Reza Nouri
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43215, USA
| | - Jacob T Stack
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43215, USA
| | - Gongbo Guo
- Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43215, USA
| | - Tatyana A Vetter
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43215, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Estelle Cormet-Boyaka
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Mark E Hester
- Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43215, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Sriram Vaidyanathan
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43215, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
14
|
Belal H, Ying Ng EF, Meitinger F. 53BP1-mediated activation of the tumor suppressor p53. Curr Opin Cell Biol 2024; 91:102424. [PMID: 39244835 DOI: 10.1016/j.ceb.2024.102424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024]
Abstract
In recent years, the role of 53BP1 as a cell cycle regulator has come into the spotlight. 53BP1 is best understood for its role in controlling DNA double-strand break repair. However, 53BP1 was initially discovered as an interaction partner of the tumor suppressor p53, which proved to be independent of DNA repair. The importance of this interaction is becoming increasingly clear. 53BP1 responds to mitotic stress, which prolongs mitosis, or to DNA damage and triggers the stabilization of p53 by the deubiquitinase USP28 to stop the proliferation of potentially damaged cells. The ability of 53BP1 to respond to mitotic stress or DNA damage is controlled by cell cycle-specific post-translational modifications and is therefore restricted to specific cell cycle phases. 53BP1-mediated p53 activation is likely involved in tumor suppression and is associated with genetic diseases such as primary microcephaly. This review emphasizes the importance of these mechanisms for the development and maintenance of healthy tissues.
Collapse
Affiliation(s)
- Hazrat Belal
- Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Esther Feng Ying Ng
- Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Franz Meitinger
- Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan.
| |
Collapse
|
15
|
Kilgas S, Swift ML, Chowdhury D. 53BP1-the 'Pandora's box' of genome integrity. DNA Repair (Amst) 2024; 144:103779. [PMID: 39476547 DOI: 10.1016/j.dnarep.2024.103779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024]
Abstract
53BP1 has several functions in the maintenance of genome integrity. It functions as a key mediator involved in double-strand break (DSB) repair, which functions to maintain a balance in the repair pathway choices and in preserving genomic stability. While its DSB repair functions are relatively well-characterized, its role in DNA replication and replication fork protection is less understood. In response to replication stress, 53BP1 contributes to fork protection by regulating fork reversal and restart. It helps maintain replication fork stability and speed, with 53BP1 loss leading to defective fork progression and increased sensitivity to replication stress agents. However, 53BP1's precise role in fork protection remains debated, as some studies have not observed protective effects. Therefore, it is critical to determine the role of 53BP1 in replication to better understand when it promotes replication fork protection, and the underlying mechanisms involved. Moreover, 53BP1's function in replication stress extends beyond its activity at active replication forks; it also forms specialized nuclear bodies (NBs) which protect stretches of under-replicated DNA (UR-DNA) transmitted from a previous cell cycle to daughter cells through mitosis. The mechanism of 53BP1 NBs in the coordination of replication and repair events at UR-DNA loci is not fully understood and warrants further investigation. The present review article focuses on elucidating 53BP1's functions in replication stress (RS), its role in replication fork protection, and the significance of 53BP1 NBs in this context to provide a more comprehensive understanding of its less well-established role in DNA replication.
Collapse
Affiliation(s)
- Susan Kilgas
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Michelle L Swift
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Dipanjan Chowdhury
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
16
|
Gautam P, Ciuta I, Teif VB, Sinha SK. Predicting p53-dependent cell transitions from thermodynamic models. J Chem Phys 2024; 161:135101. [PMID: 39356070 DOI: 10.1063/5.0225166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024] Open
Abstract
A cell's fate involves transitions among its various states, each defined by a distinct gene expression profile governed by the topology of gene regulatory networks, which are affected by 3D genome organization. Here, we develop thermodynamic models to determine the fate of a malignant cell as governed by the tumor suppressor p53 signaling network, taking into account long-range chromatin interactions in the mean-field approximation. The tumor suppressor p53 responds to stress by selectively triggering one of the potential transcription programs that influence many layers of cell signaling. These range from p53 phosphorylation to modulation of its DNA binding affinity, phase separation phenomena, and internal connectivity among cell fate genes. We use the minimum free energy of the system as a fundamental property of biological networks that influences the connection between the gene network topology and the state of the cell. We constructed models based on network topology and equilibrium thermodynamics. Our modeling shows that the binding of phosphorylated p53 to promoters of target genes can have properties of a first order phase transition. We apply our model to cancer cell lines ranging from breast cancer (MCF-7), colon cancer (HCT116), and leukemia (K562), with each one characterized by a specific network topology that determines the cell fate. Our results clarify the biological relevance of these mechanisms and suggest that they represent flexible network designs for switching between developmental decisions.
Collapse
Affiliation(s)
- Pankaj Gautam
- Theoretical and Computational Biophysical Chemistry Group, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Isabella Ciuta
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Vladimir B Teif
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Sudipta Kumar Sinha
- Theoretical and Computational Biophysical Chemistry Group, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
17
|
Kilgas S, Syed A, Toolan-Kerr P, Swift ML, Roychoudhury S, Sarkar A, Wilkins S, Quigley M, Poetsch AR, Botuyan MV, Cui G, Mer G, Ule J, Drané P, Chowdhury D. NEAT1 modulates the TIRR/53BP1 complex to maintain genome integrity. Nat Commun 2024; 15:8438. [PMID: 39349456 PMCID: PMC11443056 DOI: 10.1038/s41467-024-52862-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/20/2024] [Indexed: 10/02/2024] Open
Abstract
Tudor Interacting Repair Regulator (TIRR) is an RNA-binding protein (RBP) that interacts directly with 53BP1, restricting its access to DNA double-strand breaks (DSBs) and its association with p53. We utilized iCLIP to identify RNAs that directly bind to TIRR within cells, identifying the long non-coding RNA NEAT1 as the primary RNA partner. The high affinity of TIRR for NEAT1 is due to prevalent G-rich motifs in the short isoform (NEAT1_1) region of NEAT1. This interaction destabilizes the TIRR/53BP1 complex, promoting 53BP1's function. NEAT1_1 is enriched during the G1 phase of the cell cycle, thereby ensuring that TIRR-dependent inhibition of 53BP1's function is cell cycle-dependent. TDP-43, an RBP that is implicated in neurodegenerative diseases, modulates the TIRR/53BP1 complex by promoting the production of the NEAT1 short isoform, NEAT1_1. Together, we infer that NEAT1_1, and factors regulating NEAT1_1, may impact 53BP1-dependent DNA repair processes, with implications for a spectrum of diseases.
Collapse
Affiliation(s)
- Susan Kilgas
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Aleem Syed
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Patrick Toolan-Kerr
- The Francis Crick Institute, 1 Midland Road, London, UK
- UK Dementia Research Institute at King's College London, 5 Cutcombe Rd, London, UK
| | - Michelle L Swift
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Shrabasti Roychoudhury
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Aniruddha Sarkar
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Sarah Wilkins
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Yale School of Medicine, 333 Cedar St, New Haven, CT, USA
| | - Mikayla Quigley
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Boston Children's Hospital, 300 Longwood Ave, Boston, MA, USA
| | - Anna R Poetsch
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, Dresden, Germany
| | | | - Gaofeng Cui
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Georges Mer
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Jernej Ule
- The Francis Crick Institute, 1 Midland Road, London, UK
- UK Dementia Research Institute at King's College London, 5 Cutcombe Rd, London, UK
| | - Pascal Drané
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Dipanjan Chowdhury
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Stracker TH. Regulation of p53 by the mitotic surveillance/stopwatch pathway: implications in neurodevelopment and cancer. Front Cell Dev Biol 2024; 12:1451274. [PMID: 39398482 PMCID: PMC11466822 DOI: 10.3389/fcell.2024.1451274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/06/2024] [Indexed: 10/15/2024] Open
Abstract
The transcription factor p53 (encoded by TP53) plays diverse roles in human development and disease. While best known for its role in tumor suppression, p53 signaling also influences mammalian development by triggering cell fate decisions in response to a wide variety of stresses. After over 4 decades of study, a new pathway that triggers p53 activation in response to mitotic delays was recently identified. Termed the mitotic surveillance or mitotic stopwatch pathway, the USP28 and 53BP1 proteins activate p53 in response to delayed mitotic progression to control cell fate and promote genomic stability. In this Minireview, I discuss its identification, potential roles in neurodevelopmental disorders and cancer, as well as explore outstanding questions about its function, regulation and potential use as a biomarker for anti-mitotic therapies.
Collapse
Affiliation(s)
- Travis H. Stracker
- Center for Cancer Research, Radiation Oncology Branch, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
19
|
Miller KN, Li B, Pierce-Hoffman HR, Patel S, Lei X, Rajesh A, Teneche MG, Havas AP, Gandhi A, Macip CC, Lyu J, Victorelli SG, Woo SH, Lagnado AB, LaPorta MA, Liu T, Dasgupta N, Li S, Davis A, Korotkov A, Hultenius E, Gao Z, Altman Y, Porritt RA, Garcia G, Mogler C, Seluanov A, Gorbunova V, Kaech SM, Tian X, Dou Z, Chen C, Passos JF, Adams PD. Linked regulation of genome integrity and senescence-associated inflammation by p53. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.20.567963. [PMID: 38045344 PMCID: PMC10690201 DOI: 10.1101/2023.11.20.567963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Genomic instability and inflammation are distinct hallmarks of aging, but the connection between them is poorly understood. Understanding their interrelationship will help unravel new mechanisms and therapeutic targets of aging and age-associated diseases. Here we report a novel mechanism directly linking genomic instability and inflammation in senescent cells through a mitochondria-regulated molecular circuit driven by p53 and cytoplasmic chromatin fragments (CCF). We show, through activation or inactivation of p53 by genetic and pharmacologic approaches, that p53 suppresses CCF accumulation and the downstream inflammatory senescence-associated secretory phenotype (SASP), without affecting cell cycle arrest. p53 activation suppressed CCF formation by promoting DNA repair, and this is reflected in maintenance of genomic integrity, particularly in subtelomeric regions, as shown by single cell genome resequencing. Activation of p53 in aged mice by pharmacological inhibition of MDM2 reversed signatures of aging, including age- and senescence-associated transcriptomic signatures of inflammation and age-associated accumulation of monocytes and macrophages in liver. Remarkably, mitochondria in senescent cells suppressed p53 activity by promoting CCF formation and thereby restricting ATM-dependent nuclear DNA damage signaling. These data provide evidence for a mitochondria-regulated p53 signaling circuit in senescent cells that controls DNA repair, genome integrity, and senescence- and age-associated inflammation. This pathway is immunomodulatory in mice and a potential target for healthy aging interventions by small molecules already shown to activate p53.
Collapse
|
20
|
Lim B, Matsui Y, Jung S, Djekidel MN, Qi W, Yuan ZF, Wang X, Yang X, Connolly N, Pilehroud AS, Pan H, Wang F, Pruett-Miller SM, Kavdia K, Pagala V, Fan Y, Peng J, Xu B, Peng JC. Phosphorylation of the DNA damage repair factor 53BP1 by ATM kinase controls neurodevelopmental programs in cortical brain organoids. PLoS Biol 2024; 22:e3002760. [PMID: 39226322 PMCID: PMC11398655 DOI: 10.1371/journal.pbio.3002760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/13/2024] [Accepted: 07/19/2024] [Indexed: 09/05/2024] Open
Abstract
53BP1 is a well-established DNA damage repair factor that has recently emerged to critically regulate gene expression for tumor suppression and neural development. However, its precise function and regulatory mechanisms remain unclear. Here, we showed that phosphorylation of 53BP1 at serine 25 by ATM is required for neural progenitor cell proliferation and neuronal differentiation in cortical brain organoids. Dynamic phosphorylation of 53BP1-serine 25 controls 53BP1 target genes governing neuronal differentiation and function, cellular response to stress, and apoptosis. Mechanistically, ATM and RNF168 govern 53BP1's binding to gene loci to directly affect gene regulation, especially at genes for neuronal differentiation and maturation. 53BP1 serine 25 phosphorylation effectively impedes its binding to bivalent or H3K27me3-occupied promoters, especially at genes regulating H3K4 methylation, neuronal functions, and cell proliferation. Beyond 53BP1, ATM-dependent phosphorylation displays wide-ranging effects, regulating factors in neuronal differentiation, cytoskeleton, p53 regulation, as well as key signaling pathways such as ATM, BDNF, and WNT during cortical organoid differentiation. Together, our data suggest that the interplay between 53BP1 and ATM orchestrates essential genetic programs for cell morphogenesis, tissue organization, and developmental pathways crucial for human cortical development.
Collapse
Affiliation(s)
- Bitna Lim
- Department of Developmental Neurobiology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Yurika Matsui
- Department of Developmental Neurobiology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Seunghyun Jung
- Department of Developmental Neurobiology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Mohamed Nadhir Djekidel
- Center for Applied Bioinformatics, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Wenjie Qi
- Center for Applied Bioinformatics, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Zuo-Fei Yuan
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Xusheng Wang
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Xiaoyang Yang
- Department of Developmental Neurobiology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Nina Connolly
- Department of Developmental Neurobiology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Abbas Shirinifard Pilehroud
- Department of Developmental Neurobiology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Haitao Pan
- Department of Biostatistics, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Fang Wang
- Department of Biostatistics, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Shondra M. Pruett-Miller
- Department of Cell & Molecular Biology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Kanisha Kavdia
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Vishwajeeth Pagala
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Yiping Fan
- Center for Applied Bioinformatics, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Junmin Peng
- Department of Developmental Neurobiology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- Department of Structural Biology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Beisi Xu
- Center for Applied Bioinformatics, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Jamy C. Peng
- Department of Developmental Neurobiology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| |
Collapse
|
21
|
Li Q, Hariri S, Calidas A, Kaur A, Huey E, Engebrecht J. The chromatin-associated 53BP1 ortholog, HSR-9, regulates recombinational repair and X chromosome segregation in the Caenorhabditis elegans germ line. Genetics 2024; 227:iyae102. [PMID: 38884610 PMCID: PMC12098946 DOI: 10.1093/genetics/iyae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/18/2024] Open
Abstract
53BP1 plays a crucial role in regulating DNA damage repair pathway choice and checkpoint signaling in somatic cells; however, its role in meiosis has remained enigmatic. In this study, we demonstrate that the Caenorhabditis elegans ortholog of 53BP1, HSR-9, associates with chromatin in both proliferating and meiotic germ cells. Notably, HSR-9 is enriched on the X chromosome pair in pachytene oogenic germ cells. HSR-9 is also present at kinetochores during both mitotic and meiotic divisions but does not appear to be essential for monitoring microtubule-kinetochore attachments or tension. Using cytological markers of different steps in recombinational repair, we found that HSR-9 influences the processing of a subset of meiotic double-stranded breaks into COSA-1-marked crossovers. Additionally, HSR-9 plays a role in meiotic X chromosome segregation under conditions where X chromosomes fail to pair, synapse, and recombine. Together, these results highlight that chromatin-associated HSR-9 has both conserved and unique functions in the regulation of meiotic chromosome behavior.
Collapse
Affiliation(s)
- Qianyan Li
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616, USA
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California Davis, Davis, CA 95616, USA
| | - Sara Hariri
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616, USA
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California Davis, Davis, CA 95616, USA
| | - Aashna Calidas
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616, USA
| | - Arshdeep Kaur
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616, USA
| | - Erica Huey
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616, USA
| | - JoAnne Engebrecht
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616, USA
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
22
|
Zhang X, Yuan L, Zhang W, Zhang Y, Wu Q, Li C, Wu M, Huang Y. Liquid-liquid phase separation in diseases. MedComm (Beijing) 2024; 5:e640. [PMID: 39006762 PMCID: PMC11245632 DOI: 10.1002/mco2.640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 07/16/2024] Open
Abstract
Liquid-liquid phase separation (LLPS), an emerging biophysical phenomenon, can sequester molecules to implement physiological and pathological functions. LLPS implements the assembly of numerous membraneless chambers, including stress granules and P-bodies, containing RNA and protein. RNA-RNA and RNA-protein interactions play a critical role in LLPS. Scaffolding proteins, through multivalent interactions and external factors, support protein-RNA interaction networks to form condensates involved in a variety of diseases, particularly neurodegenerative diseases and cancer. Modulating LLPS phenomenon in multiple pathogenic proteins for the treatment of neurodegenerative diseases and cancer could present a promising direction, though recent advances in this area are limited. Here, we summarize in detail the complexity of LLPS in constructing signaling pathways and highlight the role of LLPS in neurodegenerative diseases and cancers. We also explore RNA modifications on LLPS to alter diseases progression because these modifications can influence LLPS of certain proteins or the formation of stress granules, and discuss the possibility of proper manipulation of LLPS process to restore cellular homeostasis or develop therapeutic drugs for the eradication of diseases. This review attempts to discuss potential therapeutic opportunities by elaborating on the connection between LLPS, RNA modification, and their roles in diseases.
Collapse
Affiliation(s)
- Xinyue Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Lin Yuan
- Laboratory of Research in Parkinson's Disease and Related Disorders Health Sciences Institute China Medical University Shenyang China
| | - Wanlu Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Yi Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Qun Wu
- Department of Pediatrics Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine Shanghai China
| | - Chunting Li
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Min Wu
- Wenzhou Institute University of Chinese Academy of Sciences Wenzhou Zhejiang China
- The Joint Research Center Affiliated Xiangshan Hospital of Wenzhou Medical University Ningbo China
| | - Yongye Huang
- College of Life and Health Sciences Northeastern University Shenyang China
- Key Laboratory of Bioresource Research and Development of Liaoning Province College of Life and Health Sciences Northeastern University Shenyang China
| |
Collapse
|
23
|
Manohar S, Neurohr GE. Too big not to fail: emerging evidence for size-induced senescence. FEBS J 2024; 291:2291-2305. [PMID: 37986656 DOI: 10.1111/febs.16983] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/02/2023] [Accepted: 10/17/2023] [Indexed: 11/22/2023]
Abstract
Cellular senescence refers to a permanent and stable state of cell cycle exit. This process plays an important role in many cellular functions, including tumor suppression. It was first noted that senescence is associated with increased cell size in the early 1960s; however, how this contributes to permanent cell cycle exit was poorly understood until recently. In this review, we discuss new findings that identify increased cell size as not only a consequence but also a cause of permanent cell cycle exit. We highlight recent insights into how increased cell size alters normal cellular physiology and creates homeostatic imbalances that contribute to senescence induction. Finally, we focus on the potential clinical implications of these findings in the context of cell cycle arrest-causing cancer therapeutics and speculate on how tumor cell size changes may impact outcomes in patients treated with these drugs.
Collapse
Affiliation(s)
- Sandhya Manohar
- Department of Biology, Institute for Biochemistry, ETH Zürich, Switzerland
| | - Gabriel E Neurohr
- Department of Biology, Institute for Biochemistry, ETH Zürich, Switzerland
| |
Collapse
|
24
|
Lü Y, Cho T, Mukherjee S, Suarez CF, Gonzalez-Foutel NS, Malik A, Martinez S, Dervovic D, Oh RH, Langille E, Al-Zahrani KN, Hoeg L, Lin ZY, Tsai R, Mbamalu G, Rotter V, Ashton-Prolla P, Moffat J, Chemes LB, Gingras AC, Oren M, Durocher D, Schramek D. Genome-wide CRISPR screens identify novel regulators of wild-type and mutant p53 stability. Mol Syst Biol 2024; 20:719-740. [PMID: 38580884 PMCID: PMC11148184 DOI: 10.1038/s44320-024-00032-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 04/07/2024] Open
Abstract
Tumor suppressor p53 (TP53) is frequently mutated in cancer, often resulting not only in loss of its tumor-suppressive function but also acquisition of dominant-negative and even oncogenic gain-of-function traits. While wild-type p53 levels are tightly regulated, mutants are typically stabilized in tumors, which is crucial for their oncogenic properties. Here, we systematically profiled the factors that regulate protein stability of wild-type and mutant p53 using marker-based genome-wide CRISPR screens. Most regulators of wild-type p53 also regulate p53 mutants, except for p53 R337H regulators, which are largely private to this mutant. Mechanistically, FBXO42 emerged as a positive regulator for a subset of p53 mutants, working with CCDC6 to control USP28-mediated mutant p53 stabilization. Additionally, C16orf72/HAPSTR1 negatively regulates both wild-type p53 and all tested mutants. C16orf72/HAPSTR1 is commonly amplified in breast cancer, and its overexpression reduces p53 levels in mouse mammary epithelium leading to accelerated breast cancer. This study offers a network perspective on p53 stability regulation, potentially guiding strategies to reinforce wild-type p53 or target mutant p53 in cancer.
Collapse
Affiliation(s)
- YiQing Lü
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
- Department of Biology, Suffolk University, Boston, MA, 02108, USA
| | - Tiffany Cho
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Saptaparna Mukherjee
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Carmen Florencia Suarez
- Instituto de Investigaciones Biotecnológicas (IIBiO-CONICET), Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Nicolas S Gonzalez-Foutel
- Instituto de Investigaciones Biotecnológicas (IIBiO-CONICET), Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Ahmad Malik
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Sebastien Martinez
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Dzana Dervovic
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Robin Hyunseo Oh
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Ellen Langille
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Khalid N Al-Zahrani
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Lisa Hoeg
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Zhen Yuan Lin
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Ricky Tsai
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Geraldine Mbamalu
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Varda Rotter
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Patricia Ashton-Prolla
- Departamento de Genética, Universidade Federal do Rio Grande do Sul and Serviço de Genetica Médica HCPA, Porto Alegre, Brasil
| | - Jason Moffat
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S3G9, Canada
- Genetics and Genome Biology Program, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Lucia Beatriz Chemes
- Instituto de Investigaciones Biotecnológicas (IIBiO-CONICET), Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Anne-Claude Gingras
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Daniel Durocher
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Daniel Schramek
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
25
|
Arends T, Tsuchida H, Adeyemi RO, Tapscott SJ. DUX4-induced HSATII transcription causes KDM2A/B-PRC1 nuclear foci and impairs DNA damage response. J Cell Biol 2024; 223:e202303141. [PMID: 38451221 PMCID: PMC10919155 DOI: 10.1083/jcb.202303141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/02/2023] [Accepted: 02/01/2024] [Indexed: 03/08/2024] Open
Abstract
Polycomb repressive complexes regulate developmental gene programs, promote DNA damage repair, and mediate pericentromeric satellite repeat repression. Expression of pericentromeric satellite repeats has been implicated in several cancers and diseases, including facioscapulohumeral dystrophy (FSHD). Here, we show that DUX4-mediated transcription of HSATII regions causes nuclear foci formation of KDM2A/B-PRC1 complexes, resulting in a global loss of PRC1-mediated monoubiquitination of histone H2A. Loss of PRC1-ubiquitin signaling severely impacts DNA damage response. Our data implicate DUX4-activation of HSATII and sequestration of KDM2A/B-PRC1 complexes as a mechanism of regulating epigenetic and DNA repair pathways.
Collapse
Affiliation(s)
- Tessa Arends
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Hiroshi Tsuchida
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Richard O. Adeyemi
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Stephen J. Tapscott
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Neurology, University of Washington, Seattle, WA, USA
| |
Collapse
|
26
|
Pelicci S, Furia L, Pelicci PG, Faretta M. From Cell Populations to Molecular Complexes: Multiplexed Multimodal Microscopy to Explore p53-53BP1 Molecular Interaction. Int J Mol Sci 2024; 25:4672. [PMID: 38731890 PMCID: PMC11083188 DOI: 10.3390/ijms25094672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Surpassing the diffraction barrier revolutionized modern fluorescence microscopy. However, intrinsic limitations in statistical sampling, the number of simultaneously analyzable channels, hardware requirements, and sample preparation procedures still represent an obstacle to its widespread diffusion in applicative biomedical research. Here, we present a novel pipeline based on automated multimodal microscopy and super-resolution techniques employing easily available materials and instruments and completed with open-source image-analysis software developed in our laboratory. The results show the potential impact of single-molecule localization microscopy (SMLM) on the study of biomolecules' interactions and the localization of macromolecular complexes. As a demonstrative application, we explored the basis of p53-53BP1 interactions, showing the formation of a putative macromolecular complex between the two proteins and the basal transcription machinery in situ, thus providing visual proof of the direct role of 53BP1 in sustaining p53 transactivation function. Moreover, high-content SMLM provided evidence of the presence of a 53BP1 complex on the cell cytoskeleton and in the mitochondrial space, thus suggesting the existence of novel alternative 53BP1 functions to support p53 activity.
Collapse
Affiliation(s)
- Simone Pelicci
- Department of Experimental Oncology, European Institute of Oncology IRCCS, 20139 Milan, Italy; (S.P.); (L.F.); (P.G.P.)
| | - Laura Furia
- Department of Experimental Oncology, European Institute of Oncology IRCCS, 20139 Milan, Italy; (S.P.); (L.F.); (P.G.P.)
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, European Institute of Oncology IRCCS, 20139 Milan, Italy; (S.P.); (L.F.); (P.G.P.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Mario Faretta
- Department of Experimental Oncology, European Institute of Oncology IRCCS, 20139 Milan, Italy; (S.P.); (L.F.); (P.G.P.)
| |
Collapse
|
27
|
Georgieva D, Wang N, Taglialatela A, Jerabek S, Reczek CR, Lim PX, Sung J, Du Q, Horiguchi M, Jasin M, Ciccia A, Baer R, Egli D. BRCA1 and 53BP1 regulate reprogramming efficiency by mediating DNA repair pathway choice at replication-associated double-strand breaks. Cell Rep 2024; 43:114006. [PMID: 38554279 PMCID: PMC11272184 DOI: 10.1016/j.celrep.2024.114006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 11/26/2023] [Accepted: 03/11/2024] [Indexed: 04/01/2024] Open
Abstract
Reprogramming to pluripotency is associated with DNA damage and requires the functions of the BRCA1 tumor suppressor. Here, we leverage separation-of-function mutations in BRCA1/2 as well as the physical and/or genetic interactions between BRCA1 and its associated repair proteins to ascertain the relevance of homology-directed repair (HDR), stalled fork protection (SFP), and replication gap suppression (RGS) in somatic cell reprogramming. Surprisingly, loss of SFP and RGS is inconsequential for the transition to pluripotency. In contrast, cells deficient in HDR, but proficient in SFP and RGS, reprogram with reduced efficiency. Conversely, the restoration of HDR function through inactivation of 53bp1 rescues reprogramming in Brca1-deficient cells, and 53bp1 loss leads to elevated HDR and enhanced reprogramming in mouse and human cells. These results demonstrate that somatic cell reprogramming is especially dependent on repair of replication-associated double-strand breaks (DSBs) by the HDR activity of BRCA1 and BRCA2 and can be improved in the absence of 53BP1.
Collapse
Affiliation(s)
- Daniela Georgieva
- Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Columbia University Stem Cell Initiative, New York, NY 10032, USA
| | - Ning Wang
- Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Columbia University Stem Cell Initiative, New York, NY 10032, USA
| | - Angelo Taglialatela
- Columbia University Stem Cell Initiative, New York, NY 10032, USA; Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Stepan Jerabek
- Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Columbia University Stem Cell Initiative, New York, NY 10032, USA; Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 542/2, 160 00 Praha 6, Czech Republic
| | - Colleen R Reczek
- Department of Pathology & Cell Biology, Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Pei Xin Lim
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Julie Sung
- Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Qian Du
- Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Michiko Horiguchi
- Department of Pathology & Cell Biology, Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alberto Ciccia
- Columbia University Stem Cell Initiative, New York, NY 10032, USA; Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Richard Baer
- Department of Pathology & Cell Biology, Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Dieter Egli
- Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Columbia University Stem Cell Initiative, New York, NY 10032, USA; Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
28
|
Li Q, Hariri S, Calidas A, Kaur A, Huey E, Engebrecht J. The chromatin-associated 53BP1 ortholog, HSR-9, regulates recombinational repair and X chromosome segregation in the Caenorhabditis elegans germ line. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.589267. [PMID: 38659880 PMCID: PMC11042201 DOI: 10.1101/2024.04.12.589267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
53BP1 plays a crucial role in regulating DNA damage repair pathway choice and checkpoint signaling in somatic cells; however, its role in meiosis has remained enigmatic. In this study, we demonstrate that the Caenorhabditis elegans ortholog of 53BP1, HSR-9, associates with chromatin in both proliferating and meiotic germ cells. Notably, HSR-9 is enriched on the X chromosome pair in pachytene oogenic germ cells. HSR-9 is also present at kinetochores during both mitotic and meiotic divisions but does not appear to be essential for monitoring microtubule-kinetochore attachments or tension. Using cytological markers of different steps in recombinational repair, we found that HSR-9 influences the processing of a subset of meiotic double strand breaks into COSA-1-marked crossovers. Additionally, HSR-9 plays a role in meiotic X chromosome segregation under conditions where X chromosomes fail to pair, synapse, and recombine. Together, these results highlight that chromatin-associated HSR-9 has both conserved and unique functions in the regulation of meiotic chromosome behavior.
Collapse
Affiliation(s)
- Qianyan Li
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California 95616
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California Davis, Davis, California 95616
| | - Sara Hariri
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California 95616
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California Davis, Davis, California 95616
| | - Aashna Calidas
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California 95616
| | - Arshdeep Kaur
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California 95616
| | - Erica Huey
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California 95616
| | - JoAnne Engebrecht
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California 95616
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California Davis, Davis, California 95616
| |
Collapse
|
29
|
Jin C, Einig E, Xu W, Kollampally RB, Schlosser A, Flentje M, Popov N. The dimeric deubiquitinase USP28 integrates 53BP1 and MYC functions to limit DNA damage. Nucleic Acids Res 2024; 52:3011-3030. [PMID: 38227944 PMCID: PMC11024517 DOI: 10.1093/nar/gkae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024] Open
Abstract
DNA replication is a major source of endogenous DNA damage in tumor cells and a key target of cellular response to genotoxic stress. DNA replication can be deregulated by oncoproteins, such as transcription factor MYC, aberrantly activated in many human cancers. MYC is stringently regulated by the ubiquitin system - for example, ubiquitination controls recruitment of the elongation factor PAF1c, instrumental in MYC activity. Curiously, a key MYC-targeting deubiquitinase USP28 also controls cellular response to DNA damage via the mediator protein 53BP1. USP28 forms stable dimers, but the biological role of USP28 dimerization is unknown. We show here that dimerization limits USP28 activity and restricts recruitment of PAF1c by MYC. Expression of monomeric USP28 stabilizes MYC and promotes PAF1c recruitment, leading to ectopic DNA synthesis and replication-associated DNA damage. USP28 dimerization is stimulated by 53BP1, which selectively binds USP28 dimers. Genotoxic stress diminishes 53BP1-USP28 interaction, promotes disassembly of USP28 dimers and stimulates PAF1c recruitment by MYC. This triggers firing of DNA replication origins during early response to genotoxins and exacerbates DNA damage. We propose that dimerization of USP28 prevents ectopic DNA replication at transcriptionally active chromatin to maintain genome stability.
Collapse
Affiliation(s)
- Chao Jin
- Department of Medical Oncology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Str 14, 72076 Tübingen, Germany
- DFG Cluster of Excellence 2180 ‘Image-guided and Functionally Instructed Tumor Therapies’ (iFIT), University of Tübingen, Tübingen, Germany
| | - Elias Einig
- Department of Medical Oncology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Str 14, 72076 Tübingen, Germany
- DFG Cluster of Excellence 2180 ‘Image-guided and Functionally Instructed Tumor Therapies’ (iFIT), University of Tübingen, Tübingen, Germany
| | - Wenshan Xu
- Department of Radiation Oncology, University Hospital Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Ravi Babu Kollampally
- Department of Medical Oncology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Str 14, 72076 Tübingen, Germany
- DFG Cluster of Excellence 2180 ‘Image-guided and Functionally Instructed Tumor Therapies’ (iFIT), University of Tübingen, Tübingen, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str 2, 97080 Würzburg, Germany
| | - Michael Flentje
- Department of Radiation Oncology, University Hospital Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Nikita Popov
- Department of Medical Oncology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Str 14, 72076 Tübingen, Germany
- DFG Cluster of Excellence 2180 ‘Image-guided and Functionally Instructed Tumor Therapies’ (iFIT), University of Tübingen, Tübingen, Germany
| |
Collapse
|
30
|
Khorsand FR, Uversky VN. Liquid-liquid phase separation as triggering factor of fibril formation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:143-182. [PMID: 38811080 DOI: 10.1016/bs.pmbts.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Liquid-liquid phase separation (LLPS) refers to the phenomenon, where a homogeneous solution spontaneously undergoes a transition into two or more immiscible phases. Through transient weak multivalent macromolecular interactions, a homogeneous solution can spontaneously separate into two phases: one rich in biomolecules and the other poor in biomolecules. Phase separation is believed to serve as the physicochemical foundation for the formation of membrane-less organelles (MLOs) and bio-molecular condensates within cells. Moreover, numerous biological processes depend on LLPS, such as transcription, immunological response, chromatin architecture, DNA damage response, stress granule formation, viral infection, etc. Abnormalities in phase separation can lead to diseases, such as cancer, neurodegeneration, and metabolic disorders. LLPS is regulated by various factors, such as concentration of molecules undergoing LLPS, salt concentration, pH, temperature, post-translational modifications, and molecular chaperones. Recent research on LLPS of biomolecules has progressed rapidly and led to the development of databases containing information pertaining to various aspects of the biomolecule separation analysis. However, more comprehensive research is still required to fully comprehend the specific molecular mechanisms and biological effects of LLPS.
Collapse
Affiliation(s)
| | - Vladimir N Uversky
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Pushchino, Moscow, Russia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| |
Collapse
|
31
|
Mathias B, O'Leary D, Saucier N, Ahmad F, White LS, Russell L, Shinawi M, Smith MJ, Abraham RS, Cooper MA, Kitcharoensakkul M, Green AM, Bednarski JJ. MYSM1 attenuates DNA damage signals triggered by physiologic and genotoxic DNA breaks. J Allergy Clin Immunol 2024; 153:1113-1124.e7. [PMID: 38065233 PMCID: PMC11417613 DOI: 10.1016/j.jaci.2023.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 12/31/2023]
Abstract
BACKGROUND Patients with deleterious variants in MYSM1 have an immune deficiency characterized by B-cell lymphopenia, hypogammaglobulinemia, and increased radiosensitivity. MYSM1 is a histone deubiquitinase with established activity in regulating gene expression. MYSM1 also localizes to sites of DNA injury but its function in cellular responses to DNA breaks has not been elucidated. OBJECTIVES This study sought to determine the activity of MYSM1 in regulating DNA damage responses (DDRs) to DNA double-stranded breaks (DSBs) generated during immunoglobulin receptor gene (Ig) recombination and by ionizing radiation. METHODS MYSM1-deficient pre- and non-B cells were used to determine the role of MYSM1 in DSB generation, DSB repair, and termination of DDRs. RESULTS Genetic testing in a newborn with abnormal screen for severe combined immune deficiency, T-cell lymphopenia, and near absence of B cells identified a novel splice variant in MYSM1 that results in nearly absent protein expression. Radiosensitivity testing in patient's peripheral blood lymphocytes showed constitutive γH2AX, a marker of DNA damage, in B cells in the absence of irradiation, suggesting a role for MYSM1 in response to DSBs generated during Ig recombination. Suppression of MYSM1 in pre-B cells did not alter generation or repair of Ig DSBs. Rather, loss of MYSM1 resulted in persistent DNA damage foci and prolonged DDR signaling. Loss of MYSM1 also led to protracted DDRs in U2OS cells with irradiation induced DSBs. CONCLUSIONS MYSM1 regulates termination of DNA damage responses but does not function in DNA break generation and repair.
Collapse
Affiliation(s)
- Brendan Mathias
- Department of Pediatrics, Washington University School of Medicine, St Louis, Mo
| | - David O'Leary
- Department of Pediatrics, Washington University School of Medicine, St Louis, Mo
| | - Nermina Saucier
- Department of Pediatrics, Washington University School of Medicine, St Louis, Mo
| | - Faiz Ahmad
- Department of Medicine, Washington University School of Medicine, St Louis, Mo
| | - Lynn S White
- Department of Pediatrics, Washington University School of Medicine, St Louis, Mo
| | - Le'Mark Russell
- Department of Pediatrics, Washington University School of Medicine, St Louis, Mo
| | - Marwan Shinawi
- Department of Pediatrics, Washington University School of Medicine, St Louis, Mo
| | - Matthew J Smith
- Division of Hematology Research, Mayo Clinic, Rochester, Minn
| | - Roshini S Abraham
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Megan A Cooper
- Department of Pediatrics, Washington University School of Medicine, St Louis, Mo
| | | | - Abby M Green
- Department of Pediatrics, Washington University School of Medicine, St Louis, Mo
| | - Jeffrey J Bednarski
- Department of Pediatrics, Washington University School of Medicine, St Louis, Mo.
| |
Collapse
|
32
|
Meitinger F, Belal H, Davis RL, Martinez MB, Shiau AK, Oegema K, Desai A. Control of cell proliferation by memories of mitosis. Science 2024; 383:1441-1448. [PMID: 38547292 PMCID: PMC11621110 DOI: 10.1126/science.add9528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 02/04/2024] [Indexed: 04/02/2024]
Abstract
Mitotic duration is tightly constrained, and extended mitosis is characteristic of problematic cells prone to chromosome missegregation and genomic instability. We show here that mitotic extension leads to the formation of p53-binding protein 1 (53BP1)-ubiquitin-specific protease 28 (USP28)-p53 protein complexes that are transmitted to, and stably retained by, daughter cells. Complexes assembled through a Polo-like kinase 1-dependent mechanism during extended mitosis and elicited a p53 response in G1 that prevented the proliferation of the progeny of cells that experienced an approximately threefold extended mitosis or successive less extended mitoses. The ability to monitor mitotic extension was lost in p53-mutant cancers and some p53-wild-type (p53-WT) cancers, consistent with classification of TP53BP1 and USP28 as tumor suppressors. Cancers retaining the ability to monitor mitotic extension exhibited sensitivity to antimitotic agents.
Collapse
Affiliation(s)
- Franz Meitinger
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
- Ludwig Institute for Cancer Research, La Jolla, California 92093, USA
- Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Hazrat Belal
- Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Robert L. Davis
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research, La Jolla, California 92093, USA
| | - Mallory B. Martinez
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research, La Jolla, California 92093, USA
| | - Andrew K. Shiau
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research, La Jolla, California 92093, USA
| | - Karen Oegema
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
- Ludwig Institute for Cancer Research, La Jolla, California 92093, USA
| | - Arshad Desai
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
- Ludwig Institute for Cancer Research, La Jolla, California 92093, USA
| |
Collapse
|
33
|
Sutcu HH, Rassinoux P, Donnio LM, Neuillet D, Vianna F, Gabillot O, Mari PO, Baldeyron C, Giglia-Mari G. Decline of DNA damage response along with myogenic differentiation. Life Sci Alliance 2024; 7:e202302279. [PMID: 37993260 PMCID: PMC10665522 DOI: 10.26508/lsa.202302279] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023] Open
Abstract
DNA integrity is incessantly confronted to agents inducing DNA lesions. All organisms are equipped with a network of DNA damage response mechanisms that will repair DNA lesions and restore proper cellular activities. Despite DNA repair mechanisms have been revealed in replicating cells, still little is known about how DNA lesions are repaired in postmitotic cells. Muscle fibers are highly specialized postmitotic cells organized in syncytia and they are vulnerable to age-related degeneration and atrophy after radiotherapy treatment. We have studied the DNA repair capacity of muscle fiber nuclei and compared it with the one measured in proliferative myoblasts here. We focused on the DNA repair mechanisms that correct ionizing radiation (IR)-induced lesions, namely the base excision repair, the nonhomologous end joining, and the homologous recombination (HR). We found that in the most differentiated myogenic cells, myotubes, these DNA repair mechanisms present weakened kinetics of recruitment of DNA repair proteins to IR-damaged DNA. For base excision repair and HR, this decline can be linked to reduced steady-state levels of key proteins involved in these processes.
Collapse
Affiliation(s)
- Haser H Sutcu
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRAcc, Fontenay-aux-Roses, France
| | - Phoebe Rassinoux
- Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM) CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, Lyon, France
| | - Lise-Marie Donnio
- Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM) CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, Lyon, France
| | - Damien Neuillet
- Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM) CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, Lyon, France
| | - François Vianna
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SDOS/LMDN, Saint-Paul-Lez-Durance, France
| | - Olivier Gabillot
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRAcc, Fontenay-aux-Roses, France
| | - Pierre-Olivier Mari
- Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM) CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, Lyon, France
| | - Céline Baldeyron
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRAcc, Fontenay-aux-Roses, France
| | - Giuseppina Giglia-Mari
- Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM) CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
34
|
Long H, Zhang G, Zhou Y, Qin L, Zhu D, Chen J, Liu B, Tan H, Chen D, Li Z, Li C, Wang Z. A Novel Tryptanthrin Derivative D6 Induces Apoptosis and DNA Damage in Non-small-cell Lung Cancer Cells Through Regulating the EGFR Pathway. Anticancer Agents Med Chem 2024; 24:1275-1287. [PMID: 39034729 DOI: 10.2174/0118715206303721240715042526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/02/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Non-small-cell lung cancer is a prevalent malignancy associated with significant morbidity and mortality rates. Tryptanthrin and its derivatives have exhibited potent antitumor activity. OBJECTIVE This study aims to investigate the inhibitory effect of a novel synthesized tryptanthrin derivative D6 on proliferation and the possible mechanism of human non-small cell lung cancer cell lines (A549) in vitro. METHODS In this study, MTT assay, cell migration, colony formation assay, cell cycle analysis, cell apoptosis, JC- 1 staining assay, reactive oxygen species analysis, proteomics, western blotting, high content screening and absorption titrations analysis were performed. RESULTS We found that D6 inhibited both the proliferation and migration, induced cell cycle arrest in the G2/M phase, increased levels of ROS, decreased mitochondrial membrane potential, and promoted apoptosis in A549 cells. Further mechanistic studies found that D6 reduced EGFR expression in A549 cells and inhibited the EGFR pathway by decreasing phosphorylation levels of EGFR, Stat3, AKT and Erk1/2. Moreover, DNA damage induced by D6 involved an increase in p53/MDM2 ratio and concentration-dependent accumulation of micronuclei. CONCLUSION D6 demonstrated significant antitumor activity against A549 cells by inhibiting the EGFR signaling pathway, inducing DNA damage, and subsequently leading to oxidative stress, apoptosis, and cell cycle arrest. Our findings suggest that D6 exhibits potential as an NSCLC drug, owing to its attributes such as antiproliferative activity and ability to induce apoptosis by attenuating the EGFR-mediated signaling pathway.
Collapse
Affiliation(s)
- Haitao Long
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
- Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang, 550025, China
| | - Guanglong Zhang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
- Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang, 550025, China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guizhou University, Guiyang, 550025, China
| | - Yue Zhou
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
- Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang, 550025, China
| | - Liqing Qin
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Danxue Zhu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Jiayi Chen
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Bo Liu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Huayuan Tan
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Danping Chen
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
- Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang, 550025, China
| | - Zhurui Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
- Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang, 550025, China
| | - Chengpeng Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
- Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang, 550025, China
| | - Zhenchao Wang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
- Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang, 550025, China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
35
|
Burigotto M, Vigorito V, Gliech C, Mattivi A, Ghetti S, Bisio A, Lolli G, Holland AJ, Fava LL. PLK1 promotes the mitotic surveillance pathway by controlling cytosolic 53BP1 availability. EMBO Rep 2023; 24:e57234. [PMID: 37888778 PMCID: PMC10702821 DOI: 10.15252/embr.202357234] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
53BP1 acts at the crossroads between DNA repair and p53-mediated stress response. With its interactors p53 and USP28, it is part of the mitotic surveillance (or mitotic stopwatch) pathway (MSP), a sensor that monitors the duration of cell division, promoting p53-dependent cell cycle arrest when a critical time threshold is surpassed. Here, we show that Polo-like kinase 1 (PLK1) activity is essential for the time-dependent release of 53BP1 from kinetochores. PLK1 inhibition, which leads to 53BP1 persistence at kinetochores, prevents cytosolic 53BP1 association with p53 and results in a blunted MSP. Strikingly, the identification of CENP-F as the kinetochore docking partner of 53BP1 enabled us to show that measurement of mitotic timing by the MSP does not take place at kinetochores, as perturbing CENP-F-53BP1 binding had no measurable impact on the MSP. Taken together, we propose that PLK1 supports the MSP by generating a cytosolic pool of 53BP1 and that an unknown cytosolic mechanism enables the measurement of mitotic duration.
Collapse
Affiliation(s)
- Matteo Burigotto
- Armenise‐Harvard Laboratory of Cell Division, Department of Cellular, Computational and Integrative Biology – CIBIOUniversity of TrentoTrentoItaly
- Present address:
Comprehensive Cancer Centre, School of Cancer and Pharmaceutical SciencesKing's CollegeLondonUK
- Present address:
Organelle Dynamics LaboratoryThe Francis Crick InstituteLondonUK
| | - Vincenza Vigorito
- Armenise‐Harvard Laboratory of Cell Division, Department of Cellular, Computational and Integrative Biology – CIBIOUniversity of TrentoTrentoItaly
| | - Colin Gliech
- Department of Molecular Biology and GeneticsJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Alessia Mattivi
- Armenise‐Harvard Laboratory of Cell Division, Department of Cellular, Computational and Integrative Biology – CIBIOUniversity of TrentoTrentoItaly
| | - Sabrina Ghetti
- Armenise‐Harvard Laboratory of Cell Division, Department of Cellular, Computational and Integrative Biology – CIBIOUniversity of TrentoTrentoItaly
- Present address:
Department of Mechanistic Cell BiologyMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Alessandra Bisio
- Laboratory of Radiobiology, Department of Cellular, Computational and Integrative Biology – CIBIOUniversity of TrentoTrentoItaly
| | - Graziano Lolli
- Laboratory of Protein Crystallography and Structure‐Based Drug Design, Department of Cellular, Computational and Integrative Biology – CIBIOUniversity of TrentoTrentoItaly
| | | | - Luca L Fava
- Armenise‐Harvard Laboratory of Cell Division, Department of Cellular, Computational and Integrative Biology – CIBIOUniversity of TrentoTrentoItaly
| |
Collapse
|
36
|
Manohar S, Estrada ME, Uliana F, Vuina K, Alvarez PM, de Bruin RAM, Neurohr GE. Genome homeostasis defects drive enlarged cells into senescence. Mol Cell 2023; 83:4032-4046.e6. [PMID: 37977116 PMCID: PMC10659931 DOI: 10.1016/j.molcel.2023.10.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 06/30/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023]
Abstract
Cellular senescence refers to an irreversible state of cell-cycle arrest and plays important roles in aging and cancer biology. Because senescence is associated with increased cell size, we used reversible cell-cycle arrests combined with growth rate modulation to study how excessive growth affects proliferation. We find that enlarged cells upregulate p21, which limits cell-cycle progression. Cells that re-enter the cell cycle encounter replication stress that is well tolerated in physiologically sized cells but causes severe DNA damage in enlarged cells, ultimately resulting in mitotic failure and permanent cell-cycle withdrawal. We demonstrate that enlarged cells fail to recruit 53BP1 and other non-homologous end joining (NHEJ) machinery to DNA damage sites and fail to robustly initiate DNA damage-dependent p53 signaling, rendering them highly sensitive to genotoxic stress. We propose that an impaired DNA damage response primes enlarged cells for persistent replication-acquired damage, ultimately leading to cell division failure and permanent cell-cycle exit.
Collapse
Affiliation(s)
- Sandhya Manohar
- Institute for Biochemistry, Department of Biology, ETH Zürich 8093, Zürich, Zürich, Switzerland
| | - Marianna E Estrada
- Institute for Biochemistry, Department of Biology, ETH Zürich 8093, Zürich, Zürich, Switzerland
| | - Federico Uliana
- Institute for Biochemistry, Department of Biology, ETH Zürich 8093, Zürich, Zürich, Switzerland
| | - Karla Vuina
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Patricia Moyano Alvarez
- Institute for Biochemistry, Department of Biology, ETH Zürich 8093, Zürich, Zürich, Switzerland
| | - Robertus A M de Bruin
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; UCL Cancer Institute, University College London, London WC1E 6BT, UK
| | - Gabriel E Neurohr
- Institute for Biochemistry, Department of Biology, ETH Zürich 8093, Zürich, Zürich, Switzerland.
| |
Collapse
|
37
|
Wang YL, Zhao WW, Shi J, Wan XB, Zheng J, Fan XJ. Liquid-liquid phase separation in DNA double-strand breaks repair. Cell Death Dis 2023; 14:746. [PMID: 37968256 PMCID: PMC10651886 DOI: 10.1038/s41419-023-06267-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 11/17/2023]
Abstract
DNA double-strand breaks (DSBs) are the fatal type of DNA damage mostly induced by exposure genome to ionizing radiation or genotoxic chemicals. DSBs are mainly repaired by homologous recombination (HR) and nonhomologous end joining (NHEJ). To repair DSBs, a large amount of DNA repair factors was observed to be concentrated at the end of DSBs in a specific spatiotemporal manner to form a repair center. Recently, this repair center was characterized as a condensate derived from liquid-liquid phase separation (LLPS) of key DSBs repair factors. LLPS has been found to be the mechanism of membraneless organelles formation and plays key roles in a variety of biological processes. In this review, the recent advances and mechanisms of LLPS in the formation of DSBs repair-related condensates are summarized.
Collapse
Affiliation(s)
- Yun-Long Wang
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Wan-Wen Zhao
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Jie Shi
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Xiang-Bo Wan
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Jian Zheng
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Xin-Juan Fan
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China.
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450052, PR China.
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China.
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China.
| |
Collapse
|
38
|
Arnould C, Rocher V, Saur F, Bader AS, Muzzopappa F, Collins S, Lesage E, Le Bozec B, Puget N, Clouaire T, Mangeat T, Mourad R, Ahituv N, Noordermeer D, Erdel F, Bushell M, Marnef A, Legube G. Chromatin compartmentalization regulates the response to DNA damage. Nature 2023; 623:183-192. [PMID: 37853125 PMCID: PMC10620078 DOI: 10.1038/s41586-023-06635-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 09/12/2023] [Indexed: 10/20/2023]
Abstract
The DNA damage response is essential to safeguard genome integrity. Although the contribution of chromatin in DNA repair has been investigated1,2, the contribution of chromosome folding to these processes remains unclear3. Here we report that, after the production of double-stranded breaks (DSBs) in mammalian cells, ATM drives the formation of a new chromatin compartment (D compartment) through the clustering of damaged topologically associating domains, decorated with γH2AX and 53BP1. This compartment forms by a mechanism that is consistent with polymer-polymer phase separation rather than liquid-liquid phase separation. The D compartment arises mostly in G1 phase, is independent of cohesin and is enhanced after pharmacological inhibition of DNA-dependent protein kinase (DNA-PK) or R-loop accumulation. Importantly, R-loop-enriched DNA-damage-responsive genes physically localize to the D compartment, and this contributes to their optimal activation, providing a function for DSB clustering in the DNA damage response. However, DSB-induced chromosome reorganization comes at the expense of an increased rate of translocations, also observed in cancer genomes. Overall, we characterize how DSB-induced compartmentalization orchestrates the DNA damage response and highlight the critical impact of chromosome architecture in genomic instability.
Collapse
Affiliation(s)
- Coline Arnould
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Vincent Rocher
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Florian Saur
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Aldo S Bader
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Fernando Muzzopappa
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Sarah Collins
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Emma Lesage
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Benjamin Le Bozec
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Nadine Puget
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Thomas Clouaire
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Thomas Mangeat
- LITC Core Facility, Centre de Biologie Integrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Raphael Mourad
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Daan Noordermeer
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Fabian Erdel
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Martin Bushell
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Aline Marnef
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Gaëlle Legube
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France.
| |
Collapse
|
39
|
Xu L, Lahiri P, Skowronski J, Bhatia N, Lattanzi A, Porteus MH. Molecular dynamics of genome editing with CRISPR-Cas9 and rAAV6 virus in human HSPCs to treat sickle cell disease. Mol Ther Methods Clin Dev 2023; 30:317-331. [PMID: 37637384 PMCID: PMC10447934 DOI: 10.1016/j.omtm.2023.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023]
Abstract
Ex vivo gene correction with CRISPR-Cas9 and a recombinant adeno-associated virus serotype 6 (rAAV6) in autologous hematopoietic stem/progenitor cells (HSPCs) to treat sickle cell disease (SCD) has now entered early-phase clinical investigation. To facilitate the progress of CRISPR-Cas9/rAAV6 genome editing technology, we analyzed the molecular changes in key reagents and cellular responses during and after the genome editing procedure in human HSPCs. We demonstrated the high stability of rAAV6 to serve as the donor DNA template. We assessed the benefit of longer HSPC pre-stimulation in terms of increased numbers of edited cells. We observed that the p53 pathway was transiently activated, peaking at 6 h, and resolved over time. Notably, we revealed a strong correlation between p21 mRNA level and rAAV6 genome number in cells and beneficial effects of transient inhibition of p53 with siRNA on genome editing, cell proliferation, and cell survival. In terms of potential immunogenicity, we found that rAAV6 capsid protein was not detectable, while a trace amount of residual Cas9 protein was still detected at 48 h post-genome editing. We believe this information will provide important insights for future improvements of gene correction protocols in HSPCs.
Collapse
Affiliation(s)
- Liwen Xu
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Premanjali Lahiri
- Stanford Laboratory for Cell and Gene Medicine, Stanford University, Stanford, CA 94304, USA
| | - Jason Skowronski
- Stanford Laboratory for Cell and Gene Medicine, Stanford University, Stanford, CA 94304, USA
| | - Neehar Bhatia
- Stanford Laboratory for Cell and Gene Medicine, Stanford University, Stanford, CA 94304, USA
| | - Annalisa Lattanzi
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
40
|
Sarais F, Metzger K, Hadlich F, Kalbe C, Ponsuksili S. Transcriptomic Response of Differentiating Porcine Myotubes to Thermal Stress and Donor Piglet Age. Int J Mol Sci 2023; 24:13599. [PMID: 37686405 PMCID: PMC10487455 DOI: 10.3390/ijms241713599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Climate change is a current concern that directly and indirectly affects agriculture, especially the livestock sector. Neonatal piglets have a limited thermoregulatory capacity and are particularly stressed by ambient temperatures outside their optimal physiological range, which has a major impact on their survival rate. In this study, we focused on the effects of thermal stress (35 °C, 39 °C, and 41 °C compared to 37 °C) on differentiating myotubes derived from the satellite cells of Musculus rhomboideus, isolated from two different developmental stages of thermolabile 5-day-old (p5) and thermostable 20-day-old piglets (p20). Analysis revealed statistically significant differential expression genes (DEGs) between the different cultivation temperatures, with a higher number of genes responding to cold treatment. These DEGs were involved in the macromolecule degradation and actin kinase cytoskeleton categories and were observed at lower temperatures (35 °C), whereas at higher temperatures (39 °C and 41 °C), the protein transport system, endoplasmic reticulum system, and ATP activity were more pronounced. Gene expression profiling of HSP and RBM gene families, which are commonly associated with cold and heat responses, exhibited a pattern dependent on temperature variability. Moreover, thermal stress exhibited an inhibitory effect on cell cycle, with a more pronounced downregulation during cold stress driven by ADGR genes. Additionally, our analysis revealed DEGs from donors with an undeveloped thermoregulation capacity (p5) and those with a fully developed thermoregulation capacity (p20) under various cultivation temperature. The highest number of DEGs and significant GO terms was observed under temperatures of 35 °C and 37 °C. In particular, under 35 °C, the DEGs were enriched in insulin, thyroid hormone, and calcium signaling pathways. This result suggests that the different thermoregulatory capacities of the donor piglets determined the ability of the primary muscle cell culture to differentiate into myotubes at different temperatures. This work sheds new light on the underlying molecular mechanisms that govern piglet differentiating myotube response to thermal stress and can be leveraged to develop effective thermal management strategies to enhance skeletal muscle growth.
Collapse
Affiliation(s)
- Fabio Sarais
- Research Institute for Farm Animal Biology (FBN), Institute of Genome Biology, 18196 Dummerstorf, Germany; (F.S.); (F.H.)
| | - Katharina Metzger
- Research Institute for Farm Animal Biology (FBN), Institute of Muscle Biology and Growth, 18196 Dummerstorf, Germany; (K.M.); (C.K.)
| | - Frieder Hadlich
- Research Institute for Farm Animal Biology (FBN), Institute of Genome Biology, 18196 Dummerstorf, Germany; (F.S.); (F.H.)
| | - Claudia Kalbe
- Research Institute for Farm Animal Biology (FBN), Institute of Muscle Biology and Growth, 18196 Dummerstorf, Germany; (K.M.); (C.K.)
| | - Siriluck Ponsuksili
- Research Institute for Farm Animal Biology (FBN), Institute of Genome Biology, 18196 Dummerstorf, Germany; (F.S.); (F.H.)
| |
Collapse
|
41
|
Wang Y, Wang R, Ma H, Yang M, Li Z, Zhang L. Wnt3a signaling with serum supply induces replication stress in cultured cells. Biochem Biophys Rep 2023; 35:101499. [PMID: 37601449 PMCID: PMC10439351 DOI: 10.1016/j.bbrep.2023.101499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 08/22/2023] Open
Abstract
Wnt signaling plays a central role in tissue development and homeostasis, and its deregulation is implicated in many human diseases, including cancer. As an essential posttranslational modification, protein phosphorylation is critical in Wnt signaling and has been a focus of investigation using systematic approaches, including proteomics. Typically, studies were conducted by applying purified Wnt ligands to cells in a "starvation" condition to minimize the background noise. Despite leading to many important discoveries, such an approach may omit pivotal integrative effects of Wnt signaling in a complex physiological environment. In this study, we investigated the temporal dynamics of the phosphoproteome following treatments of Wnt3a conditioned medium (CM) with serum supply. This revealed three clusters of phosphoproteome changes with distinct temporal profiles with implications in gene expressions and chromatin organizations. Among these, we observed enhanced phosphorylation at the Thr543 residue of 53BP1, which is a key event in the cellular response to DNA damage. Functionally, it triggered the replication stress response pathway mediated by γH2AX accumulation and Chk1 activation, leading to a significant reduction of cells in the S phase of the cell cycle. Intriguingly, Wnt3a treatment in the serum-free condition did not activate 53BP1-Chk1 and replication stress response. Our study indicates the importance of noting the presence or absence of serum supply when studying the signaling pathways.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Futian Research Institute, Shenzhen, Guangdong, China
| | - Rui Wang
- Pingshan Translational Medicine Centre, Shenzhen Bay Laboratory, Shenzhen, 518118, PR China
| | - Haiying Ma
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Futian Research Institute, Shenzhen, Guangdong, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong
| | - Mengsu Yang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Futian Research Institute, Shenzhen, Guangdong, China
| | - Zigang Li
- Pingshan Translational Medicine Centre, Shenzhen Bay Laboratory, Shenzhen, 518118, PR China
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
| | - Liang Zhang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Futian Research Institute, Shenzhen, Guangdong, China
| |
Collapse
|
42
|
Ashraf HM, Fernandez B, Spencer SL. The intensities of canonical senescence biomarkers integrate the duration of cell-cycle withdrawal. Nat Commun 2023; 14:4527. [PMID: 37500655 PMCID: PMC10374620 DOI: 10.1038/s41467-023-40132-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 07/10/2023] [Indexed: 07/29/2023] Open
Abstract
Senescence, a state of irreversible cell-cycle withdrawal, is difficult to distinguish from quiescence, a state of reversible cell-cycle withdrawal. This difficulty arises because quiescent and senescent cells are defined by overlapping biomarkers, raising the question of whether these states are truly distinct. To address this, we use single-cell time-lapse imaging to distinguish slow-cycling cells that spend long periods in quiescence from cells that never cycle after recovery from senescence-inducing treatments, followed by staining for various senescence biomarkers. We find that the staining intensity of multiple senescence biomarkers is graded rather than binary and reflects the duration of cell-cycle withdrawal, rather than senescence per se. Together, our data show that quiescent and apparent senescent cells are nearly molecularly indistinguishable from each other at a snapshot in time. This suggests that cell-cycle withdrawal itself is graded rather than binary, where the intensities of senescence biomarkers integrate the duration of past cell-cycle withdrawal.
Collapse
Affiliation(s)
- Humza M Ashraf
- Department of Biochemistry, University of Colorado, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO, 80303, USA
| | - Brianna Fernandez
- Department of Biochemistry, University of Colorado, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO, 80303, USA
| | - Sabrina L Spencer
- Department of Biochemistry, University of Colorado, Boulder, CO, 80303, USA.
- BioFrontiers Institute, University of Colorado, Boulder, CO, 80303, USA.
| |
Collapse
|
43
|
Netterfield TS, Ostheimer GJ, Tentner AR, Joughin BA, Dakoyannis AM, Sharma CD, Sorger PK, Janes KA, Lauffenburger DA, Yaffe MB. Biphasic JNK-Erk signaling separates the induction and maintenance of cell senescence after DNA damage induced by topoisomerase II inhibition. Cell Syst 2023; 14:582-604.e10. [PMID: 37473730 PMCID: PMC10627503 DOI: 10.1016/j.cels.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 03/24/2023] [Accepted: 06/13/2023] [Indexed: 07/22/2023]
Abstract
Genotoxic stress in mammalian cells, including those caused by anti-cancer chemotherapy, can induce temporary cell-cycle arrest, DNA damage-induced senescence (DDIS), or apoptotic cell death. Despite obvious clinical importance, it is unclear how the signals emerging from DNA damage are integrated together with other cellular signaling pathways monitoring the cell's environment and/or internal state to control different cell fates. Using single-cell-based signaling measurements combined with tensor partial least square regression (t-PLSR)/principal component analysis (PCA) analysis, we show that JNK and Erk MAPK signaling regulates the initiation of cell senescence through the transcription factor AP-1 at early times after doxorubicin-induced DNA damage and the senescence-associated secretory phenotype (SASP) at late times after damage. These results identify temporally distinct roles for signaling pathways beyond the classic DNA damage response (DDR) that control the cell senescence decision and modulate the tumor microenvironment and reveal fundamental similarities between signaling pathways responsible for oncogene-induced senescence (OIS) and senescence caused by topoisomerase II inhibition. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Tatiana S Netterfield
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gerard J Ostheimer
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Andrea R Tentner
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Brian A Joughin
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alexandra M Dakoyannis
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Charvi D Sharma
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Computer Science and Molecular Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Kevin A Janes
- Department of Biomedical Engineering and Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael B Yaffe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Division of Acute Care Surgery, Trauma, and Surgical Critical Care, and Division of Surgical Oncology, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
44
|
Calheiros J, Corbo V, Saraiva L. Overcoming therapeutic resistance in pancreatic cancer: Emerging opportunities by targeting BRCAs and p53. Biochim Biophys Acta Rev Cancer 2023; 1878:188914. [PMID: 37201730 DOI: 10.1016/j.bbcan.2023.188914] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
Pancreatic cancer (PC) is characterized by (epi)genetic and microenvironmental alterations that negatively impact the treatment outcomes. New targeted therapies have been pursued to counteract the therapeutic resistance in PC. Aiming to seek for new therapeutic options for PC, several attempts have been undertaken to exploit BRCA1/2 and TP53 deficiencies as promising actionable targets. The elucidation of the pathogenesis of PC highlighted the high prevalence of p53 mutations and their connection with the aggressiveness and therapeutic resistance of PC. Additionally, PC is associated with dysfunctions in several DNA repair-related genes, including BRCA1/2, which sensitize tumours to DNA-damaging agents. In this context, poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) were approved for mutant BRCA1/2 PC patients. However, acquired drug resistance has become a major drawback of PARPi. This review emphasizes the importance of targeting defective BRCAs and p53 pathways for advancing personalized PC therapy, with particular focus on how this approach may provide an opportunity to tackle PC resistance.
Collapse
Affiliation(s)
- Juliana Calheiros
- LAQV/REQUIMTE, Laboratόrio de Microbiologia, Departamento de Ciências Biolόgicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Vincenzo Corbo
- Department of Engineering for Innovation Medicine (DIMI), University and Hospital Trust of Verona, Verona, Italy; ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Lucília Saraiva
- LAQV/REQUIMTE, Laboratόrio de Microbiologia, Departamento de Ciências Biolόgicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
45
|
Iegiani G, Ferraro A, Pallavicini G, Di Cunto F. The impact of TP53 activation and apoptosis in primary hereditary microcephaly. Front Neurosci 2023; 17:1220010. [PMID: 37457016 PMCID: PMC10338886 DOI: 10.3389/fnins.2023.1220010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Autosomal recessive primary microcephaly (MCPH) is a constellation of disorders that share significant brain size reduction and mild to moderate intellectual disability, which may be accompanied by a large variety of more invalidating clinical signs. Extensive neural progenitor cells (NPC) proliferation and differentiation are essential to determine brain final size. Accordingly, the 30 MCPH loci mapped so far (MCPH1-MCPH30) encode for proteins involved in microtubule and spindle organization, centriole biogenesis, nuclear envelope, DNA replication and repair, underscoring that a wide variety of cellular processes is required for sustaining NPC expansion during development. Current models propose that altered balance between symmetric and asymmetric division, as well as premature differentiation, are the main mechanisms leading to MCPH. Although studies of cellular alterations in microcephaly models have constantly shown the co-existence of high DNA damage and apoptosis levels, these mechanisms are less considered as primary factors. In this review we highlight how the molecular and cellular events produced by mutation of the majority of MCPH genes may converge on apoptotic death of NPCs and neurons, via TP53 activation. We propose that these mechanisms should be more carefully considered in the alterations of the sophisticated equilibrium between proliferation, differentiation and death produced by MCPH gene mutations. In consideration of the potential druggability of cell apoptotic pathways, a better understanding of their role in MCPH may significantly facilitate the development of translational approaches.
Collapse
Affiliation(s)
- Giorgia Iegiani
- Department of Neuroscience ‘Rita Levi Montalcini’, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
| | - Alessia Ferraro
- Department of Neuroscience ‘Rita Levi Montalcini’, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
| | - Gianmarco Pallavicini
- Department of Neuroscience ‘Rita Levi Montalcini’, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
| | - Ferdinando Di Cunto
- Department of Neuroscience ‘Rita Levi Montalcini’, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
| |
Collapse
|
46
|
Kliszczak M, Moralli D, Jankowska JD, Bryjka P, Subha Meem L, Goncalves T, Hester SS, Fischer R, Clynes D, Green CM. Loss of FAM111B protease mutated in hereditary fibrosing poikiloderma negatively regulates telomere length. Front Cell Dev Biol 2023; 11:1175069. [PMID: 37342232 PMCID: PMC10277729 DOI: 10.3389/fcell.2023.1175069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/02/2023] [Indexed: 06/22/2023] Open
Abstract
Hereditary fibrosing poikiloderma (HFP) is a rare human dominant negative disorder caused by mutations in the FAM111B gene that encodes a nuclear trypsin-like serine protease. HFP patients present with symptoms including skin abnormalities, tendon contractures, myopathy and lung fibrosis. We characterized the cellular roles of human FAM111B using U2OS and MCF7 cell lines and report here that the protease interacts with components of the nuclear pore complex. Loss of FAM111B expression resulted in abnormal nuclear shape and reduced telomeric DNA content suggesting that FAM111B protease is required for normal telomere length; we show that this function is independent of telomerase or recombination driven telomere extension. Even though FAM111B-deficient cells were proficient in DNA repair, they showed hallmarks of genomic instability such as increased levels of micronuclei and ultra-fine DNA bridges. When mutated as in HFP, FAM111B was more frequently localized to the nuclear envelope, suggesting that accumulation of the mutated protease at the nuclear periphery may drive the disease pathology.
Collapse
Affiliation(s)
- Maciej Kliszczak
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Daniela Moralli
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Julia D. Jankowska
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Paulina Bryjka
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Lamia Subha Meem
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Tomas Goncalves
- Oncology Department, Weatherall Institute for Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Svenja S. Hester
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Roman Fischer
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom
- Chinese Academy of Medical Sciences Oxford Institute, Oxford, United Kingdom
| | - David Clynes
- Oncology Department, Weatherall Institute for Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Catherine M. Green
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
47
|
Lim B, Djekidel MN, Matsui Y, Jung S, Yuan ZF, Wang X, Yang X, Pilehroud AS, Pan H, Wang F, Pruett-Miller S, Kavdia K, Pagala V, Fan Y, Peng J, Xu B, Peng JC. Phosphorylation of 53BP1 by ATM enforce neurodevelopmental programs in cortical organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.04.539457. [PMID: 37205560 PMCID: PMC10187281 DOI: 10.1101/2023.05.04.539457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
53BP1 is a well-established DNA damage repair factor recently shown to regulate gene expression and critically influence tumor suppression and neural development. For gene regulation, how 53BP1 is regulated remains unclear. Here, we showed that 53BP1-serine 25 phosphorylation by ATM is required for neural progenitor cell proliferation and neuronal differentiation in cortical organoids. 53BP1-serine 25 phosphorylation dynamics controls 53BP1 target genes for neuronal differentiation and function, cellular response to stress, and apoptosis. Beyond 53BP1, ATM is required for phosphorylation of factors in neuronal differentiation, cytoskeleton, p53 regulation, and ATM, BNDF, and WNT signaling pathways for cortical organoid differentiation. Overall, our data suggest that 53BP1 and ATM control key genetic programs required for human cortical development.
Collapse
|
48
|
Fito-Lopez B, Salvadores M, Alvarez MM, Supek F. Prevalence, causes and impact of TP53-loss phenocopying events in human tumors. BMC Biol 2023; 21:92. [PMID: 37095494 PMCID: PMC10127307 DOI: 10.1186/s12915-023-01595-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/12/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND TP53 is a master tumor suppressor gene, mutated in approximately half of all human cancers. Given the many regulatory roles of the corresponding p53 protein, it is possible to infer loss of p53 activity - which may occur due to alterations in trans - from gene expression patterns. Several such alterations that phenocopy p53 loss are known, however additional ones may exist, but their identity and prevalence among human tumors are not well characterized. RESULTS We perform a large-scale statistical analysis on transcriptomes of ~ 7,000 tumors and ~ 1,000 cell lines, estimating that 12% and 8% of tumors and cancer cell lines, respectively, phenocopy TP53 loss: they are likely deficient in the activity of the p53 pathway, while not bearing obvious TP53 inactivating mutations. While some of these cases are explained by amplifications in the known phenocopying genes MDM2, MDM4 and PPM1D, many are not. An association analysis of cancer genomic scores jointly with CRISPR/RNAi genetic screening data identified an additional common TP53-loss phenocopying gene, USP28. Deletions in USP28 are associated with a TP53 functional impairment in 2.9-7.6% of breast, bladder, lung, liver and stomach tumors, and have comparable effect size to MDM4 amplifications. Additionally, in the known copy number alteration (CNA) segment harboring MDM2, we identify an additional co-amplified gene (CNOT2) that may cooperatively boost the TP53 functional inactivation effect of MDM2. An analysis of cancer cell line drug screens using phenocopy scores suggests that TP53 (in)activity commonly modulates associations between anticancer drug effects and various genetic markers, such as PIK3CA and PTEN mutations, and should thus be considered as a drug activity modifying factor in precision medicine. As a resource, we provide the drug-genetic marker associations that differ depending on TP53 functional status. CONCLUSIONS Human tumors that do not bear obvious TP53 genetic alterations but that phenocopy p53 activity loss are common, and the USP28 gene deletions are one likely cause.
Collapse
Affiliation(s)
- Bruno Fito-Lopez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Marina Salvadores
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Miguel-Martin Alvarez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Fran Supek
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
49
|
Abd El-Hafeez AA, Sun N, Chakraborty A, Ear J, Roy S, Chamarthi P, Rajapakse N, Das S, Luker KE, Hazra TK, Luker GD, Ghosh P. Regulation of DNA damage response by trimeric G-proteins. iScience 2023; 26:105973. [PMID: 36756378 PMCID: PMC9900518 DOI: 10.1016/j.isci.2023.105973] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 08/14/2022] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Upon sensing DNA double-strand breaks (DSBs), eukaryotic cells either die or repair DSBs via one of the two competing pathways, i.e., non-homologous end-joining (NHEJ) or homologous recombination (HR). We show that cell fate after DSBs hinges on GIV/Girdin, a guanine nucleotide-exchange modulator of heterotrimeric Giα•βγ protein. GIV suppresses HR by binding and sequestering BRCA1, a key coordinator of multiple steps within the HR pathway, away from DSBs; it does so using a C-terminal motif that binds BRCA1's BRCT-modules via both phospho-dependent and -independent mechanisms. Using another non-overlapping C-terminal motif GIV binds and activates Gi and enhances the "free" Gβγ→PI-3-kinase→Akt pathway, which promotes survival and is known to suppress HR, favor NHEJ. Absence of GIV, or loss of either of its C-terminal motifs enhanced cell death upon genotoxic stress. Because GIV selectively binds other BRCT-containing proteins suggests that G-proteins may fine-tune sensing, repair, and survival after diverse types of DNA damage.
Collapse
Affiliation(s)
- Amer Ali Abd El-Hafeez
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Pharmacology and Experimental Oncology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Nina Sun
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Anirban Chakraborty
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jason Ear
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Biological Sciences Department, California State Polytechnic University, Pomona, CA 91768, USA
| | - Suchismita Roy
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Pranavi Chamarthi
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Navin Rajapakse
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Soumita Das
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
| | - Kathryn E. Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| | - Tapas K. Hazra
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Gary D. Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel, Blvd., Ann Arbor, MI 48109-2099, USA
- Department of Microbiology and Immunology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Moores Comprehensive Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
- Veterans Affairs Medical Center, La Jolla, CA, USA
| |
Collapse
|
50
|
Basse C, Trabelsi-Grati O, Masliah J, Callens C, Kamal M, Freneaux P, Klijanienko J, Bieche I, Girard N. Gain of Aggressive Histological and Molecular Patterns after Acquired Resistance to Novel Anti-EGFR Therapies in Non-Small Cell Lung Cancer. Int J Mol Sci 2023; 24:ijms24043802. [PMID: 36835213 PMCID: PMC9965794 DOI: 10.3390/ijms24043802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Novel anti-EGFR therapies target resistance to standard-of-care anti-EGFR in patients with metastatic lung cancer. We describe tumors at progression versus at the initiation of novel anti-EGFR agents in patients with metastatic lung adenocarcinoma harboring EGFR mutation. This clinical case series reports the histological and genomic features and their evolution following disease progression under amivantamab or patritumab-deruxtecan in clinical trials. All patients had a biopsy at disease progression. Four patients harboring EGFR gene mutations were included. Three of them received anterior anti-EGFR treatment. Median delay to disease progression was 15 months (range: 4-24). At progression, all tumors presented a mutation in the TP53 signaling pathway associated with a loss of heterozygosis (LOH) of the allele in 75% (n = 3), and two tumors (50%) presented an RB1 mutation associated with LOH. Ki67 expression increased above 50% (range 50-90%) in all samples compared to baseline (range 10-30%), and one tumor expressed a positive neuroendocrine marker at progression. Our work reports the potential molecular mechanisms of resistance under novel anti-EGFR in patients with metastatic EGFR-mutated lung adenocarcinoma, with the transformation to a more aggressive histology with acquired TP53 mutation and/or the increase in Ki67 expression. These characteristics are usually found in aggressive Small Cell Lung Cancer.
Collapse
Affiliation(s)
- Clémence Basse
- Institut du Thorax Curie Montsouris, 75005 Paris, France
- Paris Saclay Campus, Versailles Saint Quentin University, 78000 Versailles, France
| | | | - Julien Masliah
- Genetics Department, Institut Curie, 75005 Paris, France
| | - Céline Callens
- Genetics Department, Institut Curie, 75005 Paris, France
| | - Maud Kamal
- Department of Drug Development and Innovation, Institut Curie, 75005 Paris, France
| | - Paul Freneaux
- Pathology Department, Institut Curie, 75005 Paris, France
| | | | - Ivan Bieche
- Genetics Department, Institut Curie, 75005 Paris, France
- Genetics Department, University Paris Descartes, 75005 Paris, France
| | - Nicolas Girard
- Institut du Thorax Curie Montsouris, 75005 Paris, France
- Paris Saclay Campus, Versailles Saint Quentin University, 78000 Versailles, France
- Correspondence:
| |
Collapse
|