1
|
Lu X, Pei Y, Peng H, Li M, Li J, Yao Y, Wang L. PINK1 suppresses malignant phenotypes in esophageal squamous cell carcinoma. World J Surg Oncol 2025; 23:225. [PMID: 40490793 DOI: 10.1186/s12957-025-03879-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 06/01/2025] [Indexed: 06/11/2025] Open
Abstract
OBJECTIVE Esophageal squamous cell carcinoma (ESCC) is a common tumor characterized by a poor prognosis. PINK1 is strongly associated with tumorigenesis. However, the role of PINK1 in the progression of ESCC has not been elucidated. METHODS The expression levels of PINK1 in tumor samples and corresponding normal tissues were evaluated using RNA-sequencing and gene expression array datasets. Pathway enrichment and immune infiltration analyses were performed to explore the role of PINK1 in ESCC development. Subsequently, cell counting kit-8, colony-forming assay, and Transwell assays were implemented to measure the proliferation and motility of ESCC cells. The glucose, ATP, pyruvate, and lactate concentrations were measured using suitable assay kits. RESULTS PINK1 expression was significantly lower in ESCC samples across independent cohorts. In vitro assays demonstrated that PINK1 could inhibit the proliferation, migration, and invasive capabilities of ESCC cells. Furthermore, PINK1 could decrease intracellular glucose, lactic acid, pyruvic acid, and ATP levels in ESCC cells, whereas the glycolytic inhibitor 2-DG could abrogate its effect. Additionally, immunosuppressive-related gene sets were enriched in the PINK1 low-expression group. Immune infiltration analysis revealed that PINK1 expression was positively correlated with dendritic cells and T helper 1 cells within the tumor microenvironment. CONCLUSIONS PINK1 inhibits cell growth, movement, glycolysis, and immune activation in ESCC, making it a promising therapeutic target.
Collapse
Affiliation(s)
- Xiangyun Lu
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital/School of Medicine, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Yuhui Pei
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital/School of Medicine, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Hao Peng
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital/School of Medicine, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Man Li
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital/School of Medicine, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Jing Li
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital/School of Medicine, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Yongkun Yao
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital/School of Medicine, Shihezi University, Shihezi, Xinjiang, China.
- Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
| | - Lianghai Wang
- Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
| |
Collapse
|
2
|
Chen J, Xiao S, Yan X, Wei Y, Song W. Mechanism of SMYD2 promoting stemness maintenance of bladder cancer stem cells by regulating PYCR1 expression and PINK1/Parkin mitophagy pathway. Int J Oncol 2025; 66:41. [PMID: 40341538 PMCID: PMC12068851 DOI: 10.3892/ijo.2025.5747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 02/12/2025] [Indexed: 05/10/2025] Open
Abstract
SET and MYND domain‑containing protein 2 (SMYD2), an identified protein‑lysine methyltransferase, is key for bladder cancer (BC) progression. The tumor‑formation capacity and metastatic potential of bladder cancer stem cells (BCSCs) are due to their stemness characteristics. The present study explores the mechanism of SMYD2 in promoting BCSC stemness maintenance by pyrroline‑5‑carboxylate reductase 1 (PYCR1). BC cells were treated with PYCR1, SMYD2 and putative kinase 1 (PINK1) small interfering (si)RNA, pcDNA3.1‑PYCR1 and pcDNA3.1‑SMYD2. Mito‑Tracker Green and light chain‑3B (LC3B) expression, in vitro colony formation ability and tumor stemness were assessed, as well as histone H3 lysine 4 trimethylation (H3K4me3) enrichment and PYCR1, SMYD2, H3K4me3, LC3B II/I, p62, PINK1, Parkin, Nanog and SRY‑box transcription factor 2 (Sox2) expression. A nude mouse xenograft model was used for in vivo verification. PYCR1 mRNA and protein expression were elevated in BCSCs. Following PYCR1 or SMYD2 siRNA treatment, PYCR1, SMYD2 and CD44+CD33+ expression, cancer cell colony formation, number of tumor spheres and Nanog and Sox2 expression were decreased, but pcDNA3.1‑PYCR1 or pcDNA3.1‑SMYD2 transfection enhanced BCSC stemness maintenance. SMYD2 was associated with PYCR1 expression. SMYD2 upregulated PYCR1 expression through H3K4me3, subsequently activating the PINK1/Parkin mitophagy pathway, which supports maintenance of BCSC stemness.
Collapse
Affiliation(s)
- Junjie Chen
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410011, P.R. China
| | - Shuai Xiao
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410011, P.R. China
| | - Xieyu Yan
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410011, P.R. China
| | - Yongbao Wei
- Shengli Clinical Medical College of Fujian Medical University, Department of Urology, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Wei Song
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
3
|
Zhu Y, Cao M, Tang Y, Liu Y, Wang H, Qi J, Huang C, Yan C, Liu X, Jiang S, Luo Y, Wang S, Zhou B, Xu H, Lu YY, Wang L. Inhibition of PINK1 senses ROS signaling to facilitate neuroblastoma cell pyroptosis. Autophagy 2025:1-20. [PMID: 40160153 DOI: 10.1080/15548627.2025.2487037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025] Open
Abstract
Mitochondria serve as the primary source of intracellular reactive oxygen species (ROS), which play a critical role in orchestrating cell death pathways such as pyroptosis in various types of cancers. PINK1-mediated mitophagy effectively removes damaged mitochondria and reduces detrimental ROS levels, thereby promoting cell survival. However, the regulation of pyroptosis by PINK1 and ROS in neuroblastoma remains unclear. In this study, we demonstrate that inhibition or deficiency of PINK1 sensitizes ROS signaling and promotes pyroptosis in neuroblastoma cells via the BAX-caspase-GSDME signaling pathway. Specifically, inhibition of PINK1 by AC220 or knockout of PINK1 impairs mitophagy and enhances ROS production, leading to oxidation and oligomerization of TOMM20, followed by mitochondrial recruitment and activation of BAX. Activated BAX facilitates the release of CYCS (cytochrome c, somatic) from the mitochondria into the cytosol, activating CASP3 (caspase 3). Subsequently, activated CASP3 cleaves and activates GSDME, inducing pyroptosis. Furthermore, inhibition or deficiency of PINK1 potentiates the anti-tumor effects of the clinical ROS-inducing drug ethacrynic acid (EA) to inhibit neuroblastoma progression in vivo. Therefore, our study provides a promising intervention strategy for neuroblastoma through the induction of pyroptosis.Abbreviation: AC220, quizartinib; ANOVA, analysis of variance; ANXA5, annexin A5; BAX, BCL2 associated X, apoptosis regulator; BAK1, BCL2 antagonist/killer 1; CCCP, carbonyl cyanide m-chlorophenyl hydrazone; COX4/COX IV, cytochrome c oxidase subunit 4; CS, citrate synthase; CSC, cancer stem cell; CYCS, cytochrome c, somatic; DTT, dithiothreitol; DNA, deoxyribonucleic acid; EA, ethacrynic acid; Fer-1, ferroptosis inhibitor ferrostatin-1; FLT3, fms related tyrosine kinase 3; GSDMD, gasdermin D; GSDME, gasdermin E; kDa, kilodalton; LDH, lactate dehydrogenase; MFN1, mitofusin 1; MFN2, mitofusin 2; mito, mitochondria; mito-ROS, mitochondrial ROS; mtKeima, mitochondria-targeted monomeric keima-red; ml, microliter; MT-CO2, mitochondrially encoded cytochrome c oxidase II; NAC, antioxidant N-acetyl-L-cysteine; Nec-1, necroptosis inhibitor necrostatin-1; OMA1, OMA1 zinc metallopeptidase; OMM, outer mitochondrial membrane; PARP, poly(ADP-ribose) polymerase; PBS, phosphate-buffered saline; PI, propidium iodide; PINK1, PTEN induced kinase 1; PRKN/Parkin, parkin RBR E3 ubiquitin protein ligase; Q-VD, Q-VD-OPH; ROS, reactive oxygen species; sg, single guide; sh, short hairpin; STS, staurosporine; TOMM20, translocase of outer mitochondrial membrane 20; TIMM23, translocase of inner mitochondrial membrane 23; μm, micrometer; μM, micromolar.
Collapse
Affiliation(s)
- Yuyuan Zhu
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan, China
- Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong, China
| | - Min Cao
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan, China
- Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong, China
| | - Yancheng Tang
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan, China
- Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong, China
| | - Yifan Liu
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan, China
| | - Haiji Wang
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan, China
| | - Jiaqi Qi
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan, China
| | - Cainian Huang
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan, China
| | - Chenghao Yan
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan, China
- Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong, China
| | - Xu Liu
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan, China
- Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong, China
| | - Sijia Jiang
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan, China
| | - Yufei Luo
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan, China
- Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong, China
| | - Shaogui Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Bo Zhou
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan, China
| | - Haodong Xu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ying-Ying Lu
- Department of Medical Research, Seventh Affiliated Hospital, Sun Yatsen University, Shenzhen, Guangdong, China
| | - Liming Wang
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan, China
- Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Shang T, Jia Z, Li J, Cao H, Xu H, Cong L, Ma D, Wang X, Liu J. Unraveling the triad of hypoxia, cancer cell stemness, and drug resistance. J Hematol Oncol 2025; 18:32. [PMID: 40102937 PMCID: PMC11921735 DOI: 10.1186/s13045-025-01684-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/05/2025] [Indexed: 03/20/2025] Open
Abstract
In the domain of addressing cancer resistance, challenges such as limited effectiveness and treatment resistance remain persistent. Hypoxia is a key feature of solid tumors and is strongly associated with poor prognosis in cancer patients. Another significant portion of the development of acquired drug resistance is attributed to tumor stemness. Cancer stem cells (CSCs), a small tumor cell subset with self-renewal and proliferative abilities, are crucial for tumor initiation, metastasis, and intra-tumoral heterogeneity. Studies have shown a significant association between hypoxia and CSCs in the context of tumor resistance. Recent studies reveal a strong link between hypoxia and tumor stemness, which together promote tumor survival and progression during treatment. This review elucidates the interplay between hypoxia and CSCs, as well as their correlation with resistance to therapeutic drugs. Targeting pivotal genes associated with hypoxia and stemness holds promise for the development of novel therapeutics to combat tumor resistance.
Collapse
Affiliation(s)
- Tongxuan Shang
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Ziqi Jia
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jiayi Li
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Heng Cao
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hengyi Xu
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lin Cong
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Dongxu Ma
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiang Wang
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jiaqi Liu
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
5
|
Borankova K, Solny M, Krchniakova M, Skoda J. Depleting chemoresponsive mitochondrial fission mediator DRP1 does not mitigate sarcoma resistance. Life Sci Alliance 2025; 8:e202402870. [PMID: 39643272 PMCID: PMC11629689 DOI: 10.26508/lsa.202402870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024] Open
Abstract
Specific patterns of mitochondrial dynamics have been repeatedly reported to promote drug resistance in cancer. However, whether targeting mitochondrial fission- and fusion-related proteins could be leveraged to combat multidrug-resistant pediatric sarcomas is poorly understood. Here, we demonstrated that the expression and activation of the mitochondrial fission mediator DRP1 are affected by chemotherapy exposure in common pediatric sarcomas, namely, rhabdomyosarcoma and osteosarcoma. Unexpectedly, decreasing DRP1 activity through stable DRP1 knockdown neither attenuated sarcoma drug resistance nor affected growth rate or mitochondrial network morphology. The minimal impact on sarcoma cell physiology, along with the up-regulation of fission adaptor proteins (MFF and FIS1) detected in rhabdomyosarcoma cells, suggests an alternative DRP1-independent mitochondrial fission mechanism that may efficiently compensate for the lack of DRP1 activity. By exploring the upstream mitophagy and mitochondrial fission regulator, AMPKα1, we found that markedly reduced AMPKα1 levels are sufficient to maintain AMPK signaling capacity without affecting chemosensitivity. Collectively, our findings challenge the direct involvement of DRP1 in pediatric sarcoma drug resistance and highlight the complexity of yet-to-be-characterized noncanonical regulators of mitochondrial dynamics.
Collapse
Affiliation(s)
- Karolina Borankova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Matyas Solny
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Maria Krchniakova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jan Skoda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| |
Collapse
|
6
|
Li X, Chaouhan HS, Yu S, Wang I, Yu T, Chuang Y, Chen K, Lin F, Chen MY, Hsu C, Sun K, Li C. Hypoxia-Induced Metabolic and Functional Changes in Oral CSCs: Implications for Stemness and Viability Modulation Through BNIP3-Driven Mitophagy. J Cell Mol Med 2025; 29:e70400. [PMID: 39945227 PMCID: PMC11822456 DOI: 10.1111/jcmm.70400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 01/07/2025] [Accepted: 01/15/2025] [Indexed: 02/16/2025] Open
Abstract
Oral squamous cell carcinomas (OSCCs), like several solid tumours, contain heterogeneous subpopulations of a small subset of cancer cells, termed cancer stem cells (CSCs), that are highly relevant to cancer metastasis and invasive properties. CSCs have also shown a high capacity to survive against various stressful environments, such as hypoxia. However, the molecular underpinnings behind the high potential of CSCs to survive under this stress remain unclear. The current study aimed to investigate the significance of autophagy systems in oral CSC maintenance and survival under stress conditions. Human OSCC cell lines OECM-1 and OECM-1 CSCs were cultured in different hypoxic time periods for proliferation and cytotoxicity analyses. The stemness property of CSCs is evaluated by sphere formation, transwell and wound healing assays protein expression of stemness, and epithelial-to-mesenchymal transition markers. Mitochondrial functions, including mitochondrial ROS generation, mitochondria dynamics, mitophagy, and mitochondrial metabolism (glycolysis and oxidative phosphorylation [OXPHOS]) were examined by western blotting, immunohistochemistry, and XF-seahorse assays, respectively. Under hypoxia, oral CSCs showed a higher proliferation rate with increased invasion/migration/EMT properties than OECM-1 cells. Further, hypoxia-induced BNIP3-driven mitophagy was activated in OECM-1 CSCs than in OECM-1 cells, which also triggered a metabolic shift towards OXPHOS, and BNIP3/-L silencing by siRNA significantly attenuated OECM-1 CSCs stemness features. TCGA data analyses also revealed a higher BNIP3 expression in head and neck squamous carcinoma patients' tumour samples associated with lower patient survival. Collectively, our results revealed a BNIP3/-L-driven autophagy contributes to the OECM-1 CSCs stemness features under hypoxia, suggesting a novel therapeutic strategy involving BNIP3 and autophagy inhibition in oral CSCs.
Collapse
Affiliation(s)
- Xin Li
- Graduate Institute of Biomedical SciencesChina Medical UniversityTaichungTaiwan
| | | | - Shao‐Hua Yu
- Department of Emergency MedicineChina Medical University HospitalTaichungTaiwan
| | - I‐Kuan Wang
- Division of NephrologyChina Medical University HospitalTaichungTaiwan
- Department of Internal Medicine, School of MedicineChina Medical UniversityTaichungTaiwan
| | - Tung‐Min Yu
- Division of Nephrology, Department of Internal MedicineTaichung Veterans General HospitalTaichungTaiwan
- School of MedicineChina Medical UniversityTaichungTaiwan
| | - Ya‐Wen Chuang
- Division of Nephrology, Department of Internal MedicineTaichung Veterans General HospitalTaichungTaiwan
- Department of Post‐Baccalaureate Medicine, College of MedicineNational Chung Hsing UniversityTaichungTaiwan
| | - Kuen‐Bao Chen
- Department of AnesthesiologyChina Medical University HospitalTaichungTaiwan
| | - Feng‐Yen Lin
- Taipei Heart InstituteTaipei Medical UniversityTaipeiTaiwan
- Division of Cardiology and Cardiovascular Research CenterTaipei Medical University HospitalTaipeiTaiwan
- Department of Internal Medicine, College of Medicine, School of MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Michael Yuan‐Chien Chen
- School of DentistryChina Medical UniversityTaichungTaiwan
- Department of DentistryChina Medical University HospitalTaichungTaiwan
| | - Che‐Hao Hsu
- Department of AnesthesiologyTungs' Taichung Metroharbor HospitalTaichungTaiwan
| | - Kuo‐Ting Sun
- School of DentistryChina Medical UniversityTaichungTaiwan
- Department of DentistryChina Medical University HospitalTaichungTaiwan
- Department of Pediatric DentistryChina Medical University HospitalTaichungTaiwan
| | - Chi‐Yuan Li
- Graduate Institute of Biomedical SciencesChina Medical UniversityTaichungTaiwan
- Department of AnesthesiologyChina Medical University HospitalTaichungTaiwan
| |
Collapse
|
7
|
Xu W, Dong L, Dai J, Zhong L, Ouyang X, Li J, Feng G, Wang H, Liu X, Zhou L, Xia Q. The interconnective role of the UPS and autophagy in the quality control of cancer mitochondria. Cell Mol Life Sci 2025; 82:42. [PMID: 39800773 PMCID: PMC11725563 DOI: 10.1007/s00018-024-05556-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025]
Abstract
Uncontrollable cancer cell growth is characterized by the maintenance of cellular homeostasis through the continuous accumulation of misfolded proteins and damaged organelles. This review delineates the roles of two complementary and synergistic degradation systems, the ubiquitin-proteasome system (UPS) and the autophagy-lysosome system, in the degradation of misfolded proteins and damaged organelles for intracellular recycling. We emphasize the interconnected decision-making processes of degradation systems in maintaining cellular homeostasis, such as the biophysical state of substrates, receptor oligomerization potentials (e.g., p62), and compartmentalization capacities (e.g., membrane structures). Mitochondria, the cellular hubs for respiration and metabolism, are implicated in tumorigenesis. In the subsequent sections, we thoroughly examine the mechanisms of mitochondrial quality control (MQC) in preserving mitochondrial homeostasis in human cells. Notably, we explored the relationships between mitochondrial dynamics (fusion and fission) and various MQC processes-including the UPS, mitochondrial proteases, and mitophagy-in the context of mitochondrial repair and degradation pathways. Finally, we assessed the potential of targeting MQC (including UPS, mitochondrial molecular chaperones, mitochondrial proteases, mitochondrial dynamics, mitophagy and mitochondrial biogenesis) as cancer therapeutic strategies. Understanding the mechanisms underlying mitochondrial homeostasis may offer novel insights for future cancer therapies.
Collapse
Affiliation(s)
- Wanting Xu
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Lei Dong
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Ji Dai
- Institute of International Technology and Economy, Development Research Center of the State Council, Beijing, 102208, China
| | - Lu Zhong
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiao Ouyang
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Jiaqian Li
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Gaoqing Feng
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Huahua Wang
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Xuan Liu
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Liying Zhou
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Qin Xia
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
8
|
Elhinnawi MA, Boushra MI, Hussien DM, Hussein FH, Abdelmawgood IA. Mitochondria's Role in the Maintenance of Cancer Stem Cells in Hepatocellular Carcinoma. Stem Cell Rev Rep 2025; 21:198-210. [PMID: 39422808 DOI: 10.1007/s12015-024-10797-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2024] [Indexed: 10/19/2024]
Abstract
Hepatocellular carcinoma (HCC) is the predominant form of liver cancer and is recognized as a major contributor to cancer-related mortality worldwide. Cancer stem cells (CSCs) are a tiny group of cancer cells that possess a significant ability to regenerate themselves, form tumors, and undergo differentiation. CSCs have a pivotal role in the initiation, spread, recurrence, and resistance to treatment of cancer. As a result, they are very susceptible to being targeted for therapeutic intervention. The potential to cure HCC may be achieved by efficiently targeting drugs that eradicate cancer stem cells. Mitochondria have a crucial function in granting drug resistance to cancer stem cells by means of mitochondrial metabolism, biogenesis, and dynamics. Dysfunction in mitochondrial metabolic processes, such as mitochondrial oxidative phosphorylation (OXPHOS), calcium signaling, and reactive oxygen species (ROS) generation, contributes to the initiation and progression of human malignancies, including HCC. ROS have both beneficial and detrimental effects depending on their concentration. Consequently, ROS have become a prominent subject in the study of the fundamental mechanisms of HCC. Furthermore, an imbalance in the process of creating new mitochondria is a characteristic feature of CSCs, and an increase in mitochondrial biogenesis is associated with the heightened resistance observed in CSCs. This article provides a detailed examination of the involvement of mitochondria in the preservation of CSCs, as well as the spread of HCC. A deeper understanding of how mitochondria participate in tumorigenesis and drug resistance could result in the discovery of novel cancer treatments.
Collapse
Affiliation(s)
- Manar A Elhinnawi
- Experimental Pathology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt
| | | | | | | | | |
Collapse
|
9
|
Hsiao YC, Chang CW, Yeh CT, Ke PY. Hepatitis C Virus NS5A Activates Mitophagy Through Cargo Receptor and Phagophore Formation. Pathogens 2024; 13:1139. [PMID: 39770398 PMCID: PMC11680023 DOI: 10.3390/pathogens13121139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/30/2025] Open
Abstract
Chronic HCV infection is a risk factor for end-stage liver disease, leading to a major burden on public health. Mitophagy is a specific form of selective autophagy that eliminates mitochondria to maintain mitochondrial integrity. HCV NS5A is a multifunctional protein that regulates the HCV life cycle and may induce host mitophagy. However, the molecular mechanism by which HCV NS5A activates mitophagy remains largely unknown. Here, for the first time, we delineate the dynamic process of HCV NS5A-activated PINK1/Parkin-dependent mitophagy. By performing live-cell imaging and CLEM analyses of HCV NS5A-expressing cells, we demonstrate the degradation of mitochondria within autophagic vacuoles, a process that is dependent on Parkin and ubiquitin translocation onto mitochondria and PINK1 stabilization. In addition, the cargo receptors of mitophagy, NDP52 and OPTN, are recruited to the mitochondria and required for HCV NS5A-induced mitophagy. Moreover, ATG5 and DFCP1, which function in autophagosome closure and phagophore formation, are translocated near mitochondria for HCV NS5A-induced mitophagy. Furthermore, autophagy-initiating proteins, including ATG14 and ULK1, are recruited near the mitochondria for HCV NS5A-triggered mitophagy. Together, these findings demonstrate that HCV NS5A may induce PINK1/Parkin-dependent mitophagy through the recognition of mitochondria by cargo receptors and the nascent formation of phagophores close to mitochondria.
Collapse
Affiliation(s)
- Yuan-Chao Hsiao
- Department of Biochemistry & Molecular Biology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-C.H.); (C.-W.C.)
| | - Chih-Wei Chang
- Department of Biochemistry & Molecular Biology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-C.H.); (C.-W.C.)
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
| | - Po-Yuan Ke
- Department of Biochemistry & Molecular Biology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-C.H.); (C.-W.C.)
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
| |
Collapse
|
10
|
Ju S, Singh MK, Han S, Ranbhise J, Ha J, Choe W, Yoon KS, Yeo SG, Kim SS, Kang I. Oxidative Stress and Cancer Therapy: Controlling Cancer Cells Using Reactive Oxygen Species. Int J Mol Sci 2024; 25:12387. [PMID: 39596452 PMCID: PMC11595237 DOI: 10.3390/ijms252212387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/31/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Cancer is a multifaceted disease influenced by various mechanisms, including the generation of reactive oxygen species (ROS), which have a paradoxical role in both promoting cancer progression and serving as targets for therapeutic interventions. At low concentrations, ROS serve as signaling agents that enhance cancer cell proliferation, migration, and resistance to drugs. However, at elevated levels, ROS induce oxidative stress, causing damage to biomolecules and leading to cell death. Cancer cells have developed mechanisms to manage ROS levels, including activating pathways such as NRF2, NF-κB, and PI3K/Akt. This review explores the relationship between ROS and cancer, focusing on cell death mechanisms like apoptosis, ferroptosis, and autophagy, highlighting the potential therapeutic strategies that exploit ROS to target cancer cells.
Collapse
Affiliation(s)
- Songhyun Ju
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jyotsna Ranbhise
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Sik Yoon
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung Geun Yeo
- Department of Otorhinolaryngology—Head and Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Kyung Hee University, Seoul 02453, Republic of Korea;
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
11
|
Raali R, Sivakumar N, Vardhan J H, P K S. Targeting mitochondrial dynamics: an in-silico approach for repurposing antifungal drugs in OSCC treatment. J Biomol Struct Dyn 2024:1-14. [PMID: 39530920 DOI: 10.1080/07391102.2024.2425831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/14/2024] [Indexed: 11/16/2024]
Abstract
Drug repurposing for cancer treatment is a valuable strategy to identify existing drugs with known safety profiles that could combat the neoplasm, by reducing costs. Oral squamous cell carcinoma, an ulcer-proliferative lesion on the mucosal epithelium, is the most common oral malignancy. About 10% of cancer patients within the Indian subcontinent suffer from OSCC, primarily due to chewing of betel plant derivatives. Concomitant administration of the chemotherapeutic agent (Cisplatin/Paclitaxel) is the treatment of choice. Analysis of the oral mycobiome of OSCC patients has projected the role of Candida albicans in potentiating OSCC. Hence, repurposing antifungal drugs emerges as a promising approach, as these drugs could target both the cancer cells and the infection. Cancer cells often have heightened energy requirements, and targeting mitochondrial proteins to disrupt mitochondrial division and induce dysfunction contributing to cell death, offers a method for treating OSCC. We identified 18 mitochondrial targets playing a crucial role in the maintenance of mitochondrial homeostasis. They were docked against 125 antifungal ligand molecules sourced from PUBCHEM. Ligand profiling was performed using Lipinski's rule of 5, SwissADME and ProTox. Also, molecular dynamics and MM-PBSA were performed to validate our results. Among all protein ligand interactions, we observed that targeting DRP1 with itraconazole yielded superior binding and stability. Overall, lower toxicity and thumping ADME properties solidified the choice of ligand. We hope this experimental approach will enable us to provide a basis for selecting a lead molecule for a possible novel nano-formulation and validate our finding through in-vitro cell line-based testing.
Collapse
Affiliation(s)
| | | | | | - Suresh P K
- Department of Biomedical Sciences, SBST, VIT, Vellore
| |
Collapse
|
12
|
Ke PY, Yeh CT. Functional Role of Hepatitis C Virus NS5A in the Regulation of Autophagy. Pathogens 2024; 13:980. [PMID: 39599533 PMCID: PMC11597459 DOI: 10.3390/pathogens13110980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/30/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Many types of RNA viruses, including the hepatitis C virus (HCV), activate autophagy in infected cells to promote viral growth and counteract the host defense response. Autophagy acts as a catabolic pathway in which unnecessary materials are removed via the lysosome, thus maintaining cellular homeostasis. The HCV non-structural 5A (NS5A) protein is a phosphoprotein required for viral RNA replication, virion assembly, and the determination of interferon (IFN) sensitivity. Recently, increasing evidence has shown that HCV NS5A can induce autophagy to promote mitochondrial turnover and the degradation of hepatocyte nuclear factor 1 alpha (HNF-1α) and diacylglycerol acyltransferase 1 (DGAT1). In this review, we summarize recent progress in understanding the detailed mechanism by which HCV NS5A triggers autophagy, and outline the physiological significance of the balance between host-virus interactions.
Collapse
Affiliation(s)
- Po-Yuan Ke
- Department of Biochemistry and Molecular Biology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
| |
Collapse
|
13
|
Hatawsh A, Al-Haddad RH, Okafor UG, Diab LM, Dekanoidze N, Abdulwahab AA, Mohammed OA, Doghish AS, Moussa R, Elimam H. Mitoepigenetics pathways and natural compounds: a dual approach to combatting hepatocellular carcinoma. Med Oncol 2024; 41:302. [PMID: 39465473 DOI: 10.1007/s12032-024-02538-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024]
Abstract
Hepatocellular carcinoma (HCC) is a leading liver cancer that significantly impacts global life expectancy and remains challenging to treat due to often late diagnoses. Despite advances in treatment, the prognosis is still poor, especially in advanced stages. Studies have pointed out that investigations into the molecular mechanisms underlying HCC, including mitochondrial dysfunction and epigenetic regulators, are potentially important targets for diagnosis and therapy. Mitoepigenetics, or the epigenetic modifications of mitochondrial DNA, have drawn wide attention for their role in HCC progression. Besides, molecular biomarkers such as mitochondrial DNA alterations and non-coding RNAs showed early diagnosis and prognosis potential. Additionally, natural compounds like alkaloids, resveratrol, curcumin, and flavonoids show promise in HCC show promise in modulating mitochondrial and epigenetic pathways involved in cancer-related processes. This review discusses how mitochondrial dysfunction and epigenetic modifications, especially mitoepigenetics, influence HCC and delves into the potential of natural products as new adjuvant treatments against HCC.
Collapse
Affiliation(s)
- Abdulrahman Hatawsh
- Biotechnology School, Nile University, 26th of July Corridor, Sheikh Zayed City, Giza, 12588, Egypt
| | - Roya Hadi Al-Haddad
- Research and Technology Center of Environment, Water and Renewable Energy, Scientific Research Commission, Baghdad, Iraq
| | | | - Lamis M Diab
- Department of Medical Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | | | | | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt.
| | - Rewan Moussa
- Faculty of Medicine, Helwan University, Helwan, Cairo, 11795, Egypt
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sādāt, 32897, Egypt.
| |
Collapse
|
14
|
Niharika, Garg M. Understanding the autophagic functions in cancer stem cell maintenance and therapy resistance. Expert Rev Mol Med 2024; 26:e23. [PMID: 39375840 PMCID: PMC11488345 DOI: 10.1017/erm.2024.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/25/2023] [Accepted: 06/25/2024] [Indexed: 10/09/2024]
Abstract
Complex tumour ecosystem comprising tumour cells and its associated tumour microenvironment (TME) constantly influence the tumoural behaviour and ultimately impact therapy failure, disease progression, recurrence and poor overall survival of patients. Crosstalk between tumour cells and TME amplifies the complexity by creating metabolic changes such as hypoxic environment and nutrient fluctuations. These changes in TME initiate stem cell-like programmes in cancer cells, contribute to tumoural heterogeneity and increase tumour robustness. Recent studies demonstrate the multifaceted role of autophagy in promoting fibroblast production, stemness, cancer cell survival during longer periods of dormancy, eventual growth of metastatic disease and disease resistance. Recent ongoing studies examine autophagy/mitophagy as a powerful survival strategy in response to environmental stress including nutrient deprivation, hypoxia and environmental stress in TME. It prevents irreversible senescence, promotes dormant stem-like state, induces epithelial-mesenchymal transition and increases migratory and invasive potential of tumour cells. The present review discusses various theories and mechanisms behind the autophagy-dependent induction of cancer stem cell (CSC) phenotype. Given the role of autophagic functions in CSC aggressiveness and therapeutic resistance, various mechanisms and studies based on suppressing cellular plasticity by blocking autophagy as a powerful therapeutic strategy to kill tumour cells are discussed.
Collapse
Affiliation(s)
- Niharika
- Department of Biochemistry, University of Lucknow, Lucknow 226007, India
| | - Minal Garg
- Department of Biochemistry, University of Lucknow, Lucknow 226007, India
| |
Collapse
|
15
|
Deepak K, Roy PK, Das CK, Mukherjee B, Mandal M. Mitophagy at the crossroads of cancer development: Exploring the role of mitophagy in tumor progression and therapy resistance. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119752. [PMID: 38776987 DOI: 10.1016/j.bbamcr.2024.119752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/27/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Preserving a functional mitochondrial network is crucial for cellular well-being, considering the pivotal role of mitochondria in ensuring cellular survival, especially under stressful conditions. Mitophagy, the selective removal of damaged mitochondria through autophagy, plays a pivotal role in preserving cellular homeostasis by preventing the production of harmful reactive oxygen species from dysfunctional mitochondria. While the involvement of mitophagy in neurodegenerative diseases has been thoroughly investigated, it is becoming increasingly evident that mitophagy plays a significant role in cancer biology. Perturbations in mitophagy pathways lead to suboptimal mitochondrial quality control, catalyzing various aspects of carcinogenesis, including establishing metabolic plasticity, stemness, metabolic reconfiguration of cancer-associated fibroblasts, and immunomodulation. While mitophagy performs a delicate balancing act at the intersection of cell survival and cell death, mounting evidence indicates that, particularly in the context of stress responses induced by cancer therapy, it predominantly promotes cell survival. Here, we showcase an overview of the current understanding of the role of mitophagy in cancer biology and its potential as a target for cancer therapy. Gaining a more comprehensive insight into the interaction between cancer therapy and mitophagy has the potential to reveal novel targets and pathways, paving the way for enhanced treatment strategies for therapy-resistant tumors in the near future.
Collapse
Affiliation(s)
- K Deepak
- Cancer Biology Lab, School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| | - Pritam Kumar Roy
- Cancer Biology Lab, School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| | - Chandan Kanta Das
- Cancer Biology Lab, School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA, 19104, USA
| | - Budhaditya Mukherjee
- Infectious Disease and Immunology Lab, School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| | - Mahitosh Mandal
- Cancer Biology Lab, School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| |
Collapse
|
16
|
Saw PE, Liu Q, Wong PP, Song E. Cancer stem cell mimicry for immune evasion and therapeutic resistance. Cell Stem Cell 2024; 31:1101-1112. [PMID: 38925125 DOI: 10.1016/j.stem.2024.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 03/11/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
Cancer stem cells (CSCs) are heterogeneous, possess self-renewal attributes, and orchestrate important crosstalk in tumors. We propose that the CSC state represents "mimicry" by cancer cells that leads to phenotypic plasticity. CSC mimicry is suggested as CSCs can impersonate immune cells, vasculo-endothelia, or lymphangiogenic cells to support cancer growth. CSCs facilitate both paracrine and juxtracrine signaling to prime tumor-associated immune and stromal cells to adopt pro-tumoral phenotypes, driving therapeutic resistance. Here, we outline the ingenuity of CSCs' mimicry in their quest to evade immune detection, which leads to immunotherapeutic resistance, and highlight CSC-mimicry-targeted therapeutic strategies for robust immunotherapy.
Collapse
Affiliation(s)
- Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Nanhai Clinical Translational Center, Sun Yat-sen Memorial Hospital, Foshan, China
| | - Qiang Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ping-Pui Wong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Nanhai Clinical Translational Center, Sun Yat-sen Memorial Hospital, Foshan, China
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Nanhai Clinical Translational Center, Sun Yat-sen Memorial Hospital, Foshan, China; Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Zenith Institute of Medical Sciences, Guangzhou 510120, China.
| |
Collapse
|
17
|
Sun F, Ding Z, Shao F, Gao X, Tian H, Zhang X, Chen H, Wang C. Albumin-Based MUC13 Peptide Nanomedicine Suppresses Liver Cancer Stem Cells via JNK-ERK Signaling Pathway-Mediated Autophagy Inhibition. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38968-38978. [PMID: 39024013 DOI: 10.1021/acsami.4c06034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Targeting liver cancer stem cells (LCSCs) is a promising strategy for hepatocellular carcinoma (HCC) therapy. Target selection and corresponding inhibitor screening are of vital importance for eliminating the stemness of LCSCs. Peptide-based agents are hopeful but have long been hindered for in vivo application. Herein, we selected a clinically significant target MUC13 and screened out a suitable peptide for preparation of an albumin-based MUC13 peptide nanomedicine, P3@HSA, which suppressed liver cancer stem cells via JNK-ERK signaling pathway-mediated autophagy inhibition. The selected target MUC13 was highly expressed in LCSCs and associated with the prognosis of liver cancer patients. Encouraged by this observation, we screened the corresponding peptide-based inhibitor P3 for further evaluation. P3 could interact with albumin through the intrinsic hydrophobic force and formed the nanomedicine P3@HSA. The prepared nanomedicine could inhibit LCSCs through JNK-ERK signaling pathway-mediated autophagy inhibition and exert potent antitumor effect both in vitro and in vivo. Together, this study provides a promising peptide-based nanomedicine for high-performance HCC treatment.
Collapse
Affiliation(s)
- Fen Sun
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zongyao Ding
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Fengying Shao
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Xiaoyang Gao
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Haina Tian
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Xiao Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huaqing Chen
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Changlong Wang
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| |
Collapse
|
18
|
Liu J, Li H, Dong Q, Liang Z. Multi omics analysis of mitophagy subtypes and integration of machine learning for predicting immunotherapy responses in head and neck squamous cell carcinoma. Aging (Albany NY) 2024; 16:10579-10614. [PMID: 38913914 PMCID: PMC11236326 DOI: 10.18632/aging.205964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/29/2024] [Indexed: 06/26/2024]
Abstract
Mitophagy serves as a critical mechanism for tumor cell death, significantly impacting the progression of tumors and their treatment approaches. There are significant challenges in treating patients with head and neck squamous cell carcinoma, underscoring the importance of identifying new targets for therapy. The function of mitophagy in head and neck squamous carcinoma remains uncertain, thus investigating its impact on patient outcomes and immunotherapeutic responses is especially crucial. We initially analyzed the differential expression, prognostic value, intergene correlations, copy number variations, and mutation frequencies of mitophagy-related genes at the pan-cancer level. Through unsupervised clustering, we divided head and neck squamous carcinoma into three subtypes with distinct prognoses, identified the signaling pathway features of each subtype using ssGSEA, and characterized subtype B as having features of an immune desert using various immune infiltration calculation methods. Using multi-omics data, we identified the genomic variation characteristics, mutated gene pathway features, and drug sensitivity features of the mitophagy subtypes. Utilizing a combination of 10 machine learning algorithms, we have developed a prognostic scoring model called Mitophagy Subgroup Risk Score (MSRS), which is used to predict patient survival and the response to immune checkpoint blockade therapy. Simultaneously, we applied MSRS to single-cell analysis to explore intercellular communication. Through laboratory experiments, we validated the biological function of SLC26A9, one of the genes in the risk model. In summary, we have explored the significant role of mitophagy in head and neck tumors through multi-omics data, providing new directions for clinical treatment.
Collapse
Affiliation(s)
- Junzhi Liu
- Department of Otorhinolaryngology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Huimin Li
- Laboratory of Cancer Cell Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Qiuping Dong
- Laboratory of Cancer Cell Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zheng Liang
- Department of Otorhinolaryngology, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
19
|
Mauro-Lizcano M, Sotgia F, Lisanti MP. Mitophagy and cancer: role of BNIP3/BNIP3L as energetic drivers of stemness features, ATP production, proliferation, and cell migration. Aging (Albany NY) 2024; 16:9334-9349. [PMID: 38834039 PMCID: PMC11210229 DOI: 10.18632/aging.205939] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/06/2024] [Indexed: 06/06/2024]
Abstract
Mitophagy is a selective form of autophagy which permits the removal of dysfunctional or excess mitochondria. This occurs as an adaptative response to physiological stressors, such as hypoxia, nutrient deprivation, or DNA damage. Mitophagy is promoted by specific mitochondrial outer membrane receptors, among which are BNIP3 and BNIP3L. The role of mitophagy in cancer is being widely studied, and more specifically in the maintenance of cancer stem cell (CSC) properties, such as self-renewal. Given that CSCs are responsible for treatment failure and metastatic capacity, targeting mitophagy could be an interesting approach for CSC elimination. Herein, we describe a new model system to enrich sub-populations of cancer cells with high basal levels of mitophagy, based on the functional transcriptional activity of BNIP3 and BNIP3L. Briefly, we employed a BNIP3(L)-promoter-eGFP-reporter system to isolate cancer cells with high BNIP3/BNIP3L transcriptional activity by flow cytometry (FACS). The model was validated by using complementary lysosomal and mitophagy-specific probes, as well as the mitochondrially-targeted red fluorescent protein (RFP), namely mt-Keima. High BNIP3/BNIP3L transcriptional activity was accompanied by increases in i) BNIP3/BNIP3L protein levels, ii) lysosomal mass, and iii) basal mitophagy activity. Furthermore, cancer cells with increased BNIP3/BNIP3L transcriptional activity exhibited CSC features, such as greater mammosphere-forming ability and high CD44 levels. To further explore the model, we also analysed other stemness characteristics in MCF7 and MDA-MB-231 breast cancer cell lines, directly demonstrating that BNIP3(L)-high cells were more metabolically active, proliferative, migratory, and drug-resistant, with elevated anti-oxidant capacity. Therefore, high levels of basal mitophagy appear to enhance CSC features.
Collapse
Affiliation(s)
- Marta Mauro-Lizcano
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, United Kingdom
| | - Federica Sotgia
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, United Kingdom
| | - Michael P. Lisanti
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, United Kingdom
| |
Collapse
|
20
|
Praharaj PP, Patra S, Singh A, Panigrahi DP, Lee HY, Kabir MF, Hossain MK, Patra SK, Patro BS, Patil S, Klionsky DJ, Chae HJ, Bhutia SK. CLU (clusterin) and PPARGC1A/PGC1α coordinately control mitophagy and mitochondrial biogenesis for oral cancer cell survival. Autophagy 2024; 20:1359-1382. [PMID: 38447939 PMCID: PMC11210931 DOI: 10.1080/15548627.2024.2309904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 03/08/2024] Open
Abstract
Mitophagy involves the selective elimination of defective mitochondria during chemotherapeutic stress to maintain mitochondrial homeostasis and sustain cancer growth. Here, we showed that CLU (clusterin) is localized to mitochondria to induce mitophagy controlling mitochondrial damage in oral cancer cells. Moreover, overexpression and knockdown of CLU establish its mitophagy-specific role, where CLU acts as an adaptor protein that coordinately interacts with BAX and LC3 recruiting autophagic machinery around damaged mitochondria in response to cisplatin treatment. Interestingly, CLU triggers class III phosphatidylinositol 3-kinase (PtdIns3K) activity around damaged mitochondria, and inhibition of mitophagic flux causes the accumulation of excessive mitophagosomes resulting in reactive oxygen species (ROS)-dependent apoptosis during cisplatin treatment in oral cancer cells. In parallel, we determined that PPARGC1A/PGC1α (PPARG coactivator 1 alpha) activates mitochondrial biogenesis during CLU-induced mitophagy to maintain the mitochondrial pool. Intriguingly, PPARGC1A inhibition through small interfering RNA (siPPARGC1A) and pharmacological inhibitor (SR-18292) treatment counteracts CLU-dependent cytoprotection leading to mitophagy-associated cell death. Furthermore, co-treatment of SR-18292 with cisplatin synergistically suppresses tumor growth in oral cancer xenograft models. In conclusion, CLU and PPARGC1A are essential for sustained cancer cell growth by activating mitophagy and mitochondrial biogenesis, respectively, and their inhibition could provide better therapeutic benefits against oral cancer.
Collapse
Affiliation(s)
- Prakash P. Praharaj
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Amruta Singh
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Debasna P. Panigrahi
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Hwa Y. Lee
- Department of Pharmacology, Jeonbuk National University Medical School, Jeonju, Jeonbuk, Republic of Korea
| | - Mohammad F. Kabir
- Department of Pharmacology, School of Medicine, Institute of New Drug Development, Jeonbuk National University, Jeonju, Republic of Korea
| | - Muhammad K. Hossain
- School of Pharmacy, Jeonbuk National University, Jeonju, Jeonbuk, Republic of Korea
| | - Samir K. Patra
- Laboratory of epigenetics, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Birija S. Patro
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Shankargouda Patil
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, USA
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Han J. Chae
- School of Pharmacy, Jeonbuk National University, Jeonju, Jeonbuk, Republic of Korea
- Non-Clinical Evaluation Center, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Jeonbuk, Republic of Korea
| | - Sujit K. Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| |
Collapse
|
21
|
Dasgupta A, Prensner JR. Upstream open reading frames: new players in the landscape of cancer gene regulation. NAR Cancer 2024; 6:zcae023. [PMID: 38774471 PMCID: PMC11106035 DOI: 10.1093/narcan/zcae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/24/2024] Open
Abstract
The translation of RNA by ribosomes represents a central biological process and one of the most dysregulated processes in cancer. While translation is traditionally thought to occur exclusively in the protein-coding regions of messenger RNAs (mRNAs), recent transcriptome-wide approaches have shown abundant ribosome activity across diverse stretches of RNA transcripts. The most common type of this kind of ribosome activity occurs in gene leader sequences, also known as 5' untranslated regions (UTRs) of the mRNA, that precede the main coding sequence. Translation of these upstream open reading frames (uORFs) is now known to occur in upwards of 25% of all protein-coding genes. With diverse functions from RNA regulation to microprotein generation, uORFs are rapidly igniting a new arena of cancer biology, where they are linked to cancer genetics, cancer signaling, and tumor-immune interactions. This review focuses on the contributions of uORFs and their associated 5'UTR sequences to cancer biology.
Collapse
Affiliation(s)
- Anwesha Dasgupta
- Chad Carr Pediatric Brain Tumor Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - John R Prensner
- Chad Carr Pediatric Brain Tumor Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
22
|
Li W, Huang C, Qiu L, Tang Y, Zhang X, Zhang L, Zhao H, Miyagishi M, Kasim V, Wu S. p52-ZER6/IGF1R axis maintains cancer stem cell population to promote cancer progression by enhancing pro-survival mitophagy. Oncogene 2024; 43:2115-2131. [PMID: 38773262 DOI: 10.1038/s41388-024-03058-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 05/23/2024]
Abstract
Cancer stem cells (CSCs), which are distinct subpopulations of tumor cells, have a substantially higher tumor-initiating capacity and are closely related to poor clinical outcomes. Damage to organelles can trigger CSC pool exhaustion; however, the underlying mechanisms are poorly understood. ZER6 is a zinc-finger protein with two isoforms possessing different amino termini: p52-ZER6 and p71-ZER6. Since their discovery, almost no study reported on their biological and pathological functions. Herein, we found that p52-ZER6 was crucial for CSC population maintenance; p52-ZER6-knocking down almost abolished the tumor initiation capability. Through transcriptomic analyses together with in vitro and in vivo studies, we identified insulin like growth factor 1 receptor (IGF1R) as the transcriptional target of p52-ZER6 that mediated p52-ZER6 regulation of CSC by promoting pro-survival mitophagy. Moreover, this regulation of mitophagy-mediated CSC population maintenance is specific to p52-ZER6, as p71-ZER6 failed to exert the same effect, most possibly due to the presence of the HUB1 domain at its N-terminus. These results provide a new perspective on the regulatory pathway of pro-survival mitophagy in tumor cells and the molecular mechanism underlying p52-ZER6 oncogenic activity, suggesting that targeting p52-ZER6/IGF1R axis to induce CSC pool exhaustion may be a promising anti-tumor therapeutic strategy.
Collapse
Affiliation(s)
- Wenfang Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi, 830017, China
| | - Can Huang
- Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, Anhui, 230032, China.
| | - Li Qiu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yu Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Xia Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Lei Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Hezhao Zhao
- Department of Gastrointestinal Surgery, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China
| | - Makoto Miyagishi
- Life Science Innovation, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki, 305-0006, Japan
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
23
|
Liu BH, Xu CZ, Liu Y, Lu ZL, Fu TL, Li GR, Deng Y, Luo GQ, Ding S, Li N, Geng Q. Mitochondrial quality control in human health and disease. Mil Med Res 2024; 11:32. [PMID: 38812059 PMCID: PMC11134732 DOI: 10.1186/s40779-024-00536-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/07/2024] [Indexed: 05/31/2024] Open
Abstract
Mitochondria, the most crucial energy-generating organelles in eukaryotic cells, play a pivotal role in regulating energy metabolism. However, their significance extends beyond this, as they are also indispensable in vital life processes such as cell proliferation, differentiation, immune responses, and redox balance. In response to various physiological signals or external stimuli, a sophisticated mitochondrial quality control (MQC) mechanism has evolved, encompassing key processes like mitochondrial biogenesis, mitochondrial dynamics, and mitophagy, which have garnered increasing attention from researchers to unveil their specific molecular mechanisms. In this review, we present a comprehensive summary of the primary mechanisms and functions of key regulators involved in major components of MQC. Furthermore, the critical physiological functions regulated by MQC and its diverse roles in the progression of various systemic diseases have been described in detail. We also discuss agonists or antagonists targeting MQC, aiming to explore potential therapeutic and research prospects by enhancing MQC to stabilize mitochondrial function.
Collapse
Affiliation(s)
- Bo-Hao Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Chen-Zhen Xu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zi-Long Lu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ting-Lv Fu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guo-Rui Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yu Deng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guo-Qing Luo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Song Ding
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
24
|
Ranjbar-Niavol F, Rezaei N, Zhao Y, Mirzaei H, Hassan M, Vosough M. P53/NANOG balance; the leading switch between poorly to well differentiated status in liver cancer cells. Front Oncol 2024; 14:1377761. [PMID: 38846985 PMCID: PMC11153735 DOI: 10.3389/fonc.2024.1377761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/22/2024] [Indexed: 06/09/2024] Open
Abstract
Enforcing a well-differentiated state on cells requires tumor suppressor p53 activation as a key player in apoptosis induction and well differentiation. In addition, recent investigations showed a significant correlation between poorly differentiated status and higher expression of NANOG. Inducing the expression of NANOG and decreasing p53 level switch the status of liver cancer cells from well differentiated to poorly status. In this review, we highlighted p53 and NANOG cross-talk in hepatocellular carcinoma (HCC) which is regulated through mitophagy and makes it a novel molecular target to attenuate cancerous phenotype in the management of this tumor.
Collapse
Affiliation(s)
- Fazeleh Ranjbar-Niavol
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Niloufar Rezaei
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Ying Zhao
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute and Karolinska University Hospital-Huddinge, Huddinge, Sweden
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute and Karolinska University Hospital-Huddinge, Huddinge, Sweden
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute and Karolinska University Hospital-Huddinge, Huddinge, Sweden
| |
Collapse
|
25
|
He A, Wu M, Pu Y, Li R, Zhang Y, He J, Xia Y, Ma Y. Fluoxetine as a Potential Therapeutic Agent for Inhibiting Melanoma Brain and Lung Metastasis: Induction of Apoptosis, G0/G1 Cell Cycle Arrest, and Disruption of Autophagy Flux. J Cancer 2024; 15:3825-3840. [PMID: 38911391 PMCID: PMC11190770 DOI: 10.7150/jca.95592] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/01/2024] [Indexed: 06/25/2024] Open
Abstract
Brain metastases and lung metastases are major causes of treatment failure and related mortality in melanoma. Fluoxetine hydrochloride (FXT), a widely-used antidepressant, has emerged as a potential anticancer agent in preclinical studies. Previous research has shown its potential to inhibit melanoma. However, its efficacy and the underlying mechanisms in melanoma metastasis, especially concerning brain metastases and lung metastases, remain underexplored. This study investigates FXT's inhibitory effects on melanoma growth and metastasis to the lung and brain. Employing a combination of in vitro assays, we demonstrate FXT's potent suppression of melanoma growth through induction of intrinsic apoptosis, disruption of autophagic flux, and cell cycle arrest at the G0/G1 phase. In in vivo mouse models, we found that FXT exhibits strong inhibitory activity against melanoma brain metastases and lung metastases. Our findings provide a foundation for future clinical exploration of FXT as a novel treatment strategy for melanoma, underscoring its ability to target both primary and metastatic lesions.
Collapse
Affiliation(s)
- Anqi He
- Department of Rehabilitation Medicine and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mengling Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yamin Pu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ru Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yiwen Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing He
- Department of Rehabilitation Medicine and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yong Xia
- Department of Rehabilitation Medicine and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yimei Ma
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
26
|
Chen P, Yao L, Yuan M, Wang Z, Zhang Q, Jiang Y, Li L. Mitochondrial dysfunction: A promising therapeutic target for liver diseases. Genes Dis 2024; 11:101115. [PMID: 38299199 PMCID: PMC10828599 DOI: 10.1016/j.gendis.2023.101115] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/15/2023] [Accepted: 08/10/2023] [Indexed: 02/02/2024] Open
Abstract
The liver is an important metabolic and detoxification organ and hence demands a large amount of energy, which is mainly produced by the mitochondria. Liver tissues of patients with alcohol-related or non-alcohol-related liver diseases contain ultrastructural mitochondrial lesions, mitochondrial DNA damage, disturbed mitochondrial dynamics, and compromised ATP production. Overproduction of mitochondrial reactive oxygen species induces oxidative damage to mitochondrial proteins and mitochondrial DNA, decreases mitochondrial membrane potential, triggers hepatocyte inflammation, and promotes programmed cell death, all of which impair liver function. Mitochondrial DNA may be a potential novel non-invasive biomarker of the risk of progression to liver cirrhosis and hepatocellular carcinoma in patients infected with the hepatitis B virus. We herein present a review of the mechanisms of mitochondrial dysfunction in the development of acute liver injury and chronic liver diseases, such as hepatocellular carcinoma, viral hepatitis, drug-induced liver injury, alcoholic liver disease, and non-alcoholic fatty liver disease. This review also discusses mitochondrion-centric therapies for treating liver diseases.
Collapse
Affiliation(s)
- Ping Chen
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Lichao Yao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Mengqin Yuan
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zheng Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Qiuling Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yingan Jiang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Lanjuan Li
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
27
|
Feng MX, Zou H, Lu YQ. Severe liver injury and clinical characteristics of occupational exposure to 2-amino-5-chloro-N,3-dimethylbenzamide: A case series. Hepatobiliary Pancreat Dis Int 2024; 23:186-194. [PMID: 37903709 DOI: 10.1016/j.hbpd.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/20/2023] [Indexed: 11/01/2023]
Abstract
BACKGROUND The 2-amino-5-chloro-N,3-dimethylbenzamide is a key intermediate in the synthesis of pesticides and pharmaceuticals. However, no literature currently exists on 2-amino-5-chloro-N,3-dimethylbenzamide poisoning in humans. This study aimed to reveal the health hazard of this chemical for humans and summarize the clinical characteristics of patients with occupational 2-amino-5-chloro-N,3-dimethylbenzamide poisoning. METHODS This observational study included four patients with 2-amino-5-chloro-N,3-dimethylbenzamide poisoning from June 2022 to July 2022. The entire course of the incidents was described in detail. Blood 2-amino-5-chloro-N,3-dimethylbenzamide concentrations were detected by a mass spectrometer. Hematoxylin and eosin staining was performed to assess liver injury, and immunofluorescence was used to evaluate hepatic mitophagy. RESULTS The 2-amino-5-chloro-N,3-dimethylbenzamide powder (99% purity) entered the human body mainly via the skin and respiratory tract due to poor personal protective measures. The typical course of 2-amino-5-chloro-N,3-dimethylbenzamide poisoning was divided into latency, rash, fever, organic damage, and recovery phases in accordance with the clinical evolution. Rash and fever may be the important premonitory symptoms for further organ injuries. The chemical was detected in the blood of all patients and caused multiple organ injuries, predominantly liver injury, including kidney, myocardium, and microcirculation. Three patients recovered smoothly after comprehensive treatments, including artificial liver therapy, continuous renal replacement therapy, glucocorticoids, and other symptomatic and supportive treatments. One patient survived by liver transplantation. The postoperative pathological findings of the removed liver showed acute liver failure, and immunofluorescence staining confirmed the abundance of mitophagy in residual hepatocytes. CONCLUSIONS This study is the first to elaborate the clinical characteristics of patients with 2-amino-5-chloro-N,3-dimethylbenzamide poisoning. The chemical enters the body through the respiratory tract and skin during industrial production. The 2-amino-5-chloro-N,3-dimethylbenzamide poisoning causes multiple-organ dysfunction with a predominance of liver injury. Liver transplantation may be an effective option for patients with severe liver failure. The mechanisms of liver injury induced by 2-amino-5-chloro-N,3-dimethylbenzamide might involve abnormal mitochondrial function and mitophagy.
Collapse
Affiliation(s)
- Meng-Xiao Feng
- Department of Emergency Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou 310003, China
| | - Hua Zou
- Occupational Health and Radiation Protection Institute, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Yuan-Qiang Lu
- Department of Emergency Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou 310003, China.
| |
Collapse
|
28
|
Tiwari M, Srivastava P, Abbas S, Jegatheesan J, Ranjan A, Sharma S, Maurya VP, Saxena AK, Sharma LK. Emerging Role of Autophagy in Governing Cellular Dormancy, Metabolic Functions, and Therapeutic Responses of Cancer Stem Cells. Cells 2024; 13:447. [PMID: 38474411 PMCID: PMC10930960 DOI: 10.3390/cells13050447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Tumors are composed of heterogeneous populations of dysregulated cells that grow in specialized niches that support their growth and maintain their properties. Tumor heterogeneity and metastasis are among the major hindrances that exist while treating cancer patients, leading to poor clinical outcomes. Although the factors that determine tumor complexity remain largely unknown, several genotypic and phenotypic changes, including DNA mutations and metabolic reprograming provide cancer cells with a survival advantage over host cells and resistance to therapeutics. Furthermore, the presence of a specific population of cells within the tumor mass, commonly known as cancer stem cells (CSCs), is thought to initiate tumor formation, maintenance, resistance, and recurrence. Therefore, these CSCs have been investigated in detail recently as potential targets to treat cancer and prevent recurrence. Understanding the molecular mechanisms involved in CSC proliferation, self-renewal, and dormancy may provide important clues for developing effective therapeutic strategies. Autophagy, a catabolic process, has long been recognized to regulate various physiological and pathological processes. In addition to regulating cancer cells, recent studies have identified a critical role for autophagy in regulating CSC functions. Autophagy is activated under various adverse conditions and promotes cellular maintenance, survival, and even cell death. Thus, it is intriguing to address whether autophagy promotes or inhibits CSC functions and whether autophagy modulation can be used to regulate CSC functions, either alone or in combination. This review describes the roles of autophagy in the regulation of metabolic functions, proliferation and quiescence of CSCs, and its role during therapeutic stress. The review further highlights the autophagy-associated pathways that could be used to regulate CSCs. Overall, the present review will help to rationalize various translational approaches that involve autophagy-mediated modulation of CSCs in controlling cancer progression, metastasis, and recurrence.
Collapse
Affiliation(s)
- Meenakshi Tiwari
- Department of Biochemistry, All India Institute of Medical Science, Patna 801507, India
| | - Pransu Srivastava
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Science, Lucknow 226014, India
| | - Sabiya Abbas
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Science, Lucknow 226014, India
| | - Janani Jegatheesan
- Department of Biochemistry, All India Institute of Medical Science, Patna 801507, India
| | - Ashish Ranjan
- Department of Biochemistry, All India Institute of Medical Science, Patna 801507, India
| | - Sadhana Sharma
- Department of Biochemistry, All India Institute of Medical Science, Patna 801507, India
| | - Ved Prakash Maurya
- Department of Neurosurgery, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Ajit Kumar Saxena
- Department of Pathology/Lab Medicine, All India Institute of Medical Science, Patna 801507, India
| | - Lokendra Kumar Sharma
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Science, Lucknow 226014, India
| |
Collapse
|
29
|
Wang Y, Shi L, He Y, Gong W, Cui Y, Zuo R, Wang Y, Luo Y, Chen L, Liu Z, Chen P, Guo H. OVOL2 induces autophagy-mediated epithelial-mesenchymal transition by the ERK1/2 MAPK signaling in lung adenocarcinoma. iScience 2024; 27:108873. [PMID: 38318371 PMCID: PMC10838806 DOI: 10.1016/j.isci.2024.108873] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/28/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Lung adenocarcinoma (LUAD) is one of the leading causes of cancer-related death worldwide. Epithelial-mesenchymal transition (EMT) plays an important role in malignant tumor progression. Recently, accumulating evidence has shown that autophagy is involved in the regulation of EMT-induced migration. Therefore, the exploration of targets to inhibit EMT by targeting autophagy is important. In this study, we found that OVO-like zinc finger 2 (OVOL2) may be a key target for regulating autophagy-induced EMT. Firstly, we found that OVOL2 expression was dramatically downregulated in LUAD. Low expression of OVOL2 is an indicator of poor prognosis in LUAD. In vitro experiments have shown that downregulation of OVOL2 expression induces EMT, thereby promoting malignant biological behavior, such as proliferation, migration, and invasion of LUAD cells. Interestingly, autophagy is a key step in regulating OVOL2 and inducing EMT. Furthermore, OVOL2 regulates autophagy through the MAPK signaling pathway, ultimately inhibiting the malignant progression of LUAD.
Collapse
Affiliation(s)
- Yali Wang
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- Department of Thoracic Oncology, Lung Cancer Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
- Department of Oncology, Affiliated Hospital of Chifeng University, Chifeng, Inner Mongolia 024000, China
| | - Lin Shi
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- Department of Thoracic Oncology, Lung Cancer Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
- Department of Oncology, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, Inner Mongolia 010000, China
| | - Yuchao He
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
| | - Wenchen Gong
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Yanyan Cui
- Department of Oncology, Affiliated Hospital of Chifeng University, Chifeng, Inner Mongolia 024000, China
| | - Ran Zuo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- Department of Thoracic Oncology, Lung Cancer Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
| | - Yu Wang
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- Department of Thoracic Oncology, Lung Cancer Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
| | - Yi Luo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
| | - Liwei Chen
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
| | - Zhiyong Liu
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
| | - Peng Chen
- Department of Thoracic Oncology, Lung Cancer Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
| | - Hua Guo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
| |
Collapse
|
30
|
Lee J, Ou JHJ. HCV-induced autophagy and innate immunity. Front Immunol 2024; 15:1305157. [PMID: 38370419 PMCID: PMC10874285 DOI: 10.3389/fimmu.2024.1305157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/19/2024] [Indexed: 02/20/2024] Open
Abstract
The interplay between autophagy and host innate immunity has been of great interest. Hepatitis C virus (HCV) impedes signaling pathways initiated by pattern-recognition receptors (PRRs) that recognize pathogens-associated molecular patterns (PAMPs). Autophagy, a cellular catabolic process, delivers damaged organelles and protein aggregates to lysosomes for degradation and recycling. Autophagy is also an innate immune response of cells to trap pathogens in membrane vesicles for removal. However, HCV controls the autophagic pathway and uses autophagic membranes to enhance its replication. Mitophagy, a selective autophagy targeting mitochondria, alters the dynamics and metabolism of mitochondria, which play important roles in host antiviral responses. HCV also alters mitochondrial dynamics and promotes mitophagy to prevent premature cell death and attenuate the interferon (IFN) response. In addition, the dysregulation of the inflammasomal response by HCV leads to IFN resistance and immune tolerance. These immune evasion properties of HCV allow HCV to successfully replicate and persist in its host cells. In this article, we discuss HCV-induced autophagy/mitophagy and its associated immunological responses and provide a review of our current understanding of how these processes are regulated in HCV-infected cells.
Collapse
Affiliation(s)
| | - J.-H. James Ou
- Department of Molecular Microbiology and Immunology, University of Southern California, Keck School of Medicine, Los Angeles, CA, United States
| |
Collapse
|
31
|
Cao M, Tang Y, Luo Y, Gu F, Zhu Y, Liu X, Yan C, Hu W, Wang S, Chao X, Xu H, Chen HB, Wang L. Natural compounds modulating mitophagy: Implications for cancer therapy. Cancer Lett 2024; 582:216590. [PMID: 38097131 DOI: 10.1016/j.canlet.2023.216590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 01/04/2024]
Abstract
Cancer is considered as the second leading cause of mortality, and cancer incidence is still growing rapidly worldwide, which poses an increasing global health burden. Although chemotherapy is the most widely used treatment for cancer, its effectiveness is limited by drug resistance and severe side effects. Mitophagy is the principal mechanism that degrades damaged mitochondria via the autophagy/lysosome pathway to maintain mitochondrial homeostasis. Emerging evidence indicates that mitophagy plays crucial roles in tumorigenesis, particularly in cancer therapy. Mitophagy can exhibit dual effects in cancer, with both cancer-inhibiting or cancer-promoting function in a context-dependent manner. A variety of natural compounds have been found to affect cancer cell death and display anticancer properties by modulating mitophagy. In this review, we provide a systematic overview of mitophagy signaling pathways, and examine recent advances in the utilization of natural compounds for cancer therapy through the modulation of mitophagy. Furthermore, we address the inquiries and challenges associated with ongoing investigations concerning the application of natural compounds in cancer therapy based on mitophagy. Overcoming these limitations will provide opportunities to develop novel interventional strategies for cancer treatment.
Collapse
Affiliation(s)
- Min Cao
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha, 410082, Hunan Province, China
| | - Yancheng Tang
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha, 410082, Hunan Province, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yufei Luo
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha, 410082, Hunan Province, China
| | - Fen Gu
- Department of Infection, Hunan Children's Hospital, Changsha, 410007, China
| | - Yuyuan Zhu
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha, 410082, Hunan Province, China
| | - Xu Liu
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha, 410082, Hunan Province, China
| | - Chenghao Yan
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha, 410082, Hunan Province, China
| | - Wei Hu
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Boai Rehabilitation Hospital, Changsha, 410082, China
| | - Shaogui Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiaojuan Chao
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Haodong Xu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Hu-Biao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Liming Wang
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha, 410082, Hunan Province, China; Shenzhen Research Institute, Hunan University, Shenzhen, 518000, China.
| |
Collapse
|
32
|
Luo J, Gong L, Yang Y, Zhang Y, Liu Q, Bai L, Fang X, Zhang B, Huang J, Liu M, Liu B, Tang Y, Wong CN, Huang J, Liu S, Li S, Ding T, Man K, Lee VHF, Li Y, Ma S, Guan XY. Enhanced mitophagy driven by ADAR1-GLI1 editing supports the self-renewal of cancer stem cells in HCC. Hepatology 2024; 79:61-78. [PMID: 36683360 DOI: 10.1097/hep.0000000000000299] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/08/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND AND AIMS Deregulation of adenosine-to-inosine editing by adenosine deaminase acting on RNA 1 (ADAR1) leads to tumor-specific transcriptome diversity with prognostic values for HCC. However, ADAR1 editase-dependent mechanisms governing liver cancer stem cell (LCSC) generation and maintenance have remained elusive. APPROACH AND RESULTS RNA-seq profiling identified ADAR1-responsive recoding editing events in HCC and showed editing frequency of GLI1 , rather than transcript abundance was clinically relevant. Functional differences in LCSC self-renewal and tumor aggressiveness between wild-type (GLI1 wt ) and edited GLI1 (GLI1 edit ) were elucidated. We showed that overediting of GLI1 induced an arginine-to-glycine (R701G) substitution, augmenting tumor-initiating potential and exhibiting a more aggressive phenotype. GLI1 R701G harbored weak affinity to SUFU, which in turn, promoted its cytoplasmic-to-nuclear translocation to support LCSC self-renewal by increased pluripotency gene expression. Moreover, editing predisposed to stabilize GLI1 by abrogating β-TrCP-GLI1 interaction. Integrative analysis of single-cell transcriptome further revealed hyperactivated mitophagy in ADAR1-enriched LCSCs. GLI1 editing promoted a metabolic switch to oxidative phosphorylation to control stress and stem-like state through PINK1-Parkin-mediated mitophagy in HCC, thereby conferring exclusive metastatic and sorafenib-resistant capacities. CONCLUSIONS Our findings demonstrate a novel role of ADAR1 as an active regulator for LCSCs properties through editing GLI1 in the highly heterogeneous HCC.
Collapse
Affiliation(s)
- Jie Luo
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lanqi Gong
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Clinical Oncology, Shenzhen Key Laboratory of recurrent metastatic cancer and personalized therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yuma Yang
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yu Zhang
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qin Liu
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lu Bai
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Clinical Oncology, Shenzhen Key Laboratory of recurrent metastatic cancer and personalized therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Xiaona Fang
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Baifeng Zhang
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Clinical Oncology, Shenzhen Key Laboratory of recurrent metastatic cancer and personalized therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jiao Huang
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ming Liu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Beilei Liu
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Clinical Oncology, Shenzhen Key Laboratory of recurrent metastatic cancer and personalized therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Ying Tang
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ching Ngar Wong
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jinlin Huang
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Shan Liu
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Shanshan Li
- Department of Clinical Oncology, Shenzhen Key Laboratory of recurrent metastatic cancer and personalized therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China
| | - Tao Ding
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kwan Man
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Victor Ho-Fun Lee
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Clinical Oncology, Shenzhen Key Laboratory of recurrent metastatic cancer and personalized therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yan Li
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Stephanie Ma
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Clinical Oncology, Shenzhen Key Laboratory of recurrent metastatic cancer and personalized therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China
| |
Collapse
|
33
|
Alghamdi M, Braidy N. Supplementation with NAD+ Precursors for Treating Alzheimer's Disease: A Metabolic Approach. J Alzheimers Dis 2024; 101:S467-S477. [PMID: 39422945 DOI: 10.3233/jad-231277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Background Alzheimer's disease (AD) is a progressive neurocognitive disorder. There is no cure for AD. Maintenance on intracellular levels of nicotinamide adenine dinucleotide (NAD+) has been reported to be a promising therapeutic strategy for the treatment of AD. NAD+ precursors that represent candidate targets include nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR). Objective This systematic review provides insights into the potential therapeutic value of NAD+ precursors including NMN and NR, for the treatment of AD using preclinical and clinical studies published in the last 5 years. Methods The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) protocol was followed to systematically search the literature using two databases. Results We found 3 studies that used NMN to treat AD in preclinical murine models. However, human clinical trials using NMN as a therapeutic intervention in AD was not available in the current literature. We also found 4 studies that investigated the potential benefits of NR for the treatment of AD in preclinical models. We also found 2 human clinical trials that showed marked improvements in plasma and neuroimaging biomarkers, and cognitive measures following supplementation with NR. Conclusions Results of preclinical and clinical studies confirm the potential benefits of NAD+ precursors for the treatment of AD. However, further clinical studies are required to confirm the increasingly important value of NAD+ precursors as effective pharmacological interventions in the clinic.
Collapse
Affiliation(s)
- Mohammed Alghamdi
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
- Department of Radiology and Medical Imaging, Faculty of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| |
Collapse
|
34
|
Liang YJ, Chiou YW, Chiu APT, Shiao MS, Teng W, Lin CW, Cheng ML, Huang YH, Liang KH, Su CW, Lai CY, Chen CL, Wu JC. Antiviral therapy reduces hepatocellular carcinoma through suppressing hepatitis B virus replication may improve ER stress, mitochondrial and metabolic dysfunctions and decrease p62 in hybridized mice with single HBV transgene and miR-122. J Med Virol 2023; 95:e29325. [PMID: 38108211 DOI: 10.1002/jmv.29325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Hepatitis B virus (HBV) hijacks autophagy for its replication. Nucleos(t)ide analogs (NUCs) treatment suppressed HBV replication and reduced hepatocellular carcinoma (HCC) incidence. However, the use of NUCs in chronic hepatitis B (CHB) patients with normal or minimally elevated serum alanine aminotransferase (ALT) levels is still debated. Animal models are crucial for studying the unanswered issue and evaluating new therapies. MicroRNA-122 (miR-122), which regulates fatty acid and cholesterol metabolism, is downregulated during hepatitis and HCC progression. The reciprocal inhibition of miR-122 with HBV highlights its role in HCC development as a tumor suppressor. By crossbreeding HBV-transgenic mice with miR-122 knockout mice, we generated a hybrid mouse model with a high incidence of HCC up to 89% and normal ALT levels before HCC. The model exhibited early-onset hepatic steatosis, progressive liver fibrosis, and impaired late-phase autophagy. Metabolomics and microarray analysis identified metabolic signatures, including dysregulation of lipid metabolism, inflammation, genomic instability, the Warburg effect, reduced TCA cycle flux, energy deficiency, and impaired free radical scavenging. Antiviral treatment reduced HCC incidence in hybrid mice by approximately 30-35% compared to untreated mice. This effect was linked to the activation of ER stress-responsive transcription factor ATF4, clearance of autophagosome cargo p62, and suppression of the CHOP-mediated apoptosis pathway. In summary, this study suggests that despite minimal ALT elevation, HBV replication can lead to liver injury. Endoplasmic reticulum stress, reduced miR-122 levels, mitochondrial and metabolic dysfunctions, blocking protective autophagy resulting in p62 accumulation, apoptosis, fibrosis, and HCC. Antiviral may improve the above-mentioned pathogenesis through HBV suppression.
Collapse
Affiliation(s)
- Yuh-Jin Liang
- Translational Research Division, Medical Research Department, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taiwan, ROC
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yu-Wei Chiou
- Translational Research Division, Medical Research Department, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Abby Pei-Ting Chiu
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, Washington, USA
- Department of Biology, University of Washington, Seattle, Washington, USA
| | - Ming-Shi Shiao
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan, ROC
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Wei Teng
- Department of Gastroenterology & Hepatology, Chang Gung Memorial Hospital, Linkou, Taiwan, ROC
| | - Chin-Wei Lin
- Translational Research Division, Medical Research Department, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Mei-Ling Cheng
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan, ROC
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan, ROC
| | - Yen-Hua Huang
- Center for Systems and Synthetic Biology and Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Kung-Hao Liang
- Translational Research Division, Medical Research Department, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chien-Wei Su
- Department of Medicine, Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Medicine, Division of General Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Medicine, Division of Holistic and Multidisciplinary Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Internal Medicine, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Chi-Yu Lai
- Translational Research Division, Medical Research Department, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chih-Li Chen
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan, ROC
| | - Jaw-Ching Wu
- Translational Research Division, Medical Research Department, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taiwan, ROC
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| |
Collapse
|
35
|
Nguyen TH, Nguyen TM, Ngoc DTM, You T, Park MK, Lee CH. Unraveling the Janus-Faced Role of Autophagy in Hepatocellular Carcinoma: Implications for Therapeutic Interventions. Int J Mol Sci 2023; 24:16255. [PMID: 38003445 PMCID: PMC10671265 DOI: 10.3390/ijms242216255] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
This review aims to provide a comprehensive understanding of the molecular mechanisms underlying autophagy and mitophagy in hepatocellular carcinoma (HCC). Autophagy is an essential cellular process in maintaining cell homeostasis. Still, its dysregulation is associated with the development of liver diseases, including HCC, which is one of leading causes of cancer-related death worldwide. We focus on elucidating the dual role of autophagy in HCC, both in tumor initiation and progression, and highlighting the complex nature involved in the disease. In addition, we present a detailed analysis of a small subset of autophagy- and mitophagy-related molecules, revealing their specific functions during tumorigenesis and the progression of HCC cells. By understanding these mechanisms, we aim to provide valuable insights into potential therapeutic strategies to manipulate autophagy effectively. The goal is to improve the therapeutic response of liver cancer cells and overcome drug resistance, providing new avenues for improved treatment options for HCC patients. Overall, this review serves as a valuable resource for researchers and clinicians interested in the complex role of autophagy in HCC and its potential as a target for innovative therapies aimed to combat this devastating disease.
Collapse
Affiliation(s)
- Thi Ha Nguyen
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Tuan Minh Nguyen
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | | | - Taesik You
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Mi Kyung Park
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy National Cance Center, Goyang 10408, Republic of Korea
- Department of Bio-Healthcare, Hwasung Medi-Science University, Hwaseong-si 18274, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|
36
|
Zheng F, Zhong J, Chen K, Shi Y, Wang F, Wang S, Tang S, Yuan X, Shen Z, Tang S, Xia D, Wu Y, Lu W. PINK1-PTEN axis promotes metastasis and chemoresistance in ovarian cancer via non-canonical pathway. J Exp Clin Cancer Res 2023; 42:295. [PMID: 37940999 PMCID: PMC10633943 DOI: 10.1186/s13046-023-02823-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/05/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Ovarian cancer is commonly associated with a poor prognosis due to metastasis and chemoresistance. PINK1 (PTEN-induced kinase 1) is a serine/threonine kinase that plays a crucial part in regulating various physiological and pathophysiological processes in cancer cells. METHODS The ATdb database and "CuratedOvarianData" were used to evaluate the effect of kinases on ovarian cancer survival. The gene expression in ovarian cancer cells was detected by Western blot and quantitative real-time PCR. The effects of gene knockdown or overexpression in vitro were evaluated by wound healing assay, cell transwell assay, immunofluorescence staining, immunohistochemistry, and flow cytometry analysis. Mass spectrometry analysis, protein structure analysis, co-immunoprecipitation assay, nuclear-cytoplasmic separation, and in vitro kinase assay were applied to demonstrate the PINK1-PTEN (phosphatase and tensin homolog) interaction and the effect of this interaction. The metastasis experiments for ovarian cancer xenografts were performed in female BALB/c nude mice. RESULTS PINK1 was strongly associated with a poor prognosis in ovarian cancer patients and promoted metastasis and chemoresistance in ovarian cancer cells. Although the canonical PINK1/PRKN (parkin RBR E3 ubiquitin protein ligase) pathway showed weak effects in ovarian cancer, PINK1 was identified to interact with PTEN and phosphorylate it at Serine179. Remarkably, the phosphorylation of PTEN resulted in the inactivation of the phosphatase activity, leading to an increase in AKT (AKT serine/threonine kinase) activity. Moreover, PINK1-mediated phosphorylation of PTEN impaired the nuclear import of PTEN, thereby enhancing the cancer cells' ability to resist chemotherapy and metastasize. CONCLUSIONS PINK1 interacts with and phosphorylates PTEN at Serine179, resulting in the activation of AKT and the inhibition of PTEN nuclear import. PINK1 promotes ovarian cancer metastasis and chemotherapy resistance through the regulation of PTEN. These findings offer new potential therapeutic targets for ovarian cancer management.
Collapse
Affiliation(s)
- Fang Zheng
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiamin Zhong
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kelie Chen
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fang Wang
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shengchao Wang
- Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Song Tang
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyu Yuan
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhangjin Shen
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sangsang Tang
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dajing Xia
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| | - Yihua Wu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou, China.
| | - Weiguo Lu
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China.
| |
Collapse
|
37
|
Gao H, Zou Q, Ma L, Cai K, Sun Y, Lu L, Ren D, Hu B. Unveiling mitophagy-mediated molecular heterogeneity and development of a risk signature model for colorectal cancer by integrated scRNA-seq and bulk RNA-seq analysis. Gastroenterol Rep (Oxf) 2023; 11:goad066. [PMID: 37886241 PMCID: PMC10598840 DOI: 10.1093/gastro/goad066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/03/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
Background Accumulating researchers have recognized mitophagy as a key player in tumors, but few studies have investigated its role in the tumor microenvironment (TME). Advances in the technology of single-cell RNA sequencing (scRNA-seq) have allowed unveiling the concealed features of the TME at cellular resolution. This study aimed to elucidate the role of mitophagy within the TME of colorectal cancer (CRC) and to establish a mitophagy-mediated risk model. Methods We assessed mitophagy-related pathway activities at both single-cell and tissue levels. Subsequently, an unsupervised clustering algorithm was employed to identify mitophagy-mediated subtypes. Furthermore, we developed a mitophagy-mediated risk signature (MMRS) using least absolute shrinkage and selection operator (LASSO) Cox analysis and constructed a MMRS model incorporating the risk score and clinical variables. Subsequently, we used quantitative reverse transcription polymerase chain reaction analysis to verify the expression of the screened genes. Results We retrieved and annotated a total of 14,719 cells from eight samples in the scRNA-seq GSE132465 data set. The activities of mitophagy-related pathways were uniformly upregulated in cancer cells. Integrating with bulk RNA-seq data, we identified two mitophagy-mediated clusters (C1 and C2) with distinct characteristics and prognoses. C2 was identified as a mitophagy-high cluster. Then, we developed a five-gene MMRS via LASSO Cox analysis in The Cancer Genome Atlas (TCGA) cohort. We utilized the GSE39582 cohort to validate the efficacy of our model. The expression of CX3CL1 and INHBB was upregulated in CRC tissues. Conclusions The present study identified two mitophagy-mediated CRC subtypes with distinct features. Our MMRS may provide potential therapeutic strategies for CRC. The findings of our work offer novel insights into the involvement of mitophagy in CRC.
Collapse
Affiliation(s)
- Han Gao
- Department of General Surgery (Coloproctology), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Qi Zou
- Department of General Surgery (Coloproctology), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Linyun Ma
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Keyu Cai
- Department of General Surgery (Coloproctology), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Yi Sun
- Department of Pathology, Kingmed Pathology Center, Guangzhou, Guangdong, P. R. China
| | - Li Lu
- Department of General Surgery (Coloproctology), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Donglin Ren
- Department of General Surgery (Coloproctology), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Bang Hu
- Department of General Surgery (Coloproctology), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
38
|
Oraby MA, Elazazy O, Karam HM, Fadaly DS, Ibrahim AA. MitoQ combats tumor cell progression in Ehrlich ascites carcinoma mice: A crosstalk between mitochondrial oxidative status, mitophagy, and NF-κB signaling. Life Sci 2023; 331:122063. [PMID: 37666390 DOI: 10.1016/j.lfs.2023.122063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
Despite the clinical advances in cancer treatment, the high mortality rate is still a great challenge, requiring much effort to find new and efficient cancer therapies. AIMS The present evidence investigated the potential antiproliferative impact of the mitochondrial-targeted antioxidant, Mitoquinol (MitoQ), on a mouse model of Ehrlich ascites carcinoma (EAC). MAIN METHODS Mice-bearing tumors were administered two doses of MitoQ (0.3 mg & 0.5 mg/kg; i.p daily) or doxorubicin (2 mg/kg; i.p daily) for 20 days. KEY FINDINGS EAC mice revealed exacerbated mitochondrial reactive oxygen species (mtROS) and impaired mitochondrial membrane potential (△Ψm). Dysfunctional mitophagy was observed in EAC mice, along with boosting aerobic glycolysis. In addition, tumor cells exhibited higher proliferation rates, thereby stimulating cell cycle, invasion, and angiogenesis biomarkers together with suppressing proapoptotic proteins, events that might be correlated with activation of NF-κB signaling. The administration of MitoQ combated tumor cell survival and dissemination in EAC mice as evidenced by reducing tumor volumes and weights and increasing the number of necrotic areas in histopathological assessment. MitoQ also repressed tumor cell cycle, invasion, and angiogenesis via preventing cyclin D1 mRNA, MMP-1, and CD34 levels as well as VEGF protein expression. These observations were associated with the abrogation of mtROS overproduction and enhancement of the mitophagy proteins, PINK1/Parkin levels, followed by inhibition of NADH dehydrogenase. Notably, NF-κB signaling was modulated. SIGNIFICANCE This study suggests that MitoQ combated tumor cell survival and progression in EAC mice by maintaining mtROS and restoring mitophagy, thereby attenuation of NF-κB activation.
Collapse
Affiliation(s)
- Mamdouh A Oraby
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, 11829, Egypt
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, 11829, Egypt.
| | - Heba M Karam
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Egypt
| | - Doaa S Fadaly
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ayman A Ibrahim
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Egypt; Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S4L8, Canada.
| |
Collapse
|
39
|
Lu X, Yao Y, Ma Y, Zhang X, Peng H, Pei Y, Lu Y, Wang L. Low expression of PINK1 and PARK2 predicts poor prognosis in patients with esophageal squamous cell carcinoma. World J Surg Oncol 2023; 21:321. [PMID: 37833780 PMCID: PMC10571472 DOI: 10.1186/s12957-023-03206-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND The Parkinson's disease (PD) gene family expression is strongly linked to tumor development and progression; PINK1 and PARK2 are essential members of the PD gene family. However, the relationship between PINK1 and PARK2 and esophageal squamous cell carcinoma (ESCC) remains unknown. This research aims to clarify the prognostic value of PINK1 and PARK2 in ESCC. METHODS PINK1 and PARK2 protein levels in 232 ESCC specimens, and 125 matched adjacent normal tissues were detected by immunohistochemistry. The relationship between PINK1 and PARK2 protein expression and clinicopathological features were analyzed. Kaplan-Meier survival analysis was performed to estimate the prognostic value of the PINK1 and PARK2 proteins in patients. Cox univariate and multivariate analyses were used to assess the risk factors affecting the OS for patients with ESCC. RESULTS PINK1 and PARK2 had low expression in ESCC. Patients with low PINK1 had worse differentiation and advanced T and TNM stages. Lower PARK2 expression was linked to lymph node metastases and an advanced TNM stage. Furthermore, reduced PINK1 and PARK2 levels were associated with a poor prognosis for ESCC. Cox univariate and multivariate analyses revealed that PINK1, PARK2, and tumor size were closely associated with the prognosis of patients with ESCC, and PARK2 was an independent risk factor for patients with ESCC. Finally, the PINK1 and PARK2 proteins were closely related and shared the same signal pathway. CONCLUSIONS PINK1 and PARK2 could work as tumor suppressors in ESCC and are likely to become new treatment targets for ESCC.
Collapse
Affiliation(s)
- Xiangyun Lu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, the First Affiliated Hospital/Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Yongkun Yao
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, the First Affiliated Hospital/Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Yandi Ma
- Department of Pathology, Nanyang Central Hospital, Nanyang, Henan, China
| | - Xudong Zhang
- Department of Pathology, the First Clinical Medical College of Weifang Medical University, Weifang People's Hospital, Weifang, Shangdong, China
| | - Hao Peng
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, the First Affiliated Hospital/Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Yuhui Pei
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, the First Affiliated Hospital/Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Yulin Lu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, the First Affiliated Hospital/Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Lianghai Wang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, the First Affiliated Hospital/Shihezi University School of Medicine, Shihezi, Xinjiang, China.
| |
Collapse
|
40
|
Garimella SV, Gampa SC, Chaturvedi P. Mitochondria in Cancer Stem Cells: From an Innocent Bystander to a Central Player in Therapy Resistance. Stem Cells Cloning 2023; 16:19-41. [PMID: 37641714 PMCID: PMC10460581 DOI: 10.2147/sccaa.s417842] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023] Open
Abstract
Cancer continues to rank among the world's leading causes of mortality despite advancements in treatment. Cancer stem cells, which can self-renew, are present in low abundance and contribute significantly to tumor recurrence, tumorigenicity, and drug resistance to various therapies. The drug resistance observed in cancer stem cells is attributed to several factors, such as cellular quiescence, dormancy, elevated aldehyde dehydrogenase activity, apoptosis evasion mechanisms, high expression of drug efflux pumps, protective vascular niche, enhanced DNA damage response, scavenging of reactive oxygen species, hypoxic stability, and stemness-related signaling pathways. Multiple studies have shown that mitochondria play a pivotal role in conferring drug resistance to cancer stem cells, through mitochondrial biogenesis, metabolism, and dynamics. A better understanding of how mitochondria contribute to tumorigenesis, heterogeneity, and drug resistance could lead to the development of innovative cancer treatments.
Collapse
Affiliation(s)
- Sireesha V Garimella
- Department of Biotechnology, School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, 530045, India
| | - Siri Chandana Gampa
- Department of Biotechnology, School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, 530045, India
| | - Pankaj Chaturvedi
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
41
|
Wang S, Long H, Hou L, Feng B, Ma Z, Wu Y, Zeng Y, Cai J, Zhang DW, Zhao G. The mitophagy pathway and its implications in human diseases. Signal Transduct Target Ther 2023; 8:304. [PMID: 37582956 PMCID: PMC10427715 DOI: 10.1038/s41392-023-01503-7] [Citation(s) in RCA: 222] [Impact Index Per Article: 111.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/03/2023] [Accepted: 05/16/2023] [Indexed: 08/17/2023] Open
Abstract
Mitochondria are dynamic organelles with multiple functions. They participate in necrotic cell death and programmed apoptotic, and are crucial for cell metabolism and survival. Mitophagy serves as a cytoprotective mechanism to remove superfluous or dysfunctional mitochondria and maintain mitochondrial fine-tuning numbers to balance intracellular homeostasis. Growing evidences show that mitophagy, as an acute tissue stress response, plays an important role in maintaining the health of the mitochondrial network. Since the timely removal of abnormal mitochondria is essential for cell survival, cells have evolved a variety of mitophagy pathways to ensure that mitophagy can be activated in time under various environments. A better understanding of the mechanism of mitophagy in various diseases is crucial for the treatment of diseases and therapeutic target design. In this review, we summarize the molecular mechanisms of mitophagy-mediated mitochondrial elimination, how mitophagy maintains mitochondrial homeostasis at the system levels and organ, and what alterations in mitophagy are related to the development of diseases, including neurological, cardiovascular, pulmonary, hepatic, renal disease, etc., in recent advances. Finally, we summarize the potential clinical applications and outline the conditions for mitophagy regulators to enter clinical trials. Research advances in signaling transduction of mitophagy will have an important role in developing new therapeutic strategies for precision medicine.
Collapse
Affiliation(s)
- Shouliang Wang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Haijiao Long
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
- Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lianjie Hou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Baorong Feng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Zihong Ma
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Ying Wu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Yu Zeng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Jiahao Cai
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Da-Wei Zhang
- Group on the Molecular and Cell Biology of Lipids and Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| | - Guojun Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China.
| |
Collapse
|
42
|
Praharaj PP, Patra S, Mishra SR, Mukhopadhyay S, Klionsky DJ, Patil S, Bhutia SK. CLU (clusterin) promotes mitophagic degradation of MSX2 through an AKT-DNM1L/Drp1 axis to maintain SOX2-mediated stemness in oral cancer stem cells. Autophagy 2023; 19:2196-2216. [PMID: 36779631 PMCID: PMC10351456 DOI: 10.1080/15548627.2023.2178876] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/14/2023] Open
Abstract
Mitophagy regulates cancer stem cell (CSC) populations affecting tumorigenicity and malignancy in various cancer types. Here, we report that cisplatin treatment led to the activation of higher mitophagy through regulating CLU (clusterin) levels in oral CSCs. Moreover, both the gain-of-function and loss-of-function of CLU indicated its mitophagy-specific role in clearing damaged mitochondria. CLU also regulates mitochondrial fission by activating the Ser/Thr kinase AKT, which triggered phosphorylation of DNM1L/Drp1 at the serine 616 residue initiating mitochondrial fission. More importantly, we also demonstrated that CLU-mediated mitophagy positively regulates oral CSCs through mitophagic degradation of MSX2 (msh homeobox 2), preventing its nuclear translocation from suppressing SOX2 activity and subsequent inhibition of cancer stemness and self-renewal ability. However, CLU knockdown disturbed mitochondrial metabolism generating excessive mitochondrial superoxide, which improves the sensitivity to cisplatin in oral CSCs. Notably, our results showed that CLU-mediated cytoprotection relies on SOX2 expression. SOX2 inhibition through genetic (shSOX2) and pharmacological (KRX-0401) strategies reverses CLU-mediated cytoprotection, sensitizing oral CSCs toward cisplatin-mediated cell death.
Collapse
Affiliation(s)
- Prakash P. Praharaj
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Soumya R. Mishra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Subhadip Mukhopadhyay
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Shankargouda Patil
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UTAH, USA
- Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences , Saveetha University, Chennai, India
| | - Sujit K. Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| |
Collapse
|
43
|
Zheng XX, Chen JJ, Sun YB, Chen TQ, Wang J, Yu SC. Mitochondria in cancer stem cells: Achilles heel or hard armor. Trends Cell Biol 2023; 33:708-727. [PMID: 37137792 DOI: 10.1016/j.tcb.2023.03.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 05/05/2023]
Abstract
Previous studies have shown that mitochondria play core roles in not only cancer stem cell (CSC) metabolism but also the regulation of CSC stemness maintenance and differentiation, which are key regulators of cancer progression and therapeutic resistance. Therefore, an in-depth study of the regulatory mechanism of mitochondria in CSCs is expected to provide a new target for cancer therapy. This article mainly introduces the roles played by mitochondria and related mechanisms in CSC stemness maintenance, metabolic transformation, and chemoresistance. The discussion mainly focuses on the following aspects: mitochondrial morphological structure, subcellular localization, mitochondrial DNA, mitochondrial metabolism, and mitophagy. The manuscript also describes the recent clinical research progress on mitochondria-targeted drugs and discusses the basic principles of their targeted strategies. Indeed, an understanding of the application of mitochondria in the regulation of CSCs will promote the development of novel CSC-targeted strategies, thereby significantly improving the long-term survival rate of patients with cancer.
Collapse
Affiliation(s)
- Xiao-Xia Zheng
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing 400038, China; Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing 400038, China
| | - Jun-Jie Chen
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing 400038, China; Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing 400038, China
| | - Yi-Bo Sun
- College of Basic Medical Sciences, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Tian-Qing Chen
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030002, Shanxi, China
| | - Jun Wang
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing 400038, China; Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing 400038, China
| | - Shi-Cang Yu
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing 400038, China; Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing 400038, China; College of Basic Medical Sciences, Third Military Medical University (Army Medical University), Chongqing 400038, China; Jin-feng Laboratory, Chongqing 401329, China.
| |
Collapse
|
44
|
Liu J, Wang J, Xiong A, Zhang L, Zhang Y, Liu Y, Xiong Y, Li G, He X. Mitochondrial quality control in lung diseases: current research and future directions. Front Physiol 2023; 14:1236651. [PMID: 37538379 PMCID: PMC10395103 DOI: 10.3389/fphys.2023.1236651] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/12/2023] [Indexed: 08/05/2023] Open
Abstract
Lung diseases are a major global health problem, affecting millions of people worldwide. Recent research has highlighted the critical role that mitochondrial quality control plays in respiratory-related diseases, including chronic obstructive pulmonary disease (COPD), lung cancer, and idiopathic pulmonary fibrosis (IPF). In this review, we summarize recent findings on the involvement of mitochondrial quality control in these diseases and discuss potential therapeutic strategies. Mitochondria are essential organelles for energy production and other cellular processes, and their dysfunction is associated with various diseases. The quality control of mitochondria involves a complex system of pathways, including mitophagy, mitochondrial biogenesis, fusion/fission dynamics, and regulation of gene expression. In COPD and lung cancer, mitochondrial quality control is often involved in disease development by influencing oxidative stress and apoptosis. In IPF, it appears to be involved in the disease process by participating in the cellular senescence process. Mitochondrial quality control is a promising target for therapeutic interventions in lung diseases. However, there are conflicting reports on different pathological processes, such as the role of mitochondrial autophagy in lung cancer, which pose difficulties in the study of targeted mitochondrial quality control drugs. Additionally, there seems to be a delicate balance between the mitochondrial quality control processes in the physiological state. Emerging evidence suggests that molecules such as PTEN-induced putative kinase 1 (PINK1), parkin RBR E3 ubiquitin protein ligase (PRKN), dynamin-related protein 1 (DRP1), and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1-α), as well as the signaling pathways they affect, play an important role in respiratory-related diseases. Targeting these molecules and pathways could contribute to the development of effective treatments for lung diseases. In conclusion, the involvement of mitochondrial quality control in lung diseases presents a promising new avenue for disease treatment. Further research is needed to better understand the complex mechanisms involved in the pathogenesis of respiratory diseases and to develop targeted therapies that could improve clinical outcomes.
Collapse
Affiliation(s)
- Jiliu Liu
- Laboratory of Allergy and Precision Medicine, School of Medicine, Southwest Jiaotong University, Chengdu Institute of Respiratory Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, Chengdu Third People’s Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, China
| | - Junyi Wang
- Laboratory of Allergy and Precision Medicine, School of Medicine, Southwest Jiaotong University, Chengdu Institute of Respiratory Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, Chengdu Third People’s Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, China
| | - Anying Xiong
- Laboratory of Allergy and Precision Medicine, School of Medicine, Southwest Jiaotong University, Chengdu Institute of Respiratory Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, Chengdu Third People’s Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, China
| | - Lei Zhang
- Laboratory of Allergy and Precision Medicine, School of Medicine, Southwest Jiaotong University, Chengdu Institute of Respiratory Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, Chengdu Third People’s Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, China
| | - Yi Zhang
- Laboratory of Allergy and Precision Medicine, School of Medicine, Southwest Jiaotong University, Chengdu Institute of Respiratory Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, Chengdu Third People’s Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, China
| | - Yao Liu
- Laboratory of Allergy and Precision Medicine, School of Medicine, Southwest Jiaotong University, Chengdu Institute of Respiratory Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, Chengdu Third People’s Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, China
| | - Ying Xiong
- Department of Pulmonary and Critical Care Medicine, Sichuan Friendship Hospital, Chengdu, China
| | - Guoping Li
- Laboratory of Allergy and Precision Medicine, School of Medicine, Southwest Jiaotong University, Chengdu Institute of Respiratory Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, Chengdu Third People’s Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, China
| | - Xiang He
- Laboratory of Allergy and Precision Medicine, School of Medicine, Southwest Jiaotong University, Chengdu Institute of Respiratory Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, Chengdu Third People’s Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, China
| |
Collapse
|
45
|
Li D, Peng X, He G, Liu J, Li X, Lin W, Fang J, Li X, Yang S, Yang L, Li H. Crosstalk between autophagy and CSCs: molecular mechanisms and translational implications. Cell Death Dis 2023; 14:409. [PMID: 37422448 PMCID: PMC10329683 DOI: 10.1038/s41419-023-05929-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/07/2023] [Accepted: 06/23/2023] [Indexed: 07/10/2023]
Abstract
Cancer stem cells(CSCs) play a key role in regulating tumorigenesis, progression, as well as recurrence, and possess typical metabolic characteristics. Autophagy is a catabolic process that can aid cells to survive under stressful conditions such as nutrient deficiency and hypoxia. Although the role of autophagy in cancer cells has been extensively studied, CSCs possess unique stemness, and their potential relationship with autophagy has not been fully analyzed. This study summarizes the possible role of autophagy in the renewal, proliferation, differentiation, survival, metastasis, invasion, and treatment resistance of CSCs. It has been found that autophagy can contribute to the maintenance of CSC stemness, facilitate the tumor cells adapt to changes in the microenvironment, and promote tumor survival, whereas in some other cases autophagy acts as an important process involved in the deprivation of CSC stemness thus leading to tumor death. Mitophagy, which has emerged as another popular research area in recent years, has a great scope when explored together with stem cells. In this study, we have aimed to elaborate on the mechanism of action of autophagy in regulating the functions of CSCs to provide deeper insights for future cancer treatment.
Collapse
Affiliation(s)
- Dai Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Guangpeng He
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Jiaxing Liu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Xian Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Weikai Lin
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Jianjun Fang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Xinyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Shuo Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China.
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China.
| |
Collapse
|
46
|
Fan M, Shi Y, Zhao J, Li L. Cancer stem cell fate determination: mito-nuclear communication. Cell Commun Signal 2023; 21:159. [PMID: 37370081 PMCID: PMC10294499 DOI: 10.1186/s12964-023-01160-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/06/2023] [Indexed: 06/29/2023] Open
Abstract
Cancer stem cells (CSCs) are considered to be responsible for tumor recurrence and metastasis. Therefore, clarification of the mechanisms involved in CSC stemness maintenance and cell fate determination would provide a new strategy for cancer therapy. Unregulated cellular energetics has been accepted as one of the hallmarks of cancer cells, but recent studies have revealed that mitochondrial metabolism can also actively determine CSC fate by affecting nuclear stemness gene expression. Herein, from the perspective of mito-nuclear communication, we review recent progress on the influence of mitochondria on CSC potential from four aspects: metabolism, dynamics, mitochondrial homeostasis, and reactive oxygen species (ROS). Video Abstract.
Collapse
Affiliation(s)
- Mengchen Fan
- School of Basic Medical Sciences, Medical College of Yan’an University, Yanan, 716000 China
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi’an, 710032 China
| | - Ying Shi
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi’an, 710032 China
| | - Jumei Zhao
- School of Basic Medical Sciences, Medical College of Yan’an University, Yanan, 716000 China
| | - Ling Li
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi’an, 710032 China
| |
Collapse
|
47
|
Yuan X, Chen K, Zheng F, Xu S, Li Y, Wang Y, Ni H, Wang F, Cui Z, Qin Y, Xia D, Wu Y. Low-dose BPA and its substitute BPS promote ovarian cancer cell stemness via a non-canonical PINK1/p53 mitophagic signaling. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131288. [PMID: 36989771 DOI: 10.1016/j.jhazmat.2023.131288] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/23/2023] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
The environmental toxicity of bisphenol A (BPA) and its analog like bisphenol S (BPS) have drawn wide attention, but their roles in cancer progression remain controversial. Here, we investigated the effect of BPA/BPS on the development of ovarian cancer. Human internal BPA/BPS exposure levels were analyzed from NHANES 2013-2016 data. We treated human ovarian cancer cells with 0-1000 nM BPA/BPS and found that 100 nM BPA/BPS treatment significantly increased Cancer Stem Cell (CSC) markers expression including OCT4, NANOG and SOX2. Cancer cell stemness evaluation induced by BPA/BPS was notably attenuated by the knockdown of PINK1 or Mdivi-1 treatment. The activation of PINK1 initiated mitophagy by inhibiting p-p53 nuclear translocation in a non-canonical manner. In vivo studies validated that BPA/BPS-exposed mice have higher tumor metastasis incidence compared with the control group, while mitophagy inhibition blocked such a promotion effect. In addition, CSC markers such as SOX2 had been found to be overexpressed in the tumor tissues of BPA/BPS exposure group. Taken together, the findings herein first provide the evidence that environmentally relevant BPA/BPS exposure could enhance ovarian cancer cell stemness through a non-canonical PINK1/p53 mitophagic pathway, raising concerns about the potential population hazards of BPA and other bisphenol analogs.
Collapse
Affiliation(s)
- Xiaoyu Yuan
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kelie Chen
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fang Zheng
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sinan Xu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yating Li
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuwei Wang
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Heng Ni
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fang Wang
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenyan Cui
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuheng Qin
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dajing Xia
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China.
| | - Yihua Wu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences, Hangzhou, China.
| |
Collapse
|
48
|
Wang Y, Tong M. Protein Posttranslational Modification in Stemness Remodeling and Its Emerging Role as a Novel Therapeutic Target in Gastrointestinal Cancers. Int J Mol Sci 2023; 24:ijms24119173. [PMID: 37298124 DOI: 10.3390/ijms24119173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
The posttranslational modifications (PTMs) of proteins, as critical mechanisms for protein regulation, are well known to enhance the functional diversity of the proteome and dramatically participate in complicated biological processes. Recent efforts in the field of cancer biology have illustrated the extensive landscape of PTMs and their crosstalk with a wide range of pro-tumorigenic signaling pathways that decisively contribute to neoplastic transformation, tumor recurrence, and resistance to oncotherapy. Cancer stemness is an emerging concept that maintains the ability of tumor cells to self-renew and differentiate and has been recognized as the root of cancer development and therapy resistance. In recent years, the PTM profile for modulating the stemness of various tumor types has been identified. This breakthrough has shed light on the underlying mechanisms by which protein PTMs maintain cancer stemness, initiate tumor relapse, and confer resistance to oncotherapies. This review focuses on the latest knowledge of protein PTMs in reprogramming the stemness of gastrointestinal (GI) cancer. A deeper understanding of abnormal PTMs in specific proteins or signaling pathways provides an opportunity to specifically target cancer stem cells and highlights the clinical relevance of PTMs as potential biomarkers and therapeutic targets for patients with GI malignancies.
Collapse
Affiliation(s)
- Yifei Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Man Tong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
49
|
Richtig G, Kienzl M, Rittchen S, Roula D, Eberle J, Sarif Z, Pichler M, Hoefler G, Heinemann A. Cannabinoids Reduce Melanoma Cell Viability and Do Not Interfere with Commonly Used Targeted Therapy in Metastatic Melanoma In Vivo and In Vitro. BIOLOGY 2023; 12:biology12050706. [PMID: 37237519 DOI: 10.3390/biology12050706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/06/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023]
Abstract
Background: Cannabinoids are mainly used for recreational purposes, but also made their way into oncology, since these substances can be taken to increase appetite in tumour cachexia. Since there are some hints in the literature that cannabinoids might have some anti-cancerous effects, the aim of this study was to study if and how cannabinoids mediate pro-apoptotic effects in metastatic melanoma in vivo and in vitro and its value besides conventional targeted therapy in vivo. Methods: Several melanoma cell lines were treated with different concentrations of cannabinoids, and anti-cancerous efficacy was assessed by proliferation and apoptosis assays. Subsequent pathway analysis was performed using apoptosis, proliferation, flow cytometry and confocal microscopy data. The efficacy of cannabinoids in combination with trametinib was studied in NSG mice in vivo. Results: Cannabinoids reduced cell viability in multiple melanoma cell lines in a dose-dependent way. The effect was mediated by CB1, TRPV1 and PPARα receptors, whereby pharmacological blockade of all three receptors protected from cannabinoid-induced apoptosis. Cannabinoids initiated apoptosis by mitochondrial cytochrome c release with consecutive activation of different caspases. Essentially, cannabinoids significantly decreased tumour growth in vivo and were as potent as the MEK inhibitor trametinib. Conclusions: We could demonstrate that cannabinoids reduce cell viability in several melanoma cell lines, initiate apoptosis via the intrinsic apoptotic pathway by cytochrome c release and caspase activation and do not interfere with commonly used targeted therapy.
Collapse
Affiliation(s)
- Georg Richtig
- Otto-Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Melanie Kienzl
- Otto-Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Sonja Rittchen
- Otto-Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria
| | - David Roula
- Otto-Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria
| | - Jürgen Eberle
- Department of Dermatology, Venereology and Allergology, Skin Cancer Center Charité, Charité-Universitätsmedizin Berlin (University Medical Center Charité), 10117 Berlin, Germany
| | - Zina Sarif
- Department of Dermatology, Venereology and Allergology, Skin Cancer Center Charité, Charité-Universitätsmedizin Berlin (University Medical Center Charité), 10117 Berlin, Germany
| | - Martin Pichler
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Gerald Hoefler
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8036 Graz, Austria
| | - Akos Heinemann
- Otto-Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria
| |
Collapse
|
50
|
Assi M, Kimmelman AC. Impact of context-dependent autophagy states on tumor progression. NATURE CANCER 2023; 4:596-607. [PMID: 37069394 PMCID: PMC10542907 DOI: 10.1038/s43018-023-00546-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 03/20/2023] [Indexed: 04/19/2023]
Abstract
Macroautophagy is a cellular quality-control process that degrades proteins, protein aggregates and damaged organelles. Autophagy plays a fundamental role in cancer where, in the presence of stressors (for example, nutrient starvation, hypoxia, mechanical pressure), tumor cells activate it to degrade intracellular substrates and provide energy. Cell-autonomous autophagy in tumor cells and cell-nonautonomous autophagy in the tumor microenvironment and in the host converge on mechanisms that modulate metabolic fitness, DNA integrity and immune escape and, consequently, support tumor growth. In this Review, we will discuss insights into the tumor-modulating roles of autophagy in different contexts and reflect on how future studies using physiological culture systems may help to understand the complexity and open new therapeutic avenues.
Collapse
Affiliation(s)
- Mohamad Assi
- Department of Radiation Oncology, New York University Langone Health, New York, NY, USA
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Alec C Kimmelman
- Department of Radiation Oncology, New York University Langone Health, New York, NY, USA.
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA.
| |
Collapse
|