1
|
Bankolé A, Srivastava A, Shihavuddin A, Tighanimine K, Faucourt M, Koka V, Weill S, Nemazanyy I, Nelson AJ, Stokes MP, Delgehyr N, Genovesio A, Meunier A, Fumagalli S, Pende M, Spassky N. mTOR controls ependymal cell differentiation by targeting the alternative cell cycle and centrosomal proteins. EMBO Rep 2025:10.1038/s44319-025-00460-2. [PMID: 40307619 DOI: 10.1038/s44319-025-00460-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/18/2025] [Accepted: 04/04/2025] [Indexed: 05/02/2025] Open
Abstract
Ependymal cells are multiciliated glial cells lining the ventricles of the mammalian brain. Their differentiation from progenitor cells involves cell enlargement and progresses through centriole amplification phases and ciliogenesis. These phases are accompanied by the sharp up-regulation of mTOR Complex 1 activity (mTORC1), a master regulator of macromolecule biosynthesis and cell growth, whose function in ependymal cell differentiation is unknown. We demonstrate that mTORC1 inhibition by rapamycin preserves the progenitor pool by reinforcing quiescence and preventing alternative cell cycle progression for centriole amplification. Overexpressing E2F4 and MCIDAS circumvents mTORC1-regulated processes, enabling centriole amplification despite rapamycin, and enhancing mTORC1 activity through positive feedback. Acute rapamycin treatment in multicentriolar cells during the late phases of differentiation causes centriole regrouping, indicating a direct role of mTORC1 in centriole dynamics. By phosphoproteomic and phosphomutant analysis, we reveal that the mTORC1-mediated phosphorylation of GAS2L1, a centrosomal protein that links actin and microtubule cytoskeletons, participates in centriole disengagement. This multilayered and sequential control of ependymal development by mTORC1, from the progenitor pool to centriolar function, has implications for pathophysiological conditions like aging and hydrocephalus-prone genetic diseases.
Collapse
Affiliation(s)
- Alexia Bankolé
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015, Paris, France
| | - Ayush Srivastava
- Institut de Biologie de l'Ecole Normale Superieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Team Cilia Biology and neurogenesis, 75005, Paris, France
| | - Asm Shihavuddin
- Institut de Biologie de l'Ecole Normale Superieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Team Computational bioimaging and bioinformatics, 75005, Paris, France
- Department of EEE, Presidency University, Dhaka, Bangladesh
| | - Khaled Tighanimine
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015, Paris, France
| | - Marion Faucourt
- Institut de Biologie de l'Ecole Normale Superieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Team Cilia Biology and neurogenesis, 75005, Paris, France
| | - Vonda Koka
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015, Paris, France
| | - Solene Weill
- Institut de Biologie de l'Ecole Normale Superieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Team Cilia Biology and neurogenesis, 75005, Paris, France
| | - Ivan Nemazanyy
- Platform for Metabolic Analyses, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR 3633, Paris, France
| | - Alissa J Nelson
- Cell Signaling Technology INC, 3 Trask Lane, Danvers, MA, 01923, USA
| | - Matthew P Stokes
- Cell Signaling Technology INC, 3 Trask Lane, Danvers, MA, 01923, USA
| | - Nathalie Delgehyr
- Institut de Biologie de l'Ecole Normale Superieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Team Cilia Biology and neurogenesis, 75005, Paris, France
| | - Auguste Genovesio
- Institut de Biologie de l'Ecole Normale Superieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Team Computational bioimaging and bioinformatics, 75005, Paris, France
| | - Alice Meunier
- Institut de Biologie de l'Ecole Normale Superieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Team Cilia Biology and neurogenesis, 75005, Paris, France
| | - Stefano Fumagalli
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015, Paris, France
| | - Mario Pende
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015, Paris, France.
| | - Nathalie Spassky
- Institut de Biologie de l'Ecole Normale Superieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Team Cilia Biology and neurogenesis, 75005, Paris, France.
| |
Collapse
|
2
|
Régnier M, Polizzi A, Fougeray T, Fougerat A, Perrier P, Anderson K, Lippi Y, Smati S, Lukowicz C, Lasserre F, Fouche E, Huillet M, Rives C, Tramunt B, Naylies C, Garcia G, Rousseau-Bacquié E, Bertrand-Michel J, Canlet C, Chevolleau-Mege S, Debrauwer L, Heymes C, Burcelin R, Levade T, Gourdy P, Wahli W, Blum Y, Gamet-Payrastre L, Ellero-Simatos S, Guillermet-Guibert J, Hawkins P, Stephens L, Postic C, Montagner A, Loiseau N, Guillou H. Liver gene expression and its rewiring in hepatic steatosis are controlled by PI3Kα-dependent hepatocyte signaling. PLoS Biol 2025; 23:e3003112. [PMID: 40228209 PMCID: PMC12021288 DOI: 10.1371/journal.pbio.3003112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 04/24/2025] [Accepted: 03/12/2025] [Indexed: 04/16/2025] Open
Abstract
Insulin and other growth factors are key regulators of liver gene expression, including in metabolic diseases. Most of the phosphoinositide 3-kinase (PI3K) activity induced by insulin is considered to be dependent on PI3Kα. We used mice lacking p110α, the catalytic subunit of PI3Kα, to investigate its role in the regulation of liver gene expression in health and in metabolic dysfunction-associated steatotic liver disease (MASLD). The absence of hepatocyte PI3Kα reduced maximal insulin-induced PI3K activity and signaling, promoted glucose intolerance in lean mice and significantly regulated liver gene expression, including insulin-sensitive genes, in ad libitum feeding. Some of the defective regulation of gene expression in response to hepatocyte-restricted insulin receptor deletion was related to PI3Kα signaling. In addition, though PI3Kα deletion in hepatocytes promoted insulin resistance, it was protective against steatotic liver disease in diet-induced obesity. In the absence of hepatocyte PI3Kα, the effect of diet-induced obesity on liver gene expression was significantly altered, with changes in rhythmic gene expression in liver. Altogether, this study highlights the specific role of p110α in the control of liver gene expression in physiology and in the metabolic rewiring that occurs during MASLD.
Collapse
Affiliation(s)
- Marion Régnier
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR1331, Université de Toulouse, Toulouse, France
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Arnaud Polizzi
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR1331, Université de Toulouse, Toulouse, France
| | - Tiffany Fougeray
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR1331, Université de Toulouse, Toulouse, France
| | - Anne Fougerat
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR1331, Université de Toulouse, Toulouse, France
| | - Prunelle Perrier
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR1331, Université de Toulouse, Toulouse, France
| | - Karen Anderson
- The Signaling Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Yannick Lippi
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR1331, Université de Toulouse, Toulouse, France
| | - Sarra Smati
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR1331, Université de Toulouse, Toulouse, France
| | - Céline Lukowicz
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR1331, Université de Toulouse, Toulouse, France
| | - Frédéric Lasserre
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR1331, Université de Toulouse, Toulouse, France
| | - Edwin Fouche
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR1331, Université de Toulouse, Toulouse, France
| | - Marine Huillet
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR1331, Université de Toulouse, Toulouse, France
| | - Clémence Rives
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR1331, Université de Toulouse, Toulouse, France
| | - Blandine Tramunt
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Toulouse, France
- Diabetology Department, CHU de Toulouse, Toulouse, France
| | - Claire Naylies
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR1331, Université de Toulouse, Toulouse, France
| | - Géraldine Garcia
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR1331, Université de Toulouse, Toulouse, France
| | - Elodie Rousseau-Bacquié
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR1331, Université de Toulouse, Toulouse, France
| | - Justine Bertrand-Michel
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Toulouse, France
- Metatoul-Lipidomic Facility, MetaboHUB, Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Toulouse, France
| | - Cécile Canlet
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR1331, Université de Toulouse, Toulouse, France
| | - Sylvie Chevolleau-Mege
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR1331, Université de Toulouse, Toulouse, France
| | - Laurent Debrauwer
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR1331, Université de Toulouse, Toulouse, France
| | - Christophe Heymes
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Toulouse, France
| | - Rémy Burcelin
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Toulouse, France
| | - Thierry Levade
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Inserm U1037, CNRS U5071, Université de Toulouse, Toulouse, France
- Laboratoire de Biochimie, CHU de Toulouse, Toulouse, France
| | - Pierre Gourdy
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Toulouse, France
- Diabetology Department, CHU de Toulouse, Toulouse, France
| | - Walter Wahli
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR1331, Université de Toulouse, Toulouse, France
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
- Center for Integrative Genomics, Université de Lausanne, Lausanne, Switzerland
| | - Yuna Blum
- Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes) – UMR6290, ERL U1305, Rennes, France
| | - Laurence Gamet-Payrastre
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR1331, Université de Toulouse, Toulouse, France
| | - Sandrine Ellero-Simatos
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR1331, Université de Toulouse, Toulouse, France
| | - Julie Guillermet-Guibert
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Inserm U1037, CNRS U5071, Université de Toulouse, Toulouse, France
| | - Phillip Hawkins
- The Signaling Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Len Stephens
- The Signaling Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Catherine Postic
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Alexandra Montagner
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Toulouse, France
| | - Nicolas Loiseau
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR1331, Université de Toulouse, Toulouse, France
| | - Hervé Guillou
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR1331, Université de Toulouse, Toulouse, France
| |
Collapse
|
3
|
Meng Y, Xu Y, Qiu A, Lin M, Yang L, Huang Y. USP28-mediated deubiquitination of FOXK1 activates the Hippo signaling pathway to regulate cell proliferation and radiosensitivity in lung cancer. Life Sci 2025; 366-367:123483. [PMID: 39983825 DOI: 10.1016/j.lfs.2025.123483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/17/2025] [Accepted: 02/16/2025] [Indexed: 02/23/2025]
Abstract
AIMS Radioresistance remains a significant challenge for lung cancer therapeutics. Forkhead box K1 (FOXK1) plays a role in regulating various biological processes and the progression of multiple cancers. However, the role of FOXK1 in lung cancer progression and radioresistance are not fully understood. MAIN METHODS Functional analyses were conducted on lung cancer cells transfected with specified siRNAs or plasmids. The ubiquitination of FOXK1 was evaluated by in vitro ubiquitination assays. RNA sequencing analysis was conducted to identify the downstream signaling pathway regulated by FOXK1. Mouse xenograft models were constructed using lung cancer cells with stable expression of either sh-NC or sh-FOXK1. Immunohistochemistry was used to assess FOXK1 and USP28 expression levels in lung cancer and paired normal lung tissues. KEY FINDINGS We found that elevated FOXK1 expression markedly enhances radioresistance and tumorigenesis in lung cancer. Furthermore, we demonstrated that ubiquitin specific peptidase 28 (USP28) interacts with and targets FOXK1 for deubiquitination and stabilization. Moreover, we showed that FOXK1 exerts its biological function via activating the Hippo pathway. SIGNIFICANCE Our research showed that FOXK1 is deubiquitinated by USP28 and facilitates cell proloferation and radioresistance by activating the Hippo pathway, suggesting that FOXK1 may act as a potential radiosensitizing target for lung cancer.
Collapse
Affiliation(s)
- Yimei Meng
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Yunhong Xu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Anchen Qiu
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Ming Lin
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Liu Yang
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China; Zhejiang Province Key Disciplines in Traditional Chinese Medicine-Integrated Traditional Chinese and Western Medicine Clinical Oncology, Hangzhou, Zhejiang, 310014, China.
| | - Yumei Huang
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China; Zhejiang Province Key Disciplines in Traditional Chinese Medicine-Integrated Traditional Chinese and Western Medicine Clinical Oncology, Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
4
|
Zhao M, Ma T, Zhang Z, Wang Y, Wang X, Wang W, Chen X, Gao R, Shan L. FOXK1 promotes hormonally responsive breast carcinogenesis by suppressing apoptosis. Animal Model Exp Med 2025; 8:638-648. [PMID: 38238876 PMCID: PMC12008446 DOI: 10.1002/ame2.12382] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 04/20/2025] Open
Abstract
BACKGROUND Globally, breast cancer constitutes the predominant malignancy in women. Abnormal regulation of epigenetic factors plays a key role in the development of tumors. Anti-apoptosis is a characteristic of tumor cells. Therefore, exploring and identifying relevant epigenetic factors that regulate the apoptosis of tumor cells is the foundation for clarifying the pathogenesis of tumors and achieving precision antitumor therapy. METHOD This study focused on exploring the epigenetic mechanism of FOXK1 in the development of estrogen receptor-positive (ER+) breast cancer. We used overexpressing FLAG-FOXK1 MCF-7 cells to perform silver staining mass spectrometry analysis and conducted Co-IP experiments to verify the interactions. ChIP-seq was conducted on MCF-7 cells to examine FOXK1's binding across the genome and its transcriptional target sites. To validate the ChIP-seq results, qChIP, western blotting, and quantitative polymerase chain reaction (qPCR) were performed. Through TUNEL assay, cell counting assay, colony formation assay, and the mouse xenograft models, the effect of FOXK1 on breast cancer progression was detected. Finally, by analyzing online databases, the correlation between FOXK1 and the survival of breast cancer patients was examined. RESULTS FOXK1 interacts with the REST/CoREST transcriptional corepression complex to transcriptionally inhibit target genes representing the apoptotic pathway. Abnormally high expression of FOXK1 prevents the apoptosis of ER+ breast cancer cells in vitro and promotes ER+ breast tumor progression in vivo. Furthermore, the expression of FOXK1 is negatively correlated with the survival of ER+ breast cancer patients. CONCLUSION FOXK1 promotes ER+ breast carcinogenesis through anti-apoptosis and acts as a potential target for ER+ breast cancer treatment.
Collapse
Affiliation(s)
- Minghui Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Tingyao Ma
- Department of Otolaryngology‐Head and Neck Surgery, Beijing Tongren HospitalCapital Medical UniversityBeijingChina
| | - Zhaohan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Yu Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Xilin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Wenjuan Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Xiaohong Chen
- Department of Otolaryngology‐Head and Neck Surgery, Beijing Tongren HospitalCapital Medical UniversityBeijingChina
| | - Ran Gao
- National Human Diseases Animal Model Resource Center, The Institute of Laboratory Animal ScienceChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- NHC Key Laboratory of Human Disease Comparative MedicineBeijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
| | - Lin Shan
- Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| |
Collapse
|
5
|
Koundouros N, Nagiec MJ, Bullen N, Noch EK, Burgos-Barragan G, Li Z, He L, Cho S, Parang B, Leone D, Andreopoulou E, Blenis J. Direct sensing of dietary ω-6 linoleic acid through FABP5-mTORC1 signaling. Science 2025; 387:eadm9805. [PMID: 40080571 DOI: 10.1126/science.adm9805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 10/09/2024] [Accepted: 01/14/2025] [Indexed: 03/15/2025]
Abstract
Diet influences macronutrient availability to cells, and although mechanisms of sensing dietary glucose and amino acids are well characterized, less is known about sensing lipids. We defined a nutrient signaling mechanism involving fatty acid-binding protein 5 (FABP5) and mechanistic target of rapamycin complex 1 (mTORC1) that is activated by the essential polyunsaturated fatty acid (PUFA) ω-6 linoleic acid (LA). FABP5 directly bound to the regulatory-associated protein of mTOR (Raptor) to enhance formation of functional mTORC1 and substrate binding, ultimately converging on increased mTOR signaling and proliferation. The amounts of FABP5 protein were increased in tumors and serum from triple-negative compared with those from receptor-positive breast cancer patients, which highlights its potential role as a biomarker that mediates cellular responses to ω-6 LA intake in this disease subtype.
Collapse
Affiliation(s)
- Nikos Koundouros
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Michal J Nagiec
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Nayah Bullen
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Evan K Noch
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Neurology, Division of Neuro-oncology, Weill Cornell Medicine, New York, NY, USA
| | - Guillermo Burgos-Barragan
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Zhongchi Li
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Long He
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Sungyun Cho
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Bobak Parang
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Dominique Leone
- Cancer Clinical Trials Office - Breast, Weill Cornell Medicine, New York, NY, USA
| | - Eleni Andreopoulou
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY, USA
| | - John Blenis
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
6
|
Arora S, Nagarkar P, D'Souza JS. Recombinant human FOXJ1 protein binds DNA, forms higher-order oligomers, has gel-shifting domains and contains intrinsically disordered regions. Protein Expr Purif 2025; 227:106622. [PMID: 39549898 DOI: 10.1016/j.pep.2024.106622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/06/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
Forkhead box protein J1 (FOXJ1) is the key transcriptional regulator during the conversion of mammalian primary cilium with a 9 + 0 architecture to the motile (9 + 2) one. The nucleotide sequences of the full-length and DNA-binding domain (DBD) of the open reading frame (ORF) were isolated and expressed into E. coli as 6xHis-tagged proteins. Upon induction, the DBD formed inclusion bodies that solubilized with 8 M urea. No induction of 6xHis-FOXJ1 protein was seen despite sub-cloning into several expression vectors and E. coli host strains. To improve induction and solubility, the 6xHis tag was substituted with Glutathione S-transferase (GST), and weak induction was seen in E. coli BL21(DE3). The GST-FOXJ1 showed anomalous migration on denaturing gel electrophoresis (AM-DRE), migrating at approximately 83 kDa instead of its calculated molecular weight (Mr) of 72.4 kDa. It was also unstable and led to degradation products. The 6xHis tag was substituted with Glutathione S-transferase (GST) to improve induction and solubility. Codon-optimization improved the induction, but the protein still showed AM-DRE and instability. It seemed that the recombinant protein was either toxic or posed a metabolic burden to the E. coli cells or, once produced was prone to degradation due mainly to the lack of post-translational modification (PTM). This process is required for some eukaryotic proteins after they are manufactured in the ribosomal factory. Both the purified recombinant proteins exhibited cysteine-induced oligomerization via the formation of disulphide bridges since this was reduced using dithiothreitol (DTT). Both were equally functional as these individually bound to an oligonucleotide, a consensus DNA-binding sequence for FOX proteins. Further, the recombinant polypeptides corresponding to the C-terminus and N-terminus show anomalies indicating that the highly acidic residues (known as polyacidic gel-shifting domains) in these polypeptides contribute to the AM-DRE. We demonstrate for the first time that the recombinant HsFOXJ1 and its DBD bind to DNA, its polyacidic gel-shifting domains are the reason for the AM-DRE, is unstable leading to degradation products, exhibits cysteine-induced oligomerization and harbours intrinsically disordered regions.
Collapse
Affiliation(s)
- Shashank Arora
- School of Biological Sciences, UM-DAE Center for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Santacruz (E), Mumbai, 400098, India
| | - Pawan Nagarkar
- School of Biological Sciences, UM-DAE Center for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Santacruz (E), Mumbai, 400098, India
| | - Jacinta S D'Souza
- School of Biological Sciences, UM-DAE Center for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Santacruz (E), Mumbai, 400098, India.
| |
Collapse
|
7
|
He L, Cho S, Blenis J. mTORC1, the maestro of cell metabolism and growth. Genes Dev 2025; 39:109-131. [PMID: 39572234 PMCID: PMC11789495 DOI: 10.1101/gad.352084.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The mechanistic target of rapamycin (mTOR) pathway senses and integrates various environmental and intracellular cues to regulate cell growth and proliferation. As a key conductor of the balance between anabolic and catabolic processes, mTOR complex 1 (mTORC1) orchestrates the symphonic regulation of glycolysis, nucleic acid and lipid metabolism, protein translation and degradation, and gene expression. Dysregulation of the mTOR pathway is linked to numerous human diseases, including cancer, neurodegenerative disorders, obesity, diabetes, and aging. This review provides an in-depth understanding of how nutrients and growth signals are coordinated to influence mTOR signaling and the extensive metabolic rewiring under its command. Additionally, we discuss the use of mTORC1 inhibitors in various aging-associated metabolic diseases and the current and future potential for targeting mTOR in clinical settings. By deciphering the complex landscape of mTORC1 signaling, this review aims to inform novel therapeutic strategies and provide a road map for future research endeavors in this dynamic and rapidly evolving field.
Collapse
Affiliation(s)
- Long He
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA;
- Department of Pharmacology, Weill Cornell Medicine, New York, New York 10021, USA
| | - Sungyun Cho
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, New York 10021, USA
| | - John Blenis
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA;
- Department of Pharmacology, Weill Cornell Medicine, New York, New York 10021, USA
| |
Collapse
|
8
|
Zhang J, Yao M, Xia S, Zeng F, Liu Q. Systematic and comprehensive insights into HIF-1 stabilization under normoxic conditions: implications for cellular adaptation and therapeutic strategies in cancer. Cell Mol Biol Lett 2025; 30:2. [PMID: 39757165 DOI: 10.1186/s11658-024-00682-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025] Open
Abstract
Hypoxia-inducible factors (HIFs) are essential transcription factors that orchestrate cellular responses to oxygen deprivation. HIF-1α, as an unstable subunit of HIF-1, is usually hydroxylated by prolyl hydroxylase domain enzymes under normoxic conditions, leading to ubiquitination and proteasomal degradation, thereby keeping low levels. Instead of hypoxia, sometimes even in normoxia, HIF-1α translocates into the nucleus, dimerizes with HIF-1β to generate HIF-1, and then activates genes involved in adaptive responses such as angiogenesis, metabolic reprogramming, and cellular survival, which presents new challenges and insights into its role in cellular processes. Thus, the review delves into the mechanisms by which HIF-1 maintains its stability under normoxia including but not limited to giving insights into transcriptional, translational, as well as posttranslational regulation to underscore the pivotal role of HIF-1 in cellular adaptation and malignancy. Moreover, HIF-1 is extensively involved in cancer and cardiovascular diseases and potentially serves as a bridge between them. An overview of HIF-1-related drugs that are approved or in clinical trials is summarized, highlighting their potential capacity for targeting HIF-1 in cancer and cardiovascular toxicity related to cancer treatment. The review provides a comprehensive insight into HIF-1's regulatory mechanism and paves the way for future research and therapeutic development.
Collapse
Affiliation(s)
- Jiayi Zhang
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Mingxuan Yao
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Shiting Xia
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China
| | - Fancai Zeng
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China.
| | - Qiuyu Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
9
|
Zhang S, You Y, Li R, Li M, Li Y, Yuan H, Zhou J, Zhen R, Liu Y, Wang B, Zhu E. Foxk2 Enhances Adipogenic Differentiation by Relying on the Transcriptional Activation of Peroxisome Proliferator-Activated Receptor Gamma. J Cell Mol Med 2025; 29:e70332. [PMID: 39789420 PMCID: PMC11717668 DOI: 10.1111/jcmm.70332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025] Open
Abstract
Proper differentiation of bone marrow stromal cells (BMSCs) into adipocytes is crucial for maintaining skeletal homeostasis. However, the underlying regulatory mechanisms remain incompletely understood, posing a challenge for the treatment of age-related osteopenia and osteoporosis. Here, through comprehensive gene expression analysis during BMSC differentiation into adipocytes, we identified the forkhead transcription factor Foxk2 as a key regulator of this process. Foxk2 expression was significantly higher in the inguinal and epididymal white adipose tissues of db/db mice compared to non-obese db/m controls and was induced in BMSCs, C3H/10 T1/2, and ST2 cells following adipogenic stimulation. Overexpression of Foxk2 promoted adipogenic differentiation of C3H/10 T1/2, ST2, and BMSCs, accompanied by increased expression of lipogenic factors. Conversely, Foxk2 silencing inhibited adipogenic differentiation. Moreover, Foxk2 also facilitated lipogenesis of C3H/10 T1/2 and ST2 cells. Adipogenic stimuli triggered the nuclear translocation of Foxk2 through PI3-kinase and mTOR signalling pathways. Once in the nucleus, Foxk2 is directly bound to the promoters of Pparγ1 and Pparγ2, thereby enhancing their transcriptional activity. Notably, PPARγ1 and PPARγ2 reciprocally augmented the transcriptional activity of the Foxk2 promoter, indicating the presence of a Foxk2-PPARγ positive feedback loop that drives adipogenesis.
Collapse
Affiliation(s)
- Shan Zhang
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic DiseasesTianjin Medical University Chu Hsien‐I Memorial Hospital & Institute of EndocrinologyTianjinChina
| | - Yanru You
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic DiseasesTianjin Medical University Chu Hsien‐I Memorial Hospital & Institute of EndocrinologyTianjinChina
| | - Ran Li
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic DiseasesTianjin Medical University Chu Hsien‐I Memorial Hospital & Institute of EndocrinologyTianjinChina
| | - Mingcong Li
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic DiseasesTianjin Medical University Chu Hsien‐I Memorial Hospital & Institute of EndocrinologyTianjinChina
| | - Yachong Li
- Department of Endodontics, School of StomatologyHospital of Stomatology, Tianjin Medical UniversityTianjinChina
| | - Hairui Yuan
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic DiseasesTianjin Medical University Chu Hsien‐I Memorial Hospital & Institute of EndocrinologyTianjinChina
| | - Jie Zhou
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic DiseasesTianjin Medical University Chu Hsien‐I Memorial Hospital & Institute of EndocrinologyTianjinChina
| | - Ruonan Zhen
- Hebei International Travel Healthcare Center (Shijiazhuang Customs Port Clinic)ShijiazhuangHebei provinceChina
| | - Ying Liu
- Department of Endodontics, School of StomatologyHospital of Stomatology, Tianjin Medical UniversityTianjinChina
| | - Baoli Wang
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic DiseasesTianjin Medical University Chu Hsien‐I Memorial Hospital & Institute of EndocrinologyTianjinChina
| | - Endong Zhu
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic DiseasesTianjin Medical University Chu Hsien‐I Memorial Hospital & Institute of EndocrinologyTianjinChina
| |
Collapse
|
10
|
Chen Q, Li X, Quan L, Zhou R, Liu X, Cheng L, Sarid R, Kuang E. FoxK1 and FoxK2 cooperate with ORF45 to promote late lytic replication of Kaposi's sarcoma-associated herpesvirus. J Virol 2024; 98:e0077924. [PMID: 39494902 PMCID: PMC11650984 DOI: 10.1128/jvi.00779-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024] Open
Abstract
Lytic replication is essential for persistent infection of Kaposi's sarcoma-associated herpesvirus (KSHV) and the pathogenesis of related diseases, and many cellular pathways are hijacked by KSHV proteins to initiate and control the lytic replication of this virus. However, the mechanism involved in KSHV lytic replication from the early to the late phases remains largely undetermined. We previously revealed that KSHV open reading frame 45 (ORF45) plays important roles in late transcription and translation. In the present study, we revealed that the Forkhead box proteins FoxK1 and FoxK2 are ORF45-binding proteins and are essential for KSHV lytic gene expression and virion production, and that depletion of FoxK1 or FoxK2 significantly suppresses the expression of many late viral genes. FoxK1 and FoxK2 directly bind to the promoters of several late viral genes, ORF45 augments the promoter binding and transcriptional activity of FoxK1 and FoxK2, and then FoxK1 or FoxK2 cooperates with ORF45 to promote late viral gene expression. Our findings suggest that ORF45 interacts with FoxK1 and FoxK2 and promotes their occupancy on a cluster of late viral promoters and their subsequent transcriptional activity; consequently, FoxK1 and FoxK2 promote late viral gene expression to facilitate KSHV lytic replication.IMPORTANCEThe forkhead box proteins FoxK1 and FoxK2 can act as transcriptional inhibitors or activators to regulate several important processes, including aerobic glycolysis, metabolism, autophagy, and antiviral responses. However, the subversion and functions of FoxK1 and FoxK2 during KSHV infection and the pathogenesis of related diseases remain unknown. Here, we revealed that ORF45 binds to FoxK1 and FoxK2 and increases their transcriptional activity during KSHV lytic replication; consequently, FoxK1 and FoxK2 bind to late viral promoters and cooperate with ORF45 to promote late lytic gene expression. Our findings reveal two new ORF45 partners and a new function of ORF45 in which it utilizes FoxK1 and FoxK2 to promote transcription during late KSHV lytic replication.
Collapse
Affiliation(s)
- Qingyang Chen
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiaojuan Li
- College of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
- Hubei Shizhen Laboratory, Wuhan, Hubei, China
| | - Li Quan
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Rihong Zhou
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiangpeng Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Lu Cheng
- School of Life Science, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Ronit Sarid
- School of Graduate Studies, The Mina and Everard Goodman Faculty of Life Sciences & Advanced Materials and Nanotechnology Institute, Bar Ilan University, Ramat-Gan, Israel
| | - Ersheng Kuang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Liu C, Feng N, Wang Z, Zheng K, Xie Y, Wang H, Long H, Peng S. Foxk1 promotes bone formation through inducing aerobic glycolysis. Cell Death Differ 2024; 31:1650-1663. [PMID: 39232134 PMCID: PMC11618307 DOI: 10.1038/s41418-024-01371-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/09/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024] Open
Abstract
Transcription factor Foxk1 can regulate cell proliferation, differentiation, metabolism, and promote skeletal muscle regeneration and cardiogenesis. However, the roles of Foxk1 in bone formation is unknown. Here, we found that Foxk1 expression decreased in the bone tissue of aged mice and osteoporosis patients. Knockdown of Foxk1 in primary murine calvarial osteoblasts suppressed osteoblast differentiation and proliferation. Conditional knockout of Foxk1 in preosteoblasts and mature osteoblasts in mice exhibited decreased bone mass and mechanical strength due to reduced bone formation. Mechanistically, we identified Foxk1 targeted the promoter region of many genes of glycolytic enzyme by CUT&Tag analysis. Lacking of Foxk1 in primary murine calvarial osteoblasts resulted in reducing aerobic glycolysis. Inhibition of glycolysis by 2DG hindered osteoblast differentiation and proliferation induced by Foxk1 overexpression. Finally, specific overexpression of Foxk1 in preosteoblasts, driven by a preosteoblast specific osterix promoter, increased bone mass and bone mechanical strength of aged mice, which could be suppressed by inhibiting glycolysis. In summary, these findings reveal that Foxk1 plays a vital role in the osteoblast metabolism regulation and bone formation stimulation, offering a promising approach for preventing age-related bone loss.
Collapse
Affiliation(s)
- Chungeng Liu
- Division of Spine, Department of Orthopedic Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
- Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen, China
- The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Naibo Feng
- Division of Spine, Department of Orthopedic Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
- Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen, China
- The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Zhenmin Wang
- Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen, China
| | - Kangyan Zheng
- Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen, China
| | - Yongheng Xie
- Division of Spine, Department of Orthopedic Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
- Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen, China
| | - Hongyu Wang
- Division of Spine, Department of Orthopedic Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
- Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen, China
| | - Houqing Long
- Division of Spine, Department of Orthopedic Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
- Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen, China.
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen, China.
| | - Songlin Peng
- Division of Spine, Department of Orthopedic Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
- Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen, China.
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen, China.
| |
Collapse
|
12
|
Chen M, Li H, Li Y, Luo Y, He Y, Shui X, Lei W. Glycolysis modulation: New therapeutic strategies to improve pulmonary hypertension (Review). Int J Mol Med 2024; 54:115. [PMID: 39422043 PMCID: PMC11518579 DOI: 10.3892/ijmm.2024.5439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/06/2024] [Indexed: 10/19/2024] Open
Abstract
Pulmonary hypertension (PH) is a progressive life‑threatening cardiopulmonary vascular disease involving various pathological mechanisms, including hypoxia, cellular metabolism, inflammation, abnormal proliferation and apoptosis. Specifically, metabolism has attracted the most attention. Glucose metabolism is essential to maintain the cardiopulmonary vascular function. However, once exposed to a noxious stimulus, intracellular glucose metabolism changes or switches to an alternative pathway more suitable for adaptation, which is known as metabolic reprogramming. By promoting the switch from oxidative phosphorylation to glycolysis, cellular metabolic reprogramming plays an important role in PH development. Suppression of glucose oxidation and secondary upregulation of glycolysis are responsible for various features of PH, including the proliferation and apoptosis resistance of pulmonary artery endothelial and smooth muscle cells. In the present review, the roles and importance of the glucose metabolism shift were discussed to aid in the development of new treatment approaches for PH.
Collapse
Affiliation(s)
- Meihong Chen
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Hui Li
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Yun Li
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Yangui Luo
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Yuan He
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Xiaorong Shui
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
- Laboratory of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Wei Lei
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
- Precision Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| |
Collapse
|
13
|
Sakaguchi M. The role of insulin signaling with FOXO and FOXK transcription factors. Endocr J 2024; 71:939-944. [PMID: 38987195 PMCID: PMC11778369 DOI: 10.1507/endocrj.ej24-0205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/05/2024] [Indexed: 07/12/2024] Open
Abstract
Insulin is an essential hormone for animal activity and survival, and it controls the metabolic functions of the entire body. Throughout the evolution of metazoan animals and the development of their brains, a sustainable energy supply has been essential to overcoming the competition for survival under various environmental stresses. Managing energy for metabolism, preservation, and consumption inevitably involves high oxidative stress, causing tissue damage in various organs. In both mice and humans, excessive dietary intake can lead to insulin resistance in various organs, ultimately displaying metabolic syndrome and type 2 diabetes. Insulin signals require thorough regulation to maintain metabolism across diverse environments. Recent studies demonstrated that two types of forkhead-box family transcription factors, FOXOs and FOXKs, are related to the switching of insulin signals during fasting and feeding states. Insulin signaling plays a role in supporting higher activity during periods of sufficient food supply and in promoting survival during times of insufficient food supply. The insulin receptor depends on the tyrosine phosphatase feedback of insulin signaling to maintain adipocyte insulin responsiveness. α4, a regulatory subunit of protein phosphatase 2A (PP2A), has been shown to play a crucial role in modulating insulin signaling pathways by regulating the phosphorylation status of key proteins involved in these pathways. This short review summarizes the current understanding of the molecular mechanism related to the regulation of insulin signals.
Collapse
Affiliation(s)
- Masaji Sakaguchi
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
14
|
DiCesare SM, Ortega AJ, Collier GE, Daniel S, Thompson KN, McCoy MK, Posner BA, Hulleman JD. GSK3 inhibition reduces ECM production and prevents age-related macular degeneration-like pathology. JCI Insight 2024; 9:e178050. [PMID: 39114980 PMCID: PMC11383595 DOI: 10.1172/jci.insight.178050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/20/2024] [Indexed: 08/22/2024] Open
Abstract
Malattia Leventinese/Doyne honeycomb retinal dystrophy (ML/DHRD) is an age-related macular degeneration-like (AMD-like) retinal dystrophy caused by an autosomal dominant R345W mutation in the secreted glycoprotein, fibulin-3 (F3). To identify new small molecules that reduce F3 production in retinal pigmented epithelium (RPE) cells, we knocked-in a luminescent peptide tag (HiBiT) into the endogenous F3 locus that enabled simple, sensitive, and high-throughput detection of the protein. The GSK3 inhibitor, CHIR99021 (CHIR), significantly reduced F3 burden (expression, secretion, and intracellular levels) in immortalized RPE and non-RPE cells. Low-level, long-term CHIR treatment promoted remodeling of the RPE extracellular matrix, reducing sub-RPE deposit-associated proteins (e.g., amelotin, complement component 3, collagen IV, and fibronectin), while increasing RPE differentiation factors (e.g., tyrosinase, and pigment epithelium-derived factor). In vivo, treatment of 8-month-old R345W+/+ knockin mice with CHIR (25 mg/kg i.p., 1 mo) was well tolerated and significantly reduced R345W F3-associated AMD-like basal laminar deposit number and size, thereby preventing the main pathological feature in these mice. This is an important demonstration of small molecule-based prevention of AMD-like pathology in ML/DHRD mice and may herald a rejuvenation of interest in GSK3 inhibition for the treatment of retinal degenerative diseases, including potentially AMD itself.
Collapse
Affiliation(s)
- Sophia M. DiCesare
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Antonio J. Ortega
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gracen E. Collier
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Steffi Daniel
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Krista N. Thompson
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Melissa K. McCoy
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Bruce A. Posner
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - John D. Hulleman
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
15
|
Weng YM, Kavanaugh DH, Schoville SD. Evidence for Admixture and Rapid Evolution During Glacial Climate Change in an Alpine Specialist. Mol Biol Evol 2024; 41:msae130. [PMID: 38935588 PMCID: PMC11247348 DOI: 10.1093/molbev/msae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/30/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024] Open
Abstract
The pace of current climate change is expected to be problematic for alpine flora and fauna, as their adaptive capacity may be limited by small population size. Yet, despite substantial genetic drift following post-glacial recolonization of alpine habitats, alpine species are notable for their success surviving in highly heterogeneous environments. Population genomic analyses demonstrating how alpine species have adapted to novel environments with limited genetic diversity remain rare, yet are important in understanding the potential for species to respond to contemporary climate change. In this study, we explored the evolutionary history of alpine ground beetles in the Nebria ingens complex, including the demographic and adaptive changes that followed the last glacier retreat. We first tested alternative models of evolutionary divergence in the species complex. Using millions of genome-wide SNP markers from hundreds of beetles, we found evidence that the N. ingens complex has been formed by past admixture of lineages responding to glacial cycles. Recolonization of alpine sites involved a distributional range shift to higher elevation, which was accompanied by a reduction in suitable habitat and the emergence of complex spatial genetic structure. We tested several possible genetic pathways involved in adaptation to heterogeneous local environments using genome scan and genotype-environment association approaches. From the identified genes, we found enriched functions associated with abiotic stress responses, with strong evidence for adaptation to hypoxia-related pathways. The results demonstrate that despite rapid demographic change, alpine beetles in the N. ingens complex underwent rapid physiological evolution.
Collapse
Affiliation(s)
- Yi-Ming Weng
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
- Okinawa Institute of Science and Technology, Graduate University, Okinawa, Japan
| | - David H Kavanaugh
- California Academy of Sciences, Department of Entomology, San Francisco, CA, USA
| | - Sean D Schoville
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
16
|
Li P, Qian LH, Liao YN, Gai YZ, Pan H, Han L, Nie HZ. Hematological and Neurological Expressed 1 Promotes Tumor Progression Through mTOR Signaling in Ovarian Cancer. Reprod Sci 2024; 31:1868-1880. [PMID: 38263477 DOI: 10.1007/s43032-024-01456-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/05/2024] [Indexed: 01/25/2024]
Abstract
Ovarian cancer (OV) is a highly aggressive malignancy with poor prognosis due to recurrence and drug resistance. Therefore, it is imperative to investigate the key molecular mechanisms underlying OV progression in order to develop promising diagnostic and therapeutic interventions. Although the importance of hematological and neurological expressed 1 (HN1) protein in hemopoietic cell and neurological development has been well-established, its function in cancer, particularly in OV, remains uncertain. In this study, we compared the expression of HN1 in ovarian cancers and para-tumor tissues and predicted potential related signaling pathways through enrichment analysis. In order to confirm the role of HN1 in vitro and vivo, we carried out a variety of experiments including bioinformation analysis, colony formation, flow cytometry analysis, and subcutaneous tumor models. The results demonstrated that HN1 was upregulated in OV and was negatively associated with clinical prognosis. Moreover, we observed that HN1 enhances cell proliferation, migration, and drug resistance, while suppressing apoptosis in OV cells. Notably, we discovered that HN1 functions as a novel regulator of mTOR pathways. Our findings suggest that HN1-mediated mTOR regulation facilitates OV advancement and targeting HN1 could provide a promising therapeutic approach for clinical OV treatment.
Collapse
Affiliation(s)
- Pin Li
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Li-Heng Qian
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ying-Na Liao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yan-Zhi Gai
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hong Pan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Long Han
- Women and Children's Hospital, Qingdao University, Qingdao, 266034, China.
| | - Hui-Zhen Nie
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
17
|
Feng R, Liu F, Li R, Zhou Z, Lin Z, Lin S, Deng S, Li Y, Nong B, Xia Y, Li Z, Zhong X, Yang S, Wan G, Ma W, Wu S, Songyang Z. The rapid proximity labeling system PhastID identifies ATP6AP1 as an unconventional GEF for Rheb. Cell Res 2024; 34:355-369. [PMID: 38448650 PMCID: PMC11061317 DOI: 10.1038/s41422-024-00938-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/02/2024] [Indexed: 03/08/2024] Open
Abstract
Rheb is a small G protein that functions as the direct activator of the mechanistic target of rapamycin complex 1 (mTORC1) to coordinate signaling cascades in response to nutrients and growth factors. Despite extensive studies, the guanine nucleotide exchange factor (GEF) that directly activates Rheb remains unclear, at least in part due to the dynamic and transient nature of protein-protein interactions (PPIs) that are the hallmarks of signal transduction. Here, we report the development of a rapid and robust proximity labeling system named Pyrococcus horikoshii biotin protein ligase (PhBPL)-assisted biotin identification (PhastID) and detail the insulin-stimulated changes in Rheb-proximity protein networks that were identified using PhastID. In particular, we found that the lysosomal V-ATPase subunit ATP6AP1 could dynamically interact with Rheb. ATP6AP1 could directly bind to Rheb through its last 12 amino acids and utilizes a tri-aspartate motif in its highly conserved C-tail to enhance Rheb GTP loading. In fact, targeting the ATP6AP1 C-tail could block Rheb activation and inhibit cancer cell proliferation and migration. Our findings highlight the versatility of PhastID in mapping transient PPIs in live cells, reveal ATP6AP1's role as an unconventional GEF for Rheb, and underscore the importance of ATP6AP1 in integrating mTORC1 activation signals through Rheb, filling in the missing link in Rheb/mTORC1 activation.
Collapse
Affiliation(s)
- Ran Feng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, Guangdong, China
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Feng Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Ruofei Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhifen Zhou
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhuoheng Lin
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Song Lin
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shengcheng Deng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yingying Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Baoting Nong
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ying Xia
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhiyi Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoqin Zhong
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuhan Yang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Gang Wan
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenbin Ma
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Su Wu
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
18
|
Huang Y, Zhang R, Lyu H, Xiao S, Guo D, Chen XZ, Zhou C, Tang J. LncRNAs as nodes for the cross-talk between autophagy and Wnt signaling in pancreatic cancer drug resistance. Int J Biol Sci 2024; 20:2698-2726. [PMID: 38725864 PMCID: PMC11077374 DOI: 10.7150/ijbs.91832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/06/2024] [Indexed: 05/12/2024] Open
Abstract
Pancreatic cancer is a malignancy with high mortality. In addition to the few symptoms until the disease reaches an advanced stage, the high fatality rate is attributed to its rapid development, drug resistance and lack of appropriate treatment. In the selection and research of therapeutic drugs, gemcitabine is the first-line drug for pancreatic cancer. Solving the problem of gemcitabine resistance in pancreatic cancer will contribute to the progress of pancreatic cancer treatment. Long non coding RNAs (lncRNAs), which are RNA transcripts longer than 200 nucleotides, play vital roles in cellular physiological metabolic activities. Currently, our group and others have found that some lncRNAs are aberrantly expressed in pancreatic cancer cells, which can regulate the process of cancer through autophagy and Wnt/β-catenin pathways simultaneously and affect the sensitivity of cancer cells to therapeutic drugs. This review presents an overview of the recent evidence concerning the node of lncRNA for the cross-talk between autophagy and Wnt/β-catenin signaling in pancreatic cancer, together with the practicability of lncRNAs and the core regulatory factors as targets in therapeutic resistance.
Collapse
Affiliation(s)
- Yuhan Huang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China, 430068
| | - Rui Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China, 430068
| | - Hao Lyu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China, 430068
| | - Shuai Xiao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China, 430068
| | - Dong Guo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China, 430068
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada, T6G2R3
| | - Cefan Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China, 430068
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China, 430068
| |
Collapse
|
19
|
Xing X, Que X, Zheng S, Wang S, Song Q, Yao Y, Zhang P. Emerging roles of FOXK2 in cancers and metabolic disorders. Front Oncol 2024; 14:1376496. [PMID: 38741782 PMCID: PMC11089157 DOI: 10.3389/fonc.2024.1376496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
FOXK2, a member of the Forkhead box K (FOXK) transcription factor family, is widely expressed in various tissues and organs throughout the body. FOXK2 plays crucial roles in cell proliferation, differentiation, autophagy, de novo nucleotide biosynthesis, DNA damage response, and aerobic glycolysis. Although FOXK2 is recognized as an oncogene in colorectal cancer and hepatocellular carcinoma, it acts as a tumor suppressor in breast cancer, cervical cancer, and non-small cell lung cancer (NSCLC). This review provides an overview of the recent progress in understanding the regulatory mechanisms of FOXK2 and its downstream targets, highlights the significant impact of FOXK2 dysregulation on cancer etiology, and discusses the potential of targeting FOXK2 for cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Yao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Pingfeng Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
20
|
Harada M, Han S, Shi M, Ge J, Yu S, Adam J, Adamski J, Scheerer MF, Neschen S, de Angelis MH, Wang-Sattler R. Metabolic effects of SGLT2i and metformin on 3-hydroxybutyric acid and lactate in db/db mice. Int J Biol Macromol 2024; 265:130962. [PMID: 38503370 DOI: 10.1016/j.ijbiomac.2024.130962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
Combining a Sodium-Glucose-Cotransporter-2-inhibitor (SGLT2i) with metformin is recommended for managing hyperglycemia in patients with type 2 diabetes (T2D) who have cardio-renal complications. Our study aimed to investigate the metabolic effects of SGLT2i and metformin, both individually and synergistically. We treated leptin receptor-deficient (db/db) mice with these drugs for two weeks and conducted metabolite profiling, identifying 861 metabolites across kidney, liver, muscle, fat, and plasma. Using linear regression and mixed-effects models, we identified two SGLT2i-specific metabolites, X-12465 and 3-hydroxybutyric acid (3HBA), a ketone body, across all examined tissues. The levels of 3HBA were significantly higher under SGLT2i monotherapy compared to controls and were attenuated when combined with metformin. We observed similar modulatory effects on metabolites involved in protein catabolism (e.g., branched-chain amino acids) and gluconeogenesis. Moreover, combination therapy significantly raised pipecolate levels, which may enhance mTOR1 activity, while modulating GSK3, a common target of SGLT2i and 3HBA inhibition. The combination therapy also led to significant reductions in body weight and lactate levels, contrasted with monotherapies. Our findings advocate for the combined approach to better manage muscle loss, and the risks of DKA and lactic acidosis, presenting a more effective strategy for T2D treatment.
Collapse
Affiliation(s)
- Makoto Harada
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Siyu Han
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany; School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Mengya Shi
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany; School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Jianhong Ge
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany; School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Shixiang Yu
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Jonathan Adam
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Markus F Scheerer
- Institute of Experimental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Susanne Neschen
- Institute of Experimental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Martin Hrabe de Angelis
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Institute of Experimental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; Chair of Experimental Genetics, School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Rui Wang-Sattler
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| |
Collapse
|
21
|
Masclef L, Ahmed O, Iannantuono N, Gagnon J, Gushul-Leclaire M, Boulay K, Estavoyer B, Echbicheb M, Poy M, Boubacar KA, Boubekeur A, Menggad S, Schcolnik-Cabrera A, Balsalobre A, Bonneil E, Thibault P, Hulea L, Tanaka Y, Antoine-Mallette F, Drouin J, Affar EB. O-GlcNAcylation of FOXK1 orchestrates the E2F pathway and promotes oncogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.582838. [PMID: 38463952 PMCID: PMC10925292 DOI: 10.1101/2024.03.01.582838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Gene transcription is a highly regulated process, and deregulation of transcription factors activity underlies numerous pathologies including cancer. Albeit near four decades of studies have established that the E2F pathway is a core transcriptional network that govern cell division in multi-cellular organisms1,2, the molecular mechanisms that underlie the functions of E2F transcription factors remain incompletely understood. FOXK1 and FOXK2 transcription factors have recently emerged as important regulators of cell metabolism, autophagy and cell differentiation3-6. While both FOXK1 and FOXK2 interact with the histone H2AK119ub deubiquitinase BAP1 and possess many overlapping functions in normal biology, their specific functions as well as deregulation of their transcriptional activity in cancer is less clear and sometimes contradictory7-13. Here, we show that elevated expression of FOXK1, but not FOXK2, in primary normal cells promotes transcription of E2F target genes associated with increased proliferation and delayed entry into cellular senescence. FOXK1 expressing cells are highly prone to cellular transformation revealing important oncogenic properties of FOXK1 in tumor initiation. High expression of FOXK1 in patient tumors is also highly correlated with E2F gene expression. Mechanistically, we demonstrate that FOXK1, but not FOXK2, is specifically modified by O-GlcNAcylation. FOXK1 O-GlcNAcylation is modulated during the cell cycle with the highest levels occurring during the time of E2F pathway activation at G1/S. Moreover, loss of FOXK1 O-GlcNAcylation impairs FOXK1 ability to promote cell proliferation, cellular transformation and tumor growth. Mechanistically, expression of FOXK1 O-GlcNAcylation-defective mutants results in reduced recruitment of BAP1 to gene regulatory regions. This event is associated with a concomitant increase in the levels of histone H2AK119ub and a decrease in the levels of H3K4me1, resulting in a transcriptional repressive chromatin environment. Our results define an essential role of O-GlcNAcylation in modulating the functions of FOXK1 in controlling the cell cycle of normal and cancer cells through orchestration of the E2F pathway.
Collapse
Affiliation(s)
- Louis Masclef
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, CIUSSS de l’Est-de-l’Île de Montréal, 5415 boulevard de l’Assomption, Montréal, QC, H1T 2M4, Canada
| | - Oumaima Ahmed
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, CIUSSS de l’Est-de-l’Île de Montréal, 5415 boulevard de l’Assomption, Montréal, QC, H1T 2M4, Canada
| | - Nicholas Iannantuono
- Institut de Recherche en Immunologie et en Cancérologie, Université de Montréal (IRIC), Montréal, QC, H3T 1J4, Canada
| | - Jessica Gagnon
- Institut de Recherche en Immunologie et en Cancérologie, Université de Montréal (IRIC), Montréal, QC, H3T 1J4, Canada
| | - Mila Gushul-Leclaire
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, CIUSSS de l’Est-de-l’Île de Montréal, 5415 boulevard de l’Assomption, Montréal, QC, H1T 2M4, Canada
| | - Karine Boulay
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, CIUSSS de l’Est-de-l’Île de Montréal, 5415 boulevard de l’Assomption, Montréal, QC, H1T 2M4, Canada
| | - Benjamin Estavoyer
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, CIUSSS de l’Est-de-l’Île de Montréal, 5415 boulevard de l’Assomption, Montréal, QC, H1T 2M4, Canada
| | - Mohamed Echbicheb
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, CIUSSS de l’Est-de-l’Île de Montréal, 5415 boulevard de l’Assomption, Montréal, QC, H1T 2M4, Canada
| | - Marty Poy
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, CIUSSS de l’Est-de-l’Île de Montréal, 5415 boulevard de l’Assomption, Montréal, QC, H1T 2M4, Canada
| | - Kalidou Ali Boubacar
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, CIUSSS de l’Est-de-l’Île de Montréal, 5415 boulevard de l’Assomption, Montréal, QC, H1T 2M4, Canada
| | - Amina Boubekeur
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, CIUSSS de l’Est-de-l’Île de Montréal, 5415 boulevard de l’Assomption, Montréal, QC, H1T 2M4, Canada
| | - Saad Menggad
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, CIUSSS de l’Est-de-l’Île de Montréal, 5415 boulevard de l’Assomption, Montréal, QC, H1T 2M4, Canada
| | - Alejandro Schcolnik-Cabrera
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, CIUSSS de l’Est-de-l’Île de Montréal, 5415 boulevard de l’Assomption, Montréal, QC, H1T 2M4, Canada
| | - Aurelio Balsalobre
- Laboratoire de Génétique Moléculaire, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - Eric Bonneil
- Institut de Recherche en Immunologie et en Cancérologie, Université de Montréal (IRIC), Montréal, QC, H3T 1J4, Canada
| | - Pierre Thibault
- Institut de Recherche en Immunologie et en Cancérologie, Université de Montréal (IRIC), Montréal, QC, H3T 1J4, Canada
| | - Laura Hulea
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, CIUSSS de l’Est-de-l’Île de Montréal, 5415 boulevard de l’Assomption, Montréal, QC, H1T 2M4, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Yoshiaki Tanaka
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, CIUSSS de l’Est-de-l’Île de Montréal, 5415 boulevard de l’Assomption, Montréal, QC, H1T 2M4, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Frédérick Antoine-Mallette
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, CIUSSS de l’Est-de-l’Île de Montréal, 5415 boulevard de l’Assomption, Montréal, QC, H1T 2M4, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Jacques Drouin
- Laboratoire de Génétique Moléculaire, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - El Bachir Affar
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, CIUSSS de l’Est-de-l’Île de Montréal, 5415 boulevard de l’Assomption, Montréal, QC, H1T 2M4, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| |
Collapse
|
22
|
Wang Y, Engel T, Teng X. Post-translational regulation of the mTORC1 pathway: A switch that regulates metabolism-related gene expression. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195005. [PMID: 38242428 DOI: 10.1016/j.bbagrm.2024.195005] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/21/2024]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is a kinase complex that plays a crucial role in coordinating cell growth in response to various signals, including amino acids, growth factors, oxygen, and ATP. Activation of mTORC1 promotes cell growth and anabolism, while its suppression leads to catabolism and inhibition of cell growth, enabling cells to withstand nutrient scarcity and stress. Dysregulation of mTORC1 activity is associated with numerous diseases, such as cancer, metabolic disorders, and neurodegenerative conditions. This review focuses on how post-translational modifications, particularly phosphorylation and ubiquitination, modulate mTORC1 signaling pathway and their consequential implications for pathogenesis. Understanding the impact of phosphorylation and ubiquitination on the mTORC1 signaling pathway provides valuable insights into the regulation of cellular growth and potential therapeutic targets for related diseases.
Collapse
Affiliation(s)
- Yitao Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China; Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Xinchen Teng
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
23
|
DiCesare SM, Ortega AJ, Collier GE, Daniel S, Thompson KN, McCoy MK, Posner BA, Hulleman JD. GSK3 inhibition reduces ECM production and prevents age-related macular degeneration-like pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571757. [PMID: 38168310 PMCID: PMC10760106 DOI: 10.1101/2023.12.14.571757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Malattia Leventinese/Doyne Honeycomb Retinal Dystrophy (ML/DHRD) is an age-related macular degeneration (AMD)-like retinal dystrophy caused by an autosomal dominant R345W mutation in the secreted glycoprotein, fibulin-3 (F3). To identify new small molecules that reduce F3 production from retinal pigmented epithelium (RPE) cells, we knocked-in a luminescent peptide tag (HiBiT) into the endogenous F3 locus which enabled simple, sensitive, and high throughput detection of the protein. The GSK3 inhibitor, CHIR99021 (CHIR), significantly reduced F3 burden (expression, secretion, and intracellular levels) in immortalized RPE and non-RPE cells. Low-level, long-term CHIR treatment promoted remodeling of the RPE extracellular matrix (ECM), reducing sub-RPE deposit-associated proteins (e.g., amelotin, complement component 3, collagen IV, and fibronectin), while increasing RPE differentiation factors (e.g., tyrosinase, and pigment epithelium derived factor). In vivo, treatment of 8 mo R345W+/+ knockin mice with CHIR (25 mg/kg i.p., 1 mo) was well tolerated and significantly reduced R345W F3-associated AMD-like basal laminar deposit number and size, thereby preventing the main pathological feature in these mice. This is the first demonstration of small molecule-based prevention of AMD-like pathology in ML/DHRD mice and may herald a rejuvenation of interest in GSK3 inhibition for the treatment of neurodegenerative diseases, including, potentially AMD itself.
Collapse
Affiliation(s)
- Sophia M. DiCesare
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, United States
| | - Antonio J. Ortega
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Gracen E. Collier
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, United States
| | - Steffi Daniel
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Krista N. Thompson
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, United States
| | - Melissa K. McCoy
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, United States
| | - Bruce A. Posner
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, United States
| | - John D. Hulleman
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6 St. SE, Minneapolis, Minnesota, 55455, United States
| |
Collapse
|
24
|
Allu PKR, Cardamone MD, Gomes AS, Dall'agnese A, Cederquist C, Pan H, Dreyfuss JM, Enerbäck S, Kahn CR. FoxK1 associated gene regulatory network in hepatic insulin action and its relationship to FoxO1 and insulin receptor mediated transcriptional regulation. Mol Metab 2023; 78:101825. [PMID: 37852413 PMCID: PMC10641274 DOI: 10.1016/j.molmet.2023.101825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/28/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023] Open
Abstract
OBJECTIVE Insulin acts on the liver via changes in gene expression to maintain glucose and lipid homeostasis. This study aimed to the Forkhead box protein K1 (FOXK1) associated gene regulatory network as a transcriptional regulator of hepatic insulin action and to determine its role versus FoxO1 and possible actions of the insulin receptor at the DNA level. METHODS Genome-wide analysis of FoxK1 binding were studied by chromatin immunoprecipitation sequencing and compared to those for IR and FoxO1. These were validated by knockdown experiments and gene expression analysis. RESULTS Chromatin immunoprecipitation (ChIP) sequencing shows that FoxK1 binds to the proximal promoters and enhancers of over 4000 genes, and insulin enhances this interaction for about 75% of them. These include genes involved in cell cycle, senescence, steroid biosynthesis, autophagy, and metabolic regulation, including glucose metabolism and mitochondrial function and are enriched in a TGTTTAC consensus motif. Some of these genes are also bound by FoxO1. Comparing this FoxK1 ChIP-seq data to that of the insulin receptor (IR) reveals that FoxK1 may act as the transcription factor partner for some of the previously reported roles of IR in gene regulation, including for LARS1 and TIMM22, which are involved in rRNA processing and cell cycle. CONCLUSION These data demonstrate that FoxK1 is an important regulator of gene expression in response to insulin in liver and may act in concert with FoxO1 and IR in regulation of genes in metabolism and other important biological pathways.
Collapse
Affiliation(s)
- Prasanna K R Allu
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | | | - Antonio S Gomes
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | | | - Carly Cederquist
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Hui Pan
- Bioinformatics and Biostatistics Core, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Jonathan M Dreyfuss
- Bioinformatics and Biostatistics Core, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Sven Enerbäck
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - C Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
25
|
Zhang S, You Y, Li Y, Yuan H, Zhou J, Tian L, Liu Y, Wang B, Zhu E. Foxk1 stimulates adipogenic differentiation via a peroxisome proliferator-activated receptor gamma 2-dependent mechanism. FASEB J 2023; 37:e23266. [PMID: 37889840 DOI: 10.1096/fj.202301153r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/26/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023]
Abstract
Adipogenesis is a tightly regulated process, and its dysfunction has been linked to metabolic disorders such as obesity. Forkhead box k1 (Foxk1) is known to play a role in the differentiation of myogenic precursor cells and tumorigenesis of different types of cancers; however, it is not clear whether and how it influences adipocyte differentiation. Here, we found that Foxk1 was induced in mouse primary bone marrow stromal cells (BMSCs) and established mesenchymal progenitor/stromal cell lines C3H/10T1/2 and ST2 after adipogenic treatment. In addition, obese db/db mice have higher Foxk1 expression in inguinal white adipose tissue than nonobese db/m mice. Foxk1 overexpression promoted adipogenic differentiation of C3H/10T1/2, ST2 cells and BMSCs, along with the enhanced expression of CCAAT/enhancer binding protein-α, peroxisome proliferator-activated receptor γ (Pparγ), and fatty acid binding protein 4. Moreover, Foxk1 overexpression enhanced the expression levels of lipogenic factors during adipogenic differentiation in both C3H/10T1/2 cells and BMSCs. Conversely, Foxk1 silencing impaired these cells from fully differentiating. Furthermore, adipogenic stimulation induced the nuclear translocation of Foxk1, which depended on the mTOR and PI3-kinase signaling pathways. Subsequently, Foxk1 is directly bound to the Pparγ2 promoter, stimulating its transcriptional activity and promoting adipocyte differentiation. Collectively, our study provides the first evidence that Foxk1 promotes adipocyte differentiation from progenitor cells by promoting nuclear translocation and upregulating the transcriptional activity of the Pparγ2 promoter during adipogenic differentiation.
Collapse
Affiliation(s)
- Shan Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Yanru You
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Yachong Li
- Department of Endodontics, School of Stomatology, Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Hairui Yuan
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Jie Zhou
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Lijie Tian
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Ying Liu
- Department of Endodontics, School of Stomatology, Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Baoli Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Endong Zhu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
26
|
Shin MG, Pico AR. Using published pathway figures in enrichment analysis and machine learning. BMC Genomics 2023; 24:713. [PMID: 38007419 PMCID: PMC10676589 DOI: 10.1186/s12864-023-09816-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023] Open
Abstract
Pathway Figure OCR (PFOCR) is a novel kind of pathway database approaching the breadth and depth of Gene Ontology while providing rich, mechanistic diagrams and direct literature support. Here, we highlight the utility of PFOCR in disease research in comparison with popular pathway databases through an assessment of disease coverage and analytical applications. In addition to common pathway analysis use cases, we present two advanced case studies demonstrating unique advantages of PFOCR in terms of cancer subtype and grade prediction analyses.
Collapse
Affiliation(s)
- Min-Gyoung Shin
- Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA
| | - Alexander R Pico
- Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA.
| |
Collapse
|
27
|
Peris I, Romero-Murillo S, Vicente C, Narla G, Odero MD. Regulation and role of the PP2A-B56 holoenzyme family in cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188953. [PMID: 37437699 DOI: 10.1016/j.bbcan.2023.188953] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
Protein phosphatase 2A (PP2A) inactivation is common in cancer, leading to sustained activation of pro-survival and growth-promoting pathways. PP2A consists of a scaffolding A-subunit, a catalytic C-subunit, and a regulatory B-subunit. The functional complexity of PP2A holoenzymes arises mainly through the vast repertoire of regulatory B-subunits, which determine both their substrate specificity and their subcellular localization. Therefore, a major challenge for developing more effective therapeutic strategies for cancer is to identify the specific PP2A complexes to be targeted. Of note, the development of small molecules specifically directed at PP2A-B56α has opened new therapeutic avenues in both solid and hematological tumors. Here, we focus on the B56/PR61 family of PP2A regulatory subunits, which have a central role in directing PP2A tumor suppressor activity. We provide an overview of the mechanisms controlling the formation and regulation of these complexes, the pathways they control, and the mechanisms underlying their deregulation in cancer.
Collapse
Affiliation(s)
- Irene Peris
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain; Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| | - Silvia Romero-Murillo
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain; Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain
| | - Carmen Vicente
- Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Maria D Odero
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain; Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
28
|
Shin MG, Pico A. Using Published Pathway Figures in Enrichment Analysis and Machine Learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.548037. [PMID: 37461614 PMCID: PMC10350053 DOI: 10.1101/2023.07.06.548037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Pathway Figure OCR (PFOCR) is a novel kind of pathway database approaching the breadth and depth of Gene Ontology while providing rich, mechanistic diagrams and direct literature support. PFOCR content is extracted from published pathway figures currently emerging at a rate of 1000 new pathways each month. Here, we compare the pathway information contained in PFOCR against popular pathway databases with respect to overall and disease-specific coverage. In addition to common pathways analysis use cases, we present two advanced case studies demonstrating unique advantages of PFOCR in terms of cancer subtype and grade prediction analyses.
Collapse
|
29
|
Dedert C, Salih L, Xu F. Progranulin Protects against Hyperglycemia-Induced Neuronal Dysfunction through GSK3β Signaling. Cells 2023; 12:1803. [PMID: 37443837 PMCID: PMC10340575 DOI: 10.3390/cells12131803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/20/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Type II diabetes affects over 530 million individuals worldwide and contributes to a host of neurological pathologies. Uncontrolled high blood glucose (hyperglycemia) is a major factor in diabetic pathology, and glucose regulation is a common goal for maintenance in patients. We have found that the neuronal growth factor progranulin protects against hyperglycemic stress in neurons, and although its mechanism of action is uncertain, our findings identified Glycogen Synthase Kinase 3β (GSK3β) as being potentially involved in its effects. In this study, we treated mouse primary cortical neurons exposed to high-glucose conditions with progranulin and a selective pharmacological inhibitor of GSK3β before assessing neuronal health and function. Whole-cell and mitochondrial viability were both improved by progranulin under high-glucose stress in a GSK3β-dependent manner. This extended to autophagy flux, indicated by the expressions of autophagosome marker Light Chain 3B (LC3B) and lysosome marker Lysosome-Associated Membrane Protein 2A (LAMP2A), which were affected by progranulin and showed heterogeneous changes from GSK3β inhibition. Lastly, GSK3β inhibition attenuated downstream calcium signaling and neuronal firing effects due to acute progranulin treatment. These data indicate that GSK3β plays an important role in progranulin's neuroprotective effects under hyperglycemic stress and serves as a jumping-off point to explore progranulin's protective capabilities in other neurodegenerative models.
Collapse
Affiliation(s)
- Cass Dedert
- Department of Biology, College of Arts and Sciences, Saint Louis University, Saint Louis, MO 63103, USA; (C.D.); (L.S.)
- Institute for Translational Neuroscience, Saint Louis University, Saint Louis, MO 63103, USA
| | - Lyuba Salih
- Department of Biology, College of Arts and Sciences, Saint Louis University, Saint Louis, MO 63103, USA; (C.D.); (L.S.)
- Institute for Translational Neuroscience, Saint Louis University, Saint Louis, MO 63103, USA
| | - Fenglian Xu
- Department of Biology, College of Arts and Sciences, Saint Louis University, Saint Louis, MO 63103, USA; (C.D.); (L.S.)
- Institute for Translational Neuroscience, Saint Louis University, Saint Louis, MO 63103, USA
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, Saint Louis, MO 63103, USA
- Department of Biomedical Engineering, School of Science and Engineering, Saint Louis University, Saint Louis, MO 63103, USA
| |
Collapse
|
30
|
Ivanov KI, Samuilova OV, Zamyatnin AA. The emerging roles of long noncoding RNAs in lymphatic vascular development and disease. Cell Mol Life Sci 2023; 80:197. [PMID: 37407839 PMCID: PMC10322780 DOI: 10.1007/s00018-023-04842-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/06/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
Recent advances in RNA sequencing technologies helped uncover what was once uncharted territory in the human genome-the complex and versatile world of long noncoding RNAs (lncRNAs). Previously thought of as merely transcriptional "noise", lncRNAs have now emerged as essential regulators of gene expression networks controlling development, homeostasis and disease progression. The regulatory functions of lncRNAs are broad and diverse, and the underlying molecular mechanisms are highly variable, acting at the transcriptional, post-transcriptional, translational, and post-translational levels. In recent years, evidence has accumulated to support the important role of lncRNAs in the development and functioning of the lymphatic vasculature and associated pathological processes such as tumor-induced lymphangiogenesis and cancer metastasis. In this review, we summarize the current knowledge on the role of lncRNAs in regulating the key genes and pathways involved in lymphatic vascular development and disease. Furthermore, we discuss the potential of lncRNAs as novel therapeutic targets and outline possible strategies for the development of lncRNA-based therapeutics to treat diseases of the lymphatic system.
Collapse
Affiliation(s)
- Konstantin I Ivanov
- Research Center for Translational Medicine, Sirius University of Science and Technology, Sochi, Russian Federation.
- Department of Microbiology, University of Helsinki, Helsinki, Finland.
| | - Olga V Samuilova
- Department of Biochemistry, Sechenov First Moscow State Medical University, Moscow, Russian Federation
- HSE University, Moscow, Russian Federation
| | - Andrey A Zamyatnin
- Research Center for Translational Medicine, Sirius University of Science and Technology, Sochi, Russian Federation
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russian Federation
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
31
|
Fujinuma S, Nakatsumi H, Shimizu H, Sugiyama S, Harada A, Goya T, Tanaka M, Kohjima M, Takahashi M, Izumi Y, Yagi M, Kang D, Kaneko M, Shigeta M, Bamba T, Ohkawa Y, Nakayama KI. FOXK1 promotes nonalcoholic fatty liver disease by mediating mTORC1-dependent inhibition of hepatic fatty acid oxidation. Cell Rep 2023; 42:112530. [PMID: 37209098 DOI: 10.1016/j.celrep.2023.112530] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/14/2023] [Accepted: 05/02/2023] [Indexed: 05/22/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a chronic metabolic disorder caused by overnutrition and can lead to nonalcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC). The transcription factor Forkhead box K1 (FOXK1) is implicated in regulation of lipid metabolism downstream of mechanistic target of rapamycin complex 1 (mTORC1), but its role in NAFLD-NASH pathogenesis is understudied. Here, we show that FOXK1 mediates nutrient-dependent suppression of lipid catabolism in the liver. Hepatocyte-specific deletion of Foxk1 in mice fed a NASH-inducing diet ameliorates not only hepatic steatosis but also associated inflammation, fibrosis, and tumorigenesis, resulting in improved survival. Genome-wide transcriptomic and chromatin immunoprecipitation analyses identify several lipid metabolism-related genes, including Ppara, as direct targets of FOXK1 in the liver. Our results suggest that FOXK1 plays a key role in the regulation of hepatic lipid metabolism and that its inhibition is a promising therapeutic strategy for NAFLD-NASH, as well as for HCC.
Collapse
Affiliation(s)
- Shun Fujinuma
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hirokazu Nakatsumi
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hideyuki Shimizu
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Shigeaki Sugiyama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Akihito Harada
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Takeshi Goya
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masatake Tanaka
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Motoyuki Kohjima
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masatomo Takahashi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Mikako Yagi
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan; Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
| | - Mari Kaneko
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Mayo Shigeta
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
32
|
Moore XTR, Gheghiani L, Fu Z. The Role of Polo-Like Kinase 1 in Regulating the Forkhead Box Family Transcription Factors. Cells 2023; 12:cells12091344. [PMID: 37174744 PMCID: PMC10177174 DOI: 10.3390/cells12091344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Polo-like kinase 1 (PLK1) is a serine/threonine kinase with more than 600 phosphorylation substrates through which it regulates many biological processes, including mitosis, apoptosis, metabolism, RNA processing, vesicle transport, and G2 DNA-damage checkpoint recovery, among others. Among the many PLK1 targets are members of the FOX family of transcription factors (FOX TFs), including FOXM1, FOXO1, FOXO3, and FOXK1. FOXM1 and FOXK1 have critical oncogenic roles in cancer through their antagonism of apoptotic signals and their promotion of cell proliferation, metastasis, angiogenesis, and therapeutic resistance. In contrast, FOXO1 and FOXO3 have been identified to have broad functions in maintaining cellular homeostasis. In this review, we discuss PLK1-mediated regulation of FOX TFs, highlighting the effects of PLK1 on the activity and stability of these proteins. In addition, we review the prognostic and clinical significance of these proteins in human cancers and, more importantly, the different approaches that have been used to disrupt PLK1 and FOX TF-mediated signaling networks. Furthermore, we discuss the therapeutic potential of targeting PLK1-regulated FOX TFs in human cancers.
Collapse
Affiliation(s)
- Xavier T R Moore
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Lilia Gheghiani
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Zheng Fu
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| |
Collapse
|
33
|
Gao L, Lu Y, Chen HN, Li Z, Hu M, Zhang R, Wang X, Xu Z, Gong Y, Wang R, Du D, Hai S, Li S, Su D, Li Y, Xu H, Zhou ZG, Dai L. Deciphering the Clinical Significance and Kinase Functions of GSK3α in Colon Cancer by Proteomics and Phosphoproteomics. Mol Cell Proteomics 2023; 22:100545. [PMID: 37031867 PMCID: PMC10196724 DOI: 10.1016/j.mcpro.2023.100545] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 04/11/2023] Open
Abstract
GSK3α and GSK3β are two GSK3 isoforms with 84% overall identity and 98% identity in their catalytic domains. GSK3β plays important roles in the pathogenesis of cancer, while GSK3α has long been considered a functionally redundant protein of GSK3β. Few studies have specifically investigated the functions of GSK3α. In this study, unexpectedly, we found that the expression of GSK3α, but not GSK3β, was significantly correlated with the overall survival of colon cancer patients in 4 independent cohorts. To decipher the roles of GSK3α in colon cancer, we profiled the phosphorylation substrates of GSK3α and uncovered 156 phosphosites from 130 proteins specifically regulated by GSK3α. A number of these GSK3α-mediated phosphosites have never been reported before or have been incorrectly identified as substrates of GSK3β. Among them, the levels of HSF1S303p, CANXS583p, MCM2S41p, POGZS425p, SRRM2T983p, and PRPF4BS431p were significantly correlated with the overall survival of colon cancer patients. Further pull-down assays identified 23 proteins, such as THRAP3, BCLAF1, and STAU1, showing strong binding affinity to GSK3α. The interaction between THRAP3 and GSK3α was verified by biochemical experiments. Notably, among the 18 phosphosites of THRAP3, phosphorylation at S248, S253, and S682 is specifically mediated by GSK3α. Mutation of S248 to D (S248D), which mimics the effect of phosphorylation, obviously increased cancer cell migration and the binding affinity to proteins related to DNA damage repair. Collectively, this work not only discloses the specific function of GSK3α as a kinase but also suggests GSK3α as a promising therapeutic target for colon cancer.
Collapse
Affiliation(s)
- Li Gao
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Lu
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hai-Ning Chen
- Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhigui Li
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Meng Hu
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Rou Zhang
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiuxuan Wang
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiqiang Xu
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yanqiu Gong
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Wang
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Du
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Shan Hai
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shuangqing Li
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Su
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Li
- Institute of Digestive Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Heng Xu
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zong-Guang Zhou
- Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China; Institute of Digestive Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
34
|
Gupta A, Lee K, Oh K. mTORC1 Deficiency Prevents the Development of MC903-Induced Atopic Dermatitis through the Downregulation of Type 2 Inflammation. Int J Mol Sci 2023; 24:5968. [PMID: 36983043 PMCID: PMC10054228 DOI: 10.3390/ijms24065968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by eczema and itching. Recently, mTORC, a central regulator of cellular metabolism, has been reported to play a critical role in immune responses, and manipulation of mTORC pathways has emerged as an effective immunomodulatory drug. In this study, we assessed whether mTORC signaling could contribute to the development of AD in mice. AD-like skin inflammation was induced by a 7-day treatment of MC903 (calcipotriol), and ribosomal protein S6 was highly phosphorylated in inflamed tissues. MC903-induced skin inflammation was ameliorated significantly in Raptor-deficient mice and exacerbated in Pten-deficient mice. Eosinophil recruitment and IL-4 production were also decreased in Raptor deficient mice. In contrast to the pro-inflammatory roles of mTORC1 in immune cells, we observed an anti-inflammatory effect on keratinocytes. TSLP was upregulated in Raptor deficient mice or by rapamycin treatment, which was mediated by hypoxia-inducible factor (HIF) signaling. Taken together, these results from our study indicate the dual roles of mTORC1 in the development of AD, and further studies on the role of HIF in AD are warranted.
Collapse
Affiliation(s)
- Anupriya Gupta
- Department of Pathology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Keunwook Lee
- Department of Biomedical Science, Hallym University, Chuncheon 24252, Republic of Korea
| | - Kwonik Oh
- Department of Pathology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
35
|
Aryl hydrocarbon receptor activity downstream of IL-10 signaling is required to promote regulatory functions in human dendritic cells. Cell Rep 2023; 42:112193. [PMID: 36870061 PMCID: PMC10066577 DOI: 10.1016/j.celrep.2023.112193] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 12/06/2022] [Accepted: 02/14/2023] [Indexed: 03/05/2023] Open
Abstract
Interleukin (IL)-10 is a main player in peripheral immune tolerance, the physiological mechanism preventing immune reactions to self/harmless antigens. Here, we investigate IL-10-induced molecular mechanisms generating tolerogenic dendritic cells (tolDC) from monocytes. Using genomic studies, we show that IL-10 induces a pattern of accessible enhancers exploited by aryl hydrocarbon receptor (AHR) to promote expression of a set of core genes. We demonstrate that AHR activity occurs downstream of IL-10 signaling in myeloid cells and is required for the induction of tolerogenic activities in DC. Analyses of circulating DCs show that IL-10/AHR genomic signature is active in vivo in health. In multiple sclerosis patients, we instead observe significantly altered signature correlating with functional defects and reduced frequencies of IL-10-induced-tolDC in vitro and in vivo. Our studies identify molecular mechanisms controlling tolerogenic activities in human myeloid cells and may help in designing therapies to re-establish immune tolerance.
Collapse
|
36
|
Lin C, Traets JJH, Vredevoogd DW, Visser NL, Peeper DS. TSC2 regulates tumor susceptibility to TRAIL-mediated T-cell killing by orchestrating mTOR signaling. EMBO J 2023; 42:e111614. [PMID: 36715448 PMCID: PMC9975943 DOI: 10.15252/embj.2022111614] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 01/31/2023] Open
Abstract
Resistance to cancer immunotherapy continues to impair common clinical benefit. Here, we use whole-genome CRISPR-Cas9 knockout data to uncover an important role for Tuberous Sclerosis Complex 2 (TSC2) in determining tumor susceptibility to cytotoxic T lymphocyte (CTL) killing in human melanoma cells. TSC2-depleted tumor cells had disrupted mTOR regulation following CTL attack, which was associated with enhanced cell death. Wild-type tumor cells adapted to CTL attack by shifting their mTOR signaling balance toward increased mTORC2 activity, circumventing apoptosis, and necroptosis. TSC2 ablation strongly augmented tumor cell sensitivity to CTL attack in vitro and in vivo, suggesting one of its functions is to critically protect tumor cells. Mechanistically, TSC2 inactivation caused elevation of TRAIL receptor expression, cooperating with mTORC1-S6 signaling to induce tumor cell death. Clinically, we found a negative correlation between TSC2 expression and TRAIL signaling in TCGA patient cohorts. Moreover, a lower TSC2 immune response signature was observed in melanomas from patients responding to immune checkpoint blockade. Our study uncovers a pivotal role for TSC2 in the cancer immune response by governing crosstalk between TSC2-mTOR and TRAIL signaling, aiding future therapeutic exploration of this pathway in immuno-oncology.
Collapse
Affiliation(s)
- Chun‐Pu Lin
- Division of Molecular Oncology and ImmunologyOncode Institute, The Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Joleen J H Traets
- Division of Molecular Oncology and ImmunologyOncode Institute, The Netherlands Cancer InstituteAmsterdamThe Netherlands
- Division of Tumor Biology and ImmunologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - David W Vredevoogd
- Division of Molecular Oncology and ImmunologyOncode Institute, The Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Nils L Visser
- Division of Molecular Oncology and ImmunologyOncode Institute, The Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Daniel S Peeper
- Division of Molecular Oncology and ImmunologyOncode Institute, The Netherlands Cancer InstituteAmsterdamThe Netherlands
| |
Collapse
|
37
|
Li Y, Chen J, Wang B, Xu Z, Wu C, Ma J, Song Q, Geng Q, Yu J, Pei H, Yao Y. FOXK2 affects cancer cell response to chemotherapy by promoting nucleotide de novo synthesis. Drug Resist Updat 2023; 67:100926. [PMID: 36682222 DOI: 10.1016/j.drup.2023.100926] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023]
Abstract
AIMS Nucleotide de novo synthesis is essential to cell growth and survival, and its dysregulation leads to cancers and drug resistance. However, how this pathway is dysregulated in cancer has not been well clarified. This study aimed to identify the regulatory mechanisms of nucleotide de novo synthesis and drug resistance. METHODS By combining the ChIP-Seq data from the Cistrome Data Browser, RNA sequencing (RNA-Seq) and a luciferase-based promoter assay, we identified transcription factor FOXK2 as a regulator of nucleotide de novo synthesis. To explore the biological functions and mechanisms of FOXK2 in cancers, we conducted biochemical and cell biology assays in vitro and in vivo. Finally, we assessed the clinical significance of FOXK2 in hepatocellular carcinoma. RESULTS FOXK2 directly regulates the expression of nucleotide synthetic genes, promoting tumor growth and cancer cell resistance to chemotherapy. FOXK2 is SUMOylated by PIAS4, which elicits FOXK2 nuclear translocation, binding to the promoter regions and transcription of nucleotide synthetic genes. FOXK2 SUMOylation is repressed by DNA damage, and elevated FOXK2 SUMOylation promotes nucleotide de novo synthesis which causes resistance to 5-FU in hepatocellular carcinoma. Clinically, elevated expression of FOXK2 in hepatocellular carcinoma patients was associated with increased nucleotide synthetic gene expression and correlated with poor prognoses for patients. CONCLUSION Our findings establish FOXK2 as a novel regulator of nucleotide de novo synthesis, with potentially important implications for cancer etiology and drug resistance.
Collapse
Affiliation(s)
- Yingge Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China; Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA
| | - Jie Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Bin Wang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ziwen Xu
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA
| | - Ci Wu
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA
| | - Junfeng Ma
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jinming Yu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China; Department of Radiation Oncology, Shandong University Cancer Center, Jinan, Shandong 250117, China.
| | - Huadong Pei
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA.
| | - Yi Yao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
38
|
Stacpoole PW, McCall CE. The pyruvate dehydrogenase complex: Life's essential, vulnerable and druggable energy homeostat. Mitochondrion 2023; 70:59-102. [PMID: 36863425 DOI: 10.1016/j.mito.2023.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023]
Abstract
Found in all organisms, pyruvate dehydrogenase complexes (PDC) are the keystones of prokaryotic and eukaryotic energy metabolism. In eukaryotic organisms these multi-component megacomplexes provide a crucial mechanistic link between cytoplasmic glycolysis and the mitochondrial tricarboxylic acid (TCA) cycle. As a consequence, PDCs also influence the metabolism of branched chain amino acids, lipids and, ultimately, oxidative phosphorylation (OXPHOS). PDC activity is an essential determinant of the metabolic and bioenergetic flexibility of metazoan organisms in adapting to changes in development, nutrient availability and various stresses that challenge maintenance of homeostasis. This canonical role of the PDC has been extensively probed over the past decades by multidisciplinary investigations into its causal association with diverse physiological and pathological conditions, the latter making the PDC an increasingly viable therapeutic target. Here we review the biology of the remarkable PDC and its emerging importance in the pathobiology and treatment of diverse congenital and acquired disorders of metabolic integration.
Collapse
Affiliation(s)
- Peter W Stacpoole
- Department of Medicine (Division of Endocrinology, Metabolism and Diabetes), and Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL, United States.
| | - Charles E McCall
- Department of Internal Medicine and Translational Sciences, and Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
39
|
Macrophage Biology in Human Granulomatous Skin Inflammation. Int J Mol Sci 2023; 24:ijms24054624. [PMID: 36902053 PMCID: PMC10003716 DOI: 10.3390/ijms24054624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
Cutaneous granulomatoses represent a heterogeneous group of diseases, which are defined by macrophage infiltration in the skin. Skin granuloma can be formed in the context of infectious and non-infectious conditions. Recent technological advances have deepened our understanding of the pathophysiology of granulomatous skin inflammation, and they provide novel insights into human tissue macrophage biology at the site of ongoing disease. Here, we discuss findings on macrophage immune function and metabolism derived from three prototypic cutaneous granulomatoses: granuloma annulare, sarcoidosis, and leprosy.
Collapse
|
40
|
MeCP2 Is an Epigenetic Factor That Links DNA Methylation with Brain Metabolism. Int J Mol Sci 2023; 24:ijms24044218. [PMID: 36835623 PMCID: PMC9966807 DOI: 10.3390/ijms24044218] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
DNA methylation, one of the most well-studied epigenetic modifications, is involved in a wide spectrum of biological processes. Epigenetic mechanisms control cellular morphology and function. Such regulatory mechanisms involve histone modifications, chromatin remodeling, DNA methylation, non-coding regulatory RNA molecules, and RNA modifications. One of the most well-studied epigenetic modifications is DNA methylation that plays key roles in development, health, and disease. Our brain is probably the most complex part of our body, with a high level of DNA methylation. A key protein that binds to different types of methylated DNA in the brain is the methyl-CpG binding protein 2 (MeCP2). MeCP2 acts in a dose-dependent manner and its abnormally high or low expression level, deregulation, and/or genetic mutations lead to neurodevelopmental disorders and aberrant brain function. Recently, some of MeCP2-associated neurodevelopmental disorders have emerged as neurometabolic disorders, suggesting a role for MeCP2 in brain metabolism. Of note, MECP2 loss-of-function mutation in Rett Syndrome is reported to cause impairment of glucose and cholesterol metabolism in human patients and/or mouse models of disease. The purpose of this review is to outline the metabolic abnormalities in MeCP2-associated neurodevelopmental disorders that currently have no available cure. We aim to provide an updated overview into the role of metabolic defects associated with MeCP2-mediated cellular function for consideration of future therapeutic strategies.
Collapse
|
41
|
Wada R, Fujinuma S, Nakatsumi H, Matsumoto M, Nakayama KI. Phosphorylation of PBX2, a novel downstream target of mTORC1, is determined by GSK3 and PP1. J Biochem 2023; 173:129-138. [PMID: 36477205 DOI: 10.1093/jb/mvac094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 12/12/2022] Open
Abstract
Mechanistic target of rapamycin complex 1 (mTORC1) is a serine-threonine kinase that is activated by extracellular signals, such as nutrients and growth factors. It plays a key role in the control of various biological processes, such as protein synthesis and energy metabolism by mediating or regulating the phosphorylation of multiple target molecules, some of which remain to be identified. We have here reanalysed a large-scale phosphoproteomics data set for mTORC1 target molecules and identified pre-B cell leukemia transcription factor 2 (PBX2) as such a novel target that is dephosphorylated downstream of mTORC1. We confirmed that PBX2, but not other members of the PBX family, is dephosphorylated in an mTORC1 activity-dependent manner. Furthermore, pharmacological and gene knockdown experiments revealed that glycogen synthase kinase 3 (GSK3) and protein phosphatase 1 (PP1) are responsible for the phosphorylation and dephosphorylation of PBX2, respectively. Our results thus suggest that the balance between the antagonistic actions of GSK3 and PP1 determines the phosphorylation status of PBX2 and its regulation by mTORC1.
Collapse
Key Words
- glycogen synthase kinase 3 (GSK3)
Abbreviations: DAPI, 4′,6-diamidino-2-phenylindole; DMSO, dimethyl sulfoxide; ERK, extracellular signal–regulated kinase; FOXK1, forkhead box K1;
GSK3, glycogen synthase kinase 3; HA, hemagglutinin; LARP1, La-related protein 1; MEK, ERK kinase; mTORC1, mechanistic target of rapamycin complex 1; PBS, phosphate-buffered saline; PBX2, pre–B cell leukemia transcription factor 2; PI3K, phosphoinositide 3-kinase; PDK1, phosphoinositide-dependent protein kinase 1; PP1, protein phosphatase 1;
PP2A, protein phosphatase 2A; RAG, RAS-related GTP-binding protein; RHEB, Ras homolog enriched in Brain; shRNA, short hairpin RNA; siRNA, small interfering RNA; TBC1D7, TBC1 (TRE2-BUB2-CDC16) domain family member 7; TSC2, tuberous sclerosis complex 2; WT, wild-type
- mechanistic target of rapamycin complex 1 (mTORC1)
- phosphorylation
- pre–B cell leukemia transcription factor 2 (PBX2)
- protein phosphatase 1 (PP1)
Collapse
Affiliation(s)
- Reona Wada
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Shun Fujinuma
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Hirokazu Nakatsumi
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Masaki Matsumoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan.,Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, 757 Ichibancho, Asahimachi-dori, Chuo-ku, Niigata City, Niigata 951-8510, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| |
Collapse
|
42
|
Li Q, Xu Z, Fang F, Shen Y, Lei H, Shen X. Identification of key pathways, genes and immune cell infiltration in hypoxia of high-altitude acclimatization via meta-analysis and integrated bioinformatics analysis. Front Genet 2023; 14:1055372. [PMID: 37035734 PMCID: PMC10080023 DOI: 10.3389/fgene.2023.1055372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/15/2023] [Indexed: 04/11/2023] Open
Abstract
Background: For individuals acutely exposed to high-altitude regions, environmental hypobaric hypoxia induces several physiological or pathological responses, especially immune dysfunction. Therefore, hypoxia is a potentially life-threatening factor, which has closely related to high-altitude acclimatization. However, its specific molecular mechanism is still unclear. Methods: The four expression profiles about hypoxia and high altitude were downloaded from the Gene Expression Omnibus database in this study. Meta-analysis of GEO datasets was performed by NetworkAnalyst online tool. Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene ontology (GO) enrichment analysis, and visualization were performed using R (version 4.1.3) software, respectively. The CIBERSORT analysis was conducted on GSE46480 to examine immune cell infiltration. In addition, we experimentally verified the bioinformatics analysis with qRT-PCR. Results: The meta-analysis identified 358 differentially expressed genes (DEGs), with 209 upregulated and 149 downregulated. DEGs were mostly enriched in biological processes and pathways associated with hypoxia acclimatization at high altitudes, according to both GO and KEGG enrichment analyses. ERH, VBP1, BINP3L, TOMM5, PSMA4, and POLR2K were identified by taking intersections of the DEGs between meta-analysis and GSE46480 and verified by qRT-PCR experiments, which were inextricably linked to hypoxia. Immune infiltration analysis showed significant differences in immune cells between samples at sea level and high altitudes. Conclusion: Identifying the DEGs and pathways will improve our understanding of immune function during high-altitude hypoxia at a molecular level. Targeting hypoxia-sensitive pathways in immune cells is interesting in treating high-altitude sickness. This study provides support for further research on high-altitude acclimatization.
Collapse
Affiliation(s)
- Qiong Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Zhichao Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Fujin Fang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Yan Shen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Huan Lei
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Xiaobing Shen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
- *Correspondence: Xiaobing Shen,
| |
Collapse
|
43
|
Leng K, Rose IVL, Kim H, Xia W, Romero-Fernandez W, Rooney B, Koontz M, Li E, Ao Y, Wang S, Krawczyk M, Tcw J, Goate A, Zhang Y, Ullian EM, Sofroniew MV, Fancy SPJ, Schrag MS, Lippmann ES, Kampmann M. CRISPRi screens in human iPSC-derived astrocytes elucidate regulators of distinct inflammatory reactive states. Nat Neurosci 2022; 25:1528-1542. [PMID: 36303069 PMCID: PMC9633461 DOI: 10.1038/s41593-022-01180-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/07/2022] [Indexed: 01/30/2023]
Abstract
Astrocytes become reactive in response to insults to the central nervous system by adopting context-specific cellular signatures and outputs, but a systematic understanding of the underlying molecular mechanisms is lacking. In this study, we developed CRISPR interference screening in human induced pluripotent stem cell-derived astrocytes coupled to single-cell transcriptomics to systematically interrogate cytokine-induced inflammatory astrocyte reactivity. We found that autocrine-paracrine IL-6 and interferon signaling downstream of canonical NF-κB activation drove two distinct inflammatory reactive signatures, one promoted by STAT3 and the other inhibited by STAT3. These signatures overlapped with those observed in other experimental contexts, including mouse models, and their markers were upregulated in human brains in Alzheimer's disease and hypoxic-ischemic encephalopathy. Furthermore, we validated that markers of these signatures were regulated by STAT3 in vivo using a mouse model of neuroinflammation. These results and the platform that we established have the potential to guide the development of therapeutics to selectively modulate different aspects of inflammatory astrocyte reactivity.
Collapse
Affiliation(s)
- Kun Leng
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA.
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA.
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA.
| | - Indigo V L Rose
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Hyosung Kim
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Wenlong Xia
- Departments of Neurology and Pediatrics, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | | | - Brendan Rooney
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Mark Koontz
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Emmy Li
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Yan Ao
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shinong Wang
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mitchell Krawczyk
- Interdepartmental PhD Program in Neuroscience, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Julia Tcw
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alison Goate
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ye Zhang
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Erik M Ullian
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Michael V Sofroniew
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Stephen P J Fancy
- Departments of Neurology and Pediatrics, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Matthew S Schrag
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Ethan S Lippmann
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA.
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
44
|
Fumagalli S, Pende M. S6 kinase 1 at the central node of cell size and ageing. Front Cell Dev Biol 2022; 10:949196. [PMID: 36036012 PMCID: PMC9417411 DOI: 10.3389/fcell.2022.949196] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Genetic evidence in living organisms from yeast to plants and animals, including humans, unquestionably identifies the Target Of Rapamycin kinase (TOR or mTOR for mammalian/mechanistic) signal transduction pathway as a master regulator of growth through the control of cell size and cell number. Among the mTOR targets, the activation of p70 S6 kinase 1 (S6K1) is exquisitely sensitive to nutrient availability and rapamycin inhibition. Of note, in vivo analysis of mutant flies and mice reveals that S6K1 predominantly regulates cell size versus cell proliferation. Here we review the putative mechanisms of S6K1 action on cell size by considering the main functional categories of S6K1 targets: substrates involved in nucleic acid and protein synthesis, fat mass accumulation, retrograde control of insulin action, senescence program and cytoskeleton organization. We discuss how S6K1 may be involved in the observed interconnection between cell size, regenerative and ageing responses.
Collapse
Affiliation(s)
| | - Mario Pende
- *Correspondence: Stefano Fumagalli, ; Mario Pende,
| |
Collapse
|
45
|
Yu M, Yu H, Mu N, Wang Y, Ma H, Yu L. The Function of FoxK Transcription Factors in Diseases. Front Physiol 2022; 13:928625. [PMID: 35903069 PMCID: PMC9314541 DOI: 10.3389/fphys.2022.928625] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Forkhead box (FOX) transcription factors play a crucial role in the regulation of many diseases, being an evolutionarily conserved superfamily of transcription factors. In recent years, FoxK1/2, members of its family, has been the subject of research. Even though FoxK1 and FoxK2 have some functional overlap, increasing evidence indicates that the regulatory functions of FoxK1 and FoxK2 are not the same in various physiological and disease states. It is important to understand the biological function and mechanism of FoxK1/2 for better understanding pathogenesis of diseases, predicting prognosis, and finding new therapeutic targets. There is, however, a lack of comprehensive and systematic analysis of the similarities and differences of FoxK1/2 roles in disease, prompting us to perform a literature review.
Collapse
Affiliation(s)
- Mujun Yu
- School of Life Sciences, Yan'an University, Yan'an, China
| | - Haozhen Yu
- School of Basic Medical Sciences, Shaanxi University of Traditional Chinese Medicine, Xianyang, China
| | - Nan Mu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yishi Wang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Heng Ma
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Lu Yu
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
46
|
Wang J, Eming SA, Ding X. Role of mTOR Signaling Cascade in Epidermal Morphogenesis and Skin Barrier Formation. BIOLOGY 2022; 11:biology11060931. [PMID: 35741452 PMCID: PMC9220260 DOI: 10.3390/biology11060931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary The skin epidermis is a stratified multilayered epithelium that provides a life-sustaining protective and defensive barrier for our body. The barrier machinery is established and maintained through a tightly regulated keratinocyte differentiation program. Under normal conditions, the basal layer keratinocytes undergo active proliferation and migration upward, differentiating into the suprabasal layer cells. Perturbation of the epidermal differentiation program often results in skin barrier defects and inflammatory skin disorders. The protein kinase mechanistic target of rapamycin (mTOR) is the central hub of cell growth, metabolism and nutrient signaling. Over the past several years, we and others using transgenic mouse models have unraveled that mTOR signaling is critical for epidermal differentiation and barrier formation. On the other hand, there is increasing evidence that disturbed activation of mTOR signaling is significantly implicated in the development of various skin diseases. In this review, we focus on the formation of skin barrier and discuss the current understanding on how mTOR signaling networks, including upstream inputs, kinases and downstream effectors, regulate epidermal differentiation and skin barrier formation. We hope this review will help us better understand the metabolic signaling in the epidermis, which may open new vistas for epidermal barrier defect-associated disease therapy. Abstract The skin epidermis, with its capacity for lifelong self-renewal and rapid repairing response upon injury, must maintain an active status in metabolism. Mechanistic target of rapamycin (mTOR) signaling is a central controller of cellular growth and metabolism that coordinates diverse physiological and pathological processes in a variety of tissues and organs. Recent evidence with genetic mouse models highlights an essential role of the mTOR signaling network in epidermal morphogenesis and barrier formation. In this review, we focus on the recent advances in understanding how mTOR signaling networks, including upstream inputs, kinases and downstream effectors, regulate epidermal morphogenesis and skin barrier formation. Understanding the details of the metabolic signaling will be critical for the development of novel pharmacological approaches to promote skin barrier regeneration and to treat epidermal barrier defect-associated diseases.
Collapse
Affiliation(s)
- Juan Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China;
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Sabine A. Eming
- Department of Dermatology, University of Cologne, 50937 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50674 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
- Institute of Zoology, Developmental Biology Unit, University of Cologne, 50674 Cologne, Germany
- Correspondence: (S.A.E.); (X.D.); Tel.: +86-137-6457-1130 (X.D.)
| | - Xiaolei Ding
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China;
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
- Department of Dermatology, University of Cologne, 50937 Cologne, Germany
- Correspondence: (S.A.E.); (X.D.); Tel.: +86-137-6457-1130 (X.D.)
| |
Collapse
|
47
|
Fang Y, Zhan Y, Xie Y, Du S, Chen Y, Zeng Z, Zhang Y, Chen K, Wang Y, Liang L, Ding Y, Wu D. Integration of glucose and cardiolipin anabolism confers radiation resistance of HCC. Hepatology 2022; 75:1386-1401. [PMID: 34580888 PMCID: PMC9299851 DOI: 10.1002/hep.32177] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 08/26/2021] [Accepted: 09/24/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIMS Poor response to ionizing radiation (IR) due to resistance remains a clinical challenge. Altered metabolism represents a defining characteristic of nearly all types of cancers. However, how radioresistance is linked to metabolic reprogramming remains elusive in hepatocellular carcinoma (HCC). APPROACH AND RESULTS Baseline radiation responsiveness of different HCC cells were identified and cells with acquired radio-resistance were generated. By performing proteomics, metabolomics, metabolic flux, and other functional studies, we depicted a metabolic phenotype that mediates radiation resistance in HCC, whereby increased glucose flux leads to glucose addiction in radioresistant HCC cells and a corresponding increase in glycerophospholipids biosynthesis to enhance the levels of cardiolipin. Accumulation of cardiolipin dampens the effectiveness of IR by inhibiting cytochrome c release to initiate apoptosis. Mechanistically, mammalian target of rapamycin complex 1 (mTORC1) signaling-mediated translational control of hypoxia inducible factor-1α (HIF-1α) and sterol regulatory element-binding protein-1 (SREBP1) remodels such metabolic cascade. Targeting mTORC1 or glucose to cardiolipin synthesis, in combination with IR, strongly diminishes tumor burden. Finally, activation of glucose metabolism predicts poor response to radiotherapy in cancer patients. CONCLUSIONS We demonstrate a link between radiation resistance and metabolic integration and suggest that metabolically dismantling the radioresistant features of tumors may provide potential combination approaches for radiotherapy in HCC.
Collapse
Affiliation(s)
- Yuan Fang
- Department of Radiation OncologyNanfang Hospital, Southern Medical UniversityGuangzhouGuangdong ProvinceChina
| | - Yizhi Zhan
- Department of PathologyNanfang Hospital, Southern Medical UniversityGuangzhouGuangdong ProvinceChina
- Department of Pathology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong ProvinceChina
- Guangdong Province Key Laboratory of Molecular Tumor PathologyGuangzhouGuangdong ProvinceChina
| | - Yuwen Xie
- Department of Radiation OncologyNanfang Hospital, Southern Medical UniversityGuangzhouGuangdong ProvinceChina
| | - Shisuo Du
- Department of Radiation OncologyZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Yuhan Chen
- Department of Radiation OncologyNanfang Hospital, Southern Medical UniversityGuangzhouGuangdong ProvinceChina
| | - Zhaochong Zeng
- Department of Radiation OncologyZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Yaowei Zhang
- Department of Radiation OncologyNanfang Hospital, Southern Medical UniversityGuangzhouGuangdong ProvinceChina
| | - Keli Chen
- Huiqiao Medical CenterNanfang Hospital, Southern Medical UniversityGuangzhouGuangdong ProvinceChina
| | - Yongjia Wang
- Department of Radiation OncologyNanfang Hospital, Southern Medical UniversityGuangzhouGuangdong ProvinceChina
| | - Li Liang
- Department of PathologyNanfang Hospital, Southern Medical UniversityGuangzhouGuangdong ProvinceChina
- Department of Pathology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong ProvinceChina
- Guangdong Province Key Laboratory of Molecular Tumor PathologyGuangzhouGuangdong ProvinceChina
| | - Yi Ding
- Department of Radiation OncologyNanfang Hospital, Southern Medical UniversityGuangzhouGuangdong ProvinceChina
| | - Dehua Wu
- Department of Radiation OncologyNanfang Hospital, Southern Medical UniversityGuangzhouGuangdong ProvinceChina
| |
Collapse
|
48
|
Abstract
The mechanistic target of the rapamycin (mTOR) signaling pathway is the central regulator of cell growth and proliferation by integrating growth factor and nutrient availability. Under healthy physiological conditions, this process is tightly coordinated and essential to maintain whole-body homeostasis. Not surprisingly, dysregulated mTOR signaling underpins several diseases with increasing incidence worldwide, including obesity, diabetes, and cancer. Consequently, there is significant clinical interest in developing therapeutic strategies that effectively target this pathway. The transition of mTOR inhibitors from the bench to bedside, however, has largely been marked with challenges and shortcomings, such as the development of therapy resistance and adverse side effects in patients. In this review, we discuss the current status of first-, second-, and third-generation mTOR inhibitors as a cancer therapy in both preclinical and clinical settings, with a particular emphasis on the mechanisms of drug resistance. We focus especially on the emerging role of diet as an important environmental determinant of therapy response, and posit a conceptual framework that links nutrient availability and whole-body metabolic states such as obesity with many of the previously defined processes that drive resistance to mTOR-targeted therapies. Given the role of mTOR as a central integrator of cell metabolism and function, we propose that modulating nutrient inputs through dietary interventions may influence the signaling dynamics of this pathway and compensatory nodes. In doing so, new opportunities for exploiting diet/drug synergies are highlighted that may unlock the therapeutic potential of mTOR inhibitors as a cancer treatment.
Collapse
Affiliation(s)
- Nikos Koundouros
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021,USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
- Correspondence: Nikos Koundouros, Meyer Cancer Center, Weill Cornell Medicine, 413 East 69th Street, New York, NY, 10021 USA.
| | - John Blenis
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021,USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10021, USA
- Correspondence: John Blenis, Meyer Cancer Center, Weill Cornell Medicine, 413 East 69th Street, New York, NY, 10021 USA.
| |
Collapse
|
49
|
Pathobiology and Therapeutic Relevance of GSK-3 in Chronic Hematological Malignancies. Cells 2022; 11:cells11111812. [PMID: 35681507 PMCID: PMC9180032 DOI: 10.3390/cells11111812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 12/10/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) is an evolutionarily conserved, ubiquitously expressed, multifunctional serine/threonine protein kinase involved in the regulation of a variety of physiological processes. GSK-3 comprises two isoforms (α and β) which were originally discovered in 1980 as enzymes involved in glucose metabolism via inhibitory phosphorylation of glycogen synthase. Differently from other proteins kinases, GSK-3 isoforms are constitutively active in resting cells, and their modulation mainly involves inhibition through upstream regulatory networks. In the early 1990s, GSK-3 isoforms were implicated as key players in cancer cell pathobiology. Active GSK-3 facilitates the destruction of multiple oncogenic proteins which include β-catenin and Master regulator of cell cycle entry and proliferative metabolism (c-Myc). Therefore, GSK-3 was initially considered to be a tumor suppressor. Consistently, GSK-3 is often inactivated in cancer cells through dysregulated upstream signaling pathways. However, over the past 10–15 years, a growing number of studies highlighted that in some cancer settings GSK-3 isoforms inhibit tumor suppressing pathways and therefore act as tumor promoters. In this article, we will discuss the multiple and often enigmatic roles played by GSK-3 isoforms in some chronic hematological malignancies (chronic myelogenous leukemia, chronic lymphocytic leukemia, multiple myeloma, and B-cell non-Hodgkin’s lymphomas) which are among the most common blood cancer cell types. We will also summarize possible novel strategies targeting GSK-3 for innovative therapies of these disorders.
Collapse
|
50
|
He L, Endress J, Cho S, Li Z, Zheng Y, Asara JM, Blenis J. Suppression of nuclear GSK3 signaling promotes serine/one-carbon metabolism and confers metabolic vulnerability in lung cancer cells. SCIENCE ADVANCES 2022; 8:eabm8786. [PMID: 35594343 PMCID: PMC9122323 DOI: 10.1126/sciadv.abm8786] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/05/2022] [Indexed: 05/02/2023]
Abstract
Serine/one-carbon metabolism provides critical resources for nucleotide biosynthesis and epigenetic maintenance and is thus necessary in cancer cell growth, although the detailed regulatory mechanisms remain unclear. We uncover a critical role of glycogen synthase kinase 3 (GSK3) in regulating the expression of serine/one-carbon metabolic enzymes. Nuclear enrichment of GSK3 significantly suppresses genes that mediate de novo serine synthesis, including PHGDH, PSAT1, PSPH, and one-carbon metabolism, including SHMT2 and MTHFD2. FRAT1 promotes nuclear exclusion of GSK3, enhances serine/one-carbon metabolism, and, as a result, confers cell vulnerability to inhibitors that target this metabolic process such as SHIN1, a specific SHMT1/2 inhibitor. Furthermore, pharmacological or genetic suppression of GSK3 promotes serine/one-carbon metabolism and exhibits a significant synergistic effect in combination with SHIN1 in suppressing cancer cell proliferation in cultured cells and in vivo. Our observations indicate that inhibition of nuclear GSK3 signaling creates a vulnerability, which results in enhanced efficacy of serine/one-carbon metabolism inhibitors for the treatment of cancer.
Collapse
Affiliation(s)
- Long He
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Jennifer Endress
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | - Sungyun Cho
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Zhongchi Li
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Yuxiang Zheng
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - John M. Asara
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - John Blenis
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|