1
|
Küng C, Lazarou M, Nguyen TN. Advances in mitophagy initiation mechanisms. Curr Opin Cell Biol 2025; 94:102493. [PMID: 40117675 DOI: 10.1016/j.ceb.2025.102493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/23/2025]
Abstract
Mitophagy is an important lysosomal degradative pathway that removes damaged or unwanted mitochondria to maintain cellular and organismal homeostasis. The mechanisms behind how mitophagy is initiated to form autophagosomes around mitochondria have gained a lot of interest since they can be potentially targeted by mitophagy-inducing therapeutics. Mitophagy initiation can be driven by various autophagy receptors or adaptors that respond to different cellular and mitochondrial stimuli, ranging from mitochondrial damage to metabolic rewiring. This review will cover recent advances in our understanding of how mitophagy is initiated, and by doing so reveal the mechanistic plasticity of how autophagosome formation can begin.
Collapse
Affiliation(s)
- Catharina Küng
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Michael Lazarou
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia; Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD 20185, USA.
| | - Thanh Ngoc Nguyen
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia; Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD 20185, USA.
| |
Collapse
|
2
|
Bonavita R, Prodomo A, Cortone G, Vitale F, Germoglio M, Fleming A, Balk JA, De Lange J, Renna M, Pisani FM. Evidence of an unprecedented cytoplasmic function of DDX11, the Warsaw breakage syndrome DNA helicase, in regulating autophagy. Autophagy 2025. [PMID: 40413757 DOI: 10.1080/15548627.2025.2507617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 05/07/2025] [Accepted: 05/13/2025] [Indexed: 05/27/2025] Open
Abstract
DDX11 is a DNA helicase involved in critical cellular functions, including DNA replication/repair/recombination as well as sister chromatid cohesion establishment. Bi-allelic mutations of DDX11 lead to Warsaw breakage syndrome (WABS), a rare genome instability disorder marked by significant prenatal and postnatal growth restriction, microcephaly, intellectual disability, and sensorineural hearing loss. The molecular mechanisms underlying WABS remain largely unclear. In this study, we uncover a novel role of DDX11 in regulating the macroautophagic/autophagic pathway. Specifically, we demonstrate that knockout of DDX11 in RPE-1 cells hinders the progression of autophagy. DDX11 depletion significantly reduces the conversion of MAP1LC3/LC3 (microtubule associated protein 1 light chain 3), suggesting a defect in autophagosome biogenesis. This is supported by imaging analysis with a LC3 reporter fused in tandem with the red and green fluorescent proteins (mRFP-GFP-LC3), which reveals fewer autophagosomes and autolysosomes in DDX11-knockout cells. Moreover, the defect in autophagosome biogenesis, observed in DDX11-depleted cells, is linked to an upstream impairment of the ATG16L1-precursor trafficking and maturation, a step critical to achieve the LC3 lipidation. Consistent with this, DDX11-lacking cells exhibit a diminished capacity to clear aggregates of a mutant HTT (huntingtin) N-terminal fragment fused to the green fluorescent protein (HTTQ74-GFP), an autophagy substrate. Finally, we demonstrate the occurrence of a functional interplay between DDX11 and SQSTM1, an autophagy cargo receptor protein, in supporting LC3 modification during autophagosome biogenesis. Our findings highlight a novel unprecedented function of DDX11 in the autophagy process with important implications for our understanding of WABS etiology.
Collapse
Affiliation(s)
- Raffaella Bonavita
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche. Via Pietro Castellino, Naples, Italy
| | - Antonello Prodomo
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche. Via Pietro Castellino, Naples, Italy
| | - Giuseppe Cortone
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche. Via Pietro Castellino, Naples, Italy
| | - Fulvia Vitale
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy
| | - Marcello Germoglio
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche. Via Pietro Castellino, Naples, Italy
| | - Angeleen Fleming
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Jesper A Balk
- Department of Human Genetics, Amsterdam UMC location Vrije Universiteit; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
| | - Job De Lange
- Department of Human Genetics, Amsterdam UMC location Vrije Universiteit; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
| | - Maurizio Renna
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Francesca M Pisani
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche. Via Pietro Castellino, Naples, Italy
| |
Collapse
|
3
|
Ullern H, Schnur P, Boccara CN, Knævelsrud H. Rest, Repair, Repeat: The Complex Relationship of Autophagy and Sleep. J Mol Biol 2025:169227. [PMID: 40409707 DOI: 10.1016/j.jmb.2025.169227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 05/13/2025] [Accepted: 05/18/2025] [Indexed: 05/25/2025]
Abstract
Autophagy and sleep are two evolutionary conserved mechanisms across the animal kingdom. Autophagy is a pathway for the degradation of cytoplasmic material in the lysosome, playing important roles in the homeostasis and health of the organism. On the other hand, sleep is a homeostatically regulated state with numerous presumed essential roles, including the restoration of tissue and physiological functions, such as brain waste clearance via the activation of the glymphatic systems. Given that sleep and autophagy are crucial processes tightly linked to homeostasis and maintenance of good health, understanding how they interact is of great interest, especially as sleep quality decreases in our modern 24-hour societies. Autophagy represents a promising target for therapeutic interventions in this context. Here, we review the contrasted and complementary roles of autophagy and sleep in maintaining homeostasis. Specifically, we focus on recent evidence suggesting that sleep impairment may increase autophagy, while autophagosome levels may modulate the amount of sleep. We discuss outstanding questions at the intersection of these two fields, highlighting methodological shortcomings in the current literature. Overcoming these limitations will be instrumental to design new experiments with the aim of answering one of the greatest mysteries of our time - why do we sleep?
Collapse
Affiliation(s)
- Halvor Ullern
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Paulina Schnur
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Norwegian Centre for Molecular Biosciences and Medicine (NCMBM), University of Oslo, Oslo, Norway
| | - Charlotte N Boccara
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Norwegian Centre for Molecular Biosciences and Medicine (NCMBM), University of Oslo, Oslo, Norway; Department of Neurology, Clinical Neuroscience, Oslo University Hospital (OUS), Norway.
| | - Helene Knævelsrud
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway; Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Norway.
| |
Collapse
|
4
|
Zhao P, Tian R, Song D, Zhu Q, Ding X, Zhang J, Cao B, Zhang M, Xu Y, Fang J, Tan J, Yi C, Xia H, Liu W, Zou W, Sun Q. Rab GTPases are evolutionarily conserved signals mediating selective autophagy. J Cell Biol 2025; 224:e202410150. [PMID: 40197538 PMCID: PMC11977514 DOI: 10.1083/jcb.202410150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/31/2024] [Accepted: 01/21/2025] [Indexed: 04/10/2025] Open
Abstract
Selective autophagy plays a crucial role in maintaining cellular homeostasis by specifically targeting unwanted cargo labeled with "autophagy cues" signals for autophagic degradation. In this study, we identify Rab GTPases as a class of such autophagy cues signals involved in selective autophagy. Through biochemical and imaging screens, we reveal that human Rab GTPases are common autophagy substrates. Importantly, we confirm the conservation of Rab GTPase autophagic degradation in different model organisms. Rab GTPases translocate to damaged mitochondria, lipid droplets, and invading Salmonella-containing vacuoles (SCVs) to serve as degradation signals. Furthermore, they facilitate mitophagy, lipophagy, and xenophagy, respectively, by recruiting receptors. This interplay between Rab GTPases and receptors may ensure the de novo synthesis of isolation membranes around Rab-GTPase-labeled cargo, thereby mediating selective autophagy. These processes are further influenced by upstream regulators such as LRRK2, GDIs, and RabGGTase. In conclusion, this study unveils a conserved mechanism involving Rab GTPases as autophagy cues signals and proposes a model for the spatiotemporal control of selective autophagy.
Collapse
Affiliation(s)
- Pengwei Zhao
- Center for Metabolism Research, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Rui Tian
- Center for Metabolism Research, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Dandan Song
- Center for Metabolism Research, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Qi Zhu
- Center for Metabolism Research, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Xianming Ding
- Center for Metabolism Research, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Jianqin Zhang
- Center for Metabolism Research, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Beibei Cao
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Mengyuan Zhang
- Center for Metabolism Research, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Yilu Xu
- Center for Metabolism Research, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Jie Fang
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Jieqiong Tan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Cong Yi
- Department of Biochemistry, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongguang Xia
- Department of Biochemistry, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Liu
- Center for Metabolism Research, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
- Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Zou
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Qiming Sun
- Center for Metabolism Research, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
- Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorders, Hangzhou, China
| |
Collapse
|
5
|
Ayala-Torres C, Liu J, Dantuma NP, Masucci MG. Regulation of N-degron recognin-mediated autophagy by the SARS-CoV-2 PLpro ubiquitin deconjugase. Autophagy 2025; 21:1019-1038. [PMID: 39723606 PMCID: PMC12013424 DOI: 10.1080/15548627.2024.2442849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
Viral proteases play critical roles in the host cell and immune remodeling that allows virus production. The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) papain-like protease (PLpro) encoded in the large nonstructural protein 3 (Nsp3) also possesses isopeptidase activity with specificity for ubiquitin and ISG15 conjugates. Here, we interrogated the cellular interactome of the SARS-CoV-2 PLpro catalytic domain to gain insight into the putative substrates and cellular functions affected by the viral deubiquitinase. PLpro was detected in protein complexes that control multiple ubiquitin and ubiquitin-like (UbL) regulated signaling and effector pathways. By restricting the analysis to cytosolic and membrane-associated ubiquitin ligases, we found that PLpro interacts with N-recognin ubiquitin ligases and preferentially rescues type I N-degron substrates from proteasomal degradation. PLpro stabilized N-degron carrying HSPA5/BiP/GRP78, which is arginylated in the cytosol upon release from the endoplasmic reticulum (ER) during ER stress, and enhanced the Arg-HSPA5-driven oligomerization of the N-recognin SQSTM1/p62 that serves as a platform for phagophore assembly. However, while in addition to Arg-HSPA5 and SQSTM1/p62, ATG9A, WIPI2, and BECN1/Beclin 1 were detected in PLpro immunoprecipitates, other components of the autophagosome biogenesis machinery, such as the ATG12-ATG5-ATG16L1 complex and MAP1LC3/LC3 were absent, which correlated with proteolytic inactivation of ULK1, impaired production of lipidated LC3-II, and inhibition of reticulophagy. The findings highlight a novel mechanism by which, through the reprogramming of autophagy, the PLpro deubiquitinase may contribute to the remodeling of intracellular membranes in coronavirus-infected cells.
Collapse
Affiliation(s)
- Carlos Ayala-Torres
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| | - Jiangnan Liu
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| | - Nico P. Dantuma
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| | - Maria G. Masucci
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
6
|
Gross AS, Raffeiner M, Zeng Y, Üstün S, Dagdas Y. Autophagy in Plant Health and Disease. ANNUAL REVIEW OF PLANT BIOLOGY 2025; 76:197-227. [PMID: 39841933 DOI: 10.1146/annurev-arplant-060324-094912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Autophagy has emerged as an essential quality control pathway in plants that selectively and rapidly removes damaged or unwanted cellular components to maintain cellular homeostasis. It can recycle a broad range of cargoes, including entire organelles, protein aggregates, and even invading microbes. It involves the de novo biogenesis of a new cellular compartment, making it intimately linked to endomembrane trafficking pathways. Autophagy is induced by a wide range of biotic and abiotic stress factors, and autophagy mutant plants are highly sensitive to stress, making it an attractive target for improving plant stress resilience. Here, we critically discuss recent discoveries related to plant autophagy and highlight open questions and future research areas.
Collapse
Affiliation(s)
- Angelina S Gross
- Gregor Mendel Institute of Molecular Plant Biology, Vienna, Austria;
- Current affiliation: Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, BOKU University of Natural Resources and Life Sciences, Vienna, Austria
| | - Margot Raffeiner
- Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Yonglun Zeng
- State Key Laboratory of Plant Diversity and Specialty Crops and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Suayib Üstün
- Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Yasin Dagdas
- Gregor Mendel Institute of Molecular Plant Biology, Vienna, Austria;
| |
Collapse
|
7
|
An X, Guo X, Cai M, Xu M. Exploring the Regulatory Effect of Hydroxytyrosol on Ovarian Inflammaging Through Autophagy-Targeted Mechanisms: A Bioinformatics Approach. Nutrients 2025; 17:1421. [PMID: 40362730 PMCID: PMC12073169 DOI: 10.3390/nu17091421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/21/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025] Open
Abstract
Background/Objectives: Ovarian aging represents a critically important aspect of female senescence. It not only denotes the loss of fertility but is also accompanied by a series of physiological changes and the aging of other organs. Hydroxytyrosol (HT), a natural polyphenolic phytocompound, has been demonstrated to exhibit remarkable effects in regulating autophagy, inflammation, and the aging process. However, the relationship between HT and ovarian aging, as well as the specific underlying mechanisms, remains poorly understood. Methods: In this study, network pharmacology, molecular docking, and molecular dynamics simulation were employed to explore the regulatory effect of HT on ovarian inflammaging via autophagy-targeted mechanisms. Results: Through network pharmacology analysis, this study successfully identified 10 hub genes associated with ovarian aging regulation. Notably, four out of the top five hub genes were found to be closely related to autophagy regulatory pathways. Further investigation revealed the pivotal role of ATG7: HT may regulate ovarian inflammaging through activating the FIP200 (focal adhesion kinase family interacting protein of 200 kD)-dependent non-canonical selective autophagy pathway. The results of molecular docking indicated that ATG7 has a strong binding ability with HT. Molecular dynamics simulation further verified the binding stability between the two. Conclusions: By analysis, a possible pathway for HT to regulate ovarian inflammaging via non-canonical selective autophagy was explored, providing cues for further research.
Collapse
Affiliation(s)
- Xiaoyang An
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (X.A.); (X.G.); (M.C.)
| | - Xiaoyu Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (X.A.); (X.G.); (M.C.)
| | - Meng Cai
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (X.A.); (X.G.); (M.C.)
| | - Meihong Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (X.A.); (X.G.); (M.C.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| |
Collapse
|
8
|
Campisi D, Hawkins N, Bonjour K, Wollert T. The Role of WIPI2, ATG16L1 and ATG12-ATG5 in Selective and Nonselective Autophagy. J Mol Biol 2025:169138. [PMID: 40221132 DOI: 10.1016/j.jmb.2025.169138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/24/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
Autophagy is a conserved cellular recycling pathway that delivers damaged or superfluous cytoplasmic material to lysosomes for degradation. In response to cytotoxic stress or starvation, autophagy can also sequester bulk cytoplasm and deliver it to lysosomes to regenerate building blocks. In macroautophagy, a membrane cisterna termed phagophore that encloses autophagic cargo is generated. The formation of the phagophore depends on a conserved machinery of autophagy related proteins. The phosphatidylinositol(3)-phosphate binding protein WIPI2 facilitates the transition from phagophore initiation to phagophore expansion by recruiting the ATG12-ATG5-ATG16L1 complex to phagophores. This complex functions as an E3-ligase to conjugate ubiquitin-like ATG8 proteins to phagophore membranes, which promotes tethering of cargo to phagophore membranes, phagophore expansion, maturation and the fusion of autophagosomes with lysosomes. ATG16L1 also has important functions independently of ATG12-ATG5 in autophagy and beyond. In this review, we will summarize the functions of WIPI2 and ATG16L1 in selective and nonselective autophagy.
Collapse
Affiliation(s)
- Daniele Campisi
- Membrane Biochemistry and Transport, Institut Pasteur, Université de Paris, UMR3691 CNRS, 75015 Paris, France
| | - N'Toia Hawkins
- Membrane Biochemistry and Transport, Institut Pasteur, Université de Paris, UMR3691 CNRS, 75015 Paris, France
| | - Kennedy Bonjour
- Membrane Biochemistry and Transport, Institut Pasteur, Université de Paris, UMR3691 CNRS, 75015 Paris, France
| | - Thomas Wollert
- Membrane Biochemistry and Transport, Institut Pasteur, Université de Paris, UMR3691 CNRS, 75015 Paris, France.
| |
Collapse
|
9
|
North BJ, Ohnstad AE, Ragusa MJ, Shoemaker CJ. The LC3-interacting region of NBR1 is a protein interaction hub enabling optimal flux. J Cell Biol 2025; 224:e202407105. [PMID: 39928048 PMCID: PMC11809422 DOI: 10.1083/jcb.202407105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/05/2024] [Accepted: 01/07/2025] [Indexed: 02/11/2025] Open
Abstract
During autophagy, toxic cargo is encapsulated by autophagosomes and trafficked to lysosomes for degradation. NBR1, an autophagy receptor targeting ubiquitinated aggregates, serves as a model for studying the multivalent, heterotypic interactions of cargo-bound receptors. Here, we find that three critical NBR1 partners-ATG8-family proteins, FIP200, and TAX1BP1-each bind to distinct, overlapping determinants within a short linear interaction motif (SLiM). To explore whether overlapping SLiMs extend beyond NBR1, we analyzed >100 LC3-interacting regions (LIRs), revealing that FIP200 and/or TAX1BP1 binding to LIRs is a common phenomenon and suggesting LIRs as protein interaction hotspots. Phosphomimetic peptides demonstrate that phosphorylation generally enhances FIP200 and ATG8-family binding but not TAX1BP1, indicating differential regulation. In vivo, LIR-mediated interactions with TAX1BP1 promote optimal NBR1 flux by leveraging additional functionalities from TAX1BP1. These findings reveal a one-to-many binding modality in the LIR motif of NBR1, illustrating the cooperative mechanisms of autophagy receptors and the regulatory potential of multifunctional SLiMs.
Collapse
Affiliation(s)
- Brian J. North
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Amelia E. Ohnstad
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | | | - Christopher J. Shoemaker
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
10
|
Gambarotto L, Wosnitzka E, Nikoletopoulou V. The Life and Times of Brain Autophagic Vesicles. J Mol Biol 2025:169105. [PMID: 40154918 DOI: 10.1016/j.jmb.2025.169105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/17/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
Most of the knowledge on the mechanisms and functions of autophagy originates from studies in yeast and other cellular models. How this valuable information is translated to the brain, one of the most complex and evolving organs, has been intensely investigated. Fueled by the tight dependence of the mammalian brain on autophagy, and the strong links of human brain diseases with autophagy impairment, the field has revealed adaptations of the autophagic machinery to the physiology of neurons and glia, the highly specialized cell types of the brain. Here, we first provide a detailed account of the tools available for studying brain autophagy; we then focus on the recent advancements in understanding how autophagy is regulated in brain cells, and how it contributes to their homeostasis and integrated functions. Finally, we discuss novel insights and open questions that the new knowledge has raised in the field.
Collapse
Affiliation(s)
- Lisa Gambarotto
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Erin Wosnitzka
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
11
|
Moreno TM, Nieto-Torres JL, Kumsta C. Monitoring Autophagy in Human Aging: Key Cell Models and Insights. FRONT BIOSCI-LANDMRK 2025; 30:27091. [PMID: 40152379 PMCID: PMC12042822 DOI: 10.31083/fbl27091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/08/2024] [Accepted: 11/22/2024] [Indexed: 03/29/2025]
Abstract
Autophagy, a key cellular degradation and recycling pathway, is critical for maintaining cellular homeostasis and responding to metabolic and environmental stress. Evidence for age-related autophagic dysfunction and its implications in chronic age-related diseases including neurodegeneration is accumulating. However, as a complex, multi-step process, autophagy can be challenging to measure, particularly in humans and human aging- and disease-relevant models. This review describes the links between macroautophagy, aging, and chronic age-related diseases. We present three novel human cell models, peripheral blood mononuclear cells (PBMCs), primary dermal fibroblasts (PDFs), and induced neurons (iNs), which serve as essential tools for studying autophagy flux and assessing its potential as a biomarker for aging. Unlike traditional models, these cell models retain age- and disease-associated molecular signatures, enhancing their relevance for human studies. The development of robust tools and methodologies for measuring autophagy flux in human cell models holds promise for advancing our understanding of autophagy's role in aging and age-related diseases, ultimately facilitating the discovery of therapies to enhance health outcomes.
Collapse
Affiliation(s)
- Tatiana M. Moreno
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jose L. Nieto-Torres
- Department of Biomedical Sciences, School of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain
| | - Caroline Kumsta
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| |
Collapse
|
12
|
Zhang W, Zhou R, Lei X, Wang M, Duan Q, Miao Y, Zhang T, Li X, Zutong Z, Wang L, Jones OD, Xu M, Bryant J, Ma J, Liu Y, Xu X. Molecular mechanism on autophagy associated cardiovascular dysfunction in Drosophila melanogaster. Front Cell Dev Biol 2025; 13:1512341. [PMID: 40099194 PMCID: PMC11911378 DOI: 10.3389/fcell.2025.1512341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/10/2025] [Indexed: 03/19/2025] Open
Abstract
As a highly conserved cellular process, autophagy has been the focus of extensive research due to its critical role in maintaining cellular homeostasis and its implications in cardiovascular pathogenesis. The decline in muscular function, along with the neuronal system, and increased sensitivity to stress have been recognized in multiple animal models. Autophagic defects in cardiovascular architecture and cellular dysfunction have been linked to both physiological and pathological conditions of the heart in mammals and Drosophila. In this review, we systematically analyze the autophagy-associated pathways in the hearts of fruit flies and aim to provide a comprehensive understanding for developing potential treatments for patients and effective strategies for agricultural applications. This analysis elucidates the molecular mechanisms of autophagy in cardiovascular function under both physiological and pathological conditions in Drosophila, offering significant insights into the development of cardiovascular diseases. The loss of key autophagy-associated proteins, including the transmembrane protein Atg9 and its partners Atg2 or Atg18, along with DmSestrin, leads to cardiac hypertrophy and structural abnormalities in Drosophila, resembling the age-dependent deterioration of cardiac function. Members of the autophagy-related (Atg) gene family, cellular or nuclear skeletal lamins, and the mechanistic or mammalian target of rapamycin (mTOR) signaling pathways are critically influential in heart function in Drosophila, with autophagy activation shown to suppress cardiac laminopathy. The mTORC1/C2 complexes, along with axis of Atg2-AMPK/Sirt1/PGC-1α pathway, are essential in the hearts of both mammals and fruit flies, governing cardiac development, growth, maturation, and the maintenance of cardiac homeostasis. The beneficial effects of several interventions that enhance cardiac function, including exercise and cold stress, can influence autophagy-dependent TOR activity of the serine/threonine protein kinase signaling in both mammals and Drosophila. Exercise has been shown to increase autophagy when it is deficient and to inhibit it when it is excessive, highlighting the dual role of autophagy in cardiac health. This review evaluates the functional significance of autophagy in the heart, particularly in the context of Drosophila, in relation to mTORC-associated autophagy and the axis of Atg2-AMPK/Sirt1/PGC-1α pathways. It systematically contrasts the molecular mechanisms underlying autophagy-related cardiovascular physiological and pathological conditions in both fruit flies and mammals. The evolutionary conservation of autophagy underscores the value of Drosophila as a model for understanding broader mechanisms of autophagy across species. This study not only deepens our understanding of autophagy's role in cardiovascular function but also provides a theoretical foundation for the potential application of autophagy in agricultural pest control.
Collapse
Affiliation(s)
- Wei Zhang
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, China
| | - Rong Zhou
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, China
| | - Xinjuan Lei
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, China
| | - Mofei Wang
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, China
| | - Qinchun Duan
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, China
| | - Yuanlin Miao
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, China
| | - Tingting Zhang
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, China
| | - Xinjie Li
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, China
| | - Zhang Zutong
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, China
| | - Liyang Wang
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, China
| | - Odell D Jones
- University Laboratory Animal Resources (ULAR), University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| | - Mengmeng Xu
- Department of Pediatrics, Morgan Stanley Children's Hospital, Columbia University, New York, NY, United States
| | - Joseph Bryant
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jianjie Ma
- Division of Surgical Sciences, Department of Surgery, University of Virginia Medical School, Charlottesville, VA, United States
| | - Yingli Liu
- Department of Internal Medicine, University Hospital Shaanxi Normal University, Xi'an, China
| | - Xuehong Xu
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, China
| |
Collapse
|
13
|
Guo J, Bullock G, O’Brien DP, Johnson GS, Katz ML. An RB1CC1 Missense Variant in Nova Scotia Duck Tolling Retrievers with Degenerative Encephalopathy. Genes (Basel) 2025; 16:269. [PMID: 40149422 PMCID: PMC11941761 DOI: 10.3390/genes16030269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES A slowly progressive hereditary neurological disorder classified as degenerative encephalopathy (DE) occurs in Nova Scotia Duck Tolling Retrievers. The disease is characterized by frequent episodes of pronounced involuntary movements during sleep, cognitive impairment, anxiety, heightened sensitivity to sensory stimuli, and compulsive behaviors. The clinical signs are accompanied by the degeneration of several brain regions. A study was undertaken to identify the molecular genetic basis of this disorder. METHODS Whole genome sequences (WGSs) from the DNA of affected and unaffected Nova Scotia Duck Tolling Retrievers were aligned to the Dog10K_Boxer_Tasha reference genome assembly and to the WGSs of 334 additional control dogs generated by this laboratory. RESULTS A missense C>T variant was identified in RB1CC1 exon 22 chromosome 29:4891014 that was uniquely homozygous in the affected dog. This variant predicts a p.G1503R change in the amino acid sequence of RB1CC1. Genotyping of 2950 Nova Scotia Duck Tolling Retrievers at the variant locus found complete concordance between the disease phenotype and RB1CC1 genotype. CONCLUSIONS RBCC1 is an essential component of a protein complex that mediates the initiation of autophagosome formation. Therefore, it appears likely that the disease results, at least in part, from impaired autophagy. Consistent with this possibility, brain neurons of an affected dog were found to contain abnormal lysosomal storage body-like inclusions. This disorder could serve as a valuable model to elucidate the mechanisms underlying human diseases associated with impaired autophagy. Identification of the disease-causing DNA sequence variant will enable owners of Nova Scotia Duck Tolling Retrievers to screen their dogs for the RB1CC1 risk variant.
Collapse
Affiliation(s)
- Juyuan Guo
- Canine Genetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (J.G.); (G.B.)
| | - Garrett Bullock
- Canine Genetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (J.G.); (G.B.)
| | - Dennis P. O’Brien
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (D.P.O.)
| | - Gary S. Johnson
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (D.P.O.)
| | - Martin L. Katz
- Canine Genetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (J.G.); (G.B.)
- Neurodegenerative Diseases Research Laboratory, Department of Ophthalmology, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
14
|
Huang X, Zhang J, Yao J, Mi N, Yang A. Phase separation of p62: roles and regulations in autophagy. Trends Cell Biol 2025:S0962-8924(25)00033-9. [PMID: 40011090 DOI: 10.1016/j.tcb.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/28/2025]
Abstract
The phase separation of the cargo receptor sequestome-1/p62 (SQSTM1/p62) is a critical mechanism for assembling signaling complexes in autophagy. During this process, p62 undergoes phase separation upon binding to polyubiquitin chains, concentrating ubiquitinated substrates within p62 droplets. These droplets further gather membrane sources and core autophagy machineries to facilitate autophagosome formation. The dynamics of p62 droplets are finely tuned in response to autophagy signals triggered by cellular stresses. Recent studies have revealed new regulatory mechanisms that highlight the significance of p62 phase separation in regulating autophagy. This review summarizes and discusses the molecular mechanisms of p62 phase separation and its roles in autophagy, with particular emphasis on the regulation of p62 droplets and their interaction modes with autophagic membranes.
Collapse
Affiliation(s)
- Xue Huang
- School of Life Sciences, Chongqing University, Chongqing 401331, China; Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Jinpei Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China; Basic Medical College, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China; Key Laboratory of High Incidence Disease Research in Xinjiang (Xinjiang Medical University), Ministry of Education, Urumqi, 830011, Xinjiang, China
| | - Jia Yao
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Na Mi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China; Basic Medical College, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China; Key Laboratory of High Incidence Disease Research in Xinjiang (Xinjiang Medical University), Ministry of Education, Urumqi, 830011, Xinjiang, China.
| | - Aimin Yang
- School of Life Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
15
|
Javed R, Mari M, Trosdal E, Duque T, Paddar MA, Allers L, Mudd MH, Claude-Taupin A, Akepati PR, Hendrix E, He Y, Salemi M, Phinney B, Uchiyama Y, Reggiori F, Deretic V. ATG9A facilitates the closure of mammalian autophagosomes. J Cell Biol 2025; 224:e202404047. [PMID: 39745851 PMCID: PMC11694768 DOI: 10.1083/jcb.202404047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/29/2024] [Accepted: 11/11/2024] [Indexed: 01/04/2025] Open
Abstract
Canonical autophagy captures within specialized double-membrane organelles, termed autophagosomes, an array of cytoplasmic components destined for lysosomal degradation. An autophagosome is completed when the growing phagophore undergoes ESCRT-dependent membrane closure, a prerequisite for its subsequent fusion with endolysosomal organelles and degradation of the sequestered cargo. ATG9A, a key integral membrane protein of the autophagy pathway, is best known for its role in the formation and expansion of phagophores. Here, we report a hitherto unappreciated function of mammalian ATG9A in directing autophagosome closure. ATG9A partners with IQGAP1 and key ESCRT-III component CHMP2A to facilitate this final stage in autophagosome formation. Thus, ATG9A is a central hub governing all major aspects of autophagosome membrane biogenesis, from phagophore formation to its closure, and is a unique ATG factor with progressive functionalities affecting the physiological outputs of autophagy.
Collapse
Affiliation(s)
- Ruheena Javed
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Muriel Mari
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Einar Trosdal
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Thabata Duque
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Masroor Ahmad Paddar
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Lee Allers
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Michal H. Mudd
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Aurore Claude-Taupin
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Prithvi Reddy Akepati
- Gastroenterology Division, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Emily Hendrix
- Department of Chemistry and Chemical Biology, The University of New Mexico, Albuquerque, NM, USA
| | - Yi He
- Department of Chemistry and Chemical Biology, The University of New Mexico, Albuquerque, NM, USA
| | - Michelle Salemi
- Proteomics Core Facility, UC Davis Genome Center, University of California, Davis, Davis, CA, USA
| | - Brett Phinney
- Proteomics Core Facility, UC Davis Genome Center, University of California, Davis, Davis, CA, USA
| | - Yasuo Uchiyama
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Fulvio Reggiori
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Vojo Deretic
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| |
Collapse
|
16
|
Lorentzen KC, Prescott AR, Ganley IG. Artificial targeting of autophagy components to mitochondria reveals both conventional and unconventional mitophagy pathways. Autophagy 2025; 21:315-337. [PMID: 39177530 PMCID: PMC11760219 DOI: 10.1080/15548627.2024.2395149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024] Open
Abstract
Macroautophagy/autophagy enables lysosomal degradation of a diverse array of intracellular material. This process is essential for normal cellular function and its dysregulation is implicated in many diseases. Given this, there is much interest in understanding autophagic mechanisms of action in order to determine how it can be best targeted therapeutically. In mitophagy, the selective degradation of mitochondria via autophagy, mitochondria first need to be primed with signals that allow the recruitment of the core autophagy machinery to drive the local formation of an autophagosome around the target mitochondrion. To determine how the recruitment of different core autophagy components can drive mitophagy, we took advantage of the mito-QC mitophagy assay (an outer mitochondrial membrane-localized tandem mCherry-GFP tag). By tagging autophagy proteins with an anti-mCherry (or anti-GFP) nanobody, we could recruit them to mitochondria and simultaneously monitor levels of mitophagy. We found that targeting ULK1, ATG16L1 and the different Atg8-family proteins was sufficient to induce mitophagy. Mitochondrial recruitment of ULK1 and the Atg8-family proteins induced a conventional mitophagy pathway, requiring RB1CC1/FIP200, PIK3C3/VPS34 activity and ATG5. Surprisingly, the mitophagy pathway upon recruitment of ATG16L1 proceeded independently of ATG5, although it still required RB1CC1 and PIK3C3/VPS34 activity. In this latter pathway, mitochondria were alternatively delivered to lysosomes via uptake into early endosomes.Abbreviation: aGFP: anti-GFP nanobody; amCh: anti-mCherry nanobody; ATG: autophagy related; ATG16L1: autophagy related 16 like 1; AUTAC/AUTOTAC: autophagy-targeting chimera; BafA1: bafilomycin A1; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CCCP: carbonyl cyanide m-chlorophenylhydrazone; COX4/COX IV: cytochrome c oxidase subunit 4; DFP: deferiprone; DMSO: dimethyl sulfoxide; GABARAP: GABA type A receptor-associated protein; GABARAPL1: GABA type A receptor associated protein like 1; HSPD1/HSP60: heat shock protein family D (Hsp60) member 1; HRP: horseradish peroxidase; HTRA2/OMI: HtrA serine peptidase 2; IB: immunoblotting; IF: immunofluorescence; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MEF: mouse embryonic fibroblast; NBR1: NBR1 autophagy cargo receptor; OMM: outer mitochondrial membrane; OPA1: OPA1 mitochondrial dynamin like GTPase; OPTN: optineurin; (D)PBS: (Dulbecco's) phosphate-buffered saline; PD: Parkinson disease; PFA: paraformaldehyde; POI: protein of interest; PtdIns3K: class III phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; RAB: RAB, member RAS oncogene family; RB1CC1/FIP200: RB1 inducible coiled-coil 1; SQSTM1: sequestosome 1; TAX1BP1: Tax1 binding protein 1; ULK: unc-51 like autophagy activating kinase 1; VPS: vacuolar protein sorting; WIPI: WD repeat domain, phosphoinositide interacting.
Collapse
Affiliation(s)
| | - Alan R. Prescott
- Dundee Imaging Facility, School of Life Sciences, University of Dundee, Dundee, UK
| | - Ian G. Ganley
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| |
Collapse
|
17
|
Nagy PD, Pogany J, Kang Y. Novel exploitation of autophagy by tombusviruses. Virology 2025; 603:110363. [PMID: 39708618 DOI: 10.1016/j.virol.2024.110363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/04/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Positive-strand (+)RNA viruses are major pathogens of humans, animals and plants. This review summarizes the complex interplay between the host autophagy pathway and Tomato bushy stunt virus (TBSV) replication. Recent discoveries with TBSV have revealed virus-driven exploitation of autophagy in multiple ways that contributes to the unique phospholipid composition of viral replication organellar (VROs) membranes. Viral replication protein-driven subversion of phagophore membranes, recruitment of ATG2 bulk lipid transfer protein to enrich phosphatidylethanolamine and phosphatidylserine in VROs, recruitment of VPS34 PI3K to produce PI(3)P; and ATG11-facilitated formation of stable viral membrane contact sites contributes to VRO membrane proliferation. Recruitment of autophagy core proteins to vir-NBR1 bodies within vir-condensates associated with VROs results in dampened antiviral degradation by autophagy. Overall, TBSV intricate interplay with the autophagy machinery highlights the importance of lipid dynamics in viral life cycles and points toward potential directions for therapeutic intervention.
Collapse
Affiliation(s)
- Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, KY, USA.
| | - Judit Pogany
- Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, KY, USA
| | - Yuanrong Kang
- Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, KY, USA
| |
Collapse
|
18
|
Broadbent DG, McEwan CM, Jayatunge D, Kaminsky EG, Tsang TM, Poole DM, Naylor BC, Price JC, Schmidt JC, Andersen JL. Ubiquitin-mediated recruitment of the ATG9A-ATG2 lipid transfer complex drives clearance of phosphorylated p62 aggregates. Mol Biol Cell 2025; 36:ar20. [PMID: 39718773 PMCID: PMC11809316 DOI: 10.1091/mbc.e24-03-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 11/04/2024] [Accepted: 12/19/2024] [Indexed: 12/25/2024] Open
Abstract
Autophagy is an essential cellular recycling process that maintains protein and organelle homeostasis. ATG9A vesicle recruitment is a critical early step in autophagy to initiate autophagosome biogenesis. The mechanisms of ATG9A vesicle recruitment are best understood in the context of starvation-induced nonselective autophagy, whereas less is known about the signals driving ATG9A vesicle recruitment to autophagy initiation sites in the absence of nutrient stress. Here we demonstrate that loss of ATG9A, or the lipid transfer protein ATG2, leads to the accumulation of phosphorylated p62 aggregates in nutrient replete conditions. Furthermore, we show that p62 degradation requires the lipid scramblase activity of ATG9A. Last, we present evidence that polyubiquitin is an essential signal that recruits ATG9A and mediates autophagy foci assembly in nutrient replete cells. Together, our data support a ubiquitin-driven model of ATG9A recruitment and autophagosome formation during basal autophagy.
Collapse
Affiliation(s)
- David G Broadbent
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI 48824
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824
- Department of Physiology, College of Natural Sciences, Michigan State University, East Lansing, MI 48824
| | - Colten M McEwan
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Dasun Jayatunge
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Emily G Kaminsky
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI 48824
| | - Tsz-Min Tsang
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Daniel M Poole
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Bradley C Naylor
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - John C Price
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Jens C Schmidt
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI 48824
- Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, East Lansing, MI 48824
| | - Josh L Andersen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112
| |
Collapse
|
19
|
Kolapalli SP, Beese CJ, Reid SE, Brynjólfsdóttir SH, Jørgensen MH, Jain A, Cuenco J, Lewinska M, Abdul-Al A, López AR, Jäättelä M, Sakamoto K, Andersen JB, Maeda K, Rusten TE, Lund AH, Frankel LB. Pellino 3 E3 ligase promotes starvation-induced autophagy to prevent hepatic steatosis. SCIENCE ADVANCES 2025; 11:eadr2450. [PMID: 39823344 PMCID: PMC11740972 DOI: 10.1126/sciadv.adr2450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/18/2024] [Indexed: 01/30/2025]
Abstract
Nutrient deprivation is a major trigger of autophagy, a conserved quality control and recycling process essential for cellular and tissue homeostasis. In a high-content image-based screen of the human ubiquitome, we here identify the E3 ligase Pellino 3 (PELI3) as a crucial regulator of starvation-induced autophagy. Mechanistically, PELI3 localizes to autophagic membranes, where it interacts with the ATG8 proteins through an LC3-interacting region (LIR). This facilitates PELI3-mediated ubiquitination of ULK1, driving ULK1's subsequent proteasomal degradation. PELI3 depletion leads to an aberrant accumulation and mislocalization of ULK1 and disrupts the early steps of autophagosome formation. Genetic deletion of Peli3 in mice impairs fasting-induced autophagy in the liver and enhances starvation-induced hepatic steatosis by reducing autophagy-mediated clearance of lipid droplets. Notably, PELI3 expression is decreased in the livers of patients with metabolic dysfunction-associated steatotic liver disease (MASLD), suggesting its role in hepatic steatosis development in humans. The findings suggest that PELI3-mediated control of autophagy plays a protective role in liver health.
Collapse
Affiliation(s)
- Srinivasa P. Kolapalli
- Cellular Homeostasis and Recycling, Danish Cancer Institute, DK-2100 Copenhagen, Denmark
| | - Carsten J. Beese
- Cellular Homeostasis and Recycling, Danish Cancer Institute, DK-2100 Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Steven E. Reid
- Cellular Homeostasis and Recycling, Danish Cancer Institute, DK-2100 Copenhagen, Denmark
| | | | - Maria H. Jørgensen
- Cellular Homeostasis and Recycling, Danish Cancer Institute, DK-2100 Copenhagen, Denmark
| | - Ashish Jain
- Center for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Joyceline Cuenco
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Monika Lewinska
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Gubra, DK-2970 Hørsholm, Denmark
| | - Ahmad Abdul-Al
- Cellular Homeostasis and Recycling, Danish Cancer Institute, DK-2100 Copenhagen, Denmark
| | - Aida R. López
- Cellular Homeostasis and Recycling, Danish Cancer Institute, DK-2100 Copenhagen, Denmark
| | - Marja Jäättelä
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Institute, DK-2100 Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Kei Sakamoto
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Jesper B. Andersen
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Kenji Maeda
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Institute, DK-2100 Copenhagen, Denmark
| | - Tor E. Rusten
- Center for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Anders H. Lund
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Lisa B. Frankel
- Cellular Homeostasis and Recycling, Danish Cancer Institute, DK-2100 Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
20
|
Paddar MA, Wang F, Trosdal ES, Hendrix E, He Y, Salemi MR, Mudd M, Jia J, Duque T, Javed R, Phinney BS, Deretic V. Noncanonical roles of ATG5 and membrane atg8ylation in retromer assembly and function. eLife 2025; 13:RP100928. [PMID: 39773872 PMCID: PMC11706607 DOI: 10.7554/elife.100928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
ATG5 is one of the core autophagy proteins with additional functions such as noncanonical membrane atg8ylation, which among a growing number of biological outputs includes control of tuberculosis in animal models. Here, we show that ATG5 associates with retromer's core components VPS26, VPS29, and VPS35 and modulates retromer function. Knockout of ATG5 blocked trafficking of a key glucose transporter sorted by the retromer, GLUT1, to the plasma membrane. Knockouts of other genes essential for membrane atg8ylation, of which ATG5 is a component, affected GLUT1 sorting, indicating that membrane atg8ylation as a process affects retromer function and endosomal sorting. The contribution of membrane atg8ylation to retromer function in GLUT1 sorting was independent of canonical autophagy. These findings expand the scope of membrane atg8ylation to specific sorting processes in the cell dependent on the retromer and its known interactors.
Collapse
Affiliation(s)
- Masroor Ahmad Paddar
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of MedicineAlbuquerqueUnited States
- Department of Molecular Genetics and Microbiology, University of New Mexico School of MedicineAlbuquerqueUnited States
| | - Fulong Wang
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of MedicineAlbuquerqueUnited States
- Department of Molecular Genetics and Microbiology, University of New Mexico School of MedicineAlbuquerqueUnited States
| | - Einar S Trosdal
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of MedicineAlbuquerqueUnited States
- Department of Molecular Genetics and Microbiology, University of New Mexico School of MedicineAlbuquerqueUnited States
| | - Emily Hendrix
- Department of Chemistry & Chemical Biology, The University of New MexicoAlbuquerqueUnited States
| | - Yi He
- Department of Chemistry & Chemical Biology, The University of New MexicoAlbuquerqueUnited States
| | - Michelle R Salemi
- Proteomics Core Facility, University of California, DavisDavisUnited States
| | - Michal Mudd
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of MedicineAlbuquerqueUnited States
- Department of Molecular Genetics and Microbiology, University of New Mexico School of MedicineAlbuquerqueUnited States
| | - Jingyue Jia
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of MedicineAlbuquerqueUnited States
- Department of Molecular Genetics and Microbiology, University of New Mexico School of MedicineAlbuquerqueUnited States
| | - Thabata Duque
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of MedicineAlbuquerqueUnited States
- Department of Molecular Genetics and Microbiology, University of New Mexico School of MedicineAlbuquerqueUnited States
| | - Ruheena Javed
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of MedicineAlbuquerqueUnited States
- Department of Molecular Genetics and Microbiology, University of New Mexico School of MedicineAlbuquerqueUnited States
| | - Brett S Phinney
- Proteomics Core Facility, University of California, DavisDavisUnited States
| | - Vojo Deretic
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of MedicineAlbuquerqueUnited States
- Department of Molecular Genetics and Microbiology, University of New Mexico School of MedicineAlbuquerqueUnited States
| |
Collapse
|
21
|
FUJIOKA Y, N. NODA N. Mechanisms of autophagosome formation. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2025; 101:32-40. [PMID: 39805588 PMCID: PMC11808202 DOI: 10.2183/pjab.101.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/25/2024] [Indexed: 01/16/2025]
Abstract
The formation of autophagosomes is a pivotal step in autophagy, a lysosomal degradation system that plays a crucial role in maintaining cellular homeostasis. After autophagy induction, phase separation of the autophagy-related (Atg) 1 complex occurs, facilitating the gathering of Atg proteins and organizes the autophagosome formation site, where the initial isolation membrane (IM)/phagophore is generated. The IM then expands after receiving phospholipids from endomembranes such as the endoplasmic reticulum. This process is driven by the collaboration of lipid transfer (Atg2) and scrambling (Atg9) proteins. The IM assumes a cup shaped morphology and undergoes closure, resulting in the formation of a double membrane-bound autophagosome. The Atg8 lipidation system is hypothesized to be a pivotal factor in this process. This review presents an overview of the current understanding of these processes and discusses the basic mechanisms of autophagosome formation.
Collapse
Affiliation(s)
- Yuko FUJIOKA
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Nobuo N. NODA
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan
| |
Collapse
|
22
|
Hamamoto K, Liang X, Ito A, Lanza M, Bui V, Zhang J, Opozda DM, Hattori T, Chen L, Haddock D, Imamura F, Wang HG, Takahashi Y. Unveiling the physiological impact of ESCRT-dependent autophagosome closure by targeting the VPS37A ubiquitin E2 variant-like domain. Cell Rep 2024; 43:115016. [PMID: 39607828 PMCID: PMC11748760 DOI: 10.1016/j.celrep.2024.115016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 09/05/2024] [Accepted: 11/11/2024] [Indexed: 11/30/2024] Open
Abstract
Macroautophagy (autophagy) involves the formation of phagophores that mature into autophagosomes. The impact of inhibiting autophagosome closure remains unclear. Here, we report the generation and analysis of mice with impaired autophagosome closure by targeting the ubiquitin E2 variant-like (UEVL) β strands of the endosomal sorting complex required for transport (ESCRT) I subunit VPS37A. The VPS37A UEVL mutation (Δ43-139) impairs bulk autophagic flux without disrupting ESCRT-I complex assembly and endosomal function. Homozygous mutant mice exhibit signs of autophagy impairment, including p62/SQSTM1 and ubiquitinated protein accumulation, neuronal dysfunction, growth retardation, antioxidant gene upregulation, and tissue abnormalities. However, about half of the mutant neonates survive to adulthood without severe liver injury. LC3 proximity proteomics reveals that the VPS37A UEVL mutation leads to active TANK-binding kinase 1 (TBK1) accumulation on phagophores, resulting in increased p62 phosphorylation and inclusion formation. These findings reveal a previously unappreciated role of LC3-conjugated phagophores in facilitating protein aggregation and sequestration, potentially alleviating proteotoxicity.
Collapse
Affiliation(s)
- Kouta Hamamoto
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Xinwen Liang
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Ayako Ito
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Matthew Lanza
- Department of Comparative Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Van Bui
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Jiawen Zhang
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - David M Opozda
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Tatsuya Hattori
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Longgui Chen
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - David Haddock
- Department of Pathology and Biochemistry, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Fumiaki Imamura
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Hong-Gang Wang
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Yoshinori Takahashi
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
23
|
Richard SA. The pivotal role of autophagy in the pathogenesis and therapy of medulloblastoma. Future Oncol 2024; 20:3313-3324. [PMID: 39513232 PMCID: PMC11633412 DOI: 10.1080/14796694.2024.2420629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 10/21/2024] [Indexed: 11/15/2024] Open
Abstract
Medulloblastoma (MB) is the most frequent malignant brain tumor in children. MB originates from neural precursor cells in distinctive regions of the rhombic lip and their maturation occurs in the cerebellum or the brain stem during embryonal development. Autophagy is also referred to as self-eating' which is a catabolic process that often triggers cellular homeostasis through the salvaging of degenerated proteins as well as organelles. Autophagy influence cell survival via aberrant proteins that could accumulate within the cell and influence potential signaling and transport mechanisms. The role of autophagy in MB aggressiveness as well as tumorigenesis is a very complex process. This review targets specifically data reporting the key roles of autophagy in the pathogenesis and therapy of MB.
Collapse
Affiliation(s)
- Seidu A. Richard
- Department of Biochemistry and Forensic Sciences, School of Chemistry and Biochemical Science, C. K. Tedam University of Technology and Applied Sciences, P. O. Box 24, Navrongo, Ghana
- Institute of Neuroscience, Third Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052,China
| |
Collapse
|
24
|
Lyu J, Zhang H, Wang C, Pan M. New insight in treating autoimmune diseases by targeting autophagy. Autoimmunity 2024; 57:2351872. [PMID: 38739691 DOI: 10.1080/08916934.2024.2351872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/28/2024] [Indexed: 05/16/2024]
Abstract
Autophagy is a highly conserved biological process in eukaryotes, which degrades cellular misfolded proteins, damaged organelles and invasive pathogens in the lysosome-dependent manner. Autoimmune diseases caused by genetic elements, environments and aberrant immune responses severely impact patients' living quality and even threaten life. Recently, numerous studies have reported autophagy can regulate immune responses, and play an important role in autoimmune diseases. In this review, we summarised the features of autophagy and autophagy-related genes, enumerated some autophagy-related genes involved in autoimmune diseases, and further overviewed how to treat autoimmune diseases through targeting autophagy. Finally, we outlooked the prospect of relieving and curing autoimmune diseases by targeting autophagy pathway.
Collapse
Affiliation(s)
- Jiao Lyu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Hongqian Zhang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Chaoyang Wang
- The Key Medical Laboratory for Chemical Poison Detection of Henan Province, The Third People's Hospital of Henan Province, Zhengzhou, China
- Department of Biomedical Science, City University of Hong Kong, Hong Kong, China
| | - Mingyu Pan
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Department of Biomedical Science, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
25
|
Bauer B, Idinger J, Schuschnig M, Ferrari L, Martens S. Recruitment of autophagy initiator TAX1BP1 advances aggrephagy from cargo collection to sequestration. EMBO J 2024; 43:5910-5940. [PMID: 39448883 PMCID: PMC11611905 DOI: 10.1038/s44318-024-00280-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Autophagy mediates the degradation of harmful material within lysosomes. In aggrephagy, the pathway mediating the degradation of aggregated, ubiquitinated proteins, this cargo material is collected in larger condensates prior to its sequestration by autophagosomes. In this process, the autophagic cargo receptors SQSTM1/p62 and NBR1 drive cargo condensation, while TAX1BP1, which binds to NBR1, recruits the autophagy machinery to facilitate autophagosome biogenesis at the condensates. The mechanistic basis for the TAX1BP1-mediated switch from cargo collection to its sequestration is unclear. Here we show that TAX1BP1 is not a constitutive component of the condensates. Its recruitment correlates with the induction of autophagosome biogenesis. TAX1BP1 is sufficient to recruit the TBK1 kinase via the SINTBAD adapter. We define the NBR1-TAX1BP1-binding site, which is adjacent to the GABARAP/LC3 interaction site, and demonstrate that the recruitment of TAX1BP1 to cargo mimetics can be enhanced by an increased ubiquitin load. Our study suggests that autophagosome biogenesis is initiated once sufficient cargo is collected in the condensates.
Collapse
Affiliation(s)
- Bernd Bauer
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and the Medical, University of Vienna, A-1030, Vienna, Austria
| | - Jonas Idinger
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Martina Schuschnig
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Luca Ferrari
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Sascha Martens
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria.
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria.
| |
Collapse
|
26
|
Wang H, Tang J, Yan S, Li C, Li Z, Xiong Z, Li Z, Tu C. Liquid-liquid Phase Separation in Aging: Novel Insights in the Pathogenesis and Therapeutics. Ageing Res Rev 2024; 102:102583. [PMID: 39566743 DOI: 10.1016/j.arr.2024.102583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 10/14/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024]
Abstract
The intricate organization of distinct cellular compartments is paramount for the maintenance of normal biological functions and the orchestration of complex biochemical reactions. These compartments, whether membrane-bound organelles or membraneless structures like Cajal bodies and RNA transport granules, play crucial roles in cellular function. Liquid-liquid phase separation (LLPS) serves as a reversible process that elucidates the genesis of membranelles structures through the self-assembly of biomolecules. LLPS has been implicated in a myriad of physiological and pathological processes, encompassing immune response and tumor genesis. But the association between LLPS and aging has not been clearly clarified. A recent advancement in the realm of aging research involves the introduction of a new edition outlining the twelve hallmarks of aging, categorized into three distinct groups. By delving into the role and mechanism of LLPS in the formation of membraneless structures at a molecular level, this review encapsulates an exploration of the interaction between LLPS and these aging hallmarks, aiming to offer novel perspectives of the intricate mechanisms underlying the aging process and deeper insights into aging therapeutics.
Collapse
Affiliation(s)
- Hua Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University Changsha 410011, China
| | - Jinxin Tang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University Changsha 410011, China
| | - Shuxiang Yan
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Institute of Nephrology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Chenbei Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University Changsha 410011, China
| | - Zhaoqi Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University Changsha 410011, China
| | - Zijian Xiong
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University Changsha 410011, China
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University Changsha 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Engineering Research Center of Artificial Intelligence-Driven Medical Device, The Second Xiangya Hospital of Central South University Changsha 410011, China, Changsha 410011, China; Shenzhen Research Institute of Central South University, Shenzhen 518063, China
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University Changsha 410011, China; Changsha Medical University, Changsha 410219, China
| |
Collapse
|
27
|
Paddar MA, Wang F, Trosdal ES, Hendrix E, He Y, Salemi M, Mudd M, Jia J, Duque TLA, Javed R, Phinney B, Deretic V. Noncanonical roles of ATG5 and membrane atg8ylation in retromer assembly and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602886. [PMID: 39026874 PMCID: PMC11257513 DOI: 10.1101/2024.07.10.602886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
ATG5 is one of the core autophagy proteins with additional functions such as noncanonical membrane atg8ylation, which among a growing number of biological outputs includes control of tuberculosis in animal models. Here we show that ATG5 associates with retromer's core components VPS26, VPS29 and VPS35 and modulates retromer function. Knockout of ATG5 blocked trafficking of a key glucose transporter sorted by the retromer, GLUT1, to the plasma membrane. Knockouts of other genes essential for membrane atg8ylation, of which ATG5 is a component, affected GLUT1 sorting, indicating that membrane atg8ylation as a process affects retromer function and endosomal sorting. The contribution of membrane atg8ylation to retromer function in GLUT1 sorting was independent of canonical autophagy. These findings expand the scope of membrane atg8ylation to specific sorting processes in the cell dependent on the retromer and its known interactors.
Collapse
Affiliation(s)
- Masroor Ahmad Paddar
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Fulong Wang
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Einar S Trosdal
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Emily Hendrix
- Department of Chemistry & Chemical Biology, The University of New Mexico, Albuquerque, NM, USA
| | - Yi He
- Department of Chemistry & Chemical Biology, The University of New Mexico, Albuquerque, NM, USA
| | - Michelle Salemi
- Proteomics Core Facility, UC Davis Genome Center, University of California, Davis, CA 95616, USA
| | - Michal Mudd
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Jingyue Jia
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Thabata L A Duque
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Ruheena Javed
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Brett Phinney
- Proteomics Core Facility, UC Davis Genome Center, University of California, Davis, CA 95616, USA
| | - Vojo Deretic
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
- Lead Contact
| |
Collapse
|
28
|
Hushmandi K, Einollahi B, Aow R, Suhairi SB, Klionsky DJ, Aref AR, Reiter RJ, Makvandi P, Rabiee N, Xu Y, Nabavi N, Saadat SH, Farahani N, Kumar AP. Investigating the interplay between mitophagy and diabetic neuropathy: Uncovering the hidden secrets of the disease pathology. Pharmacol Res 2024; 208:107394. [PMID: 39233055 PMCID: PMC11934918 DOI: 10.1016/j.phrs.2024.107394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/18/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Mitophagy, the cellular process of selectively eliminating damaged mitochondria, plays a crucial role in maintaining metabolic balance and preventing insulin resistance, both key factors in type 2 diabetes mellitus (T2DM) development. When mitophagy malfunctions in diabetic neuropathy, it triggers a cascade of metabolic disruptions, including reduced energy production, increased oxidative stress, and cell death, ultimately leading to various complications. Thus, targeting mitophagy to enhance the process may have emerged as a promising therapeutic strategy for T2DM and its complications. Notably, plant-derived compounds with β-cell protective and mitophagy-stimulating properties offer potential as novel therapeutic agents. This review highlights the intricate mechanisms linking mitophagy dysfunction to T2DM and its complications, particularly neuropathy, elucidating potential therapeutic interventions for this debilitating disease.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Behzad Einollahi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Rachel Aow
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Suhana Binte Suhairi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Daniel J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amir Reza Aref
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA
| | - Pooyan Makvandi
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India; University Centre for Research & Development, Chandigarh University, Mohali, Punjab 140413, India
| | - Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Yi Xu
- Department of Science & Technology, Department of Urology, NanoBioMed Group, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
29
|
Sankar DS, Kaeser-Pebernard S, Vionnet C, Favre S, de Oliveira Marchioro L, Pillet B, Zhou J, Stumpe M, Kovacs WJ, Kressler D, Antonioli M, Fimia GM, Dengjel J. The ULK1 effector BAG2 regulates autophagy initiation by modulating AMBRA1 localization. Cell Rep 2024; 43:114689. [PMID: 39207901 DOI: 10.1016/j.celrep.2024.114689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/15/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Autophagy initiation is regulated by the ULK1 kinase complex. To gain insights into functions of the holo-complex, we generated a deep interactome by combining affinity purification- and proximity labeling-mass spectrometry of all four complex members: ULK1, ATG13, ATG101, and RB1CC1/FIP200. Under starvation conditions, the ULK1 complex interacts with several protein and lipid kinases and phosphatases, implying the formation of a signalosome. Interestingly, several selective autophagy receptors also interact with ULK1, indicating the activation of selective autophagy pathways by nutrient starvation. One effector of the ULK1 complex is the HSC/HSP70 co-chaperone BAG2, which regulates the subcellular localization of the VPS34 lipid kinase complex member AMBRA1. Depending on the nutritional status, BAG2 has opposing roles. In growth conditions, the unphosphorylated form of BAG2 sequesters AMBRA1, attenuating autophagy induction. In starvation conditions, ULK1 phosphorylates BAG2 on Ser31, which supports the recruitment of AMBRA1 to the ER membrane, positively affecting autophagy.
Collapse
Affiliation(s)
| | | | - Christine Vionnet
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Sebastian Favre
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Lais de Oliveira Marchioro
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS "L. Spallanzani", 00149 Rome, Italy; Department of Pharmacology, Federal University of São Paulo (UNIFESP), São Paulo CEP 05508-000, Brazil
| | - Benjamin Pillet
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Jianwen Zhou
- Institute of Molecular Health Sciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Michael Stumpe
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Werner Josef Kovacs
- Institute of Molecular Health Sciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Dieter Kressler
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Manuela Antonioli
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS "L. Spallanzani", 00149 Rome, Italy; Department of Biology, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Gian Maria Fimia
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS "L. Spallanzani", 00149 Rome, Italy; Department of Molecular Medicine, University of Rome "Sapienza", 00185 Rome, Italy
| | - Jӧrn Dengjel
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland.
| |
Collapse
|
30
|
Dergilev K, Gureenkov A, Parfyonova Y. Autophagy as a Guardian of Vascular Niche Homeostasis. Int J Mol Sci 2024; 25:10097. [PMID: 39337582 PMCID: PMC11432168 DOI: 10.3390/ijms251810097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
The increasing burden of vascular dysfunction on healthcare systems worldwide results in higher morbidity and mortality rates across pathologies, including cardiovascular diseases. Vasculopathy is suggested to be caused by the dysregulation of vascular niches, a microenvironment of vascular structures comprising anatomical structures, extracellular matrix components, and various cell populations. These elements work together to ensure accurate control of the vascular network. In recent years, autophagy has been recognized as a crucial regulator of the vascular microenvironment responsible for maintaining basic cell functions such as proliferation, differentiation, replicative senescence, and apoptosis. Experimental studies indicate that autophagy activation can be enhanced or inhibited in various pathologies associated with vascular dysfunction, suggesting that autophagy plays both beneficial and detrimental roles. Here, we review and assess the principles of autophagy organization and regulation in non-tumor vascular niches. Our analysis focuses on significant figures in the vascular microenvironment, highlighting the role of autophagy and summarizing evidence that supports the systemic or multiorgan nature of the autophagy effects. Finally, we discuss the critical organizational and functional aspects of the vasculogenic niche, specifically in relation to autophagy. The resulting dysregulation of the vascular microenvironment contributes to the development of vascular dysfunction.
Collapse
Affiliation(s)
- Konstantin Dergilev
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
| | - Alexandre Gureenkov
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
| | - Yelena Parfyonova
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
31
|
Zhang Y, Sun Y, Shi J, Xu P, Wang Y, Liu J, Gong X, Wang Y, Tang Y, Liu H, Zhou X, Lin Z, Baba O, Morita T, Yu B, Pan L. Decoding the molecular mechanism of selective autophagy of glycogen mediated by autophagy receptor STBD1. Proc Natl Acad Sci U S A 2024; 121:e2402817121. [PMID: 39236246 PMCID: PMC11406230 DOI: 10.1073/pnas.2402817121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/20/2024] [Indexed: 09/07/2024] Open
Abstract
Autophagy of glycogen (glycophagy) is crucial for the maintenance of cellular glucose homeostasis and physiology in mammals. STBD1 can serve as an autophagy receptor to mediate glycophagy by specifically recognizing glycogen and relevant key autophagic factors, but with poorly understood mechanisms. Here, we systematically characterize the interactions of STBD1 with glycogen and related saccharides, and determine the crystal structure of the STBD1 CBM20 domain with maltotetraose, uncovering a unique binding mode involving two different oligosaccharide-binding sites adopted by STBD1 CBM20 for recognizing glycogen. In addition, we demonstrate that the LC3-interacting region (LIR) motif of STBD1 can selectively bind to six mammalian ATG8 family members. We elucidate the detailed molecular mechanism underlying the selective interactions of STBD1 with ATG8 family proteins by solving the STBD1 LIR/GABARAPL1 complex structure. Importantly, our cell-based assays reveal that both the STBD1 LIR/GABARAPL1 interaction and the intact two oligosaccharide binding sites of STBD1 CBM20 are essential for the effective association of STBD1, GABARAPL1, and glycogen in cells. Finally, through mass spectrometry, biochemical, and structural modeling analyses, we unveil that STBD1 can directly bind to the Claw domain of RB1CC1 through its LIR, thereby recruiting the key autophagy initiation factor RB1CC1. In all, our findings provide mechanistic insights into the recognitions of glycogen, ATG8 family proteins, and RB1CC1 by STBD1 and shed light on the potential working mechanism of STBD1-mediated glycophagy.
Collapse
Affiliation(s)
- Yuchao Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Yishan Sun
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jungang Shi
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Peng Xu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yingli Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Jianping Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Xinyu Gong
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Yaru Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yubin Tang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Haobo Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Xindi Zhou
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhiqiao Lin
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Otto Baba
- Oral and Maxillofacial Anatomy, Tokushima University Graduate School, Tokushima 770-8504, Japan
| | - Tsuyoshi Morita
- Oral and Maxillofacial Anatomy, Tokushima University Graduate School, Tokushima 770-8504, Japan
| | - Biao Yu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Lifeng Pan
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
32
|
Adriaenssens E, Schaar S, Cook ASI, Stuke JFM, Sawa-Makarska J, Nguyen TN, Ren X, Schuschnig M, Romanov J, Khuu G, Lazarou M, Hummer G, Hurley JH, Martens S. Reconstitution of BNIP3/NIX-mediated autophagy reveals two pathways and hierarchical flexibility of the initiation machinery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.609967. [PMID: 39253418 PMCID: PMC11383309 DOI: 10.1101/2024.08.28.609967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Selective autophagy is a lysosomal degradation pathway that is critical for maintaining cellular homeostasis by disposing of harmful cellular material. While the mechanisms by which soluble cargo receptors recruit the autophagy machinery are becoming increasingly clear, the principles governing how organelle-localized transmembrane cargo receptors initiate selective autophagy remain poorly understood. Here, we demonstrate that transmembrane cargo receptors can initiate autophagosome biogenesis not only by recruiting the upstream FIP200/ULK1 complex but also via a WIPI-ATG13 complex. This latter pathway is employed by the BNIP3/NIX receptors to trigger mitophagy. Additionally, other transmembrane mitophagy receptors, including FUNDC1 and BCL2L13, exclusively use the FIP200/ULK1 complex, while FKBP8 and the ER-phagy receptor TEX264 are capable of utilizing both pathways to initiate autophagy. Our study defines the molecular rules for initiation by transmembrane cargo receptors, revealing remarkable flexibility in the assembly and activation of the autophagy machinery, with significant implications for therapeutic interventions.
Collapse
|
33
|
Ye C, Yan C, Bian SJ, Li XR, Li Y, Wang KX, Zhu YH, Wang L, Wang YC, Wang YY, Li TS, Qi SH, Luo L. Momordica charantia L.-derived exosome-like nanovesicles stabilize p62 expression to ameliorate doxorubicin cardiotoxicity. J Nanobiotechnology 2024; 22:464. [PMID: 39095755 PMCID: PMC11297753 DOI: 10.1186/s12951-024-02705-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Doxorubicin (DOX) is a first-line chemotherapeutic drug for various malignancies that causes cardiotoxicity. Plant-derived exosome-like nanovesicles (P-ELNs) are growing as novel therapeutic agents. Here, we investigated the protective effects in DOX cardiotoxicity of ELNs from Momordica charantia L. (MC-ELNs), a medicinal plant with antioxidant activity. RESULTS We isolated MC-ELNs using ultracentrifugation and characterized them with canonical mammalian extracellular vesicles features. In vivo studies proved that MC-ELNs ameliorated DOX cardiotoxicity with enhanced cardiac function and myocardial structure. In vitro assays revealed that MC-ELNs promoted cell survival, diminished reactive oxygen species, and protected mitochondrial integrity in DOX-treated H9c2 cells. We found that DOX treatment decreased the protein level of p62 through ubiquitin-dependent degradation pathway in H9c2 and NRVM cells. However, MC-ELNs suppressed DOX-induced p62 ubiquitination degradation, and the recovered p62 bound with Keap1 promoting Nrf2 nuclear translocation and the expressions of downstream gene HO-1. Furthermore, both the knockdown of Nrf2 and the inhibition of p62-Keap1 interaction abrogated the cardioprotective effect of MC-ELNs. CONCLUSIONS Our findings demonstrated the therapeutic beneficials of MC-ELNs via increasing p62 protein stability, shedding light on preventive approaches for DOX cardiotoxicity.
Collapse
Affiliation(s)
- Cong Ye
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou city, Jiangsu Province, 221004, PR China
| | - Chen Yan
- Department of Rheumatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang city, Jiangxi Province, PR China
| | - Si-Jia Bian
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou city, Jiangsu Province, 221004, PR China
| | - Xin-Ran Li
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou city, Jiangsu Province, 221004, PR China
| | - Yu Li
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang city, Jiangxi Province, PR China
| | - Kai-Xuan Wang
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou city, Jiangsu Province, PR China
| | - Yu-Hua Zhu
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou city, Jiangsu Province, 221004, PR China
| | - Liang Wang
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou city, Jiangsu Province, 221004, PR China
| | - Ying-Chao Wang
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou city, Jiangsu Province, 221004, PR China
| | - Yi-Yuan Wang
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou city, Jiangsu Province, 221004, PR China
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Su-Hua Qi
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou city, Jiangsu Province, 221004, PR China.
| | - Lan Luo
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou city, Jiangsu Province, 221004, PR China.
| |
Collapse
|
34
|
Takeda E, Isoda T, Hosokawa S, Oikawa Y, Hotta-Ren S, May AI, Ohsumi Y. Receptor-mediated cargo hitchhiking on bulk autophagy. EMBO J 2024; 43:3116-3140. [PMID: 38755257 PMCID: PMC11294605 DOI: 10.1038/s44318-024-00091-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 05/18/2024] Open
Abstract
While the molecular mechanism of autophagy is well studied, the cargoes delivered by autophagy remain incompletely characterized. To examine the selectivity of autophagy cargo, we conducted proteomics on isolated yeast autophagic bodies, which are intermediate structures in the autophagy process. We identify a protein, Hab1, that is highly preferentially delivered to vacuoles. The N-terminal 42 amino acid region of Hab1 contains an amphipathic helix and an Atg8-family interacting motif, both of which are necessary and sufficient for the preferential delivery of Hab1 by autophagy. We find that fusion of this region with a cytosolic protein results in preferential delivery of this protein to the vacuole. Furthermore, attachment of this region to an organelle allows for autophagic delivery in a manner independent of canonical autophagy receptor or scaffold proteins. We propose a novel mode of selective autophagy in which a receptor, in this case Hab1, binds directly to forming isolation membranes during bulk autophagy.
Collapse
Affiliation(s)
- Eigo Takeda
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.
| | - Takahiro Isoda
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
- School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
- Frontier Research Center, POLA Chemical Industries Inc., Yokohama, Japan
| | - Sachiko Hosokawa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Yu Oikawa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Shukun Hotta-Ren
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Alexander I May
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Yoshinori Ohsumi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
35
|
Pareek G, Kundu M. Physiological functions of ULK1/2. J Mol Biol 2024; 436:168472. [PMID: 38311233 PMCID: PMC11382334 DOI: 10.1016/j.jmb.2024.168472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
UNC-51-like kinases 1 and 2 (ULK1/2) are serine/threonine kinases that are best known for their evolutionarily conserved role in the autophagy pathway. Upon sensing the nutrient status of a cell, ULK1/2 integrate signals from upstream cellular energy sensors such as mTOR and AMPK and relay them to the downstream components of the autophagy machinery. ULK1/2 also play indispensable roles in the selective autophagy pathway, removing damaged mitochondria, invading pathogens, and toxic protein aggregates. Additional functions of ULK1/2 have emerged beyond autophagy, including roles in protein trafficking, RNP granule dynamics, and signaling events impacting innate immunity, axon guidance, cellular homeostasis, and cell fate. Therefore, it is no surprise that alterations in ULK1/2 expression and activity have been linked with pathophysiological processes, including cancer, neurological disorders, and cardiovascular diseases. Growing evidence suggests that ULK1/2 function as biological rheostats, tuning cellular functions to intra and extra-cellular cues. Given their broad physiological relevance, ULK1/2 are candidate targets for small molecule activators or inhibitors that may pave the way for the development of therapeutics for the treatment of diseases in humans.
Collapse
Affiliation(s)
- Gautam Pareek
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mondira Kundu
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
36
|
Cóppola-Segovia V, Reggiori F. Molecular Insights into Aggrephagy: Their Cellular Functions in the Context of Neurodegenerative Diseases. J Mol Biol 2024; 436:168493. [PMID: 38360089 DOI: 10.1016/j.jmb.2024.168493] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
Protein homeostasis or proteostasis is an equilibrium of biosynthetic production, folding and transport of proteins, and their timely and efficient degradation. Proteostasis is guaranteed by a network of protein quality control systems aimed at maintaining the proteome function and avoiding accumulation of potentially cytotoxic proteins. Terminal unfolded and dysfunctional proteins can be directly turned over by the ubiquitin-proteasome system (UPS) or first amassed into aggregates prior to degradation. Aggregates can also be disposed into lysosomes by a selective type of autophagy known as aggrephagy, which relies on a set of so-called selective autophagy receptors (SARs) and adaptor proteins. Failure in eliminating aggregates, also due to defects in aggrephagy, can have devastating effects as underscored by several neurodegenerative diseases or proteinopathies, which are characterized by the accumulation of aggregates mostly formed by a specific disease-associated, aggregate-prone protein depending on the clinical pathology. Despite its medical relevance, however, the process of aggrephagy is far from being understood. Here we review the findings that have helped in assigning a possible function to specific SARs and adaptor proteins in aggrephagy in the context of proteinopathies, and also highlight the interplay between aggrephagy and the pathogenesis of proteinopathies.
Collapse
Affiliation(s)
| | - Fulvio Reggiori
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000 Aarhus C, Denmark; Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Høegh-Guldbergs Gade 6B, 8000 Aarhus C, Denmark.
| |
Collapse
|
37
|
Tudorica DA, Basak B, Puerta Cordova AS, Khuu G, Rose K, Lazarou M, Holzbaur EL, Hurley JH. A RAB7A phosphoswitch coordinates Rubicon Homology protein regulation of Parkin-dependent mitophagy. J Cell Biol 2024; 223:e202309015. [PMID: 38728007 PMCID: PMC11090050 DOI: 10.1083/jcb.202309015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/12/2024] [Accepted: 04/05/2024] [Indexed: 05/15/2024] Open
Abstract
Activation of PINK1 and Parkin in response to mitochondrial damage initiates a response that includes phosphorylation of RAB7A at Ser72. Rubicon is a RAB7A binding negative regulator of autophagy. The structure of the Rubicon:RAB7A complex suggests that phosphorylation of RAB7A at Ser72 would block Rubicon binding. Indeed, in vitro phosphorylation of RAB7A by TBK1 abrogates Rubicon:RAB7A binding. Pacer, a positive regulator of autophagy, has an RH domain with a basic triad predicted to bind an introduced phosphate. Consistent with this, Pacer-RH binds to phosho-RAB7A but not to unphosphorylated RAB7A. In cells, mitochondrial depolarization reduces Rubicon:RAB7A colocalization whilst recruiting Pacer to phospho-RAB7A-positive puncta. Pacer knockout reduces Parkin mitophagy with little effect on bulk autophagy or Parkin-independent mitophagy. Rescue of Parkin-dependent mitophagy requires the intact pRAB7A phosphate-binding basic triad of Pacer. Together these structural and functional data support a model in which the TBK1-dependent phosphorylation of RAB7A serves as a switch, promoting mitophagy by relieving Rubicon inhibition and favoring Pacer activation.
Collapse
Affiliation(s)
- Dan A. Tudorica
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Graduate Group in Biophysics, University of California, Berkeley, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
| | - Bishal Basak
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Alexia S. Puerta Cordova
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Grace Khuu
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Kevin Rose
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Michael Lazarou
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Erika L.F. Holzbaur
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - James H. Hurley
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Graduate Group in Biophysics, University of California, Berkeley, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
38
|
Saha B, Olsvik H, Williams GL, Oh S, Evjen G, Sjøttem E, Mandell MA. TBK1 is ubiquitinated by TRIM5α to assemble mitophagy machinery. Cell Rep 2024; 43:114294. [PMID: 38814780 PMCID: PMC11216866 DOI: 10.1016/j.celrep.2024.114294] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/05/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024] Open
Abstract
Ubiquitination of mitochondrial proteins provides a basis for the downstream recruitment of mitophagy machinery, yet whether ubiquitination of the machinery itself contributes to mitophagy is unknown. Here, we show that K63-linked polyubiquitination of the key mitophagy regulator TBK1 is essential for its mitophagy functions. This modification is catalyzed by the ubiquitin ligase TRIM5α and is required for TBK1 to interact with and activate a set of ubiquitin-binding autophagy adaptors including NDP52, p62/SQSTM1, and NBR1. Autophagy adaptors, along with TRIM27, enable TRIM5α to engage with TBK1 following mitochondrial damage. TRIM5α's ubiquitin ligase activity is required for the accumulation of active TBK1 on damaged mitochondria in Parkin-dependent and Parkin-independent mitophagy pathways. Our data support a model in which TRIM5α provides a mitochondria-localized, ubiquitin-based, self-amplifying assembly platform for TBK1 and mitophagy adaptors that is ultimately necessary for the recruitment of the core autophagy machinery.
Collapse
Affiliation(s)
- Bhaskar Saha
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Hallvard Olsvik
- Autophagy Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Geneva L Williams
- Biomedical Sciences Graduate Program, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Seeun Oh
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Gry Evjen
- Autophagy Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Eva Sjøttem
- Autophagy Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Michael A Mandell
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; Autophagy, Inflammation, and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| |
Collapse
|
39
|
Isoda T, Takeda E, Hosokawa S, Hotta-Ren S, Ohsumi Y. Atg45 is an autophagy receptor for glycogen, a non-preferred cargo of bulk autophagy in yeast. iScience 2024; 27:109810. [PMID: 38832010 PMCID: PMC11145338 DOI: 10.1016/j.isci.2024.109810] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/03/2023] [Accepted: 04/22/2024] [Indexed: 06/05/2024] Open
Abstract
The mechanisms governing autophagy of proteins and organelles have been well studied, but how other cytoplasmic components such as RNA and polysaccharides are degraded remains largely unknown. In this study, we examine autophagy of glycogen, a storage form of glucose. We find that cells accumulate glycogen in the cytoplasm during nitrogen starvation and that this carbohydrate is rarely observed within autophagosomes and autophagic bodies. However, sequestration of glycogen by autophagy is observed following prolonged nitrogen starvation. We identify a yet-uncharacterized open reading frame, Yil024c (herein Atg45), as encoding a cytosolic receptor protein that mediates autophagy of glycogen (glycophagy). Furthermore, we show that, during sporulation, Atg45 is highly expressed and is associated with an increase in glycophagy. Our results suggest that cells regulate glycophagic activity by controlling the expression level of Atg45.
Collapse
Affiliation(s)
- Takahiro Isoda
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- Frontier Research Center, POLA Chemical Industries, Inc, Yokohama 244-0812, Japan
| | - Eigo Takeda
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Sachiko Hosokawa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Shukun Hotta-Ren
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Yoshinori Ohsumi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| |
Collapse
|
40
|
Ferrari L, Bauer B, Qiu Y, Schuschnig M, Klotz S, Anrather D, Juretschke T, Beli P, Gelpi E, Martens S. Tau fibrils evade autophagy by excessive p62 coating and TAX1BP1 exclusion. SCIENCE ADVANCES 2024; 10:eadm8449. [PMID: 38865459 PMCID: PMC11168460 DOI: 10.1126/sciadv.adm8449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/07/2024] [Indexed: 06/14/2024]
Abstract
The accumulation of protein aggregates is a hallmark of many diseases, including Alzheimer's disease. As a major pillar of the proteostasis network, autophagy mediates the degradation of protein aggregates. The autophagy cargo receptor p62 recognizes ubiquitin on proteins and cooperates with TAX1BP1 to recruit the autophagy machinery. Paradoxically, protein aggregates are not degraded in various diseases despite p62 association. Here, we reconstituted the recognition by the autophagy receptors of physiological and pathological Tau forms. Monomeric Tau recruits p62 and TAX1BP1 via the sequential actions of the chaperone and ubiquitylation machineries. In contrast, Tau fibrils from Alzheimer's disease brains are recognized by p62 but fail to recruit TAX1BP1. This failure is due to the masking of fibrils ubiquitin moieties by p62. Tau fibrils are resistant to deubiquitylation, and, thus, this nonproductive interaction of p62 with the fibrils is irreversible. Our results shed light on the mechanism underlying autophagy evasion by protein aggregates and their consequent accumulation in disease.
Collapse
Affiliation(s)
- Luca Ferrari
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
| | - Bernd Bauer
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Yue Qiu
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
| | - Martina Schuschnig
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
| | - Sigrid Klotz
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Dorothea Anrather
- Max Perutz Labs, Mass Spectrometry Facility, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
| | | | - Petra Beli
- Institute of Molecular Biology, 55128 Mainz, Germany
- Institute of Developmental Biology and Neurobiology (IDN), Johannes Gutenberg-Universität, 55128 Mainz, Germany
| | - Ellen Gelpi
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Sascha Martens
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
| |
Collapse
|
41
|
North BJ, Ohnstad AE, Ragusa MJ, Shoemaker CJ. The LC3-interacting region of NBR1 is a protein interaction hub enabling optimal flux. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593318. [PMID: 38766171 PMCID: PMC11100792 DOI: 10.1101/2024.05.09.593318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
During autophagy, potentially toxic cargo is enveloped by a newly formed autophagosome and trafficked to the lysosome for degradation. Ubiquitinated protein aggregates, a key target for autophagy, are identified by multiple autophagy receptors. NBR1 is an archetypal autophagy receptor and an excellent model for deciphering the role of the multivalent, heterotypic interactions made by cargo-bound receptors. Using NBR1 as a model, we find that three critical binding partners - ATG8-family proteins, FIP200, and TAX1BP1 - each bind to a short linear interaction motif (SLiM) within NBR1. Mutational peptide arrays indicate that these binding events are mediated by distinct overlapping determinants, rather than a single, convergent, SLiM. AlphaFold modeling underlines the need for conformational flexibility within the NBR1 SLiM, as distinct conformations mediate each binding event. To test the extent to which overlapping SLiMs exist beyond NBR1, we performed peptide binding arrays on >100 established LC3-interacting regions (LIRs), revealing that FIP200 and/or TAX1BP1 binding to LIRs is a common phenomenon and suggesting LIRs as protein interaction hotspots. Comparative analysis of phosphomimetic peptides highlights that while FIP200 and Atg8-family binding are generally augmented by phosphorylation, TAX1BP1 binding is nonresponsive, suggesting differential regulation of these binding events. In vivo studies confirm that LIR-mediated interactions with TAX1BP1 enhance NBR1 activity, increasing autophagosomal delivery by leveraging an additional LIR from TAX1BP1. In sum, these results reveal a one-to-many binding modality in NBR1, providing key insights into the cooperative mechanisms among autophagy receptors. Furthermore, these findings underscore the pervasive role of multifunctional SLiMs in autophagy, offering substantial avenues for further exploration into their regulatory functions.
Collapse
Affiliation(s)
- Brian J North
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Amelia E Ohnstad
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | | | - Christopher J Shoemaker
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
42
|
Schmid M, Fischer P, Engl M, Widder J, Kerschbaum-Gruber S, Slade D. The interplay between autophagy and cGAS-STING signaling and its implications for cancer. Front Immunol 2024; 15:1356369. [PMID: 38660307 PMCID: PMC11039819 DOI: 10.3389/fimmu.2024.1356369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Autophagy is an intracellular process that targets various cargos for degradation, including members of the cGAS-STING signaling cascade. cGAS-STING senses cytosolic double-stranded DNA and triggers an innate immune response through type I interferons. Emerging evidence suggests that autophagy plays a crucial role in regulating and fine-tuning cGAS-STING signaling. Reciprocally, cGAS-STING pathway members can actively induce canonical as well as various non-canonical forms of autophagy, establishing a regulatory network of feedback mechanisms that alter both the cGAS-STING and the autophagic pathway. The crosstalk between autophagy and the cGAS-STING pathway impacts a wide variety of cellular processes such as protection against pathogenic infections as well as signaling in neurodegenerative disease, autoinflammatory disease and cancer. Here we provide a comprehensive overview of the mechanisms involved in autophagy and cGAS-STING signaling, with a specific focus on the interactions between the two pathways and their importance for cancer.
Collapse
Affiliation(s)
- Maximilian Schmid
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
| | - Patrick Fischer
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
| | - Magdalena Engl
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Joachim Widder
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Sylvia Kerschbaum-Gruber
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Dea Slade
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
| |
Collapse
|
43
|
Zhang M, Wang Y, Gong X, Wang Y, Zhang Y, Tang Y, Zhou X, Liu H, Huang Y, Zhang J, Pan L. Mechanistic insights into the interactions of TAX1BP1 with RB1CC1 and mammalian ATG8 family proteins. Proc Natl Acad Sci U S A 2024; 121:e2315550121. [PMID: 38437556 PMCID: PMC10945755 DOI: 10.1073/pnas.2315550121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/02/2024] [Indexed: 03/06/2024] Open
Abstract
TAX1BP1, a multifunctional autophagy adaptor, plays critical roles in different autophagy processes. As an autophagy receptor, TAX1BP1 can interact with RB1CC1, NAP1, and mammalian ATG8 family proteins to drive selective autophagy for relevant substrates. However, the mechanistic bases underpinning the specific interactions of TAX1BP1 with RB1CC1 and mammalian ATG8 family proteins remain elusive. Here, we find that there are two distinct binding sites between TAX1BP1 and RB1CC1. In addition to the previously reported TAX1BP1 SKICH (skeletal muscle and kidney enriched inositol phosphatase (SKIP) carboxyl homology)/RB1CC1 coiled-coil interaction, the first coiled-coil domain of TAX1BP1 can directly bind to the extreme C-terminal coiled-coil and Claw region of RB1CC1. We determine the crystal structure of the TAX1BP1 SKICH/RB1CC1 coiled-coil complex and unravel the detailed binding mechanism of TAX1BP1 SKICH with RB1CC1. Moreover, we demonstrate that RB1CC1 and NAP1 are competitive in binding to the TAX1BP1 SKICH domain, but the presence of NAP1's FIP200-interacting region (FIR) motif can stabilize the ternary TAX1BP1/NAP1/RB1CC1 complex formation. Finally, we elucidate the molecular mechanism governing the selective interactions of TAX1BP1 with ATG8 family members by solving the structure of GABARAP in complex with the non-canonical LIR (LC3-interacting region) motif of TAX1BP1, which unveils a unique binding mode between LIR and ATG8 family protein. Collectively, our findings provide mechanistic insights into the interactions of TAX1BP1 with RB1CC1 and mammalian ATG8 family proteins and are valuable for further understanding the working mode and function of TAX1BP1 in autophagy.
Collapse
Affiliation(s)
- Mingfang Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200032, China
| | - Yingli Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200032, China
| | - Xinyu Gong
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200032, China
| | - Yaru Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou310024, China
| | - Yuchao Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200032, China
| | - Yubin Tang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200032, China
| | - Xindi Zhou
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200032, China
| | - Haobo Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200032, China
| | - Yichao Huang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200032, China
| | - Jing Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200032, China
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan610068, China
| | - Lifeng Pan
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou310024, China
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan610068, China
| |
Collapse
|
44
|
Yamamoto H, Matsui T. Molecular Mechanisms of Macroautophagy, Microautophagy, and Chaperone-Mediated Autophagy. J NIPPON MED SCH 2024; 91:2-9. [PMID: 37271546 DOI: 10.1272/jnms.jnms.2024_91-102] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Autophagy is a self-digestive process that is conserved in eukaryotic cells and responsible for maintaining cellular homeostasis through proteolysis. By this process, cells break down their own components in lysosomes. Autophagy can be classified into three categories: macroautophagy, microautophagy, and chaperone-mediated autophagy (CMA). Macroautophagy involves membrane elongation and microautophagy involves membrane internalization, and both pathways undergo selective or non-selective processes that transport cytoplasmic components into lysosomes to be degraded. CMA, however, involves selective incorporation of cytosolic materials into lysosomes without membrane deformation. All three categories of autophagy have attracted much attention due to their involvement in various biological phenomena and their relevance to human diseases, such as neurodegenerative diseases and cancer. Clarification of the molecular mechanisms behind these processes is key to understanding autophagy and recent studies have made major progress in this regard, especially for the mechanisms of initiation and membrane elongation in macroautophagy and substrate recognition in microautophagy and CMA. Furthermore, it is becoming evident that the three categories of autophagy are related to each other despite their implementation by different sets of proteins and the involvement of completely different membrane dynamics. In this review, recent progress in macroautophagy, microautophagy, and CMA are summarized.
Collapse
Affiliation(s)
- Hayashi Yamamoto
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School
| | - Takahide Matsui
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School
| |
Collapse
|
45
|
Yeo SK, Haas M, Manupati K, Hao M, Yang F, Chen S, Guan JL. AZI2 mediates TBK1 activation at unresolved selective autophagy cargo receptor complexes with implications for CD8 T-cell infiltration in breast cancer. Autophagy 2024; 20:525-540. [PMID: 37733921 PMCID: PMC10936636 DOI: 10.1080/15548627.2023.2259775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
Most breast cancers do not respond to immune checkpoint inhibitors and there is an urgent need to identify novel sensitization strategies. Herein, we uncovered that activation of the TBK-IFN pathway that is mediated by the TBK1 adapter protein AZI2 is a potent strategy for this purpose. Our initial observations showed that RB1CC1 depletion leads to accumulation of AZI2, in puncta along with selective macroautophagy/autophagy cargo receptors, which are both required for TBK1 activation. Specifically, disrupting the selective autophagy function of RB1CC1 was sufficient to sustain AZI2 puncta accumulation and TBK1 activation. AZI2 then mediates downstream activation of DDX3X, increasing its interaction with IRF3 for transcription of pro-inflammatory chemokines. Consequently, we performed a screen to identify inhibitors that can induce the AZI2-TBK1 pathway, and this revealed Lys05 as a pharmacological agent that induced pro-inflammatory chemokine expression and CD8+ T cell infiltration into tumors. Overall, we have identified a distinct AZI2-TBK1-IFN signaling pathway that is responsive to selective autophagy blockade and can be activated to make breast cancers more immunogenic.Abbreviations: AZI2/NAP1: 5-azacytidine induced 2; CALCOCO2: calcium binding and coiled-coil domain 2; DDX3X: DEAD-box helicase 3 X-linked; FCCP: carbonyl cyanide p-triflouromethoxyphenylhydrazone; a protonophore that depolarizes the mitochondrial inner membrane; ICI: immune checkpoint inhibitor; IFN: interferon; NBR1: NBR1 autophagy cargo receptor; OPTN: optineurin; RB1CC1/FIP200: RB1 inducible coiled-coil 1; SQSTM1/p62: sequestosome 1; TAX1BP1: Tax1 binding protein 1; TBK1: TANK binding kinase 1.
Collapse
Affiliation(s)
- Syn Kok Yeo
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Michael Haas
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kanakaraju Manupati
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Mingang Hao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Fuchun Yang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Song Chen
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Translational Research Institute, Henan Provincial People’s Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
46
|
Kang Y, Lin W, Nagy PD. Subversion of selective autophagy for the biogenesis of tombusvirus replication organelles inhibits autophagy. PLoS Pathog 2024; 20:e1012085. [PMID: 38484009 DOI: 10.1371/journal.ppat.1012085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 03/26/2024] [Accepted: 02/29/2024] [Indexed: 03/27/2024] Open
Abstract
Elaborate viral replication organelles (VROs) are formed to support positive-strand RNA virus replication in infected cells. VRO formation requires subversion of intracellular membranes by viral replication proteins. Here, we showed that the key ATG8f autophagy protein and NBR1 selective autophagy receptor were co-opted by Tomato bushy stunt virus (TBSV) and the closely-related carnation Italian ringspot virus. Knockdown of ATG8f or NBR1 in plants led to reduced tombusvirus replication, suggesting pro-viral function for selective autophagy. BiFC and proximity-labeling experiments showed that the TBSV p33 replication protein interacted with ATG8f and NBR1 to recruit them to VROs. In addition, we observed that several core autophagy proteins, such as ATG1a, ATG4, ATG5, ATG101 and the plant-specific SH3P2 autophagy adaptor proteins were also re-localized to TBSV VROs, suggesting that TBSV hijacks the autophagy machinery in plant cells. We demonstrated that subversion of autophagy components facilitated the recruitment of VPS34 PI3 kinase and enrichment of phospholipids, such as phosphatidylethanolamine and PI3P phosphoinositide in the VRO membranes. Hijacking of autophagy components into TBSV VROs led to inhibition of autophagic flux. We also found that a fraction of the subverted ATG8f and NBR1 was sequestered in biomolecular condensates associated with VROs. We propose that the VRO-associated condensates trap those autophagy proteins, taking them away from the autophagy pathway. Overall, tombusviruses hijack selective autophagy to provide phospholipid-rich membranes for replication and to regulate the antiviral autophagic flux.
Collapse
Affiliation(s)
- Yuanrong Kang
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Wenwu Lin
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
47
|
Yang H, Zhang X, Lu Y, Wang X, Zhang Z, Xu H, Li F, Chen Q, Bai Y, Bai X, Zhang L, Liu L. Ailanthone induces autophagy and ferroptosis in non‑small cell lung cancer Lewis cells. Mol Clin Oncol 2024; 20:25. [PMID: 38410186 PMCID: PMC10895402 DOI: 10.3892/mco.2024.2723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/17/2024] [Indexed: 02/28/2024] Open
Abstract
Ailanthone (AIL), a monomer derived from ailanthus in Chinese medicine, has been demonstrated to have antitumor effects, albeit the underlying mechanism is unknown. Autophagy and ferroptosis are two modes of cell death that have been championed as potential mechanisms implicated in the antitumor effects of various drugs. The present study demonstrated that AIL effectively suppresses the Lewis cell proliferation in non-small cell lung cancer using MTT and colony formation assays. Autophagy and ferroptosis were verified using western blotting, immunofluorescence and ferroptosis detection. Additionally, the findings revealed that regulating the AMPK/mTOR/p70S6k signaling pathway may be the underlying mechanism for the antitumor effect of AIL. The present study established a theoretical foundation for further research into the utilization of AIL as a novel antitumor approach.
Collapse
Affiliation(s)
- Hongbin Yang
- Department of Immunology, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Xiaotong Zhang
- Department of Immunology, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Yanjie Lu
- Department of Pathology Chengde Medical University, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Xin Wang
- Department of Oncology, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Zhengxin Zhang
- Department of Pathology Chengde Medical University, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Hailan Xu
- Department of Oncology, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Fan Li
- Department of Immunology, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Qianhui Chen
- Department of Oncology, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Yiying Bai
- Department of Oncology, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Xinyu Bai
- Department of Oncology, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Li Zhang
- Department of Oncology, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Lei Liu
- Department of Immunology, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| |
Collapse
|
48
|
Kurusu R, Morishita H, Komatsu M. p62 bodies: cytosolic zoning by phase separation. J Biochem 2024; 175:141-146. [PMID: 37948628 DOI: 10.1093/jb/mvad089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
Cellular zoning or partitioning is critical in preventing macromolecules from random diffusion and orchestrating the spatiotemporal dynamics of biochemical reactions. Along with membranous organelles, membraneless organelles contribute to the precise regulation of biochemical reactions inside cells. In response to environmental cues, membraneless organelles rapidly form through liquid-liquid phase separation, sequester certain proteins and RNAs, mediate specific reactions and dissociate. Among membraneless organelles, ubiquitin-positive condensates, namely, p62 bodies, maintain cellular homeostasis through selective autophagy of themselves to contribute to intracellular quality control. p62 bodies also activate the anti-oxidative stress response regulated by the KEAP1-NRF2 system. In this review, we present an overview of recent advancements in cellular and molecular biology related to p62 bodies, highlighting their dynamic nature and functions.
Collapse
Affiliation(s)
- Reo Kurusu
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Hideaki Morishita
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masaaki Komatsu
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
49
|
Sasaki T, Kushida Y, Norizuki T, Kosako H, Sato K, Sato M. ALLO-1- and IKKE-1-dependent positive feedback mechanism promotes the initiation of paternal mitochondrial autophagy. Nat Commun 2024; 15:1460. [PMID: 38368448 PMCID: PMC10874384 DOI: 10.1038/s41467-024-45863-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 02/06/2024] [Indexed: 02/19/2024] Open
Abstract
Allophagy is responsible for the selective removal of paternally inherited organelles, including mitochondria, in Caenorhabditis elegans embryos, thereby facilitating the maternal inheritance of mitochondrial DNA. We previously identified two key factors in allophagy: an autophagy adaptor allophagy-1 (ALLO-1) and TBK1/IKKε family kinase IKKE-1. However, the precise mechanisms by which ALLO-1 and IKKE-1 regulate local autophagosome formation remain unclear. In this study, we identify two ALLO-1 isoforms with different substrate preferences during allophagy. Live imaging reveals a stepwise mechanism of ALLO-1 localization with rapid cargo recognition, followed by ALLO-1 accumulation around the cargo. In the ikke-1 mutant, the accumulation of ALLO-1, and not the recognition of cargo, is impaired, resulting in the failure of isolation membrane formation. Our results also suggest a feedback mechanism for ALLO-1 accumulation via EPG-7/ATG-11, a worm homolog of FIP200, which is a candidate for IKKE-1-dependent phosphorylation. This feedback mechanism may underlie the ALLO-1-dependent initiation and progression of autophagosome formation around paternal organelles.
Collapse
Affiliation(s)
- Taeko Sasaki
- Laboratory of Molecular Membrane Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, 371-8512, Japan
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, 371-8512, Japan
| | - Yasuharu Kushida
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, 371-8512, Japan
| | - Takuya Norizuki
- Laboratory of Molecular Membrane Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, 371-8512, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, 770-8503, Japan
| | - Ken Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, 371-8512, Japan.
| | - Miyuki Sato
- Laboratory of Molecular Membrane Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, 371-8512, Japan.
| |
Collapse
|
50
|
Hamano S, Noguchi T, Asai Y, Ito R, Komatsu R, Sato T, Inoue A, Maruyama T, Kudo TA, Hirata Y, Shindo S, Uchida Y, Hwang GW, Matsuzawa A. Aggregability of the SQSTM1/p62-based aggresome-like induced structures determines the sensitivity to parthanatos. Cell Death Discov 2024; 10:74. [PMID: 38346947 PMCID: PMC10861449 DOI: 10.1038/s41420-024-01838-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/15/2024] Open
Abstract
Overactivation of poly (ADP-ribose) polymerase-1 (PARP-1) triggers a noncanonical form of programmed cell death (PCD) called parthanatos, yet the mechanisms of its induction are not fully understood. We have recently demonstrated that the aggresome-like induced structures (ALIS) composed of the autophagy receptor SQSTM1/p62 and K48-linked polyubiquitinated proteins (p62-based ALIS) mediate parthanatos. In this study, we identified the D1 dopamine receptor agonist YM435 as a unique parthanatos inhibitor that acts as the disaggregating agent for the p62-based ALIS. We found that YM435 structurally reduces aggregability of the ALIS, and then increases its hydrophilicity and liquidity, which prevents parthanatos. Moreover, dopamine and L-DOPA, a dopamine precursor, also prevented parthanatos by reducing the aggregability of the ALIS. Together, these observations suggest that aggregability of the p62-based ALIS determines the sensitivity to parthanatos, and the pharmacological properties of YM435 that reduces the aggregability may be suitable for therapeutic drugs for parthanatos-related diseases such as neurodegenerative diseases.
Collapse
Affiliation(s)
- Shuhei Hamano
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Takuya Noguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| | - Yukino Asai
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Ryo Ito
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Ryuto Komatsu
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Tetsu Sato
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Aya Inoue
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Tomoe Maruyama
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Tada-Aki Kudo
- Division of Oral Physiology, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Yusuke Hirata
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Sawako Shindo
- Laboratory of Environmental and Health Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
- Department of Environmental Toxicology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Yasuo Uchida
- Department of Molecular Systems Pharmaceutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Gi-Wook Hwang
- Laboratory of Environmental and Health Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|