1
|
Peng W, Liang J, Qian X, Li M, Nie M, Chen B. IGF2BP1/AIFM2 axis regulates ferroptosis and glycolysis to drive hepatocellular carcinoma progression. Cell Signal 2025; 130:111660. [PMID: 39971223 DOI: 10.1016/j.cellsig.2025.111660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is aggressive liver tumor that is the third leading cause of cancer death. Ferroptosis and glycolysis play key roles in HCC progression. Apoptosis-inducing factor mitochondria-associated 2 (AIFM2) in involved in regulating ferroptosis and glycolysis in cancers, but its role in HCC remains unclear. This research explored the function of AIFM2 in HCC. METHODS AIFM2 expression in HCC tissues was evaluated using the UALCAN and GEPIA databases, as well as RT-qPCR. Kaplan-Meier survival analysis analyzed the correlation between AIFM2 and the prognosis of HCC patients. EdU and transwell assays were utilized to examine HCC cell proliferation, migration, and invasion. Ferroptosis markers were analyzed by measuring iron levels, ROS production (DCFH-DA assay), and oxidative stress indicators (SOD, MDA, and GSH). Glycolytic activity was assessed through glucose uptake, lactate production, and ATP levels. m6A modification on AIFM2 mRNA was confirmed by MeRIP assay, and mRNA stability was evaluated with Actinomycin D treatment. Tumor growth and metastasis were studied in xenograft and lung metastasis models. RESULTS UALCAN analysis showed that AIFM2 was significantly upregulated in HCC tissues, which correlated with poor survival rates of HCC patients. IGF2BP1 was also highly expressed in HCC tissues and positively correlated with AIFM2 levels in HCC tissues. Functionally, AIFM2 knockdown suppressed glycolysis and enhanced ferroptosis, while its overexpression had opposite effects. IGF2BP1 was found to stabilize AIFM2 mRNA via m6A modification, promoting AIFM2 expression. IGF2BP1 knockdown reduced glycolysis, proliferation, and invasion while promoting ferroptosis, while AIFM2 overexpression could reverse this effect. In vivo, IGF2BP1 or AIFM2 silencing significantly suppressed tumor growth and metastasis. CONCLUSION IGF2BP1 stabilized AIFM2 mRNA to regulate ferroptosis and glycolysis and promoted HCC progression.
Collapse
Affiliation(s)
- Wei Peng
- Department of Gastrointestinal Surgery, Zhejiang Provincial People's Hospital Bijie Hospital, Bijie, Guizhou 551700, China
| | - Jie Liang
- Department of Gastrointestinal Surgery, Zhejiang Provincial People's Hospital Bijie Hospital, Bijie, Guizhou 551700, China
| | - Xuanlv Qian
- Department of Gastrointestinal Surgery, Zhejiang Provincial People's Hospital Bijie Hospital, Bijie, Guizhou 551700, China
| | - Mingwang Li
- Department of Gastrointestinal Surgery, Zhejiang Provincial People's Hospital Bijie Hospital, Bijie, Guizhou 551700, China
| | - Ming Nie
- Department of Gastrointestinal Surgery, Zhejiang Provincial People's Hospital Bijie Hospital, Bijie, Guizhou 551700, China
| | - Bin Chen
- Department of Gastrointestinal Surgery, Zhejiang Provincial People's Hospital Bijie Hospital, Bijie, Guizhou 551700, China.
| |
Collapse
|
2
|
Pan H, Su H, Huang X. New players on lipid droplets: Their regulations and functions. Curr Opin Cell Biol 2025; 95:102541. [PMID: 40413855 DOI: 10.1016/j.ceb.2025.102541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/21/2025] [Accepted: 05/01/2025] [Indexed: 05/27/2025]
Abstract
Lipid droplets (LDs) are highly conserved organelles found across a wide range of organisms, from prokaryotic to eukaryotes. LD proteins are a diverse group of proteins that are associated with LDs, regulating various aspects of LD function, such as storage, mobilization, and interactions with other organelles. Recent research in LD proteins has uncovered a broader range of physiological and pathological roles of LDs, extending beyond their traditional function in lipid metabolism. In this review, we summarize the mechanisms behind LD protein targeting and explore the discovery of new players on LDs, highlighting their specific contributions to cellular function. These discoveries significantly deepen our understanding of LD biology.
Collapse
Affiliation(s)
- Huimin Pan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Honggang Su
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
3
|
Mishima E, Nakamura T, Doll S, Proneth B, Fedorova M, Pratt DA, Friedmann Angeli JP, Dixon SJ, Wahida A, Conrad M. Recommendations for robust and reproducible research on ferroptosis. Nat Rev Mol Cell Biol 2025:10.1038/s41580-025-00843-2. [PMID: 40204928 DOI: 10.1038/s41580-025-00843-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2025] [Indexed: 04/11/2025]
Abstract
Ferroptosis is a necrotic, non-apoptotic cell death modality triggered by unrestrained iron-dependent lipid peroxidation. By unveiling the regulatory mechanisms of ferroptosis and its relevance to various diseases, research over the past decade has positioned ferroptosis as a promising therapeutic target. The rapid growth of this research field presents challenges, associated with potentially inadequate experimental approaches that may lead to misinterpretations in the assessment of ferroptosis. Typical examples include assessing whether an observed phenotype is indeed linked to ferroptosis, and selecting appropriate animal models and small-molecule modulators of ferroptotic cell death. This Expert Recommendation outlines state-of-the-art methods and tools to reliably study ferroptosis and increase the reproducibility and robustness of experimental results. We present highly validated compounds and animal models, and discuss their advantages and limitations. Furthermore, we provide an overview of the regulatory mechanisms and the best-studied players in ferroptosis regulation, such as GPX4, FSP1, SLC7A11 and ACSL4, discussing frequent pitfalls in experimental design and relevant guidance. These recommendations are intended for researchers at all levels, including those entering the expanding and exciting field of ferroptosis research.
Collapse
Affiliation(s)
- Eikan Mishima
- Institute of Metabolism and Cell Death, Molecular Targets and Therapeutics Center, Helmholtz Munich, Neuherberg, Germany
- Department of Nephrology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toshitaka Nakamura
- Institute of Metabolism and Cell Death, Molecular Targets and Therapeutics Center, Helmholtz Munich, Neuherberg, Germany
| | - Sebastian Doll
- Institute of Metabolism and Cell Death, Molecular Targets and Therapeutics Center, Helmholtz Munich, Neuherberg, Germany
| | - Bettina Proneth
- Institute of Metabolism and Cell Death, Molecular Targets and Therapeutics Center, Helmholtz Munich, Neuherberg, Germany
| | - Maria Fedorova
- Center of Membrane Biochemistry and Lipid Research, University Hospital Carl Gustav Carus and Faculty of Medicine of TU Dresden, Dresden, Germany
| | - Derek A Pratt
- Department of Chemistry and Biomolecular Science, University of Ottawa, Ottawa, Ontario, Canada
| | - José Pedro Friedmann Angeli
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Adam Wahida
- Institute of Metabolism and Cell Death, Molecular Targets and Therapeutics Center, Helmholtz Munich, Neuherberg, Germany
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Molecular Targets and Therapeutics Center, Helmholtz Munich, Neuherberg, Germany.
- Translational Redox Biology, TUM Natural School of Sciences, Technical University of Munich, Garching, Germany.
| |
Collapse
|
4
|
Gospodaryov DV. Alternative NADH dehydrogenase: A complex I backup, a drug target, and a tool for mitochondrial gene therapy. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149529. [PMID: 39615731 DOI: 10.1016/j.bbabio.2024.149529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024]
Abstract
Alternative NADH dehydrogenase, also known as type II NADH dehydrogenase (NDH-2), catalyzes the same redox reaction as mitochondrial respiratory chain complex I. Specifically, it oxidizes reduced nicotinamide adenine dinucleotide (NADH) while simultaneously reducing ubiquinone to ubiquinol. However, unlike complex I, this enzyme is non-proton pumping, comprises of a single subunit, and is resistant to rotenone. Initially identified in bacteria, fungi and plants, NDH-2 was subsequently discovered in protists and certain animal taxa including sea squirts. The gene coding for NDH-2 is also present in the genomes of some annelids, tardigrades, and crustaceans. For over two decades, NDH-2 has been investigated as a potential substitute for defective complex I. In model organisms, NDH-2 has been shown to ameliorate a broad spectrum of conditions associated with complex I malfunction, including symptoms of Parkinson's disease. Recently, lifespan extension has been observed in animals expressing NDH-2 in a heterologous manner. A variety of mechanisms have been put forward by which NDH-2 may extend lifespan. Such mechanisms include the activation of pro-longevity pathways through modulation of the NAD+/NADH ratio, decreasing production of reactive oxygen species (ROS) in mitochondria, or then through moderate increases in ROS production followed by activation of defense pathways (mitohormesis). This review gives an overview of the latest research on NDH-2, including the structural peculiarities of NDH-2, its inhibitors, its role in the pathogenicity of mycobacteria and apicomplexan parasites, and its function in bacteria, fungi, and animals.
Collapse
Affiliation(s)
- Dmytro V Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka, 76018, Ivano-Frankivsk, Ukraine.
| |
Collapse
|
5
|
Zheng J, Conrad M. Ferroptosis: when metabolism meets cell death. Physiol Rev 2025; 105:651-706. [PMID: 39661331 DOI: 10.1152/physrev.00031.2024] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/18/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024] Open
Abstract
We present here a comprehensive update on recent advancements in the field of ferroptosis, with a particular emphasis on its metabolic underpinnings and physiological impacts. After briefly introducing landmark studies that have helped to shape the concept of ferroptosis as a distinct form of cell death, we critically evaluate the key metabolic determinants involved in its regulation. These include the metabolism of essential trace elements such as selenium and iron; amino acids such as cyst(e)ine, methionine, glutamine/glutamate, and tryptophan; and carbohydrates, covering glycolysis, the citric acid cycle, the electron transport chain, and the pentose phosphate pathway. We also delve into the mevalonate pathway and subsequent cholesterol biosynthesis, including intermediate metabolites like dimethylallyl pyrophosphate, squalene, coenzyme Q (CoQ), vitamin K, and 7-dehydrocholesterol, as well as fatty acid and phospholipid metabolism, including the biosynthesis and remodeling of ester and ether phospholipids and lipid peroxidation. Next, we highlight major ferroptosis surveillance systems, specifically the cyst(e)ine/glutathione/glutathione peroxidase 4 axis, the NAD(P)H/ferroptosis suppressor protein 1/CoQ/vitamin K system, and the guanosine triphosphate cyclohydrolase 1/tetrahydrobiopterin/dihydrofolate reductase axis. We also discuss other potential anti- and proferroptotic systems, including glutathione S-transferase P1, peroxiredoxin 6, dihydroorotate dehydrogenase, glycerol-3-phosphate dehydrogenase 2, vitamin K epoxide reductase complex subunit 1 like 1, nitric oxide, and acyl-CoA synthetase long-chain family member 4. Finally, we explore ferroptosis's physiological roles in aging, tumor suppression, and infection control, its pathological implications in tissue ischemia-reperfusion injury and neurodegeneration, and its potential therapeutic applications in cancer treatment. Existing drugs and compounds that may regulate ferroptosis in vivo are enumerated.
Collapse
Affiliation(s)
- Jiashuo Zheng
- Institute of Metabolism and Cell Death, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
- Translational Redox Biology, Technical University of Munich (TUM), TUM Natural School of Sciences, Garching, Germany
| |
Collapse
|
6
|
Li W, Han J, Huang B, Xu T, Wan Y, Luo D, Kong W, Yu Y, Zhang L, Nian Y, Chu B, Yin C. SLC25A1 and ACLY maintain cytosolic acetyl-CoA and regulate ferroptosis susceptibility via FSP1 acetylation. EMBO J 2025; 44:1641-1662. [PMID: 39881208 PMCID: PMC11914110 DOI: 10.1038/s44318-025-00369-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 12/13/2024] [Accepted: 01/07/2025] [Indexed: 01/31/2025] Open
Abstract
Ferroptosis, an iron-dependent form of programmed cell death characterized by excessive lipid hydroperoxides accumulation, emerges as a promising target in cancer therapy. Among the solute carrier (SLC) superfamily, the cystine/glutamate transporter system antiporter components SLC3A2 and SLC7A11 are known to regulate ferroptosis by facilitating cystine import for ferroptosis inhibition. However, the contribution of additional SLC superfamily members to ferroptosis remains poorly understood. Here, we use a targeted CRISPR-Cas9 screen of the SLC superfamily to identify SLC25A1 as a critical ferroptosis regulator in human cancer cells. SLC25A1 drives citrate export from the mitochondria to the cytosol, where it fuels acetyl-CoA synthesis by ATP citrate lyase (ACLY). This acetyl-CoA supply sustains FSP1 acetylation and prevents its degradation by the proteasome via K29-linked ubiquitin chains. K168 is the primary site of FSP1 acetylation and deacetylation by KAT2B and HDAC3, respectively. Pharmacological inhibition of SLC25A1 and ACLY significantly enhances cancer cell susceptibility to ferroptosis both in vitro and in vivo. Targeting the SLC25A1-ACLY axis is therefore a potential therapeutic strategy for ferroptosis-targeted cancer intervention.
Collapse
Affiliation(s)
- Wei Li
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518107, China
| | - Jing Han
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Bin Huang
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518107, China
| | - Tengteng Xu
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518107, China
- Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen, Guangdong, 518107, China
| | - Yihong Wan
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518107, China
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
| | - Dan Luo
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518107, China
| | - Weiyao Kong
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518107, China
| | - Ying Yu
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518107, China
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Lei Zhang
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518107, China
- Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen, Guangdong, 518107, China
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
| | - Yong Nian
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China.
| | - Bo Chu
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Chengqian Yin
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518107, China.
- Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
7
|
Nguyen HP, An K, Ito Y, Kharbikar BN, Sheng R, Paredes B, Murray E, Pham K, Bruck M, Zhou X, Biellak C, Ushiki A, Nobuhara M, Fong SL, Bernards DA, Lynce F, Dillon DA, Magbanua MJM, Huppert LA, Hammerlindl H, Klein JA, Valdiviez L, Fiehn O, Esserman L, Desai TA, Yee SW, Rosenbluth JM, Ahituv N. Implantation of engineered adipocytes suppresses tumor progression in cancer models. Nat Biotechnol 2025:10.1038/s41587-024-02551-2. [PMID: 39905264 DOI: 10.1038/s41587-024-02551-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 12/19/2024] [Indexed: 02/06/2025]
Abstract
Tumors exhibit an increased ability to obtain and metabolize nutrients. Here, we implant engineered adipocytes that outcompete tumors for nutrients and show that they can substantially reduce cancer progression, a technology termed adipose manipulation transplantation (AMT). Adipocytes engineered to use increased amounts of glucose and fatty acids by upregulating UCP1 were placed alongside cancer cells or xenografts, leading to significant cancer suppression. Transplanting modulated adipose organoids in pancreatic or breast cancer genetic mouse models suppressed their growth and decreased angiogenesis and hypoxia. Co-culturing patient-derived engineered adipocytes with tumor organoids from dissected human breast cancers significantly suppressed cancer progression and proliferation. In addition, cancer growth was impaired by inducing engineered adipose organoids to outcompete tumors using tetracycline or placing them in an integrated cell-scaffold delivery platform and implanting them next to the tumor. Finally, we show that upregulating UPP1 in adipose organoids can outcompete a uridine-dependent pancreatic ductal adenocarcinoma for uridine and suppress its growth, demonstrating the potential customization of AMT.
Collapse
Affiliation(s)
- Hai P Nguyen
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Department of Nutritional Sciences, University of Texas at Austin, Austin, TX, USA
| | - Kelly An
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Yusuke Ito
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Bhushan N Kharbikar
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Rory Sheng
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Breanna Paredes
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Elizabeth Murray
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Kimberly Pham
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Michael Bruck
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Xujia Zhou
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Cassandra Biellak
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Aki Ushiki
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Mai Nobuhara
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Sarah L Fong
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Daniel A Bernards
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Filipa Lynce
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Deborah A Dillon
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Mark Jesus M Magbanua
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Laura A Huppert
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Heinz Hammerlindl
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Jace Anton Klein
- Department of Nutritional Sciences, University of Texas at Austin, Austin, TX, USA
| | - Luis Valdiviez
- University of California Davis West Coast Metabolomics Center, Davis, CA, USA
| | - Oliver Fiehn
- University of California Davis West Coast Metabolomics Center, Davis, CA, USA
| | - Laura Esserman
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- School of Engineering, Brown University, Providence, RI, USA
| | - Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Jennifer M Rosenbluth
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA.
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
8
|
Chen W, Liu Y, Liu J, Chen Y, Wang X. Acute exercise promotes WAT browning by remodeling mRNA m 6A methylation. Life Sci 2025; 361:123269. [PMID: 39581460 DOI: 10.1016/j.lfs.2024.123269] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/30/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
AIMS Regular exercise promotes the beiging and metabolic adaptations of white adipose tissue (WAT) through the cumulative transcriptional responses that occur after each exercise session. However, the effects of a single bout of acute exercise and the role of N6-methyladenosine (m6A) in these adaptations remain unclear. We aim to investigate this further. MATERIALS AND METHODS We constructed mouse models for chronic (8 weeks of running) and acute (single 1-hour run) exercise to study the effects on white adipose tissue (WAT) metabolism and beiging through metabolic phenotyping and transcriptome sequencing. Additionally, we explored the impact of acute exercise on WAT m6A modification and target genes, combining m6A regulators with cell models to elucidate the role of m6A in WAT exercise adaptation. KEY FINDINGS Here, we reveal that upregulated m6A modification after acute exercise induces the formation of glycolytic beige fat (g-beige fat) in WAT. Mechanistically, the metabolite β-hydroxybutyrate (BHBA) secreted after acute exercise upregulates m6A modification in WAT. This enhances m6A-dependent translation of the histone acetyltransferase CREBBP, promoting the transcription of key beiging genes by increasing chromatin accessibility. Pharmacologically elevating circulating BHBA mimics the metabolic response induced by acute exercise, upregulating m6A modification and its downstream signals. Additionally, BHBA exhibits long-term effects, improving metabolic homeostasis in obesity by promoting thermogenesis in WAT. SIGNIFICANCE Our results reveal the role of metabolites in WAT metabolic adaptation through m6A-mediated chromatin accessibility after acute exercise, providing a novel therapeutic target for regulating WAT metabolism from a nutritional epigenetics perspective.
Collapse
Affiliation(s)
- Wei Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, China
| | - Youhua Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, China
| | - Jiaqi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, China
| | - Yushi Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, China
| | - Xinxia Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, China.
| |
Collapse
|
9
|
Lange M, Wölk M, Doubravsky CE, Hendricks JM, Kato S, Otoki Y, Styler B, Nakagawa K, Fedorova M, Olzmann JA. FSP1-mediated lipid droplet quality control prevents neutral lipid peroxidation and ferroptosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.06.631537. [PMID: 39829838 PMCID: PMC11741373 DOI: 10.1101/2025.01.06.631537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Lipid droplets (LDs) are organelles that store and supply lipids based on cellular needs. While mechanisms preventing oxidative damage to membrane phospholipids are established, the vulnerability of LD neutral lipids to peroxidation and protective mechanisms are unknown. Here, we identify LD-localized Ferroptosis Suppressor Protein 1 (FSP1) as a critical regulator that prevents neutral lipid peroxidation by recycling coenzyme Q10 (CoQ10) to its lipophilic antioxidant form. Lipidomics reveal that FSP1 loss leads to the accumulation of oxidized triacylglycerols and cholesteryl esters, and biochemical reconstitution of FSP1 with CoQ10 and NADH suppresses triacylglycerol peroxidation in vitro. Notably, polyunsaturated fatty acid (PUFA)-rich triacylglycerols enhance cancer cell sensitivity to FSP1 loss and inducing PUFA-rich LDs triggers triacylglycerol peroxidation and LD-initiated ferroptosis when FSP1 activity is impaired. These findings uncover the first LD lipid quality control pathway, wherein LD-localized FSP1 maintains neutral lipid integrity to prevent the buildup of oxidized lipids and induction of ferroptosis.
Collapse
Affiliation(s)
- Mike Lange
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michele Wölk
- Center of Membrane Biochemistry and Lipid Research, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden Dresden, Germany
| | - Cody E. Doubravsky
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Joseph M. Hendricks
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Shunji Kato
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Yurika Otoki
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Benjamin Styler
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kiyotaka Nakagawa
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Maria Fedorova
- Center of Membrane Biochemistry and Lipid Research, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden Dresden, Germany
| | - James A. Olzmann
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
10
|
Grazioso TP, del Mar Rigual M, Perna C, Caleiras EJ, Djouder N. Cold exposure reinstates NAD + levels and attenuates hepatocellular carcinoma. Cell Stress 2024; 8:125-139. [PMID: 39781363 PMCID: PMC11708783 DOI: 10.15698/cst2024.12.302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 01/12/2025] Open
Abstract
Cold exposure has been historically used for medicinal purposes, but its benefits and associated mechanisms in mammalian organisms still remain unclear. Here, we explore the chemoprotective properties of cold temperature using a mouse model of hepatocellular carcinoma (HCC) that recapitulates several human features. Chronic cold exposure is shown to prolong lifespan in diseased mice, enhance liver health, and suppress the development of aggressive HCC, preventing hepatocellular hypertrophy, high-grade oval cell hyperplasia, liver steatosis, and aberrant hepatocyte hyperproliferation. Mechanistically, exposure to cold temperatures reinstates NAD+ levels in the HCC mouse models that originally exhibited low NAD+ levels, a contributing process to the development of liver tumors. These findings uncover the role of cold therapy to attenuate HCC development and potentially other existing malignancies involving NAD+ modulation.
Collapse
Affiliation(s)
- Tatiana P Grazioso
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO)Madrid, ES28029Spain
- Instituto de Investigación Sanitaria HM Hospitales (IISHM)MadridSpain
- Laboratory of Innovation in Oncology, Gynecological, Genitourinary and Skin Cancer Unit, HM CIOCC, Centro Integral Oncológico Clara Campal, Hospital Universitario HM Sanchinarro, HM HospitalesMadrid, ES-28050Spain
| | - Maria del Mar Rigual
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO)Madrid, ES28029Spain
| | - Cristian Perna
- Department of Pathology, Hospital Universitario Ramón y Cajal, IRYCISMadrid, ES28034Spain
- Universidad de AlcaláMadrid, ES28801Spain
| | | | - Nabil Djouder
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO)Madrid, ES28029Spain
| |
Collapse
|
11
|
Shi H, Song L, Wu Y, Shen R, Zhang C, Liao X, Wang Q, Zhu J. Edaravone Alleviates Traumatic Brain Injury by Inhibition of Ferroptosis via FSP1 Pathway. Mol Neurobiol 2024; 61:10448-10461. [PMID: 38733490 PMCID: PMC11584507 DOI: 10.1007/s12035-024-04216-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024]
Abstract
Traumatic brain injury (TBI) is a highly severe form of trauma with complex series of reactions in brain tissue which ultimately results in neuronal damage. Previous studies proved that neuronal ferroptosis, which was induced by intracranial haemorrhage and other reasons, was one of the most primary causes of neuronal damage following TBI. However, the association between neuronal mechanical injury and ferroptosis in TBI and relevant treatments remain unclear. In the present study, we first demonstrated the occurrence of neuronal ferroptosis in the early stage of TBI and preliminarily elucidated that edaravone (EDA), a cerebroprotective agent that eliminates oxygen radicals, was able to inhibit ferroptosis induced by TBI. A cell scratching model was established in PC12 cells, and it was confirmed that mechanical injury induced ferroptosis in neurons at the early stage of TBI. Ferroptosis suppressor protein 1 (FSP1) plays a significant role in inhibiting ferroptosis, and we found that iFSP, a ferroptosis agonist which is capable to inhibit FSP1 pathway, attenuated the anti-ferroptosis effect of EDA. In conclusion, our results suggested that EDA inhibited neuronal ferroptosis induced by mechanical injury in the early phase of TBI by activating FSP1 pathway, which could provide evidence for future research on prevention and treatment of TBI.
Collapse
Affiliation(s)
- Haoyu Shi
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA)/Fifth Clinical Medical College of Anhui Medical University, Wuxi, 214044, Jiangsu Province, China
| | - Libiao Song
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA)/Fifth Clinical Medical College of Anhui Medical University, Wuxi, 214044, Jiangsu Province, China
| | - Yonghui Wu
- Department of Neurosurgery, The Second People's Hospital of Lu'an, Lu'an, 237000, Anhui Province, China
| | - Ruonan Shen
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA)/Fifth Clinical Medical College of Anhui Medical University, Wuxi, 214044, Jiangsu Province, China
| | - Chenxu Zhang
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA)/Fifth Clinical Medical College of Anhui Medical University, Wuxi, 214044, Jiangsu Province, China
| | - Xingzhi Liao
- Department of Anaesthesiology, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA)/Fifth Clinical Medical College of Anhui Medical University, Wuxi, 214044, Jiangsu Province, China
| | - Qiuhong Wang
- Department of Ophthalmology, Wuxi Second Hospital Affiliated to Jiangnan University, Wuxi, 214002, Jiangsu Province, China
| | - Jie Zhu
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA)/Fifth Clinical Medical College of Anhui Medical University, Wuxi, 214044, Jiangsu Province, China.
| |
Collapse
|
12
|
Cao S, Han X, Deng X, Guo J, Liu L, Zhang Y, Suleimenov M, Zhao T, Li W, Ding J, Xie S, Zhang H. Brucella secretory protein VceA promotes FOXO1 entry into the nucleus to shift host cell metabolism toward glycolysis. Acta Biochim Biophys Sin (Shanghai) 2024; 57:805-817. [PMID: 39574164 DOI: 10.3724/abbs.2024203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2025] Open
Abstract
Increased glycolytic metabolism is a key step in the reproduction of Brucella and the induction of brucellosis, however, little is known about how this process is regulated during infection. Forkhead box protein O1 (FOXO1) is a transcription factor that regulates energy metabolism. In this study, we employ the yeast two-hybrid system (Y2H) and immunoprecipitation (Co-IP) to reverse screen for the FOXO1 for the first time and identify interactions between FOXO1 and the Brucella secretory protein VceA. Our findings reveal that the Brucella secretory protein VceA colocalizes with FOXO1 in the cytoplasm. Additionally, we observe that infection of macrophages with Brucella abortus 2308 ( S2308) promotes FOXO1 entry into the nucleus, leading to a significant upregulation of glycolysis level in macrophage. Conversely, in a VceA mutant strain (S2308-ΔVceA), we note a significant reduction in the ability of FOXO1 to enter the nucleus, accompanied by a decrease in glycolysis level. Furthermore, Brucella interacts with FOXO1 through the secreted protein VceA, promoting the entry of FOXO1 into the nucleus and thereby altering host metabolic patterns. This study provides insights into the mechanisms by which Brucella invades host macrophages and induces unique metabolic changes. These insights may offer a novel rationale for developing metabolic therapeutic strategies for the treatment and prevention of related diseases.
Collapse
Affiliation(s)
- Shuzhu Cao
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Xinxin Han
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Xingmei Deng
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Jia Guo
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Liangbo Liu
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Yu Zhang
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Maratbek Suleimenov
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
- College of Veterinary, National Agricultural University of Kazakhstan, Nur Sultan, Kazakhstan
| | - Tianyi Zhao
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Wei Li
- Xinjiang Center for Animal Disease Prevention and Control, Urumqi 830000, China
| | - Jian Ding
- Xinjiang Center for Animal Disease Prevention and Control, Urumqi 830000, China
| | - Songsong Xie
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, the First Affiliated Hospital of Shihezi University, Shihezi 832008, China
| | - Hui Zhang
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| |
Collapse
|
13
|
Park CH, Park M, Kelly ME, Cheng H, Lee SR, Jang C, Chang JS. Cold-inducible GOT1 activates the malate-aspartate shuttle in brown adipose tissue to support fuel preference for fatty acids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.623867. [PMID: 39605634 PMCID: PMC11601492 DOI: 10.1101/2024.11.18.623867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Brown adipose tissue (BAT) simultaneously metabolizes fatty acids (FA) and glucose under cold stress but favors FA as the primary fuel for heat production. It remains unclear how BAT steer fuel preference toward FA over glucose. Here we show that the malate-aspartate shuttle (MAS) is activated by cold in BAT and plays a crucial role in promoting mitochondrial FA utilization. Mechanistically, cold stress selectively induces glutamic-oxaloacetic transaminase (GOT1), a key MAS enzyme, via the β-adrenergic receptor-PKA-PGC-1α axis. The increase in GOT1 activates MAS, transferring reducing equivalents from the cytosol to mitochondria. This process enhances FA oxidation in mitochondria while limiting glucose oxidation. In contrast, loss of MAS activity by GOT1 deficiency reduces FA oxidation, leading to increased glucose oxidation. Together, our work uncovers a unique regulatory mechanism and role for MAS in mitochondrial fuel selection and advances our understanding of how BAT maintains fuel preference for FA under cold conditions. Highlights Got1 is markedly induced by cold in BAT via a β-adrenergic receptor-PKA-PGC-1α axis The increase in cytosolic GOT1 activates the malate-aspartate shuttle (MAS)MAS activation promotes fatty acid oxidation while reducing glucose oxidation Loss of MAS activity in BAT by Got1 deletion shifts the fuel preference to glucose.
Collapse
|
14
|
You Y, Qian Z, Jiang Y, Chen L, Wu D, Liu L, Zhang F, Ning X, Zhang Y, Xiao J. Insights into the pathogenesis of gestational and hepatic diseases: the impact of ferroptosis. Front Cell Dev Biol 2024; 12:1482838. [PMID: 39600338 PMCID: PMC11588751 DOI: 10.3389/fcell.2024.1482838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Ferroptosis, a distinct form of non-apoptotic cell death characterized by iron dependency and lipid peroxidation, is increasingly linked to various pathological conditions in pregnancy and liver diseases. It plays a critical role throughout pregnancy, influencing processes such as embryogenesis, implantation, and the maintenance of gestation. A growing body of evidence indicates that disruptions in these processes can precipitate pregnancy-related disorders, including pre-eclampsia (PE), gestational diabetes mellitus (GDM), and intrahepatic cholestasis of pregnancy (ICP). Notably, while ICP is primarily associated with elevated maternal serum bile acid levels, its precise etiology remains elusive. Oxidative stress induced by bile acid accumulation is believed to be a significant factor in ICP pathogenesis. Similarly, the liver's susceptibility to oxidative damage underscores the importance of lipid metabolism dysregulation and impaired iron homeostasis in the progression of liver diseases such as alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), cholestatic liver injury, autoimmune hepatitis (AIH), acute liver injury, viral hepatitis, liver fibrosis, and hepatocellular carcinoma (HCC). This review discusses the shared signaling mechanisms of ferroptosis in gestational and hepatic diseases, and explores recent advances in understanding the mechanisms of ferroptosis and its potential role in the pathogenesis of gestational and hepatic disorders, with the aim of identifying viable therapeutic targets.
Collapse
Affiliation(s)
- Yilan You
- Departments of Obstetrics and Gynecology, Wuxi Maternal and Child Healthcare Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Zhiwen Qian
- Departments of Obstetrics and Gynecology, Wuxi Maternal and Child Healthcare Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Ying Jiang
- Departments of Obstetrics and Gynecology, Wuxi Maternity and Child Healthcare Hospital, Women’s Hospital of Jiangnan University, Jiangnan University, Wuxi, China
| | - Lingyan Chen
- Departments of Obstetrics and Gynecology, Wuxi Maternal and Child Healthcare Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Danping Wu
- Departments of Obstetrics and Gynecology, Wuxi Maternity and Child Healthcare Hospital, Women’s Hospital of Jiangnan University, Jiangnan University, Wuxi, China
| | - Lu Liu
- Departments of Obstetrics and Gynecology, Wuxi Maternity and Child Healthcare Hospital, Women’s Hospital of Jiangnan University, Jiangnan University, Wuxi, China
| | - Feng Zhang
- Departments of Obstetrics and Gynecology, Wuxi Maternal and Child Healthcare Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Xin Ning
- Departments of Obstetrics and Gynecology, Wuxi Maternity and Child Healthcare Hospital, Women’s Hospital of Jiangnan University, Jiangnan University, Wuxi, China
| | - Yan Zhang
- Departments of Obstetrics and Gynecology, Wuxi Maternal and Child Healthcare Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Departments of Obstetrics and Gynecology, Wuxi Maternity and Child Healthcare Hospital, Women’s Hospital of Jiangnan University, Jiangnan University, Wuxi, China
| | - Jianping Xiao
- Departments of Obstetrics and Gynecology, Wuxi Maternal and Child Healthcare Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Departments of Obstetrics and Gynecology, Wuxi Maternity and Child Healthcare Hospital, Women’s Hospital of Jiangnan University, Jiangnan University, Wuxi, China
| |
Collapse
|
15
|
Roh JL. Targeting ferroptosis suppressor protein 1 in cancer therapy: Implications and perspectives, with emphasis on head and neck cancer. Crit Rev Oncol Hematol 2024; 202:104440. [PMID: 38986728 DOI: 10.1016/j.critrevonc.2024.104440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024] Open
Abstract
The diverse functions of ferroptosis suppressor protein 1 (FSP1/AIFM2) in cancer have positioned it as a promising therapeutic target across various malignancies, including head and neck cancer (HNC). Initially characterized as a potential tumor suppressor due to its involvement in apoptosis and ferroptosis, recent studies have revealed its complex role in tumor growth, metabolism, and therapy resistance. Pharmacological inhibition of FSP1 shows potential in sensitizing cancer cells to ferroptosis and overcoming resistance to conventional therapies, offering new avenues for precision medicine approaches. Identifying novel FSP1 inhibitors and their synergistic effects with existing therapies presents exciting opportunities for therapeutic development. However, translating preclinical findings into clinical practice requires the refinement of FSP1 inhibitors, robust biomarkers for patient stratification, and further investigations into the molecular mechanisms underlying FSP1-mediated therapy resistance. Integrating FSP1-targeted therapies into comprehensive treatment regimens holds promise for improving outcomes in cancer patients and advancing the field of precision oncology.
Collapse
Affiliation(s)
- Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea; Department of Biomedical Science, General Graduate School, CHA University, Pocheon, Republic of Korea.
| |
Collapse
|
16
|
Zhou D, Yang Y, Han R, He J, Liu D, Xia W, Cai Y, Perek B, Xia Z. Ferroptosis and its Potential Determinant Role in Myocardial Susceptibility to Ischemia/Reperfusion Injury in Diabetes. Rev Cardiovasc Med 2024; 25:360. [PMID: 39484139 PMCID: PMC11522832 DOI: 10.31083/j.rcm2510360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 11/03/2024] Open
Abstract
Myocardial ischemia/reperfusion injury (MIRI) is a major cause of cardiac death particularly in patients with diabetes. When the coronary artery is partially or completely blocked, restoration of blood perfusion can normally be achieved within a certain time due to the development of advanced techniques such as percutaneous coronary intervention (PCI) and coronary artery bypass grafting (CABG) surgery. However, cardiac tissue injury may aggravate progressively even after the ischemic myocardium is restored to normal perfusion. MIRI is often associated with various forms of cell death, including apoptosis, autophagy, programmed necrosis, pyroptosis, and ferroptosis, among others. Ferroptosis is known as iron-dependent cell death that is distinct from other programmed modes of cell death. Ferroptosis is under constitutive control by glutathione peroxidase 4 (GPX4), and the reduction of GPX4 may result in ferroptosis even if iron homeostasis is physiologically maintained. The essences of ferroptosis are substantial iron accumulation and lipid peroxidation that trigger cell death. Under impaired antioxidant system, cellular reactive oxygen species (ROS) accumulation leads to lipid peroxidation which consequently results in ferroptosis. Ferroptosis shares a few common features with several types of cell death and interplays with various forms of cell death such as autophagy and apoptosis in the development of cardiovascular diseases. More and more recent studies have demonstrated that ferroptosis plays an important role in MIRI. However, few studies have addressed the relative importance of ferroptosis in MIRI relative to other forms of cell deaths. In this review, we summarized the basic aspects and advances regarding the molecular pathogenesis of ferroptosis, evaluated its role in MIRI, and propose that the levels of ferroptosis may function as a major determinant of myocardial susceptibility to ischemia/reperfusion injury (IRI) in general and of the enhanced vulnerability to MIRI specifically in diabetes.
Collapse
Affiliation(s)
- Dongcheng Zhou
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, 524000 Zhanjiang, Guangdong, China
| | - Yuhui Yang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, 524000 Zhanjiang, Guangdong, China
| | - Ronghui Han
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, 524000 Zhanjiang, Guangdong, China
| | - Jianfeng He
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, 524000 Zhanjiang, Guangdong, China
| | - Danyong Liu
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, 524000 Zhanjiang, Guangdong, China
| | - Weiyi Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, 524000 Zhanjiang, Guangdong, China
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Yin Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Bartłomiej Perek
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, 524000 Zhanjiang, Guangdong, China
- Doctoral Training Platform for Research and Translation, 431913 Zhongxiang, Hubei, China
| |
Collapse
|
17
|
Berndt C, Alborzinia H, Amen VS, Ayton S, Barayeu U, Bartelt A, Bayir H, Bebber CM, Birsoy K, Böttcher JP, Brabletz S, Brabletz T, Brown AR, Brüne B, Bulli G, Bruneau A, Chen Q, DeNicola GM, Dick TP, Distéfano A, Dixon SJ, Engler JB, Esser-von Bieren J, Fedorova M, Friedmann Angeli JP, Friese MA, Fuhrmann DC, García-Sáez AJ, Garbowicz K, Götz M, Gu W, Hammerich L, Hassannia B, Jiang X, Jeridi A, Kang YP, Kagan VE, Konrad DB, Kotschi S, Lei P, Le Tertre M, Lev S, Liang D, Linkermann A, Lohr C, Lorenz S, Luedde T, Methner A, Michalke B, Milton AV, Min J, Mishima E, Müller S, Motohashi H, Muckenthaler MU, Murakami S, Olzmann JA, Pagnussat G, Pan Z, Papagiannakopoulos T, Pedrera Puentes L, Pratt DA, Proneth B, Ramsauer L, Rodriguez R, Saito Y, Schmidt F, Schmitt C, Schulze A, Schwab A, Schwantes A, Soula M, Spitzlberger B, Stockwell BR, Thewes L, Thorn-Seshold O, Toyokuni S, Tonnus W, Trumpp A, Vandenabeele P, Vanden Berghe T, Venkataramani V, Vogel FCE, von Karstedt S, Wang F, Westermann F, Wientjens C, Wilhelm C, Wölk M, Wu K, Yang X, Yu F, Zou Y, Conrad M. Ferroptosis in health and disease. Redox Biol 2024; 75:103211. [PMID: 38908072 PMCID: PMC11253697 DOI: 10.1016/j.redox.2024.103211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/24/2024] Open
Abstract
Ferroptosis is a pervasive non-apoptotic form of cell death highly relevant in various degenerative diseases and malignancies. The hallmark of ferroptosis is uncontrolled and overwhelming peroxidation of polyunsaturated fatty acids contained in membrane phospholipids, which eventually leads to rupture of the plasma membrane. Ferroptosis is unique in that it is essentially a spontaneous, uncatalyzed chemical process based on perturbed iron and redox homeostasis contributing to the cell death process, but that it is nonetheless modulated by many metabolic nodes that impinge on the cells' susceptibility to ferroptosis. Among the various nodes affecting ferroptosis sensitivity, several have emerged as promising candidates for pharmacological intervention, rendering ferroptosis-related proteins attractive targets for the treatment of numerous currently incurable diseases. Herein, the current members of a Germany-wide research consortium focusing on ferroptosis research, as well as key external experts in ferroptosis who have made seminal contributions to this rapidly growing and exciting field of research, have gathered to provide a comprehensive, state-of-the-art review on ferroptosis. Specific topics include: basic mechanisms, in vivo relevance, specialized methodologies, chemical and pharmacological tools, and the potential contribution of ferroptosis to disease etiopathology and progression. We hope that this article will not only provide established scientists and newcomers to the field with an overview of the multiple facets of ferroptosis, but also encourage additional efforts to characterize further molecular pathways modulating ferroptosis, with the ultimate goal to develop novel pharmacotherapies to tackle the various diseases associated with - or caused by - ferroptosis.
Collapse
Affiliation(s)
- Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Hamed Alborzinia
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM GGmbH), Heidelberg, Germany; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Vera Skafar Amen
- Rudolf Virchow Zentrum, Center for Integrative and Translational Bioimaging - University of Würzburg, Germany
| | - Scott Ayton
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Australia
| | - Uladzimir Barayeu
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ) Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany; Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Alexander Bartelt
- Institute for Cardiovascular Prevention (IPEK), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany; Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany; German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Hülya Bayir
- Department of Pediatrics, Columbia University, New York City, NY, USA
| | - Christina M Bebber
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Translational Genomics, Cologne, Germany; CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
| | - Kivanc Birsoy
- Laboratory of Metabolic Regulation and Genetics, Rockefeller University, New York City, NY, USA
| | - Jan P Böttcher
- Institute of Molecular Immunology, School of Medicine, Technical University of Munich (TUM), Germany
| | - Simone Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Germany
| | - Ashley R Brown
- Department of Biological Sciences, Columbia University, New York City, NY, USA
| | - Bernhard Brüne
- Institute of Biochemistry1-Pathobiochemistry, Goethe-Universität, Frankfurt Am Main, Germany
| | - Giorgia Bulli
- Department of Physiological Genomics, Ludwig-Maximilians-University, Munich, Germany
| | - Alix Bruneau
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| | - Quan Chen
- College of Life Sciences, Nankai University, Tianjin, China
| | - Gina M DeNicola
- Department of Metabolism and Physiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Tobias P Dick
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ) Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Ayelén Distéfano
- Instituto de Investigaciones Biológicas, CONICET, National University of Mar Del Plata, Argentina
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Jan B Engler
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Germany
| | | | - Maria Fedorova
- Center of Membrane Biochemistry and Lipid Research, University Hospital Carl Gustav Carus and Faculty of Medicine of TU Dresden, Germany
| | - José Pedro Friedmann Angeli
- Rudolf Virchow Zentrum, Center for Integrative and Translational Bioimaging - University of Würzburg, Germany
| | - Manuel A Friese
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Germany
| | - Dominic C Fuhrmann
- Institute of Biochemistry1-Pathobiochemistry, Goethe-Universität, Frankfurt Am Main, Germany
| | - Ana J García-Sáez
- Institute for Genetics, CECAD, University of Cologne, Germany; Max Planck Institute of Biophysics, Frankfurt/Main, Germany
| | | | - Magdalena Götz
- Department of Physiological Genomics, Ludwig-Maximilians-University, Munich, Germany; Institute of Stem Cell Research, Helmholtz Center Munich, Germany
| | - Wei Gu
- Institute for Cancer Genetics, And Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Linda Hammerich
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| | | | - Xuejun Jiang
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Aicha Jeridi
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Germany, Member of the German Center for Lung Research (DZL)
| | - Yun Pyo Kang
- College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University, Republic of Korea
| | | | - David B Konrad
- Department of Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Stefan Kotschi
- Institute for Cardiovascular Prevention (IPEK), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Peng Lei
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Marlène Le Tertre
- Center for Translational Biomedical Iron Research, Heidelberg University, Germany
| | - Sima Lev
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Deguang Liang
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Germany; Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
| | - Carolin Lohr
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Svenja Lorenz
- Institute of Metabolism and Cell Death, Helmholtz Center Munich, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Axel Methner
- Institute of Molecular Medicine, Johannes Gutenberg-Universität Mainz, Germany
| | - Bernhard Michalke
- Research Unit Analytical Biogeochemistry, Helmholtz Center Munich, Germany
| | - Anna V Milton
- Department of Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Junxia Min
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Eikan Mishima
- Institute of Metabolism and Cell Death, Helmholtz Center Munich, Germany
| | | | - Hozumi Motohashi
- Department of Gene Expression Regulation, Tohoku University, Sendai, Japan
| | | | - Shohei Murakami
- Department of Gene Expression Regulation, Tohoku University, Sendai, Japan
| | - James A Olzmann
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Gabriela Pagnussat
- Instituto de Investigaciones Biológicas, CONICET, National University of Mar Del Plata, Argentina
| | - Zijan Pan
- School of Life Sciences, Westlake University, Hangzhou, China
| | | | | | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Canada
| | - Bettina Proneth
- Institute of Metabolism and Cell Death, Helmholtz Center Munich, Germany
| | - Lukas Ramsauer
- Institute of Molecular Immunology, School of Medicine, Technical University of Munich (TUM), Germany
| | | | - Yoshiro Saito
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Felix Schmidt
- Institute of Molecular Medicine, Johannes Gutenberg-Universität Mainz, Germany
| | - Carina Schmitt
- Department of Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Almut Schulze
- Division of Tumour Metabolism and Microenvironment, DKFZ Heidelberg and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Annemarie Schwab
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Germany
| | - Anna Schwantes
- Institute of Biochemistry1-Pathobiochemistry, Goethe-Universität, Frankfurt Am Main, Germany
| | - Mariluz Soula
- Laboratory of Metabolic Regulation and Genetics, Rockefeller University, New York City, NY, USA
| | - Benedikt Spitzlberger
- Department of Immunobiology, Université de Lausanne, Switzerland; Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York City, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA; Department of Chemistry, Columbia University, New York, NY, USA
| | - Leonie Thewes
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | | | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan; Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan; Center for Integrated Sciences of Low-temperature Plasma Core Research (iPlasma Core), Tokai National Higher Education and Research System, Nagoya, Japan
| | - Wulf Tonnus
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Germany
| | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM GGmbH), Heidelberg, Germany; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Peter Vandenabeele
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Tom Vanden Berghe
- Department of Biomedical Sciences, University of Antwerp, Belgium; VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Vivek Venkataramani
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Germany
| | - Felix C E Vogel
- Division of Tumour Metabolism and Microenvironment, DKFZ Heidelberg and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Silvia von Karstedt
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Translational Genomics, Cologne, Germany; CECAD Cluster of Excellence, University of Cologne, Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, Germany
| | - Fudi Wang
- School of Medicine, Zhejiang University, Hangzhou, China
| | | | - Chantal Wientjens
- Immunopathology Unit, Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University Hospital Bonn, University of Bonn, Germany
| | - Christoph Wilhelm
- Immunopathology Unit, Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University Hospital Bonn, University of Bonn, Germany
| | - Michele Wölk
- Center of Membrane Biochemistry and Lipid Research, University Hospital Carl Gustav Carus and Faculty of Medicine of TU Dresden, Germany
| | - Katherine Wu
- Department of Pathology, Grossman School of Medicine, New York University, NY, USA
| | - Xin Yang
- Institute for Cancer Genetics, And Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Fan Yu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yilong Zou
- School of Life Sciences, Westlake University, Hangzhou, China; Westlake Four-Dimensional Dynamic Metabolomics (Meta4D) Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Helmholtz Center Munich, Germany.
| |
Collapse
|
18
|
Li Y, Miao Y, Feng Q, Zhu W, Chen Y, Kang Q, Wang Z, Lu F, Zhang Q. Mitochondrial dysfunction and onset of type 2 diabetes along with its complications: a multi-omics Mendelian randomization and colocalization study. Front Endocrinol (Lausanne) 2024; 15:1401531. [PMID: 39280009 PMCID: PMC11392782 DOI: 10.3389/fendo.2024.1401531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/16/2024] [Indexed: 09/18/2024] Open
Abstract
Background Mitochondrial dysfunction plays a crucial role in Type 2 Diabetes Mellitus (T2DM) and its complications. However, the genetic pathophysiology remains under investigation. Through multi-omics Mendelian Randomization (MR) and colocalization analyses, we identified mitochondrial-related genes causally linked with T2DM and its complications. Methods Summary-level quantitative trait loci data at methylation, RNA, and protein levels were retrieved from European cohort studies. GWAS summary statistics for T2DM and its complications were collected from the DIAGRAM and FinnGen consortiums, respectively. Summary-data-based MR was utilized to estimate the causal effects. The heterogeneity in dependent instrument test assessed horizontal pleiotropy, while colocalization analysis determined whether genes and diseases share the same causal variant. Enrichment analysis, drug target analysis, and phenome-wide MR were conducted to further explore the biological functions, potential drugs, and causal associations with other diseases. Results Integrating evidence from multi-omics, we identified 18 causal mitochondrial-related genes. Enrichment analysis revealed they were not only related to nutrient metabolisms but also to the processes like mitophagy, autophagy, and apoptosis. Among these genes, Tu translation elongation factor mitochondrial (TUFM), 3-hydroxyisobutyryl-CoA hydrolase (HIBCH), and iron-sulfur cluster assembly 2 (ISCA2) were identified as Tier 1 genes, showing causal links with T2DM and strong colocalization evidence. TUFM and ISCA2 were causally associated with an increased risk of T2DM, while HIBCH showed an inverse causal relationship. The causal associations and colocalization effects for TUFM and HIBCH were validated in specific tissues. TUFM was also found to be a risk factor for microvascular complications in T2DM patients including retinopathy, nephropathy, and neuropathy. Furthermore, drug target analysis and phenome-wide MR underscored their significance as potential therapeutic targets. Conclusions This study identified 18 mitochondrial-related genes causally associated with T2DM at multi-omics levels, enhancing the understanding of mitochondrial dysfunction in T2DM and its complications. TUFM, HIBCH, and ISCA2 emerge as potential therapeutic targets for T2DM and its complications.
Collapse
Affiliation(s)
- Yang Li
- Department of Endocrinology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yahu Miao
- Department of Endocrinology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qing Feng
- Department of Endocrinology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Weixi Zhu
- Department of Endocrinology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yijing Chen
- Department of Endocrinology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qingqing Kang
- Department of Endocrinology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhen Wang
- Department of Endocrinology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fangting Lu
- Department of Endocrinology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qiu Zhang
- Department of Endocrinology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
19
|
Dai Q, Wei X, Zhao J, Zhang D, Luo Y, Yang Y, Xiang Y, Liu X. Inhibition of FSP1: A new strategy for the treatment of tumors (Review). Oncol Rep 2024; 52:105. [PMID: 38940330 PMCID: PMC11228423 DOI: 10.3892/or.2024.8764] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/10/2024] [Indexed: 06/29/2024] Open
Abstract
Ferroptosis, a regulated form of cell death, is intricately linked to iron‑dependent lipid peroxidation. Recent evidence strongly supports the induction of ferroptosis as a promising strategy for treating cancers resistant to conventional therapies. A key player in ferroptosis regulation is ferroptosis suppressor protein 1 (FSP1), which promotes cancer cell resistance by promoting the production of the antioxidant form of coenzyme Q10. Of note, FSP1 confers resistance to ferroptosis independently of the glutathione (GSH) and glutathione peroxidase‑4 pathway. Therefore, targeting FSP1 to weaken its inhibition of ferroptosis may be a viable strategy for treating refractory cancer. This review aims to clarify the molecular mechanisms underlying ferroptosis, the specific pathway by which FSP1 suppresses ferroptosis and the effect of FSP1 inhibitors on cancer cells.
Collapse
Affiliation(s)
- Qiangfang Dai
- School of Medicine, Yan'an University, Yan'an, Shaanxi 716000, P.R. China
| | - Xiaoli Wei
- School of Medicine, Yan'an University, Yan'an, Shaanxi 716000, P.R. China
| | - Jumei Zhao
- School of Medicine, Yan'an University, Yan'an, Shaanxi 716000, P.R. China
| | - Die Zhang
- School of Medicine, Yan'an University, Yan'an, Shaanxi 716000, P.R. China
| | - Yidan Luo
- School of Medicine, Yan'an University, Yan'an, Shaanxi 716000, P.R. China
| | - Yue Yang
- School of Medicine, Yan'an University, Yan'an, Shaanxi 716000, P.R. China
| | - Yang Xiang
- School of Medicine, Yan'an University, Yan'an, Shaanxi 716000, P.R. China
- College of Physical Education, Yan'an University, Yan'an, Shaanxi 716000, P.R. China
| | - Xiaolong Liu
- School of Medicine, Yan'an University, Yan'an, Shaanxi 716000, P.R. China
| |
Collapse
|
20
|
Tan X, He Y, Yu P, Deng Y, Xie Z, Guo J, Hou Q, Li P, Lin X, Ouyang S, Ma W, Xie Y, Guo Z, Chen D, Zhang Z, Zhu Y, Huang F, Zhao Z, Zhang C, Guo Z, Chen X, Peng T, Li L, Xie W. The dual role of FSP1 in programmed cell death: resisting ferroptosis in the cell membrane and promoting necroptosis in the nucleus of THP-1 cells. Mol Med 2024; 30:102. [PMID: 39009982 PMCID: PMC11247902 DOI: 10.1186/s10020-024-00861-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/10/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Acute monocytic leukemia-M5 (AML-M5) remains a challenging disease due to its high morbidity and poor prognosis. In addition to the evidence mentioned earlier, several studies have shown that programmed cell death (PCD) serves a critical function in treatment of AML-M5. However, the role and relationship between ferroptosis and necroptosis in AML-M5 remains unclear. METHODS THP-1 cells were mainly treated with Erastin and IMP-366. The changes of ferroptosis and necroptosis levels were detected by CCK-8, western blot, quantitative real-time PCR, and electron microscopy. Flow cytometry was applied to detect the ROS and lipid ROS levels. MDA, 4-HNE, GSH and GSSG were assessed by ELISA kits. Intracellular distribution of FSP1 was studied by immunofluorescent staining and western blot. RESULTS The addition of the myristoylation inhibitor IMP-366 to erastin-treated acute monocytic leukemia cell line THP-1 cell not only resulted in greater susceptibility to ferroptosis characterized by lipid peroxidation, glutathione (GSH) depletion and mitochondrial shrinkage, as the FSP1 position on membrane was inhibited, but also increased p-RIPK1 and p-MLKL protein expression, as well as a decrease in caspase-8 expression, and triggered the characteristic necroptosis phenomena, including cytoplasmic translucency, mitochondrial swelling, membranous fractures by FSP1 migration into the nucleus via binding importin α2. It is interesting to note that ferroptosis inhibitor fer-1 reversed necroptosis. CONCLUSION We demonstrated that inhibition of myristoylation by IMP-366 is capable of switching ferroptosis and ferroptosis-dependent necroptosis in THP-1 cells. In these findings, FSP1-mediated ferroptosis and necroptosis are described as alternative mechanisms of PCD of THP-1 cells, providing potential therapeutic strategies and targets for AML-M5.
Collapse
Affiliation(s)
- Xiaoqian Tan
- Department of Physiology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- School of Basic Medical Sciences, Xiangnan University, Chenzhou, 423000, Hunan, China
| | - Yinling He
- Department of Physiology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Panpan Yu
- Department of Physiology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yunong Deng
- Department of Physiology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhongcheng Xie
- Department of Physiology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jiami Guo
- Department of Physiology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Qin Hou
- Department of Physiology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Pin Li
- Department of Physiology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xiaoyan Lin
- Department of Physiology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Siyu Ouyang
- Department of Physiology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Wentao Ma
- Department of Physiology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yushu Xie
- Class of Clinical Medicine, University of South China, Hengyang, 421001, Hunan, China
| | - Zilong Guo
- Class of Clinical Medicine, University of South China, Hengyang, 421001, Hunan, China
| | - Dandan Chen
- Class of Clinical Medicine, University of South China, Hengyang, 421001, Hunan, China
| | - Zhixia Zhang
- Class of Clinical Medicine, University of South China, Hengyang, 421001, Hunan, China
| | - Yunyu Zhu
- Class of Clinical Medicine, University of South China, Hengyang, 421001, Hunan, China
| | - Fei Huang
- Class of Clinical Medicine, University of South China, Hengyang, 421001, Hunan, China
| | - Ziye Zhao
- Class of Clinical Medicine, University of South China, Hengyang, 421001, Hunan, China
| | - Cen Zhang
- Class of Clinical Medicine, University of South China, Hengyang, 421001, Hunan, China
| | - Zhirong Guo
- Class of Clinical Medicine, University of South China, Hengyang, 421001, Hunan, China
| | - Xi Chen
- Department of Physiology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Tianhong Peng
- Department of Physiology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Liang Li
- Department of Physiology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Wei Xie
- Department of Physiology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
21
|
Lecoutre S, Maqdasy S, Rizo-Roca D, Renzi G, Vlassakev I, Alaeddine LM, Higos R, Jalkanen J, Zhong J, Zareifi DS, Frendo-Cumbo S, Massier L, Hodek O, Juvany M, Moritz T, de Castro Barbosa T, Omar-Hmeadi M, López-Yus M, Merabtene F, Abatan JB, Marcelin G, El Hachem EJ, Rouault C, Bergo MO, Petrus P, Zierath JR, Clément K, Krook A, Mejhert N, Rydén M. Reduced adipocyte glutaminase activity promotes energy expenditure and metabolic health. Nat Metab 2024; 6:1329-1346. [PMID: 39009762 PMCID: PMC11272588 DOI: 10.1038/s42255-024-01083-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 06/14/2024] [Indexed: 07/17/2024]
Abstract
Glutamine and glutamate are interconverted by several enzymes and alterations in this metabolic cycle are linked to cardiometabolic traits. Herein, we show that obesity-associated insulin resistance is characterized by decreased plasma and white adipose tissue glutamine-to-glutamate ratios. We couple these stoichiometric changes to perturbed fat cell glutaminase and glutamine synthase messenger RNA and protein abundance, which together promote glutaminolysis. In human white adipocytes, reductions in glutaminase activity promote aerobic glycolysis and mitochondrial oxidative capacity via increases in hypoxia-inducible factor 1α abundance, lactate levels and p38 mitogen-activated protein kinase signalling. Systemic glutaminase inhibition in male and female mice, or genetically in adipocytes of male mice, triggers the activation of thermogenic gene programs in inguinal adipocytes. Consequently, the knockout mice display higher energy expenditure and improved glucose tolerance compared to control littermates, even under high-fat diet conditions. Altogether, our findings highlight white adipocyte glutamine turnover as an important determinant of energy expenditure and metabolic health.
Collapse
Affiliation(s)
- Simon Lecoutre
- Department of Medicine (Huddinge), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, Huddinge, Sweden
- Nutrition and Obesities: Systemic Approaches Research Group, NutriOmics, Sorbonne Université, INSERM, Paris, France
| | - Salwan Maqdasy
- Department of Medicine (Huddinge), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - David Rizo-Roca
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Gianluca Renzi
- Department of Medicine (Huddinge), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Ivan Vlassakev
- Department of Medicine (Huddinge), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Lynn M Alaeddine
- Department of Medicine (Huddinge), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Romane Higos
- Department of Medicine (Huddinge), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Jutta Jalkanen
- Department of Medicine (Huddinge), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Jiawei Zhong
- Department of Medicine (Huddinge), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Danae S Zareifi
- Department of Medicine (Huddinge), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Scott Frendo-Cumbo
- Department of Medicine (Huddinge), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Lucas Massier
- Department of Medicine (Huddinge), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Ondrej Hodek
- Swedish Metabolomics Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Marta Juvany
- Swedish Metabolomics Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Thomas Moritz
- Swedish Metabolomics Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
- The Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thais de Castro Barbosa
- Department of Medicine (Huddinge), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Muhmmad Omar-Hmeadi
- Department of Medicine (Huddinge), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Marta López-Yus
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, Zaragoza, Spain
- Instituto Aragonés de Ciencias de La Salud (IACS), Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS)-Aragón, Zaragoza, Spain
| | - Fatiha Merabtene
- Nutrition and Obesities: Systemic Approaches Research Group, NutriOmics, Sorbonne Université, INSERM, Paris, France
| | - Jimon Boniface Abatan
- Nutrition and Obesities: Systemic Approaches Research Group, NutriOmics, Sorbonne Université, INSERM, Paris, France
| | - Geneviève Marcelin
- Nutrition and Obesities: Systemic Approaches Research Group, NutriOmics, Sorbonne Université, INSERM, Paris, France
| | - Elie-Julien El Hachem
- Nutrition and Obesities: Systemic Approaches Research Group, NutriOmics, Sorbonne Université, INSERM, Paris, France
| | - Christine Rouault
- Nutrition and Obesities: Systemic Approaches Research Group, NutriOmics, Sorbonne Université, INSERM, Paris, France
| | - Martin O Bergo
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Paul Petrus
- Department of Medicine (Huddinge), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Karine Clément
- Nutrition and Obesities: Systemic Approaches Research Group, NutriOmics, Sorbonne Université, INSERM, Paris, France
- Nutrition Department, Assistance Publique Hôpitaux de Paris, CRNH Ile-de-France, Pitié-Salpêtrière Hospital, Paris, France
| | - Anna Krook
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Niklas Mejhert
- Department of Medicine (Huddinge), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, Huddinge, Sweden.
| | - Mikael Rydén
- Department of Medicine (Huddinge), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, Huddinge, Sweden.
| |
Collapse
|
22
|
Torres-Velarde JM, Allen KN, Salvador-Pascual A, Leija RG, Luong D, Moreno-Santillán DD, Ensminger DC, Vázquez-Medina JP. Peroxiredoxin 6 suppresses ferroptosis in lung endothelial cells. Free Radic Biol Med 2024; 218:82-93. [PMID: 38579937 PMCID: PMC11177496 DOI: 10.1016/j.freeradbiomed.2024.04.208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Peroxiredoxin 6 (Prdx6) repairs peroxidized membranes by reducing oxidized phospholipids, and by replacing oxidized sn-2 fatty acyl groups through hydrolysis/reacylation by its phospholipase A2 (aiPLA2) and lysophosphatidylcholine acyltransferase activities. Prdx6 is highly expressed in the lung, and intact lungs and cells null for Prdx6 or with single-point mutations that inactivate either Prdx6-peroxidase or aiPLA2 activity alone exhibit decreased viability, increased lipid peroxidation, and incomplete repair when exposed to paraquat, hyperoxia, or organic peroxides. Ferroptosis is form of cell death driven by the accumulation of phospholipid hydroperoxides. We studied the role of Prdx6 as a ferroptosis suppressor in the lung. We first compared the expression Prdx6 and glutathione peroxidase 4 (GPx4) and visualized Prdx6 and GPx4 within the lung. Lung Prdx6 mRNA levels were five times higher than GPx4 levels. Both Prdx6 and GPx4 localized to epithelial and endothelial cells. Prdx6 knockout or knockdown sensitized lung endothelial cells to erastin-induced ferroptosis. Cells with genetic inactivation of either aiPLA2 or Prdx6-peroxidase were more sensitive to ferroptosis than WT cells, but less sensitive than KO cells. We then conducted RNA-seq analyses in Prdx6-depleted cells to further explore how the loss of Prdx6 sensitizes lung endothelial cells to ferroptosis. Prdx6 KD upregulated transcriptional signatures associated with selenoamino acid metabolism and mitochondrial function. Accordingly, Prdx6 deficiency blunted mitochondrial function and increased GPx4 abundance whereas GPx4 KD had the opposite effect on Prdx6. Moreover, we detected Prdx6 and GPx4 interactions in intact cells, suggesting that both enzymes cooperate to suppress lipid peroxidation. Notably, Prdx6-depleted cells remained sensitive to erastin-induced ferroptosis despite the compensatory increase in GPx4. These results show that Prdx6 suppresses ferroptosis in lung endothelial cells and that both aiPLA2 and Prdx6-peroxidase contribute to this effect. These results also show that Prdx6 supports mitochondrial function and modulates several coordinated cytoprotective pathways in the pulmonary endothelium.
Collapse
Affiliation(s)
| | - Kaitlin N Allen
- Department of Integrative Biology, University of California, Berkeley, USA
| | | | - Roberto G Leija
- Department of Integrative Biology, University of California, Berkeley, USA
| | - Diamond Luong
- Department of Integrative Biology, University of California, Berkeley, USA
| | | | - David C Ensminger
- Department of Integrative Biology, University of California, Berkeley, USA
| | | |
Collapse
|
23
|
Ma Y, Cong L, Shen W, Yang C, Ye K. Ferroptosis defense mechanisms: The future and hope for treating osteosarcoma. Cell Biochem Funct 2024; 42:e4080. [PMID: 38924104 DOI: 10.1002/cbf.4080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Currently, challenges such as chemotherapy resistance, resulting from preoperative and postoperative chemotherapy, postoperative recurrence, and poor bone regeneration quality, are becoming increasingly prominent in osteosarcoma (OS) treatment. There is an urgent need to find more effective ways to address these issues. Ferroptosis is a novel form of iron-dependent programmed cell death, distinct from other forms of cell death. In this paper, we summarize how, through the three major defense systems of ferroptosis, not only can substances from traditional Chinese medicine, antitumor drugs, and nano-drug carriers induce ferroptosis in OS cells, but they can also be combined with immunotherapy, differentiation therapy, and other treatment modalities to significantly enhance chemotherapy sensitivity and inhibit tumor growth. Thus, ferroptosis holds great potential in treating OS, offering more choices and possibilities for future clinical interventions.
Collapse
Affiliation(s)
- Yulong Ma
- Department of Orthopedics, Second Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Bone and Joint Diseases of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Liming Cong
- Department of Orthopedics, Second Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Bone and Joint Diseases of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Wenxiang Shen
- Department of Orthopedics, Second Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Bone and Joint Diseases of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Chunwang Yang
- Department of Orthopedics, Second Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Bone and Joint Diseases of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Kaishan Ye
- Department of Orthopedics, Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
24
|
Qin X, He X, Chen L, Han Y, Yun Y, Wu J, Sha L, Borjigin G. Transcriptome analysis of adipose tissue in grazing cattle: Identifying key regulators of fat metabolism. Open Life Sci 2024; 19:20220843. [PMID: 38681730 PMCID: PMC11049749 DOI: 10.1515/biol-2022-0843] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 05/01/2024] Open
Abstract
The taste and tenderness of meat are the main determinants of carcass quality in many countries. This study aimed to discuss the mechanisms of intramuscular fat deposition in grazing and house-breeding cattle. We performed transcriptome analysis to characterize messenger RNA and microRNA (miRNA) expression profiles. A total of 456 and 66 differentially expressed genes (DEGs) and differentially expressed (DE) miRNAs were identified in the adipose tissue of grazing and house-breeding cattle. Kyoto Encyclopedia of Genes and Genomes pathway analysis identified the association of DEGs with fatty acid metabolism, fatty acid degradation, peroxisome proliferator-activated receptors signaling pathway, adenosine monophosphate-activated protein kinase signaling pathway, adipocytokine signaling pathway, and the association of DE miRNAs with mitogen-activated protein kinase signaling pathway. Apolipoprotein L domain containing 1, pyruvate dehydrogenase kinase 4, and sphingosine-1-phosphate lyase 1 genes may be the key regulators of fat metabolism in grazing cattle. Finally, we found that miR-211 and miR-331-5p were negatively correlated with the elongation of very long-chain fatty acids protein 6 (ELOVL6), and miR-331-5p might be the new regulator involved in fat metabolism. The results indicated that ELOVL6 participated in various functions and pathways related to fat metabolism. Meanwhile, miR-331-5p, as a new regulator, might play an essential role in this process. Our findings laid a more in-depth and systematic research foundation for the formation mechanism and characteristics of adipose tissue in grazing cattle.
Collapse
Affiliation(s)
- Xia Qin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, #306 Zhaowuda Road, Saihan District, Huhhot, Inner Mongolia 010018, China
- Pharmacy and Materials School, Huainan Union University, Huainan232038, China
| | - Xige He
- College of Food Science and Engineering, Inner Mongolia Agricultural University, #306 Zhaowuda Road, Saihan District, Huhhot, Inner Mongolia 010018, China
| | - Lu Chen
- College of Food Science and Engineering, Inner Mongolia Agricultural University, #306 Zhaowuda Road, Saihan District, Huhhot, Inner Mongolia 010018, China
| | - Yunfei Han
- College of Food Science and Engineering, Inner Mongolia Agricultural University, #306 Zhaowuda Road, Saihan District, Huhhot, Inner Mongolia 010018, China
| | - Yueying Yun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, #306 Zhaowuda Road, Saihan District, Huhhot, Inner Mongolia 010018, China
| | - Jindi Wu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, #306 Zhaowuda Road, Saihan District, Huhhot, Inner Mongolia 010018, China
| | - Lina Sha
- College of Food Science and Engineering, Inner Mongolia Agricultural University, #306 Zhaowuda Road, Saihan District, Huhhot, Inner Mongolia 010018, China
| | - Gerelt Borjigin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, #306 Zhaowuda Road, Saihan District, Huhhot, Inner Mongolia 010018, China
| |
Collapse
|
25
|
Cui A, Xue Y, Su W, Lin J, Liu Y, Cai G, Wan Q, Jiang Y, Ding D, Zheng Z, Wei S, Li W, Shen J, Wen J, Huang M, Zhao J, Zhang X, Zhao Y, Li H, Ying H, Zhang H, Bi Y, Chen Y, Xu A, Xu Y, Li Y. Glucose regulation of adipose tissue browning by CBP/p300- and HDAC3-mediated reversible acetylation of CREBZF. Proc Natl Acad Sci U S A 2024; 121:e2318935121. [PMID: 38588421 PMCID: PMC11032498 DOI: 10.1073/pnas.2318935121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/27/2024] [Indexed: 04/10/2024] Open
Abstract
Glucose is required for generating heat during cold-induced nonshivering thermogenesis in adipose tissue, but the regulatory mechanism is largely unknown. CREBZF has emerged as a critical mechanism for metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease (NAFLD). We investigated the roles of CREBZF in the control of thermogenesis and energy metabolism. Glucose induces CREBZF in human white adipose tissue (WAT) and inguinal WAT (iWAT) in mice. Lys208 acetylation modulated by transacetylase CREB-binding protein/p300 and deacetylase HDAC3 is required for glucose-induced reduction of proteasomal degradation and augmentation of protein stability of CREBZF. Glucose induces rectal temperature and thermogenesis in white adipose of control mice, which is further potentiated in adipose-specific CREBZF knockout (CREBZF FKO) mice. During cold exposure, CREBZF FKO mice display enhanced thermogenic gene expression, browning of iWAT, and adaptive thermogenesis. CREBZF associates with PGC-1α to repress thermogenic gene expression. Expression levels of CREBZF are negatively correlated with UCP1 in human adipose tissues and increased in WAT of obese ob/ob mice, which may underscore the potential role of CREBZF in the development of compromised thermogenic capability under hyperglycemic conditions. Our results reveal an important mechanism of glucose sensing and thermogenic inactivation through reversible acetylation.
Collapse
Affiliation(s)
- Aoyuan Cui
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Yaqian Xue
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Weitong Su
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Jing Lin
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Yuxiao Liu
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Genxiang Cai
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Qin Wan
- Department of Endocrinology and Metabolism, Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan646000, China
| | - Yang Jiang
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin300457, China
| | - Dong Ding
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Zengpeng Zheng
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Shuang Wei
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Wenjing Li
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Jiaxin Shen
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Jian Wen
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
- Department of General Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan646000, China
| | - Mengyao Huang
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Jiuxiang Zhao
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai200031, China
| | - Xiaojie Zhang
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People’s Hospital, Shanghai200233, China
| | - Yuwu Zhao
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People’s Hospital, Shanghai200233, China
| | - Hong Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai200031, China
| | - Hao Ying
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Haibing Zhang
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Yan Bi
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing210008, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing210008, China
| | - Yan Chen
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Yong Xu
- Department of Endocrinology and Metabolism, Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan646000, China
| | - Yu Li
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| |
Collapse
|
26
|
Morocho-Jaramillo PA, Kotlar-Goldaper I, Zakarauskas-Seth BI, Purfürst B, Filosa A, Sawamiphak S. The zebrafish heart harbors a thermogenic beige fat depot analog of human epicardial adipose tissue. Cell Rep 2024; 43:113955. [PMID: 38507414 DOI: 10.1016/j.celrep.2024.113955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 01/25/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
Epicardial adipose tissue (eAT) is a metabolically active fat depot that has been associated with a wide array of cardiac homeostatic functions and cardiometabolic diseases. A full understanding of its diverse physiological and pathological roles is hindered by the dearth of animal models. Here, we show, in the heart of an ectothermic teleost, the zebrafish, the existence of a fat depot localized underneath the epicardium, originating from the epicardium and exhibiting the molecular signature of beige adipocytes. Moreover, a subset of adipocytes within this cardiac fat tissue exhibits primitive thermogenic potential. Transcriptomic profiling and cross-species analysis revealed elevated glycolytic and cardiac homeostatic gene expression with downregulated obesity and inflammatory hallmarks in the teleost eAT compared to that of lean aged humans. Our findings unveil epicardium-derived beige fat in the heart of an ectotherm considered to possess solely white adipocytes for energy storage and identify pathways that may underlie age-driven remodeling of human eAT.
Collapse
Affiliation(s)
- Paul-Andres Morocho-Jaramillo
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Ilan Kotlar-Goldaper
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Bhakti I Zakarauskas-Seth
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Bettina Purfürst
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Alessandro Filosa
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Suphansa Sawamiphak
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany.
| |
Collapse
|
27
|
Yuan Q, Yin L, He J, Zeng Q, Liang Y, Shen Y, Zu X. Metabolism of asparagine in the physiological state and cancer. Cell Commun Signal 2024; 22:163. [PMID: 38448969 PMCID: PMC10916255 DOI: 10.1186/s12964-024-01540-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024] Open
Abstract
Asparagine, an important amino acid in mammals, is produced in several organs and is widely used for the production of other nutrients such as glucose, proteins, lipids, and nucleotides. Asparagine has also been reported to play a vital role in the development of cancer cells. Although several types of cancer cells can synthesise asparagine alone, their synthesis levels are insufficient to meet their requirements. These cells must rely on the supply of exogenous asparagine, which is why asparagine is considered a semi-essential amino acid. Therefore, nutritional inhibition by targeting asparagine is often considered as an anti-cancer strategy and has shown success in the treatment of leukaemia. However, asparagine limitation alone does not achieve an ideal therapeutic effect because of stress responses that upregulate asparagine synthase (ASNS) to meet the requirements for asparagine in cancer cells. Various cancer cells initiate different reprogramming processes in response to the deficiency of asparagine. Therefore, it is necessary to comprehensively understand the asparagine metabolism in cancers. This review primarily discusses the physiological role of asparagine and the current progress in the field of cancer research.
Collapse
Affiliation(s)
- Qiong Yuan
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Liyang Yin
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Jun He
- Department of Spine Surgery, The Nanhua Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Qiting Zeng
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yuxin Liang
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yingying Shen
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
| | - Xuyu Zu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
| |
Collapse
|
28
|
Sun C, Liang J, Zheng J, Mao S, Chen S, Aikemu A, Liu C. Brown adipose Vanin-1 is required for the maintenance of mitochondrial homeostasis and prevents diet-induced metabolic dysfunction. Mol Metab 2024; 80:101884. [PMID: 38246587 PMCID: PMC10838954 DOI: 10.1016/j.molmet.2024.101884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Energy-dissipating brown adipocytes have significant potential for improving systemic metabolism. Vanin-1, a membrane-bound pantetheinase, is involved in various biological processes in mice. However, its role in BAT mitochondrial function is still unclear. In this study, we aimed to elucidate the impact of Vanin-1 on BAT function and contribution during overnutrition-induced obesity. METHODS Vanin-1 expression was analyzed in different adipose depots in mice. The cellular localization of Vanin-1 was analyzed by confocal microscopy and western blots. Mice lacking Vanin-1 (Vanin-1-/-) were continuously fed either a chow diet or a high-fat diet (HFD) to establish an obesity model. RNA-seq analysis was performed to identify the molecular changes associated with Vanin-1 deficiency during obesity. BAT-specific Vanin-1 overexpression mice were established to determine the effects of Vanin-1 in vivo. Cysteamine treatment was used to examine the effect of enzymatic reaction products of Vanin-1 on BAT mitochondria function in Vanin-1-/- mice. RESULTS The results indicate that the expression of Vanin-1 is reduced in BAT from both diet-induced and leptin-deficient obese mice. Study on the subcellular location of Vanin-1 shows that it has a mitochondrial localization. Vanin-1 deficiency results in increased adiposity, BAT dysfunction, aberrant mitochondrial structure, and promotes HFD induced-BAT whitening. This is attributed to the impairment of the electron transport chain (ETC) in mitochondria due to Vanin-1 deficiency, resulting in reduced mitochondrial respiration. Overexpression of Vanin-1 significantly enhances energy expenditure and thermogenesis in BAT, renders mice resistant to diet-induced obesity. Furthermore, treatment with cysteamine rescue the mitochondrial dysfunction in Vanin-1-/- mice. CONCLUSIONS Collectively, these findings suggest that Vanin-1 plays a crucial role in promoting mitochondrial respiration to counteract diet-induced obesity, making it a potential therapeutic target for obesity.
Collapse
Affiliation(s)
- Chen Sun
- School of Basic Medicine, Weifang Medical University, Weifang, Shandong 261000, China
| | - Jiaqi Liang
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Jia Zheng
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Shuyu Mao
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Siyu Chen
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Ainiwaer Aikemu
- Xinjiang Key Laboratory of Modernization Research, Development and Application of Hotan Characteristic Traditional Chinese Medicine Resources, College of Xinjiang Uyghur Medicine, Hotan 848099, China.
| | - Chang Liu
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
29
|
Wang YQ, Qu HX, Dong YW, Qi JJ, Wei HK, Sun H, Jiang H, Zhang JB, Sun BX, Liang S. Inhibition of FSP1 impairs early embryo developmental competence in pigs. Theriogenology 2024; 214:257-265. [PMID: 37944430 DOI: 10.1016/j.theriogenology.2023.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/02/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023]
Abstract
Ferroptosis suppressor protein 1 (FSP1) is a glutathione-independent ferroptosis inhibitory factor. FSP1 has been found to play a crucial role in the regulation of mitochondrial function and ferroptosis. However, its function in porcine early embryonic development remains unknown. In the present research, we found that FSP1 was expressed at different stages during porcine early embryo development. Compared with the control condition, inhibition of FSP1 reduced the cleavage rate at 24 h and 48 h and the blastocyst rate at 144 h. In addition, inhibiting FSP1 reduced the blastocyst diameter, total cell number, and proliferation capacity. Further analysis showed that inhibition of FSP1 significantly increased the levels of ferrous ions (Fe2+) and MDA but not GPX4. We also found that inhibition of FSP1 significantly decreased mitochondrial membrane potential and ATP levels, which in turn caused excessive accumulation of ROS and decreased the levels of GSH and the activity of the intracellular antioxidant enzymes SOD and CAT in embryos. In conclusion, FSP1, an important regulator, participates in regulating the development and quality of porcine early embryos. Inhibition of FSP1 impairs blastocyst formation, induces glutathione-independent ferroptosis, and further leads to oxidative stress due to mitochondrial dysfunction, ultimately affecting the developmental competence and impairing the quality of porcine early embryos.
Collapse
Affiliation(s)
- Yan-Qiu Wang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - He-Xuan Qu
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Yan-Wei Dong
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Jia-Jia Qi
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Hua-Kai Wei
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Hao Sun
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Hao Jiang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Jia-Bao Zhang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Bo-Xing Sun
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China.
| | - Shuang Liang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China.
| |
Collapse
|
30
|
Zhang CL, Zhang J, Tuersuntuoheti M, Zhou W, Han Z, Li X, Yang R, Zhang L, Zheng L, Liu S. Landscape genomics reveals adaptive divergence of indigenous sheep in different ecological environments of Xinjiang, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166698. [PMID: 37683864 DOI: 10.1016/j.scitotenv.2023.166698] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
Sheep are important livestock animals that have evolved under various ecological pressures. Xinjiang is a region with diverse and harsh environments that have shaped many local sheep breeds with unique characteristics and environmental adaptability. However, these breeds are losing ecological flexibility due to the promotion of intensive farming practices. Here we sequenced 14 local sheep breeds from Xinjiang and analyzed their genetic structure and gene flow with other sheep breeds from neighboring regions. The Tibetan Plateau was the geographic origin of Xinjiang native sheep evolution. We performed genome-environment association analysis and identified Bio9: Mean Temperature of Driest Quarter and Bio15: Precipitation Seasonality as the key environmental factors affecting Xinjiang local sheep and the key genes involved in their survival and adaptation. We classified Xinjiang native sheep breeds into six groups based on their differential genes by pairwise selective sweep analysis and Community Network Analysis. We analyzed transcriptome expression data of 832 sheep tissues and detected tissue-specific enrichment of six group-specific genes in different biological systems. Our results revealed the genetic basis of year-round estrus, drought tolerance, hypoxia resistance, and cold tolerance traits of Xinjiang sheep breeds. Moreover, we proposed conservation strategies for Xinjiang local sheep breeds and provided theoretical guidance for breeding new sheep breeds under global extreme environments.
Collapse
Affiliation(s)
- Cheng-Long Zhang
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China
| | - Jihu Zhang
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China
| | - Mirenisa Tuersuntuoheti
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China
| | - Wen Zhou
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China
| | - Zhipeng Han
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China
| | - Xiaopeng Li
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China
| | - Ruizhi Yang
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China
| | - Lulu Zhang
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China
| | - Langman Zheng
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China
| | - Shudong Liu
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China.
| |
Collapse
|
31
|
Bao T, Zhang X, Xie W, Wang Y, Li X, Tang C, Yang Y, Sun J, Gao J, Yu T, Zhao L, Tong X. Natural compounds efficacy in complicated diabetes: A new twist impacting ferroptosis. Biomed Pharmacother 2023; 168:115544. [PMID: 37820566 DOI: 10.1016/j.biopha.2023.115544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023] Open
Abstract
Ferroptosis, as a way of cell death, participates in the body's normal physiological and pathological regulation. Recent studies have shown that ferroptosis may damage glucose-stimulated islets β Insulin secretion and programmed cell death of T2DM target organs are involved in the pathogenesis of T2DM and its complications. Targeting suppression of ferroptosis with specific inhibitors may provide new therapeutic opportunities for previously untreated T2DM and its target organs. Current studies suggest that natural bioactive compounds, which are abundantly available in drugs, foods, and medicinal plants for the treatment of T2DM and its target organs, have recently received significant attention for their various biological activities and minimal toxicity, and that many natural compounds appear to have a significant role in the regulation of ferroptosis in T2DM and its target organs. Therefore, this review summarized the potential treatment strategies of natural compounds as ferroptosis inhibitors to treat T2DM and its complications, providing potential lead compounds and natural phytochemical molecular nuclei for future drug research and development to intervene in ferroptosis in T2DM.
Collapse
Affiliation(s)
- Tingting Bao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China; Graduate school, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Xiangyuan Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China; Graduate school, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Weinan Xie
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China; Graduate school, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Ying Wang
- Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Jingyue National High-tech Industrial Development Zone, Changchun 130117, China
| | - Xiuyang Li
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China
| | - Cheng Tang
- Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Jingyue National High-tech Industrial Development Zone, Changchun 130117, China
| | - Yingying Yang
- National Center for Integrated Traditional and Western Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jun Sun
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, No. 1478, Gongnong Road, Chaoyang District, Changchun 130021, China
| | - Jiaqi Gao
- School of Qi-Huang Chinese Medicine, Beijing University of Chinese Medicine, No. 11, North 3rd Ring East Roa, Chaoyang Distric, Beijing 10010, China
| | - Tongyue Yu
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China.
| | - Xiaolin Tong
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China.
| |
Collapse
|
32
|
Pi A, Villivalam SD, Kang S. The Molecular Mechanisms of Fuel Utilization during Exercise. BIOLOGY 2023; 12:1450. [PMID: 37998049 PMCID: PMC10669127 DOI: 10.3390/biology12111450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
Exercise is widely recognized for its positive impact on human health and well-being. The process of utilizing substrates in skeletal muscle during exercise is intricate and governed by complex mechanisms. Carbohydrates and lipids serve as the primary fuel sources for skeletal muscle during exercise. It is now understood that fuel selection during exercise is not solely determined by physical activity itself but is also influenced by the overall metabolic state of the body. The balance between lipid and carbohydrate utilization significantly affects exercise capacity, including endurance, fatigue, and overall performance. Therefore, comprehensively understanding the regulation of substrate utilization during exercise is of utmost importance. The aim of this review is to provide an extensive overview of the current knowledge regarding the pathways involved in the regulation of substrate utilization during exercise. By synthesizing existing research, we can gain a holistic perspective on the intricate relationship between exercise, metabolism, and fuel selection. This advanced understanding has the potential to drive advancements in the field of exercise science and contribute to the development of personalized exercise strategies for individuals looking to optimize their performance and overall health.
Collapse
Affiliation(s)
| | | | - Sona Kang
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
33
|
Ding XS, Gao L, Han Z, Eleuteri S, Shi W, Shen Y, Song ZY, Su M, Yang Q, Qu Y, Simon DK, Wang XL, Wang B. Ferroptosis in Parkinson's disease: Molecular mechanisms and therapeutic potential. Ageing Res Rev 2023; 91:102077. [PMID: 37742785 DOI: 10.1016/j.arr.2023.102077] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/26/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Parkinson's Disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra (SN), leading to motor and non-motor symptoms. While the exact mechanisms remain complex and multifaceted, several molecular pathways have been implicated in PD pathology, including accumulation of misfolded proteins, impaired mitochondrial function, oxidative stress, inflammation, elevated iron levels, etc. Overall, PD's molecular mechanisms involve a complex interplay between genetic, environmental, and cellular factors that disrupt cellular homeostasis, and ultimately lead to the degeneration of dopaminergic neurons. Recently, emerging evidence highlights ferroptosis, an iron-dependent non-apoptotic cell death process, as a pivotal player in the advancement of PD. Notably, oligomeric α-synuclein (α-syn) generates reactive oxygen species (ROS) and lipid peroxides within cellular membranes, potentially triggering ferroptosis. The loss of dopamine, a hallmark of PD, could predispose neurons to ferroptotic vulnerability. This unique form of cell demise unveils fresh insights into PD pathogenesis, necessitating an exploration of the molecular intricacies connecting ferroptosis and PD progression. In this review, the molecular and regulatory mechanisms of ferroptosis and their connection with the pathological processes of PD have been systematically summarized. Furthermore, the features of ferroptosis in PD animal models and clinical trials targeting ferroptosis as a therapeutic approach in PD patients' management are scrutinized.
Collapse
Affiliation(s)
- Xv-Shen Ding
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China; Basic Medicine School, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Li Gao
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Zheng Han
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Simona Eleuteri
- Department of Neurology, Beth Israel Deaconess Medical Center, 3 Blackfan Circle 628H, Boston, MA 02215, USA
| | - Wei Shi
- Department of Neurosurgery, PLA 960th hospital, JiNan, Shandong Province, 250031, China
| | - Yun Shen
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Zi-Yao Song
- Basic Medicine School, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Mingming Su
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Qian Yang
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China.
| | - David K Simon
- Department of Neurology, Beth Israel Deaconess Medical Center, 3 Blackfan Circle 628H, Boston, MA 02215, USA.
| | - Xue-Lian Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China.
| | - Bao Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China.
| |
Collapse
|
34
|
Nakamura T, Mishima E, Yamada N, Mourão ASD, Trümbach D, Doll S, Wanninger J, Lytton E, Sennhenn P, Nishida Xavier da Silva T, Angeli JPF, Sattler M, Proneth B, Conrad M. Integrated chemical and genetic screens unveil FSP1 mechanisms of ferroptosis regulation. Nat Struct Mol Biol 2023; 30:1806-1815. [PMID: 37957306 PMCID: PMC10643123 DOI: 10.1038/s41594-023-01136-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/25/2023] [Indexed: 11/15/2023]
Abstract
Ferroptosis, marked by iron-dependent lipid peroxidation, may present an Achilles heel for the treatment of cancers. Ferroptosis suppressor protein-1 (FSP1), as the second ferroptosis mainstay, efficiently prevents lipid peroxidation via NAD(P)H-dependent reduction of quinones. Because its molecular mechanisms have remained obscure, we studied numerous FSP1 mutations present in cancer or identified by untargeted random mutagenesis. This mutational analysis elucidates the FAD/NAD(P)H-binding site and proton-transfer function of FSP1, which emerged to be evolutionarily conserved among different NADH quinone reductases. Using random mutagenesis screens, we uncover the mechanism of action of next-generation FSP1 inhibitors. Our studies identify the binding pocket of the first FSP1 inhibitor, iFSP1, and introduce the first species-independent FSP1 inhibitor, targeting the NAD(P)H-binding pocket. Conclusively, our study provides new insights into the molecular functions of FSP1 and enables the rational design of FSP1 inhibitors targeting cancer cells.
Collapse
Affiliation(s)
- Toshitaka Nakamura
- Institute of Metabolism and Cell Death, Molecular Target and Therapeutics Center, Helmholtz Munich, Neuherberg, Germany
| | - Eikan Mishima
- Institute of Metabolism and Cell Death, Molecular Target and Therapeutics Center, Helmholtz Munich, Neuherberg, Germany
- Division of Nephrology, Rheumatology and Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoya Yamada
- Institute of Metabolism and Cell Death, Molecular Target and Therapeutics Center, Helmholtz Munich, Neuherberg, Germany
| | - André Santos Dias Mourão
- Institute of Structural Biology, Molecular Target and Therapeutics Center, Helmholtz Munich, Neuherberg, Germany
| | - Dietrich Trümbach
- Institute of Metabolism and Cell Death, Molecular Target and Therapeutics Center, Helmholtz Munich, Neuherberg, Germany
| | - Sebastian Doll
- Institute of Metabolism and Cell Death, Molecular Target and Therapeutics Center, Helmholtz Munich, Neuherberg, Germany
| | - Jonas Wanninger
- Institute of Metabolism and Cell Death, Molecular Target and Therapeutics Center, Helmholtz Munich, Neuherberg, Germany
| | - Elena Lytton
- Institute of Metabolism and Cell Death, Molecular Target and Therapeutics Center, Helmholtz Munich, Neuherberg, Germany
| | | | - Thamara Nishida Xavier da Silva
- Rudolf Virchow Zentrum (RVZ), Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - José Pedro Friedmann Angeli
- Rudolf Virchow Zentrum (RVZ), Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Michael Sattler
- Institute of Structural Biology, Molecular Target and Therapeutics Center, Helmholtz Munich, Neuherberg, Germany
- Bavarian NMR Center, Department of Bioscience, School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Bettina Proneth
- Institute of Metabolism and Cell Death, Molecular Target and Therapeutics Center, Helmholtz Munich, Neuherberg, Germany
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Molecular Target and Therapeutics Center, Helmholtz Munich, Neuherberg, Germany.
| |
Collapse
|
35
|
Zhao Q, Yu C, Xu X, Jin W, Zhang Z, Huang H, Gao Y, Pan D. Phosphorylated YBX2 is stabilized to promote glycolysis in brown adipocytes. iScience 2023; 26:108091. [PMID: 37860762 PMCID: PMC10583057 DOI: 10.1016/j.isci.2023.108091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/24/2023] [Accepted: 09/26/2023] [Indexed: 10/21/2023] Open
Abstract
Y-box binding protein 2 (YBX2) is an essential modulator of brown adipose tissue activation, yet the regulation on its own expression and the involved mechanism remains largely unknown. Herein, we report the YBX2 protein level, but not mRNA level, is induced in response to acute β-adrenergic signaling. In this context, YBX2 is a dual substrate for both AMPK and Akt2. The phosphorylation at Thr115 by AMPK or at Ser137 by Akt2 facilitates YBX2 accumulation in brown adipocytes by decreasing ubiquitination-mediated degradation. Beyond stabilizing PGC1α mRNA, increased YBX2 upon thermogenic activation assists the expression of glycolytic enzymes, promotes glucose utilization and lactate production. Mechanistically, YBX2 modulates translation of glycolytic genes via direct binding to 5'-UTRs of these genes. Together these findings suggest YBX2 is responsive to thermogenic stimuli by phosphorylation modification, and stabilized YBX2 helps to boost glycolysis and thermogenesis in brown adipocytes.
Collapse
Affiliation(s)
- Qingwen Zhao
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Department of Geriatrics, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Yu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xiaoxuan Xu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Wenfang Jin
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zhe Zhang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Haiyan Huang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yue Gao
- Department of Geriatrics, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongning Pan
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
36
|
Feng S, Tang D, Wang Y, Li X, Bao H, Tang C, Dong X, Li X, Yang Q, Yan Y, Yin Z, Shang T, Zheng K, Huang X, Wei Z, Wang K, Qi S. The mechanism of ferroptosis and its related diseases. MOLECULAR BIOMEDICINE 2023; 4:33. [PMID: 37840106 PMCID: PMC10577123 DOI: 10.1186/s43556-023-00142-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/23/2023] [Indexed: 10/17/2023] Open
Abstract
Ferroptosis, a regulated form of cellular death characterized by the iron-mediated accumulation of lipid peroxides, provides a novel avenue for delving into the intersection of cellular metabolism, oxidative stress, and disease pathology. We have witnessed a mounting fascination with ferroptosis, attributed to its pivotal roles across diverse physiological and pathological conditions including developmental processes, metabolic dynamics, oncogenic pathways, neurodegenerative cascades, and traumatic tissue injuries. By unraveling the intricate underpinnings of the molecular machinery, pivotal contributors, intricate signaling conduits, and regulatory networks governing ferroptosis, researchers aim to bridge the gap between the intricacies of this unique mode of cellular death and its multifaceted implications for health and disease. In light of the rapidly advancing landscape of ferroptosis research, we present a comprehensive review aiming at the extensive implications of ferroptosis in the origins and progress of human diseases. This review concludes with a careful analysis of potential treatment approaches carefully designed to either inhibit or promote ferroptosis. Additionally, we have succinctly summarized the potential therapeutic targets and compounds that hold promise in targeting ferroptosis within various diseases. This pivotal facet underscores the burgeoning possibilities for manipulating ferroptosis as a therapeutic strategy. In summary, this review enriched the insights of both investigators and practitioners, while fostering an elevated comprehension of ferroptosis and its latent translational utilities. By revealing the basic processes and investigating treatment possibilities, this review provides a crucial resource for scientists and medical practitioners, aiding in a deep understanding of ferroptosis and its effects in various disease situations.
Collapse
Affiliation(s)
- Shijian Feng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Dan Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yichang Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiang Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Hui Bao
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Chengbing Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiuju Dong
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xinna Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Qinxue Yang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yun Yan
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zhijie Yin
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Tiantian Shang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Kaixuan Zheng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiaofang Huang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zuheng Wei
- Chengdu Jinjiang Jiaxiang Foreign Languages High School, Chengdu, People's Republic of China
| | - Kunjie Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Shiqian Qi
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
37
|
Li Y, Ma JQ, Wang CC, Zhou J, Sun YD, Wei XL, Zhao ZQ. Ferroptosis: A potential target of macrophages in plaque vulnerability. Open Life Sci 2023; 18:20220722. [PMID: 37791060 PMCID: PMC10543703 DOI: 10.1515/biol-2022-0722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/04/2023] [Accepted: 08/16/2023] [Indexed: 10/05/2023] Open
Abstract
Plaque vulnerability has been the subject of several recent studies aimed at reducing the risk of stroke and carotid artery stenosis. Atherosclerotic plaque development is a complex process involving inflammation mediated by macrophages. Plaques become more vulnerable when the equilibrium between macrophage recruitment and clearance is disturbed. Lipoperoxides, which are affected by iron levels in cells, are responsible for the cell death seen in ferroptosis. Ferroptosis results from lipoperoxide-induced mitochondrial membrane toxicity. Atherosclerosis in ApoE(-/-) mice is reduced when ferroptosis is inhibited and iron intake is limited. Single-cell sequencing revealed that a ferroptosis-related gene was substantially expressed in atherosclerosis-modeled macrophages. Since ferroptosis can be regulated, it offers hope as a non-invasive method of treating carotid plaque. In this study, we discuss the role of ferroptosis in atherosclerotic plaque vulnerability, including its mechanism, regulation, and potential future research directions.
Collapse
Affiliation(s)
- Yu Li
- Department of Vascular Surgery, Changhai Hospital, The PLA Naval Medical University, 168 Changhai Road, Shanghai200433, China
| | - Ji-Qing Ma
- Department of Vascular Surgery, Changhai Hospital, The PLA Naval Medical University, 168 Changhai Road, Shanghai200433, China
| | - Chao-Chen Wang
- Department of Vascular Surgery, Changhai Hospital, The PLA Naval Medical University, 168 Changhai Road, Shanghai200433, China
| | - Jian Zhou
- Department of Vascular Surgery, Changhai Hospital, The PLA Naval Medical University, 168 Changhai Road, Shanghai200433, China
| | - Yu-Dong Sun
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University,
Nanjing201411, China
| | - Xiao-Long Wei
- Department of Vascular Surgery, Changhai Hospital, The PLA Naval Medical University, 168 Changhai Road, Shanghai200433, China
| | - Zhi-Qing Zhao
- Department of Vascular Surgery, Changhai Hospital, The PLA Naval Medical University, 168 Changhai Road, Shanghai200433, China
| |
Collapse
|
38
|
Lv Y, Liang C, Sun Q, Zhu J, Xu H, Li X, Li YY, Wang Q, Yuan H, Chu B, Zhu D. Structural insights into FSP1 catalysis and ferroptosis inhibition. Nat Commun 2023; 14:5933. [PMID: 37739943 PMCID: PMC10516921 DOI: 10.1038/s41467-023-41626-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 09/11/2023] [Indexed: 09/24/2023] Open
Abstract
Ferroptosis suppressor protein 1 (FSP1, also known as AIMF2, AMID or PRG3) is a recently identified glutathione-independent ferroptosis suppressor1-3, but its underlying structural mechanism remains unknown. Here we report the crystal structures of Gallus gallus FSP1 in its substrate-free and ubiquinone-bound forms. The structures reveal a FAD-binding domain and a NAD(P)H-binding domain, both of which are shared with AIF and NADH oxidoreductases4-9, and a characteristic carboxy-terminal domain as well. We demonstrate that the carboxy-terminal domain is crucial for the catalytic activity and ferroptosis inhibition of FSP1 by mediating the functional dimerization of FSP1, and the formation of two active sites located on two sides of FAD, which are responsible for ubiquinone reduction and a unique FAD hydroxylation respectively. We also identify that FSP1 can catalyze the production of H2O2 and the conversion of FAD to 6-hydroxy-FAD in the presence of oxygen and NAD(P)H in vitro, and 6-hydroxy-FAD directly inhibits ferroptosis in cells. Together, these findings further our understanding on the catalytic and ferroptosis suppression mechanisms of FSP1 and establish 6-hydroxy-FAD as an active cofactor in FSP1 and a potent radical-trapping antioxidant in ferroptosis inhibition.
Collapse
Affiliation(s)
- Yun Lv
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Chunhui Liang
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Qichao Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Jing Zhu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Haiyan Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Xiaoqing Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yao-Yao Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Qihai Wang
- School of bioengineering, Jingchu University of Technology, Jingmen, 448000, China.
| | - Huiqing Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
- Key Laboratory of Experimental Teratology of Ministry of Education, Institute of Medical Sciences, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250031, China.
| | - Bo Chu
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Deyu Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
39
|
Guo S, Li F, Liang Y, Zheng Y, Mo Y, Zhao D, Jiang Z, Cui M, Qi L, Chen J, Wan L, Chen G, Wei S, Yang Q, Liu J. AIFM2 promotes hepatocellular carcinoma metastasis by enhancing mitochondrial biogenesis through activation of SIRT1/PGC-1α signaling. Oncogenesis 2023; 12:46. [PMID: 37735151 PMCID: PMC10514190 DOI: 10.1038/s41389-023-00491-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/23/2023] Open
Abstract
AIFM2 is a crucial NADH oxidase involved in the regulation of cytosolic NAD+. However, the role of AIFM2 in the progression of human cancers remains largely unexplored. Here, we elucidated the clinical implications, biological functions, and molecular mechanisms of AIFM2 in hepatocellular carcinoma (HCC). We found that AIFM2 is significantly upregulated in HCC, which is most probably caused by DNA hypomethylation and downregulation of miR-150-5p. High expression of AIFM2 is markedly associated with poor survival in patients with HCC. Knockdown of AIFM2 significantly impaired, while forced expression of AIFM2 enhanced the metastasis of HCC both in vitro and in vivo. Mechanistically, increased mitochondrial biogenesis and oxidative phosphorylation by activation of SIRT1/PGC-1α signaling contributed to the promotion of metastasis by AIFM2 in HCC. In conclusion, AIFM2 upregulation plays a crucial role in the promotion of HCC metastasis by activating SIRT1/PGC-1α signaling, which strongly suggests that AIFM2 could be targeted for the treatment of HCC.
Collapse
Affiliation(s)
- Sanxing Guo
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Fengying Li
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Yixuan Liang
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, 475004, Kaifeng, Henan, China
| | - Yufei Zheng
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Yingyi Mo
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Deyao Zhao
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Zhixiong Jiang
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, 475004, Kaifeng, Henan, China
| | - Mengmeng Cui
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, 475004, Kaifeng, Henan, China
| | - Lixia Qi
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, 475004, Kaifeng, Henan, China
| | - Jiaxing Chen
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, 475004, Kaifeng, Henan, China
| | - Lixin Wan
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, 475004, Kaifeng, Henan, China
| | - Guoyong Chen
- Department of Hepatobiliary Pancreatic Surgery, Henan Provincial People's Hospital; Zhengzhou University People's Hospital, Henan University People's Hospital, 450003, Zhengzhou, Henan, China
| | - Sidong Wei
- Department of Hepatobiliary Pancreatic Surgery, Henan Provincial People's Hospital; Zhengzhou University People's Hospital, Henan University People's Hospital, 450003, Zhengzhou, Henan, China
| | - Qi Yang
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, 475004, Kaifeng, Henan, China.
- School of Life Sciences, Henan University, 475004, Kaifeng, Henan, China.
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
| |
Collapse
|
40
|
Hendricks JM, Doubravsky CE, Wehri E, Li Z, Roberts MA, Deol KK, Lange M, Lasheras-Otero I, Momper JD, Dixon SJ, Bersuker K, Schaletzky J, Olzmann JA. Identification of structurally diverse FSP1 inhibitors that sensitize cancer cells to ferroptosis. Cell Chem Biol 2023; 30:1090-1103.e7. [PMID: 37178691 PMCID: PMC10524360 DOI: 10.1016/j.chembiol.2023.04.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/07/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023]
Abstract
Ferroptosis is a regulated form of cell death associated with the iron-dependent accumulation of phospholipid hydroperoxides. Inducing ferroptosis is a promising approach to treat therapy-resistant cancer. Ferroptosis suppressor protein 1 (FSP1) promotes ferroptosis resistance in cancer by generating the antioxidant form of coenzyme Q10 (CoQ). Despite the important role of FSP1, few molecular tools exist that target the CoQ-FSP1 pathway. Through a series of chemical screens, we identify several structurally diverse FSP1 inhibitors. The most potent of these compounds, ferroptosis sensitizer 1 (FSEN1), is an uncompetitive inhibitor that acts selectively through on-target inhibition of FSP1 to sensitize cancer cells to ferroptosis. Furthermore, a synthetic lethality screen reveals that FSEN1 synergizes with endoperoxide-containing ferroptosis inducers, including dihydroartemisinin, to trigger ferroptosis. These results provide new tools that catalyze the exploration of FSP1 as a therapeutic target and highlight the value of combinatorial therapeutic regimes targeting FSP1 and additional ferroptosis defense pathways.
Collapse
Affiliation(s)
- Joseph M Hendricks
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Cody E Doubravsky
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Eddie Wehri
- The Henry Wheeler Center for Emerging and Neglected Diseases, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Zhipeng Li
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Melissa A Roberts
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kirandeep K Deol
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Mike Lange
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Irene Lasheras-Otero
- Cancer Signaling Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Jeremiah D Momper
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Kirill Bersuker
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Julia Schaletzky
- The Henry Wheeler Center for Emerging and Neglected Diseases, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - James A Olzmann
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Miller Institute for Basic Research in Science, University of California, Berkeley, Berkeley, CA 94720, USA; Chan Zuckerberg Biohub - San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
41
|
Ruskovska T, Bernlohr DA. The Role of NAD + in Metabolic Regulation of Adipose Tissue: Implications for Obesity-Induced Insulin Resistance. Biomedicines 2023; 11:2560. [PMID: 37761000 PMCID: PMC10526756 DOI: 10.3390/biomedicines11092560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Obesity-induced insulin resistance is among the key factors in the development of type 2 diabetes, atherogenic dyslipidemia and cardiovascular disease. Adipose tissue plays a key role in the regulation of whole-body metabolism and insulin sensitivity. In obesity, adipose tissue becomes inflamed and dysfunctional, exhibiting a modified biochemical signature and adipokine secretion pattern that promotes insulin resistance in peripheral tissues. An important hallmark of dysfunctional obese adipose tissue is impaired NAD+/sirtuin signaling. In this chapter, we summarize the evidence for impairment of the NAD+/sirtuin pathway in obesity, not only in white adipose tissue but also in brown adipose tissue and during the process of beiging, together with correlative evidence from human studies. We also describe the role of PARPs and CD38 as important NAD+ consumers and discuss findings from experimental studies that investigated potential NAD+ boosting strategies and their efficacy in restoring impaired NAD+ metabolism in dysfunctional obese adipose tissue. In sum, these studies suggest a critical role of NAD+ metabolism in adipose biology and provide a basis for the potential development of strategies to restore metabolic health in obesity.
Collapse
Affiliation(s)
- Tatjana Ruskovska
- Faculty of Medical Sciences, Goce Delcev University, 2000 Stip, North Macedonia;
| | - David A. Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA
| |
Collapse
|
42
|
Li Y, Zhang Y, Zhang T, Ping X, Wang D, Chen Y, Yu J, Liu C, Liu Z, Zheng Y, Yang Y, Ruan C, Li D, Du Z, Wang J, Xu L, Ma X. Rna M 6 a Methylation Regulates Glycolysis of Beige Fat and Contributes to Systemic Metabolic Homeostasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300436. [PMID: 37407508 PMCID: PMC10477848 DOI: 10.1002/advs.202300436] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/29/2023] [Indexed: 07/07/2023]
Abstract
N6-methyladenosine (m6 A) modification has been implicated in the progression of obesity and metabolic diseases. However, its impact on beige fat biology is not well understood. Here, via m6 A-sequencing and RNA-sequencing, this work reports that upon beige adipocytes activation, glycolytic genes undergo major events of m6 A modification and transcriptional activation. Genetic ablation of m6 A writer Mettl3 in fat tissues reveals that Mettl3 deficiency in mature beige adipocytes leads to suppressed glycolytic capability and thermogenesis, as well as reduced preadipocytes proliferation via glycolytic product lactate. In addition, specific modulation of Mettl3 in beige fat via AAV delivery demonstrates consistently Mettl3's role in glucose metabolism, thermogenesis, and beige fat hyperplasia. Mechanistically, Mettl3 and m6 A reader Igf2bp2 control mRNA stability of key glycolytic genes in beige adipocytes. Overall, these findings highlight the significance of m6 A on fat biology and systemic energy homeostasis.
Collapse
Affiliation(s)
- Yu Li
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241China
- Chongqing Key Laboratory of Precision OpticsChongqing Institute of East China Normal UniversityChongqing401120China
| | - Yankang Zhang
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241China
| | - Ting Zhang
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241China
| | - Xiaodan Ping
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241China
| | - Dongmei Wang
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241China
| | - Yanru Chen
- Department of Endocrinology and MetabolismRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Jian Yu
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241China
- Department of Endocrinology and MetabolismFengxian Central Hospital Affiliated to Southern Medical UniversityShanghai201499China
| | - Caizhi Liu
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241China
| | - Ziqi Liu
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241China
| | - Yuhan Zheng
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241China
| | - Yongfeng Yang
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesFudan UniversityShanghai200032China
| | - Chengchao Ruan
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesFudan UniversityShanghai200032China
| | - Dali Li
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241China
- Shanghai Frontiers Science Center of Genome Editing and Cell TherapyShanghai Key Laboratory of Regulatory Biology and School of Life SciencesEast China Normal UniversityShanghai200241China
| | - Zhenyu Du
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241China
| | - Jiqiu Wang
- Department of Endocrinology and MetabolismRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241China
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241China
- Chongqing Key Laboratory of Precision OpticsChongqing Institute of East China Normal UniversityChongqing401120China
- Department of Endocrinology and MetabolismFengxian Central Hospital Affiliated to Southern Medical UniversityShanghai201499China
- Shanghai Frontiers Science Center of Genome Editing and Cell TherapyShanghai Key Laboratory of Regulatory Biology and School of Life SciencesEast China Normal UniversityShanghai200241China
| |
Collapse
|
43
|
Yu J, Qiu J, Zhang Z, Cui X, Guo W, Sheng M, Gao M, Wang D, Xu L, Ma X. Redox Biology in Adipose Tissue Physiology and Obesity. Adv Biol (Weinh) 2023; 7:e2200234. [PMID: 36658733 DOI: 10.1002/adbi.202200234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/24/2022] [Indexed: 01/21/2023]
Abstract
Reactive oxygen species (ROS), a by-product of mitochondrial oxidative phosphorylation and cellular metabolism, is vital for cellular survival, proliferation, damage, and senescence. In recent years, studies have shown that ROS levels and redox status in adipose tissue are strongly associated with obesity and metabolic diseases. Although it was previously considered that excessive production of ROS and impairment of antioxidant capability leads to oxidative stress and potentially contributes to increased adiposity, it has become increasingly evident that an adequate amount of ROS is vital for adipocyte differentiation and thermogenesis. In this review, by providing a systematic overview of the recent understanding of the key factors of redox systems, endogenous mechanisms for redox homeostasis, advanced techniques for dynamic redox monitoring, as well as exogenous stimuli for redox production in adipose tissues and obesity, the importance of redox biology in metabolic health is emphasized.
Collapse
Affiliation(s)
- Jian Yu
- Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai, 201499, P. R. China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Jin Qiu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Zhe Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Xiangdi Cui
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Wenxiu Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Maozheng Sheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Mingyuan Gao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Dongmei Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Xinran Ma
- Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai, 201499, P. R. China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120, P. R. China
| |
Collapse
|
44
|
Li W, Liang L, Liu S, Yi H, Zhou Y. FSP1: a key regulator of ferroptosis. Trends Mol Med 2023; 29:753-764. [PMID: 37357101 DOI: 10.1016/j.molmed.2023.05.013] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/27/2023]
Abstract
Ferroptosis suppressor protein 1 (FSP1) is one of the main regulatory molecules of ferroptosis. FSP1 functions through the FSP1-coenzyme Q10 (CoQ10)-NAD(P)H axis and the vitamin K redox cycle. FSP1 is regulated by upstream factors, including transcription factors and noncoding RNA (ncRNA), and is subject to epigenetic modifications, which affect the progress of FSP1-related diseases. FSP1 is closely associated with the poor prognosis of malignant tumors and plays an important role in disease treatment. This review aims to provide a comprehensive understanding of the role of FSP1 in ferroptosis regulation by summarizing regulatory pathways, possible mechanisms involving FSP1, and the relationship between FSP1 and disease prognosis and treatment.
Collapse
Affiliation(s)
- Wentao Li
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China; Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410011, China
| | - Lin Liang
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410011, China
| | - Siyi Liu
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410011, China
| | - Hong Yi
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China.
| | - Yanhong Zhou
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China; Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
45
|
You J, Ouyang S, Xie Z, Zhi C, Yu J, Tan X, Li P, Lin X, Ma W, Liu Z, Hou Q, Xie N, Peng T, Chen X, Li L, Xie W. The suppression of hyperlipid diet-induced ferroptosis of vascular smooth muscle cells protests against atherosclerosis independent of p53/SCL7A11/GPX4 axis. J Cell Physiol 2023; 238:1891-1908. [PMID: 37269460 DOI: 10.1002/jcp.31045] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 04/16/2023] [Accepted: 05/11/2023] [Indexed: 06/05/2023]
Abstract
Ferroptosis as a novel programmed cell death that involves metabolic dysfunction due to iron-dependent excessive lipid peroxidation has been implicated in atherosclerosis (AS) development characterized by disrupted lipid metabolism, but the atherogenic role of ferroptosis in vascular smooth muscle cells (VSMCs), which are principal components of atherosclerotic plaque fibrous cap, remains unclear. The aim of this study was to determine the effects of ferroptosis on AS induced by lipid overload, and the effects of that on VSMCs ferroptosis. We found intraperitoneal injection of Fer-1, a ferroptosis inhibitor, ameliorated obviously high-fat diet-induced high plasma levels of triglycerides, total cholesterol, low-density lipoprotein, glucose and atherosclerotic lesions in ApoE-/- mice. Moreover, in vivo and in vitro, Fer-1 reduced the iron accumulation of atherosclerotic lesions through affecting the expression of TFR1, FTH, and FTL in VSMCs. Interestingly, Fer-1 did augment nuclear factor E2-related factor 2/ferroptosis suppressor protein 1 to enhance endogenous resistance to lipid peroxidation, but not classic p53/SCL7A11/GPX4. Those observations indicated inhibition of VSMCs ferroptosis can improve AS lesions independent of p53/SLC7A11/GPX4, which preliminarily revealed the potential mechanism of ferroptosis in aortic VSMCs on AS and provided new therapeutic strategies and targets for AS.
Collapse
Affiliation(s)
- Jia You
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Siyu Ouyang
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhongcheng Xie
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Chenxi Zhi
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jiang Yu
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiaoqian Tan
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Pin Li
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiaoyan Lin
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Wentao Ma
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhiyang Liu
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qin Hou
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Nan Xie
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Tianhong Peng
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xi Chen
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Liang Li
- Department of Physiology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Wei Xie
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
46
|
Jiang T, Su D, Liu X, Wang Y, Wang L. Transcriptomic Analysis Reveals Fibroblast Growth Factor 11 (FGF11) Role in Brown Adipocytes in Thermogenic Regulation of Goats. Int J Mol Sci 2023; 24:10838. [PMID: 37446019 DOI: 10.3390/ijms241310838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Brown adipose tissue (BAT) is the main site of adaptive thermogenesis, generates heat to maintain body temperature upon cold exposure, and protects against obesity by promoting energy expenditure. RNA-seq analysis revealed that FGF11 is enriched in BAT. However, the functions and regulatory mechanisms of FGF11 in BAT thermogenesis are still limited. In this study, we found that FGF11 was significantly enriched in goat BAT compared with white adipose tissue (WAT). Gain- and loss-of-function experiments revealed that FGF11 promoted differentiation and thermogenesis in brown adipocytes. However, FGF11 had no effect on white adipocyte differentiation. Furthermore, FGF11 promoted the expression of the UCP1 protein and an EBF2 element was responsible for UCP1 promoter activity. Additionally, FGF11 induced UCP1 gene expression through promoting EBF2 binding to the UCP1 promoter. These results revealed that FGF11 promotes differentiation and thermogenesis in brown adipocytes but not in white adipocytes of goats. These findings provide evidence for FGF11 and transcription factor regulatory functions in controlling brown adipose thermogenesis of goats.
Collapse
Affiliation(s)
- Tingting Jiang
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Duo Su
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xin Liu
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Linjie Wang
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
47
|
Kalam H, Chou CH, Kadoki M, Graham DB, Deguine J, Hung DT, Xavier RJ. Identification of host regulators of Mycobacterium tuberculosis phenotypes uncovers a role for the MMGT1-GPR156 lipid droplet axis in persistence. Cell Host Microbe 2023; 31:978-992.e5. [PMID: 37269834 PMCID: PMC10373099 DOI: 10.1016/j.chom.2023.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/15/2023] [Accepted: 05/04/2023] [Indexed: 06/05/2023]
Abstract
The ability of Mycobacterium tuberculosis (Mtb) to establish latency affects disease and response to treatment. The host factors that influence the establishment of latency remain elusive. We engineered a multi-fluorescent Mtb strain that reports survival, active replication, and stressed non-replication states and determined the host transcriptome of the infected macrophages in these states. Additionally, we conducted a genome-wide CRISPR screen to identify host factors that modulated the phenotypic state of Mtb. We validated hits in a phenotype-specific manner and prioritized membrane magnesium transporter 1 (MMGT1) for a detailed mechanistic investigation. Mtb infection of MMGT1-deficient macrophages promoted a switch to persistence, upregulated lipid metabolism genes, and accumulated lipid droplets during infection. Targeting triacylglycerol synthesis reduced both droplet formation and Mtb persistence. The orphan G protein-coupled receptor GPR156 is a key inducer of droplet accumulation in ΔMMGT1 cells. Our work uncovers the role of MMGT1-GPR156-lipid droplets in the induction of Mtb persistence.
Collapse
Affiliation(s)
- Haroon Kalam
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Chih-Hung Chou
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Motohiko Kadoki
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Daniel B Graham
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jacques Deguine
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Deborah T Hung
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
48
|
Lee J, Roh JL. Unleashing Ferroptosis in Human Cancers: Targeting Ferroptosis Suppressor Protein 1 for Overcoming Therapy Resistance. Antioxidants (Basel) 2023; 12:1218. [PMID: 37371948 DOI: 10.3390/antiox12061218] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Ferroptosis, a recently identified form of regulated cell death characterized by the iron-dependent accumulation of lethal lipid peroxidation, has gained increasing attention in cancer therapy. Ferroptosis suppressor protein 1 (FSP1), an NAD(P)H-ubiquinone oxidoreductase that reduces ubiquinone to ubiquinol, has emerged as a critical player in the regulation of ferroptosis. FSP1 operates independently of the canonical system xc-/glutathione peroxidase 4 pathway, making it a promising target for inducing ferroptosis in cancer cells and overcoming ferroptosis resistance. This review provides a comprehensive overview of FSP1 and ferroptosis, emphasizing the importance of FSP1 modulation and its potential as a therapeutic target in cancer treatment. We also discuss recent progress in developing FSP1 inhibitors and their implications for cancer therapy. Despite the challenges associated with targeting FSP1, advances in this field may provide a strong foundation for developing innovative and effective treatments for cancer and other diseases.
Collapse
Affiliation(s)
- Jaewang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi-do 13496, Republic of Korea
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi-do 13496, Republic of Korea
| |
Collapse
|
49
|
Xie K, Liu L, Wang M, Li X, Wang B, Yin S, Chen W, Lin Y, Zhu X. IMPA2 blocks cervical cancer cell apoptosis and induces paclitaxel resistance through p53-mediated AIFM2 regulation. Acta Biochim Biophys Sin (Shanghai) 2023; 55:623-632. [PMID: 37140233 DOI: 10.3724/abbs.2023069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Cervical cancer continues to be a concern, and the prognosis of locally advanced cervical cancer remains poor. IMPA2 was previously identified as a potential oncogene and regulator of tumor apoptosis. In this study, we aim to further elucidate the underlying mechanisms of IMPA2 gene in the regulation of cervical cancer apoptosis. First, we identify AIFM2 as an upregulated gene in IMPA2-silenced cervical cancer cells, and inhibition of AIFM2 reverses IMPA2 knockdown-induced apoptosis. Further study reveals that AIFM2 regulates cell apoptosis in a mitochondrial-dependent manner with a redistribution of mitochondrial membrane potential and intracellular Ca2 + levels. However, the analysis of the STRING database and our experimental results show that AIFM2 has little effect on cervical cancer progression and survival. Further mechanistic study demonstrates that IMPA2 and AIFM2 silencing inhibits apoptosis by activating p53. Meanwhile, the knockdown of IMPA2 enhances the chemosensitivity of cervical cancer cells by strengthening paclitaxel-induced apoptosis. Based on the above results, the IMPA2/AIFM2/p53 pathway may be a new molecular mechanism for paclitaxel treatment of cervical cancer and an effective strategy to enhance the sensitivity of cervical cancer cells to paclitaxel. Our findings display a novel function of IMPA2 in regulating cell apoptosis and paclitaxel resistance mediated by a disturbance of AIFM2 and p53 expression, potentially making it a novel therapeutic target for cervical cancer treatment.
Collapse
|
50
|
Grazioso TP, Djouder N. A mechanistic view of the use of cold temperature in the treatment of cancer. iScience 2023; 26:106511. [PMID: 37091251 PMCID: PMC10119757 DOI: 10.1016/j.isci.2023.106511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
In their latest article, Seki and colleagues investigate the potential role of cold as a therapeutical option to treat various cancer types, including even clinically untreatable cancers such as pancreatic cancers. The authors suggest that cold exposure may have a tumor-suppressive effect mediated by the activation of brown adipose tissue (BAT), in charge of dissipating heat through non-shivering thermogenesis. In this regard, circulating blood glucose is decreased, restricting the tumor glucose uptake, which is redistributed, favoring BAT uptake to fuel thermogenesis.1.
Collapse
Affiliation(s)
- Tatiana P. Grazioso
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid, 28029, Spain
| | - Nabil Djouder
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid, 28029, Spain
- Corresponding author
| |
Collapse
|