1
|
Fiorucci S, Marchianò S, Urbani G, Di Giorgio C, Distrutti E, Zampella A, Biagioli M. Immunology of bile acids regulated receptors. Prog Lipid Res 2024; 95:101291. [PMID: 39122016 DOI: 10.1016/j.plipres.2024.101291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Bile acids are steroids formed at the interface of host metabolism and intestinal microbiota. While primary bile acids are generated in the liver from cholesterol metabolism, secondary bile acids represent the products of microbial enzymes. Close to 100 different enzymatic modifications of bile acids structures occur in the human intestine and clinically guided metagenomic and metabolomic analyses have led to the identification of an extraordinary number of novel metabolites. These chemical mediators make an essential contribution to the composition and function of the postbiota, participating to the bidirectional communications of the intestinal microbiota with the host and contributing to the architecture of intestinal-liver and -brain and -endocrine axes. Bile acids exert their function by binding to a group of cell membrane and nuclear receptors collectively known as bile acid-regulated receptors (BARRs), expressed in monocytes, tissue-resident macrophages, CD4+ T effector cells, including Th17, T regulatory cells, dendritic cells and type 3 of intestinal lymphoid cells and NKT cells, highlighting their role in immune regulation. In this review we report on how bile acids and their metabolitesmodulate the immune system in inflammations and cancers and could be exploiting for developing novel therapeutic approaches in these disorders.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy.
| | - Silvia Marchianò
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Ginevra Urbani
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | | | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Napoli Federico II, Napoli, Italy
| | - Michele Biagioli
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| |
Collapse
|
2
|
Huang X, Liu X, Li Z. Bile acids and coronavirus disease 2019. Acta Pharm Sin B 2024; 14:1939-1950. [PMID: 38799626 PMCID: PMC11119507 DOI: 10.1016/j.apsb.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/08/2023] [Accepted: 01/28/2024] [Indexed: 05/29/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been significantly alleviated. However, long-term health effects and prevention strategy remain unresolved. Thus, it is essential to explore the pathophysiological mechanisms and intervention for SARS-CoV-2 infection. Emerging research indicates a link between COVID-19 and bile acids, traditionally known for facilitating dietary fat absorption. The bile acid ursodeoxycholic acid potentially protects against SARS-CoV-2 infection by inhibiting the farnesoid X receptor, a bile acid nuclear receptor. The activation of G-protein-coupled bile acid receptor, another membrane receptor for bile acids, has also been found to regulate the expression of angiotensin-converting enzyme 2, the receptor through which the virus enters human cells. Here, we review the latest basic and clinical evidence linking bile acids to SARS-CoV-2, and reveal their complicated pathophysiological mechanisms.
Collapse
Affiliation(s)
- Xiaoru Huang
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
- Department of Pharmaceutical Management and Clinical Pharmacy, College of Pharmacy, Peking University, Beijing 100191, China
| | - Xuening Liu
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
- Department of Pharmaceutical Management and Clinical Pharmacy, College of Pharmacy, Peking University, Beijing 100191, China
| | - Zijian Li
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
- Department of Pharmaceutical Management and Clinical Pharmacy, College of Pharmacy, Peking University, Beijing 100191, China
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing Key Laboratory of Cardiovascular Receptors Research, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| |
Collapse
|
3
|
Zhao T, Zhong G, Wang Y, Cao R, Song S, Li Y, Wan G, Sun H, Huang M, Bi H, Jiang Y. Pregnane X Receptor Activation in Liver Macrophages Protects against Endotoxin-Induced Liver Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308771. [PMID: 38477509 PMCID: PMC11109625 DOI: 10.1002/advs.202308771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/24/2024] [Indexed: 03/14/2024]
Abstract
Endotoxemia-related acute liver injury has a poor prognosis and high mortality, and macrophage polarization plays a central role in the pathological process. Pregnane X receptor (PXR) serves as a nuclear receptor and xenosensor, safeguarding the liver from toxic stimuli. However, the effect and underlying mechanism of PXR activation on endotoxemic liver injury remain largely unknown. Here, the expression of PXR is reported in human and murine macrophages, and PXR activation modified immunotypes of macrophages. Moreover, PXR activation significantly attenuated endotoxemic liver injury and promoted macrophage M2 polarization. Macrophage depletion by GdCl3 confirmed the essential of macrophages in the beneficial effects observed with PXR activation. The role of PXR in macrophages is further validated using AAV8-F4/80-Pxr shRNA-treated mice; the PXR-mediated hepatoprotection is impaired, and M2 polarization enhancement is blunted. Additionally, treatment with PXR agonists inhibited lipopolysaccharide (LPS)-induced M1 polarization and favored M2 polarization in BMDM, Raw264.7, and THP-1 cells. Further analyses revealed an interaction between PXR and p-STAT6 in vivo and in vitro. Moreover, blocking Pxr or Stat6 abolished the PXR-induced polarization shift. Collectively, macrophage PXR activation attenuated endotoxin-induced liver injury and regulated macrophage polarization through the STAT6 signaling pathway, which provided a potential therapeutic target for managing endotoxemic liver injury.
Collapse
Affiliation(s)
- Tingting Zhao
- Guangdong Provincial Key Laboratory of New Drug Design and EvaluationSchool of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhou510006China
- Institute of Clinical PharmacologySun Yat‐Sen UniversityGuangzhou510006China
| | - Guoping Zhong
- Guangdong Provincial Key Laboratory of New Drug Design and EvaluationSchool of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhou510006China
- Institute of Clinical PharmacologySun Yat‐Sen UniversityGuangzhou510006China
| | - Ying Wang
- Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510006China
| | - Renjie Cao
- Guangdong Provincial Key Laboratory of New Drug Design and EvaluationSchool of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhou510006China
- Institute of Clinical PharmacologySun Yat‐Sen UniversityGuangzhou510006China
| | - Shaofei Song
- Guangdong Provincial Key Laboratory of New Drug Design and EvaluationSchool of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhou510006China
- Institute of Clinical PharmacologySun Yat‐Sen UniversityGuangzhou510006China
| | - Yuan Li
- Guangdong Provincial Key Laboratory of New Drug Design and EvaluationSchool of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhou510006China
- Institute of Clinical PharmacologySun Yat‐Sen UniversityGuangzhou510006China
| | - Guohui Wan
- Guangdong Provincial Key Laboratory of New Drug Design and EvaluationSchool of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhou510006China
- Institute of Clinical PharmacologySun Yat‐Sen UniversityGuangzhou510006China
| | - Haiyan Sun
- School of Food and DrugShenzhen Polytechnic UniversityShenzhen518055China
| | - Min Huang
- Guangdong Provincial Key Laboratory of New Drug Design and EvaluationSchool of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhou510006China
- Institute of Clinical PharmacologySun Yat‐Sen UniversityGuangzhou510006China
| | - Huichang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510006China
| | - Yiming Jiang
- Guangdong Provincial Key Laboratory of New Drug Design and EvaluationSchool of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhou510006China
- Institute of Clinical PharmacologySun Yat‐Sen UniversityGuangzhou510006China
| |
Collapse
|
4
|
Fleishman JS, Kumar S. Bile acid metabolism and signaling in health and disease: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:97. [PMID: 38664391 PMCID: PMC11045871 DOI: 10.1038/s41392-024-01811-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
Bile acids, once considered mere dietary surfactants, now emerge as critical modulators of macronutrient (lipid, carbohydrate, protein) metabolism and the systemic pro-inflammatory/anti-inflammatory balance. Bile acid metabolism and signaling pathways play a crucial role in protecting against, or if aberrant, inducing cardiometabolic, inflammatory, and neoplastic conditions, strongly influencing health and disease. No curative treatment exists for any bile acid influenced disease, while the most promising and well-developed bile acid therapeutic was recently rejected by the FDA. Here, we provide a bottom-up approach on bile acids, mechanistically explaining their biochemistry, physiology, and pharmacology at canonical and non-canonical receptors. Using this mechanistic model of bile acids, we explain how abnormal bile acid physiology drives disease pathogenesis, emphasizing how ceramide synthesis may serve as a unifying pathogenic feature for cardiometabolic diseases. We provide an in-depth summary on pre-existing bile acid receptor modulators, explain their shortcomings, and propose solutions for how they may be remedied. Lastly, we rationalize novel targets for further translational drug discovery and provide future perspectives. Rather than dismissing bile acid therapeutics due to recent setbacks, we believe that there is immense clinical potential and a high likelihood for the future success of bile acid therapeutics.
Collapse
Affiliation(s)
- Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| |
Collapse
|
5
|
Ye D, He J, He X. The role of bile acid receptor TGR5 in regulating inflammatory signalling. Scand J Immunol 2024; 99:e13361. [PMID: 38307496 DOI: 10.1111/sji.13361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/12/2023] [Accepted: 01/18/2024] [Indexed: 02/04/2024]
Abstract
Takeda G protein-coupled receptor 5 (TGR5) is a bile acid receptor, and its role in regulating metabolism after binding with bile acids has been established. Since the immune response depends on metabolism to provide biomolecules and energy to cope with challenging conditions, emerging evidence reveals the regulatory effects of TGR5 on the immune response. An in-depth understanding of the effect of TGR5 on immune regulation can help us disentangle the interaction of metabolism and immune response, accelerating the development of TGR5 as a therapeutic target. Herein, we reviewed more than 200 articles published in the last 20 years in PubMed, to discuss the roles of TGR5 in regulating inflammatory response, the molecular mechanism, as well as existing problems. Particularly, its anti-inflammation effect is emphasized.
Collapse
Affiliation(s)
- Daijiao Ye
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiayao He
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiaofei He
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- The Key Laboratory of Pediatric Hematology and Oncology Disease of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
6
|
Nenkov M, Shi Y, Ma Y, Gaßler N, Chen Y. Targeting Farnesoid X Receptor in Tumor and the Tumor Microenvironment: Implication for Therapy. Int J Mol Sci 2023; 25:6. [PMID: 38203175 PMCID: PMC10778939 DOI: 10.3390/ijms25010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
The farnesoid-X receptor (FXR), a member of the nuclear hormone receptor superfamily, can be activated by bile acids (BAs). BAs binding to FXR activates BA signaling which is important for maintaining BA homeostasis. FXR is differentially expressed in human organs and exists in immune cells. The dysregulation of FXR is associated with a wide range of diseases including metabolic disorders, inflammatory diseases, immune disorders, and malignant neoplasm. Recent studies have demonstrated that FXR influences tumor cell progression and development through regulating oncogenic and tumor-suppressive pathways, and, moreover, it affects the tumor microenvironment (TME) by modulating TME components. These characteristics provide a new perspective on the FXR-targeted therapeutic strategy in cancer. In this review, we have summarized the recent research data on the functions of FXR in solid tumors and its influence on the TME, and discussed the mechanisms underlying the distinct function of FXR in various types of tumors. Additionally, the impacts on the TME by other BA receptors such as takeda G protein-coupled receptor 5 (TGR5), sphingosine-1-phosphate receptor 2 (S1PR2), and muscarinic receptors (CHRM2 and CHRM3), have been depicted. Finally, the effects of FXR agonists/antagonists in a combination therapy with PD1/PD-L1 immune checkpoint inhibitors and other anti-cancer drugs have been addressed.
Collapse
Affiliation(s)
- Miljana Nenkov
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (M.N.); (Y.M.); (N.G.)
| | - Yihui Shi
- California Pacific Medical Center Research Institute, Sutter Bay Hospitals, San Francisco, CA 94107, USA;
| | - Yunxia Ma
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (M.N.); (Y.M.); (N.G.)
| | - Nikolaus Gaßler
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (M.N.); (Y.M.); (N.G.)
| | - Yuan Chen
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (M.N.); (Y.M.); (N.G.)
| |
Collapse
|
7
|
Vázquez-Gómez G, Petráš J, Dvořák Z, Vondráček J. Aryl hydrocarbon receptor (AhR) and pregnane X receptor (PXR) play both distinct and common roles in the regulation of colon homeostasis and intestinal carcinogenesis. Biochem Pharmacol 2023; 216:115797. [PMID: 37696457 DOI: 10.1016/j.bcp.2023.115797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Both aryl hydrocarbon receptor (AhR) and pregnane X receptor (PXR) belong among key regulators of xenobiotic metabolism in the intestinal tissue. AhR in particular is activated by a wide range of environmental and dietary carcinogens. The data accumulated over the last two decades suggest that both of these transcriptional regulators play a much wider role in the maintenance of gut homeostasis, and that both transcription factors may affect processes linked with intestinal tumorigenesis. Intestinal epithelium is continuously exposed to a wide range of AhR, PXR and dual AhR/PXR ligands formed by intestinal microbiota or originating from diet. Current evidence suggests that specific ligands of both AhR and PXR can protect intestinal epithelium against inflammation and assist in the maintenance of epithelial barrier integrity. AhR, and to a lesser extent also PXR, have been shown to play a protective role against inflammation-induced colon cancer, or, in mouse models employing overactivation of Wnt/β-catenin signaling. In contrast, other evidence suggests that both receptors may contribute to modulation of transformed colon cell behavior, with a potential to promote cancer progression and/or chemoresistance. The review focuses on both overlapping and separate roles of the two receptors in these processes, and on possible implications of their activity within the context of intestinal tissue.
Collapse
Affiliation(s)
- Gerardo Vázquez-Gómez
- Department of Cytokinetics, Institute of Biophysics of the CAS, Královopolská 135, 61265 Brno, Czech Republic
| | - Jiří Petráš
- Department of Cytokinetics, Institute of Biophysics of the CAS, Královopolská 135, 61265 Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the CAS, Královopolská 135, 61265 Brno, Czech Republic.
| |
Collapse
|
8
|
Wang S, Xiang L, li F, Deng W, lv P, Chen Y. Butyrate Protects against Clostridium difficile Infection by Regulating Bile Acid Metabolism. Microbiol Spectr 2023; 11:e0447922. [PMID: 37350595 PMCID: PMC10434071 DOI: 10.1128/spectrum.04479-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 06/03/2023] [Indexed: 06/24/2023] Open
Abstract
Clostridium difficile infection (CDI) is caused by a prevalent nosocomial enteric pathogen, leading to high morbidity and mortality. CDI recurrence after antibiotic treatment is high; therefore, it is necessary to develop novel therapeutics against this enteric pathogen. Butyrate is used to treat many diseases because it provides energy, has anti-inflammatory properties, and maintains intestinal barrier function. An anti-CDI effect for butyrate has been reported; however, the specific mechanism remains elusive. This study aimed to explore the potential role and mechanism of butyrate in the treatment of CDI. Using a CDI mouse model, we found that butyrate significantly inhibited CDI development by regulating bile acid metabolism. Dysregulation of fecal bile acid was significantly higher, and levels of short-chain fatty acids were significantly lower in patients with CDI than those in controls. In CDI mice, butyrate exhibited a protective role by enhancing barrier protection, exerting anti-inflammatory effects, and regulating bile acid metabolism. Butyrate treatment also regulated the production of bile salt hydrolase (BSH) flora and activated farnesoid X receptor (FXR), and its therapeutic effects were reduced in CDI mice treated with BSH or FXR inhibitors. Thus, butyrate treatment may serve as a novel therapeutic approach for patients with CDI. IMPORTANCE Here, we show that levels of fecal short-chain fatty acids (SCFAs), particularly butyrate, are reduced, and normal colon structure is damaged in patients with CDI compared with those in healthy individuals. Bile acid (BA) metabolic disorder in patients with CDI is characterized by increased primary BA levels and decreased secondary BAs. In mice, butyrate alters BA metabolism in CDI and may play a vital role in CDI treatment by promoting secondary BA metabolism. Lastly, butyrate-mediated therapeutic effects in CDI require FXR. Our findings demonstrate that butyrate treatment significantly decreases the severity of CDI-induced colitis in mice and affects BA metabolism and FXR activation, which provides a potential alternative treatment for CDI.
Collapse
Affiliation(s)
- Siqi Wang
- Department of Gastroenterology, The First Affiliated of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Leyang Xiang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Fang li
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Gastroenterology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Wenlin Deng
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pinjing lv
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ye Chen
- Department of Gastroenterology, The First Affiliated of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Department of Gastroenterology, Integrative Clinical Microecology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
9
|
Li S. Modulation of immunity by tryptophan microbial metabolites. Front Nutr 2023; 10:1209613. [PMID: 37521424 PMCID: PMC10382180 DOI: 10.3389/fnut.2023.1209613] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/30/2023] [Indexed: 08/01/2023] Open
Abstract
Tryptophan (Trp) is an essential amino acid that can be metabolized via endogenous and exogenous pathways, including the Kynurenine Pathway, the 5-Hydroxyindole Pathway (also the Serotonin pathway), and the Microbial pathway. Of these, the Microbial Trp metabolic pathways in the gut have recently been extensively studied for their production of bioactive molecules. The gut microbiota plays an important role in host metabolism and immunity, and microbial Trp metabolites can influence the development and progression of various diseases, including inflammatory, cardiovascular diseases, neurological diseases, metabolic diseases, and cancer, by mediating the body's immunity. This review briefly outlines the crosstalk between gut microorganisms and Trp metabolism in the body, starting from the three metabolic pathways of Trp. The mechanisms by which microbial Trp metabolites act on organism immunity are summarized, and the potential implications for disease prevention and treatment are highlighted.
Collapse
|
10
|
Colombo E, Di Dario M, Menon R, Valente MM, Bassani C, Sarno N, Mazza D, Montini F, Moiola L, Comi G, Martinelli V, Farina C. HNF4α, SP1 and c-myc are master regulators of CNS autoimmunity. J Autoimmun 2023; 138:103053. [PMID: 37236124 DOI: 10.1016/j.jaut.2023.103053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 03/06/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023]
Abstract
Hepatocyte nuclear factor 4 α (HNF4α), a transcription factor (TF) essential for embryonic development, has been recently shown to regulate the expression of inflammatory genes. To characterize HNF4a function in immunity, we measured the effect of HNF4α antagonists on immune cell responses in vitro and in vivo. HNF4α blockade reduced immune activation in vitro and disease severity in the experimental model of multiple sclerosis (MS). Network biology studies of human immune transcriptomes unraveled HNF4α together with SP1 and c-myc as master TF regulating differential expression at all MS stages. TF expression was boosted by immune cell activation, regulated by environmental MS risk factors and higher in MS immune cells compared to controls. Administration of compounds targeting TF expression or function demonstrated non-synergic, interdependent transcriptional control of CNS autoimmunity in vitro and in vivo. Collectively, we identified a coregulatory transcriptional network sustaining neuroinflammation and representing an attractive therapeutic target for MS and other inflammatory disorders.
Collapse
Affiliation(s)
- Emanuela Colombo
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS Scientific Institute San Raffaele, Milan, Italy
| | - Marco Di Dario
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS Scientific Institute San Raffaele, Milan, Italy
| | - Ramesh Menon
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS Scientific Institute San Raffaele, Milan, Italy
| | - Maria Maddalena Valente
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS Scientific Institute San Raffaele, Milan, Italy
| | - Claudia Bassani
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS Scientific Institute San Raffaele, Milan, Italy
| | - Nicole Sarno
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS Scientific Institute San Raffaele, Milan, Italy
| | - Davide Mazza
- Experimental Imaging Center, IRCCS Scientific Institute San Raffaele, Milan, Italy
| | - Federico Montini
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS Scientific Institute San Raffaele, Milan, Italy
| | - Lucia Moiola
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS Scientific Institute San Raffaele, Milan, Italy
| | - Giancarlo Comi
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS Scientific Institute San Raffaele, Milan, Italy
| | - Vittorio Martinelli
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS Scientific Institute San Raffaele, Milan, Italy
| | - Cinthia Farina
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS Scientific Institute San Raffaele, Milan, Italy.
| |
Collapse
|
11
|
Calzadilla N, Comiskey SM, Dudeja PK, Saksena S, Gill RK, Alrefai WA. Bile acids as inflammatory mediators and modulators of intestinal permeability. Front Immunol 2022; 13:1021924. [PMID: 36569849 PMCID: PMC9768584 DOI: 10.3389/fimmu.2022.1021924] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/26/2022] [Indexed: 12/12/2022] Open
Abstract
Bile acids are critical for the digestion and absorption of lipids and fat-soluble vitamins; however, evidence continues to emerge supporting additional roles for bile acids as signaling molecules. After they are synthesized from cholesterol in the liver, primary bile acids are modified into secondary bile acids by gut flora contributing to a diverse pool and making the composition of bile acids highly sensitive to alterations in gut microbiota. Disturbances in bile acid homeostasis have been observed in patients with Inflammatory Bowel Diseases (IBD). In fact, a decrease in secondary bile acids was shown to occur because of IBD-associated dysbiosis. Further, the increase in luminal bile acids due to malabsorption in Crohn's ileitis and ileal resection has been implicated in the induction of diarrhea and the exacerbation of inflammation. A causal link between bile acid signaling and intestinal inflammation has been recently suggested. With respect to potential mechanisms related to bile acids and IBD, several studies have provided strong evidence for direct effects of bile acids on intestinal permeability in porcine and rodent models as well as in humans. Interestingly, different bile acids were shown to exert distinct effects on the inflammatory response and intestinal permeability that require careful consideration. Such findings revealed a potential effect for changes in the relative abundance of different bile acids on the induction of inflammation by bile acids and the development of IBD. This review summarizes current knowledge about the roles for bile acids as inflammatory mediators and modulators of intestinal permeability mainly in the context of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Nathan Calzadilla
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois, Chicago, IL, United States
- Department of Bioengineering, University of Illinois, Chicago, IL, United States
| | - Shane M. Comiskey
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois, Chicago, IL, United States
| | - Pradeep K. Dudeja
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois, Chicago, IL, United States
- Research and Development, Jesse Brown VA Medical Center, Chicago, IL, United States
| | - Seema Saksena
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois, Chicago, IL, United States
- Research and Development, Jesse Brown VA Medical Center, Chicago, IL, United States
| | - Ravinder K. Gill
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois, Chicago, IL, United States
| | - Waddah A. Alrefai
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois, Chicago, IL, United States
- Research and Development, Jesse Brown VA Medical Center, Chicago, IL, United States
| |
Collapse
|
12
|
Rausch M, Samodelov SL, Visentin M, Kullak-Ublick GA. The Farnesoid X Receptor as a Master Regulator of Hepatotoxicity. Int J Mol Sci 2022; 23:ijms232213967. [PMID: 36430444 PMCID: PMC9695947 DOI: 10.3390/ijms232213967] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
The nuclear receptor farnesoid X receptor (FXR, NR1H4) is a bile acid (BA) sensor that links the enterohepatic circuit that regulates BA metabolism and elimination to systemic lipid homeostasis. Furthermore, FXR represents a real guardian of the hepatic function, preserving, in a multifactorial fashion, the integrity and function of hepatocytes from chronic and acute insults. This review summarizes how FXR modulates the expression of pathway-specific as well as polyspecific transporters and enzymes, thereby acting at the interface of BA, lipid and drug metabolism, and influencing the onset and progression of hepatotoxicity of varying etiopathogeneses. Furthermore, this review article provides an overview of the advances and the clinical development of FXR agonists in the treatment of liver diseases.
Collapse
|
13
|
Madella AM, Van Bergenhenegouwen J, Garssen J, Masereeuw R, Overbeek SA. Microbial-Derived Tryptophan Catabolites, Kidney Disease and Gut Inflammation. Toxins (Basel) 2022; 14:toxins14090645. [PMID: 36136583 PMCID: PMC9505404 DOI: 10.3390/toxins14090645] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Uremic metabolites, molecules either produced by the host or from the microbiota population existing in the gastrointestinal tract that gets excreted by the kidneys into urine, have significant effects on both health and disease. Tryptophan-derived catabolites are an important group of bacteria-produced metabolites with an extensive contribution to intestinal health and, eventually, chronic kidney disease (CKD) progression. The end-metabolite, indoxyl sulfate, is a key contributor to the exacerbation of CKD via the induction of an inflammatory state and oxidative stress affecting various organ systems. Contrastingly, other tryptophan catabolites positively contribute to maintaining intestinal homeostasis and preventing intestinal inflammation—activities signaled through nuclear receptors in particular—the aryl hydrocarbon receptor (AhR) and the pregnane X receptor (PXR). This review discusses the origins of these catabolites, their effect on organ systems, and how these can be manipulated therapeutically in the future as a strategy to treat CKD progression and gut inflammation management. Furthermore, the use of biotics (prebiotics, probiotics, synbiotics) as a means to increase the presence of beneficial short-chain fatty acids (SCFAs) to achieve intestinal homeostasis is discussed.
Collapse
Affiliation(s)
- Avra Melina Madella
- Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- Correspondence: (A.M.M.); or (S.A.O.); Tel.: +31-30-209-5000 (S.A.O.)
| | - Jeroen Van Bergenhenegouwen
- Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- Danone Nutricia Research, Uppsalalaan 12, Utrecht Science Park, 3584 CT Utrecht, The Netherlands
| | - Johan Garssen
- Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- Danone Nutricia Research, Uppsalalaan 12, Utrecht Science Park, 3584 CT Utrecht, The Netherlands
| | - Rosalinde Masereeuw
- Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Saskia Adriana Overbeek
- Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- Danone Nutricia Research, Uppsalalaan 12, Utrecht Science Park, 3584 CT Utrecht, The Netherlands
- Correspondence: (A.M.M.); or (S.A.O.); Tel.: +31-30-209-5000 (S.A.O.)
| |
Collapse
|
14
|
Miao W, Han Y, Yang Y, Hao Z, An N, Chen J, Zhang Z, Gao X, Storey KB, Chang H, Wang S. Dynamic Changes in Colonic Structure and Protein Expression Suggest Regulatory Mechanisms of Colonic Barrier Function in Torpor-Arousal Cycles of the Daurian Ground Squirrel. Int J Mol Sci 2022; 23:ijms23169026. [PMID: 36012293 PMCID: PMC9409258 DOI: 10.3390/ijms23169026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/23/2022] [Accepted: 08/10/2022] [Indexed: 12/22/2022] Open
Abstract
Background: Both pathological conditions and hibernation can affect the barrier function of small intestine mucosa. However, the effect of hibernation on the barrier function of colonic mucosa remains unclear. Methods: We investigated morphological changes in colonic mucosa, the concentrations of specific proteins and molecules, and the enzymatic activity of diamine oxidase (DAO), in serum and colonic tissue; the expression of tight junction proteins and mucin, and the changes in inflammatory, farnesoid X receptor (FXR)–small heterodimer partner (SHP), and apoptosis-related molecules that could play a role in gut permeability changes in Daurian ground squirrels in summer active (SA), late torpor (LT), and interbout arousal (IBA) periods. Results: The results show that hibernation reduced the thickness of the colonic mucosa and the depth of the crypt, decreased the number of goblet cells (GCs), and damaged the structure of some microvilli. The concentrations of proteins and molecules, and the enzymatic activity of DAO, were all increased in the serum and colon, and the localization of tight junction proteins and mucin in the colonic mucosa were altered (compensatory response). Although the ground squirrels ate during the interbout arousal period, the changes remained similar to the response to torpor. Inflammation, apoptosis–anti-apoptosis, and FXR–SHP signaling may be involved in the possible changes in intestinal gut permeability during the torpor–arousal cycle in Daurian ground squirrels. In addition, periodic interbout arousal may play an inflammation-correcting role during the long hibernation season of Daurian ground squirrels.
Collapse
Affiliation(s)
- Weilan Miao
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, 229# North Taibai Road, Xi’an 710069, China
| | - Yuting Han
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, 229# North Taibai Road, Xi’an 710069, China
| | - Yingyu Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, 229# North Taibai Road, Xi’an 710069, China
| | - Ziwei Hao
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, 229# North Taibai Road, Xi’an 710069, China
| | - Ning An
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, 229# North Taibai Road, Xi’an 710069, China
| | - Jiayu Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, 229# North Taibai Road, Xi’an 710069, China
| | - Ziwen Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, 229# North Taibai Road, Xi’an 710069, China
| | - Xuli Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, 229# North Taibai Road, Xi’an 710069, China
| | - Kenneth B. Storey
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Hui Chang
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, 229# North Taibai Road, Xi’an 710069, China
- Correspondence: (H.C.); (S.W.); Tel.: +86-29-88303935 (H.C.)
| | - Shiwei Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, 229# North Taibai Road, Xi’an 710069, China
- Correspondence: (H.C.); (S.W.); Tel.: +86-29-88303935 (H.C.)
| |
Collapse
|
15
|
Wagner N, Wagner KD. Peroxisome Proliferator-Activated Receptors and the Hallmarks of Cancer. Cells 2022; 11:cells11152432. [PMID: 35954274 PMCID: PMC9368267 DOI: 10.3390/cells11152432] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/11/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) function as nuclear transcription factors upon the binding of physiological or pharmacological ligands and heterodimerization with retinoic X receptors. Physiological ligands include fatty acids and fatty-acid-derived compounds with low specificity for the different PPAR subtypes (alpha, beta/delta, and gamma). For each of the PPAR subtypes, specific pharmacological agonists and antagonists, as well as pan-agonists, are available. In agreement with their natural ligands, PPARs are mainly focused on as targets for the treatment of metabolic syndrome and its associated complications. Nevertheless, many publications are available that implicate PPARs in malignancies. In several instances, they are controversial for very similar models. Thus, to better predict the potential use of PPAR modulators for personalized medicine in therapies against malignancies, it seems necessary and timely to review the three PPARs in relation to the didactic concept of cancer hallmark capabilities. We previously described the functions of PPAR beta/delta with respect to the cancer hallmarks and reviewed the implications of all PPARs in angiogenesis. Thus, the current review updates our knowledge on PPAR beta and the hallmarks of cancer and extends the concept to PPAR alpha and PPAR gamma.
Collapse
Affiliation(s)
- Nicole Wagner
- Correspondence: (N.W.); (K.-D.W.); Tel.: +33-489-153-713 (K.-D.W.)
| | | |
Collapse
|
16
|
Panzitt K, Zollner G, Marschall HU, Wagner M. Recent advances on FXR-targeting therapeutics. Mol Cell Endocrinol 2022; 552:111678. [PMID: 35605722 DOI: 10.1016/j.mce.2022.111678] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 12/25/2022]
Abstract
The bile acid receptor FXR has emerged as a bona fide drug target for chronic cholestatic and metabolic liver diseases, ahead of all non-alcoholic fatty liver disease (NAFLD). FXR is highly expressed in the liver and intestine and activation at both sites differentially contributes to its desired metabolic effects. Unrestricted FXR activation, however, also comes along with undesired effects such as a pro-atherogenic lipid profile, pruritus and hepatocellular toxicity under certain conditions. Several pre-clinical studies have confirmed the potency of FXR activation for cholestatic and metabolic liver diseases, but overall it remains still open whether selective activation of intestinal FXR is advantageous over pan-FXR activation and whether restricted or modulated FXR activation can limit some of the side effects. Even more, FXR antagonist also bear the potential as intestinal-selective drugs in NAFLD models. In this review we will discuss the molecular prerequisites for FXR activation, pan-FXR activation and intestinal FXR in/activation from a therapeutic point of view, different steroidal and non-steroidal FXR agonists, ways to restrict FXR activation and finally what we have learned from pre-clinical models and clinical trials with different FXR therapeutics.
Collapse
Affiliation(s)
- Katrin Panzitt
- Research Unit for Translational Nuclear Receptor Research, Medical University Graz, Graz, Austria; Division of Gastroenterology and Hepatology, Medical University Graz, Graz, Austria
| | - Gernot Zollner
- Division of Gastroenterology and Hepatology, Medical University Graz, Graz, Austria
| | - Hanns-Ulrich Marschall
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Martin Wagner
- Research Unit for Translational Nuclear Receptor Research, Medical University Graz, Graz, Austria; Division of Gastroenterology and Hepatology, Medical University Graz, Graz, Austria.
| |
Collapse
|
17
|
Serger E, Luengo-Gutierrez L, Chadwick JS, Kong G, Zhou L, Crawford G, Danzi MC, Myridakis A, Brandis A, Bello AT, Müller F, Sanchez-Vassopoulos A, De Virgiliis F, Liddell P, Dumas ME, Strid J, Mani S, Dodd D, Di Giovanni S. The gut metabolite indole-3 propionate promotes nerve regeneration and repair. Nature 2022; 607:585-592. [PMID: 35732737 DOI: 10.1038/s41586-022-04884-x] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/19/2022] [Indexed: 12/11/2022]
Abstract
The regenerative potential of mammalian peripheral nervous system neurons after injury is critically limited by their slow axonal regenerative rate1. Regenerative ability is influenced by both injury-dependent and injury-independent mechanisms2. Among the latter, environmental factors such as exercise and environmental enrichment have been shown to affect signalling pathways that promote axonal regeneration3. Several of these pathways, including modifications in gene transcription and protein synthesis, mitochondrial metabolism and the release of neurotrophins, can be activated by intermittent fasting (IF)4,5. However, whether IF influences the axonal regenerative ability remains to be investigated. Here we show that IF promotes axonal regeneration after sciatic nerve crush in mice through an unexpected mechanism that relies on the gram-positive gut microbiome and an increase in the gut bacteria-derived metabolite indole-3-propionic acid (IPA) in the serum. IPA production by Clostridium sporogenes is required for efficient axonal regeneration, and delivery of IPA after sciatic injury significantly enhances axonal regeneration, accelerating the recovery of sensory function. Mechanistically, RNA sequencing analysis from sciatic dorsal root ganglia suggested a role for neutrophil chemotaxis in the IPA-dependent regenerative phenotype, which was confirmed by inhibition of neutrophil chemotaxis. Our results demonstrate the ability of a microbiome-derived metabolite, such as IPA, to facilitate regeneration and functional recovery of sensory axons through an immune-mediated mechanism.
Collapse
Affiliation(s)
- Elisabeth Serger
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
- Graduate School for Neuroscience, Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Lucia Luengo-Gutierrez
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Jessica S Chadwick
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Guiping Kong
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Luming Zhou
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Greg Crawford
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Matt C Danzi
- Dr. John T. MacDonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Antonis Myridakis
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Alexander Brandis
- Targeted Metabolomics Unit, Weizmann Institute of Science, Rehovot, Israel
| | | | - Franziska Müller
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | | | - Francesco De Virgiliis
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Phoebe Liddell
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Marc Emmanuel Dumas
- National Heart and Lung Institute, Imperial College London, London, UK
- European Genomic Institute for Diabetes, UMR1283 INSERM, UMR8199 CNRS, Institut Pasteur de Lille, University of Lille, Lille, France
| | - Jessica Strid
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Sridhar Mani
- Departments of Medicine, Molecular Pharmacology and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dylan Dodd
- Department of Pathology, Stanford School of Medicine, Stanford, CA, USA
- Department of Microbiology & Immunology, Stanford School of Medicine, Stanford, CA, USA
| | - Simone Di Giovanni
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK.
| |
Collapse
|
18
|
Nieves KM, Hirota SA, Flannigan KL. Xenobiotic receptors and the regulation of intestinal homeostasis: harnessing the chemical output of the intestinal microbiota. Am J Physiol Gastrointest Liver Physiol 2022; 322:G268-G281. [PMID: 34941453 DOI: 10.1152/ajpgi.00160.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The commensal bacteria that reside in the gastrointestinal tract exist in a symbiotic relationship with the host, driving the development of the immune system and maintaining metabolic and tissue homeostasis in the local environment. The intestinal microbiota has the capacity to generate a wide array of chemical metabolites to which the cells of the intestinal mucosa are exposed. Host cells express xenobiotic receptors, such as the aryl hydrocarbon receptor (AhR) and the pregnane X receptor (PXR), that can sense and respond to chemicals that are generated by nonhost pathways. In this review, we outline the physiological and immunological processes within the intestinal environment that are regulated by microbial metabolites through the activation of the AhR and the PXR, with a focus on ligands generated by the stepwise catabolism of tryptophan.
Collapse
Affiliation(s)
- Kristoff M Nieves
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Simon A Hirota
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Department of Microbiology, Immunology and Infectious Disease, University of Calgary, Calgary, Alberta, Canada.,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Kyle L Flannigan
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
19
|
Niu X, Wu T, Li G, Gu X, Tian Y, Cui H. Insights into the critical role of the PXR in preventing carcinogenesis and chemotherapeutic drug resistance. Int J Biol Sci 2022; 18:742-759. [PMID: 35002522 PMCID: PMC8741843 DOI: 10.7150/ijbs.68724] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/21/2021] [Indexed: 12/12/2022] Open
Abstract
Pregnane x receptor (PXR) as a nuclear receptor is well-established in drug metabolism, however, it has pleiotropic functions in regulating inflammatory responses, glucose metabolism, and protects normal cells against carcinogenesis. Most studies focus on its transcriptional regulation, however, PXR can regulate gene expression at the translational level. Emerging evidences have shown that PXR has a broad protein-protein interaction network, by which is implicated in the cross signaling pathways. Furthermore, the interactions between PXR and some critical proteins (e.g., p53, Tip60, p300/CBP-associated factor) in DNA damage pathway highlight its potential roles in this field. A thorough understanding of how PXR maintains genome stability and prevents carcinogenesis will help clinical diagnosis and finally benefit patients. Meanwhile, due to the regulation of CYP450 enzymes CYP3A4 and multidrug resistance protein 1 (MDR1), PXR contributes to chemotherapeutic drug resistance. It is worthy of note that the co-factor of PXR such as RXRα, also has contributions to this process, which makes the PXR-mediated drug resistance more complicated. Although single nucleotide polymorphisms (SNPs) vary between individuals, the amino acid substitution on exon of PXR finally affects PXR transcriptional activity. In this review, we have summarized the updated mechanisms that PXR protects the human body against carcinogenesis, and major contributions of PXR with its co-factors have made on multidrug resistance. Furthermore, we have also reviewed the current promising antagonist and their clinic applications in reversing chemoresistance. We believe our review will bring insight into PXR-targeted cancer therapy, enlighten the future study direction, and provide substantial evidence for the clinic in future.
Collapse
Affiliation(s)
- Xiaxia Niu
- Institute of Toxicology, School of Public Health, Lanzhou University, 730000, Lanzhou, China
| | - Ting Wu
- Institute of Toxicology, School of Public Health, Lanzhou University, 730000, Lanzhou, China
| | - Gege Li
- Institute of Toxicology, School of Public Health, Lanzhou University, 730000, Lanzhou, China
| | - Xinsheng Gu
- Department of Pharmacology, College of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Yanan Tian
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, USA
| | - Hongmei Cui
- Institute of Toxicology, School of Public Health, Lanzhou University, 730000, Lanzhou, China
| |
Collapse
|
20
|
Thibaut MM, Bindels LB. Crosstalk between bile acid-activated receptors and microbiome in entero-hepatic inflammation. Trends Mol Med 2022; 28:223-236. [DOI: 10.1016/j.molmed.2021.12.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023]
|
21
|
Leach DA, Brooke GN, Bevan CL. Roles of steroid receptors in the lung and COVID-19. Essays Biochem 2021; 65:1025-1038. [PMID: 34328182 PMCID: PMC8628186 DOI: 10.1042/ebc20210005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/13/2021] [Accepted: 06/23/2021] [Indexed: 12/15/2022]
Abstract
COVID-19 symptoms and mortality are largely due to its devastating effects in the lungs. The disease is caused by the SARS (Severe Acute Respiratory Syndrome)-CoV-2 coronavirus, which requires host cell proteins such as ACE2 (angiotensin-converting enzyme 2) and TMPRSS2 (transmembrane serine protease 2) for infection of lung epithelia. The expression and function of the steroid hormone receptor family is important in many aspects that impact on COVID-19 effects in the lung - notably lung development and function, the immune system, and expression of TMPRSS2 and ACE2. This review provides a brief summary of current knowledge on the roles of the steroid hormone receptors [androgen receptor (AR), glucocorticoid receptor (GR), progesterone receptor (PR), mineralocorticoid receptor (MR) and oestrogen receptor (ER)] in the lung, their effects on host cell proteins that facilitate SARS-CoV-2 uptake, and provides a snapshot of current clinical trials investigating the use of steroid receptor (SR) ligands to treat COVID-19.
Collapse
Affiliation(s)
- Damien A. Leach
- Division of Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, U.K
| | - Greg N. Brooke
- Division of Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, U.K
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, U.K
| | - Charlotte L. Bevan
- Division of Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, U.K
| |
Collapse
|
22
|
Rogers RS, Parker A, Vainer PD, Elliott E, Sudbeck D, Parimi K, Peddada VP, Howe PG, D’Ambrosio N, Ruddy G, Stackable K, Carney M, Martin L, Osterholt T, Staudinger JL. The Interface between Cell Signaling Pathways and Pregnane X Receptor. Cells 2021; 10:cells10113262. [PMID: 34831484 PMCID: PMC8617909 DOI: 10.3390/cells10113262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/19/2022] Open
Abstract
Highly expressed in the enterohepatic system, pregnane X receptor (PXR, NR1I2) is a well-characterized nuclear receptor (NR) that regulates the expression of genes in the liver and intestines that encode key drug metabolizing enzymes and drug transporter proteins in mammals. The net effect of PXR activation is to increase metabolism and clear drugs and xenobiotics from the body, producing a protective effect and mediating clinically significant drug interaction in patients on combination therapy. The complete understanding of PXR biology is thus important for the development of safe and effective therapeutic strategies. Furthermore, PXR activation is now known to specifically transrepress the inflammatory- and nutrient-signaling pathways of gene expression, thereby providing a mechanism for linking these signaling pathways together with enzymatic drug biotransformation pathways in the liver and intestines. Recent research efforts highlight numerous post-translational modifications (PTMs) which significantly influence the biological function of PXR. However, this thrust of research is still in its infancy. In the context of gene-environment interactions, we present a review of the recent literature that implicates PXR PTMs in regulating its clinically relevant biology. We also provide a discussion of how these PTMs likely interface with each other to respond to extracellular cues to appropriately modify PXR activity.
Collapse
Affiliation(s)
- Robert S. Rogers
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Annemarie Parker
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Phill D. Vainer
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Elijah Elliott
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Dakota Sudbeck
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Kaushal Parimi
- Thomas Jefferson Independent Day School, Joplin, MO 64801, USA;
| | - Venkata P. Peddada
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Parker G. Howe
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Nick D’Ambrosio
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Gregory Ruddy
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Kaitlin Stackable
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Megan Carney
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Lauren Martin
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Thomas Osterholt
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Jeff L. Staudinger
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
- Correspondence:
| |
Collapse
|
23
|
Nelson AT, Wang Y, Nelson ER. TLX, an Orphan Nuclear Receptor With Emerging Roles in Physiology and Disease. Endocrinology 2021; 162:6360449. [PMID: 34463725 PMCID: PMC8462384 DOI: 10.1210/endocr/bqab184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 12/14/2022]
Abstract
TLX (NR2E1), an orphan member of the nuclear receptor superfamily, is a transcription factor that has been described to be generally repressive in nature. It has been implicated in several aspects of physiology and disease. TLX is best known for its ability to regulate the proliferation of neural stem cells and retinal progenitor cells. Dysregulation, overexpression, or loss of TLX expression has been characterized in numerous studies focused on a diverse range of pathological conditions, including abnormal brain development, psychiatric disorders, retinopathies, metabolic disease, and malignant neoplasm. Despite the lack of an identified endogenous ligand, several studies have described putative synthetic and natural TLX ligands, suggesting that this receptor may serve as a therapeutic target. Therefore, this article aims to briefly review what is known about TLX structure and function in normal physiology, and provide an overview of TLX in regard to pathological conditions. Particular emphasis is placed on TLX and cancer, and the potential utility of this receptor as a therapeutic target.
Collapse
Affiliation(s)
- Adam T Nelson
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Yu Wang
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Erik R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
- University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, Illinois 60612, USA
- Carl R. Woese Institute for Genomic Biology, Anticancer Discovery from Pets to People Theme, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
- Correspondence: Erik R. Nelson, PhD, Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, 407 S Goodwin Ave (MC-114), Urbana, IL 61801, USA.
| |
Collapse
|
24
|
The pathophysiological function of non-gastrointestinal farnesoid X receptor. Pharmacol Ther 2021; 226:107867. [PMID: 33895191 DOI: 10.1016/j.pharmthera.2021.107867] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
Farnesoid X receptor (FXR) influences bile acid homeostasis and the progression of various diseases. While the roles of hepatic and intestinal FXR in enterohepatic transport of bile acids and metabolic diseases were reviewed previously, the pathophysiological functions of FXR in non-gastrointestinal cells and tissues have received little attention. Thus, the roles of FXR in the liver, immune system, nervous system, cardiovascular system, kidney, and pancreas beyond the gastrointestinal system are reviewed herein. Gain of FXR function studies in non-gastrointestinal tissues reveal that FXR signaling improves various experimentally-induced metabolic and immune diseases, including non-alcoholic fatty liver disease, type 2 diabetes, primary biliary cholangitis, sepsis, autoimmune diseases, multiple sclerosis, and diabetic nephropathy, while loss of FXR promotes regulatory T cells production, protects the brain against ischemic injury, atherosclerosis, and inhibits pancreatic tumor progression. The downstream pathways regulated by FXR are diverse and tissue/cell-specific, and FXR has both ligand-dependent and ligand-independent activities, all of which may explain why activation and inhibition of FXR signaling could produce paradoxical or even opposite effects in some experimental disease models. FXR signaling is frequently compromised by diseases, especially during the progressive stage, and rescuing FXR expression may provide a promising strategy for boosting the therapeutic effect of FXR agonists. Tissue/cell-specific modulation of non-gastrointestinal FXR could influence the treatment of various diseases. This review provides a guide for drug discovery and clinical use of FXR modulators.
Collapse
|
25
|
Cherif LS, Cao-Lei L, Farinelle S, Muller CP, Turner JD, Schroeder H, Grova N. Assessment of 9-OH- and 7,8-diol-benzo[a]pyrene in Blood as Potent Markers of Cognitive Impairment Related to benzo[a]pyrene Exposure: An Animal Model Study. TOXICS 2021; 9:toxics9030050. [PMID: 33800341 PMCID: PMC7998639 DOI: 10.3390/toxics9030050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/14/2021] [Accepted: 03/03/2021] [Indexed: 12/27/2022]
Abstract
The potent neurotoxicity of benzo[a]pyrene (B[a]P) has been suggested to be a susceptibility factor accelerating the onset of brain tumours and the emergence of neurobehavioural disturbances. B[a]P has been shown to be neurotoxic, acting directly on both the central and peripheral nervous systems, as well as indirectly via peripheral organs like liver and gut. By using a realistic B[a]P exposure scenario (0.02-200 mg/kg/day, 10 days) in mice, we elucidated brain-specific B[a]P metabolism and at identified hydroxylated B[a]P metabolites in serum which could be used as markers of cognitive impairment. Repeated oral administration of B[a]P led to, at the doses of 20 and 200 mg/kg/day, significant overexpression of Cyp1a1/Cyp1b1 in 2 out of the 3 brain regions considered, thereby suggesting the ability of the brain to metabolize B[a]P itself. At the same doses, mice exhibited a reduction in anxiety in both the elevated plus maze and the hole board apparatus. Concomitantly, B[a]P triggered dose-dependent changes in Nmda subunit expression (Nr1 and Nr2a/Nr2b) in areas involved in cognition. We detected 9-OH-B[a]P and 7,8-diol-B[a]P in serum at the level for which cognitive impairment was observed. We suggest that these metabolites may, in the future be exploited as potent biomarkers of B[a]P-induced cognitive impairments.
Collapse
Affiliation(s)
- Lynda Saber Cherif
- Calbinotox, EA7488, Faculty of Science and Technology, Lorraine University, 54500 Vandoeuvre-lès Nancy, France; (L.S.C.); (L.C.-L.); (H.S.)
| | - Lei Cao-Lei
- Calbinotox, EA7488, Faculty of Science and Technology, Lorraine University, 54500 Vandoeuvre-lès Nancy, France; (L.S.C.); (L.C.-L.); (H.S.)
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, LuxembourgInstitute of Health, L-4354 Esch-sur-Alzette, Luxembourg;
| | - Sophie Farinelle
- Experimental & Molecular Immunology Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg;
| | - Claude P. Muller
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-Sur-Alzette, Luxembourg;
- Laboratoire National de Santé, L-3583 Dudelange, Luxembourg
| | - Jonathan D. Turner
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, LuxembourgInstitute of Health, L-4354 Esch-sur-Alzette, Luxembourg;
| | - Henri Schroeder
- Calbinotox, EA7488, Faculty of Science and Technology, Lorraine University, 54500 Vandoeuvre-lès Nancy, France; (L.S.C.); (L.C.-L.); (H.S.)
| | - Nathalie Grova
- Calbinotox, EA7488, Faculty of Science and Technology, Lorraine University, 54500 Vandoeuvre-lès Nancy, France; (L.S.C.); (L.C.-L.); (H.S.)
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, LuxembourgInstitute of Health, L-4354 Esch-sur-Alzette, Luxembourg;
- Correspondence: or ; Tel.: +352-26-970-422
| |
Collapse
|
26
|
Abstract
Bile acids are a group of chemically different steroids generated at the host/microbial interface. Indeed, while primary bile acids are the end-product of cholesterol breakdown in the host liver, secondary bile acids are the products of microbial metabolism. Primary and secondary bile acids along with their oxo derivatives have been identified as signaling molecules acting on a family of cell membrane and nuclear receptors collectively known as "bile acid-activated receptors." Members of this group of receptors are highly expressed throughout the gastrointestinal tract and mediate the bilateral communications of the intestinal microbiota with the host immune system. The expression and function of bile acid-activated receptors FXR, GPBAR1, PXR, VDR, and RORγt are highly dependent on the structure of the intestinal microbiota and negatively regulated by intestinal inflammation. Studies from gene ablated mice have demonstrated that FXR and GPBAR1 are essential to maintain a tolerogenic phenotype in the intestine, and their ablation promotes the polarization of intestinal T cells and macrophages toward a pro-inflammatory phenotype. RORγt inhibition by oxo-bile acids is essential to constrain Th17 polarization of intestinal lymphocytes. Gene-wide association studies and functional characterizations suggest a potential role for impaired bile acid signaling in development inflammatory bowel diseases (IBD). In this review, we will focus on how bile acids and their receptors mediate communications of intestinal microbiota with the intestinal immune system, describing dynamic changes of bile acid metabolism in IBD and the potential therapeutic application of targeting bile acid signaling in these disorders.
Collapse
|
27
|
Abstract
Early life adversity (ELA) has been associated with inflammation and immunosenescence, as well as hyporeactivity of the HPA axis. Because the immune system and the HPA axis are tightly intertwined around the glucocorticoid receptor (GR), we examined peripheral GR functionality in the EpiPath cohort among participants who either had been exposed to ELA (separation from parents and/or institutionalization followed by adoption; n = 40) or had been reared by their biological parents (n = 72).Expression of the strict GR target genes FKBP5 and GILZ as well as total and 1F and 1H GR transcripts were similar between groups. Furthermore, there were no differences in GR sensitivity, examined by the effects of dexamethasone on IL6 production in LPS-stimulated whole blood. Although we did not find differences in methylation at the GR 1F exon or promoter region, we identified a region of the GR 1H promoter (CpG 1-9) that showed lower methylation levels in ELA.Our results suggest that peripheral GR signaling was unperturbed in our cohort and the observed immune phenotype does not appear to be secondary to an altered GR response to the perturbed HPA axis and glucocorticoid (GC) profile, although we are limited in our measures of GR activity and time points.
Collapse
|
28
|
Gopinath VK, Soumya S, Mohammad MG. Ror β expression in activated macrophages and dental pulp stem cells. Int Endod J 2020; 54:388-398. [PMID: 33075145 DOI: 10.1111/iej.13431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 01/03/2023]
Abstract
AIM To assess the expression of Retinoic acid-related orphan receptor beta (Ror β) in human inflamed dental pulp stem cells (hI-DPSCs) and during macrophage phenotypic conversion. METHODOLOGY Commercially procured THP-1 monocytes conversion to macrophages was judged by their morphology, the percentage of adherent cells and the expression of CD-14 surface marker. THP-1 macrophage cell viability following LPS, IFN-γ/IL-4, IL-13 stimulus was evaluated at 24 and 48h. The phenotypic conversion of macrophages to M1 and M2 was confirmed by flow cytometry and Western blot analysis. Cytokine release following polarization was estimated by the BD cytokine flex kit. The expression of Ror β in THP-1 macrophages and hI-DPSCs following LPS, IFN-γ/IL-4, IL-13 stimulus was assessed by Western blot analysis. Statistical significance was analysed using one-way Anova followed by Tukey's Post hoc test. RESULTS THP-1 monocytes pretreated with PMA (100 ng mL-1 ) for 48 h followed by culturing in PMA-free media for another 48 h yielded cells with morphological characteristics similar to macrophages with a high percentage of adherence capability and CD-14 expression. Macrophages treated with LPS 100 ng mL-1 and IFN-γ 20 ng mL-1 or IL-4 20 ng mL-1 had high expression of the respective M1 and M2 CD markers in flow cytometry and Western blot analysis. Cytokine release studies demonstrated the expression of IL-1β, TNF-α and IL-10 in the M1-polarized macrophages (P < 0.01), whilst TGF- β levels were seen in the M1 and M2-polarized macrophages. Ror β expression was upregulated when macrophages and hI-DPSCs were treated with anti-inflammatory cytokines. CONCLUSION Ror β was expressed in THP-1 macrophages and hI-DPSCs during their resting stage. Upregulated expression of Ror β occurred following an anti-inflammatory stimulus.
Collapse
Affiliation(s)
- V K Gopinath
- College of Dental Medicine, University of Sharjah, Sharjah, UAE.,Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE
| | - S Soumya
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE
| | - M G Mohammad
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE.,Department of Medical Laboratory Sciences, University of Sharjah, Sharjah, UAE
| |
Collapse
|
29
|
Daujat-Chavanieu M, Gerbal-Chaloin S. Regulation of CAR and PXR Expression in Health and Disease. Cells 2020; 9:E2395. [PMID: 33142929 PMCID: PMC7692647 DOI: 10.3390/cells9112395] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Pregnane X receptor (PXR, NR1I2) and constitutive androstane receptor (CAR, NR1I3) are members of the nuclear receptor superfamily that mainly act as ligand-activated transcription factors. Their functions have long been associated with the regulation of drug metabolism and disposition, and it is now well established that they are implicated in physiological and pathological conditions. Considerable efforts have been made to understand the regulation of their activity by their cognate ligand; however, additional regulatory mechanisms, among which the regulation of their expression, modulate their pleiotropic effects. This review summarizes the current knowledge on CAR and PXR expression during development and adult life; tissue distribution; spatial, temporal, and metabolic regulations; as well as in pathological situations, including chronic diseases and cancers. The expression of CAR and PXR is modulated by complex regulatory mechanisms that involve the interplay of transcription factors and also post-transcriptional and epigenetic modifications. Moreover, many environmental stimuli affect CAR and PXR expression through mechanisms that have not been elucidated.
Collapse
Affiliation(s)
| | - Sabine Gerbal-Chaloin
- IRMB, University of Montpellier, INSERM, CHU Montpellier, 34295 Montpellier, France;
| |
Collapse
|
30
|
Atif M, Mohr A, Conti F, Scatton O, Gorochov G, Miyara M. Metabolic Optimisation of Regulatory T Cells in Transplantation. Front Immunol 2020; 11:2005. [PMID: 33013855 PMCID: PMC7495149 DOI: 10.3389/fimmu.2020.02005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/24/2020] [Indexed: 12/22/2022] Open
Abstract
Regulatory T (Treg) cells expressing the FOXP3 transcription factor are presently under investigation by many teams globally as a cellular therapy to induce tolerance in transplantation. This is primarily due to their immunosuppressive and homeostatic functions. Depending on the type of allograft, Treg cells will need to infiltrate and function in metabolically diverse microenvironments. This means that any resident and circulating Treg cells need to differentially adapt to counter acute or chronic allograft rejection. However, the links between Treg cell metabolism and function are still not entirely delineated. Current data suggest that Treg cells and their effector counterparts have different metabolite dependencies and metabolic programs. These properties could be exploited to optimize intragraft Treg cell function. In this review, we discuss the current paradigms regarding Treg cell metabolism and outline critical intracellular axes that link metabolism and function. Finally, we discuss how this knowledge could be clinically translated for the benefit of transplant patients.
Collapse
Affiliation(s)
- Mo Atif
- Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, AP-HP, Sorbonne Université, Paris, France.,Unité de Transplantation Hépatique, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France.,Centre for Liver and Gastrointestinal Research, NIHR Birmingham Biomedical Research Centre, University of Birmingham, Birmingham, United Kingdom
| | - Audrey Mohr
- Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, AP-HP, Sorbonne Université, Paris, France
| | - Filomena Conti
- Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, AP-HP, Sorbonne Université, Paris, France.,Unité de Transplantation Hépatique, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - Olivier Scatton
- Unité de Transplantation Hépatique, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - Guy Gorochov
- Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, AP-HP, Sorbonne Université, Paris, France
| | - Makoto Miyara
- Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, AP-HP, Sorbonne Université, Paris, France
| |
Collapse
|
31
|
Perino A, Demagny H, Velazquez-Villegas L, Schoonjans K. Molecular Physiology of Bile Acid Signaling in Health, Disease, and Aging. Physiol Rev 2020; 101:683-731. [PMID: 32790577 DOI: 10.1152/physrev.00049.2019] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Over the past two decades, bile acids (BAs) have become established as important signaling molecules that enable fine-tuned inter-tissue communication from the liver, their site of production, over the intestine, where they are modified by the gut microbiota, to virtually any organ, where they exert their pleiotropic physiological effects. The chemical variety of BAs, to a large extent determined by the gut microbiome, also allows for a complex fine-tuning of adaptive responses in our body. This review provides an overview of the mechanisms by which BA receptors coordinate several aspects of physiology and highlights new therapeutic strategies for diseases underlying pathological BA signaling.
Collapse
Affiliation(s)
- Alessia Perino
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne (EPFL), Switzerland
| | - Hadrien Demagny
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne (EPFL), Switzerland
| | - Laura Velazquez-Villegas
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne (EPFL), Switzerland
| | - Kristina Schoonjans
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne (EPFL), Switzerland
| |
Collapse
|
32
|
Fiorucci S, Baldoni M, Ricci P, Zampella A, Distrutti E, Biagioli M. Bile acid-activated receptors and the regulation of macrophages function in metabolic disorders. Curr Opin Pharmacol 2020; 53:45-54. [DOI: 10.1016/j.coph.2020.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/14/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022]
|
33
|
Mendler A, Pierzchalski A, Bauer M, Röder S, Sattler A, Standl M, Borte M, von Bergen M, Rolle‐Kampczyk U, Herberth G. MAIT cell activation in adolescents is impacted by bile acid concentrations and body weight. Clin Exp Immunol 2020; 200:199-213. [PMID: 32012235 PMCID: PMC7160656 DOI: 10.1111/cei.13423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2020] [Indexed: 12/29/2022] Open
Abstract
Bile acids (BAs) are produced by liver hepatocytes and were recently shown to exert functions additional to their well-known role in lipid digestion. As yet it is not known whether the mucosal-associated invariant T (MAIT) cells, which represent 10-15% of the hepatic T cell population, are affected by BAs. The focus of the present investigation was on the association of BA serum concentration with MAIT cell function and inflammatory parameters as well as on the relationship of these parameters to body weight. Blood samples from 41 normal weight and 41 overweight children of the Lifestyle Immune System Allergy (LISA) study were analyzed with respect to MAIT cell surface and activation markers [CD107a, CD137, CD69, interferon (IFN)-γ, tumor necrosis factor (TNF)-α] after Escherichia coli stimulation, mRNA expression of promyelocytic leukemia zinc finger protein (PLZF) and major histocompatibility complex class I-related gene protein (MR1), the inflammatory markers C-reactive protein (CRP), interleukin (IL)-8 and macrophage inflammatory protein (MIP)-1α as well as the concentrations of 13 conjugated and unconjugated BAs. Higher body weight was associated with reduced MAIT cell activation and expression of natural killer cell marker (NKp80) and chemokine receptor (CXCR3). BA concentrations were positively associated with the inflammatory parameters CRP, IL-8 and MIP-1α, but were negatively associated with the number of activated MAIT cells and the MAIT cell transcription factor PLZF. These relationships were exclusively found with conjugated BAs. BA-mediated inhibition of MAIT cell activation was confirmed in vitro. Thus, conjugated BAs have the capacity to modulate the balance between pro- and anti-inflammatory immune responses.
Collapse
Affiliation(s)
- A. Mendler
- Department of Environmental ImmunologyUFZ-Helmholtz Centre for Environmental Research LeipzigLeipzigGermany
| | - A. Pierzchalski
- Department of Environmental ImmunologyUFZ-Helmholtz Centre for Environmental Research LeipzigLeipzigGermany
| | - M. Bauer
- Department of Environmental ImmunologyUFZ-Helmholtz Centre for Environmental Research LeipzigLeipzigGermany
| | - S. Röder
- Department of Environmental ImmunologyUFZ-Helmholtz Centre for Environmental Research LeipzigLeipzigGermany
| | - A. Sattler
- Department for General, Visceral, and Vascular SurgeryCharité ‐ Universitätsmedizin BerlinBerlinGermany
| | - M. Standl
- Institute of EpidemiologyHelmholtz Zentrum München, German Research Center for Environmental HealthNeuherbergGermany
| | - M. Borte
- Children’s HospitalMunicipal Hospital ‘St Georg’Academic Teaching Hospital of the University of LeipzigLeipzigGermany
| | - M. von Bergen
- Department of Molecular Systems BiologyUFZ-Helmholtz Centre for Environmental Research LeipzigLeipzigGermany
- Institute of BiochemistryUniversity of LeipzigLeipzigGermany
| | - U. Rolle‐Kampczyk
- Department of Molecular Systems BiologyUFZ-Helmholtz Centre for Environmental Research LeipzigLeipzigGermany
| | - G. Herberth
- Department of Environmental ImmunologyUFZ-Helmholtz Centre for Environmental Research LeipzigLeipzigGermany
| |
Collapse
|
34
|
Sipe LM, Chaib M, Pingili AK, Pierre JF, Makowski L. Microbiome, bile acids, and obesity: How microbially modified metabolites shape anti-tumor immunity. Immunol Rev 2020; 295:220-239. [PMID: 32320071 PMCID: PMC7841960 DOI: 10.1111/imr.12856] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023]
Abstract
Bile acids (BAs) are known facilitators of nutrient absorption but recent paradigm shifts now recognize BAs as signaling molecules regulating both innate and adaptive immunity. Bile acids are synthesized from cholesterol in the liver with subsequent microbial modification and fermentation adding complexity to pool composition. Bile acids act on several receptors such as Farnesoid X Receptor and the G protein-coupled BA receptor 1 (TGR5). Interestingly, BA receptors (BARs) are expressed on immune cells and activation either by BAs or BAR agonists modulates innate and adaptive immune cell populations skewing their polarization toward a more tolerogenic anti-inflammatory phenotype. Intriguingly, recent evidence also suggests that BAs promote anti-tumor immune response through activation and recruitment of tumoricidal immune cells such as natural killer T cells. These exciting findings have redefined BA signaling in health and disease wherein they may suppress inflammation on the one hand, yet promote anti-tumor immunity on the other hand. In this review, we provide our readers with the most recent understanding of the interaction of BAs with the host microbiome, their effect on innate and adaptive immunity in health and disease with a special focus on obesity, bariatric surgery-induced weight loss, and immune checkpoint blockade in cancer.
Collapse
Affiliation(s)
- Laura M. Sipe
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Mehdi Chaib
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ajeeth K. Pingili
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Joseph F. Pierre
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Liza Makowski
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
35
|
Ticho AL, Malhotra P, Dudeja PK, Gill RK, Alrefai WA. Intestinal Absorption of Bile Acids in Health and Disease. Compr Physiol 2019; 10:21-56. [PMID: 31853951 PMCID: PMC7171925 DOI: 10.1002/cphy.c190007] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The intestinal reclamation of bile acids is crucial for the maintenance of their enterohepatic circulation. The majority of bile acids are actively absorbed via specific transport proteins that are highly expressed in the distal ileum. The uptake of bile acids by intestinal epithelial cells modulates the activation of cytosolic and membrane receptors such as the farnesoid X receptor (FXR) and G protein-coupled bile acid receptor 1 (GPBAR1), which has a profound effect on hepatic synthesis of bile acids as well as glucose and lipid metabolism. Extensive research has focused on delineating the processes of bile acid absorption and determining the contribution of dysregulated ileal signaling in the development of intestinal and hepatic disorders. For example, a decrease in the levels of the bile acid-induced ileal hormone FGF15/19 is implicated in bile acid-induced diarrhea (BAD). Conversely, the increase in bile acid absorption with subsequent overload of bile acids could be involved in the pathophysiology of liver and metabolic disorders such as fatty liver diseases and type 2 diabetes mellitus. This review article will attempt to provide a comprehensive overview of the mechanisms involved in the intestinal handling of bile acids, the pathological implications of disrupted intestinal bile acid homeostasis, and the potential therapeutic targets for the treatment of bile acid-related disorders. Published 2020. Compr Physiol 10:21-56, 2020.
Collapse
Affiliation(s)
- Alexander L. Ticho
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Pooja Malhotra
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Pradeep K. Dudeja
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Ravinder K. Gill
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Waddah A. Alrefai
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- jesse Brown VA Medical Center, Chicago, Illinois, USA
| |
Collapse
|
36
|
Minzaghi D, Pavel P, Dubrac S. Xenobiotic Receptors and Their Mates in Atopic Dermatitis. Int J Mol Sci 2019; 20:E4234. [PMID: 31470652 PMCID: PMC6747412 DOI: 10.3390/ijms20174234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023] Open
Abstract
Atopic dermatitis (AD) is the most common inflammatory skin disease worldwide. It is a chronic, relapsing and pruritic skin disorder which results from epidermal barrier abnormalities and immune dysregulation, both modulated by environmental factors. AD is strongly associated with asthma and allergic rhinitis in the so-called 'atopic march.' Xenobiotic receptors and their mates are ligand-activated transcription factors expressed in the skin where they control cellular detoxification pathways. Moreover, they regulate the expression of genes in pathways involved in AD in epithelial cells and immune cells. Activation or overexpression of xenobiotic receptors in the skin can be deleterious or beneficial, depending on context, ligand and activation duration. Moreover, their impact on skin might be amplified by crosstalk among xenobiotic receptors and their mates. Because they are activated by a broad range of endogenous molecules, drugs and pollutants owing to their promiscuous ligand affinity, they have recently crystalized the attention of researchers, including in dermatology and especially in the AD field. This review examines the putative roles of these receptors in AD by critically evaluating the conditions under which the proteins and their ligands have been studied. This information should provide new insights into AD pathogenesis and ways to develop new therapeutic interventions.
Collapse
Affiliation(s)
- Deborah Minzaghi
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Petra Pavel
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Sandrine Dubrac
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|
37
|
Comeglio P, Filippi S, Sarchielli E, Morelli A, Cellai I, Corno C, Adorini L, Vannelli GB, Maggi M, Vignozzi L. Therapeutic effects of the selective farnesoid X receptor agonist obeticholic acid in a monocrotaline-induced pulmonary hypertension rat model. J Endocrinol Invest 2019; 42:951-965. [PMID: 30674010 DOI: 10.1007/s40618-019-1009-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/11/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Activation of the farnesoid X receptor (FXR), a member of the nuclear receptor steroid superfamily, leads to anti-inflammatory and anti-fibrotic effects in several tissues, including the lung. We have recently demonstrated a protective effect of the farnesoid X receptor (FXR) agonist obeticholic acid (OCA) in rat models of monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH) and bleomycin-induced pulmonary fibrosis. The aim of the present study was to investigate whether the positive effects of OCA treatment could be exerted also in established MCT-induced PAH, i.e., starting treatment 2 weeks after MCT administration. METHODS Rats with MCT-induced PAH were treated, 2 weeks after MCT administration, with OCA or tadalafil for two additional weeks. Pulmonary functional tests were performed at week 2 (before treatment) and four (end of treatment). At the same time points, lung morphological features and expression profile of genes related to smooth muscle relaxation/contraction and tissue remodeling were also assessed. RESULTS 2 weeks after MCT-induced injury, the treadmill resistance (a functional parameter related to pulmonary hypertension) was significantly decreased. At the same time point, we observed right ventricular hypertrophy and vascular remodeling, with upregulation of genes related to inflammation. At week 4, we observed a further worsening of the functional and morphological parameters, accompanied by dysregulation of inflammatory and extracellular matrix markers mRNA expression. Administration of OCA (3 or 10 mg/kg/day), starting 2 weeks after MCT-induced injury, significantly improved pulmonary function, effectively normalizing the exercise capacity. OCA also reverted most of the lung alterations, with a significant reduction of lung vascular wall thickness, right ventricular hypertrophy, and restoration of the local balance between relaxant and contractile pathways. Markers of remodeling pathways were also normalized by OCA treatment. Notably, results with OCA treatment were similar, or even superior, to those obtained with tadalafil, a recently approved treatment for pulmonary hypertension. CONCLUSIONS The results of this study demonstrate a significant therapeutic effect of OCA in established MCT-induced PAH, improving exercise capacity associated with reduction of right ventricular hypertrophy and lung vascular remodeling. Thus, OCA dosing in a therapeutic protocol restores the balance between relaxant and contractile pathways in the lung, promoting cardiopulmonary protective actions in MCT-induced PAH.
Collapse
Affiliation(s)
- P Comeglio
- Sexual Medicine and Andrology Unit, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, AOU Careggi, Viale Pieraccini, 6, 50139, Florence, Italy
| | - S Filippi
- Interdepartmental Laboratory of Functional and Cellular Pharmacology of Reproduction, Department of NEUROFARBA, University of Florence, Florence, Italy
| | - E Sarchielli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - A Morelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - I Cellai
- Sexual Medicine and Andrology Unit, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, AOU Careggi, Viale Pieraccini, 6, 50139, Florence, Italy
| | - C Corno
- Sexual Medicine and Andrology Unit, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, AOU Careggi, Viale Pieraccini, 6, 50139, Florence, Italy
| | - L Adorini
- Intercept Pharmaceuticals, New York, NY, USA
| | - G B Vannelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - M Maggi
- Sexual Medicine and Andrology Unit, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, AOU Careggi, Viale Pieraccini, 6, 50139, Florence, Italy
- I.N.B.B. (Istituto Nazionale Biostrutture E Biosistemi), Rome, Italy
| | - L Vignozzi
- Sexual Medicine and Andrology Unit, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, AOU Careggi, Viale Pieraccini, 6, 50139, Florence, Italy.
- I.N.B.B. (Istituto Nazionale Biostrutture E Biosistemi), Rome, Italy.
| |
Collapse
|
38
|
Hudson G, Flannigan KL, Venu VKP, Alston L, Sandall CF, MacDonald JA, Muruve DA, Chang TKH, Mani S, Hirota SA. Pregnane X Receptor Activation Triggers Rapid ATP Release in Primed Macrophages That Mediates NLRP3 Inflammasome Activation. J Pharmacol Exp Ther 2019; 370:44-53. [PMID: 31004077 PMCID: PMC6542184 DOI: 10.1124/jpet.118.255679] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/08/2019] [Indexed: 12/15/2022] Open
Abstract
The pregnane X receptor (PXR) is a ligand-activated nuclear receptor that acts as a xenobiotic sensor, responding to compounds of foreign origin, including pharmaceutical compounds, environmental contaminants, and natural products, to induce transcriptional events that regulate drug detoxification and efflux pathways. As such, the PXR is thought to play a key role in protecting the host from xenobiotic exposure. More recently, the PXR has been reported to regulate the expression of innate immune receptors in the intestine and modulate inflammasome activation in the vasculature. In the current study, we report that activation of the PXR in primed macrophages triggers caspase-1 activation and interleukin-1β release. Mechanistically, we show that this response is nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain-containing 3-dependent and is driven by the rapid efflux of ATP and P2X purinoceptor 7 activation following PXR stimulation, an event that involves pannexin-1 gating, and is sensitive to inhibition of Src-family kinases. Our findings identify a mechanism whereby the PXR drives innate immune signaling, providing a potential link between xenobiotic exposure and the induction of innate inflammatory responses.
Collapse
Affiliation(s)
- Grace Hudson
- Departments of Physiology and Pharmacology (G.H., K.L.F., V.K.P.V., L.A., S.A.H.), Biochemistry and Molecular Biology (C.F.S., J.A.M.), Medicine (D.A.M.), and Immunology, Microbiology, and Infectious Diseases (S.A.H.), University of Calgary, Calgary, Alberta, Canada; Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada (T.K.H.C.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Kyle L Flannigan
- Departments of Physiology and Pharmacology (G.H., K.L.F., V.K.P.V., L.A., S.A.H.), Biochemistry and Molecular Biology (C.F.S., J.A.M.), Medicine (D.A.M.), and Immunology, Microbiology, and Infectious Diseases (S.A.H.), University of Calgary, Calgary, Alberta, Canada; Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada (T.K.H.C.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Vivek Krishna Pulakazhi Venu
- Departments of Physiology and Pharmacology (G.H., K.L.F., V.K.P.V., L.A., S.A.H.), Biochemistry and Molecular Biology (C.F.S., J.A.M.), Medicine (D.A.M.), and Immunology, Microbiology, and Infectious Diseases (S.A.H.), University of Calgary, Calgary, Alberta, Canada; Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada (T.K.H.C.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Laurie Alston
- Departments of Physiology and Pharmacology (G.H., K.L.F., V.K.P.V., L.A., S.A.H.), Biochemistry and Molecular Biology (C.F.S., J.A.M.), Medicine (D.A.M.), and Immunology, Microbiology, and Infectious Diseases (S.A.H.), University of Calgary, Calgary, Alberta, Canada; Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada (T.K.H.C.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Christina F Sandall
- Departments of Physiology and Pharmacology (G.H., K.L.F., V.K.P.V., L.A., S.A.H.), Biochemistry and Molecular Biology (C.F.S., J.A.M.), Medicine (D.A.M.), and Immunology, Microbiology, and Infectious Diseases (S.A.H.), University of Calgary, Calgary, Alberta, Canada; Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada (T.K.H.C.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Justin A MacDonald
- Departments of Physiology and Pharmacology (G.H., K.L.F., V.K.P.V., L.A., S.A.H.), Biochemistry and Molecular Biology (C.F.S., J.A.M.), Medicine (D.A.M.), and Immunology, Microbiology, and Infectious Diseases (S.A.H.), University of Calgary, Calgary, Alberta, Canada; Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada (T.K.H.C.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Daniel A Muruve
- Departments of Physiology and Pharmacology (G.H., K.L.F., V.K.P.V., L.A., S.A.H.), Biochemistry and Molecular Biology (C.F.S., J.A.M.), Medicine (D.A.M.), and Immunology, Microbiology, and Infectious Diseases (S.A.H.), University of Calgary, Calgary, Alberta, Canada; Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada (T.K.H.C.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Thomas K H Chang
- Departments of Physiology and Pharmacology (G.H., K.L.F., V.K.P.V., L.A., S.A.H.), Biochemistry and Molecular Biology (C.F.S., J.A.M.), Medicine (D.A.M.), and Immunology, Microbiology, and Infectious Diseases (S.A.H.), University of Calgary, Calgary, Alberta, Canada; Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada (T.K.H.C.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Sridhar Mani
- Departments of Physiology and Pharmacology (G.H., K.L.F., V.K.P.V., L.A., S.A.H.), Biochemistry and Molecular Biology (C.F.S., J.A.M.), Medicine (D.A.M.), and Immunology, Microbiology, and Infectious Diseases (S.A.H.), University of Calgary, Calgary, Alberta, Canada; Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada (T.K.H.C.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Simon A Hirota
- Departments of Physiology and Pharmacology (G.H., K.L.F., V.K.P.V., L.A., S.A.H.), Biochemistry and Molecular Biology (C.F.S., J.A.M.), Medicine (D.A.M.), and Immunology, Microbiology, and Infectious Diseases (S.A.H.), University of Calgary, Calgary, Alberta, Canada; Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada (T.K.H.C.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| |
Collapse
|
39
|
Ticho AL, Malhotra P, Dudeja PK, Gill RK, Alrefai WA. Bile Acid Receptors and Gastrointestinal Functions. LIVER RESEARCH 2019; 3:31-39. [PMID: 32368358 PMCID: PMC7197881 DOI: 10.1016/j.livres.2019.01.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bile acids modulate several gastrointestinal functions including electrolyte secretion and absorption, gastric emptying, and small intestinal and colonic motility. High concentrations of bile acids lead to diarrhea and are implicated in the development of esophageal, gastric and colonic cancer. Alterations in bile acid homeostasis are also implicated in the pathophysiology of irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD). Our understanding of the mechanisms underlying these effects of bile acids on gut functions has been greatly enhanced by the discovery of bile acid receptors, including the nuclear receptors: farnesoid X receptor (FXR), vitamin D receptor (VDR), pregnane X receptor (PXR), and constitutive androstane receptor (CAR); and the G protein-coupled receptors: Takeda G protein-coupled receptor (TGR5), sphingosine-1-phosphate receptor 2 (S1PR2), and muscarinic acetylcholine receptor M3 (M3R).. For example, various studies provided evidence demonstrating the anti-inflammatory effects FXR and TGR5 activation in models of intestinal inflammation. In addition, TGR5 activation in enteric neurons was recently shown to increase colonic motility, which may lead to bile acid-induced diarrhea. Interestingly, TGR5 induces the secretion of glucagon-like peptide-1 (GLP-1) from L-cells to enhance insulin secretion and modulate glucose metabolism. Because of the importance of these receptors, agonists of TGR5 and intestine-specific FXR agonists are currently being tested as an option for the treatment of diabetes mellitus and primary bile acid diarrhea, respectively. This review summarizes current knowledge of the functional roles of bile acid receptors in the gastrointestinal tract.
Collapse
Affiliation(s)
- Alexander L. Ticho
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago
| | - Pooja Malhotra
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago
| | - Pradeep K. Dudeja
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago,Jesse Brown VA Medical Center, Chicago, IL
| | - Ravinder K. Gill
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago
| | - Waddah A. Alrefai
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago,Jesse Brown VA Medical Center, Chicago, IL,To whom correspondence should be addressed: Waddah A. Alrefai, MD: Research Career Scientist, Jesse Brown VA Medical Center, Professor of Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612; ; Tel. (312) 569-7429; Fax. (312) 569-8114
| |
Collapse
|
40
|
Masaoutis C, Theocharis S. The farnesoid X receptor: a potential target for expanding the therapeutic arsenal against kidney disease. Expert Opin Ther Targets 2018; 23:107-116. [PMID: 30577722 DOI: 10.1080/14728222.2019.1559825] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Farnesoid X receptor (FXR) is a nuclear bile acid (BA) receptor widely distributed among tissues, a major sensor of BA levels, primary suppressor of hepatic BA synthesis and secondary regulator of lipid metabolism and inflammation. Chronic kidney disease is a common, multifactorial condition with metabolic and inflammatory causes and implications. An array of natural and synthetic FXR agonists has been developed, but not yet studied clinically in kidney disease. Areas covered: Following a summary of FXR's physiological functions in the kidney, we discuss its effects in renal disease with emphasis on chronic and acute kidney disease, chemotherapy-induced nephrotoxicity, and renal neoplasia. Most information is derived from animal models; no relevant clinical study has been conducted to date. Expert opinion: Most available preclinical data indicates a promising outlook for clinical research in this direction. We believe FXR agonism to be an auspicious approach to treating renal disease, considering that multifactorial diseases call for ideally wide-reaching therapies.
Collapse
Affiliation(s)
- Christos Masaoutis
- a First Department of Pathology, Medical School , National and Kapodistrian University of Athens , Athens , Greece
| | - Stamatios Theocharis
- a First Department of Pathology, Medical School , National and Kapodistrian University of Athens , Athens , Greece
| |
Collapse
|
41
|
Hepatoprotective effect of bisbenzylisoquinoline alkaloid tiliamosine from Tiliacora racemosa in high-fat diet/diethylnitrosamine-induced non-alcoholic steatohepatitis. Biomed Pharmacother 2018; 108:963-973. [DOI: 10.1016/j.biopha.2018.09.116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 02/06/2023] Open
|
42
|
Abstract
PURPOSE OF REVIEW Mucosal immune cells in the intestinal tract are continuously exposed to a barrage of both foreign and endogenously generated metabolites, termed xenobiotics, and endobiotics, respectively. This review summarizes recent insights into the mechanisms by which xenobiotics and endobiotics regulate intestinal immunity and inflammation. RECENT FINDINGS The community of enteric microbes (i.e., microbiota) has profound impacts on the development and function of the mucosal immune system. The composition and function of gut microbiota is dynamically regulated by diet, and this interplay dictates which and how many immunomodulatory xenobiotics are present in the intestine. Microbiota also regulate the concentration and composition of circulating bile acids, an abundant class of liver-derived endobiotics with pleotropic immunoregulatory activities. A growing body of literature is emerging that sheds new light on the mechanisms by which xenobiotics and endobiotics interact with germline-encoded receptors and transporters to shape mucosal immune function. SUMMARY The complex and dynamic interplay among xenobiotics, endobiotics, and the mucosal immune system is a new frontier in mucosal immunology that is proving fruitful for the discovery of novel and pharmacologically accessible mechanisms with relevance to human inflammatory diseases.
Collapse
|
43
|
Schubert K, Olde Damink SWM, von Bergen M, Schaap FG. Interactions between bile salts, gut microbiota, and hepatic innate immunity. Immunol Rev 2018; 279:23-35. [PMID: 28856736 DOI: 10.1111/imr.12579] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bile salts are the water-soluble end products of hepatic cholesterol catabolism that are released into the duodenum and solubilize lipids due to their amphipathic structure. Bile salts also act as endogenous ligands for dedicated nuclear receptors that exert a plethora of biological processes, mostly related to metabolism. Bile salts are actively reclaimed in the distal part of the small intestine, released into the portal system, and subsequently extracted by the liver. This enterohepatic cycle is critically dependent on dedicated bile salt transporters. In the intestinal lumen, bile salts exert direct antimicrobial activity based on their detergent property and shape the gut microbiota. Bile salt metabolism by gut microbiota serves as a mechanism to counteract this toxicity and generates bile salt species that are distinct from those of the host. Innate immune cells of the liver play an important role in the early recognition and effector response to invading microbes. Bile salts signal primarily via the membrane receptor TGR5 and the intracellular farnesoid-x receptor, both present in innate immune cells. In this review, the interactions between bile salts, gut microbiota, and hepatic innate immunity are discussed.
Collapse
Affiliation(s)
- Kristin Schubert
- Department of Molecular Systems Biology, Helmholtz Center for Environmental Research, Leipzig, Germany
| | - Steven W M Olde Damink
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.,Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Center for Environmental Research, Leipzig, Germany.,Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
| | - Frank G Schaap
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.,Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
44
|
Wang Z, Wu D, Ng CF, Teoh JYC, Yu S, Wang Y, Chan FL. Nuclear receptor profiling in prostatospheroids and castration-resistant prostate cancer. Endocr Relat Cancer 2018; 25:35-50. [PMID: 29042395 DOI: 10.1530/erc-17-0280] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 10/17/2017] [Indexed: 12/13/2022]
Abstract
Nuclear receptors (NRs), which belong to a superfamily of transcription factors and consist of a total of 48 members in humans, govern the expression of genes involved in a board range of developmental, reproductive, metabolic and immunological programs. Given the significant importance of androgen receptor and a few known NRs in the progression of prostate cancer, we surveyed the expression profiles of the entire NR superfamily in three-dimensional cultured prostatospheroids derived from different prostate cancer cell lines and a tumor xenograft model of castration-resistant prostate cancer VCaP-CRPC by quantitative real-time RT-PCR. Our results revealed that prostatospheroids and castration-relapse VCaP-CRPC xenografts, both contained enriched populations of prostate cancer stem/progenitor-like cells (PCSCs), displayed distinct expression patterns of NRs. Intriguingly, most of these differentially expressed NRs were orphan NRs and showed upregulation. Pairwise analysis identified five orphan NRs (including RORβ, TLX, COUP-TFII, NURR1 and LRH-1) that showed common upregulation in both mRNA and protein levels in the prostatospheroids and castration-relapse VCaP-CRPC xenografts, and overexpression of these orphan NRs could increase cancer stem cell marker expressions and enhance spheroid formation capacity in prostate cancer cells, suggesting that these orphan NRs might perform positive roles in the growth regulation of PCSCs and castration-resistant prostate cancer. Together, our NR expression dataset not only revealed the distinct physiologic status and regulatory roles governed by the networks of specific NRs but also some of these identified orphan NRs could be the potential therapeutic targets for PCSCs or castration-resistant prostate cancer.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- COUP Transcription Factor II/genetics
- COUP Transcription Factor II/metabolism
- Humans
- Male
- Mice, SCID
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Nuclear Receptor Subfamily 4, Group A, Member 2/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism
- Orphan Nuclear Receptors
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms, Castration-Resistant/pathology
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Spheroids, Cellular/metabolism
- Spheroids, Cellular/pathology
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Zhu Wang
- School of Biomedical SciencesThe Chinese University of Hong Kong, Hong Kong, China
- Department of UrologyPeople's Hospital of Longhua, Shenzhen, China
| | - Dinglan Wu
- School of Biomedical SciencesThe Chinese University of Hong Kong, Hong Kong, China
- The Clinical Innovation & Research CenterShenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Chi-Fai Ng
- Department of SurgeryFaculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jeremy Yuen-Chun Teoh
- Department of SurgeryFaculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Shan Yu
- School of Biomedical SciencesThe Chinese University of Hong Kong, Hong Kong, China
| | - Yuliang Wang
- School of Biomedical SciencesThe Chinese University of Hong Kong, Hong Kong, China
| | - Franky L Chan
- School of Biomedical SciencesThe Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
45
|
Mohandas S, Vairappan B. Role of pregnane X-receptor in regulating bacterial translocation in chronic liver diseases. World J Hepatol 2017; 9:1210-1226. [PMID: 29184608 PMCID: PMC5696604 DOI: 10.4254/wjh.v9.i32.1210] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/21/2017] [Accepted: 10/30/2017] [Indexed: 02/06/2023] Open
Abstract
Bacterial translocation (BT) has been impeccably implicated as a driving factor in the pathogenesis of a spectrum of chronic liver diseases (CLD). Scientific evidence accumulated over the last four decades has implied that the disease pathologies in CLD and BT are connected as a loop in the gut-liver axis and exacerbate each other. Pregnane X receptor (PXR) is a ligand-activated transcription factor and nuclear receptor that is expressed ubiquitously along the gut-liver-axis. PXR has been intricately associated with the regulation of various mechanisms attributed in causing BT. The importance of PXR as the mechanistic linker molecule in the gut-liver axis and its role in regulating bacterial interactions with the host in CLD has not been explored. PubMed was used to perform an extensive literature search using the keywords PXR and bacterial translocation, PXR and chronic liver disease including cirrhosis. In an adequate expression state, PXR acts as a sensor for bile acid dysregulation and bacterial derived metabolites, and in response shapes the immune profile beneficial to the host. Activation of PXR could be therapeutic in CLD as it counter-regulates endotoxin mediated inflammation and maintains the integrity of intestinal epithelium. This review mainly focuses PXR function and its regulation in BT in the context of chronic liver diseases.
Collapse
Affiliation(s)
- Sundhar Mohandas
- Liver Diseases Research Lab, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Dhanvantari Nagar, Pondicherry 605006, India
| | - Balasubramaniyan Vairappan
- Liver Diseases Research Lab, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Dhanvantari Nagar, Pondicherry 605006, India
| |
Collapse
|
46
|
The orphan nuclear receptor TR4 regulates erythroid cell proliferation and maturation. Blood 2017; 130:2537-2547. [PMID: 29018082 DOI: 10.1182/blood-2017-05-783159] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/15/2017] [Indexed: 12/22/2022] Open
Abstract
The orphan nuclear receptors TR4 (NR2C2) and TR2 (NR2C1) are the DNA-binding subunits of the macromolecular complex, direct repeat erythroid-definitive, which has been shown to repress ε- and γ-globin transcription during adult definitive erythropoiesis. Previous studies implied that TR2 and TR4 act largely in a redundant manner during erythroid differentiation; however, during the course of routine genetic studies, we observed multiple variably penetrant phenotypes in the Tr4 mutants, suggesting that indirect effects of the mutation might be masked by multiple modifying genes. To test this hypothesis, Tr4+/- mutant mice were bred into a congenic C57BL/6 background and their phenotypes were reexamined. Surprisingly, we found that homozygous Tr4 null mutant mice expired early during embryogenesis, around embryonic day 7.0, and well before erythropoiesis commences. We further found that Tr4+/- erythroid cells failed to fully differentiate and exhibited diminished proliferative capacity. Analysis of Tr4+/- mutant erythroid cells revealed that reduced TR4 abundance resulted in decreased expression of genes required for heme biosynthesis and erythroid differentiation (Alad and Alas2), but led to significantly increased expression of the proliferation inhibitory factor, cyclin dependent kinase inhibitor (Cdkn1c) These studies support a vital role for TR4 in promoting erythroid maturation and proliferation, and demonstrate that TR4 and TR2 execute distinct, individual functions during embryogenesis and erythroid differentiation.
Collapse
|
47
|
Comeglio P, Morelli A, Adorini L, Maggi M, Vignozzi L. Beneficial effects of bile acid receptor agonists in pulmonary disease models. Expert Opin Investig Drugs 2017; 26:1215-1228. [PMID: 28949776 DOI: 10.1080/13543784.2017.1385760] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Bile acids act as steroid hormones, controlling lipid, glucose and energy metabolism, as well as inflammation and fibrosis. Their actions are implemented through activation of nuclear (FXR, VDR, PXR) and membrane G protein-coupled (TGR5, S1PR2) receptors. Areas covered: This review discusses the potential of FXR and TGR5 as therapeutic targets in the treatment of pulmonary disorders linked to metabolism and/or inflammation. Obeticholic acid (OCA) is the most clinically advanced bile acid-derived agonist for FXR-mediated anti-inflammatory and anti-fibrotic effects. It therefore represents an attractive pharmacological approach for the treatment of lung conditions characterized by vascular and endothelial dysfunctions. Expert opinion: Inflammation, vascular remodeling and fibrotic processes characterize the progression of pulmonary arterial hypertension (PAH) and idiopathic pulmonary fibrosis (IPF). These processes are only partially targeted by the available therapeutic options and still represent a relevant medical need. The results hereby summarized demonstrate OCA efficacy in preventing experimental lung disorders, i.e. monocrotaline-induced PAH and bleomycin-induced fibrosis, by abating proinflammatory and vascular remodeling progression. TGR5 is also expressed in the lung, and targeting the TGR5 pathway, using the TGR5 agonist INT-777 or the dual FXR/TGR5 agonist INT-767, could also contribute to the treatment of pulmonary disorders mediated by inflammation and fibrosis.
Collapse
Affiliation(s)
- Paolo Comeglio
- a Department of Biomedical, Experimental and Clinical Sciences , University of Florence , Florence , Italy
| | - Annamaria Morelli
- b Department of Experimental and Clinical Medicine , University of Florence , Florence , Italy
| | | | - Mario Maggi
- a Department of Biomedical, Experimental and Clinical Sciences , University of Florence , Florence , Italy
| | - Linda Vignozzi
- a Department of Biomedical, Experimental and Clinical Sciences , University of Florence , Florence , Italy
| |
Collapse
|
48
|
Elentner A, Schmuth M, Yannoutsos N, Eichmann TO, Gruber R, Radner FPW, Hermann M, Del Frari B, Dubrac S. Epidermal Overexpression of Xenobiotic Receptor PXR Impairs the Epidermal Barrier and Triggers Th2 Immune Response. J Invest Dermatol 2017; 138:109-120. [PMID: 28927887 PMCID: PMC6217923 DOI: 10.1016/j.jid.2017.07.846] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/29/2017] [Accepted: 07/03/2017] [Indexed: 12/11/2022]
Abstract
The skin is in daily contact with environmental pollutants, but the long-term effects of such exposure remain underinvestigated. Many of these toxins bind and activate the pregnane X receptor (PXR), a ligand-activated transcription factor that regulates genes central to xenobiotic metabolism. The objective of this work was to investigate the effect of constitutive activation of PXR in the basal layer of the skin to mimic repeated skin exposure to noxious molecules. We designed a transgenic mouse model that overexpresses the human PXR gene linked to the herpes simplex VP16 domain under the control of the keratin 14 promoter. We show that transgenic mice display increased transepidermal water loss and elevated skin pH, abnormal stratum corneum lipids, focal epidermal hyperplasia, activated keratinocytes expressing more thymic stromal lymphopoietin, a T helper type 2/T helper type 17 skin immune response, and increased serum IgE. Furthermore, the cutaneous barrier dysfunction precedes development of the T helper type 2/T helper type 17 inflammation in transgenic mice, thereby mirroring the time course of atopic dermatitis development in humans. Moreover, further experiments suggest increased PXR signaling in the skin of patients with atopic dermatitis when compared with healthy skin. Thus, PXR activation by environmental pollutants may compromise epidermal barrier function and favor an immune response resembling atopic dermatitis.
Collapse
Affiliation(s)
- Andreas Elentner
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Matthias Schmuth
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Nikolaos Yannoutsos
- Gene Regulation and Immunology Laboratory, Department of Cell Biology, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas O Eichmann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Robert Gruber
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Franz P W Radner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Martin Hermann
- KMT Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Center for Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Barbara Del Frari
- Department of Plastic, Reconstructive and Esthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Sandrine Dubrac
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
49
|
Medeiros RMD, Menti CF, Benelli JL, Matte MCC, Melo MGD, Almeida SEDM, Fiegenbaum M. Association of NR1I2 gene polymorphisms and time of progression to AIDS. Mem Inst Oswaldo Cruz 2017; 112:269-274. [PMID: 28327790 PMCID: PMC5354613 DOI: 10.1590/0074-02760160382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 12/27/2016] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The time of progression towards AIDS can vary greatly among seropositive patients, and may be associated with host genetic variation. The NR1I2 (PXR) gene, a ligand-activated transcription factor, regulates the transcription immune pathway genes and can therefore be targets of viral replication mechanisms influencing time of progression to AIDS. OBJECTIVE To verify the association of single nucleotide polymorphisms (SNPs) rs3814057, rs6785049, rs7643645, and rs2461817 in the NR1I2 (PXR) gene with progression to AIDS in HIV-1 infected patients. METHODS Blood samples were obtained from 96 HIV-1 positive individuals following informed consent. DNA was isolated and genotyped through real time polymerase chain reaction (PCR) for the presence of SNPs in the NR1I2. Questionnaires on socio-demographic features and behaviors were answered and time of progression to AIDS was estimated based on medical chart analysis. FINDINGS Patients with the GG genotype for rs7643645 were shown to be related with a more rapid disease progression when compared to GA and AA genotypes. This result was maintained by the Multivariate Cox Regression considering sex, ethnicity, and presence of HLA-B*57, HLA-B*27, and CCR5del32 polymorphisms. MAIN CONCLUSIONS Recent studies reported the expression of the nuclear receptors in T-Lymphocytes, suggesting their possible role in the immune response. In addition, nuclear receptors have been shown to inhibit the HIV replication, although no such mechanism has been thoroughly elucidated to date. This is the first time an association between NR1I2 polymorphism and time of progression to AIDS is reported and supports an apparent relationship between the gene in the immune response and identifies another genetic factor influencing AIDS progression.
Collapse
Affiliation(s)
- Rúbia Marília de Medeiros
- Fundação Estadual de Produção e Pesquisa, Centro de Desenvolvimento Científico e Tecnológicos, Porto Alegre, RS, Brasil.,Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brasil
| | - Carolina Fialho Menti
- Universidade Federal de Ciências da Saúde de Porto Alegre, Faculdade de Biomedicina, Porto Alegre, RS, Brasil
| | - Jéssica Louise Benelli
- Universidade Federal de Ciências da Saúde de Porto Alegre, Programa de Pós-Graduação em Patologia, Porto Alegre, RS, Brasil
| | - Maria Cristina Cotta Matte
- Fundação Estadual de Produção e Pesquisa, Centro de Desenvolvimento Científico e Tecnológicos, Porto Alegre, RS, Brasil.,Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brasil
| | | | - Sabrina Esteves de Matos Almeida
- Fundação Estadual de Produção e Pesquisa, Centro de Desenvolvimento Científico e Tecnológicos, Porto Alegre, RS, Brasil.,Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brasil.,Universidade Feevale, Novo Hamburgo, Brasil
| | - Marilu Fiegenbaum
- Universidade Federal de Ciências da Saúde de Porto Alegre, Programa de Pós-Graduação em Patologia, Porto Alegre, RS, Brasil
| |
Collapse
|
50
|
Albrecht S, Fleck AK, Kirchberg I, Hucke S, Liebmann M, Klotz L, Kuhlmann T. Activation of FXR pathway does not alter glial cell function. J Neuroinflammation 2017; 14:66. [PMID: 28351411 PMCID: PMC5371249 DOI: 10.1186/s12974-017-0833-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 03/06/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The nuclear receptor farnesoid-X-receptor (FXR; NR1H4) is expressed not only in the liver, gut, kidney and adipose tissue but also in the immune cells. FXR has been shown to confer protection in several animal models of inflammation, including experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). FXR agonists are currently tested in clinical trials for treatment of human metabolic diseases. The beneficial effect of FXR agonists in EAE suggests that FXR might represent a potential target in inflammatory-demyelinating CNS diseases, such as MS. In MS, oligodendrocytes not only undergo cell death but also contribute to remyelination. This repair mechanism is impaired due to a differentiation block of oligodendroglial progenitor cells. Activation of other nuclear receptors that heterodimerize with FXR promote oligodendroglial differentiation. Therefore, we wanted to address the functional relevance of FXR for glial cells, especially for oligodendroglial differentiation. METHODS We isolated primary murine oligodendrocytes from FXR-deficient (FXR Ko) and wild-type (WT) mice and determined the effect of FXR deficiency and activation on oligodendroglial differentiation by analysing markers of oligodendroglial progenitor cells (OPCs) and mature oligodendrocytes (OLs) using qRT-PCR and immunocytochemistry. Additionally, we determined whether FXR activation modulates the pro-inflammatory profile of astrocytes or microglia and whether this may subsequently modulate oligodendroglial differentiation. These in vitro studies were complemented by histological analyses of oligodendrocytes in FXR Ko mice. RESULTS FXR is expressed by OPCs and mature oligodendrocytes. However, lack of FXR did not affect oligodendroglial differentiation in vitro or in vivo. Furthermore, activation of FXR using the synthetic agonist GW4064 did not affect oligodendroglial differentiation, remyelination in an ex vivo model or the expression of pro-inflammatory molecules in astrocytes or microglia. Concordantly, no effects of supernatants from macrophages cultured in the presence of GW4064 were observed regarding a possible indirect impact on oligodendroglial differentiation. CONCLUSIONS Our data suggest that FXR is dispensable for oligodendroglial differentiation and that FXR agonists, such as GW4064, represent a potential therapeutic approach for MS which specifically targets peripheral immune cells including macrophages but not brain-resident cells, such as oligodendrocytes, astrocytes or microglia.
Collapse
Affiliation(s)
- Stefanie Albrecht
- Institute of Neuropathology, University Hospital Münster, 48149, Münster, Germany
| | - Ann-Katrin Fleck
- Department of Neurology, University of Münster, 48149, Münster, Germany
| | - Ina Kirchberg
- Institute of Neuropathology, University Hospital Münster, 48149, Münster, Germany
| | - Stephanie Hucke
- Department of Neurology, University of Münster, 48149, Münster, Germany
| | - Marie Liebmann
- Department of Neurology, University of Münster, 48149, Münster, Germany
| | - Luisa Klotz
- Department of Neurology, University of Münster, 48149, Münster, Germany.
| | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital Münster, 48149, Münster, Germany.
| |
Collapse
|