1
|
Zaffran I, Zoabi Y, Gaur P, Alekberli FR, Tiligada E, Yutkin V, Levi-Schaffer F. Eosinophils but not mast cells exert anti-tumorigenic activity, without being predictive markers of the long-term response to Bacillus Calmette-Guérin (BCG) therapy in patients with bladder carcinoma. Inflamm Res 2025; 74:68. [PMID: 40272538 PMCID: PMC12021714 DOI: 10.1007/s00011-025-02028-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/13/2025] [Accepted: 03/24/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Bacillus Calmette-Guerin (BCG) therapy is an established immunotherapy for non-muscle invasive bladder cancer (NMIBC); however, the response variability of patients remains a challenge, necessitating insight into immune cell function. Previous studies established that a preexisting Th2 immune microenvironment correlates with a positive BCG therapy outcome. Therefore, in this study, we explored the role of mast cells (MCs) and eosinophils in bladder cancer as a potential predicting tool for BCG immunotherapy response. METHODS We investigated the effect of MCs and eosinophils on bladder cancer cell viability together with their chemotactic migration towards cancer cells in vitro. The effect of BCG on these immune cells was also evaluated. Moreover, we performed an orthotopic model of bladder cancer in MC- and eosinophil-deficient mice. Finally, to evaluate whether these immune cells predict the therapy response, 26 patient biopsies pre-BCG treatment were analyzed for MC and eosinophil numbers in the tissue and sequenced for gene expression. RESULTS Eosinophils, but not MCs, reduced bladder cancer cell viability in vitro and inhibited tumor growth in vivo. However, addition of BCG did not increase these effects in vitro. Patient biopsy analysis and mRNA sequencing showed that neither cell type predicted long-term therapy responsiveness. Gene expression analysis suggested that extracellular matrix and epithelial-to-mesenchymal transition factors could influence BCG therapy outcomes. CONCLUSION Even though eosinophils exhibit anti-tumorigenic effects in bladder cancer, neither MCs nor eosinophils were predictive of the long-term BCG therapy response. However, our findings implicate that matrix-related factors may modulate BCG therapy responses.
Collapse
Affiliation(s)
- Ilan Zaffran
- Pharmacology and Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yara Zoabi
- Pharmacology and Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Pratibha Gaur
- Pharmacology and Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Fidan Rahimli Alekberli
- Pharmacology and Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ekaterini Tiligada
- Pharmacology and Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Vladimir Yutkin
- Department of Urology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
2
|
Murayama MA. Complement C3 deficient mice show more severe imiquimod-induced psoriasiform dermatitis than wild-type mice regardless of the commensal microbiota. Exp Anim 2024; 73:458-467. [PMID: 38945882 PMCID: PMC11534491 DOI: 10.1538/expanim.24-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024] Open
Abstract
The complement active product, C3a, and the receptor C3aR comprise an axis that exerts various biological functions, such as protection against infection. C3a is highly expressed in the inflamed skin and blood from patients with psoriasiform dermatitis. However, the role of the C3a/C3aR axis in psoriasiform dermatitis remains unclear because conflicting results using C3-/- mice have been published. In this study, to elucidate the contribution of commensal microbiota in C3-/- and wild-type (WT) mice were subjected to imiquimod-induced psoriasiform dermatitis under different housing conditions. C3-/- mice showed increased epidermal thickness and keratinocyte proliferation markers in the inflamed ear compared to WT mice upon treatment with IMQ. These inflamed phenotypes were observed in both cohoused and separately housed conditions, and antibiotic treatment did not abolish the aggravation of IMQ-induced psoriasiform dermatitis in C3-/- mice. These results suggested that the difference of commensal microbiota is not important for the C3-involved psoriasiform dermatitis. Keratinocyte hyperproliferation is a major feature of the inflamed skin in patients with psoriasiform dermatitis. In vitro experiments showed that C3a and C3aR agonists inhibited keratinocyte proliferation, which was abolished by introduction of a C3aR antagonist. Collectively, these results suggest that the C3a/C3aR axis plays a critical role in psoriasiform dermatitis development by inhibiting keratinocyte proliferation, regardless of the regulation of the commensal microbiota.
Collapse
Affiliation(s)
- Masanori A Murayama
- Department of Animal Models for Human Diseases, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan
| |
Collapse
|
3
|
Kempuraj D, Aenlle KK, Cohen J, Mathew A, Isler D, Pangeni RP, Nathanson L, Theoharides TC, Klimas NG. COVID-19 and Long COVID: Disruption of the Neurovascular Unit, Blood-Brain Barrier, and Tight Junctions. Neuroscientist 2024; 30:421-439. [PMID: 37694571 DOI: 10.1177/10738584231194927] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), could affect brain structure and function. SARS-CoV-2 can enter the brain through different routes, including the olfactory, trigeminal, and vagus nerves, and through blood and immunocytes. SARS-CoV-2 may also enter the brain from the peripheral blood through a disrupted blood-brain barrier (BBB). The neurovascular unit in the brain, composed of neurons, astrocytes, endothelial cells, and pericytes, protects brain parenchyma by regulating the entry of substances from the blood. The endothelial cells, pericytes, and astrocytes highly express angiotensin converting enzyme 2 (ACE2), indicating that the BBB can be disturbed by SARS-CoV-2 and lead to derangements of tight junction and adherens junction proteins. This leads to increased BBB permeability, leakage of blood components, and movement of immune cells into the brain parenchyma. SARS-CoV-2 may also cross microvascular endothelial cells through an ACE2 receptor-associated pathway. The exact mechanism of BBB dysregulation in COVID-19/neuro-COVID is not clearly known, nor is the development of long COVID. Various blood biomarkers could indicate disease severity and neurologic complications in COVID-19 and help objectively diagnose those developing long COVID. This review highlights the importance of neurovascular and BBB disruption, as well as some potentially useful biomarkers in COVID-19, and long COVID/neuro-COVID.
Collapse
Affiliation(s)
- Duraisamy Kempuraj
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Kristina K Aenlle
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
- Miami Veterans Affairs Healthcare System, Miami, FL, USA
| | - Jessica Cohen
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Annette Mathew
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Dylan Isler
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Rajendra P Pangeni
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Lubov Nathanson
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Theoharis C Theoharides
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, School of Medicine, Tufts University, Boston, MA, USA
| | - Nancy G Klimas
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
- Miami Veterans Affairs Healthcare System, Miami, FL, USA
| |
Collapse
|
4
|
Huang H, Mu Y, Li S. The biological function of Serpinb9 and Serpinb9-based therapy. Front Immunol 2024; 15:1422113. [PMID: 38966643 PMCID: PMC11222584 DOI: 10.3389/fimmu.2024.1422113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024] Open
Abstract
Recent breakthroughs in discovering novel immune signaling pathways have revolutionized different disease treatments. SERPINB9 (Sb9), also known as Proteinase Inhibitor 9 (PI-9), is a well-known endogenous inhibitor of Granzyme B (GzmB). GzmB is a potent cytotoxic molecule secreted by cytotoxic T lymphocytes and natural killer cells, which plays a crucial role in inducing apoptosis in target cells during immune responses. Sb9 acts as a protective mechanism against the potentially harmful effects of GzmB within the cells of the immune system itself. On the other hand, overexpression of Sb9 is an important mechanism of immune evasion in diseases like cancers and viral infections. The intricate functions of Sb9 in different cell types represent a fine-tuned regulatory mechanism for preventing immunopathology, protection against autoimmune diseases, and the regulation of cell death, all of which are essential for maintaining health and responding effectively to disease challenges. Dysregulation of the Sb9 will disrupt human normal physiological condition, potentially leading to a range of diseases, including cancers, inflammatory conditions, viral infections or other pathological disorders. Deepening our understanding of the role of Sb9 will aid in the discovery of innovative and effective treatments for various medical conditions. Therefore, the objective of this review is to consolidate current knowledge regarding the biological role of Sb9. It aims to offer insights into its discovery, structure, functions, distribution, its association with various diseases, and the potential of nanoparticle-based therapies targeting Sb9.
Collapse
Affiliation(s)
- Haozhe Huang
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yiqing Mu
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Song Li
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
5
|
Huang Y, Gong M, Chen H, Deng C, Zhu X, Lin J, Huang A, Xu Y, Tai Y, Song G, Xu H, Hu J, Feng H, Tang Q, Lu J, Wang J. Mass Spectrometry-Based Proteomics Identifies Serpin B9 as a Key Protein in Promoting Bone Metastases in Lung Cancer. Mol Cancer Res 2024; 22:402-414. [PMID: 38226993 DOI: 10.1158/1541-7786.mcr-23-0310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/29/2023] [Accepted: 01/11/2024] [Indexed: 01/17/2024]
Abstract
Bone metastasis (BM) is one of the most common complications of advanced cancer. Immunotherapy for bone metastasis of lung cancer (LCBM) is not so promising and the immune mechanisms are still unknown. Here, we utilized a model of BM by injecting cancer cells through caudal artery (CA) to screen out a highly bone metastatic derivative (LLC1-BM3) from a murine lung cancer cell line LLC1. Mass spectrometry-based proteomics was performed in LLC1-parental and LLC1-BM3 cells. Combining with prognostic survival information from patients with lung cancer, we identified serpin B9 (SB9) as a key factor in BM. Molecular characterization showed that SB9 overexpression was associated with poor prognosis and high bone metastatic burden in lung cancer. Moreover, SB9 could increase the ability of lung cancer cells to metastasize to the bone. The mechanistic studies revealed that tumor-derived SB9 promoted BM through an immune cell-dependent way by inactivating granzyme B, manifesting with the decreased infiltration of cytotoxic T cells and increased expression level of exhausted markers. A specific SB9-targeting inhibitor [1,3-benzoxazole-6-carboxylic acid (BTCA)] significantly suppressed LCBM in the CA mouse model. This study reveals that SB9 may serve as a therapeutic target and potential prognostic marker for patients with LCBM. IMPLICATIONS SB9 as a therapeutic target for LCBM.
Collapse
Affiliation(s)
- Yufeng Huang
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, P.R. China
- Guangdong Provincial Clinical Research Center for Cancer, Guangdong, P.R. China
| | - Ming Gong
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, P.R. China
- Guangdong Provincial Clinical Research Center for Cancer, Guangdong, P.R. China
| | - Hongmin Chen
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, P.R. China
- Guangdong Provincial Clinical Research Center for Cancer, Guangdong, P.R. China
| | - Chuangzhong Deng
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, P.R. China
- Guangdong Provincial Clinical Research Center for Cancer, Guangdong, P.R. China
| | - Xiaojun Zhu
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, P.R. China
- Guangdong Provincial Clinical Research Center for Cancer, Guangdong, P.R. China
| | - Jiaming Lin
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, P.R. China
- Guangdong Provincial Clinical Research Center for Cancer, Guangdong, P.R. China
| | - Anfei Huang
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, P.R. China
- Guangdong Provincial Clinical Research Center for Cancer, Guangdong, P.R. China
| | - Yanyang Xu
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, P.R. China
- Guangdong Provincial Clinical Research Center for Cancer, Guangdong, P.R. China
| | - Yi Tai
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, P.R. China
- Guangdong Provincial Clinical Research Center for Cancer, Guangdong, P.R. China
| | - Guohui Song
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, P.R. China
- Guangdong Provincial Clinical Research Center for Cancer, Guangdong, P.R. China
| | - Huaiyuan Xu
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, P.R. China
- Guangdong Provincial Clinical Research Center for Cancer, Guangdong, P.R. China
| | - Jinxin Hu
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, P.R. China
- Guangdong Provincial Clinical Research Center for Cancer, Guangdong, P.R. China
| | - Huixiong Feng
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, P.R. China
| | - Qinglian Tang
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, P.R. China
- Guangdong Provincial Clinical Research Center for Cancer, Guangdong, P.R. China
| | - Jinchang Lu
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, P.R. China
- Guangdong Provincial Clinical Research Center for Cancer, Guangdong, P.R. China
| | - Jin Wang
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, P.R. China
- Guangdong Provincial Clinical Research Center for Cancer, Guangdong, P.R. China
| |
Collapse
|
6
|
Warren WC, Rice ES, Meyer A, Hearn CJ, Steep A, Hunt HD, Monson MS, Lamont SJ, Cheng HH. The immune cell landscape and response of Marek's disease resistant and susceptible chickens infected with Marek's disease virus. Sci Rep 2023; 13:5355. [PMID: 37005445 PMCID: PMC10067856 DOI: 10.1038/s41598-023-32308-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 03/25/2023] [Indexed: 04/04/2023] Open
Abstract
Genetically resistant or susceptible chickens to Marek's disease (MD) have been widely used models to identify the molecular determinants of these phenotypes. However, these prior studies lacked the basic identification and understanding of immune cell types that could be translated toward improved MD control. To gain insights into specific immune cell types and their responses to Marek's disease virus (MDV) infection, we used single-cell RNA sequencing (scRNAseq) on splenic cells from MD resistant and susceptible birds. In total, 14,378 cells formed clusters that identified various immune cell types. Lymphocytes, specifically T cell subtypes, were the most abundant with significant proportional changes in some subtypes upon infection. The largest number of differentially expressed genes (DEG) response was seen in granulocytes, while macrophage DEGs differed in directionality by subtype and line. Among the most DEG in almost all immune cell types were granzyme and granulysin, both associated with cell-perforating processes. Protein interactive network analyses revealed multiple overlapping canonical pathways within both lymphoid and myeloid cell lineages. This initial estimation of the chicken immune cell type landscape and its accompanying response will greatly aid efforts in identifying specific cell types and improving our knowledge of host response to viral infection.
Collapse
Affiliation(s)
- Wesley C Warren
- Department of Animal Sciences, University of Missouri, Columbia, MO, USA.
| | - Edward S Rice
- Department of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Ashley Meyer
- Department of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Cari J Hearn
- Avian Disease and Oncology Laboratory, USDA, ARS, USNPRC, East Lansing, MI, USA
| | - Alec Steep
- Department of Human Genetics Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Henry D Hunt
- Avian Disease and Oncology Laboratory, USDA, ARS, USNPRC, East Lansing, MI, USA
| | - Melissa S Monson
- Department of Animal Science, Iowa State University, Ames, IA, USA
- Food Safety and Enteric Pathogens Research Unit, USDA, ARS, NADC, Ames, IA, USA
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Hans H Cheng
- Avian Disease and Oncology Laboratory, USDA, ARS, USNPRC, East Lansing, MI, USA.
| |
Collapse
|
7
|
Phair I, Sumoreeah M, Scott N, Spinelli L, Arthur J. IL-33 induces granzyme C expression in murine mast cells via an MSK1/2-CREB-dependent pathway. Biosci Rep 2022; 42:BSR20221165. [PMID: 36342273 PMCID: PMC9727205 DOI: 10.1042/bsr20221165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/27/2022] [Accepted: 11/07/2022] [Indexed: 10/10/2023] Open
Abstract
Granzymes comprise a group of proteases involved in the killing of infected or cancerous cells by the immune system. Although best studied in T cells and natural killer (NK) cells, they are also expressed in some innate immune cells. Granzymes B and C are encoded in the mouse chymase locus that also encodes a number of mast cell-specific proteases. In line with this, mast cells can express granzyme B, although how this is regulated and their ability to express other granzymes is less well studied. We therefore examined how IL-33, a cytokine able to activate mast cells but not induce degranulation, regulated granzyme B and C levels in mast cells. Granzyme C, but not B, mRNA was strongly up-regulated in bone marrow-derived mast cells following IL-33 stimulation and there was a corresponding increase in granzyme C protein. These increases in both granzyme C mRNA and protein were blocked by a combination of the p38α/β MAPK inhibitor VX745 and the MEK1/2 inhibitor PD184352, which blocks the activation of ERK1/2. ERK1/2 and p38α activate the downstream kinases, mitogen and stress-activated kinases (MSK) 1 and 2, and IL-33 stimulated the phosphorylation of MSK1 and its substrate CREB in an ERK1/2 and p38-dependent manner. The promoter for granzyme C contains a potential CREB-binding site. Bone marrow-derived mast cells from either MSK1/2 double knockout or CREB Ser133Ala knockin mice were unable to up-regulate granzyme C. Together these results indicate that IL-33-induced granzyme C expression in mast cells is regulated by an MSK1/2-CREB-dependent pathway.
Collapse
Affiliation(s)
- Iain R. Phair
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Megan C. Sumoreeah
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Niamh Scott
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Laura Spinelli
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - J. Simon C. Arthur
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| |
Collapse
|
8
|
Poto R, Criscuolo G, Marone G, Brightling CE, Varricchi G. Human Lung Mast Cells: Therapeutic Implications in Asthma. Int J Mol Sci 2022; 23:14466. [PMID: 36430941 PMCID: PMC9693207 DOI: 10.3390/ijms232214466] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Mast cells are strategically located in different compartments of the lung in asthmatic patients. These cells are widely recognized as central effectors and immunomodulators in different asthma phenotypes. Mast cell mediators activate a wide spectrum of cells of the innate and adaptive immune system during airway inflammation. Moreover, these cells modulate the activities of several structural cells (i.e., fibroblasts, airway smooth muscle cells, bronchial epithelial and goblet cells, and endothelial cells) in the human lung. These findings indicate that lung mast cells and their mediators significantly contribute to the immune induction of airway remodeling in severe asthma. Therapies targeting mast cell mediators and/or their receptors, including monoclonal antibodies targeting IgE, IL-4/IL-13, IL-5/IL-5Rα, IL-4Rα, TSLP, and IL-33, have been found safe and effective in the treatment of different phenotypes of asthma. Moreover, agonists of inhibitory receptors expressed by human mast cells (Siglec-8, Siglec-6) are under investigation for asthma treatment. Increasing evidence suggests that different approaches to depleting mast cells show promising results in severe asthma treatment. Novel treatments targeting mast cells can presumably change the course of the disease and induce drug-free remission in bronchial asthma. Here, we provide an overview of current and promising treatments for asthma that directly or indirectly target lung mast cells.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| | - Gjada Criscuolo
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), 80131 Naples, Italy
| | - Chris E. Brightling
- Department of Respiratory Sciences, Leicester NIHR BRC, Institute for Lung Health, University of Leicester, Leicester LE1 7RH, UK
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), 80131 Naples, Italy
| |
Collapse
|
9
|
Richardson KC, Jung K, Pardo J, Turner CT, Granville DJ. Noncytotoxic Roles of Granzymes in Health and Disease. Physiology (Bethesda) 2022; 37:323-348. [PMID: 35820180 DOI: 10.1152/physiol.00011.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Granzymes are serine proteases previously believed to play exclusive and somewhat redundant roles in lymphocyte-mediated target cell death. However, recent studies have challenged this paradigm. Distinct substrate profiles and functions have since emerged for each granzyme while their dysregulated proteolytic activities have been linked to diverse pathologies.
Collapse
Affiliation(s)
- Katlyn C Richardson
- International Collaboration on Repair Discoveries (ICORD), British Columbia Professional Firefighters' Wound Healing Laboratory, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Karen Jung
- International Collaboration on Repair Discoveries (ICORD), British Columbia Professional Firefighters' Wound Healing Laboratory, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Julian Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), Zaragoza, Spain.,Department of Microbiology, Radiology, Pediatrics and Public Health, University of Zaragoza, Zaragoza, Spain.,CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Zaragoza, Spain
| | - Christopher T Turner
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia.,Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - David J Granville
- International Collaboration on Repair Discoveries (ICORD), British Columbia Professional Firefighters' Wound Healing Laboratory, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Dubchak E, Obasanmi G, Zeglinski MR, Granville DJ, Yeung SN, Matsubara JA. Potential role of extracellular granzyme B in wet age-related macular degeneration and fuchs endothelial corneal dystrophy. Front Pharmacol 2022; 13:980742. [PMID: 36204224 PMCID: PMC9531149 DOI: 10.3389/fphar.2022.980742] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Age-related ocular diseases are the leading cause of blindness in developed countries and constitute a sizable socioeconomic burden worldwide. Age-related macular degeneration (AMD) and Fuchs endothelial corneal dystrophy (FECD) are some of the most common age-related diseases of the retina and cornea, respectively. AMD is characterized by a breakdown of the retinal pigment epithelial monolayer, which maintains retinal homeostasis, leading to retinal degeneration, while FECD is characterized by degeneration of the corneal endothelial monolayer, which maintains corneal hydration status, leading to corneal edema. Both AMD and FECD pathogenesis are characterized by disorganized local extracellular matrix (ECM) and toxic protein deposits, with both processes linked to aberrant protease activity. Granzyme B (GrB) is a serine protease traditionally known for immune-mediated initiation of apoptosis; however, it is now recognized that GrB is expressed by a variety of immune and non-immune cells and aberrant extracellular localization of GrB substantially contributes to various age-related pathologies through dysregulated cleavage of ECM, tight junction, and adherens junction proteins. Despite growing recognition of GrB involvement in multiple age-related pathologies, its role in AMD and FECD remains poorly understood. This review summarizes the pathophysiology of, and similarities between AMD and FECD, outlines the current knowledge of the role of GrB in AMD and FECD, as well as hypothesizes putative contributions of GrB to AMD and FECD pathogenesis and highlights the therapeutic potential of pharmacologically inhibiting GrB as an adjunctive treatment for AMD and FECD.
Collapse
Affiliation(s)
- Eden Dubchak
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Gideon Obasanmi
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Matthew R. Zeglinski
- ICORD Centre and Department of Pathology and Laboratory Medicine, Vancouver Coastal Health Research Institute, UBC, Vancouver, BC, Canada
| | - David J. Granville
- ICORD Centre and Department of Pathology and Laboratory Medicine, Vancouver Coastal Health Research Institute, UBC, Vancouver, BC, Canada
| | - Sonia N. Yeung
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Joanne A. Matsubara
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
- *Correspondence: Joanne A. Matsubara,
| |
Collapse
|
11
|
Zika Virus Replication in a Mast Cell Model is Augmented by Dengue Virus Antibody-Dependent Enhancement and Features a Selective Immune Mediator Secretory Profile. Microbiol Spectr 2022; 10:e0177222. [PMID: 35862953 PMCID: PMC9431662 DOI: 10.1128/spectrum.01772-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibodies generated against one dengue serotype can enhance infection of another by a phenomenon called antibody-dependent enhancement (ADE). Additionally, antigenic similarities between Zika and dengue viruses can promote Zika virus infection by way of ADE
in vitro
using these very same anti-dengue antibodies.
Collapse
|
12
|
Sequential Increase in Complement Factor I, iC3b, and Cells Expressing CD11b or CD14 in Cutaneous Vasculitis. Anal Cell Pathol 2022; 2022:3888734. [PMID: 35747245 PMCID: PMC9213176 DOI: 10.1155/2022/3888734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/28/2022] [Accepted: 05/30/2022] [Indexed: 11/18/2022] Open
Abstract
Mast cells contribute to the pathogenesis of cutaneous vasculitis through complement C3 that is cleaved to C3b and then to iC3b by complement factor I. The receptor of iC3b, CD11b, is expressed on neutrophils and monocytes and CD14 on monocytes. Their role in vasculitis is obscure. In this study, frozen skin biopsies from the nonlesional skin, initial petechial lesion, and palpable purpura lesion from 10 patients with immunocomplex-mediated small vessel vasculitis were studied immunohistochemically for complement factor I, iC3b, CD11b, and CD14. Peripheral blood mononuclear cells from 5 healthy subjects were used to study cell migration and cytokine secretion. Already, the nonlesional skin revealed marked immunostaining of complement factor I, iC3b, CD11b, and CD14, and their expression increased sequentially in initial petechial and palpable purpura lesions. Mast cell C3c correlated to iC3b, and both of them correlated to CD11b+ and CD14+ cells, in the nonlesional skin. The stimulation of mononuclear cells with 0.01-0.1 μg/ml iC3b induced cell migration in the transwell assay. C3a stimulated slightly interleukin-8 secretion, whereas 1 μg/ml iC3b inhibited it slightly, in 4/5 subjects. In conclusion, the C3-C3b-iC3b axis is activated already in the early vasculitis lesion leading to progressive accumulation of CD11b+ and CD14+ cells.
Collapse
|
13
|
Ollila H, Mäyränpää MI, Paavolainen L, Paajanen J, Välimäki K, Sutinen E, Wolff H, Räsänen J, Kallioniemi O, Myllärniemi M, Ilonen I, Pellinen T. Prognostic Role of Tumor Immune Microenvironment in Pleural Epithelioid Mesothelioma. Front Oncol 2022; 12:870352. [PMID: 35795056 PMCID: PMC9251441 DOI: 10.3389/fonc.2022.870352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundPleural mesothelioma (MPM) is an aggressive malignancy with an average patient survival of only 10 months. Interestingly, about 5%–10% of the patients survive remarkably longer. Prior studies have suggested that the tumor immune microenvironment (TIME) has potential prognostic value in MPM. We hypothesized that high-resolution single-cell spatial profiling of the TIME would make it possible to identify subpopulations of patients with long survival and identify immunophenotypes for the development of novel treatment strategies.MethodsWe used multiplexed fluorescence immunohistochemistry (mfIHC) and cell-based image analysis to define spatial TIME immunophenotypes in 69 patients with epithelioid MPM (20 patients surviving ≥ 36 months). Five mfIHC panels (altogether 21 antibodies) were used to classify tumor-associated stromal cells and different immune cell populations. Prognostic associations were evaluated using univariate and multivariable Cox regression, as well as combination risk models with area under receiver operating characteristic curve (AUROC) analyses.ResultsWe observed that type M2 pro-tumorigenic macrophages (CD163+pSTAT1−HLA-DRA1−) were independently associated with shorter survival, whereas granzyme B+ cells and CD11c+ cells were independently associated with longer survival. CD11c+ cells were the only immunophenotype increasing the AUROC (from 0.67 to 0.84) when added to clinical factors (age, gender, clinical stage, and grade).ConclusionHigh-resolution, deep profiling of TIME in MPM defined subgroups associated with both poor (M2 macrophages) and favorable (granzyme B/CD11c positivity) patient survival. CD11c positivity stood out as the most potential prognostic cell subtype adding prediction power to the clinical factors. These findings help to understand the critical determinants of TIME for risk and therapeutic stratification purposes in MPM.
Collapse
Affiliation(s)
- Hely Ollila
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Pulmonary Medicine, Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- *Correspondence: Hely Ollila,
| | - Mikko I. Mäyränpää
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Lassi Paavolainen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Juuso Paajanen
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Pulmonary Medicine, Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Katja Välimäki
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Eva Sutinen
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Pulmonary Medicine, Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Henrik Wolff
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Laboratory of Pathology, Finnish Institute of Occupational Health, Helsinki, Finland
| | - Jari Räsänen
- Department of General Thoracic and Esophageal Surgery, Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Olli Kallioniemi
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Marjukka Myllärniemi
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Pulmonary Medicine, Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ilkka Ilonen
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of General Thoracic and Esophageal Surgery, Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Teijo Pellinen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Jung K, Pawluk MA, Lane M, Nabai L, Granville DJ. Granzyme B in Epithelial Barrier Dysfunction and Related Skin Diseases. Am J Physiol Cell Physiol 2022; 323:C170-C189. [PMID: 35442832 DOI: 10.1152/ajpcell.00052.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The predominant function of the skin is to serve as a barrier - to protect against external insults and to prevent water loss. Junctional and structural proteins in the stratum corneum, the outermost layer of the epidermis, are critical to the integrity of the epidermal barrier as it balances ongoing outward migration, differentiation, and desquamation of keratinocytes in the epidermis. As such, epidermal barrier function is highly susceptible to upsurges of proteolytic activity in the stratum corneum and epidermis. Granzyme B is a serine protease scarce in healthy tissues but present at high levels in tissues encumbered by chronic inflammation. Discovered in the 1980s, Granzyme B is currently recognized for its intracellular roles in immune cell-mediated targeted apoptosis as well as extracellular roles in inflammation, chronic injuries, tissue remodeling, and processing of cytokines, matrix proteins, and autoantigens. Increasing evidence has emerged in recent years supporting a role for Granzyme B in promoting barrier dysfunction in the epidermis by direct cleavage of barrier proteins and eliciting immunoreactivity. Likewise, Granzyme B contributes to impaired epithelial function of the airways, retina, gut and vessels. In the present review, the role of Granzyme B in cutaneous epithelial dysfunction is discussed in the context of specific conditions with an overview of underlying mechanisms as well as utility of current experimental and therapeutic inhibitors.
Collapse
Affiliation(s)
- Karen Jung
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,British Columbia Professional Firefighters' Wound Healing Laboratory, VCHRI, Vancouver, British Columbia, Canada
| | - Megan A Pawluk
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,British Columbia Professional Firefighters' Wound Healing Laboratory, VCHRI, Vancouver, British Columbia, Canada
| | - Michael Lane
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,British Columbia Professional Firefighters' Wound Healing Laboratory, VCHRI, Vancouver, British Columbia, Canada
| | - Layla Nabai
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,British Columbia Professional Firefighters' Wound Healing Laboratory, VCHRI, Vancouver, British Columbia, Canada
| | - David J Granville
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,British Columbia Professional Firefighters' Wound Healing Laboratory, VCHRI, Vancouver, British Columbia, Canada
| |
Collapse
|
15
|
Tibbs E, Cao X. Emerging Canonical and Non-Canonical Roles of Granzyme B in Health and Disease. Cancers (Basel) 2022; 14:1436. [PMID: 35326588 PMCID: PMC8946077 DOI: 10.3390/cancers14061436] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 12/23/2022] Open
Abstract
The Granzyme (Gzm) family has classically been recognized as a cytotoxic tool utilized by cytotoxic T lymphocytes (CTL) and natural killer (NK) cells to illicit cell death to infected and cancerous cells. Their importance is established based on evidence showing that deficiencies in these cell death executors result in defective immune responses. Recent findings have shown the importance of Granzyme B (GzmB) in regulatory immune cells, which may contribute to tumor growth and immune evasion during cancer development. Other studies have shown that members of the Gzm family are important for biological processes such as extracellular matrix remodeling, angiogenesis and organized vascular degradation. With this growing body of evidence, it is becoming more important to understand the broader function of Gzm's rather than a specific executor of cell death, and we should be aware of the many alternative roles that Gzm's play in physiological and pathological conditions. Therefore, we review the classical as well as novel non-canonical functions of GzmB and discuss approaches to utilize these new findings to address current gaps in our understanding of the immune system and tissue development.
Collapse
Affiliation(s)
- Ellis Tibbs
- Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore, Baltimore, MD 21201, USA;
| | - Xuefang Cao
- Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore, Baltimore, MD 21201, USA;
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Baltimore, Baltimore, MD 21201, USA
| |
Collapse
|
16
|
Burgener SS, Brügger M, Leborgne NGF, Sollberger S, Basilico P, Kaufmann T, Bird PI, Benarafa C. Granule Leakage Induces Cell-Intrinsic, Granzyme B-Mediated Apoptosis in Mast Cells. Front Cell Dev Biol 2021; 9:630166. [PMID: 34858967 PMCID: PMC8630627 DOI: 10.3389/fcell.2021.630166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 10/14/2021] [Indexed: 11/29/2022] Open
Abstract
Mast cells are multifunctional immune cells scattered in tissues near blood vessels and mucosal surfaces where they mediate important reactions against parasites and contribute to the pathogenesis of allergic reactions. Serine proteases released from secretory granules upon mast cell activation contribute to these functions by modulating cytokine activity, platelet activation and proteolytic neutralization of toxins. The forced release of granule proteases into the cytosol of mast cells to induce cell suicide has recently been proposed as a therapeutic approach to reduce mast cell numbers in allergic diseases, but the molecular pathways involved in granule-mediated mast cell suicide are incompletely defined. To identify intrinsic granule proteases that can cause mast cell death, we used mice deficient in cytosolic serine protease inhibitors and their respective target proteases. We found that deficiency in Serpinb1a, Serpinb6a, and Serpinb9a or in their target proteases did not alter the kinetics of apoptosis induced by growth factor deprivation in vitro or the number of peritoneal mast cells in vivo. The serine protease cathepsin G induced marginal cell death upon mast cell granule permeabilization only when its inhibitors Serpinb1a or Serpinb6a were deleted. In contrast, the serine protease granzyme B was essential for driving apoptosis in mast cells. On granule permeabilization, granzyme B was required for caspase-3 processing and cell death. Moreover, cytosolic granzyme B inhibitor Serpinb9a prevented caspase-3 processing and mast cell death in a granzyme B-dependent manner. Together, our findings demonstrate that cytosolic serpins provide an inhibitory shield preventing granule protease-induced mast cell apoptosis, and that the granzyme B-Serpinb9a-caspase-3 axis is critical in mast cell survival and could be targeted in the context of allergic diseases.
Collapse
Affiliation(s)
- Sabrina Sofia Burgener
- Institute of Virology and Immunology (IVI), Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Melanie Brügger
- Institute of Virology and Immunology (IVI), Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Science, University of Bern, Bern, Switzerland
| | - Nathan Georges François Leborgne
- Institute of Virology and Immunology (IVI), Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Sophia Sollberger
- Institute of Virology and Immunology (IVI), Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Paola Basilico
- Graduate School for Cellular and Biomedical Science, University of Bern, Bern, Switzerland.,Theodor Kocher Institute, Department of Preclinical Medicine, Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Thomas Kaufmann
- Institute of Pharmacology, Department of Preclinical Medicine, Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Phillip Ian Bird
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Charaf Benarafa
- Institute of Virology and Immunology (IVI), Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
17
|
Bai M, Xu L, Zhu H, Xue J, Liu T, Sun F, Yao H, Zhao Z, Wang Z, Yao R, Hu F, Su Y. Impaired granzyme B-producing regulatory B cells in systemic lupus erythematosus. Mol Immunol 2021; 140:217-224. [PMID: 34749262 DOI: 10.1016/j.molimm.2021.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/25/2021] [Accepted: 09/28/2021] [Indexed: 10/19/2022]
Abstract
Granzyme B (GrB)-producing B cells are proposed to be a kind of regulatory B cells (Bregs) and have been revealed to be implicated in the pathogenesis of autoimmune diseases. Nevertheless, their role in SLE remains elusive. In this study, the frequencies of GrB-producing Bregs in peripheral blood of heathy control (HC) and systemic lupus erythematosus (SLE) were evaluated by flow cytometry, and their correlation with SLE patient clinical and immunological features were analyzed. The expression of GrB in HC and SLE B cells were also further detected by RT-qPCR analysis and ELISpot. The function of GrB-producing Bregs in HC and SLE patients was further investigated by in vitro CD4+ effector T cells-B cells co-culture assays with GrB blockade. We found that GrB-producing Bregs were significantly decreased in SLE patients and correlated with the clinical and immunological features. Moreover, these cells were functionally impaired under SLE circumstance. The negative correlation between GrB-producing Bregs and CD4+ T cells observed in healthy individuals disappeared in SLE patients. In vitro cell co-culture assay further showed that GrB-producing Bregs from SLE patients failed to suppress the Th1, Th2 and Th17 cell inflammatory responses, partially due to the dampened capacity of down-regulating TCR zeta and inducing T cell apoptosis. Taken together, these results revealed the disturbance of GrB-producing Bregs in SLE that might contribute to the disease initiation and progression.
Collapse
Affiliation(s)
- Mingxin Bai
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Liling Xu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Huaqun Zhu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Jimeng Xue
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Tian Liu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Feng Sun
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Haihong Yao
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Zhen Zhao
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Ziye Wang
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Ranran Yao
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Fanlei Hu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China; Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.
| | - Yin Su
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China.
| |
Collapse
|
18
|
Mok AC, Mody CH, Li SS. Immune Cell Degranulation in Fungal Host Defence. J Fungi (Basel) 2021; 7:484. [PMID: 34208679 PMCID: PMC8234259 DOI: 10.3390/jof7060484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022] Open
Abstract
Humans have developed complex immune systems that defend against invading microbes, including fungal pathogens. Many highly specialized cells of the immune system share the ability to store antimicrobial compounds in membrane bound organelles that can be immediately deployed to eradicate or inhibit growth of invading pathogens. These membrane-bound organelles consist of secretory vesicles or granules, which move to the surface of the cell, where they fuse with the plasma membrane to release their contents in the process of degranulation. Lymphocytes, macrophages, neutrophils, mast cells, eosinophils, and basophils all degranulate in fungal host defence. While anti-microbial secretory vesicles are shared among different immune cell types, information about each cell type has emerged independently leading to an uncoordinated and confusing classification of granules and incomplete description of the mechanism by which they are deployed. While there are important differences, there are many similarities in granule morphology, granule content, stimulus for degranulation, granule trafficking, and release of granules against fungal pathogens. In this review, we describe the similarities and differences in an attempt to translate knowledge from one immune cell to another that may facilitate further studies in the context of fungal host defence.
Collapse
Affiliation(s)
- Adley Ch Mok
- Department of Microbiology Immunology and Infectious Diseases, Cumming School of Medicine, University Calgary, Calgary, AB T2N 4N1, Canada
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Christopher H Mody
- Department of Microbiology Immunology and Infectious Diseases, Cumming School of Medicine, University Calgary, Calgary, AB T2N 4N1, Canada
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Shu Shun Li
- Department of Microbiology Immunology and Infectious Diseases, Cumming School of Medicine, University Calgary, Calgary, AB T2N 4N1, Canada
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
19
|
Wallace K, Nahhas GJ, Bookhout C, Lewin DN, Paulos CM, Nikolaishvili-Feinberg N, Cohen SM, Guglietta S, Bakhtiari A, Camp ER, Hill EG, Baron JA, Wu JD, Alekseyenko AV. Preinvasive Colorectal Lesions of African Americans Display an Immunosuppressive Signature Compared to Caucasian Americans. Front Oncol 2021; 11:659036. [PMID: 33987094 PMCID: PMC8112239 DOI: 10.3389/fonc.2021.659036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/29/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND African Americans (AAs) have higher colorectal cancer (CRC) incidence and mortality rate than Caucasian Americans (CAs). Recent studies suggest that immune responses within CRCs contribute to the disparities. If racially distinct immune signatures are present in the early phases of carcinogenesis, they could be used to develop interventions to prevent or slow disease. METHODS We selected a convenience sample of 95 patients (48 CAs, 47 AAs) with preinvasive colorectal adenomas from the surgical pathology laboratory at the Medical University of South Carolina. Using immunofluorescent-conjugated antibodies on tissue slides from the lesions, we quantified specific immune cell populations: mast cells (CD117+), Th17 cells (CD4+RORC+), and NK cell ligand (MICA/B) and inflammatory cytokines, including IL-6, IL-17A, and IFN-γ. We compared the mean density counts (MDCs) and density rate ratios (RR) and 95% CI of immune markers between AAs to CAs using negative binomial regression analysis. We adjusted our models for age, sex, clinicopathologic characteristics (histology, location, dysplasia), and batch. RESULTS We observed no racial differences in age or sex at the baseline endoscopic exam. AAs compared to CAs had a higher prevalence of proximal adenomas (66% vs. 40%) and a lower prevalence of rectal adenomas (11% vs. 23%) (p =0.04) but no other differences in pathologic characteristics. In age, sex, and batch adjusted models, AAs vs. CAs had lower RRs for cells labeled with IFNγ (RR 0.50 (95% CI 0.32-0.81); p=0.004) and NK cell ligand (RR 0.67 (0.43-1.04); p=0.07). In models adjusted for age, sex, and clinicopathologic variables, AAs had reduced RRs relative to CAs for CD4 (p=0.02), NK cell ligands (p=0.01), Th17 (p=0.005), mast cells (p=0.04) and IFN-γ (p< 0.0001). CONCLUSIONS Overall, the lower RRs in AAs vs. CAs suggests reduced effector response capacity and an immunosuppressive ('cold') tumor environment. Our results also highlight the importance of colonic location of adenoma in influencing these differences; the reduced immune responses in AAs relative to CAs may indicate impaired immune surveillance in early carcinogenesis. Future studies are needed to understand the role of risk factors (such as obesity) in influencing differences in immune responses by race.
Collapse
Affiliation(s)
- Kristin Wallace
- Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, SC, United States
- Department of Public Health Sciences, MUSC, Charleston, SC, United States
| | - Georges J. Nahhas
- Department of Public Health Sciences, MUSC, Charleston, SC, United States
- Department of Psychiatry and Behavioral Sciences, MUSC, Charleston, SC, United States
| | - Christine Bookhout
- Department of Pathology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - David N. Lewin
- Department of Pathology and Laboratory Medicine, MUSC, Charleston, SC, United States
| | - Chrystal M. Paulos
- Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, SC, United States
- Department of Microbiology/Immunology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | | | - Stephanie M. Cohen
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Silvia Guglietta
- Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, SC, United States
| | - Ali Bakhtiari
- Department of Public Health Sciences, MUSC, Charleston, SC, United States
| | - E. Ramsay Camp
- Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, SC, United States
| | - Elizabeth G. Hill
- Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, SC, United States
- Department of Public Health Sciences, MUSC, Charleston, SC, United States
| | - John A. Baron
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Jennifer D. Wu
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Alexander V. Alekseyenko
- Department of Public Health Sciences, MUSC, Charleston, SC, United States
- Bioinformatics Center, MUSC, Charleston, SC, United States
- Department of Oral Health Sciences, MUSC, Charleston, SC, United States
- Department of Healthcare Leadership and Management, MUSC, Charleston, SC, United States
| |
Collapse
|
20
|
Hagn M, Jahrsdörfer B. Why do human B cells secrete granzyme B? Insights into a novel B-cell differentiation pathway. Oncoimmunology 2021; 1:1368-1375. [PMID: 23243600 PMCID: PMC3518509 DOI: 10.4161/onci.22354] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
B cells are generally believed to operate as producers of high affinity antibodies to defend the body against microorganisms, whereas cellular cytotoxicity is considered as an exclusive prerogative of natural killer (NK) cells and cytotoxic T lymphocytes (CTLs). In conflict with this dogma, recent studies have demonstrated that the combination of interleukin-21 (IL-21) and B-cell receptor (BCR) stimulation enables B cells to produce and secrete the active form of the cytotoxic serine protease granzyme B (GrB). Although the production of GrB by B cells is not accompanied by that of perforin as in the case of many other GrB-secreting cells, recent findings suggest GrB secretion by B cells may play a significant role in early antiviral immune responses, in the regulation of autoimmune responses, and in cancer immunosurveillance. Here, we discuss in detail how GrB-secreting B cells may influence a variety of immune processes. A better understanding of the role that GrB-secreting B cells are playing in the immune system may allow for the development and improvement of novel immunotherapeutic approaches against infectious, autoimmune and malignant diseases.
Collapse
Affiliation(s)
- Magdalena Hagn
- Cancer Immunology Program; Peter MacCallum Cancer Centre; Melbourne, Australia
| | | |
Collapse
|
21
|
Hiroyasu S, Zeglinski MR, Zhao H, Pawluk MA, Turner CT, Kasprick A, Tateishi C, Nishie W, Burleigh A, Lennox PA, Van Laeken N, Carr NJ, Petersen F, Crawford RI, Shimizu H, Tsuruta D, Ludwig RJ, Granville DJ. Granzyme B inhibition reduces disease severity in autoimmune blistering diseases. Nat Commun 2021; 12:302. [PMID: 33436591 PMCID: PMC7804321 DOI: 10.1038/s41467-020-20604-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 12/07/2020] [Indexed: 02/08/2023] Open
Abstract
Pemphigoid diseases refer to a group of severe autoimmune skin blistering diseases characterized by subepidermal blistering and loss of dermal-epidermal adhesion induced by autoantibody and immune cell infiltrate at the dermal-epidermal junction and upper dermis. Here, we explore the role of the immune cell-secreted serine protease, granzyme B, in pemphigoid disease pathogenesis using three independent murine models. In all models, granzyme B knockout or topical pharmacological inhibition significantly reduces total blistering area compared to controls. In vivo and in vitro studies show that granzyme B contributes to blistering by degrading key anchoring proteins in the dermal-epidermal junction that are necessary for dermal-epidermal adhesion. Further, granzyme B mediates IL-8/macrophage inflammatory protein-2 secretion, lesional neutrophil infiltration, and lesional neutrophil elastase activity. Clinically, granzyme B is elevated and abundant in human pemphigoid disease blister fluids and lesional skin. Collectively, granzyme B is a potential therapeutic target in pemphigoid diseases.
Collapse
Affiliation(s)
- Sho Hiroyasu
- International Collaboration On Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- BC Professional Firefighters' Burn and Wound Healing Research Laboratory, VCHRI, Vancouver, BC, Canada
| | - Matthew R Zeglinski
- International Collaboration On Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- BC Professional Firefighters' Burn and Wound Healing Research Laboratory, VCHRI, Vancouver, BC, Canada
| | - Hongyan Zhao
- International Collaboration On Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- BC Professional Firefighters' Burn and Wound Healing Research Laboratory, VCHRI, Vancouver, BC, Canada
| | - Megan A Pawluk
- International Collaboration On Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- BC Professional Firefighters' Burn and Wound Healing Research Laboratory, VCHRI, Vancouver, BC, Canada
| | - Christopher T Turner
- International Collaboration On Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- BC Professional Firefighters' Burn and Wound Healing Research Laboratory, VCHRI, Vancouver, BC, Canada
| | - Anika Kasprick
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Chiharu Tateishi
- Department of Dermatology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Wataru Nishie
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Angela Burleigh
- Department of Dermatology and Skin Science, UBC, Vancouver, BC, Canada
| | | | | | - Nick J Carr
- Department of Surgery, UBC, Vancouver, BC, Canada
| | - Frank Petersen
- Priority Area Asthma and Allergy, Members of the German Center for Lung Research, Research Center Borstel, Borstel, Germany
| | - Richard I Crawford
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- Department of Dermatology and Skin Science, UBC, Vancouver, BC, Canada
| | - Hiroshi Shimizu
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Daisuke Tsuruta
- Department of Dermatology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - David J Granville
- International Collaboration On Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada.
- BC Professional Firefighters' Burn and Wound Healing Research Laboratory, VCHRI, Vancouver, BC, Canada.
| |
Collapse
|
22
|
Gapud EJ, Trejo-Zambrano MI, Gomez-Banuelos E, Tiniakou E, Antiochos B, Granville DJ, Andrade F, Casciola-Rosen L, Rosen A. Granzyme B Induces IRF-3 Phosphorylation through a Perforin-Independent Proteolysis-Dependent Signaling Cascade without Inducing Cell Death. THE JOURNAL OF IMMUNOLOGY 2020; 206:335-344. [PMID: 33288544 DOI: 10.4049/jimmunol.2000546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/11/2020] [Indexed: 11/19/2022]
Abstract
Granzyme B (GrB) is an immune protease implicated in the pathogenesis of several human diseases. In the current model of GrB activity, perforin determines whether the downstream actions of GrB occur intracellularly or extracellularly, producing apoptotic cytotoxicity or nonapoptotic effects, respectively. In the current study, we demonstrate the existence of a broad range of GrB-dependent signaling activities that 1) do not require perforin, 2) occur intracellularly, and 3) for which cell death is not the dominant outcome. In the absence of perforin, we show that GrB enzymatic activity still induces substoichiometric activation of caspases, which through nonlethal DNA damage response signals then leads to activity-associated phosphorylation of IFN regulatory factor-3. These findings illustrate an unexpected potential interface between GrB and innate immunity separate from the traditional role of GrB in perforin-dependent GrB-mediated apoptosis that could have mechanistic implications for human disease.
Collapse
Affiliation(s)
- Eric J Gapud
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | | | - Eduardo Gomez-Banuelos
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Eleni Tiniakou
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Brendan Antiochos
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - David J Granville
- International Collaboration on Repair Discoveries Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Felipe Andrade
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Livia Casciola-Rosen
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Antony Rosen
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224; .,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21224; and.,Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21224
| |
Collapse
|
23
|
Granzymes in cardiovascular injury and disease. Cell Signal 2020; 76:109804. [PMID: 33035645 DOI: 10.1016/j.cellsig.2020.109804] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 12/17/2022]
Abstract
Chronic inflammation and impaired wound healing play important roles in the pathophysiology of cardiovascular diseases. Moreover, the aberrant secretion of proteases plays a critical role in pathological tissue remodeling in chronic inflammatory conditions. Human Granzymes (Granule secreted enzymes - Gzms) comprise a family of five (GzmA, B, H, K, M) cell-secreted serine proteases. Although each unique in function and substrate specificities, Gzms were originally thought to share redundant, intracellular roles in cytotoxic lymphocyte-induced cell death. However, an abundance of evidence has challenged this dogma. It is now recognized, that individual Gzms exhibit unique substrate repertoires and functions both intracellularly and extracellularly. In the extracellular milieu, Gzms contribute to inflammation, vascular dysfunction and permeability, reduced cell adhesion, release of matrix-sequestered growth factors, receptor activation, and extracellular matrix cleavage. Despite these recent findings, the non-cytotoxic functions of Gzms in the context of cardiovascular disease pathogenesis remain poorly understood. Minimally detected in tissues and bodily fluids of normal individuals, GzmB is elevated in patients with acute coronary syndromes, coronary artery disease, and myocardial infarction. Pre-clinical animal models have exemplified the importance of GzmB in atherosclerosis, aortic aneurysm, and cardiac fibrosis as animals deficient in GzmB exhibit reduced tissue remodeling, improved disease phenotypes and increased survival. Although a role for GzmB in cardiovascular disease is described, further work to elucidate the mechanisms that underpin the remaining human Gzms activity in cardiovascular disease is necessary. The present review provides a summary of the pre-clinical and clinical evidence, as well as emerging areas of research pertaining to Gzms in tissue remodeling and cardiovascular disease.
Collapse
|
24
|
Sordo-Bahamonde C, Lorenzo-Herrero S, Payer ÁR, Gonzalez S, López-Soto A. Mechanisms of Apoptosis Resistance to NK Cell-Mediated Cytotoxicity in Cancer. Int J Mol Sci 2020; 21:ijms21103726. [PMID: 32466293 PMCID: PMC7279491 DOI: 10.3390/ijms21103726] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Natural killer (NK) cells are major contributors to immunosurveillance and control of tumor development by inducing apoptosis of malignant cells. Among the main mechanisms involved in NK cell-mediated cytotoxicity, the death receptor pathway and the release of granules containing perforin/granzymes stand out due to their efficacy in eliminating tumor cells. However, accumulated evidence suggest a profound immune suppression in the context of tumor progression affecting effector cells, such as NK cells, leading to decreased cytotoxicity. This diminished capability, together with the development of resistance to apoptosis by cancer cells, favor the loss of immunogenicity and promote immunosuppression, thus partially inducing NK cell-mediated killing resistance. Altered expression patterns of pro- and anti-apoptotic proteins along with genetic background comprise the main mechanisms of resistance to NK cell-related apoptosis. Herein, we summarize the main effector cytotoxic mechanisms against tumor cells, as well as the major resistance strategies acquired by tumor cells that hamper the extrinsic and intrinsic apoptotic pathways related to NK cell-mediated killing.
Collapse
Affiliation(s)
- Christian Sordo-Bahamonde
- Department of Functional Biology, Immunology, University of Oviedo, 33006 Oviedo, Spain; (S.L.-H.); (S.G.)
- Instituto Universitario de Oncología del Principado de Asturias, IUOPA, 33006 Oviedo, Spain;
- Instituto de Investigación Biosanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Correspondence: (C.S.-B.); (A.L.-S.)
| | - Seila Lorenzo-Herrero
- Department of Functional Biology, Immunology, University of Oviedo, 33006 Oviedo, Spain; (S.L.-H.); (S.G.)
- Instituto Universitario de Oncología del Principado de Asturias, IUOPA, 33006 Oviedo, Spain;
- Instituto de Investigación Biosanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Ángel R. Payer
- Instituto Universitario de Oncología del Principado de Asturias, IUOPA, 33006 Oviedo, Spain;
- Instituto de Investigación Biosanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Hematology, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
| | - Segundo Gonzalez
- Department of Functional Biology, Immunology, University of Oviedo, 33006 Oviedo, Spain; (S.L.-H.); (S.G.)
- Instituto Universitario de Oncología del Principado de Asturias, IUOPA, 33006 Oviedo, Spain;
- Instituto de Investigación Biosanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Alejandro López-Soto
- Instituto Universitario de Oncología del Principado de Asturias, IUOPA, 33006 Oviedo, Spain;
- Instituto de Investigación Biosanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Biochemistry and Molecular Biology, University of Oviedo, 33006 Oviedo, Spain
- Correspondence: (C.S.-B.); (A.L.-S.)
| |
Collapse
|
25
|
León DL, Matthey P, Fellay I, Blanchard M, Martinvalet D, Mantel PY, Filgueira L, Walch M. Granzyme B Attenuates Bacterial Virulence by Targeting Secreted Factors. iScience 2020; 23:100932. [PMID: 32151975 PMCID: PMC7063247 DOI: 10.1016/j.isci.2020.100932] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/23/2020] [Accepted: 02/17/2020] [Indexed: 12/17/2022] Open
Abstract
Pathogenic bacteria secrete virulence factors that interact with the human host to establish infections. The human immune system evolved multiple mechanisms to fight bacterial invaders, including immune proteases that were demonstrated to contribute crucially to antibacterial defense. Here we show that granzyme B degrades multiple secreted virulence mediators from Listeria monocytogenes, Salmonella typhimurium, and Mycobacteria tuberculosis. Pathogenic bacteria, when infected in the presence of granzyme B or granzyme-secreting killer cells, fail to grow in human macrophages and epithelial cells owing to their crippled virulence. A granzyme B-uncleavable mutant form of the major Listeria virulence factor, listeriolysin O, rescued the virulence defect in response to granzyme treatment. Hence, we link the degradation of a single factor with the observed decrease in virulent bacteria growth. Overall, we reveal here an innate immune barrier function of granzyme B by disrupting bacterial virulence to facilitate bacteria clearance by bystander immune and non-immune cells.
Collapse
Affiliation(s)
- Diego López León
- Faculty of Science and Medicine, Department of Oncology, Microbiology and Immunology, Anatomy Unit, University of Fribourg, PER03.14, Route Albert Gockel 1, 1700 Fribourg, Switzerland
| | - Patricia Matthey
- Faculty of Science and Medicine, Department of Oncology, Microbiology and Immunology, Anatomy Unit, University of Fribourg, PER03.14, Route Albert Gockel 1, 1700 Fribourg, Switzerland
| | - Isabelle Fellay
- Faculty of Science and Medicine, Department of Oncology, Microbiology and Immunology, Anatomy Unit, University of Fribourg, PER03.14, Route Albert Gockel 1, 1700 Fribourg, Switzerland
| | - Marianne Blanchard
- Faculty of Science and Medicine, Department of Oncology, Microbiology and Immunology, Anatomy Unit, University of Fribourg, PER03.14, Route Albert Gockel 1, 1700 Fribourg, Switzerland
| | - Denis Martinvalet
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35121 Padova, Italy
| | - Pierre-Yves Mantel
- Faculty of Science and Medicine, Department of Oncology, Microbiology and Immunology, Anatomy Unit, University of Fribourg, PER03.14, Route Albert Gockel 1, 1700 Fribourg, Switzerland
| | - Luis Filgueira
- Faculty of Science and Medicine, Department of Oncology, Microbiology and Immunology, Anatomy Unit, University of Fribourg, PER03.14, Route Albert Gockel 1, 1700 Fribourg, Switzerland
| | - Michael Walch
- Faculty of Science and Medicine, Department of Oncology, Microbiology and Immunology, Anatomy Unit, University of Fribourg, PER03.14, Route Albert Gockel 1, 1700 Fribourg, Switzerland.
| |
Collapse
|
26
|
Varricchi G, de Paulis A, Marone G, Galli SJ. Future Needs in Mast Cell Biology. Int J Mol Sci 2019; 20:E4397. [PMID: 31500217 PMCID: PMC6769913 DOI: 10.3390/ijms20184397] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022] Open
Abstract
The pathophysiological roles of mast cells are still not fully understood, over 140 years since their description by Paul Ehrlich in 1878. Initial studies have attempted to identify distinct "subpopulations" of mast cells based on a relatively small number of biochemical characteristics. More recently, "subtypes" of mast cells have been described based on the analysis of transcriptomes of anatomically distinct mouse mast cell populations. Although mast cells can potently alter homeostasis, in certain circumstances, these cells can also contribute to the restoration of homeostasis. Both solid and hematologic tumors are associated with the accumulation of peritumoral and/or intratumoral mast cells, suggesting that these cells can help to promote and/or limit tumorigenesis. We suggest that at least two major subsets of mast cells, MC1 (meaning anti-tumorigenic) and MC2 (meaning pro-tumorigenic), and/or different mast cell mediators derived from otherwise similar cells, could play distinct or even opposite roles in tumorigenesis. Mast cells are also strategically located in the human myocardium, in atherosclerotic plaques, in close proximity to nerves and in the aortic valve. Recent studies have revealed evidence that cardiac mast cells can participate both in physiological and pathological processes in the heart. It seems likely that different subsets of mast cells, like those of cardiac macrophages, can exert distinct, even opposite, effects in different pathophysiological processes in the heart. In this chapter, we have commented on possible future needs of the ongoing efforts to identify the diverse functions of mast cells in health and disease.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences (DISMET), University of Naples Federico II, 80138 Naples, Italy.
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, School of Medicine, 80138 Naples, Italy.
- WAO Center of Excellence, 80138 Naples, Italy.
| | - Amato de Paulis
- Department of Translational Medical Sciences (DISMET), University of Naples Federico II, 80138 Naples, Italy.
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, School of Medicine, 80138 Naples, Italy.
- WAO Center of Excellence, 80138 Naples, Italy.
| | - Gianni Marone
- Department of Translational Medical Sciences (DISMET), University of Naples Federico II, 80138 Naples, Italy.
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, School of Medicine, 80138 Naples, Italy.
- WAO Center of Excellence, 80138 Naples, Italy.
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), National Research Council (CNR), 80138 Naples, Italy.
| | - Stephen J Galli
- Departments of Pathology and of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5176, USA.
| |
Collapse
|
27
|
Sato J, Tomonari Y, Doi T, Tsuchitani M. Spontaneous globule leukocyte tumor accompanied by inflammatory cells in a Wistar Hannover rat. J Toxicol Pathol 2019; 32:189-195. [PMID: 31404352 PMCID: PMC6682559 DOI: 10.1293/tox.2018-0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/10/2019] [Indexed: 11/25/2022] Open
Abstract
We encountered hematolymphoid neoplastic lesions in the form of many nodules in the
spleen and liver in a 110-week-old male Wistar Hannover rat (Crl:WI (Han)). The lesions
contained atypical proliferative cells, eosinophils, lymphocytes, and macrophages. The
proliferative cells comprised various atypical cell types with or without cytoplasmic
eosinophilic granules. The granules were positively stained using periodic acid-Schiff and
elastase stains, were bluish purple using phosphotungstic acid and hematoxylin, and showed
no metachromasia using toluidine blue. In immunohistochemical staining, the proliferative
cells with or without granules were positive for granzyme B, rat mast cell protease II,
and Ki67. Electron microscopic examination revealed that single to multiple high-density
granules of variable size were covered by a membrane. These findings led to a diagnosis of
globule leukocyte tumor. The accompaniment of this tumor by inflammatory cells is likely
evoked by mast cell-like active mediators contained in the granules of the globule
leukocytes.
Collapse
Affiliation(s)
- Junko Sato
- Pathology Department, Kashima Laboratory, Nonclinical Research Center, LSI Medience Corporation, 14-1 Sunayama, Kamisu, Ibaraki 314-0255, Japan
| | - Yuki Tomonari
- Pathology Department, Kashima Laboratory, Nonclinical Research Center, LSI Medience Corporation, 14-1 Sunayama, Kamisu, Ibaraki 314-0255, Japan
| | - Takuya Doi
- Pathology Department, Kashima Laboratory, Nonclinical Research Center, LSI Medience Corporation, 14-1 Sunayama, Kamisu, Ibaraki 314-0255, Japan
| | - Minoru Tsuchitani
- Pathology Department, Kashima Laboratory, Nonclinical Research Center, LSI Medience Corporation, 14-1 Sunayama, Kamisu, Ibaraki 314-0255, Japan
| |
Collapse
|
28
|
Pilkington S, Barron M, Watson R, Griffiths C, Bulfone‐Paus S. Aged human skin accumulates mast cells with altered functionality that localize to macrophages and vasoactive intestinal peptide-positive nerve fibres. Br J Dermatol 2019; 180:849-858. [PMID: 30291626 PMCID: PMC6619242 DOI: 10.1111/bjd.17268] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Skin health declines with age and this is partially attributed to immunosenescence. Mast cells (MCs) are innate immune cells that coordinate tissue immune responses integral to skin homeostasis and disease. OBJECTIVES To understand how MCs contribute to human skin ageing, we investigated how intrinsic ageing impacts MC phenotype and MC relationships with other immune cells and skin structures. METHODS In photoprotected skin biopsies from young (≤ 30 years) and aged (≥ 75 years) individuals, immunostaining and spatial morphometry were performed to identify changes in MC phenotype, number, distribution and interaction with the vasculature and nerve fibres. Quantitative polymerase chain reaction was used to measure changes in gene expression related to immune cell activity and neuropeptide signalling. RESULTS Skin MCs, macrophages and CD8+ T cells increased in number in intrinsically aged vs. young skin by 40%, 44% and 90%, respectively (P < 0·05), while CD4+ T cells and neutrophils were unchanged. In aged skin, MCs were more numerous in the papillary dermis and showed a reduced incidence of degranulation (50% lower than in young, P < 0·01), a conserved tryptase-chymase phenotype and coexpression of granzyme B. In aged skin, MCs increased their association with macrophages (~ 48% vs. ~27%, P < 0·05) and nerve fibres (~29% vs. 16%, P < 0·001), while reducing their interactions with blood vessels (~34% vs. 45%, P < 0·001). Additionally, we observed modulation of gene expression of vasoactive intestinal peptide (VIP; increased) and substance P (decreased) with age; this was associated with an increased frequency of VIP+ nerve fibres (around three times higher in aged skin, P < 0·05), which were strongly associated with MCs (~19% in aged vs. 8% in young, P < 0·05). CONCLUSIONS In photoprotected skin we observed an accumulation of MCs with increasing age. These MCs have both altered functionality and distribution within the skin, which supports a role for these cells in altered tissue homeostasis during ageing.
Collapse
Affiliation(s)
- S.M. Pilkington
- Centre for Dermatology Research, School of Biological Sciences, Faculty of Biology, Medicine and HealthManchester Academic Health Science CentreThe University of ManchesterManchesterM13 9PTU.K
- The Dermatology CentreSalford Royal NHS Foundation TrustSalfordM6 8HDU.K
| | - M.J. Barron
- Centre for Dermatology Research, School of Biological Sciences, Faculty of Biology, Medicine and HealthManchester Academic Health Science CentreThe University of ManchesterManchesterM13 9PTU.K
- The Dermatology CentreSalford Royal NHS Foundation TrustSalfordM6 8HDU.K
| | - R.E.B. Watson
- Centre for Dermatology Research, School of Biological Sciences, Faculty of Biology, Medicine and HealthManchester Academic Health Science CentreThe University of ManchesterManchesterM13 9PTU.K
- The Dermatology CentreSalford Royal NHS Foundation TrustSalfordM6 8HDU.K
| | - C.E.M. Griffiths
- Centre for Dermatology Research, School of Biological Sciences, Faculty of Biology, Medicine and HealthManchester Academic Health Science CentreThe University of ManchesterManchesterM13 9PTU.K
- The Dermatology CentreSalford Royal NHS Foundation TrustSalfordM6 8HDU.K
| | - S. Bulfone‐Paus
- Centre for Dermatology Research, School of Biological Sciences, Faculty of Biology, Medicine and HealthManchester Academic Health Science CentreThe University of ManchesterManchesterM13 9PTU.K
- The Dermatology CentreSalford Royal NHS Foundation TrustSalfordM6 8HDU.K
| |
Collapse
|
29
|
Rahkola D, Laitala J, Siiskonen H, Pelkonen J, Harvima IT. Mast Cells Are a Marked Source for Complement C3 Products That Associate with Increased CD11b-Positive Cells in Keratinocyte Skin Carcinomas. Cancer Invest 2019; 37:73-84. [DOI: 10.1080/07357907.2019.1565765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Dina Rahkola
- Department of Dermatology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| | - Joel Laitala
- Department of Dermatology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| | - Hanna Siiskonen
- Department of Dermatology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| | - Jukka Pelkonen
- Department of Clinical Microbiology, Eastern Finland Laboratory Centre (ISLAB), University of Eastern Finland, Kuopio, Finland
| | - Ilkka T. Harvima
- Department of Dermatology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
30
|
Varricchi G, Raap U, Rivellese F, Marone G, Gibbs BF. Human mast cells and basophils-How are they similar how are they different? Immunol Rev 2019; 282:8-34. [PMID: 29431214 DOI: 10.1111/imr.12627] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mast cells and basophils are key contributors to allergies and other inflammatory diseases since they are the most prominent source of histamine as well as numerous additional inflammatory mediators which drive inflammatory responses. However, a closer understanding of their precise roles in allergies and other pathological conditions has been marred by the considerable heterogeneity that these cells display, not only between mast cells and basophils themselves but also across different tissue locations and species. While both cell types share the ability to rapidly degranulate and release histamine following high-affinity IgE receptor cross-linking, they differ markedly in their ability to either react to other stimuli, generate inflammatory eicosanoids or release immunomodulating cytokines and chemokines. Furthermore, these cells display considerable pharmacological heterogeneity which has stifled attempts to develop more effective anti-allergic therapies. Mast cell- and basophil-specific transcriptional profiling, at rest and after activation by innate and adaptive stimuli, may help to unravel the degree to which these cells differ and facilitate a clearer understanding of their biological functions and how these could be targeted by new therapies.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research, University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Ulrike Raap
- Department of Dermatology and Allergology, University of Oldenburg, Oldenburg, Germany
| | - Felice Rivellese
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research, University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Gianni Marone
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research, University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), National Research Council (CNR), Naples, Italy
| | - Bernhard F Gibbs
- Department of Dermatology and Allergology, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
31
|
Decrease in Intracellular Perforin Levels and IFN- γ Production in Human CD8 + T Cell Line following Long-Term Exposure to Asbestos Fibers. J Immunol Res 2018; 2018:4391731. [PMID: 30426024 PMCID: PMC6218727 DOI: 10.1155/2018/4391731] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/31/2018] [Accepted: 09/16/2018] [Indexed: 12/15/2022] Open
Abstract
Although the tumorigenicity of asbestos, which is thought to cause mesothelioma, has been clarified, its effect on antitumor immunity requires further investigation. We previously reported a decrease in the percentage of perforin+ cells of stimulated CD8+ lymphocytes derived from patients with malignant mesothelioma. Therefore, we examined the effects of long-term exposure to asbestos on CD8+ T cell functions by comparing long-term cultures of the human CD8+ T cell line EBT-8 with and without exposure to chrysotile (CH) asbestos as an in vitro model. Exposure to CH asbestos at 5 μg/ml or 30 μg/ml did not result in a decrease in intracellular granzyme B in EBT-8 cells. In contrast, the percentage of perforin+ cells decreased at both doses of CH exposure. CH exposure at 30 μg/ml did not suppress degranulation following stimulation with antibodies to CD3. Secreted production of IFN-γ stimulated via CD3 decreased by CH exposure at 30 μg/ml, although the percentage of IFN-γ+ cells induced by PMA/ionomycin did not decrease. These results indicate that long-term exposure to asbestos can potentially suppress perforin levels and the production of IFN-γ in human CD8+ T cells.
Collapse
|
32
|
Korkmaz B, Caughey GH, Chapple I, Gauthier F, Hirschfeld J, Jenne DE, Kettritz R, Lalmanach G, Lamort AS, Lauritzen C, Łȩgowska M, Lesner A, Marchand-Adam S, McKaig SJ, Moss C, Pedersen J, Roberts H, Schreiber A, Seren S, Thakker NS. Therapeutic targeting of cathepsin C: from pathophysiology to treatment. Pharmacol Ther 2018; 190:202-236. [DOI: 10.1016/j.pharmthera.2018.05.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
33
|
Maaninka K, Nguyen SD, Mäyränpää MI, Plihtari R, Rajamäki K, Lindsberg PJ, Kovanen PT, Öörni K. Human mast cell neutral proteases generate modified LDL particles with increased proteoglycan binding. Atherosclerosis 2018; 275:390-399. [PMID: 29703634 DOI: 10.1016/j.atherosclerosis.2018.04.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/06/2018] [Accepted: 04/12/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND AND AIMS Subendothelial interaction of LDL with extracellular matrix drives atherogenesis. This interaction can be strengthened by proteolytic modification of LDL. Mast cells (MCs) are present in atherosclerotic lesions, and upon activation, they degranulate and release a variety of neutral proteases. Here we studied the ability of MC proteases to cleave apoB-100 of LDL and affect the binding of LDL to proteoglycans. METHODS Mature human MCs were differentiated from human peripheral blood-derived CD34+ progenitors in vitro and activated with calcium ionophore to generate MC-conditioned medium. LDL was incubated in the MC-conditioned medium or with individual MC proteases, and the binding of native and modified LDL to isolated human aortic proteoglycans or to human atherosclerotic plaques ex vivo was determined. MC proteases in atherosclerotic human coronary artery lesions were detected by immunofluorescence and qPCR. RESULTS Activated human MCs released the neutral proteases tryptase, chymase, carboxypeptidase A3, cathepsin G, and granzyme B. Of these, cathepsin G degraded most efficiently apoB-100, induced LDL fusion, and enhanced binding of LDL to isolated human aortic proteoglycans and human atherosclerotic lesions ex vivo. Double immunofluoresence staining of human atherosclerotic coronary arteries for tryptase and cathepsin G indicated that lesional MCs contain cathepsin G. In the lesions, expression of cathepsin G correlated with the expression of tryptase and chymase, but not with that of neutrophil proteinase 3. CONCLUSIONS The present study suggests that cathepsin G in human atherosclerotic lesions is largely derived from MCs and that activated MCs may contribute to atherogenesis by enhancing LDL retention.
Collapse
Affiliation(s)
- Katariina Maaninka
- Wihuri Research Institute, Biomedicum 1, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Su Duy Nguyen
- Wihuri Research Institute, Biomedicum 1, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Mikko I Mäyränpää
- Wihuri Research Institute, Biomedicum 1, Haartmaninkatu 8, 00290 Helsinki, Finland; Pathology, University of Helsinki and Helsinki University Hospital, Finland
| | - Riia Plihtari
- Wihuri Research Institute, Biomedicum 1, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Kristiina Rajamäki
- Wihuri Research Institute, Biomedicum 1, Haartmaninkatu 8, 00290 Helsinki, Finland; Clinicum Department, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Perttu J Lindsberg
- Molecular Neurology, Research Programs Unit, University of Helsinki, Helsinki, Finland; Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Finland
| | - Petri T Kovanen
- Wihuri Research Institute, Biomedicum 1, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Katariina Öörni
- Wihuri Research Institute, Biomedicum 1, Haartmaninkatu 8, 00290 Helsinki, Finland.
| |
Collapse
|
34
|
New roles and controls of mast cells. Curr Opin Immunol 2018; 50:39-47. [DOI: 10.1016/j.coi.2017.10.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/13/2017] [Accepted: 10/28/2017] [Indexed: 12/14/2022]
|
35
|
Smith SE, Schlosser RJ, Yawn JR, Mattos JL, Soler ZM, Mulligan JK. Sinonasal T-cell expression of cytotoxic mediators granzyme B and perforin is reduced in patients with chronic rhinosinusitis. Am J Rhinol Allergy 2017; 31:352-356. [PMID: 29122079 PMCID: PMC5691237 DOI: 10.2500/ajra.2017.31.4474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND CD8+ T cells and natural killer (NK) cells are cytotoxic cells that use granzyme B (GrB) and perforin. Defective cytotoxic function is known to play a role in dysregulated immune response as seen in chronic sinusitis, also referred to as chronic rhinosinusitis (CRS). However, to our knowledge, in the United States, neither GrB or perforin expression has been reported in patients with CRS. OBJECTIVE The aim of this study was to investigate sinonasal cytotoxic cells, their mediators, and cell-specific distribution of these mediators in patients with CRS with nasal polyp (CRSwNP) and in patients with CRS without nasal polyp (CRSsNP). METHODS Blood and sinus tissue samples were taken from patients with CRSsNP (n = 8) and CRSwNP (n = 8) at the time of surgery. Control subjects (n = 8) underwent surgery for cerebrospinal fluid leak repair or to remove non-hormone-secreting pituitary tumors. The cells were analyzed via flow cytometry by using CD8 expression to identify cytotoxic T cells and CD56 expression to identify NK cells. Intracellular GrB and perforin expression were analyzed with flow cytometry. RESULTS We observed no significant differences in plasma or peripheral blood immune cell numbers or specific levels of GrB or perforin among the groups. In the sinonasal mucosa of the patients with CRSsNP and the patients with CRSwNP, there was a significant decrease in GrB and perforin levels (p < 0.05) despite similar or increased numbers of cytotoxic cells when compared with the controls. The overall decrease in GrB and perforin in the sinonasal mucosa of the patients with CRSsNP and the patients with CRSwNP was due to decreased T cell production. There was no difference in total NK cell count or expression of perforin or GrB among all the groups. CONCLUSION Total levels of sinonasal GrB and perforin were decreased in the sinonasal mucosa of both the patients with CRSwNP and the patients with CRSsNP compared with the controls, whereas sinonasal CD8+ T cells, (but not NK cells,), intracellular stores of GrB and perforin were reduced in the patients with CRSwNP compared with the controls.
Collapse
Affiliation(s)
- Sarah E. Smith
- From the Department of Otolaryngology—Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Rodney J. Schlosser
- From the Department of Otolaryngology—Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina
- Department of Otolaryngology - Head and Neck Surgery, Ralph H. Johnson VA Medical Center, Charleston, South Carolina, and
| | - James R. Yawn
- From the Department of Otolaryngology—Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Jose L. Mattos
- From the Department of Otolaryngology—Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Zachary M. Soler
- From the Department of Otolaryngology—Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Jennifer K. Mulligan
- From the Department of Otolaryngology—Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
36
|
Arias M, Martínez-Lostao L, Santiago L, Ferrandez A, Granville DJ, Pardo J. The Untold Story of Granzymes in Oncoimmunology: Novel Opportunities with Old Acquaintances. Trends Cancer 2017; 3:407-422. [PMID: 28718416 DOI: 10.1016/j.trecan.2017.04.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/31/2017] [Accepted: 04/03/2017] [Indexed: 12/16/2022]
Abstract
For more than 20 years perforin and granzymes (GZMs) have been recognized as key cell death executors of cytotoxic T (Tc) and natural killer (NK) cells during cancer immunosurveillance. In immune surveillance, perforin and GZMB, the most potent cytotoxic molecules, act mainly as antitumoral and anti-infectious factors. However, when expressed by immune regulatory cells they may contribute to immune evasion of specific cancer types. By contrast, the other major granzyme, GZMA, seems not to play a major role in Tc/NK cell-mediated cytotoxicity, but acts as a proinflammatory cytokine that might contribute to cancer development. Members of the GZM family also regulate other biological processes unrelated to cell death, such as angiogenesis, vascular integrity, extracellular matrix remodeling, and barrier function, all of which contribute to cancer initiation and progression. Thus, a new paradigm is emerging in the field of oncoimmunology. Can GZMs act as protumoral factors under some circumstances? We review the diverse roles of GZMs in cancer progression, and new therapeutic opportunities emerging from targeting these protumoral roles.
Collapse
Affiliation(s)
- Maykel Arias
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), 50009 Zaragoza, Spain; These authors contributed equally to this work
| | - Luis Martínez-Lostao
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), 50009 Zaragoza, Spain; Department of Biochemistry and Molecular and Cell Biology, and Department of Microbiology, Preventive Medicine, and Public Health, University of Zaragoza, 50009 Zaragoza, Spain; Servicio de Inmunología Hospital Clínico Universitario Lorenzo Blesa, Zaragoza, Spain; Nanoscience Institute of Aragon (INA), University of Zaragoza, 50018 Zaragoza, Spain; These authors contributed equally to this work
| | - Llipsy Santiago
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), 50009 Zaragoza, Spain
| | - Angel Ferrandez
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), 50009 Zaragoza, Spain; Servicio de Aparato Digestivo, Hospital Clínico Universitario Lorenzo Blesa, Zaragoza, Spain
| | - David J Granville
- International Collaboration on Repair Discoveries (ICORD), Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Julián Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), 50009 Zaragoza, Spain; Department of Biochemistry and Molecular and Cell Biology, and Department of Microbiology, Preventive Medicine, and Public Health, University of Zaragoza, 50009 Zaragoza, Spain; Nanoscience Institute of Aragon (INA), University of Zaragoza, 50018 Zaragoza, Spain; Aragon I+D Foundation (ARAID), Zaragoza, Spain.
| |
Collapse
|
37
|
Yang J, Xu H, Liang X, Lv S, Lin B, Jia Y. Allergic conditions are not associated with the risk of non-Hodgkin's lymphoma or Hodgkin's lymphoma: a systematic review and meta-analysis. Onco Targets Ther 2017; 10:2189-2198. [PMID: 28458562 PMCID: PMC5403013 DOI: 10.2147/ott.s128849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
We aimed to systematically evaluate the association between allergic conditions and the risk of Hodgkin’s lymphoma (HL) and non-HL (NHL). Systematic literature searches in PubMed and Embase were conducted up to October 2015 to identify eligible studies. Either a fixed-effects model or a random-effects model was adopted to estimate overall odds ratios (ORs) according to heterogeneity across studies. Subgroup and publication bias analyses were applied. A total of 24 case–control studies and 13 cohort studies (conducted from 1987 to 2015) were included in the analysis of the risk of NHL. History of any allergic condition was inversely associated with the risk of NHL in case–control studies (OR =0.83, 95% CI 0.76–0.91), while the reduction in the risk of NHL was not observed in cohort studies (OR =1.18, 95% CI 0.98–1.42). Significant association with the risk of NHL was found for asthma, hay fever, food allergy, allergic rhinitis, and hives. In the pooled analysis of the risk of HL, 12 studies (two were cohort studies) were included. The pooled OR was 0.96 (95% CI 0.84–1.09) for case–control studies and 1.46 (95% CI 0.63–3.38) for cohort studies. For specific allergic condition, we observed a reduced risk of HL in individuals with hay fever and food allergy. In conclusion, history of any allergic condition was not significantly associated with the risk of NHL or HL. Several specific allergic conditions, including asthma, hay fever, food allergy, and allergic rhinitis, might be associated with a reduced risk of NHL, while individuals with hay fever or food allergy may have a reduced risk of HL.
Collapse
Affiliation(s)
- Jia Yang
- Department of Radiotherapy, Zhejiang Provincial People's Hospital, Hangzhou, People's Republic of China
| | - Hong'en Xu
- Department of Radiotherapy, Zhejiang Provincial People's Hospital, Hangzhou, People's Republic of China
| | - Xiaodong Liang
- Department of Radiotherapy, Zhejiang Provincial People's Hospital, Hangzhou, People's Republic of China
| | - Shiliang Lv
- Department of Radiotherapy, Zhejiang Provincial People's Hospital, Hangzhou, People's Republic of China
| | - Baihua Lin
- Department of Radiotherapy, Zhejiang Provincial People's Hospital, Hangzhou, People's Republic of China
| | - Yongshi Jia
- Department of Radiotherapy, Zhejiang Provincial People's Hospital, Hangzhou, People's Republic of China
| |
Collapse
|
38
|
IL-21 May Promote Granzyme B-Dependent NK/Plasmacytoid Dendritic Cell Functional Interaction in Cutaneous Lupus Erythematosus. J Invest Dermatol 2017; 137:1493-1500. [PMID: 28344062 DOI: 10.1016/j.jid.2017.03.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/14/2017] [Accepted: 03/06/2017] [Indexed: 12/13/2022]
Abstract
Autoimmune skin lesions are characterized by a complex cytokine milieu and by the accumulation of plasmacytoid dendritic cells (pDCs). Granzyme B (GrB) transcript is abundant in activated pDCs, though its mechanisms of regulation and biological role are largely unknown. Here we report that IL-21 was the only T helper 1/T helper 17 cytokine able to induce the expression and secretion of GrB by pDCs and that this action was counteracted by the autocrine production of type I IFNs. In lupus erythematosus skin lesions, the percentage of GrB+ pDCs directly correlated with the IL-21/MxA ratio, indicating that the interplay between these two cytokines finely tunes the levels of pDC-dependent GrB also in vivo. In lupus erythematosus, pDCs colocalized with professional cytotoxic cells at sites of epithelial damage, suggesting a role in keratinocyte killing. Accordingly, we demonstrate that supernatants of IL-21-activated pDCs promoted autologous keratinocyte killing by natural killer cells and this action was dependent on GrB. These results propose a GrB-dependent functional interaction between pDCs and natural killer cells and highlight a negative feedback regulation by type I IFNs in vitro and in vivo that may function to limit excessive tissue damage.
Collapse
|
39
|
Marcq E, Siozopoulou V, De Waele J, van Audenaerde J, Zwaenepoel K, Santermans E, Hens N, Pauwels P, van Meerbeeck JP, Smits ELJ. Prognostic and predictive aspects of the tumor immune microenvironment and immune checkpoints in malignant pleural mesothelioma. Oncoimmunology 2016; 6:e1261241. [PMID: 28197385 DOI: 10.1080/2162402x.2016.1261241] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/27/2016] [Accepted: 11/10/2016] [Indexed: 12/29/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive cancer with a poor prognosis and an increasing incidence, for which novel therapeutic strategies are urgently required. Since the immune system has been described to play a presumed role in the protection against MPM, characterization of its tumor immune microenvironment (TME) and immune checkpoints can identify new immunotherapeutic targets and their predictive and/or prognostic value. To characterize the TME and the immune checkpoint expression profile, we performed immunohistochemistry (IHC) on formalin-fixed paraffin embedded (FFPE) tissue sections from 54 MPM patients (40 at time of diagnosis; 14 treated with chemotherapy). We stained for PD-1, PD-L1, TIM-3, LAG-3, CD4, CD8, CD45RO, granzyme B, FoxP3 and CD68. Furthermore, we analyzed the relationship between the immunological parameters and survival, as well as response to chemotherapy. We found that TIM-3, PD-1 and PD-L1 were expressed on both immune and tumor cells. Strikingly, PD-1 and PD-L1 expression on tumor cells was only seen in unpretreated samples. No LAG-3 expression was observed. CD45RO expression in the stroma was an independent negative predictive factor for response on chemotherapy, while CD4 and TIM-3 expression in lymphoid aggregates were independent prognostic factors for better outcome. Our data propose TIM-3 as a promising new target in mesothelioma. Chemotherapy influences the expression of immune checkpoints and therefore further research on the best combination treatment schedule is required.
Collapse
Affiliation(s)
- Elly Marcq
- Center for Oncological Research, University of Antwerp , Antwerp, Belgium
| | - Vasiliki Siozopoulou
- Center for Oncological Research, University of Antwerp, Antwerp, Belgium; Department of Pathology, Antwerp University Hospital, Antwerp, Belgium
| | - Jorrit De Waele
- Center for Oncological Research, University of Antwerp , Antwerp, Belgium
| | | | - Karen Zwaenepoel
- Center for Oncological Research, University of Antwerp, Antwerp, Belgium; Department of Pathology, Antwerp University Hospital, Antwerp, Belgium
| | - Eva Santermans
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University , Diepenbeek, Belgium
| | - Niel Hens
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Diepenbeek, Belgium; Centre for Health Economics Research and Modeling Infectious Diseases, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Patrick Pauwels
- Center for Oncological Research, University of Antwerp, Antwerp, Belgium; Department of Pathology, Antwerp University Hospital, Antwerp, Belgium
| | - Jan P van Meerbeeck
- Center for Oncological Research, University of Antwerp, Antwerp, Belgium; Thoracic Oncology/MOCA, Antwerp University Hospital, Antwerp, Belgium
| | - Evelien L J Smits
- Center for Oncological Research, University of Antwerp, Antwerp, Belgium; Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
40
|
Complement C3 is expressed by mast cells in cutaneous vasculitis and is degraded by chymase. Arch Dermatol Res 2016; 308:575-84. [PMID: 27465068 DOI: 10.1007/s00403-016-1677-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/16/2016] [Accepted: 07/13/2016] [Indexed: 02/04/2023]
Abstract
The complement factor C3 and chymase released from tryptase(+), chymase(+) mast cells may be involved in the pathogenesis of cutaneous leukocytoclastic vasculitis. To study whether mast cells contain C3 in vasculitis and whether chymase interacts with C3, cryosections from vasculitis biopsies were double-stained histochemically for C3c in tryptase(+) mast cells, as well as for chymase and vessel wall C3c, or they were treated with 5 µg/ml rh-chymase for 24 h followed by immunofluorescence (IF) analysis of C3c, IgG, IgM and IgA. The effect of rh-chymase on purified human C3, C3a and IgG was studied using SDS-PAGE electrophoresis and LAD2 mast cell cultures. The results show that 34.2 ± 17.9, 37.4 ± 15.5 and 43.4 ± 18.6 % (mean ± SD) of the mast cells express C3c immunoreactivity in the healthy skin, initial petechial (IP) and palpable purpura (PP) lesions, respectively. About 9.4-12.1 % of the chymase(+) mast cells were in apparent contact with C3c(+) vessels in IP and PP. The treatment of cryosections with rh-chymase decreased the IF staining of C3c, but not that of immunoglobulins. In SDS-PAGE, 1-10 µg/ml rh-chymase degraded the alpha- and beta-chains of C3, but did not degrade IgG. Unexpectedly, the rh-chymase treatment of C3 produced fragments that resulted in the release of tryptase and histamine from LAD2 cells. However, rh-chymase degraded C3a and consequently inhibited C3a activity on LAD2. In conclusion, mast cells can be one source for C3 in the early and late phases of vasculitis pathogenesis. However, rh-chymase degraded native C3, vessel wall C3c, and biologically active C3a. Therefore, chymase may control C3-related pathology.
Collapse
|
41
|
Hardman C, Ogg G. Interleukin-33, friend and foe in type-2 immune responses. Curr Opin Immunol 2016; 42:16-24. [PMID: 27254379 DOI: 10.1016/j.coi.2016.05.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/05/2016] [Accepted: 05/06/2016] [Indexed: 02/06/2023]
Abstract
IL-33 is the most recent addition to the IL-1 cytokine family, identified in 2005 as the ligand of T1/ST2 and inducer of type-2 immune responses. IL-33 has been implicated in a wide range of disease settings, in anti-inflammatory responses and homeostasis, and thus signalling must be strictly regulated. Altered gene expression, post-translational modification, decoy receptor, and receptor signalling are all modulatory mechanisms used to control the IL-33 pathway. Understanding both the genetic and post-translational factors influencing IL-33 activity will be critical for provision of safe effective treatment of type-2 disorders.
Collapse
Affiliation(s)
- Clare Hardman
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, NIHR Biomedical Research Centre, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Graham Ogg
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, NIHR Biomedical Research Centre, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
42
|
Rysavy NM, Shimoda LMN, Dixon AM, Speck M, Stokes AJ, Turner H, Umemoto EY. Beyond apoptosis: the mechanism and function of phosphatidylserine asymmetry in the membrane of activating mast cells. BIOARCHITECTURE 2015; 4:127-37. [PMID: 25759911 DOI: 10.1080/19490992.2014.995516] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Loss of plasma membrane asymmetry is a hallmark of apoptosis, but lipid bilayer asymmetry and loss of asymmetry can contribute to numerous cellular functions and responses that are independent of programmed cell death. Exofacial exposure of phosphatidylserine occurs in lymphocytes and mast cells after antigenic stimulation and in the absence of apoptosis, suggesting that there is a functional requirement for phosphatidylserine exposure in immunocytes. In this review we examine current ideas as to the nature of this functional role in mast cell activation. Mechanistically, there is controversy as to the candidate proteins responsible for phosphatidylserine translocation from the internal to external leaflet, and here we review the candidacies of mast cell PLSCR1 and TMEM16F. Finally we examine the potential relationship between functionally important mast cell membrane perturbations and phosphatidylserine exposure during activation.
Collapse
Key Words
- ABCA, ABC binding cassette family A
- CRAC, calcium release activated channel
- GPMV, giant plasma membrane vesicle
- ITIM, immunoreceptor tyrosine based inhibitory motif
- PLA2, phospholipase A2
- PLSCR, phospholipid scramblase
- PMA, phorbol 12,13-myristate acetate
- RBL, rat basophilic leukemia
- RFU, relative fluorescence units
- ROI, region of interest
- TMEM, transmembrane protein
- TMEM16F
- WGA, wheat germ agglutinin
- mast cells
- membrane lipids
- phosphatidylserine
Collapse
Affiliation(s)
- Noel M Rysavy
- a Laboratory of Immunology and Signal Transduction ; Department of Biology; Chaminade University ; Honolulu , Hawai'i USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Wensink AC, Hack CE, Bovenschen N. Granzymes regulate proinflammatory cytokine responses. THE JOURNAL OF IMMUNOLOGY 2015; 194:491-7. [PMID: 25556251 DOI: 10.4049/jimmunol.1401214] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Granzymes (Grs) are serine proteases mainly produced by cytotoxic lymphocytes and are traditionally considered to cause apoptosis in tumor cells and virally infected cells. However, the cytotoxicity of several Grs is currently being debated, and additional, predominantly extracellular, functions of Grs in inflammation are emerging. Extracellular soluble Grs are elevated in the circulation of patients with autoimmune diseases and infections. Additionally, Grs are expressed by several types of immune cells other than cytotoxic lymphocytes. Recent research has revealed novel immunomodulatory functions of Grs. In this review, we provide a comprehensive overview on the role of Grs in inflammation, highlighting their role in cytokine induction and processing.
Collapse
Affiliation(s)
- Annette C Wensink
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands; and Laboratory of Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - C Erik Hack
- Laboratory of Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Niels Bovenschen
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands; and Laboratory of Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| |
Collapse
|
44
|
Ueshima C, Kataoka TR, Hirata M, Furuhata A, Suzuki E, Toi M, Tsuruyama T, Okayama Y, Haga H. The Killer Cell Ig-like Receptor 2DL4 Expression in Human Mast Cells and Its Potential Role in Breast Cancer Invasion. Cancer Immunol Res 2015; 3:871-80. [PMID: 25735953 DOI: 10.1158/2326-6066.cir-14-0199] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/24/2015] [Indexed: 11/16/2022]
Abstract
The killer-cell Ig-like receptor (KIR) 2DL4 (CD158d) acts as a receptor for human leukocyte antigen (HLA)-G and is expressed on almost all human natural killer (NK) cells. The expression and function of KIR2DL4 in other hematopoietic cells is poorly understood. Here, we focused on human mast cells, which exhibit cytotoxic activity similar to that of NK cells. KIR2DL4 was detected in all examined human cultured mast cells established from peripheral blood derived from healthy volunteers (PB-mast), the human mast cell line LAD2, and human nonneoplastic mast cells, including those on pathologic specimens. An agonistic antibody against KIR2DL4 decreased KIT-mediated and IgE-triggered responses, and enhanced the granzyme B production by PB-mast and LAD2 cells, by activating Src homology 2-containing protein tyrosine phosphatase (SHP-2). Next, we performed a coculture assay between LAD2 cells and the HLA-G(+) cancer cells, MCF-7 and JEG-3, and showed that KIR2DL4 on LAD2 cells enhanced MMP-9 production and the invasive activity of both cell lines via HLA-G. Immunohistochemical analysis revealed that the direct interaction between HLA-G(+) breast cancer cells and KIR2DL4(+) tissue mast cells (observed in 12 of 36 cases; 33.3%) was statistically correlated with the presence of lymph node metastasis or lymph-vascular invasion (observed in 11 of 12 cases; 91.7%; χ(2) = 7.439; P < 0.01; degrees of freedom, 1) in the clinical samples. These findings suggest that the KIR2DL4 on human mast cells facilitates HLA-G-expressing cancer invasion and the subsequent metastasis.
Collapse
Affiliation(s)
- Chiyuki Ueshima
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan. Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tatsuki R Kataoka
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan.
| | - Masahiro Hirata
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Ayako Furuhata
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Eiji Suzuki
- Department of Breast Surgery, Kyoto University Hospital, Kyoto, Japan
| | - Masakazu Toi
- Department of Breast Surgery, Kyoto University Hospital, Kyoto, Japan
| | - Tatsuaki Tsuruyama
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Yoshimichi Okayama
- Division of Molecular Cell Immunology and Allergology, Advanced Medical Research Center, Nihon University Graduate School of Medical Science, Tokyo, Japan
| | - Hironori Haga
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| |
Collapse
|
45
|
Imai A, Santoro D. Canine atopic dermatitis reduces the risk of multicentric B cell lymphoma. Vet Rec 2015; 176:231. [PMID: 25351233 DOI: 10.1136/vr.102691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- A Imai
- 81-7 Oyaguchi Kitamachi, Itabashiku, Tokyo 173-0031, Japan
| | - D Santoro
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, 1008 West Hazelwood Drive, Urbana, Illinois, 61802, USA
| |
Collapse
|
46
|
Parkinson LG, Toro A, Zhao H, Brown K, Tebbutt SJ, Granville DJ. Granzyme B mediates both direct and indirect cleavage of extracellular matrix in skin after chronic low-dose ultraviolet light irradiation. Aging Cell 2015; 14:67-77. [PMID: 25495009 PMCID: PMC4326907 DOI: 10.1111/acel.12298] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2014] [Indexed: 01/27/2023] Open
Abstract
Extracellular matrix (ECM) degradation is a hallmark of many chronic inflammatory diseases that can lead to a loss of function, aging, and disease progression. Ultraviolet light (UV) irradiation from the sun is widely considered as the major cause of visible human skin aging, causing increased inflammation and enhanced ECM degradation. Granzyme B (GzmB), a serine protease that is expressed by a variety of cells, accumulates in the extracellular milieu during chronic inflammation and cleaves a number of ECM proteins. We hypothesized that GzmB contributes to ECM degradation in the skin after UV irradiation through both direct cleavage of ECM proteins and indirectly through the induction of other proteinases. Wild-type and GzmB-knockout mice were repeatedly exposed to minimal erythemal doses of solar-simulated UV irradiation for 20 weeks. GzmB expression was significantly increased in wild-type treated skin compared to nonirradiated controls, colocalizing to keratinocytes and to an increased mast cell population. GzmB deficiency significantly protected against the formation of wrinkles and the loss of dermal collagen density, which was related to the cleavage of decorin, an abundant proteoglycan involved in collagen fibrillogenesis and integrity. GzmB also cleaved fibronectin, and GzmB-mediated fibronectin fragments increased the expression of collagen-degrading matrix metalloproteinase-1 (MMP-1) in fibroblasts. Collectively, these findings indicate a significant role for GzmB in ECM degradation that may have implications in many age-related chronic inflammatory diseases.
Collapse
Affiliation(s)
- Leigh G. Parkinson
- Centre for Heart Lung Innovation St. Paul's Hospital Vancouver British Columbia Canada
- Department of Pathology and Laboratory Medicine University of British Columbia Vancouver British Columbia Canada
| | - Ana Toro
- Centre for Heart Lung Innovation St. Paul's Hospital Vancouver British Columbia Canada
- Department of Pathology and Laboratory Medicine University of British Columbia Vancouver British Columbia Canada
| | - Hongyan Zhao
- Centre for Heart Lung Innovation St. Paul's Hospital Vancouver British Columbia Canada
- Department of Pathology and Laboratory Medicine University of British Columbia Vancouver British Columbia Canada
| | - Keddie Brown
- Centre for Heart Lung Innovation St. Paul's Hospital Vancouver British Columbia Canada
| | - Scott J. Tebbutt
- Centre for Heart Lung Innovation St. Paul's Hospital Vancouver British Columbia Canada
- Department of Medicine Division of Respiratory Medicine University of British Columbia Vancouver British Columbia Canada
| | - David J. Granville
- Centre for Heart Lung Innovation St. Paul's Hospital Vancouver British Columbia Canada
- Department of Pathology and Laboratory Medicine University of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
47
|
Marcet-Palacios M, Ewen C, Pittman E, Duggan B, Carmine-Simmen K, Fahlman RP, Bleackley RC. Design and characterization of a novel human Granzyme B inhibitor. Protein Eng Des Sel 2014; 28:9-17. [DOI: 10.1093/protein/gzu052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
48
|
Hagn M, Sutton VR, Trapani JA. A colorimetric assay that specifically measures Granzyme B proteolytic activity: hydrolysis of Boc-Ala-Ala-Asp-S-Bzl. J Vis Exp 2014:e52419. [PMID: 25489668 DOI: 10.3791/52419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The serine protease Granzyme B (GzmB) mediates target cell apoptosis when released by cytotoxic T lymphocytes (CTL) or natural killer (NK) cells. GzmB is the most studied granzyme in humans and mice and therefore, researchers need specific and reliable tools to study its function and role in pathophysiology. This especially necessitates assays that do not recognize proteases such as caspases or other granzymes that are structurally or functionally related. Here, we apply GzmB's preference for cleavage after aspartic acid residues in a colorimetric assay using the peptide thioester Boc-Ala-Ala-Asp-S-Bzl. GzmB is the only mammalian serine protease capable of cleaving this substrate. The substrate is cleaved with similar efficiency by human, mouse and rat GzmB, a property not shared by other commercially available peptide substrates, even some that are advertised as being suitable for this purpose. This protocol is demonstrated using unfractionated lysates from activated NK cells or CTL and is also suitable for recombinant proteases generated in a variety of prokaryotic and eukaryotic systems, provided the correct controls are used. This assay is a highly specific method to ascertain the potential pro-apoptotic activity of cytotoxic molecules in mammalian lymphocytes, and of their recombinant counterparts expressed by a variety of methodologies.
Collapse
Affiliation(s)
- Magdalena Hagn
- Cancer Immunology Program, Peter MacCallum Cancer Centre;
| | | | | |
Collapse
|
49
|
Moon TC, Befus AD, Kulka M. Mast cell mediators: their differential release and the secretory pathways involved. Front Immunol 2014; 5:569. [PMID: 25452755 PMCID: PMC4231949 DOI: 10.3389/fimmu.2014.00569] [Citation(s) in RCA: 294] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 10/23/2014] [Indexed: 12/14/2022] Open
Abstract
Mast cells (MC) are widely distributed throughout the body and are common at mucosal surfaces, a major host-environment interface. MC are functionally and phenotypically heterogeneous depending on the microenvironment in which they mature. Although MC have been classically viewed as effector cells of IgE-mediated allergic diseases, they are also recognized as important in host defense, innate and acquired immunity, homeostatic responses, and immunoregulation. MC activation can induce release of pre-formed mediators such as histamine from their granules, as well as release of de novo synthesized lipid mediators, cytokines, and chemokines that play diverse roles, not only in allergic reactions but also in numerous physiological and pathophysiological responses. Indeed, MC release their mediators in a discriminating and chronological manner, depending upon the stimuli involved and their signaling cascades (e.g., IgE-mediated or Toll-like receptor-mediated). However, the precise mechanisms underlying differential mediator release in response to these stimuli are poorly known. This review summarizes our knowledge of MC mediators and will focus on what is known about the discriminatory release of these mediators dependent upon diverse stimuli, MC phenotypes, and species of origin, as well as on the intracellular synthesis, storage, and secretory processes involved.
Collapse
Affiliation(s)
- Tae Chul Moon
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - A. Dean Befus
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Marianna Kulka
- National Institute for Nanotechnology, National Research Council, Edmonton, AB, Canada
| |
Collapse
|
50
|
Rönnberg E, Calounova G, Sutton VR, Trapani JA, Rollman O, Hagforsen E, Pejler G. Granzyme H is a novel protease expressed by human mast cells. Int Arch Allergy Immunol 2014; 165:68-74. [PMID: 25342632 DOI: 10.1159/000368403] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 09/12/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Many of the functions attributed to mast cells depend on the various pro-inflammatory mediators that are secreted upon mast cell activation. These include a panel of mast cell-specific proteases. In addition, recent studies have indicated that murine mast cells also express granzyme D, a protease previously thought to be confined to cytotoxic lymphocytes. Here, we address the human relevance of the latter findings by investigating whether human mast cells express granzyme H, the granzyme that may represent the functional counterpart to murine granzyme D. METHODS Cord blood-derived mast cells, LAD2 cells and skin mast cells in situ were evaluated for their expression of granzymes using quantitative PCR, Western blot analysis and immunostaining. Mast cells were activated by either calcium ionophore stimulation or IgE receptor cross-linking. RESULTS Cord blood-derived mast cells and LAD2 cells were shown to express granzyme H and B mRNA, while granzyme A, K and M expression was undetectable. Mast cell activation by either calcium ionophore or IgE receptor cross-linking caused down-regulated expression of granzyme H. In contrast, granzyme B expression was up-regulated by the same stimuli. Granzyme H expression was also confirmed at the protein level, as shown by both Western blot analysis and confocal microscopy. Further, we show that granzyme H is expressed by human skin mast cells in situ. CONCLUSIONS The present findings implicate granzyme H as a novel protease expressed by human mast cells and support earlier findings obtained in natural killer cells suggesting that granzymes B and H are reciprocally regulated.
Collapse
Affiliation(s)
- Elin Rönnberg
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|