1
|
Luo W, Zhang J, Zheng X, Li A, Xv M, Zhou D, Yuan C, Cui Y, Sun B. Identification of rBlo t 41 with a chitin-binding type-2 domain: A novel major allergen from Blomia tropicalis. Int J Biol Macromol 2024; 262:129972. [PMID: 38336314 DOI: 10.1016/j.ijbiomac.2024.129972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Blomia tropicalis (B. tropicalis) has been reported to impose an increased risk of allergic diseases. However, few characteristics of the unknown allergen components responsible for B. tropicalis allergy and clinical relevance have been fully identified. METHODS We synthesized and characterized the physicochemical properties and cross-reactivity of the newly discovered recombinant B. tropicalis group 41 allergen (rBlo t 41). Subsequently, sera were collected from 107 B. tropicalis allergic subjects to evaluate the prevalence of the rBlo t 41. Lastly, its allergenicity was tested in humans by basophil activation assays, and in mice by a model of allergic asthma. RESULTS The mature protein of rBlo t 41 was described as 104 amino acids long and 15.8 kDa, and its limited cross-reactivity was observed between allergens of house dust mites (HDM). Sensitization rate of rBlo t 41 (56.07 %) was lower than rBlo t 2 (76.29 %) and rBlo t 5 (69.07 %) in our study. Besides, rBlo t 41 elicited CD63 upregulation in basophils, whereas rBlo t 41-sensitized mice generated rBlo t 41-IgE and developed allergic airway inflammation after allergen exposure. Of note, component-based tests showed a high area under curve value (AUC = 0.75) of rBlo t 41, displaying its favorable diagnostic potential in B. tropicalis allergy. CONCLUSIONS rBlo t 41 was identified as a candidate novel major allergen with good diagnostic potential in B. tropicalis sensitization. Additionally, we provided strong evidence about rBlo t 41 on the clinically relevant manifestations in B. tropicalis allergies, conducive to facilitating the development of component-resolved diagnosis.
Collapse
Affiliation(s)
- Wenting Luo
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Jiale Zhang
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Xianhui Zheng
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Aoli Li
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Miaoyuan Xv
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Dongmei Zhou
- Clinical Research Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, China
| | - Cunyin Yuan
- Clinical Research Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, China
| | - Yubao Cui
- Clinical Research Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, China.
| | - Baoqing Sun
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.
| |
Collapse
|
2
|
Determination of immunogenic epitopes in major house dust mite allergen, Der p 2, via nanoallergens. Ann Allergy Asthma Immunol 2022; 129:231-240.e2. [PMID: 35405356 PMCID: PMC9808607 DOI: 10.1016/j.anai.2022.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Despite the high prevalence of allergic asthma, currently, avoidance of the responsible allergens, which is nearly impossible for allergens such as house dust mite (HDM), remains among the most effective treatment. Consequently, determination of the immunogenic epitopes of allergens will aid in developing a better understanding of the condition for diagnostic and therapeutic purposes. Current methods of epitope identification, however, only evaluate immunoglobulin E-epitope binding interactions, which is not directly related to epitope immunogenicity. OBJECTIVE To determine and rank the immunogenicity of the epitopes of major HDM allergen, Der p 2. METHODS We performed degranulation assays with RBL-SX38 cells primed using patient plasma and challenged with nanoallergens which multivalently displayed epitopes to study the relative immunogenicity of various epitopes of Der p 2. Nanoallergens were used to evaluate epitopes individually or in combination. RESULTS When evaluated using 3 patient samples, 3 epitopes in 2 distal regions of Der p 2 were identified as highly immunogenic when presented in combination, whereas no individual epitope triggered relevant degranulation. One of the epitopes (69-DPNACHYMKCPLVKGQQY-86) was identified to be cooperatively immunogenic when combined with other epitopes. CONCLUSION Our study highlights the importance of conformational epitopes in HDM-related allergies. This study also provides further evidence of the versatility of nanoallergens and their value for functional characterization of allergy epitopes, by ranking the Der p 2 epitopes according to immunogenicity. We believe that nanoallergens, by aiding in identification and understanding of immunogenic epitopes, will provide a better understanding of the manifestation of the allergic condition and potentially aid in developing new treatments.
Collapse
|
3
|
Li WY, Cai ZL, Zhang BP, Chen JJ, Ji K. Identification of an immunodominant IgE epitope of Der p 39, a novel allergen of Dermatophagoides pteronyssinus. World Allergy Organ J 2022; 15:100651. [PMID: 35600837 PMCID: PMC9096144 DOI: 10.1016/j.waojou.2022.100651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/11/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
|
4
|
Dona DW, Suphioglu C. Egg Allergy: Diagnosis and Immunotherapy. Int J Mol Sci 2020; 21:E5010. [PMID: 32708567 PMCID: PMC7404024 DOI: 10.3390/ijms21145010] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/03/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Hypersensitivity or an allergy to chicken egg proteins is a predominant symptomatic condition affecting 1 in 20 children in Australia; however, an effective form of therapy has not yet been found. This occurs as the immune system of the allergic individual overreacts when in contact with egg allergens (egg proteins), triggering a complex immune response. The subsequent instantaneous inflammatory immune response is characterized by the excessive production of immunoglobulin E (IgE) antibody against the allergen, T-cell mediators and inflammation. Current allergen-specific approaches to egg allergy diagnosis and treatment lack consistency and therefore pose safety concerns among anaphylactic patients. Immunotherapy has thus far been found to be the most efficient way to treat and relieve symptoms, this includes oral immunotherapy (OIT) and sublingual immunotherapy (SLIT). A major limitation in immunotherapy, however, is the difficulty in preparing effective and safe extracts from natural allergen sources. Advances in molecular techniques allow for the production of safe and standardized recombinant and hypoallergenic egg variants by targeting the IgE-binding epitopes responsible for clinical allergic symptoms. Site-directed mutagenesis can be performed to create such safe hypoallergens for their potential use in future methods of immunotherapy, providing a feasible standardized therapeutic approach to target egg allergies safely.
Collapse
Affiliation(s)
| | - Cenk Suphioglu
- NeuroAllergy Research Laboratory (NARL), School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 75 Pigdons Road, Geelong 3216 VIC, Australia;
| |
Collapse
|
5
|
Cai ZL, Zhang Z, Luo WL, Hou YB, He YS, Chen JJ, Ji K. Identification of immunodominant IgE epitopes of the major house dust mite allergen Der f 24. Int J Mol Med 2019; 44:1888-1898. [PMID: 31545417 PMCID: PMC6777665 DOI: 10.3892/ijmm.2019.4345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/16/2019] [Indexed: 11/17/2022] Open
Abstract
Previously, a ubiquinol-cytochrome c reductase binding protein (UQCRB) homolog was identified in the house dust mite (HDM) species Dermatophagoides farinae (Der f) as a major allergen. In the present study, the immunodominant immunoglobulin E (IgE) epitope of the protein Der f 24 was investigated. Analysis of the homologous amino acid (aa) sequences in Der f and human UQCRB was performed. Four different recombinant Der f 24 and hybrid proteins formed by integrating Der f and human UQCRB sequences were expressed in Escherichia coli, purified using Ni-NTA resins, and IgE-binding activity was determined using IgE-western blotting and enzyme-linked immunosorbent assay (ELISA) experiments. IgE epitopes were further identified by IgE-dot blotting and IgE-ELISA with synthetic polypeptides and HDM-allergic sera. Three-dimensional (3D) structural modeling was used to analyze the position of the immuno-dominant IgE epitope. The amino acid sequence homology between Der f 24 and the human UQCRB protein was determined to be 39.34%. IgE-ELISA and western blot analysis showed that all of the Der f-human UQCRB hybrid proteins generated, except for the one lacking 59 residues of the N-terminal region of Der f 24, were bound by allergic serum IgE. A synthetic polypeptide consisting of 32 residues of the N-terminal reacted with IgEs from HDM-allergic sera and could be used to generate high titer specific IgG or specific IgE antibodies in immunized mice. The 32-aa N-terminal region of Der f 24 was localized to a structural protrusion, which may facilitate specific IgE-binding. These results indicate that the immunodominant IgE epitope of Der f 24 is located mainly in a 32-residue region of the N-terminus. These findings may inform the mechanisms of HDM allergy sensitization and allergy immunotherapy development.
Collapse
Affiliation(s)
- Ze-Lang Cai
- Department of Biochemistry and Molecular Biology, Health Science Center of Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Zhen Zhang
- Department of Biochemistry and Molecular Biology, Health Science Center of Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Wen-Li Luo
- Department of Biochemistry and Molecular Biology, Health Science Center of Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Yi-Bo Hou
- Department of Biochemistry and Molecular Biology, Health Science Center of Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Yong-Shen He
- Department of Biochemistry and Molecular Biology, Health Science Center of Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Jia-Jie Chen
- Department of Biochemistry and Molecular Biology, Health Science Center of Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Kunmei Ji
- Department of Biochemistry and Molecular Biology, Health Science Center of Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| |
Collapse
|
6
|
Wang C, Wang L, Chen BC, Yu H, Li L, Zhang KY, Yu B, Wei Z, Chen XF. CRM197-Coupled Der p 2 Peptides Suppress Allergic Airway Inflammation in a Der p 2-Induced Asthma Mouse Model. Int Arch Allergy Immunol 2019; 180:173-181. [PMID: 31537004 DOI: 10.1159/000502607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/07/2019] [Indexed: 11/19/2022] Open
Abstract
Allergic diseases affect more than 25% of the global population. Der p 2 is the major allergen of the house dust mite (HDM) Dermatophagoides pteronyssinus. Allergen-specific immunotherapy is the only treatment to change the course of allergic diseases. In this study, two synthesized Der p 2 peptides coupled to cross-reacting material 197 (CRM197) showed reduced IgE reactivity and allergenic activity. CRM197-coupled Der p 2 peptides induced rDer p 2-specific IgG1 antibodies in mice, which could inhibit HDM-allergic patients' IgE binding to rDer p 2. The immunity effects of CRM197-coupled Der p 2 peptides were studied in an rDer p 2-induced asthma mouse model. CRM197-coupled Der p 2 peptides can suppress asthmatic airway inflammation in this model. Analysis of IL-4, IL-5, and IFN-γ levels in bronchoalveolar lavage fluid revealed that the suppression was associated with a shift from a Th2 to a Th1 response. Thus, CRM197-bound Der p 2 peptides exhibited less allergenic activity than the rDer p 2 allergen, which preserved immunogenicity and may be candidates for mite allergy vaccines.
Collapse
Affiliation(s)
- Cong Wang
- Emergency Department, Beijing Jishuitan Hospital, Beijing, China
| | - Luo Wang
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Ban-Cheng Chen
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Hao Yu
- Department of Medicine Laboratory, Peking University Shenzhen Hospital, Shenzhen, China
| | - Lu Li
- Department of Medicine Laboratory, Peking University Shenzhen Hospital, Shenzhen, China
| | - Kao-Yuan Zhang
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Bo Yu
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Zhun Wei
- Institute of Innovative Drugs and Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Xiao-Fan Chen
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China,
| |
Collapse
|
7
|
He Y, Dou C, Su Y, Chen J, Zhang Z, Zhao Z, Chen J, Ji K. Identification of Der f 23 as a new major allergen of Dermatophagoides farinae. Mol Med Rep 2019; 20:1270-1278. [PMID: 31173194 PMCID: PMC6625430 DOI: 10.3892/mmr.2019.10305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/24/2019] [Indexed: 11/10/2022] Open
Abstract
House dust mites (HDM) are common allergen sources worldwide. At present, 32 of the 37 internationally recognized HDM allergen groups have been identified in Dermatophagoides farinae. The present study study describes the identification of the first known D. farinae Group 23 allergen (Der f 23). Recombinant Der f 23 protein (rDer f 23) was cloned, expressed and purified. The open reading frame of rDer f 23 was 525 base pairs and encoded a 174-amino acid protein (GenBank accession no., KU166910.1). ELISAs indicated that 72/129 HDM allergic serum samples (55.8%) had specific immunoglobulin E (sIgE) binding activity to rDer f 23. Additionally, 3/10 patients with HDM allergies (30%) exhibited positive skin prick test reactions to rDer f 23. IgE western blot analysis data suggested that only 4/11 HDM allergic sera had a positive sIgE binding result. Sequence homology analysis revealed an extra P2 region (Ser56-Thr117) in Der f 23 that was not present in the D. pteronyssinus homolog, which may affect sIgE binding. Der f 23ΔP2 demonstrated binding with HDM allergic sera, whereas the P2 peptide alone did not. The sIgE binding ability of Der f 23 ΔP2 (Der f 23 with a truncated P2 region) was more marked compared with that of Der f 23 in an IgE ELISA. These data indicate that P2 region in Der f 23 attenuates IgE binding ability. In conclusion, the results of the present study indicate that Der f 23 is a major HDM allergen with predominantly conformational sIgE binding epitopes. The allergenic identification of Der f 23 and its inclusion in World Health Organization/International Union of Immunological Societies database contributes to the theoretical basis underlying the diagnosis and treatment of HDM allergic diseases.
Collapse
Affiliation(s)
- Yongshen He
- Department of Biochemistry and Molecular Biology, Health Science Center of Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Chuanran Dou
- Shenzhen Vanke Meisha Academy, Shenzhen, Guangdong 518000, P.R. China
| | - Yiming Su
- The Affiliated International School of Shenzhen University, Shenzhen, Guangdong 518054, P.R. China
| | - Jialin Chen
- Department of Biochemistry and Molecular Biology, Health Science Center of Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Zhen Zhang
- Department of Biochemistry and Molecular Biology, Health Science Center of Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Zhenfu Zhao
- Department of Biochemistry and Molecular Biology, Health Science Center of Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Jiajie Chen
- Department of Biochemistry and Molecular Biology, Health Science Center of Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Kunmei Ji
- Department of Biochemistry and Molecular Biology, Health Science Center of Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| |
Collapse
|
8
|
Peng J, Yin H, Zhou Y, Jia H, Cui Y. Mapping Mimotopes for House Dust Mite Allergen Der f 7 Using a Specific Monoclonal Antibody. Protein Pept Lett 2019; 26:184-191. [PMID: 30526452 DOI: 10.2174/0929866526666181208165138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 11/13/2018] [Accepted: 11/30/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND The dust mite Dermatophagoides farinae is a common worldwide cause of indoor allergies induced by its proteins, including the mid-tier allergen Der f 7. OBJECTIVE To identify conformational epitopes in Der f 7 using mimotope mapping and computational modelling. METHODS Here, we used standard hybridoma technology to generate 3 new monoclonal antibodies against Der f 7 and performed mimotope mapping by probing a random peptide phage display library. Computational tools, including Minox and the DiscoTope-2.0 Server were used to assess the structure and potential position of antigenic residues within Der f 7. RESULTS Thirteen mimotopes sharing the common sequence --XX[LST]P[-E][LI]MLPLR[-S]- were identified. Further, computationally-predicted conformational epitopes were found at residues 1-7, 10, 27, 76-81, 92, and 130-133 of Der f 7, and the key amino acids for these epitopes were deduced to be 2P, 3I, 10E, 27E, 78E, 79E, 81I, 130S, and 132E based on the common mimotope sequence. CONCLUSION We identified Der f 7 peptide mimotopes that may model binding sites for blocking antibodies. These may guide the development of immunotherapy for individuals with hypersensitivity to Der f 7.
Collapse
Affiliation(s)
- Jianglong Peng
- School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou 571101, China
| | - Hao Yin
- Department of Clinical Laboratory, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi 214023, China
| | - Ying Zhou
- Department of Pediatrics Laboratory, Wuxi Children's Hospital, Wuxi 214023, China
| | - Haoyuan Jia
- Department of Clinical Laboratory, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi 214023, China
| | - Yubao Cui
- Department of Clinical Laboratory, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi 214023, China
| |
Collapse
|
9
|
Li X, Yuan S, Huang M, Gao J, Wu Z, Tong P, Yang A, Chen H. Identification of IgE and IgG epitopes on native Bos d 4 allergen specific to allergic children. Food Funct 2018; 7:2996-3005. [PMID: 27273451 DOI: 10.1039/c6fo00416d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alpha-lactalbumin (ALA) is one of the major allergens in cow's milk. However, research on its conformational epitopes has been relatively limited. In our study, specific antibodies against cow's milk ALA were purified from eight children by two-step affinity chromatography. Subsequently, mimotopes against IgG and IgE were biopanned from Ph.D.-12 and Ph.D.-C7C, respectively. Based on the mimotopes, linear epitopes were defined with the UniProt alignment tool. Conformational epitopes were computed using the Pepitope Server. Six IgE and seven IgG linear epitopes were identified. Meanwhile, five IgE and three IgG conformational epitopes were revealed with PyMOL. The results showed that common residues were identified in both IgE and IgG epitopes and some residues of the conformational epitopes were composed of linear epitopes on bovine α-lactalbumin. The results indicated that the data could be used for developing hypoallergenic dairy products on the basis of epitopes and providing a diagnostic tool for the assessment of patients who are allergic to cow's milk.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P.R.China and School of Food Science & Technology, Nanchang University, Nanchang 330047, P.R.China
| | - Shuilin Yuan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P.R.China and School of Food Science & Technology, Nanchang University, Nanchang 330047, P.R.China
| | - Meijia Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P.R.China and School of Food Science & Technology, Nanchang University, Nanchang 330047, P.R.China
| | - Jinyan Gao
- School of Food Science & Technology, Nanchang University, Nanchang 330047, P.R.China
| | - Zhihua Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P.R.China and Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, P.R.China.
| | - Ping Tong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P.R.China and School of Food Science & Technology, Nanchang University, Nanchang 330047, P.R.China
| | - Anshu Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P.R.China and Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, P.R.China.
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P.R.China and Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, P.R.China.
| |
Collapse
|
10
|
Chen X, Dreskin SC. Application of phage peptide display technology for the study of food allergen epitopes. Mol Nutr Food Res 2017; 61. [PMID: 27995755 DOI: 10.1002/mnfr.201600568] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/09/2016] [Accepted: 12/05/2016] [Indexed: 12/16/2022]
Abstract
Phage peptide display technology has been used to identify IgE-binding mimotopes (mimics of natural epitopes) that mimic conformational epitopes. This approach is effective in the characterization of those epitopes that are important for eliciting IgE-mediated allergic responses by food allergens and those that are responsible for cross-reactivity among allergenic food proteins. Application of this technology will increase our understanding of the mechanisms whereby food allergens elicit allergic reactions, will facilitate the discovery of diagnostic reagents and may lead to mimotope-based immunotherapy.
Collapse
Affiliation(s)
- Xueni Chen
- Division of Allergy and Clinical Immunology, Departments of Medicine and Immunology, University of Colorado Denver, Aurora, CO, USA
| | - Stephen C Dreskin
- Division of Allergy and Clinical Immunology, Departments of Medicine and Immunology, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
11
|
Glesner J, Vailes LD, Schlachter C, Mank N, Minor W, Osinski T, Chruszcz M, Chapman MD, Pomés A. Antigenic Determinants of Der p 1: Specificity and Cross-Reactivity Associated with IgE Antibody Recognition. THE JOURNAL OF IMMUNOLOGY 2016; 198:1334-1344. [PMID: 28039303 DOI: 10.4049/jimmunol.1600072] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 11/23/2016] [Indexed: 11/19/2022]
Abstract
Der p 1 and Der f 1 are major allergens from Dermatophagoides pteronyssinus and D. farinae, respectively. An analysis of antigenic determinants on both allergens was performed by site-directed mutagenesis. The analysis was based on the x-ray crystal structures of the allergens in complex with Fab fragments of three murine mAbs that interfere with IgE Ab binding: the two Der p 1-specific mAbs 5H8 and 10B9, and the cross-reactive mAb 4C1. On one hand, selected residues in the epitopes for mAb 5H8 and mAb 4C1 were substituted with amino acids that resulted in impaired Ab binding to Der p 1. On the other hand, an epitope for the Der p 1-specific mAb 10B9, which partially overlaps with mAb 4C1, was created in Der f 1. The mutation of 1-3 aa residues in Der f 1 was sufficient to bind mAb 10B9. These residues form hydrogen bonds with CDRs of the Ab other than H CDR3. This observation unveils an exception to the dominant role of H CDR3 commonly observed in Ag recognition. Overall, this study resulted in the identification of important residues for mAb and IgE Ab recognition in group 1 mite allergens. This information can be used to engineer allergen mutants with reduced IgE Ab binding for immunotherapy.
Collapse
Affiliation(s)
- Jill Glesner
- Indoor Biotechnologies Inc., Charlottesville, VA 22903
| | - Lisa D Vailes
- Indoor Biotechnologies Inc., Charlottesville, VA 22903
| | | | - Nicholas Mank
- University of South Carolina, Columbia, SC 29208; and
| | - Wladek Minor
- University of Virginia, Charlottesville, VA 22908
| | | | | | | | - Anna Pomés
- Indoor Biotechnologies Inc., Charlottesville, VA 22903;
| |
Collapse
|
12
|
Luzar J, Štrukelj B, Lunder M. Phage display peptide libraries in molecular allergology: from epitope mapping to mimotope-based immunotherapy. Allergy 2016; 71:1526-1532. [PMID: 27341497 DOI: 10.1111/all.12965] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2016] [Indexed: 01/07/2023]
Abstract
Identification of allergen epitopes is a key component in proper understanding of the pathogenesis of type I allergies, for understanding cross-reactivity and for the development of mimotope immunotherapeutics. Phage particles have garnered recognition in the field of molecular allergology due to their value not only in competitive immunoscreening of peptide libraries but also as immunogenic carriers of allergen mimotopes. They integrate epitope discovery technology and immunization functions into a single platform. This article provides an overview of allergen mimotopes identified through the phage display technique. We discuss the contribution of phage display peptide libraries in determining dominant B-cell epitopes of allergens, in developing mimotope immunotherapy, in understanding cross-reactivity, and in determining IgE epitope profiles of individual patients to improve diagnostics and individualize immunotherapy. We also discuss the advantages and pitfalls of the methodology used to identify and validate the mimotopes.
Collapse
Affiliation(s)
- J. Luzar
- Chair of Pharmaceutical Biology; Faculty of Pharmacy; University of Ljubljana; Ljubljana Slovenia
| | - B. Štrukelj
- Chair of Pharmaceutical Biology; Faculty of Pharmacy; University of Ljubljana; Ljubljana Slovenia
| | - M. Lunder
- Chair of Pharmaceutical Biology; Faculty of Pharmacy; University of Ljubljana; Ljubljana Slovenia
| |
Collapse
|
13
|
Radauer-Preiml I, Andosch A, Hawranek T, Luetz-Meindl U, Wiederstein M, Horejs-Hoeck J, Himly M, Boyles M, Duschl A. Nanoparticle-allergen interactions mediate human allergic responses: protein corona characterization and cellular responses. Part Fibre Toxicol 2016; 13:3. [PMID: 26772182 PMCID: PMC4715273 DOI: 10.1186/s12989-016-0113-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 01/04/2016] [Indexed: 01/10/2023] Open
Abstract
Background Engineered nanomaterials (ENMs) interact with different biomolecules as soon as they are in contact, resulting in the formation of a biomolecule ‘corona’. Hence, the ‘corona’ defines the biological identity of the ENMs and could affect the response of the immune system to ENM exposure. With up to 40 % of the world population suffering from type I allergy, a possible modulation of allergen effects by binding to ENMs is highly relevant with respect to work place and consumer safety. Therefore, the aim of this present study was to gain an insight into the interactions of gold nanoparticles with different seasonally and perennially occurring outdoor and indoor allergens. Methods Gold nanoparticles (AuNPs) were conjugated with the major allergens of birch pollen (Bet v 1), timothy grass pollen (Phl p 5) and house dust mite (Der p 1). The AuNP-allergen conjugates were characterized by means of TEM negative staining, dynamic light scattering (DLS), z-potential measurements and hyperspectral imaging. Furthermore, 3D models were constructed, based on the characterization data, to visualize the interaction between the allergens and the AuNPs surface. Differences in the activation of human basophil cells derived from birch/grass pollen- and house dust mite-allergic patients in response to free allergen and AuNP-allergen conjugates were determined using the basophil activation assay (BAT). Potential allergen corona replacement during BAT was controlled for using Western blotting. The protease activity of AuNP-Der p 1 conjugates compared to free Der p 1 was assessed, by an enzymatic activity assay and a cellular assay pertaining to lung type II alveolar epithelial cell tight junction integrity. Results The formation of a stable corona was found for all three allergens used. Our data suggest, that depending on the allergen, different effects are observed after binding to ENMs, including enhanced allergic responses against Der p 1 and also, for some patients, against Bet v 1. Moreover elevated protease activity of AuNP-Der p 1 conjugates compared to free Der p 1 was found. Conclusion In summary, this study presents that conjugation of allergens to ENMs can modulate the human allergic response, and that protease activity can be increased. Cross-linking of IgE receptors and degranulation of human basophils due to epitope alignment of nanoparticle-coated allergens. ![]()
Electronic supplementary material The online version of this article (doi:10.1186/s12989-016-0113-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Isabella Radauer-Preiml
- Department of Molecular Biology, Division of Allergy and Immunology, University of Salzburg, Hellbrunnerstr, 34, 5020, Salzburg, Austria.
| | - Ancuela Andosch
- Department of Cell Biology, Division of Plant Physiology, University of Salzburg, Salzburg, Austria.
| | - Thomas Hawranek
- Department of Dermatology, Paracelsus Medical University, Salzburg, Austria.
| | - Ursula Luetz-Meindl
- Department of Cell Biology, Division of Plant Physiology, University of Salzburg, Salzburg, Austria.
| | - Markus Wiederstein
- Department of Molecular Biology, Division of Structural Biology and Bioinformatics, University of Salzburg, Salzburg, Austria.
| | - Jutta Horejs-Hoeck
- Department of Molecular Biology, Division of Allergy and Immunology, University of Salzburg, Hellbrunnerstr, 34, 5020, Salzburg, Austria.
| | - Martin Himly
- Department of Molecular Biology, Division of Allergy and Immunology, University of Salzburg, Hellbrunnerstr, 34, 5020, Salzburg, Austria.
| | | | - Albert Duschl
- Department of Molecular Biology, Division of Allergy and Immunology, University of Salzburg, Hellbrunnerstr, 34, 5020, Salzburg, Austria.
| |
Collapse
|
14
|
Leung NY, Wai CY, Ho MH, Liu R, Lam KS, Wang JJ, Shu SA, Chu KH, Leung PS. Screening and identification of mimotopes of the major shrimp allergen tropomyosin using one-bead-one-compound peptide libraries. Cell Mol Immunol 2015; 14:308-318. [PMID: 26364917 DOI: 10.1038/cmi.2015.83] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/06/2015] [Accepted: 08/06/2015] [Indexed: 12/18/2022] Open
Abstract
The one-bead-one-compound (OBOC) combinatorial peptide library is a powerful tool to identify ligand and receptor interactions. Here, we applied the OBOC library technology to identify mimotopes specific to the immunoglobulin E (IgE) epitopes of the major shellfish allergen tropomyosin. OBOC peptide libraries with 8-12 amino acid residues were screened with serum samples from patients with shellfish allergy for IgE mimotopes of tropomyosin. Twenty-five mimotopes were identified from the screening and their binding reactivity to tropomyosin-specific IgE was confirmed by peptide ELISA. These mimotopes could be divided into seven clusters based on sequence homology, and epitope mapping by EpiSearch of the clustered mimotopes was performed to characterize and confirm the validity of mimotopes. Five out of six of the predicted epitopes were found to overlap with previously identified epitopes of tropomyosin. To further confirm the mimicry potential of mimotopes, BALB/c mice were immunized with mimotopes conjugated to keyhole limpet hemocyanin and assayed for their capacity to induce tropomyosin-specific antibodies. BALB/c mice that received mimotope immunization were found to have an elevated level of tropomyosin-specific immunoglobulin G, but not mice that received an irrelevant mimotope. This study pioneers the successful application of the OBOC libraries using whole sera to screen and identify multiple shrimp allergen mimotopes and validates their mimicry potential using in vitro, in vivo, and in silico methods.Cellular & Molecular Immunology advance online publication, 14 september 2015; doi:10.1038/cmi.2015.83.
Collapse
Affiliation(s)
- Nicki Yh Leung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Christine Yy Wai
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Marco Hk Ho
- Department of Pediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Jin Jun Wang
- Division of Rheumatology/Allergy, School of Medicine, University of California, Davis, CA 95616, USA
| | - Shang An Shu
- Division of Rheumatology/Allergy, School of Medicine, University of California, Davis, CA 95616, USA
| | - Ka Hou Chu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Patrick Sc Leung
- Division of Rheumatology/Allergy, School of Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
15
|
Cui Y. Immunoglobulin E-binding epitopes of mite allergens: from characterization to immunotherapy. Clin Rev Allergy Immunol 2015; 47:344-53. [PMID: 24218295 DOI: 10.1007/s12016-013-8396-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
House dust mites and storage mites produce a number of allergens that can induce hypersensitivity reactions in humans and result in allergic diseases like asthma, rhinitis, and dermatitis. Recent advances in identifying and characterizing these allergens--and, in particular, their immunoglobulin E (IgE)-binding epitopes--have produced a wealth of knowledge. Here, methods for identifying IgE-binding epitopes, from immunoassays to in silico approaches, are summarized and placed in context with the identification of epitopes of mite allergens, particularly from the Dermatophagoides spp. major allergen groups 1 and 2. Finally, the transfer of this information to the clinical development and application of new diagnostic and immunotherapeutic approaches is discussed. While progress in recent years has built on the specific immunotherapies established decades ago, much work remains to be done to mitigate mite allergic disease. Future studies should seek to identify epitopes for mite species beyond Dermatophagoides and for minor allergens. Efforts in translational medicine should use the current epitope data to develop modified allergens for immunotherapy.
Collapse
Affiliation(s)
- Yubao Cui
- Department of Laboratory Medicine, Yancheng Health Vocational and Technical College, Jiefangnan Road 263, Yancheng, 224006, Jiangsu, People's Republic of China,
| |
Collapse
|
16
|
Szalai K, Kopp T, Lukschal A, Stremnitzer C, Wallmann J, Starkl P, Vander Elst L, Saint-Remy JM, Pali-Schöll I, Jensen-Jarolim E. Establishing an allergic eczema model employing recombinant house dust mite allergens Der p 1 and Der p 2 in BALB/c mice. Exp Dermatol 2013; 21:842-6. [PMID: 23163649 PMCID: PMC3532600 DOI: 10.1111/exd.12015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The major house dust mite allergens Der p 1 and Der p 2 are prevalent inducers of eczema. Der p 1 is a cysteine protease disrupting epithelial barriers, whereas Der p 2 functionally mimics the LPS-binding compound MD-2 within the TLR4 complex. In this work, we tested the percutaneous sensitizing capacity of recombinant (r) Der p 1 and Der p 2 in BALB/c mice. Mice were sensitized by percutaneous application of low (10 μg/application) and high dose (100 μg) rDer p 1 or rDer p 2, or with rDer p 1 followed by rDer p 2. Allergen-specific and total IgE antibodies were determined by ELISA. Eczema of BALB/c was classified by the itching score and corresponded to erosions. Infiltrating immune cells were identified by haematoxylin/eosin and Giemsa staining for eosinophils or mast cells, CD3 staining for T lymphocytes. Percutaneous treatments with rDer p 1, but not rDer p 2-induced specific IgG1. However, cotreatment with rDer p 1 led to increase in anti-Der p 2 IgG titres. Both allergens elicited skin erosions because of scratching, thickening of the epidermis, and eosinophil and T-cell infiltration. Our data indicate that recombinant mite allergens in the absence of adjuvant are sufficient for inducing eczema in BALB/c mice. As the enzymatic activity of an allergen might be an important cofactor for specific sensitization via the skin, Der p 1 may act as adjuvant for other allergens too. The presented mouse model is suitable for investigating the mechanisms of allergic eczema.
Collapse
Affiliation(s)
- Krisztina Szalai
- Comparative Medicine, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, University Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Yuan HC, Wu KG, Chen CJ, Su SN, Shen HD, Chen YJ, Peng HJ. Mapping of IgE and IgG4 antibody-binding epitopes in Cyn d 1, the major allergen of Bermuda grass pollen. Int Arch Allergy Immunol 2011; 157:125-35. [PMID: 21985791 DOI: 10.1159/000327544] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 03/04/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Bermuda grass pollen (BGP) is an important seasonal aeroallergen worldwide which induces allergic disorders such as allergic rhinitis, conjunctivitis and asthma. Cyn d 1 is the major allergen of BGP. This study is aimed to map human IgE and IgG(4) antibody-binding sequential epitopes on Cyn d 1 by dot immunoblotting. METHODS Synthetic peptides (10-mers; 5 overlapping residues) spanning the full length of Cyn d 1 were used for dot immunoblotting to map human IgE and IgG(1-4) antibody-binding regions with sera from BGP-allergic patients. Synthetic peptides with more overlapping residues were used for further mapping. Essential amino acids in each epitope were examined by single amino acid substitution with alanine. Peptides with sequence polymorphism of epitopes of Cyn d 1 were also synthesized to extrapolate their differences in binding capability. RESULTS Four major IgE-binding epitopes (peptides 15(-1), 21, 33(-2) and 35(+1), corresponding to amino acids 70-79, 101-110, 159-167 and 172-181) and 5 major IgG(4)-binding epitopes (peptides 15(-1), 30(-2), 33(-2), 35(+1) and 39, corresponding to amino acids 70-79, 144-153, 159-167, 172-181 and 192-200) were identified. They are all located on the surface of the simulated Cyn d 1 molecule, and three of them are major epitopes for both IgE and IgG(4). Their critical amino acids were all characterized. Major epitopes for human IgG(1) to IgG(4) are almost identical. CONCLUSIONS This is the first study to map the sequential epitopes for human IgE and IgG(4) subclasses in Cyn d 1. It will be helpful for future development in immunotherapy and diagnosis.
Collapse
Affiliation(s)
- Han-Chih Yuan
- Children's Medical Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
18
|
Lukschal A, Fuhrmann J, Sobanov J, Neumann D, Wallmann J, Knittelfelder R, Hemmer W, Scheiner O, Vogel M, Stadler BM, Jensen-Jarolim E, Szalai K. Anti-idiotypic Fab Fragments Image a Conserved N-terminal Epitope Patch of Grass Pollen Allergen Phl p 1. ACTA ACUST UNITED AC 2011; 4:16-23. [PMID: 22318973 DOI: 10.2174/1874838401104010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND AIMS: Naturally occurring anti-idiotypic antibodies structurally mimic the original antibody epitope. Anti-idiotypes, therefore, are interesting tools for the portrayal of conformational B-cell epitopes of allergens. In this study we used this strategy particularly for major timothy grass pollen (Phleum pratense) allergen Phl p 1. METHODS AND RESULTS: We used a combinatorial phage display library constructed from the peripheral IgG repertoire of a grass pollen allergic patient which was supposed to contain anti-idiotypic Fab specificities. Using purified anti-Phl p 1 IgG for biopanning, several Fab displaying phage clones could be isolated. 100 amplified colonies were screened for their binding capacity to anti-Phl p 1-specific antibodies, finally resulting in four distinct Fab clones according to sequence analysis. Interestingly, heavy chains of all clones derived from the same germ line sequence and showed high homology in their CDRs. Projecting their sequence information on the surface of the natural allergen Phl p 1 (PDB ID: 1N10) indicated matches on the N-terminal domain of the homo-dimeric allergen, including the bridging region between the two monomers. The resulting epitope patches were formed by spatially distant sections of the primary allergen sequence. CONCLUSION: In this study we report that anti-idiotypic specificities towards anti-Phl p 1 IgG, selected from a Fab library of a grass pollen allergic patient, mimic a conformational epitope patch being distinct from a previously reported IgE epitope area.
Collapse
Affiliation(s)
- Anna Lukschal
- Department of Pathophysiology and Allergy Research; Center of Pathophysiology, Infectiology & Immunology; Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Schein CH, Ivanciuc O, Midoro-Horiuti T, Goldblum RM, Braun W. An Allergen Portrait Gallery: Representative Structures and an Overview of IgE Binding Surfaces. Bioinform Biol Insights 2010; 4:113-25. [PMID: 20981266 PMCID: PMC2964044 DOI: 10.4137/bbi.s5737] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recent progress in the biochemical classification and structural determination of allergens and allergen-antibody complexes has enhanced our understanding of the molecular determinants of allergenicity. Databases of allergens and their epitopes have facilitated the clustering of allergens according to their sequences and, more recently, their structures. Groups of similar sequences are identified for allergenic proteins from diverse sources, and all allergens are classified into a limited number of protein structural families. A gallery of experimental structures selected from the protein classes with the largest number of allergens demonstrate the structural diversity of the allergen universe. Further comparison of these structures and identification of areas that are different from innocuous proteins within the same protein family can be used to identify features specific to known allergens. Experimental and computational results related to the determination of IgE binding surfaces and methods to define allergen-specific motifs are highlighted.
Collapse
Affiliation(s)
- Catherine H. Schein
- Sealy Center for Structural Biology and Molecular Biophysics
- Department of Biochemistry and Molecular Biology
- Sealy Center for Vaccine Development
- Department of Microbiology and Immunology
| | - Ovidiu Ivanciuc
- Sealy Center for Structural Biology and Molecular Biophysics
- Department of Biochemistry and Molecular Biology
| | - Terumi Midoro-Horiuti
- Department of Biochemistry and Molecular Biology
- Sealy Center for Vaccine Development
- Child Health Research Center, Department of Pediatrics, University of Texas Medical Branch, 310 University Boulevard, Galveston, Texas 77555-0364, USA
| | - Randall M. Goldblum
- Sealy Center for Structural Biology and Molecular Biophysics
- Department of Biochemistry and Molecular Biology
- Sealy Center for Vaccine Development
- Child Health Research Center, Department of Pediatrics, University of Texas Medical Branch, 310 University Boulevard, Galveston, Texas 77555-0364, USA
| | - Werner Braun
- Sealy Center for Structural Biology and Molecular Biophysics
- Department of Biochemistry and Molecular Biology
- Sealy Center for Vaccine Development
| |
Collapse
|
20
|
Recombinant peptides as new immunogens for the control of the bovine tick, Rhipicephalus (Boophilus) microplus. Vet Parasitol 2010; 172:122-31. [DOI: 10.1016/j.vetpar.2010.04.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 03/26/2010] [Accepted: 04/09/2010] [Indexed: 12/31/2022]
|
21
|
Shen HD, Tam MF, Huang CH, Chou H, Tai HY, Chen YS, Sheu SY, Thomas WR. Homology modeling and monoclonal antibody binding of the Der f 7 dust mite allergen. Immunol Cell Biol 2010; 89:225-30. [DOI: 10.1038/icb.2010.77] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Horng-Der Shen
- Department of Medical Research and Education, Taipei Veterans General Hospital; Taipei Taiwan, ROC
| | - Ming F Tam
- Institute of Molecular Biology, Academia Sinica; Taipei Taiwan, ROC
| | - Chao-Hsien Huang
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University; Taipei Taiwan, ROC
| | - Hong Chou
- Department of Medical Research and Education, Taipei Veterans General Hospital; Taipei Taiwan, ROC
| | - Hsiao-Yun Tai
- Department of Medical Research and Education, Taipei Veterans General Hospital; Taipei Taiwan, ROC
| | - Yu-Sen Chen
- Department of Medical Research and Education, Taipei Veterans General Hospital; Taipei Taiwan, ROC
| | - Sheh-Yi Sheu
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University; Taipei Taiwan, ROC
| | - Wayne R Thomas
- Centre for Child Health Research, University of Western Australia, Telethon Institute for Child Health Research; West Perth Western Australia Australia
| |
Collapse
|
22
|
Abstract
Anti-idiotypic antibodies (anti-ids) are part of natural immune responses with regulatory capacity. Their effect on an antigen-specific, so-called Ab1 antibody response, is dependent on 1) the original antigen, which they mirror, being Ab2 antibodies, and 2) their isotype. In the case of IgE-mediated allergy, natural anti-ids against allergen-specific IgE represent internal images of allergen molecules. A key biologic feature of allergens is that they can crosslink IgE, expressed by B-lymphocytes or passively bound via high affinity receptors to effector cells, which renders cellular activation. Therefore, the IgE cross linking capability of anti-ids determines whether they dampen or enhance immediate-type hypersensitivity. Correspondingly to classic antiallergen blocking IgG antibodies, anti-ids may also interact with inhibitory FcγRIIb receptors and, thereby, down-regulate T(H)2-type inflammation. Anti-ids and other B-cell epitope mimetics, like mimotopes and DARPins, represent antigen surrogates, which can be used for vaccination. Intriguingly, they may induce antibody responses without activating potentially proinflammatory, antiallergen T-lymphocytes. Taken together, collective evidence suggests that anti-ids, although representing immunologic classics, are a timeless concept in allergology.
Collapse
Affiliation(s)
- Julia Wallmann
- IPAP-Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
23
|
Gustafsson E, Rosén A, Barchan K, van Kessel KPM, Haraldsson K, Lindman S, Forsberg C, Ljung L, Bryder K, Walse B, Haas PJ, van Strijp JAG, Furebring C. Directed evolution of chemotaxis inhibitory protein of Staphylococcus aureus generates biologically functional variants with reduced interaction with human antibodies. Protein Eng Des Sel 2009; 23:91-101. [PMID: 19959567 DOI: 10.1093/protein/gzp062] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chemotaxis inhibitory protein of Staphylococcus aureus (CHIPS) is a protein that binds and blocks the C5a receptor (C5aR) and formylated peptide receptor, thereby inhibiting the immune cell recruitment associated with inflammation. If CHIPS was less reactive with existing human antibodies, it would be a promising anti-inflammatory drug candidate. Therefore, we applied directed evolution and computational/rational design to the CHIPS gene in order to generate new CHIPS variants displaying lower interaction with human IgG, yet retaining biological function. The optimization was performed in four rounds: one round of random mutagenesis to add diversity into the CHIPS gene and three rounds of DNA recombination by Fragment INduced Diversity (FIND). Every round was screened by phage selection and/or ELISA for decreased interaction with human IgG and retained C5aR binding. The mean binding of human anti-CHIPS IgG decreased with every round of evolution. For further optimization, new amino acid substitutions were introduced by rational design, based on the mutations identified during directed evolution. Finally, seven CHIPS variants with low interaction with human IgG and retained C5aR blocking capacity could be identified.
Collapse
|
24
|
Asturias JA, Ibarrola I, Arilla MC, Vidal C, Ferrer A, Gamboa PM, Viñuela JE, Sanz ML, Andreu C, Martínez A. Engineering of major house dust mite allergens Der p 1 and Der p 2 for allergen-specific immunotherapy. Clin Exp Allergy 2009; 39:1088-98. [PMID: 19400901 DOI: 10.1111/j.1365-2222.2009.03264.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Specifically designed recombinant allergens with reduced IgE reactivity are promising candidates for a more defined, effective, and safer specific immunotherapy (SIT). OBJECTIVE We sought to obtain hypoallergenic hybrid molecules which could potentially be applied to house dust mite (HDM) allergy treatment. METHODS Two hybrid molecules (QM1 and QM2) derived from the two major Dermatophagoides pteronyssinus allergens, Der p 1 and Der p 2, were engineered by PCR, produced in Escherichia coli, and purified. The overall IgE-binding capacity of the hybrids was compared with their single components by Western blot, specific IgE, skin prick test (SPT), and IgE-inhibition assays. T cell proliferation assay were performed to confirm their retention of T cell reactivity. Immune responses to the hybrid molecules were studied in BALB/c mice. RESULTS The IgE reactivity of both hybrid proteins was strongly reduced as evaluated by in vitro methods. Furthermore, in vivo SPTs performed on 106 HDM-allergic patients showed that the hybrid proteins had a significantly lower potency to induce cutaneous reactions than the individual components. Hybrid molecules induced higher T cell proliferation responses than those produced by an equimolecular mixture of Der p 1 and Der p 2. Immunization of mice with the hybrid proteins induced Der p 1- and Der p 2-specific IgG, which inhibited the binding of allergic patients' IgE to these natural allergens. CONCLUSION QM1 and QM2 hybrids exhibited less IgE-binding activity but preserved immunogenicity and fulfilled the basic requirements for hypoallergenic molecules suitable for a future SIT of HDM allergy.
Collapse
Affiliation(s)
- J A Asturias
- Bial-Arístegui, Research & Development Department, Bilbao, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
BACKGROUND Mimotopes are peptides mimicking protein, carbohydrates or lipid epitopes and can be generated by phage display technology. When selected by antibodies, they represent exclusively B-cell epitopes and are devoid of antigen/allergen-specific T-cell epitopes. Coupled to carriers or presented in a multiple antigenic peptide form mimotopes achieve immunogenicity and induce epitope-specific antibody responses upon vaccination. OBJECTIVE/METHODS In allergy IgG antibodies may block IgE binding to allergens, whereas other IgG antibody specificities enhance this and support the anaphylactic reaction. In cancer, inhibitory antibody specificities prevent growth signals derived from overexpressed oncogenes, whereas growth-promoting specificities enhance signalling and proliferation. Therefore, the mimotope concept is applicable to both fields for epitope-specific vaccination and analysis of conformational B-cell epitopes for the allergen/antigen. RESULTS/CONCLUSIONS Mimotope technology is a relatively young theme in allergology and oncology. Still, proof of concept studies testing allergen and tumour mimotope vaccines suggest that mimotopes are ready for clinical trials.
Collapse
Affiliation(s)
- Regina Knittelfelder
- Medical University of Vienna, Department of Pathophysiology; Center of Physiology, Pathophysiology and Immunology Waehringer Guertel 18-20, Vienna, Austria
| | - Angelika B Riemer
- Medical University of Vienna, Department of Dermatology, 1090 Vienna, Austria
| | - Erika Jensen-Jarolim
- Medical University of Vienna, Department of Pathophysiology; Center of Physiology, Pathophysiology and Immunology Waehringer Guertel 18-20, Vienna, Austria
| |
Collapse
|
26
|
Chruszcz M, Chapman MD, Vailes LD, Stura EA, Saint-Remy JM, Minor W, Pomés A. Crystal structures of mite allergens Der f 1 and Der p 1 reveal differences in surface-exposed residues that may influence antibody binding. J Mol Biol 2009; 386:520-30. [PMID: 19136006 PMCID: PMC2677027 DOI: 10.1016/j.jmb.2008.12.049] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 12/17/2008] [Accepted: 12/18/2008] [Indexed: 11/27/2022]
Abstract
The group 1 mite allergens Der f 1 and Der p 1 are potent allergens excreted by Dermatophagoides farinae and Dermatophagoides pteronyssinus, respectively. The human immunoglobulin E antibody responses to the group 1 allergens show more cross-reactivity than the murine immunoglobulin G antibody responses, which are largely species specific. Here, we report the crystal structure of the mature form of Der f 1, which was isolated from its natural source, and a new high-resolution structure of mature recombinant Der p 1. Unlike Der p 1, Der f 1 is monomeric both in the crystalline state and in solution. Moreover, no metal binding is observed in the structure of Der f 1 despite the fact that all amino acids involved in Ca(2+) binding in Der p 1 are completely conserved in Der f 1. Although Der p 1 and Der f 1 share an extensive sequence identity, comparison of the crystal structures of both allergens revealed structural features that could explain the differences in murine IgG and human IgE antibody responses to these allergens. There are structural differences between Der f 1 and Der p 1 that are unevenly distributed on the allergens' surfaces. This uneven spatial arrangement of conserved versus altered residues could explain both the specificity and cross-reactivity of antibodies against Der f 1 and Der p 1.
Collapse
Affiliation(s)
- Maksymilian Chruszcz
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
| | - Martin D. Chapman
- INDOOR Biotechnologies, Inc., 1216 Harris Street, Charlottesville, VA 22903, USA
| | - Lisa D. Vailes
- INDOOR Biotechnologies, Inc., 1216 Harris Street, Charlottesville, VA 22903, USA
| | - Enrico A. Stura
- Département d’Ingénierie et d’Etudes des Protéines, Commissariat à l’Energie Atomique Saclay, Gif-sur-Yvette, France
| | | | - Wladek Minor
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
| | - Anna Pomés
- INDOOR Biotechnologies, Inc., 1216 Harris Street, Charlottesville, VA 22903, USA
| |
Collapse
|
27
|
Wallmann J, Proell M, Stepanoska T, Hantusch B, Pali-Schöll I, Thalhamer T, Thalhamer J, Jensen-Jarolim E, Hartl A. A mimotope gene encoding the major IgE epitope of allergen Phl p 5 for epitope-specific immunization. Immunol Lett 2009; 122:68-75. [PMID: 19111573 PMCID: PMC2999763 DOI: 10.1016/j.imlet.2008.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 11/17/2008] [Accepted: 12/01/2008] [Indexed: 11/25/2022]
Abstract
A gene vaccine based on a mammalian expression vector containing the sequence of a peptide mimotope of Phl p 5 was constructed. To test whether mimotope gene vaccines can induce allergen-specific antibody responses via molecular mimicry, BALB/c mice were immunized using the mimotope construct with or without a tetanus toxin T-helper epitope. Moreover, intradermal injection was compared to epidermal application via gene gun immunization. Immunization with both mimotope gene constructs elicited allergen-specific antibody responses. As expected, gene gun bombardment induced a Th2-biased immune response, typically associated with IgG1 and IgE antibody production. In contrast, intradermal injection of the vaccine triggered IgG2a antibody expression without any detectable IgE levels, thus biasing the immune response towards Th1. In an RBL assay, mimotope-specific IgG antibodies were able to prevent cross-linking of allergen-specific IgE by Phl p 5. A construct coding for the complete Phl p 5 induced T-cell activation, IFN-gamma and IL-4 production. In contrast, the mimotope-DNA construct being devoid of allergen-specific T-cell epitopes had no capacity to activate allergen-specific T cells. Taken together, our data show that it is feasible to induce blocking IgG antibodies with a mimotope-DNA construct when applied intradermally. Thus the mimotope-DNA strategy has two advantages: (1) the avoidance of IgE induction and (2) the avoidance of triggering allergen-specific T-lymphocytes. We therefore suggest that mimotope gene vaccines are potential candidates for epitope-specific immunotherapy of type I allergy.
Collapse
Affiliation(s)
- J. Wallmann
- Department of Pathophysiology, Center of Physiology, Pathophysiology and Immunology, Medical University of Vienna, Austria
| | - M. Proell
- Department of Molecular Biology, Division of Allergy and Immunology, University of Salzburg, Austria
| | - T. Stepanoska
- Department of Molecular Biology, Division of Allergy and Immunology, University of Salzburg, Austria
| | - B. Hantusch
- Department of Pathology, Medical University Vienna, Austria
| | - I. Pali-Schöll
- Department of Pathophysiology, Center of Physiology, Pathophysiology and Immunology, Medical University of Vienna, Austria
| | | | - J. Thalhamer
- Department of Molecular Biology, Division of Allergy and Immunology, University of Salzburg, Austria
| | - E. Jensen-Jarolim
- Department of Pathophysiology, Center of Physiology, Pathophysiology and Immunology, Medical University of Vienna, Austria
| | - A. Hartl
- Department of Physiology and Pathophysiology, Laboratory of Translational Immunoresearch, Paracelsus Medical University Salzburg, Austria
| |
Collapse
|
28
|
Untersmayr E, Jensen-Jarolim E. The role of protein digestibility and antacids on food allergy outcomes. J Allergy Clin Immunol 2008; 121:1301-8; quiz 1309-10. [PMID: 18539189 PMCID: PMC2999748 DOI: 10.1016/j.jaci.2008.04.025] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2008] [Revised: 04/03/2008] [Accepted: 04/25/2008] [Indexed: 01/01/2023]
Abstract
Digestion assays with simulated gastric fluid have been introduced for characterization of food proteins to imitate the effect of stomach proteolysis on dietary compounds in vitro. By using these tests, dietary proteins can be categorized as digestion-resistant class 1 (true allergens triggering direct oral sensitization) or as labile class 2 allergens (nonsensitizing elicitors). Thus the results of these digestion assays mirror situations of intact gastric proteolysis. Alterations in the gastric milieu are frequently experienced during a lifetime either physiologically in the very young and the elderly or as a result of gastrointestinal pathologies. Additionally, acid-suppression medications are frequently used for treatment of dyspeptic disorders. By increasing the gastric pH, they interfere substantially with the digestive function of the stomach, leading to persistence of labile food protein during gastric transit. Indeed, both murine and human studies reveal that antiulcer medication increases the risk of food allergy induction. Gastric digestion substantially decreases the potential of food proteins to bind IgE, which increases the threshold dose of allergens required to elicit symptoms in patients with food allergy. Thus antiulcer agents impeding gastric protein digestion have a major effect on the sensitization and effector phase of food allergy.
Collapse
Affiliation(s)
- Eva Untersmayr
- Department of Pathophysiology, Center of Physiology, Pathophysiology, and Immunology, Medical University of Vienna, Vienna, Austria.
| | | |
Collapse
|
29
|
|
30
|
Hantusch B, Jensen-Jarolim E. [From the allergen-recognition by antibodies to new therapeutic concepts]. Wien Med Wochenschr 2008; 158:13-8. [PMID: 18286245 DOI: 10.1007/s10354-007-0496-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Accepted: 09/26/2007] [Indexed: 11/29/2022]
Abstract
Cross-linking of IgE antibodies through allergens is a basic event in type I allergy and leads to the immediate release of mediators like histamine, responsible for allergic symptoms like rhino-conjunctivitis or asthma. Critical for the binding of allergens to IgE are the IgE-epitopes, which represent a congregation of several amino acid residues often derived from different regions of the allergen. By means of the mimotope-technology, we isolated peptides from phage libraries, which were able to structurally mimic IgE-epitopes of the plant allergens Bet v 1 (birch) and Phl p 5a (timothy grass). Hence, these are candidates for an epitope-specific immunotherapy. In this mode of immunotherapy, it is the aim to induce IgG antibodies directed exclusively against the IgE-epitopes of allergens without induction of anaphylactogenic IgG species, and without the risk of anaphylaxis through cross-linking of IgE. Immunizing mice, we applied the mimotopes displayed on bacteriophages as well as on alternative carrier systems to enhance their antigenicity. With these systems it was possible to elicit an allergen-specific immune response, which was also accompanied by the appropriate T-cell help. Mimotopes resemble a promising concept for an epitope-tailored immunotherapy of allergic patients.
Collapse
Affiliation(s)
- Brigitte Hantusch
- Center für Physiologie und Pathophysiologie der Medizinischen Universität Wien, Währinger Gürtel 18-20, Vienna, Austria
| | | |
Collapse
|