1
|
Puel M, Rwayane K, Vieira Martins P, Chbihi M, Rieux‐Laucat F, Rosain J, Jeziorski E, Boisson B, Casanova J, Frémeaux‐Bacchi V, El Sissy C. Two New Kindreds with Complete Factor D Deficiency. Eur J Immunol 2025; 55:e202451536. [PMID: 40071669 PMCID: PMC11898537 DOI: 10.1002/eji.202451536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 03/15/2025]
Abstract
Inborn deficiencies of the alternative pathway (AP) of the complement system have been associated with life-threatening infections, mainly by encapsulated bacteria. Complete factor D (FD) deficiencies have been reported in only seven families in the literature. We report two new cases of biochemically and genetically confirmed complete FD deficiency, including the first in a Down syndrome patient. The index cases respectively suffered from severe H. influenza and N. meningitidis infections. Their FD activity was undetectable but was restored by adding recombinant human FD. FD levels were undetectable in the plasma of both patients using ELISA. Genetic analysis of the CFD gene identified a homozygous missense variant p.M40R in one patient, and compound heterozygous variants-a nonsense mutation p.Cys148* and a splice site variant c.212+2T>G-in the other. Patients with Down syndrome are more susceptible to infections, but this case highlights the importance of investigating the complement system, particularly the AP, even in those with Down syndrome or other secondary immune deficiencies. A familial study should follow if a congenital deficiency is found. The natural history of patients with inherited complete FD deficiency underscores the necessity of preventive measures against encapsulated bacteria for those receiving therapeutic MASP-3 or FD inhibitors.
Collapse
Affiliation(s)
- Mathilde Puel
- Department of ImmunologyAssistance Publique‐ Hôpitaux de Paris (AP‐HP)Georges Pompidou European HospitalParisFrance
| | - Kenza Rwayane
- Department of ImmunologyAssistance Publique‐ Hôpitaux de Paris (AP‐HP)Georges Pompidou European HospitalParisFrance
| | - Paula Vieira Martins
- Department of ImmunologyAssistance Publique‐ Hôpitaux de Paris (AP‐HP)Georges Pompidou European HospitalParisFrance
| | - Marwa Chbihi
- Pediatric Immunology‐Hematology and Rheumatology Unit, Assistance Publique ‐ Hôpitaux de Paris (APHP)Necker‐Enfants Malades HospitalParisFrance
- Laboratory of Immunogenetics of Pediatric Autoimmune DiseasesImagine Institute INSERM UMR 1163ParisFrance
| | - Frédéric Rieux‐Laucat
- Laboratory of Immunogenetics of Pediatric Autoimmune DiseasesImagine Institute INSERM UMR 1163ParisFrance
- Laboratory of Human Genetics of Infectious Diseases, Necker BranchINSERM U1163 Necker Hospital for Sick Children, EUParisFrance
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker BranchINSERM U1163 Necker Hospital for Sick Children, EUParisFrance
- Study Center for Primary ImmunodeficienciesAssistance Publique Hôpitaux de Paris (AP‐HP)Necker Hospital for Sick Children, EUParisFrance
- St.Giles Laboratory of Human Genetics of Infectious DiseasesRockefeller BranchRockefeller UniversityNew YorkUSA
- University of Paris CitéParisFrance
| | - Eric Jeziorski
- Pathogenesis and Control of Chronic InfectionsINSERM U1058Montpellier UHCUniversity of MontpellierMontpellierFrance
- Department of General PediatricsInfectiology, and Clinical ImmunologyDepartment of EmergencyPost‐Emergency DepartmentUniversity Hospital of MontpellierMontpellierFrance
| | - Bertrand Boisson
- Laboratory of Human Genetics of Infectious Diseases, Necker BranchINSERM U1163 Necker Hospital for Sick Children, EUParisFrance
| | - Jean‐Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker BranchINSERM U1163 Necker Hospital for Sick Children, EUParisFrance
- St.Giles Laboratory of Human Genetics of Infectious DiseasesRockefeller BranchRockefeller UniversityNew YorkUSA
| | - Véronique Frémeaux‐Bacchi
- Department of ImmunologyAssistance Publique‐ Hôpitaux de Paris (AP‐HP)Georges Pompidou European HospitalParisFrance
- Inflammation, Complement and Cancer TeamCordeliers Research CenterInstitut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche UMRS1138ParisFrance
- COMET « Complement Expertise and Therapeutics »Fédération Hospitalo‐UniversitaireParisFrance
| | - Carine El Sissy
- Department of ImmunologyAssistance Publique‐ Hôpitaux de Paris (AP‐HP)Georges Pompidou European HospitalParisFrance
- University of Paris CitéParisFrance
- Inflammation, Complement and Cancer TeamCordeliers Research CenterInstitut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche UMRS1138ParisFrance
- COMET « Complement Expertise and Therapeutics »Fédération Hospitalo‐UniversitaireParisFrance
| |
Collapse
|
2
|
Petrow E, Feng C, Frazer-Abel A, Marangoni RG, Lutz K, Nichols WC, Holers VM, Ritchlin C, White RJ, Korman BD. Utility of factor D and other alternative complement factors as biomarkers in systemic sclerosis-associated pulmonary arterial hypertension (SSc-PAH). Semin Arthritis Rheum 2024; 69:152554. [PMID: 39298973 PMCID: PMC11606736 DOI: 10.1016/j.semarthrit.2024.152554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Activation of the complement cascade is thought to play a role in scleroderma vasculopathy. We previously showed that complement factor D was elevated in patients with limited cutaneous SSc and pulmonary arterial hypertension (PAH). In this study, we sought to assess multiple relevant components of the complement cascade to determine if they are altered in SSc-PAH, as well as their potential utility as biomarkers of disease severity and progression. METHODS Complement components (n = 14) were measured using multiplex assays in 156 patients with SSc-PAH from a multi-site repository and were compared to 33 patients with SSc without PAH, and 40 healthy controls. Data were evaluated for correlations between complement levels, right heart catheterization measures, and clinical endpoints including 6-minute walk distance. To assess complement longitudinally, serum complement levels were assayed at 0, 4, 12, 24, 36 and 48 weeks in 52 SSc-PAH patients who participated in a prior clinical trial. RESULTS We found that factor D was significantly elevated in SSc-PAH compared to SSc without PAH (p < 0.0001) and was highly sensitive and specific for SSc-PAH (AUC=0.82, p < 0.001). In SSc-PAH patients, alterations in factor H, C4, and factor D were associated with measures of PAH disease severity including right heart catheterization measurements (cardiac output, right atrial pressure, and VO2 max), survival, and 6-minute walk distance. No significant changes in complement levels or clinical associations were seen over time or associated with treatment in the longitudinal clinical trial study. CONCLUSION Our work confirms prior studies demonstrating a role for complement activation in SSc vascular disease and elevations of factor D in a large SSc-PAH population. Further, factor H and other complement factors are associated with severity of PAH including mortality. Taken together, these findings suggest that the alternative complement pathway plays a role in SSc-PAH pathogenesis and may serve as a biomarker to inform diagnosis and prognosis.
Collapse
Affiliation(s)
- Eva Petrow
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, 601 Elmwood Ave, Box 695, Rochester, NY 14642, United States.
| | - Changyong Feng
- Department of Biostatistics and Computational Biology, University of Rochester, Saunders Research Building, 265 Crittenden Boulevard, Box 630, Rochester, NY 14642, United States.
| | - Ashley Frazer-Abel
- Exsera BioLabs, University of Colorado School of Medicine, 1775 Aurora Court, Mail Stop B115, Aurora, CO 80045, United States.
| | - Roberta Goncalves Marangoni
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, 601 Elmwood Ave, Box 695, Rochester, NY 14642, United States.
| | - Katie Lutz
- Division of Human Genetics, Cincinnati Children's Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Ave, ML7016, Cincinnati, OH 45229, United States.
| | - William C Nichols
- Division of Human Genetics, Cincinnati Children's Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Ave, ML7016, Cincinnati, OH 45229, United States.
| | - V Michael Holers
- Departments of Medicine and Immunology, Division of Rheumatology, University of Colorado School of Medicine, 1775 North Aurora Court, 3102, Aurora, CO 80045, United States.
| | - Christopher Ritchlin
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, 601 Elmwood Ave, Box 695, Rochester, NY 14642, United States.
| | - R James White
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, University of Rochester Medical Center, 601 Elmwood Ave, Box 692, Rochester NY 14642, United States.
| | - Benjamin D Korman
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, 601 Elmwood Ave, Box 695, Rochester, NY 14642, United States.
| |
Collapse
|
3
|
Simmons K, Chan J, Hussain S, Rose EL, Markham K, Byun TS, Panicker S, Parry GC, Storek M. Anti-C1s humanized monoclonal antibody SAR445088: A classical pathway complement inhibitor specific for the active form of C1s. Clin Immunol 2023; 251:109629. [PMID: 37149117 DOI: 10.1016/j.clim.2023.109629] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/28/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
The objective of this study was to characterize the complement-inhibiting activity of SAR445088, a novel monoclonal antibody specific for the active form of C1s. Wieslab® and hemolytic assays were used to demonstrate that SAR445088 is a potent, selective inhibitor of the classical pathway of complement. Specificity for the active form of C1s was confirmed in a ligand binding assay. Finally, TNT010 (a precursor to SAR445088) was assessed in vitro for its ability to inhibit complement activation associated with cold agglutinin disease (CAD). TNT010 inhibited C3b/iC3b deposition on human red blood cells incubated with CAD patient serum and decreased their subsequent phagocytosis by THP-1 cells. In summary, this study identifies SAR445088 as a potential therapeutic for the treatment of classical pathway-driven diseases and supports its continued assessment in clinical trials.
Collapse
Affiliation(s)
| | - Joanne Chan
- Sanofi, Cambridge, MA, USA; Former Sanofi Employee Affiliated with Sanofi at Time of Study
| | - Sami Hussain
- Sanofi, Cambridge, MA, USA; Former Sanofi Employee Affiliated with Sanofi at Time of Study
| | - Eileen L Rose
- Sanofi, Cambridge, MA, USA; Former Sanofi Employee Affiliated with Sanofi at Time of Study
| | - Kate Markham
- Sanofi, Cambridge, MA, USA; Former Sanofi Employee Affiliated with Sanofi at Time of Study
| | - Tony S Byun
- Sanofi, Cambridge, MA, USA; Former Sanofi Employee Affiliated with Sanofi at Time of Study
| | - Sandip Panicker
- Sanofi, Cambridge, MA, USA; Former Sanofi Employee Affiliated with Sanofi at Time of Study
| | - Graham C Parry
- Sanofi, Cambridge, MA, USA; Former Sanofi Employee Affiliated with Sanofi at Time of Study
| | | |
Collapse
|
4
|
Yang Z, Nicholson SE, Cancio TS, Cancio LC, Li Y. Complement as a vital nexus of the pathobiological connectome for acute respiratory distress syndrome: An emerging therapeutic target. Front Immunol 2023; 14:1100461. [PMID: 37006238 PMCID: PMC10064147 DOI: 10.3389/fimmu.2023.1100461] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/27/2023] [Indexed: 03/19/2023] Open
Abstract
The hallmark of acute respiratory distress syndrome (ARDS) pathobiology is unchecked inflammation-driven diffuse alveolar damage and alveolar-capillary barrier dysfunction. Currently, therapeutic interventions for ARDS remain largely limited to pulmonary-supportive strategies, and there is an unmet demand for pharmacologic therapies targeting the underlying pathology of ARDS in patients suffering from the illness. The complement cascade (ComC) plays an integral role in the regulation of both innate and adaptive immune responses. ComC activation can prime an overzealous cytokine storm and tissue/organ damage. The ARDS and acute lung injury (ALI) have an established relationship with early maladaptive ComC activation. In this review, we have collected evidence from the current studies linking ALI/ARDS with ComC dysregulation, focusing on elucidating the new emerging roles of the extracellular (canonical) and intracellular (non-canonical or complosome), ComC (complementome) in ALI/ARDS pathobiology, and highlighting complementome as a vital nexus of the pathobiological connectome for ALI/ARDS via its crosstalking with other systems of the immunome, DAMPome, PAMPome, coagulome, metabolome, and microbiome. We have also discussed the diagnostic/therapeutic potential and future direction of ALI/ARDS care with the ultimate goal of better defining mechanistic subtypes (endotypes and theratypes) through new methodologies in order to facilitate a more precise and effective complement-targeted therapy for treating these comorbidities. This information leads to support for a therapeutic anti-inflammatory strategy by targeting the ComC, where the arsenal of clinical-stage complement-specific drugs is available, especially for patients with ALI/ARDS due to COVID-19.
Collapse
Affiliation(s)
- Zhangsheng Yang
- Combat Casualty Care Research Team (CRT) 3, United States (US) Army Institute of Surgical Research, Joint Base San Antonio (JBSA)-Fort Sam Houston, TX, United States
| | - Susannah E. Nicholson
- Division of Trauma Research, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Tomas S. Cancio
- Combat Casualty Care Research Team (CRT) 3, United States (US) Army Institute of Surgical Research, Joint Base San Antonio (JBSA)-Fort Sam Houston, TX, United States
| | - Leopoldo C. Cancio
- United States (US) Army Burn Center, United States (US) Army Institute of Surgical Research, Joint Base San Antonio (JBSA)-Fort Sam Houston, TX, United States
| | - Yansong Li
- Division of Trauma Research, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- The Geneva Foundation, Immunological Damage Control Resuscitation Program, Tacoma, WA, United States
- *Correspondence: Yansong Li,
| |
Collapse
|
5
|
Im H, Kim T, Na S, Song IU, Kim SH, Oh YS, Oh J, Kim W. Low serum complement level is associated with higher mortality in tuberculous meningitis: a retrospective cohort study. ENCEPHALITIS 2023; 3:7-14. [PMID: 37469713 PMCID: PMC10295820 DOI: 10.47936/encephalitis.2022.00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 07/21/2023] Open
Abstract
Purpose We evaluated the associations between serum complement levels and tuberculous meningitis (TBM), bacterial meningitis (BM), and viral meningitis (VM), as well as the association between serum complement levels and mortality in TBM. Methods Background information and blood/cerebrospinal fluid analysis results were collected from 2009 to 2019. Patients who had serum complement level data collected at admission and who were diagnosed with TBM (n = 97), BM (n = 31), or VM (n = 557) were enrolled. Results Initial serum complement levels were significantly lower in the TBM group than the VM group in both the total population and the propensity score-matched population. In the TBM and VM groups, compared to patients with initial highest-quartile C4 level, patients in the lowest quartile (C4 < 24.3 mg/dL) had significantly greater odds of TBM diagnosis (odds ratio, 2.2; 95% confidence interval, 1.0-4.5; p = 0.038). In the TBM group, patients with the lowest-quartile C3 level (<96.9 mg/dL) experienced a significantly higher 90-day mortality rate compared to other TBM patients (hazard ratio, 19.0; 95% confidence interval, 2.1-167.4.5; p = 0.008). Conclusion Both serum C3 and C4 levels were significantly lower in the TBM group than in the VM group. TBM patients with lower serum C3 level had a significantly higher mortality rate than those with higher C3 level.
Collapse
Affiliation(s)
- Hansol Im
- Department of Neurology, The Catholic University of Korea, Incheon St. Mary’s Hospital, Seoul, Korea
| | - Taewon Kim
- Department of Neurology, The Catholic University of Korea, Incheon St. Mary’s Hospital, Seoul, Korea
| | - Seunghee Na
- Department of Neurology, The Catholic University of Korea, Incheon St. Mary’s Hospital, Seoul, Korea
| | - In-Uk Song
- Department of Neurology, The Catholic University of Korea, Incheon St. Mary’s Hospital, Seoul, Korea
| | - Seong-Hoon Kim
- Department of Neurology, The Catholic University of Korea, Uijeongbu St. Mary’s Hospital, Seoul, Korea
| | - Yoon-Sang Oh
- Department of Neurology, The Catholic University of Korea, Uijeongbu St. Mary’s Hospital, Seoul, Korea
| | - Juhee Oh
- Department of Neurology, The Catholic University of Korea, St. Vincent’s Hospital, Seoul, Korea
| | - Woojun Kim
- Department of Neurology, The Catholic University of Korea, Seoul St. Mary’s Hospital, Seoul, Korea
| |
Collapse
|
6
|
Sridharan M, Go RS, Willrich MA. Clinical Utility and Potential Cost Savings of Pharmacologic Monitoring of Eculizumab for Complement-Mediated Thrombotic Microangiopathy. Mayo Clin Proc Innov Qual Outcomes 2022; 6:458-464. [PMID: 36160640 PMCID: PMC9489510 DOI: 10.1016/j.mayocpiqo.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
One of the treatment options for complement-mediated thrombotic microangiopathy (CM-TMA), also known as atypical hemolytic uremic syndrome, is the administration of the C5 complement inhibitor eculizumab. In vivo studies have reported a complete complement blockade with eculizumab serum concentrations above 50 μg/mL in the case of atypical hemolytic uremic syndrome. The eculizumab trough levels and C5 functional activity were monitored in patients with CM-TMA being treated with eculizumab. For those with eculizumab trough concentrations of more than 100 μg/mL, the frequency of eculizumab 1200-mg doses was decreased. In this article, we describe the pharmacologic monitoring data with the use of C5 functional activity and mass spectrometric assessments of eculizumab to allow for a tailored eculizumab schedule for 10 patients with CM-TMA. In 9 out of 10 (90%) patients with a standard administration schedule, eculizumab trough concentrations were more than 100 μg/mL. At the time of the last eculizumab follow-up (median, 250 days; range, 85-898 days), the interval between eculizumab infusions was extended to every 3-6 weeks for 8 patients; no disease relapse was found with the modified dosing interval. Altering the administration of maintenance eculizumab from every 2-3 weeks to 3-6 weeks yields a savings of $78,185 per patient for a 6-month eculizumab treatment course. Although larger standardized cohorts are necessary to confirm these findings, our data suggest that monitoring eculizumab levels in conjunction with C5 assessment allows for safe modification of eculizumab dosing and results in considerable cost savings.
Collapse
|
7
|
Zhao C, Yu Y, Liu J, Lu G, Li T, Gao Y, Zhang J, Guo X. Diversity of complement activation in different thyroid diseases. Int Immunopharmacol 2022; 106:108636. [PMID: 35217432 DOI: 10.1016/j.intimp.2022.108636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 01/15/2023]
Abstract
OBJECTIVE To investigate complement components expression in both thyroid tissues and serum from patients with Hashimoto's thyroiditis (HT), Graves' disease (GD), and papillary thyroid cancer (PTC). METHODS C1q, mannose binding lectin (MBL), Bb, C4d, C3d and membrane attack complex (MAC) (C5b-9) deposition and complement regulate proteins (CD46, CD55 and CD59) expression in thyroid tissues from HT, GD, PTC, and control groups were examined by IHC. C1q, MBL, Bb, C4d, C3a, and soluble C5b-9 (sC5b-9) serum levels in the HT, GD, PTC, and healthy donor (HD) groups were measured by ELISAs. RESULTS MAC deposition was detected in thyroid tissues in the HT, GD and PTC groups, but not the control group. MBL, Bb, C4d, C3d and MAC staining intensities in thyroid tissues were significantly higher in the HT and PTC groups than in the control group (all P < 0.05). The C1q level was higher in HT tissues than in control tissues (both P < 0.05). No complement component had a significant difference in staining intensities between the GD and control groups. CD55 and CD59 expression levels in thyroid tissues were higher in the PTC group than in the HT, GD and control groups (all P < 0.05). Similarly, CD46 levels were higher in HT tissues than in control tissues. Bb, C4d, C3a and sC5b-9 serum levels were significantly increased in HT, GD and PTC patients compared with HDs (all P < 0.05). CONCLUSION Complement is overactivated in HT and PTC, but not in GD. All the three pathways are activated in HT, and the MBL and alternative complement pathways are activated in PTC. These distinct complement activation profiles may participate in HT, GD and PTC pathogenesis.
Collapse
Affiliation(s)
- Chenxu Zhao
- Department of Endocrinology, Peking University First Hospital, No. 8 Xi Shi Ku Street, Xicheng District, Beijing 100034, China; Department of Endocrinology, Hebei Medical University First Affiliated Hospital, No. 89 Dong Gang Road, Yuhua District, Shijiazhuang, China
| | - Yang Yu
- Department of Endocrinology, Peking University First Hospital, No. 8 Xi Shi Ku Street, Xicheng District, Beijing 100034, China
| | - Jumei Liu
- Department of Pathology, Peking University First Hospital, No. 8 Xi Shi Ku Street, Xicheng District, Beijing 100034, China
| | - Guizhi Lu
- Department of Endocrinology, Peking University First Hospital, No. 8 Xi Shi Ku Street, Xicheng District, Beijing 100034, China
| | - Ting Li
- Department of Pathology, Peking University First Hospital, No. 8 Xi Shi Ku Street, Xicheng District, Beijing 100034, China
| | - Ying Gao
- Department of Endocrinology, Peking University First Hospital, No. 8 Xi Shi Ku Street, Xicheng District, Beijing 100034, China.
| | - Junqing Zhang
- Department of Endocrinology, Peking University First Hospital, No. 8 Xi Shi Ku Street, Xicheng District, Beijing 100034, China
| | - Xiaohui Guo
- Department of Endocrinology, Peking University First Hospital, No. 8 Xi Shi Ku Street, Xicheng District, Beijing 100034, China
| |
Collapse
|
8
|
Medeiros PMC, Schjalm C, Christiansen D, Sokolova M, Pischke SE, Würzner R, Mollnes TE, Barratt-Due A. Vitamin C, Hydrocortisone, and the Combination Thereof Significantly Inhibited Two of Nine Inflammatory Markers Induced by Escherichia Coli But Not by Staphylococcus Aureus - When Incubated in Human Whole Blood. Shock 2022; 57:72-80. [PMID: 34265830 PMCID: PMC8663529 DOI: 10.1097/shk.0000000000001834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/29/2021] [Indexed: 11/27/2022]
Abstract
ABSTRACT Vitamin C combined with hydrocortisone is increasingly being used to treat septic patients, even though this treatment regimen is based on questionable evidence. When used, a marked effect on key players of innate immunity would be expected, as sepsis is featured by a dysregulated immune response.Here, we explored the effect of vitamin C and hydrocortisone alone and combined, in an ex vivo human whole-blood model of Escherichia coli- or Staphylococcus aureus-induced inflammation. Inflammatory markers for activation of complement (terminal C5b-9 complement complex [TCC]), granulocytes (myeloperoxidase), platelets (β-thromboglobulin), cytokines (tumor necrosis factor [TNF], IL-1β, IL6, and IL-8), and leukocytes (CD11b and oxidative burst) were quantified, by enzyme-linked immunosorbent assay, multiplex technology, and flow cytometry.In E. coli- and S. aureus-stimulated whole blood, a broad dose-titration of vitamin C and hydrocortisone alone did not lead to dose-response effects for the central innate immune mediators TCC and IL-6. Hence, the clinically relevant doses were used further. Compared to the untreated control sample, two of the nine biomarkers induced by E. coli were reduced by hydrocortisone and/or vitamin C. TNF was reduced by hydrocortisone alone (19%, P = 0.01) and by the combination (31%, P = 0.01). The oxidative burst of monocytes and granulocytes was reduced for both drugs alone and their combination, (ranging 8-19%, P < 0.05). Using S. aureus, neither of the drugs, alone nor in combination, had any effects on the nine biomarkers.In conclusion, despite the limitation of the ex vivo model, the effect of vitamin C and hydrocortisone on bacteria-induced inflammatory response in human whole blood is limited and following the clinical data.
Collapse
Affiliation(s)
| | - Camilla Schjalm
- Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Dorte Christiansen
- Research Laboratory, Nordland Hospital, Bodø and Faculty of Health Sciences, K. G. Jebsen Center, University of Tromsø, Norway
| | - Marina Sokolova
- Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Soeren Erik Pischke
- Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
| | - Reinhard Würzner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Research Laboratory, Nordland Hospital, Bodø and Faculty of Health Sciences, K. G. Jebsen Center, University of Tromsø, Norway
- Center of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Andreas Barratt-Due
- Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
9
|
Thomas AM, Chaban V, Pischke SE, Orrem HL, Bosnes V, Sunde K, Seljeflot I, Lundqvist C, Nakstad ER, Andersen GØ, Schjalm C, Mollnes TE, Barratt-Due A. Complement ratios C3bc/C3 and sC5b-9/C5 do not increase the sensitivity of detecting acute complement activation systemically. Mol Immunol 2021; 141:273-279. [PMID: 34906905 DOI: 10.1016/j.molimm.2021.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/08/2021] [Accepted: 11/21/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Complement activation plays an important pathogenic role in numerous diseases. The ratio between an activation product and its parent protein is suggested to be more sensitive to detect complement activation than the activation product itself. In the present study we explored whether the ratio between the activation product and the parent protein for C3 (C3bc/C3) and for C5 (sC5b-9/C5) increased the sensitivity to detect complement activation in acute clinical settings compared to the activation product alone. MATERIALS AND METHODS Samples from patients with acute heart failure following ST-elevated myocardial infarction (STEMI) and from patients with out-of-hospital cardiac arrest (OHCA) were used. C3, C3bc and C5, sC5b-9 were analysed in 629 and 672 patient samples, respectively. Healthy controls (n = 20) served to determine reference cut-off values for activation products and ratios, defined as two SD above the mean. RESULTS Increased C3bc/C3- and sC5b-9/C5 ratios were vastly dependent on C3bc and sC5b-9. Thus, 99.5 % and 98.1 % of the increased C3bc/C3- and sC5b-9/C5 ratios were solely dependent on increased C3bc and sC5b-9, respectively. Significantly decreased C3 and C5 caused increased ratios in only 3/600 (0.5 %) and 4/319 (1.3 %) samples, respectively. Strong correlations between C3bc and C3bc/C3-ratio and between sC5b-9 and sC5b-9/C5-ratio were found in the STEMI- (r = 0.926 and r = 0.786, respectively) and the OHCA-population (r = 0.908 and r = 0.843, respectively; p < 0.0001 for all). Importantly, sC5b-9 identified worse outcome groups better than sC5b-9/C5-ratio. CONCLUSION C3bc and sC5b-9 were sensitive markers of complement activation. The ratios of C3bc/C3 and sC5b-9/C5 did not improve detection of complement activation systemically.
Collapse
Affiliation(s)
- Anub Mathew Thomas
- Department of Immunology, Oslo University Hospital and University of Oslo, Norway; Department of Neurology, Drammen Hospital, Vestre Viken Hospital Trust, Norway
| | - Viktoriia Chaban
- Department of Immunology, Oslo University Hospital and University of Oslo, Norway
| | - Søren E Pischke
- Department of Immunology, Oslo University Hospital and University of Oslo, Norway; Division of Emergencies and Critical Care, Oslo University Hospital, Norway
| | - Hilde Lang Orrem
- Department of Immunology, Oslo University Hospital and University of Oslo, Norway; Division of Emergencies and Critical Care, Oslo University Hospital, Norway
| | - Vidar Bosnes
- Department of Immunology, Section of Medical Immunology, Oslo University Hospital, Oslo, Norway
| | - Kjetil Sunde
- Division of Emergencies and Critical Care, Oslo University Hospital, Norway; Institute of Clinical Medicine, University of Oslo, Norway
| | - Ingebjørg Seljeflot
- Institute of Clinical Medicine, University of Oslo, Norway; Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital, Norway; Department of Cardiology, Oslo University Hospital, Norway
| | - Christofer Lundqvist
- Institute of Clinical Medicine, University of Oslo, Norway; Department of Neurology, Akershus University Hospital, Oslo, Norway; Health Services Research Unit, Akershus University Hospital, Oslo, Norway
| | - Espen Rostrup Nakstad
- Norwegian National Unit for CBRNE Medicine, Division of Medicine, Oslo University Hospital, Norway
| | | | - Camilla Schjalm
- Department of Immunology, Oslo University Hospital and University of Oslo, Norway
| | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital and University of Oslo, Norway; Research Laboratory, Nordland Hospital, Bodø, Norway; K.G. Jebsen TREC, University of Tromsø, Norway; Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Andreas Barratt-Due
- Department of Immunology, Oslo University Hospital and University of Oslo, Norway; Division of Emergencies and Critical Care, Oslo University Hospital, Norway.
| |
Collapse
|
10
|
Auler N, Tonner H, Pfeiffer N, Grus FH. Antibody and Protein Profiles in Glaucoma: Screening of Biomarkers and Identification of Signaling Pathways. BIOLOGY 2021; 10:biology10121296. [PMID: 34943212 PMCID: PMC8698915 DOI: 10.3390/biology10121296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/24/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary Glaucoma is a chronic eye disease that is one of the leading causes of blindness worldwide. Currently, the only therapeutic option is to lower intraocular pressure. The onset of the disease is often delayed because patients do not notice visual impairment until very late, which is why glaucoma is also known as “the silent thief of sight”. Therefore, early detection and definition of specific markers, the so-called biomarkers, are immensely important. For the methodical implementation, high-throughput methods and omic-based methods came more and more into focus. Thus, interesting targets for possible biomarkers were already suggested by clinical research and basic research, respectively. This review article aims to join the findings of the two disciplines by collecting overlaps as well as differences in various clinical studies and to shed light on promising candidates concerning findings from basic research, facilitating conclusions on possible therapy options. Abstract Glaucoma represents a group of chronic neurodegenerative diseases, constituting the second leading cause of blindness worldwide. To date, chronically elevated intraocular pressure has been identified as the main risk factor and the only treatable symptom. However, there is increasing evidence in the recent literature that IOP-independent molecular mechanisms also play an important role in the progression of the disease. In recent years, it has become increasingly clear that glaucoma has an autoimmune component. The main focus nowadays is elucidating glaucoma pathogenesis, finding early diagnostic options and new therapeutic approaches. This review article summarizes the impact of different antibodies and proteins associated with glaucoma that can be detected for example by microarray and mass spectrometric analyzes, which (i) provide information about expression profiles and associated molecular signaling pathways, (ii) can possibly be used as a diagnostic tool in future and, (iii) can identify possible targets for therapeutic approaches.
Collapse
|
11
|
Bustos NI, Sotomayor CG, Pol RA, Navis GJ, Bakker SJL. Polyphenols and Novel Insights Into Post-kidney Transplant Complications and Cardiovascular Disease: A Narrative Review. Front Cardiovasc Med 2021; 8:751036. [PMID: 34869655 PMCID: PMC8635050 DOI: 10.3389/fcvm.2021.751036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/25/2021] [Indexed: 12/31/2022] Open
Abstract
Kidney transplantation is the preferred treatment for end-stage kidney disease. It is, however, not devoid of complications. Delayed graft function related to ischemia-reperfusion injury (IRI), calcineurin inhibitor (CNI) nephrotoxicity, diabetes, and a particularly high-rate cardiovascular disease (CVD) risk, represent important complications following kidney transplantation. Oxidative stress and chronic low-grade inflammation are mechanisms of disease incompletely abrogated in stable kidney transplant recipient (KTR), contributing to the occurrence of these complications. Polyphenols, bioactive compounds with recognized antioxidant and anti-inflammatory properties have been strongly associated with prevention of CVD in the general population and have been shown to decrease IRI and antagonize CNI nephrotoxicity in animal experimental models, therefore they may have a role in prevention of complications in KTR. This narrative review aims to summarize and discuss current evidence on different polyphenols for prevention of complications, particularly prevention of CVD in KTR, pointing toward the need of further studies with potential clinical impact.
Collapse
Affiliation(s)
- Nicolas I. Bustos
- Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Camilo G. Sotomayor
- Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Radiology Department, Clinical Hospital University of Chile, University of Chile, Santiago, Chile
| | - Robert A. Pol
- Division of Transplantation Surgery, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Gerjan J. Navis
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Stephan J. L. Bakker
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
12
|
Witczak BJ, Pischke SE, Reisæter AV, Midtvedt K, Ludviksen JK, Heldal K, Jenssen T, Hartmann A, Åsberg A, Mollnes TE. Elevated Terminal C5b-9 Complement Complex 10 Weeks Post Kidney Transplantation Was Associated With Reduced Long-Term Patient and Kidney Graft Survival. Front Immunol 2021; 12:738927. [PMID: 34759922 PMCID: PMC8573334 DOI: 10.3389/fimmu.2021.738927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/04/2021] [Indexed: 11/25/2022] Open
Abstract
Background The major reason for graft loss is chronic tissue damage, as interstitial fibrosis and tubular atrophy (IF/TA), where complement activation may serve as a mediator. The association of complement activation in a stable phase early after kidney transplantation with long-term outcomes is unexplored. Methods We examined plasma terminal C5b-9 complement complex (TCC) 10 weeks posttransplant in 900 patients receiving a kidney between 2007 and 2012. Clinical outcomes were assessed after a median observation time of 9.3 years [interquartile range (IQR) 7.5–10.6]. Results Elevated TCC plasma values (≥0.7 CAU/ml) were present in 138 patients (15.3%) and associated with a lower 10-year patient survival rate (65.7% vs. 75.5%, P < 0.003). Similarly, 10-year graft survival was lower with elevated TCC; 56.9% vs. 67.3% (P < 0.002). Graft survival was also lower when censored for death; 81.5% vs. 87.3% (P = 0.04). In multivariable Cox analyses, impaired patient survival was significantly associated with elevated TCC [hazard ratio (HR) 1.40 (1.02–1.91), P = 0.04] along with male sex, recipient and donor age, smoking, diabetes, and overall survival more than 1 year in renal replacement therapy prior to engraftment. Likewise, elevated TCC was independently associated with graft loss [HR 1.40 (1.06–1.85), P = 0.02] along with the same covariates. Finally, elevated TCC was in addition independently associated with death-censored graft loss [HR 1.69 (1.06–2.71), P = 0.03] as were also HLA-DR mismatches and higher immunological risk. Conclusions Early complement activation, assessed by plasma TCC, was associated with impaired long-term patient and graft survival.
Collapse
Affiliation(s)
| | - Søren E Pischke
- Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway.,Department of Anaesthesiology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Anna V Reisæter
- Department of Transplantation Medicine, Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Norwegian Renal Registry, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Karsten Midtvedt
- Department of Transplantation Medicine, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | | | - Kristian Heldal
- Department of Transplantation Medicine, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Trond Jenssen
- Department of Transplantation Medicine, Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anders Hartmann
- Department of Transplantation Medicine, Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anders Åsberg
- Department of Transplantation Medicine, Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Norwegian Renal Registry, Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Tom E Mollnes
- Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway.,Research Laboratory, Nordland Hospital, Bodø, Norway.,Faculty of Health Sciences, KG Jebsen Thrombosis Research and Expertise Center (TREC), University of Tromsø, Tromsø, Norway.,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
13
|
Tvedt THA, Vo AK, Bruserud Ø, Reikvam H. Cytokine Release Syndrome in the Immunotherapy of Hematological Malignancies: The Biology behind and Possible Clinical Consequences. J Clin Med 2021; 10:jcm10215190. [PMID: 34768710 PMCID: PMC8585070 DOI: 10.3390/jcm10215190] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 02/07/2023] Open
Abstract
Cytokine release syndrome (CRS) is an acute systemic inflammatory syndrome characterized by fever and multiple organ dysfunction associated with (i) chimeric antigen receptor (CAR)-T cell therapy, (ii) therapeutic antibodies, and (iii) haploidentical allogeneic stem cell transplantation (haplo-allo-HSCT). Severe CRS can be life-threatening in some cases and requires prompt management of those toxicities and is still a great challenge for physicians. The pathophysiology of CRS is still not fully understood, which also applies to the identifications of predictive biomarkers that can forecast these features in advance. However, a broad range of cytokines are involved in the dynamics of CRS. Treatment approaches include both broad spectrum of immunosuppressant, such as corticosteroids, as well as more specific inhibition of cytokine release. In the present manuscript we will try to review an update regarding pathophysiology, etiology, diagnostics, and therapeutic options for this serious complication.
Collapse
Affiliation(s)
| | - Anh Khoi Vo
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway; (A.K.V.); (Ø.B.)
| | - Øystein Bruserud
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway; (A.K.V.); (Ø.B.)
- Clinic for Medicine, Haukeland University Hospital, 5020 Bergen, Norway
| | - Håkon Reikvam
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway; (A.K.V.); (Ø.B.)
- Clinic for Medicine, Haukeland University Hospital, 5020 Bergen, Norway
- Correspondence:
| |
Collapse
|
14
|
Franzin R, Stasi A, Fiorentino M, Simone S, Oberbauer R, Castellano G, Gesualdo L. Renal Delivery of Pharmacologic Agents During Machine Perfusion to Prevent Ischaemia-Reperfusion Injury: From Murine Model to Clinical Trials. Front Immunol 2021; 12:673562. [PMID: 34295329 PMCID: PMC8290413 DOI: 10.3389/fimmu.2021.673562] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
Donor organ shortage still remains a serious obstacle for the access of wait-list patients to kidney transplantation, the best treatment for End-Stage Kidney Disease (ESKD). To expand the number of transplants, the use of lower quality organs from older ECD or DCD donors has become an established routine but at the price of increased incidence of Primary Non-Function, Delay Graft Function and lower-long term graft survival. In the last years, several improvements have been made in the field of renal transplantation from surgical procedure to preservation strategies. To improve renal outcomes, research has focused on development of innovative and dynamic preservation techniques, in order to assess graft function and promote regeneration by pharmacological intervention before transplantation. This review provides an overview of the current knowledge of these new preservation strategies by machine perfusions and pharmacological interventions at different timing possibilities: in the organ donor, ex-vivo during perfusion machine reconditioning or after implementation in the recipient. We will report therapies as anti-oxidant and anti-inflammatory agents, senolytics agents, complement inhibitors, HDL, siRNA and H2S supplementation. Renal delivery of pharmacologic agents during preservation state provides a window of opportunity to treat the organ in an isolated manner and a crucial route of administration. Even if few studies have been reported of transplantation after ex-vivo drugs administration, targeting the biological pathway associated to kidney failure (i.e. oxidative stress, complement system, fibrosis) might be a promising therapeutic strategy to improve the quality of various donor organs and expand organ availability.
Collapse
Affiliation(s)
- Rossana Franzin
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Alessandra Stasi
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Marco Fiorentino
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Simona Simone
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Rainer Oberbauer
- Department of Nephrology and Dialysis, University Clinic for Internal Medicine III, Medical University Vienna, Vienna, Austria
| | - Giuseppe Castellano
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Loreto Gesualdo
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
15
|
Chinchilla B, Foltopoulou P, Fernandez-Godino R. Tick-over-mediated complement activation is sufficient to cause basal deposit formation in cell-based models of macular degeneration. J Pathol 2021; 255:120-131. [PMID: 34155630 DOI: 10.1002/path.5747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 12/17/2022]
Abstract
Despite numerous unsuccessful clinical trials for anti-complement drugs to treat age-related macular degeneration (AMD), the complement system has not been fully explored as a target to stop drusen growth in patients with dry AMD. We propose that the resilient autoactivation of C3 by hydrolysis of its internal thioester (tick-over), which cannot be prevented by existing drugs, plays a critical role in the formation of drusenoid deposits underneath the retinal pigment epithelium (RPE). We have combined gene editing tools with stem cell technology to generate cell-based models that allow the role of the tick-over in sub-RPE deposit formation to be studied. The results demonstrate that structurally or genetically driven pathological events affecting the RPE and Bruch's membrane can lead to dysregulation of the tick-over, which is sufficient to stimulate the formation of sub-RPE deposits. This can be prevented with therapies that downregulate C3 expression. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Blanca Chinchilla
- The Ocular Genomics Institute at Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Parthena Foltopoulou
- The Ocular Genomics Institute at Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Rosario Fernandez-Godino
- The Ocular Genomics Institute at Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Islam R, Islam MM, Nilsson PH, Mohlin C, Hagen KT, Paschalis EI, Woods RL, Bhowmick SC, Dohlman CH, Espevik T, Chodosh J, Gonzalez-Andrades M, Mollnes TE. Combined blockade of complement C5 and TLR co-receptor CD14 synergistically inhibits pig-to-human corneal xenograft induced innate inflammatory responses. Acta Biomater 2021; 127:169-179. [PMID: 33785451 DOI: 10.1016/j.actbio.2021.03.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/18/2021] [Accepted: 03/19/2021] [Indexed: 12/20/2022]
Abstract
Inadequate supplies of donor corneas have evoked an escalating interest in corneal xenotransplantation. However, innate immune responses contribute significantly to the mechanism of xenograft rejection. We hypothesized that complement component C5 and TLR co-receptor CD14 inhibition would inhibit porcine cornea induced innate immune responses. Therefore, we measured cytokine release in human blood, induced by three forms of corneal xenografts with or without inhibitors. Native porcine cornea (NPC) induced interleukins (IL-1β, IL-2, IL-6, IL-8, IL-1ra), chemokines (MCP-1, MIP-1α, MIP-1β) and other cytokines (TNF, G-CSF, INF-γ, FGF-basic). Decellularized (DPC) and gamma-irradiated cornea (g-DPC) elevated the release of those cytokines. C5-blockade by eculizumab inhibited all the cytokines except G-CSF when induced by NPC. However, C5-blockade failed to reduce DPC and g-DPC induced cytokines. Blockade of CD14 inhibited DPC-induced cytokines except for IL-8, MCP-1, MIP-1α, and G-CSF, while it inhibited all of them when induced by g-DPC. Combined blockade of C5 and CD14 inhibited the maximum number of cytokines regardless of the xenograft type. Finally, by using the TLR4 specific inhibitor Eritoran, we showed that TLR4 activation was the basis for the CD14 effect. Thus, blockade of C5, when combined with TLR4 inhibition, may have therapeutic potential in pig-to-human corneal xenotransplantation. STATEMENT OF SIGNIFICANCE: Bio-engineered corneal xenografts are on the verge of becoming a viable alternative to allogenic human-donor-cornea, but the host's innate immune response is still a critical barrier for graft acceptance. By overruling this barrier, limited graft availability would no longer be an issue for treating corneal diseases. We showed that the xenograft induced inflammation is initiated by the complement system and toll-like receptor activation. Intriguingly, the inflammatory response was efficiently blocked by simultaneously targeting bottleneck molecules in the complement system (C5) and the TLR co-receptor CD14 with pharmaceutical inhibitors. We postulate that a combination of C5 and CD14 inhibition could have a great therapeutic potential to overcome the immunologic barrier in pig-to-human corneal xenotransplantation.
Collapse
|
17
|
Willrich MAV, Braun KMP, Moyer AM, Jeffrey DH, Frazer-Abel A. Complement testing in the clinical laboratory. Crit Rev Clin Lab Sci 2021; 58:447-478. [PMID: 33962553 DOI: 10.1080/10408363.2021.1907297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The complement system is the human's first line of defense against microbial pathogens because of its important housekeeping and infection/inflammation roles. It is composed of a series of soluble and cell-bound proteins that are activated in a cascade effect, similar to the coagulation pathways. There are different pattern recognizing molecules that activate the complement system in response to stimuli or threats, acting through three initiation pathways: classical, lectin, and alternative. All three activation pathways converge at the C3 component and share the terminal pathway. The main outputs of the complement system action are lytic killing of microbes, the release of pro-inflammatory anaphylatoxins, and opsonization of targets. Laboratory testing is relevant in the setting of suspected complement deficiencies, as well as in the emerging number of diseases related to dysregulation (over-activation) of complement. Most common assays measure complement lytic activity and the different complement component concentrations. Specialized testing includes the evaluation of autoantibodies against complement components, activation fragments, and genetic studies. In this review, we cover laboratory testing for complement and the conditions with complement involvement, as well as current challenges in the field.
Collapse
Affiliation(s)
| | - Karin M P Braun
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Ann M Moyer
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - David H Jeffrey
- Exsera Biolabs, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ashley Frazer-Abel
- Exsera Biolabs, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
18
|
Garred P, Tenner AJ, Mollnes TE. Therapeutic Targeting of the Complement System: From Rare Diseases to Pandemics. Pharmacol Rev 2021; 73:792-827. [PMID: 33687995 PMCID: PMC7956994 DOI: 10.1124/pharmrev.120.000072] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The complement system was discovered at the end of the 19th century as a heat-labile plasma component that "complemented" the antibodies in killing microbes, hence the name "complement." Complement is also part of the innate immune system, protecting the host by recognition of pathogen-associated molecular patterns. However, complement is multifunctional far beyond infectious defense. It contributes to organ development, such as sculpting neuron synapses, promoting tissue regeneration and repair, and rapidly engaging and synergizing with a number of processes, including hemostasis leading to thromboinflammation. Complement is a double-edged sword. Although it usually protects the host, it may cause tissue damage when dysregulated or overactivated, such as in the systemic inflammatory reaction seen in trauma and sepsis and severe coronavirus disease 2019 (COVID-19). Damage-associated molecular patterns generated during ischemia-reperfusion injuries (myocardial infarction, stroke, and transplant dysfunction) and in chronic neurologic and rheumatic disease activate complement, thereby increasing damaging inflammation. Despite the long list of diseases with potential for ameliorating complement modulation, only a few rare diseases are approved for clinical treatment targeting complement. Those currently being efficiently treated include paroxysmal nocturnal hemoglobinuria, atypical hemolytic-uremic syndrome, myasthenia gravis, and neuromyelitis optica spectrum disorders. Rare diseases, unfortunately, preclude robust clinical trials. The increasing evidence for complement as a pathogenetic driver in many more common diseases suggests an opportunity for future complement therapy, which, however, requires robust clinical trials; one ongoing example is COVID-19 disease. The current review aims to discuss complement in disease pathogenesis and discuss future pharmacological strategies to treat these diseases with complement-targeted therapies. SIGNIFICANCE STATEMENT: The complement system is the host's defense friend by protecting it from invading pathogens, promoting tissue repair, and maintaining homeostasis. Complement is a double-edged sword, since when dysregulated or overactivated it becomes the host's enemy, leading to tissue damage, organ failure, and, in worst case, death. A number of acute and chronic diseases are candidates for pharmacological treatment to avoid complement-dependent damage, ranging from the well established treatment for rare diseases to possible future treatment of large patient groups like the pandemic coronavirus disease 2019.
Collapse
Affiliation(s)
- Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen, Denmark, and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (P.G.); Departments of Molecular Biology and Biochemistry, Neurobiology and Behavior, and Pathology and Laboratory Medicine, University of California, Irvine, California (A.J.T.); and Research Laboratory, Nordland Hospital, Bodø, Norway, Faculty of Health Sciences, K.G. Jebsen TREC, University of Tromsø, Tromsø, Norway (T.E.M.); Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway (T.E.M.); and Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway (T.E.M.)
| | - Andrea J Tenner
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen, Denmark, and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (P.G.); Departments of Molecular Biology and Biochemistry, Neurobiology and Behavior, and Pathology and Laboratory Medicine, University of California, Irvine, California (A.J.T.); and Research Laboratory, Nordland Hospital, Bodø, Norway, Faculty of Health Sciences, K.G. Jebsen TREC, University of Tromsø, Tromsø, Norway (T.E.M.); Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway (T.E.M.); and Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway (T.E.M.)
| | - Tom E Mollnes
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen, Denmark, and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (P.G.); Departments of Molecular Biology and Biochemistry, Neurobiology and Behavior, and Pathology and Laboratory Medicine, University of California, Irvine, California (A.J.T.); and Research Laboratory, Nordland Hospital, Bodø, Norway, Faculty of Health Sciences, K.G. Jebsen TREC, University of Tromsø, Tromsø, Norway (T.E.M.); Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway (T.E.M.); and Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway (T.E.M.)
| |
Collapse
|
19
|
Wang R, Wang Y, Hu L, Lu Z, Wang X. Inhibition of complement C5a receptor protects lung cells and tissues against lipopolysaccharide-induced injury via blocking pyroptosis. Aging (Albany NY) 2021; 13:8588-8598. [PMID: 33714207 PMCID: PMC8034960 DOI: 10.18632/aging.202671] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/23/2020] [Indexed: 12/17/2022]
Abstract
Acute lung injury (ALI) is the injury of alveolar epithelial cells and capillary endothelial cells caused by various factors. Complement system and pyroptosis have been proved to be involved in ALI, and inhibition of C5a/C5a receptor (C5aR) could alleviate ALI. This study aimed to investigate whether C5a/C5aR inhibition could protect against LPS-induced ALI via mediating pyroptosis. Rats were assigned into four groups: Control, LPS, LPS+W-54011 1mg/kg, and LPS+W-54011 5mg/kg. Beas-2B cells pretreated with or without C5a and W-54011, alone and in combination, were challenged with LPS+ATP. Results unveiled that LPS caused lung tissue injury and inflammatory response, increased pyroptotic and apoptotic factors, along with elevated C5a concentration and C5aR expressions. However, W-54011 pretreatment alleviated lung damage and pulmonary edema, reduced inflammation and prevented cell pyroptosis. In vitro studies confirmed that LPS+ATP reduced cell viability, promoted cell death, generated inflammatory factors and promoted expressions of pyroptosis-related proteins, which could be prevented by W-54011 pretreatment while intensified by C5a pretreatment. The co-treatment of C5a and W-54011 could blunt the effects of C5a on LPS+ATP-induced cytotoxicity. In conclusion, inhibition of C5a/C5aR developed protective effects against LPS-induced ALI and the cytotoxicity of Beas-2B cells, and these effects may depend on blocking pyroptosis.
Collapse
Affiliation(s)
- Renying Wang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201801, China
| | - Yunxing Wang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201801, China
| | - Lan Hu
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201801, China
| | - Zhenbing Lu
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201801, China
| | - Xiaoshan Wang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201801, China
| |
Collapse
|
20
|
Hubens WHG, Beckers HJM, Gorgels TGMF, Webers CAB. Increased ratios of complement factors C3a to C3 in aqueous humor and serum mark glaucoma progression. Exp Eye Res 2021; 204:108460. [PMID: 33493474 DOI: 10.1016/j.exer.2021.108460] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/06/2021] [Accepted: 01/18/2021] [Indexed: 12/17/2022]
Abstract
INTRODUCTION We recently performed a combined analysis of publicly available proteomic studies of aqueous humor (AH) of patients with primary open angle glaucoma (POAG). This analysis revealed changes in complement protein concentrations in the AH of progressive POAG patients, which suggested that the complement system may play a role in POAG progression. As the proteomic studies could not provide information on the activity of the complement system, we addressed this question in the current study. METHODS Blood serum and AH were obtained from 30 patients: 10 progressive POAG, 10 stable POAG and, as controls, 10 cataract patients. Glaucoma patients with a visual field Mean Deviation (MD) change of at least 1.0 dB/year were considered progressive; a MD change of less than 0.5 dB/year was considered stable. The ratio between the levels of complement factors C3a and C3 was used as indicator for activation of the complement cascade. The factors were measured with commercially available ELISA kits. RESULTS AH levels of complement factors C3 and C3a did not significantly differ between groups. In serum, complement factor C3 did not differ between groups whereas C3a was significantly elevated in progressive POAG patients compared to controls (p < 0.05). The resulting complement C3a/C3 ratio was significantly higher in progressive POAG patients in both AH (p < 0.05) and serum (p < 0.01), and this ratio significantly correlated between the two body fluids (p < 0.001). Furthermore, there was a strong correlation between disease progression and C3a/C3 activation ratio both in AH (p < 0.01) and in serum (p < 0.001). The higher the complement C3a/C3 ratio, the faster the disease progression. CONCLUSION Significant increases in AH and serum complement C3a/C3 ratios were observed in progressive POAG patients but not in stable POAG patients. Furthermore, the complement C3a/C3 ratio correlated strongly with the rate of disease progression in both AH and serum. These findings suggest that activation of the complement system plays a role in glaucoma progression and that progressive glaucoma patients may have systemic changes in complement activation.
Collapse
Affiliation(s)
- W H G Hubens
- University Eye Clinic Maastricht, Maastricht Medical Center, Maastricht, the Netherlands; Research School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.
| | - H J M Beckers
- University Eye Clinic Maastricht, Maastricht Medical Center, Maastricht, the Netherlands
| | - T G M F Gorgels
- University Eye Clinic Maastricht, Maastricht Medical Center, Maastricht, the Netherlands
| | - C A B Webers
- University Eye Clinic Maastricht, Maastricht Medical Center, Maastricht, the Netherlands
| |
Collapse
|
21
|
Budge K, Dellepiane S, Yu SMW, Cravedi P. Complement, a Therapeutic Target in Diabetic Kidney Disease. Front Med (Lausanne) 2021; 7:599236. [PMID: 33553201 PMCID: PMC7858668 DOI: 10.3389/fmed.2020.599236] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/21/2020] [Indexed: 01/15/2023] Open
Abstract
Currently available treatments of diabetic kidney disease (DKD) remain limited despite improved understanding of DKD pathophysiology. The complement system is a central part of innate immunity, but its dysregulated activation is detrimental and results in systemic diseases with overt inflammation. Growing evidence suggests complement activation in DKD. With existent drugs and clinical success of treating other kidney diseases, complement inhibition has emerged as a potential novel therapy to halt the progression of DKD. This article will review DKD, the complement system's role in diabetic and non-diabetic disease, and the potential benefits of complement targeting therapies especially for DKD patients.
Collapse
Affiliation(s)
- Kelly Budge
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sergio Dellepiane
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Samuel Mon-Wei Yu
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Paolo Cravedi
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
22
|
Lau C, McAdam MB, Bergseth G, Grevys A, Bruun JA, Ludviksen JK, Fure H, Espevik T, Moen A, Andersen JT, Mollnes TE. NHDL, a recombinant V L/V H hybrid antibody control for IgG2/4 antibodies. MAbs 2021; 12:1686319. [PMID: 31671278 PMCID: PMC6927768 DOI: 10.1080/19420862.2019.1686319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The mechanism of action of recombinant IgG2/4 antibodies involves blocking of their target without the induction of effector functions. Examples are eculizumab (Soliris®), which is used clinically to block complement factor C5, as well as anti-human CD14 (r18D11) and anti-porcine CD14 (rMIL2) produced in our laboratory. So far, no proper IgG2/4 control antibody has been available for controlled validation of IgG2/4 antibody functions. Here, we describe the design of a recombinant control antibody (NHDL), which was generated by combining the variable light (VL) and heavy (VH) chains from two unrelated specificities. NHDL was readily expressed and purified as a stable IgG2/4 antibody, and showed no detectable specificity toward any putative antigen present in human or porcine blood. The approach of artificial VL/VH combination may be adopted for the design of other recombinant control antibodies.
Collapse
Affiliation(s)
- Corinna Lau
- Research Laboratory, Nordland Hospital Trust, Bodø, Norway
| | - Martin Berner McAdam
- Department of Immunology, Oslo University Hospital-Rikshospitalet, and Centre for Immune Regulation, Oslo, Norway
| | | | - Algirdas Grevys
- Department of Immunology, Oslo University Hospital-Rikshospitalet, and Centre for Immune Regulation, Oslo, Norway.,Centre for Immune Regulation and Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jack Ansgar Bruun
- Department of Medical Biology, Proteomics Platform, University of Tromsø, Tromsø, Norway
| | | | - Hilde Fure
- Research Laboratory, Nordland Hospital Trust, Bodø, Norway
| | - Terje Espevik
- Centre of Molecular Inflammation Research, and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anders Moen
- Department of Biosciences, Proteomics core facility, University of Oslo, Oslo, Norway
| | - Jan Terje Andersen
- Department of Immunology, Oslo University Hospital-Rikshospitalet, and Centre for Immune Regulation, Oslo, Norway.,Department of Pharmacology, Institute of Clinical Medicine, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Tom Eirik Mollnes
- Research Laboratory, Nordland Hospital Trust, Bodø, Norway.,Centre of Molecular Inflammation Research, and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway.,Faculty of Health Sciences and K. G. Jebsen TREC, University of Tromsø, Tromsø, Norway
| |
Collapse
|
23
|
Rodrigues PRS, Picco N, Morgan BP, Ghazal P. Sepsis target validation for repurposing and combining complement and immune checkpoint inhibition therapeutics. Expert Opin Drug Discov 2020; 16:537-551. [PMID: 33206027 DOI: 10.1080/17460441.2021.1851186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Introduction: Sepsis is a disease that occurs due to an adverse immune response to infection by bacteria, viruses and fungi and is the leading pathway to death by infection. The hallmarks for maladapted immune reactions in severe sepsis, which contribute to multiple organ failure and death, are bookended by the exacerbated activation of the complement system to protracted T-cell dysfunction states orchestrated by immune checkpoint control. Despite major advances in our understanding of the condition, there remains to be either a definitive test or an effective therapeutic intervention.Areas covered: The authors consider a combinational drug therapy approach using new biologics, and mathematical modeling for predicting patient responses, in targeting innate and adaptive immune mediators underlying sepsis. Special consideration is given for emerging complement and immune checkpoint inhibitors that may be repurposed for sepsis treatment.Expert opinion: In order to overcome the challenges inherent to finding new therapies for the complex dysregulated host response to infection that drives sepsis, it is necessary to move away from monotherapy and promote precision for personalized combinatory therapies. Notably, combinatory therapy should be guided by predictive systems models of the immune-metabolic characteristics of an individual's disease progression.
Collapse
Affiliation(s)
- Patrícia R S Rodrigues
- School of Medicine, Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Noemi Picco
- Department of Mathematics, Swansea University, Swansea, UK
| | - B Paul Morgan
- School of Medicine, Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Peter Ghazal
- School of Medicine, Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
24
|
Passot C, Sberro-Soussan R, Bertrand D, Caillard S, Schvartz B, Domenger C, Contin-Bordes C, Paintaud G, Halimi JM, Ternant D, Gatault P. Feasibility and safety of tailored dosing schedule for eculizumab based on therapeutic drug monitoring: Lessons from a prospective multicentric study. Br J Clin Pharmacol 2020; 87:2236-2246. [PMID: 33118186 DOI: 10.1111/bcp.14627] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 10/13/2020] [Accepted: 10/17/2020] [Indexed: 12/23/2022] Open
Abstract
AIMS Eculizumab is an anti-C5 monoclonal antibody approved for rare diseases including atypical haemolytic-uraemic syndrome. The maintenance phase dosing regimen is identical for all adult patients: 1200 mg every 2 weeks. Recent studies reported an overexposure in many patients when considering a target trough concentration range of 50-100 mg/L. The aim of the present work was to validate the feasibility of therapeutic drug monitoring of eculizumab in atypical haemolytic-uraemic syndrome patients. METHODS We performed a 2-step prospective multicentre study. In the first phase, we developed a pharmacokinetic population model using data from 40 patients and identified patients for whom a 1-week lengthening of interval between infusions would lead to a trough concentration above 100 mg/L. In the second phase, selected patients were allocated a 1-week extension and eculizumab trough concentrations were monitored. RESULTS The model confirmed the previously reported influence of bodyweight on elimination clearance and predicted that 36 (90%) patients would be eligible for interval extension. In the second phase of the study, a 1-week lengthening of interval between infusions was performed in 15 patients whose trough concentration at the next visit was predicted with a Bayesian model to be above 100 mg/L. After interval extension, 10 patients (67%) presented measured trough concentrations over 100 mg/L. No biological or clinical recurrence of disease was observed, even in the 5 patients with concentrations below 100 mg/L in whom the initial dosing regimen was resumed. CONCLUSION Safe eculizumab interval adjustment is feasible with a PK monitoring.
Collapse
Affiliation(s)
- Christophe Passot
- EA7501, University of Tours, France.,Laboratory of Pharmacology-Toxicology, CHRU de Tours, France.,Integrated Center for Oncology, Angers, France
| | - Rebecca Sberro-Soussan
- Service de Néphrologie et Transplantation Adulte, Hôpital Necker-Enfants Malades, Université Paris Descartes, Assistance Publique-Hôpitaux de Paris, Paris, France
| | | | - Sophie Caillard
- Nephrology and Transplant Department, Strasbourg University Hospital, Strasbourg, France
| | | | | | | | - Gilles Paintaud
- EA7501, University of Tours, France.,Laboratory of Pharmacology-Toxicology, CHRU de Tours, France
| | - Jean-Michel Halimi
- EA4245 Transplant Immunology and Inflammation, Université de Tours, Tours, France.,Service de Néphrologie-Hypertension artérielle, Dialyses, Transplantation rénale, CHRU Tours, France
| | - David Ternant
- EA7501, University of Tours, France.,Laboratory of Pharmacology-Toxicology, CHRU de Tours, France
| | - Philippe Gatault
- EA4245 Transplant Immunology and Inflammation, Université de Tours, Tours, France.,Service de Néphrologie-Hypertension artérielle, Dialyses, Transplantation rénale, CHRU Tours, France
| |
Collapse
|
25
|
Reese B, Silwal A, Daugherity E, Daugherity M, Arabi M, Daly P, Paterson Y, Woolford L, Christie A, Elias R, Brugarolas J, Wang T, Karbowniczek M, Markiewski MM. Complement as Prognostic Biomarker and Potential Therapeutic Target in Renal Cell Carcinoma. THE JOURNAL OF IMMUNOLOGY 2020; 205:3218-3229. [PMID: 33158953 DOI: 10.4049/jimmunol.2000511] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/29/2020] [Indexed: 12/21/2022]
Abstract
Preclinical studies demonstrated that complement promotes tumor growth. Therefore, we sought to determine the best target for complement-based therapy among common human malignancies. High expression of 11 complement genes was linked to unfavorable prognosis in renal cell carcinoma. Complement protein expression or deposition was observed mainly in stroma, leukocytes, and tumor vasculature, corresponding to a role of complement in regulating the tumor microenvironment. Complement abundance in tumors correlated with a high nuclear grade. Complement genes clustered within an aggressive inflammatory subtype of renal cancer characterized by poor prognosis, markers of T cell dysfunction, and alternatively activated macrophages. Plasma levels of complement proteins correlated with response to immune checkpoint inhibitors. Corroborating human data, complement deficiencies and blockade reduced tumor growth by enhancing antitumor immunity and seemingly reducing angiogenesis in a mouse model of kidney cancer resistant to PD-1 blockade. Overall, this study implicates complement in the immune landscape of renal cell carcinoma, and notwithstanding cohort size and preclinical model limitations, the data suggest that tumors resistant to immune checkpoint inhibitors might be suitable targets for complement-based therapy.
Collapse
Affiliation(s)
- Britney Reese
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601
| | - Ashok Silwal
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601
| | - Elizabeth Daugherity
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601
| | - Michael Daugherity
- Department of Engineering and Physics, Abilene Christian University, Abilene, TX 79601
| | - Mahshid Arabi
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601
| | - Pierce Daly
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601
| | - Yvonne Paterson
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Layton Woolford
- Division of Hematology and Oncology, Department of Internal Medicine, University of Texas Southwestern, Dallas, TX 75390.,Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Alana Christie
- Division of Hematology and Oncology, Department of Internal Medicine, University of Texas Southwestern, Dallas, TX 75390.,Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Roy Elias
- Division of Hematology and Oncology, Department of Internal Medicine, University of Texas Southwestern, Dallas, TX 75390.,Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - James Brugarolas
- Division of Hematology and Oncology, Department of Internal Medicine, University of Texas Southwestern, Dallas, TX 75390.,Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Tao Wang
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390; and.,The Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Magdalena Karbowniczek
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601
| | - Maciej M Markiewski
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601;
| |
Collapse
|
26
|
Liu J, Memon AA, Lyu L, Siedlecki A. Comment on "Pharmacology, Pharmacokinetics and Pharmacodynamics of Eculizumab, and Possibilities for an Individualized Approach to Eculizumab". Clin Pharmacokinet 2020; 59:1641-1643. [PMID: 33118149 DOI: 10.1007/s40262-020-00950-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2020] [Indexed: 11/25/2022]
Affiliation(s)
- Jialing Liu
- Brigham and Women's Hospital, Boston, MA, USA
- Guangzhou University of Chinese Medicine, The Second Affiliated Hospital of Chinese Medicine, Guangzhou, China
| | | | - Lingna Lyu
- Brigham and Women's Hospital, Boston, MA, USA
- Beijing Chest Hospital, Capital Medical University, Beijing, China
| | | |
Collapse
|
27
|
Holter JC, Pischke SE, de Boer E, Lind A, Jenum S, Holten AR, Tonby K, Barratt-Due A, Sokolova M, Schjalm C, Chaban V, Kolderup A, Tran T, Tollefsrud Gjølberg T, Skeie LG, Hesstvedt L, Ormåsen V, Fevang B, Austad C, Müller KE, Fladeby C, Holberg-Petersen M, Halvorsen B, Müller F, Aukrust P, Dudman S, Ueland T, Andersen JT, Lund-Johansen F, Heggelund L, Dyrhol-Riise AM, Mollnes TE. Systemic complement activation is associated with respiratory failure in COVID-19 hospitalized patients. Proc Natl Acad Sci U S A 2020; 117:25018-25025. [PMID: 32943538 PMCID: PMC7547220 DOI: 10.1073/pnas.2010540117] [Citation(s) in RCA: 276] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Respiratory failure in the acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is hypothesized to be driven by an overreacting innate immune response, where the complement system is a key player. In this prospective cohort study of 39 hospitalized coronavirus disease COVID-19 patients, we describe systemic complement activation and its association with development of respiratory failure. Clinical data and biological samples were obtained at admission, days 3 to 5, and days 7 to 10. Respiratory failure was defined as PO2/FiO2 ratio of ≤40 kPa. Complement activation products covering the classical/lectin (C4d), alternative (C3bBbP) and common pathway (C3bc, C5a, and sC5b-9), the lectin pathway recognition molecule MBL, and antibody serology were analyzed by enzyme-immunoassays; viral load by PCR. Controls comprised healthy blood donors. Consistently increased systemic complement activation was observed in the majority of COVID-19 patients during hospital stay. At admission, sC5b-9 and C4d were significantly higher in patients with than without respiratory failure (P = 0.008 and P = 0.034). Logistic regression showed increasing odds of respiratory failure with sC5b-9 (odds ratio 31.9, 95% CI 1.4 to 746, P = 0.03) and need for oxygen therapy with C4d (11.7, 1.1 to 130, P = 0.045). Admission sC5b-9 and C4d correlated significantly to ferritin (r = 0.64, P < 0.001; r = 0.69, P < 0.001). C4d, sC5b-9, and C5a correlated with antiviral antibodies, but not with viral load. Systemic complement activation is associated with respiratory failure in COVID-19 patients and provides a rationale for investigating complement inhibitors in future clinical trials.
Collapse
Affiliation(s)
- Jan C Holter
- Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
| | - Soeren E Pischke
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway;
- Division of Emergencies and Critical Care, Oslo University Hospital, 0424 Oslo, Norway
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
| | - Eline de Boer
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
| | - Andreas Lind
- Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
| | - Synne Jenum
- Department of Infectious Diseases, Oslo University Hospital, 0424 Oslo, Norway
| | - Aleksander R Holten
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Acute Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - Kristian Tonby
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Infectious Diseases, Oslo University Hospital, 0424 Oslo, Norway
| | - Andreas Barratt-Due
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Division of Emergencies and Critical Care, Oslo University Hospital, 0424 Oslo, Norway
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
| | - Marina Sokolova
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
| | - Camilla Schjalm
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
| | - Viktoriia Chaban
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
| | - Anette Kolderup
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Pharmacology, University of Oslo, 0315 Oslo, Norway
| | - Trung Tran
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
| | - Torleif Tollefsrud Gjølberg
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
- Department of Pharmacology, University of Oslo, 0315 Oslo, Norway
- Department of Ophthalmology, Oslo University Hospital, 0424 Oslo, Norway
| | - Linda G Skeie
- Department of Infectious Diseases, Oslo University Hospital, 0424 Oslo, Norway
| | - Liv Hesstvedt
- Department of Infectious Diseases, Oslo University Hospital, 0424 Oslo, Norway
| | - Vidar Ormåsen
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Infectious Diseases, Oslo University Hospital, 0424 Oslo, Norway
| | - Børre Fevang
- Research Institute of Internal Medicine, Oslo University Hospital, 0424 Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, 0424 Oslo, Norway
| | - Cathrine Austad
- Department of Internal Medicine, Vestre Viken Hospital Trust, 3004 Drammen, Norway
| | - Karl Erik Müller
- Department of Internal Medicine, Vestre Viken Hospital Trust, 3004 Drammen, Norway
- Department of Clinical Science, Faculty of Medicine, University of Bergen, 5007 Bergen, Norway
| | - Cathrine Fladeby
- Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
| | | | - Bente Halvorsen
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - Fredrik Müller
- Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
| | - Pål Aukrust
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, 0424 Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, 0424 Oslo, Norway
- Faculty of Health Sciences, K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, 9037 Tromsø, Norway
| | - Susanne Dudman
- Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
| | - Thor Ueland
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, 0424 Oslo, Norway
- Faculty of Health Sciences, K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, 9037 Tromsø, Norway
| | - Jan Terje Andersen
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
| | - Fridtjof Lund-Johansen
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
- ImmunoLingo Convergence Centre, University of Oslo, 0315 Oslo, Norway
| | - Lars Heggelund
- Department of Internal Medicine, Vestre Viken Hospital Trust, 3004 Drammen, Norway
- Department of Clinical Science, Faculty of Medicine, University of Bergen, 5007 Bergen, Norway
| | - Anne M Dyrhol-Riise
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Infectious Diseases, Oslo University Hospital, 0424 Oslo, Norway
| | - Tom E Mollnes
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
- Faculty of Health Sciences, K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, 9037 Tromsø, Norway
- Research Laboratory, Nordland Hospital Bodø, 8092 Bodø, Norway
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
28
|
Bernuy-Guevara C, Chehade H, Muller YD, Vionnet J, Cachat F, Guzzo G, Ochoa-Sangrador C, Álvarez FJ, Teta D, Martín-García D, Adler M, de Paz FJ, Lizaraso-Soto F, Pascual M, Herrera-Gómez F. The Inhibition of Complement System in Formal and Emerging Indications: Results from Parallel One-Stage Pairwise and Network Meta-Analyses of Clinical Trials and Real-Life Data Studies. Biomedicines 2020; 8:biomedicines8090355. [PMID: 32948059 PMCID: PMC7554929 DOI: 10.3390/biomedicines8090355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/12/2020] [Accepted: 09/13/2020] [Indexed: 12/15/2022] Open
Abstract
This manuscript presents quantitative findings on the actual effectiveness of terminal complement component 5 (C5) inhibitors and complement component 1 (C1) esterase inhibitors through their formal and common “off-label” (compassionate) indications. The results emanated from pairwise and network meta-analyses to present evidence until September 2019. Clinical trials (CT) and real-life non-randomized studies of the effects of interventions (NRSI) are consistent on the benefits of C5 inhibitors and of the absence of effects of C1 esterase inhibitors (n = 7484): Mathematically, eculizumab (surface under the cumulative ranking area (SUCRA) >0.6) and ravulizumab (SUCRA ≥ 0.7) were similar in terms of their protective effect on hemolysis in paroxysmal nocturnal hemoglobinuria (PNH), thrombotic microangiopathy (TMA) in atypical hemolytic uremic syndrome (aHUS), and acute kidney injury (AKI) in aHUS, in comparison to pre-/off-treatment state and/or placebo (SUCRA < 0.01), and eculizumab was efficacious on thrombotic events in PNH (odds ratio (OR)/95% confidence interval (95% CI) in CT and real-life NRSI, 0.07/0.03 to 0.19, 0.24/0.17 to 0.33) and chronic kidney disease (CKD) occurrence/progression in PNH (0.31/0.10 to 0.97, 0.66/0.44 to 0.98). In addition, meta-analysis on clinical trials shows that eculizumab mitigates a refractory generalized myasthenia gravis (rgMG) crisis (0.29/0.13 to 0.61) and prevents new acute antibody-mediated rejection (AMR) episodes in kidney transplant recipients (0.25/0.13 to 0.49). The update of findings from this meta-analysis will be useful to promote a better use of complement inhibitors, and to achieve personalization of treatments with this class of drugs.
Collapse
Affiliation(s)
- Coralina Bernuy-Guevara
- Pharmacological Big Data Laboratory, University of Valladolid, 47005 Valladolid, Spain; (C.B.-G.); (F.J.Á.); (F.J.d.P.); (F.L.-S.)
| | - Hassib Chehade
- Pediatric Nephrology Unit, Lausanne University Hospital and University of Lausanne, 1100 Lausanne, Switzerland; (H.C.); (F.C.)
| | - Yannick D. Muller
- Transplantation Center, Lausanne University Hospital and University of Lausanne, 1100 Lausanne, Switzerland; (Y.D.M.); (J.V.); (G.G.); (M.P.)
| | - Julien Vionnet
- Transplantation Center, Lausanne University Hospital and University of Lausanne, 1100 Lausanne, Switzerland; (Y.D.M.); (J.V.); (G.G.); (M.P.)
- King’s College London, London WC2R 2LS, UK
| | - François Cachat
- Pediatric Nephrology Unit, Lausanne University Hospital and University of Lausanne, 1100 Lausanne, Switzerland; (H.C.); (F.C.)
| | - Gabriella Guzzo
- Transplantation Center, Lausanne University Hospital and University of Lausanne, 1100 Lausanne, Switzerland; (Y.D.M.); (J.V.); (G.G.); (M.P.)
| | | | - F. Javier Álvarez
- Pharmacological Big Data Laboratory, University of Valladolid, 47005 Valladolid, Spain; (C.B.-G.); (F.J.Á.); (F.J.d.P.); (F.L.-S.)
- Ethics Committee of Drug Research–east Valladolid area, University Clinical Hospital of Valladolid, 47005 Valladolid, Spain
| | - Daniel Teta
- Department of Nephrology, Hôpital du Valais, 1950 Sion, Switzerland;
| | - Débora Martín-García
- Clinical Nephrology Unit, University Clinical Hospital of Valladolid, 47003 Valladolid, Spain;
| | - Marcel Adler
- Center for Medical Oncology & Hematology, Hospital Thun, 3600 Thun, Switzerland;
| | - Félix J. de Paz
- Pharmacological Big Data Laboratory, University of Valladolid, 47005 Valladolid, Spain; (C.B.-G.); (F.J.Á.); (F.J.d.P.); (F.L.-S.)
| | - Frank Lizaraso-Soto
- Pharmacological Big Data Laboratory, University of Valladolid, 47005 Valladolid, Spain; (C.B.-G.); (F.J.Á.); (F.J.d.P.); (F.L.-S.)
- Centro de Investigación en Salud Pública, Instituto de Investigación de la Facultad de Medicina Humana, Universidad de San Martín de Porres, Lima 15024, Peru
| | - Manuel Pascual
- Transplantation Center, Lausanne University Hospital and University of Lausanne, 1100 Lausanne, Switzerland; (Y.D.M.); (J.V.); (G.G.); (M.P.)
| | - Francisco Herrera-Gómez
- Pharmacological Big Data Laboratory, University of Valladolid, 47005 Valladolid, Spain; (C.B.-G.); (F.J.Á.); (F.J.d.P.); (F.L.-S.)
- Transplantation Center, Lausanne University Hospital and University of Lausanne, 1100 Lausanne, Switzerland; (Y.D.M.); (J.V.); (G.G.); (M.P.)
- Centro de Investigación en Salud Pública, Instituto de Investigación de la Facultad de Medicina Humana, Universidad de San Martín de Porres, Lima 15024, Peru
- Department of Nephrology, Hospital Virgen de la Concha, 49022 Zamora, Spain
- Castile and León’s Research Consolidated Unit n° 299, 47011 Valladolid, Spain
- Correspondence: ; Tel.: +34-983-423077
| |
Collapse
|
29
|
Koelman DLH, Brouwer MC, van de Beek D. Targeting the complement system in bacterial meningitis. Brain 2020; 142:3325-3337. [PMID: 31373605 PMCID: PMC6821383 DOI: 10.1093/brain/awz222] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/15/2019] [Accepted: 05/24/2019] [Indexed: 12/12/2022] Open
Abstract
Bacterial meningitis is most commonly caused by Streptococcus pneumoniae and Neisseria meningitidis and continues to pose a major public health threat. Morbidity and mortality of meningitis are driven by an uncontrolled host inflammatory response. This comprehensive update evaluates the role of the complement system in upregulating and maintaining the inflammatory response in bacterial meningitis. Genetic variation studies, complement level measurements in blood and CSF, and experimental work have together led to the identification of anaphylatoxin C5a as a promising treatment target in bacterial meningitis. In animals and patients with pneumococcal meningitis, the accumulation of neutrophils in the CSF was mainly driven by C5-derived chemotactic activity and correlated positively with disease severity and outcome. In murine pneumococcal meningitis, adjunctive treatment with C5 antibodies prevented brain damage and death. Several recently developed therapeutics target C5 conversion, C5a, or its receptor C5aR. Caution is warranted because treatment with C5 antibodies such as eculizumab also inhibits the formation of the membrane attack complex, which may result in decreased meningococcal killing and increased meningococcal disease susceptibility. The use of C5a or C5aR antagonists to specifically target the harmful anaphylatoxins-induced effects, therefore, are most promising and present opportunities for a phase 2 clinical trial.
Collapse
Affiliation(s)
- Diederik L H Koelman
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Meibergdreef 9, AZ, Amsterdam, The Netherlands
| | - Matthijs C Brouwer
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Meibergdreef 9, AZ, Amsterdam, The Netherlands
| | - Diederik van de Beek
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Meibergdreef 9, AZ, Amsterdam, The Netherlands
| |
Collapse
|
30
|
Halkjær L, Troldborg A, Pedersen H, Jensen L, Hansen AG, Hansen TK, Bjerre M, Østergaard JA, Thiel S. Complement Receptor 2 Based Immunoassay Measuring Activation of the Complement System at C3-Level in Plasma Samples From Mice and Humans. Front Immunol 2020; 11:774. [PMID: 32431705 PMCID: PMC7214740 DOI: 10.3389/fimmu.2020.00774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/06/2020] [Indexed: 12/15/2022] Open
Abstract
We aimed at establishing a sensitive and robust assay for estimation of systemic complement activation at complement component C3 level in mouse and human plasma samples. In order to capture the activation products iC3b and C3dg in a specific and physiological relevant manner we utilized a construct consisting of the iC3b/C3dg-binding site of human complement receptor 2 (CR2) attached to an Fc-part of mouse IgG. This construct binds C3dg and iC3b from both mice and humans. We purified the CR2-IgG construct from mouse B myeloma cell line supernatants, J558L-CR2-IgG, by protein G affinity chromatography. The CR2-IgG construct was used for capturing C3 fragments in microtiter wells and an anti-mouse or an anti-human-C3 antibody was used for detection of bound C3 fragments. Initially we tested the specificity of the assays with the use of purified C3 fragments. Further, with the use of the CR2-based assay, we measured an up to three-fold higher signal in activated mouse serum as compared to non-activated mouse serum, whereas activated serum from a C3 knock-out mouse gave no signal. We tested in vivo generated samples from a mouse experiment; complement activation was induced by injecting cobra venom factor or heat aggregated IgG into C57bl6 mice, followed by withdrawal of EDTA blood samples at different time points and measurement of iC3b/C3dg. We observed a clear time-dependent distinction in signals between samples with expected high and low complement activation. Furthermore, with the use of the assay for human C3 fragments, we observed that patients with systemic lupus erythematosus (SLE) (n = 144) had significantly higher iC3b/C3dg levels as compared to healthy individuals (n = 144) (p < 0.0001). We present two functional immunoassays, that are able to measure systemic levels of the C3-activation products iC3b and C3dg in mice and humans. To our knowledge, these are the first assays for complement activation that use a physiological relevant capture construct such as CR2. These assays will be a relevant tool when investigating mouse models and human diseases involving the complement system.
Collapse
Affiliation(s)
- Lene Halkjær
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark.,Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark.,Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Anne Troldborg
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark.,Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark.,Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| | - Henrik Pedersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Lisbeth Jensen
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | | | | | - Mette Bjerre
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Jakob Appel Østergaard
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Steffen Thiel
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
31
|
Franzin R, Stasi A, Fiorentino M, Stallone G, Cantaluppi V, Gesualdo L, Castellano G. Inflammaging and Complement System: A Link Between Acute Kidney Injury and Chronic Graft Damage. Front Immunol 2020; 11:734. [PMID: 32457738 PMCID: PMC7221190 DOI: 10.3389/fimmu.2020.00734] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
The aberrant activation of complement system in several kidney diseases suggests that this pillar of innate immunity has a critical role in the pathophysiology of renal damage of different etiologies. A growing body of experimental evidence indicates that complement activation contributes to the pathogenesis of acute kidney injury (AKI) such as delayed graft function (DGF) in transplant patients. AKI is characterized by the rapid loss of the kidney's excretory function and is a complex syndrome currently lacking a specific medical treatment to arrest or attenuate progression in chronic kidney disease (CKD). Recent evidence suggests that independently from the initial trigger (i.e., sepsis or ischemia/reperfusions injury), an episode of AKI is strongly associated with an increased risk of subsequent CKD. The AKI-to-CKD transition may involve a wide range of mechanisms including scar-forming myofibroblasts generated from different sources, microvascular rarefaction, mitochondrial dysfunction, or cell cycle arrest by the involvement of epigenetic, gene, and protein alterations leading to common final signaling pathways [i.e., transforming growth factor beta (TGF-β), p16 ink4a , Wnt/β-catenin pathway] involved in renal aging. Research in recent years has revealed that several stressors or complications such as rejection after renal transplantation can lead to accelerated renal aging with detrimental effects with the establishment of chronic proinflammatory cellular phenotypes within the kidney. Despite a greater understanding of these mechanisms, the role of complement system in the context of the AKI-to-CKD transition and renal inflammaging is still poorly explored. The purpose of this review is to summarize recent findings describing the role of complement in AKI-to-CKD transition. We will also address how and when complement inhibitors might be used to prevent AKI and CKD progression, therefore improving graft function.
Collapse
Affiliation(s)
- Rossana Franzin
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
- Department Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Alessandra Stasi
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Marco Fiorentino
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Vincenzo Cantaluppi
- Department Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe Castellano
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
32
|
Nieuwenhuijs-Moeke GJ, Pischke SE, Berger SP, Sanders JSF, Pol RA, Struys MMRF, Ploeg RJ, Leuvenink HGD. Ischemia and Reperfusion Injury in Kidney Transplantation: Relevant Mechanisms in Injury and Repair. J Clin Med 2020; 9:jcm9010253. [PMID: 31963521 PMCID: PMC7019324 DOI: 10.3390/jcm9010253] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023] Open
Abstract
Ischemia and reperfusion injury (IRI) is a complex pathophysiological phenomenon, inevitable in kidney transplantation and one of the most important mechanisms for non- or delayed function immediately after transplantation. Long term, it is associated with acute rejection and chronic graft dysfunction due to interstitial fibrosis and tubular atrophy. Recently, more insight has been gained in the underlying molecular pathways and signalling cascades involved, which opens the door to new therapeutic opportunities aiming to reduce IRI and improve graft survival. This review systemically discusses the specific molecular pathways involved in the pathophysiology of IRI and highlights new therapeutic strategies targeting these pathways.
Collapse
Affiliation(s)
- Gertrude J. Nieuwenhuijs-Moeke
- Department of Anesthesiology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
- Correspondence: ; Tel.: +31-631623075
| | - Søren E. Pischke
- Clinic for Emergencies and Critical Care, Department of Anesthesiology, Department of Immunology, Oslo University Hospital, 4950 Nydalen, 0424 Oslo, Norway;
| | - Stefan P. Berger
- Department of Nephrology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (S.P.B.); (J.S.F.S.)
| | - Jan Stephan F. Sanders
- Department of Nephrology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (S.P.B.); (J.S.F.S.)
| | - Robert A. Pol
- Department of Surgery, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (R.A.P.); (R.J.P.); (H.G.D.L.)
| | - Michel M. R. F. Struys
- Department of Anesthesiology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
- Department of Basic and Applied Medical Sciences, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Rutger J. Ploeg
- Department of Surgery, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (R.A.P.); (R.J.P.); (H.G.D.L.)
- Nuffield Department of Surgical Sciences, University of Oxford, Headington, Oxford OX3 9DU, UK
| | - Henri G. D. Leuvenink
- Department of Surgery, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (R.A.P.); (R.J.P.); (H.G.D.L.)
| |
Collapse
|
33
|
|
34
|
Mohebnasab M, Eriksson O, Persson B, Sandholm K, Mohlin C, Huber-Lang M, Keating BJ, Ekdahl KN, Nilsson B. Current and Future Approaches for Monitoring Responses to Anti-complement Therapeutics. Front Immunol 2019; 10:2539. [PMID: 31787968 PMCID: PMC6856077 DOI: 10.3389/fimmu.2019.02539] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 10/14/2019] [Indexed: 01/13/2023] Open
Abstract
Aberrations in complement system functions have been identified as either direct or indirect pathophysiological mechanisms in many diseases and pathological conditions, such as infections, autoimmune diseases, inflammation, malignancies, and allogeneic transplantation. Currently available techniques to study complement include quantification of (a) individual complement components, (b) complement activation products, and (c) molecular mechanisms/function. An emerging area of major interest in translational studies aims to study and monitor patients on complement regulatory drugs for efficacy as well as adverse events. This area is progressing rapidly with several anti-complement therapeutics under development, in clinical trials, or already in clinical use. In this review, we summarized the appropriate indications, techniques, and interpretations of basic complement analyses, exemplified by a number of clinical disorders.
Collapse
Affiliation(s)
- Maedeh Mohebnasab
- Division of Transplantation, Department of Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Oskar Eriksson
- Rudbeck Laboratory C5:3, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Barbro Persson
- Rudbeck Laboratory C5:3, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Kerstin Sandholm
- Centre of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Camilla Mohlin
- Centre of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Markus Huber-Lang
- Institute for Clinical and Experimental Trauma Immunology, University Hospital of Ulm, Ulm, Germany
| | - Brendan J Keating
- Division of Transplantation, Department of Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Kristina N Ekdahl
- Rudbeck Laboratory C5:3, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Centre of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Bo Nilsson
- Rudbeck Laboratory C5:3, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
35
|
Raina R, Grewal MK, Radhakrishnan Y, Tatineni V, DeCoy M, Burke LLG, Bagga A. Optimal management of atypical hemolytic uremic disease: challenges and solutions. Int J Nephrol Renovasc Dis 2019; 12:183-204. [PMID: 31564951 PMCID: PMC6732511 DOI: 10.2147/ijnrd.s215370] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 07/23/2019] [Indexed: 12/24/2022] Open
Abstract
Atypical hemolytic uremic syndrome (aHUS) is a chronic life threatening condition that arises from genetic abnormalities resulting in uncontrolled complement amplifying activity. The introduction of eculizumab, the humanized monoclonal antibody, has brought about a paradigm shift in the management of aHUS. However, there are many knowledge gaps, diagnostic issues, access and cost issues, and patient or physician challenges associated with the use of this agent. Limited data on the natural history of aHUS along with the underlying genetic mutations make it difficult to predict the relapses and thereby raising concerns about the appropriate duration and monitoring of treatment. In this review, we discuss the safety and efficacy of eculizumab in patients with aHUS and its associated challenges.
Collapse
Affiliation(s)
- Rupesh Raina
- Department of Nephrology, Akron Children’s Hospital, Akron, OH, USA
- Akron Nephrology Associates, Cleveland Clinic Akron General, Akron, OH, USA
| | - Manpreet K Grewal
- Akron Nephrology Associates, Cleveland Clinic Akron General, Akron, OH, USA
| | | | - Vineeth Tatineni
- Department of Internal Medicine, Summa Health, Akron City Hospital, Akron, OH, USA
| | - Meredith DeCoy
- Atypical Hemolytic Uremic Syndrome Alliance, Cape Elizabeth, ME, USA
| | - Linda LG Burke
- Atypical Hemolytic Uremic Syndrome Alliance, Cape Elizabeth, ME, USA
| | - Arvind Bagga
- Division of Paediatric Nephrology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
36
|
Nizami S, Hall‐Roberts H, Warrier S, Cowley SA, Di Daniel E. Microglial inflammation and phagocytosis in Alzheimer's disease: Potential therapeutic targets. Br J Pharmacol 2019; 176:3515-3532. [PMID: 30740661 PMCID: PMC6715590 DOI: 10.1111/bph.14618] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/19/2018] [Accepted: 01/15/2019] [Indexed: 12/20/2022] Open
Abstract
One of the largest unmet medical needs is a disease-modifying treatment for Alzheimer's disease (AD). Recently, the role of microglia in disease, particularly AD, has gained great interest, following the identification of several disease risk-associated genes that are highly expressed in microglia. Microglia play a critical homeostatic role in the brain, with neuroinflammatory and phagocytic mechanisms being of particular importance. Here, we review the role of NLRP3, the complement system, and the triggering receptor expressed in myeloid cells 2 (TREM2) in modulating microglial functions. We have reviewed the targets, their molecular pathways and the therapeutic interventions aimed at modulating these targets, in the hope of discovering a novel therapeutic approach for the treatment of AD. LINKED ARTICLES: This article is part of a themed section on Therapeutics for Dementia and Alzheimer's Disease: New Directions for Precision Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.18/issuetoc.
Collapse
Affiliation(s)
- Sohaib Nizami
- Alzheimer's Research UK Oxford Drug Discovery Institute, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Hazel Hall‐Roberts
- Alzheimer's Research UK Oxford Drug Discovery Institute, Nuffield Department of MedicineUniversity of OxfordOxfordUK
- James Martin Stem Cell Facility, Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Sharat Warrier
- Alzheimer's Research UK Oxford Drug Discovery Institute, Nuffield Department of MedicineUniversity of OxfordOxfordUK
- James Martin Stem Cell Facility, Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Sally A. Cowley
- James Martin Stem Cell Facility, Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Elena Di Daniel
- Alzheimer's Research UK Oxford Drug Discovery Institute, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| |
Collapse
|
37
|
Schröder-Braunstein J, Kirschfink M. Complement deficiencies and dysregulation: Pathophysiological consequences, modern analysis, and clinical management. Mol Immunol 2019; 114:299-311. [PMID: 31421540 DOI: 10.1016/j.molimm.2019.08.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/31/2019] [Accepted: 08/03/2019] [Indexed: 02/07/2023]
Abstract
Complement defects are associated with an enhanced risk of a broad spectrum of infectious as well as systemic or local inflammatory and thrombotic disorders. Inherited complement deficiencies have been described for virtually all complement components but can be mimicked by autoantibodies, interfering with the activity of specific complement components, convertases or regulators. While being rare, diseases related to complement deficiencies are often severe with a frequent but not exclusive manifestation during childhood. Whereas defects of early components of the classical pathway significantly increase the risk of autoimmune disorders, lack of components of the terminal pathway as well as of properdin are associated with an enhanced susceptibility to meningococcal infections. The impaired synthesis or function of C1 inhibitor results in the development of hereditary angioedema (HAE). Furthermore, complement dysregulation causes renal disorders such as atypical hemolytic uremic syndrome (aHUS) or C3 glomerulopathy (C3G) but also age-related macular degeneration (AMD). While paroxysmal nocturnal hemoglobinuria (PNH) results from the combined deficiency of the regulatory complement proteins CD55 and CD59, which is caused by somatic mutation of a common membrane anchor, isolated CD55 or CD59 deficiency is associated with the CHAPLE syndrome and polyneuropathy, respectively. Here, we provide an overview on clinical disorders related to complement deficiencies or dysregulation and describe diagnostic strategies required for their comprehensive molecular characterization - a prerequisite for informed decisions on the therapeutic management of these disorders.
Collapse
Affiliation(s)
- Jutta Schröder-Braunstein
- University of Heidelberg, Institute of Immunology, Im Neuenheimer Feld 305, 69120 Heidelberg, Germany
| | - Michael Kirschfink
- University of Heidelberg, Institute of Immunology, Im Neuenheimer Feld 305, 69120 Heidelberg, Germany.
| |
Collapse
|
38
|
El Sissy C, Rosain J, Vieira-Martins P, Bordereau P, Gruber A, Devriese M, de Pontual L, Taha MK, Fieschi C, Picard C, Frémeaux-Bacchi V. Clinical and Genetic Spectrum of a Large Cohort With Total and Sub-total Complement Deficiencies. Front Immunol 2019; 10:1936. [PMID: 31440263 PMCID: PMC6694794 DOI: 10.3389/fimmu.2019.01936] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/30/2019] [Indexed: 01/11/2023] Open
Abstract
The complement system is crucial for defense against pathogens and the removal of dying cells or immune complexes. Thus, clinical indications for possible complete complement deficiencies include, among others, recurrent mild or serious bacterial infections as well as autoimmune diseases (AID). The diagnostic approach includes functional activity measurements of the classical (CH50) and alternative pathway (AP50) and the determination of the C3 and C4 levels, followed by the quantitative analysis of individual components or regulators. When biochemical analysis reveals the causal abnormality of the complement deficiency (CD), molecular mechanisms remains frequently undetermined. Here, using direct sequencing analysis of the coding region we report the pathogenic variants spectrum that underlie the total or subtotal complement deficiency in 212 patients. We identified 107 different hemizygous, homozygous, or compound heterozygous pathogenic variants in 14 complement genes [C1Qβ (n = 1), C1r (n = 3), C1s (n = 2), C2 (n = 12), C3 (n = 5), C5 (n = 12), C6 (n = 9), C7 (n = 17), C8 β (n = 7), C9 (n = 3), CFH (n = 7), CFI (n = 18), CFP (n = 10), CFD (n = 2)]. Molecular analysis identified 17 recurrent pathogenic variants in 6 genes (C2, CFH, C5, C6, C7, and C8). More than half of the pathogenic variants identified in unrelated patients were also found in healthy controls from the same geographic area. Our study confirms the strong association of meningococcal infections with terminal pathway deficiency and highlights the risk of pneumococcal and auto-immune diseases in the classical and alternative pathways. Results from this large genetic investigation provide evidence of a restricted number of molecular mechanisms leading to complement deficiency and describe the clinical potential adverse events of anti-complement therapy.
Collapse
Affiliation(s)
- Carine El Sissy
- Assistance Publique - Hôpitaux de Paris (AP-HP), Laboratoire d'Immunologie, Hôpital Européen Georges-Pompidou, Paris, France
| | - Jérémie Rosain
- Assistance Publique - Hôpitaux de Paris (AP-HP), Laboratoire d'Immunologie, Hôpital Européen Georges-Pompidou, Paris, France
| | - Paula Vieira-Martins
- Assistance Publique - Hôpitaux de Paris (AP-HP), Laboratoire d'Immunologie, Hôpital Européen Georges-Pompidou, Paris, France
| | - Pauline Bordereau
- Assistance Publique - Hôpitaux de Paris (AP-HP), Laboratoire d'Immunologie, Hôpital Européen Georges-Pompidou, Paris, France
| | - Aurélia Gruber
- Assistance Publique - Hôpitaux de Paris (AP-HP), Laboratoire d'Immunologie, Hôpital Européen Georges-Pompidou, Paris, France
| | - Magali Devriese
- Assistance Publique - Hôpitaux de Paris (AP-HP), Laboratoire d'Immunologie, Hôpital Européen Georges-Pompidou, Paris, France
| | - Loïc de Pontual
- Pediatrics Department, Jean Verdier Hospital, Assistance Publique des Hôpitaux de Paris, Paris 13 University, Bondy, France
| | - Muhamed-Kheir Taha
- Invasive Bacterial Infection and National Reference Center for Meningococci, Pasteur Institut, Paris, France
| | - Claire Fieschi
- Department of Clinical Immunology, Hôpital Saint-Louis, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France.,Inserm U1126, Centre Hayem, Hôpital Saint-Louis, Paris, France
| | - Capucine Picard
- Paris University, INSERM UMR1163, Imagine Institute, Paris, France.,Study Center for Primary Immunodeficiencies (AP-HP), Hôpital Necker-Enfants maladies Hospital, Paris, France
| | - Véronique Frémeaux-Bacchi
- Assistance Publique - Hôpitaux de Paris (AP-HP), Laboratoire d'Immunologie, Hôpital Européen Georges-Pompidou, Paris, France.,Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Complement and Diseases Team, Paris, France
| |
Collapse
|
39
|
Riihilä P, Nissinen L, Knuutila J, Rahmati Nezhad P, Viiklepp K, Kähäri VM. Complement System in Cutaneous Squamous Cell Carcinoma. Int J Mol Sci 2019; 20:ijms20143550. [PMID: 31331124 PMCID: PMC6678994 DOI: 10.3390/ijms20143550] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/16/2022] Open
Abstract
Epidermal keratinocyte-derived cutaneous squamous cell carcinoma (cSCC) is the most common metastatic skin cancer with high mortality rates in the advanced stage. Chronic inflammation is a recognized risk factor for cSCC progression and the complement system, as a part of innate immunity, belongs to the microenvironment of tumors. The complement system is a double-edged sword in cancer, since complement activation is involved in anti-tumor cytotoxicity and immune responses, but it also promotes cancer progression directly and indirectly. Recently, the role of several complement components and inhibitors in the regulation of progression of cSCC has been shown. In this review, we will discuss the role of complement system components and inhibitors as biomarkers and potential new targets for therapeutic intervention in cSCC.
Collapse
Affiliation(s)
- Pilvi Riihilä
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Liisa Nissinen
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Jaakko Knuutila
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Pegah Rahmati Nezhad
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Kristina Viiklepp
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Veli-Matti Kähäri
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland.
- The Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland.
| |
Collapse
|
40
|
Laskowski J, Philbrook HT, Parikh CR, Thurman JM. Urine complement activation fragments are increased in patients with kidney injury after cardiac surgery. Am J Physiol Renal Physiol 2019; 317:F650-F657. [PMID: 31313951 DOI: 10.1152/ajprenal.00130.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Experiments in mouse models have shown that the complement cascade is activated within the kidney after ischemia-reperfusion and that complement activation contributes to tubular injury in this setting. Less is known, however, about complement activation in human kidneys after ischemia or whether complement activation in the tubulointerstitium can be detected by measurement of complement fragments in the urine. We hypothesized that urine biomarkers of complement activation would rapidly increase in patients who develop ischemic acute kidney injury, signaling complement activation within the kidney. We confirmed that the alternative pathway of complement is activated in the kidneys of mice after ischemia-reperfusion, and we found that levels of factor B fragments (generated during alternative pathway activation) rapidly increase in the urine. We next performed a case-control study in which we measured complement fragments in human urine samples from patients undergoing cardiac surgery using ELISAs. The level of Ba increased after cardiac surgery and was significantly higher in patients who developed acute kidney injury. The increase in Ba also correlated with magnitude of the subsequent rise in serum creatinine and with the need for hemodialysis during the hospitalization. These findings demonstrate that the alternative pathway of complement is activated in patients who develop acute kidney injury after cardiac surgery and that increases in the level of urine Ba may be a predictive and functional biomarker of severe kidney injury.
Collapse
Affiliation(s)
- Jennifer Laskowski
- Division of Nephrology, University of Colorado School of Medicine, Aurora, Colorado
| | | | - Chirag R Parikh
- Division of Nephrology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Joshua M Thurman
- Division of Nephrology, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
41
|
Vinterstare J, Hegemann A, Nilsson PA, Hulthén K, Brönmark C. Defence versus defence: Are crucian carp trading off immune function against predator‐induced morphology? J Anim Ecol 2019; 88:1510-1521. [DOI: 10.1111/1365-2656.13047] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 05/10/2019] [Indexed: 02/04/2023]
Affiliation(s)
- Jerker Vinterstare
- Department of Biology, Aquatic Ecology Unit, Ecology Building Lund University Lund Sweden
| | - Arne Hegemann
- Department of Biology, Aquatic Ecology Unit, Ecology Building Lund University Lund Sweden
| | - Per. Anders Nilsson
- Department of Biology, Aquatic Ecology Unit, Ecology Building Lund University Lund Sweden
- Department of Environmental and Life Sciences Karlstad University Karlstad Sweden
| | - Kaj Hulthén
- Department of Biology, Aquatic Ecology Unit, Ecology Building Lund University Lund Sweden
| | - Christer Brönmark
- Department of Biology, Aquatic Ecology Unit, Ecology Building Lund University Lund Sweden
| |
Collapse
|
42
|
Parker SE, Hanton AM, Stefanou SN, Noakes PG, Woodruff TM, Lee JD. Revisiting the role of the innate immune complement system in ALS. Neurobiol Dis 2019; 127:223-232. [DOI: 10.1016/j.nbd.2019.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/21/2019] [Accepted: 03/04/2019] [Indexed: 12/11/2022] Open
|
43
|
A small-molecule inhibitor of C5 complement protein. Nat Chem Biol 2019; 15:666-668. [PMID: 31209353 DOI: 10.1038/s41589-019-0303-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 05/03/2019] [Indexed: 11/08/2022]
Abstract
The complement pathway is an important part of the immune system, and uncontrolled activation is implicated in many diseases. The human complement component 5 protein (C5) is a validated drug target within the complement pathway, as an anti-C5 antibody (Soliris) is an approved therapy for paroxysmal nocturnal hemoglobinuria. Here, we report the identification, optimization and mechanism of action for the first small-molecule inhibitor of C5 complement protein.
Collapse
|
44
|
Høiland II, Liang RA, Braekkan SK, Pettersen K, Ludviksen JK, Latysheva N, Snir O, Ueland T, Hindberg K, Mollnes TE, Hansen JB. Complement activation assessed by the plasma terminal complement complex and future risk of venous thromboembolism. J Thromb Haemost 2019; 17:934-943. [PMID: 30920726 DOI: 10.1111/jth.14438] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/25/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND It remains uncertain whether activation of the complement system, assessed by the soluble terminal C5b-9 complement complex (plasma TCC), is associated with future risk of incident venous thromboembolism (VTE). OBJECTIVES To investigate the association between plasma levels of TCC and future risk of incident VTE in a nested case-control study, and to explore genetic variants associated with TCC using protein quantitative trait loci analysis of exome sequencing data. METHODS We sampled 415 VTE cases and 848 age- and sex-matched controls from a population-based cohort, the Tromsø study. Logistic regression models were used to calculate odds ratios with 95% confidence intervals for VTE across quartiles of plasma levels of TCC. Whole exome sequencing was conducted using the Agilent SureSelect 50 Mb capture kit. RESULTS The risk of VTE increased across increasing quartiles of plasma TCC, particularly for unprovoked VTE. Participants with TCC in the highest quartile (>1.40 complement arbitrary units/mL) had an odds ratio for unprovoked VTE of 1.74 (95% confidence interval: 1.10-2.78) compared with those with TCC in the lowest quartile (≤0.80 complement arbitrary units/mL) in analyses adjusted for age, sex, and body mass index. A substantially higher risk for VTE was observed in samples taken shortly before VTE event. We found no association between genome-wide or complement-related gene variants and plasma levels of TCC. CONCLUSIONS We found that high levels of plasma TCC were associated with VTE risk, and unprovoked events in particular. There was no genome-wide association between gene variants and plasma levels of TCC.
Collapse
Affiliation(s)
- Ina I Høiland
- K. G. Jebsen - Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Robin A Liang
- K. G. Jebsen - Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Sigrid K Braekkan
- K. G. Jebsen - Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
- Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | | | | | - Nadezhda Latysheva
- K. G. Jebsen - Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Omri Snir
- K. G. Jebsen - Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Thor Ueland
- K. G. Jebsen - Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Kristian Hindberg
- K. G. Jebsen - Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Tom E Mollnes
- K. G. Jebsen - Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
- Research Laboratory, Nordland Hospital, Bodø, Norway
- Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - John-Bjarne Hansen
- K. G. Jebsen - Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
- Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
45
|
Luchini LSG, Pidde G, Squaiella-Baptistão CC, Tambourgi DV. Complement System Inhibition Modulates the Pro-Inflammatory Effects of a Snake Venom Metalloproteinase. Front Immunol 2019; 10:1137. [PMID: 31231362 PMCID: PMC6558526 DOI: 10.3389/fimmu.2019.01137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/07/2019] [Indexed: 12/20/2022] Open
Abstract
Envenomation by Bothrops snakes causes prominent local effects, including pain, oedema, local bleeding, blistering and necrosis, and systemic manifestations, such as hemorrhage, hypotension, shock and acute renal failure. These snake venoms are able to activate the complement system and induce the generation of anaphylatoxins, whose mechanisms include the direct cleavage of complement components by snake venom metalloproteinases and serine proteinases present in the venoms. A metalloproteinase able to activate the three complement pathways and generate active anaphylatoxins, named C-SVMP, was purified from the venom of Bothrops pirajai. Considering the inflammatory nature of Bothrops venoms and the complement-activation property of C-SVMP, in the present work, we investigated the inflammatory effects of C-SVMP in a human whole blood model. The role of the complement system in the inflammatory process and its modulation by the use of compstatin were also investigated. C-SVMP was able to activate the complement system in the whole blood model, generating C3a/C3a desArg, C5a/C5a desArg and SC5b-9. This protein was able to promote an increase in the expression of CD11b, CD14, C3aR, C5aR1, TLR2, and TLR4 markers in leukocytes. Inhibition of component C3 by compstatin significantly reduced the production of anaphylatoxins and the Terminal Complement Complex (TCC) in blood plasma treated with the toxin, as well as the expression of CD11b, C3aR, and C5aR on leukocytes. C-SVMP was able to induce increased production of the cytokines IL-1β and IL-6 and the chemokines CXCL8/IL-8, CCL2/MCP-1, and CXCL9/MIG in the human whole blood model. The addition of compstatin to the reactions caused a significant reduction in the production of IL-1β, CXCL8/IL-8, and CCL2/MCP-1 in cells treated with C-SVMP. We therefore conclude that C-SVMP is able to activate the complement system, which leads to an increase in the inflammatory process. The data obtained with the use of compstatin indicate that complement inhibition may significantly control the inflammatory process initiated by Bothrops snake venom toxins.
Collapse
Affiliation(s)
| | - Giselle Pidde
- Immunochemistry Laboratory, Butantan Institute, São Paulo, Brazil
| | | | | |
Collapse
|
46
|
Edmundson C, Guidon AC. Eculizumab: A Complementary addition to existing long-term therapies for myasthenia gravis. Muscle Nerve 2019; 60:7-9. [PMID: 31074870 DOI: 10.1002/mus.26512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Christyn Edmundson
- Division of Neuromuscular Medicine, Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amanda C Guidon
- Division of Neuromuscular Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 165 Cambridge Street, Suite 820, Boston, Massachusetts, 02114, USA
| |
Collapse
|
47
|
Elvington M, Liszewski MK, Liszewski AR, Kulkarni HS, Hachem RR, Mohanakumar T, Kim AHJ, Atkinson JP. Development and Optimization of an ELISA to Quantitate C3(H 2 O) as a Marker of Human Disease. Front Immunol 2019; 10:703. [PMID: 31019515 PMCID: PMC6458276 DOI: 10.3389/fimmu.2019.00703] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 03/14/2019] [Indexed: 12/31/2022] Open
Abstract
Discovery of a C3(H2O) uptake pathway has led to renewed interest in this alternative pathway triggering form of C3 in human biospecimens. Previously, a quantifiable method to measure C3(H2O), not confounded by other complement activation products, was unavailable. Herein, we describe a sensitive and specific ELISA for C3(H2O). We initially utilized this assay to determine baseline C3(H2O) levels in healthy human fluids and to define optimal sample storage and handling conditions. We detected ~500 ng/ml of C3(H2O) in fresh serum and plasma, a value substantially lower than what was predicted based on previous studies with purified C3 preparations. After a single freeze-thaw cycle, the C3(H2O) concentration increased 3- to 4-fold (~2,000 ng/ml). Subsequent freeze-thaw cycles had a lesser impact on C3(H2O) generation. Further, we found that storage of human sera or plasma samples at 4°C for up to 22 h did not generate additional C3(H2O). To determine the potential use of C3(H2O) as a biomarker, we evaluated specimens from patients with inflammatory-driven diseases. C3(H2O) concentrations were moderately increased (1.5- to 2-fold) at baseline in sera from active systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) patients compared to healthy controls. In addition, upon challenge with multiple freeze-thaw cycles or incubation at 22 or 37°C, C3(H2O) generation was significantly enhanced in SLE and RA patients' sera. In bronchoalveolar lavage fluid from lung-transplant recipients, we noted a substantial increase in C3(H2O) within 3 months of acute antibody-mediated rejection. In conclusion, we have established an ELISA for assessing C3(H2O) as a diagnostic and prognostic biomarker in human diseases.
Collapse
Affiliation(s)
- Michelle Elvington
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - M Kathryn Liszewski
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Alexis R Liszewski
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Hrishikesh S Kulkarni
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Ramsey R Hachem
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | | | - Alfred H J Kim
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - John P Atkinson
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
48
|
The Extended Use of Eculizumab in Pregnancy and Complement Activation⁻Associated Diseases Affecting Maternal, Fetal and Neonatal Kidneys-The Future Is Now? J Clin Med 2019; 8:jcm8030407. [PMID: 30909646 PMCID: PMC6463259 DOI: 10.3390/jcm8030407] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 12/18/2022] Open
Abstract
Excessive complement activation is involved in the pathogenesis of many diseases and the kidney is an organ with particular susceptibility to complement-mediated injury. Apart from paroxysmal nocturnal hemoglobinuria (PNH) and atypical hemolytic uremic syndrome (aHUS), there are several other diseases with clear evidence of complement activation affecting both maternal and fetal kidneys during pregnancy and causing long-term adverse outcomes. Several novel drugs have been recently developed for blocking the complement cascade, including purified plasma proteins, new monoclonal antibodies, recombinant proteins, small molecules, and small interfering RNA agents. Eculizumab, the humanized monoclonal IgG2/4-antibody targeting C5 was approved by the United States Food and Drug Administration (FDA) and the European Medicines Agency (EMA) for treatment of two rare diseases: PNH in 2007 and aHUS in 2011. There is an increasing number of publications of successful use of eculizumab for off-label indications, e.g., in pregnant women with antiphospholipid syndrome, sickle-cell anemia, and HELLP syndrome. These severe diseases are associated with both high maternal and fetal morbidity and mortality rate and substantial prematurity. Eculizumab has considerably improved overall outcome of patients with PNH and aHUS, enabling safe pregnancy for many women. Prolongation of pregnancy and the use of eculizumab, even for only a few weeks, may protect not only maternal renal function, but also alleviate acute and long-term renal consequences of prematurity in offspring.
Collapse
|
49
|
Abstract
Hemolytic uremic syndrome (HUS) is the clinical triad of thrombocytopenia, anemia, and acute kidney injury. Classically associated with enterocolitis from Shiga toxin-producing Escherichia coli, HUS is also associated with Streptococcus pneumoniae infections; genetic dysregulation of the alternative complement pathway or coagulation cascade; and, rarely, a hereditary disorder of cobalamin C metabolism. These share a common final pathway of a prothrombotic and proinflammatory state on the endothelial cell surface, with fibrin and platelet deposition. Much work has been done to distinguish between the different mechanisms of disease, thereby informing the optimal therapeutic interventions for each entity.
Collapse
Affiliation(s)
- Ellen M Cody
- Department of Pediatrics, University of Colorado School of Medicine, 13123 East 16th Avenue, Box 158, Aurora, CO 80045, USA
| | - Bradley P Dixon
- Departments of Pediatrics & Medicine, University of Colorado School of Medicine, 12631 E. 17th Avenue, Aurora, CO 80045, USA.
| |
Collapse
|
50
|
Clinical and Complement Long-Term Follow-Up of a Pediatric Patient with C3 Mutation-Related Atypical Hemolytic Uremic Syndrome. Case Rep Nephrol 2019; 2018:3810249. [PMID: 30662780 PMCID: PMC6312603 DOI: 10.1155/2018/3810249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/04/2018] [Indexed: 12/02/2022] Open
Abstract
We report a pediatric patient with atypical hemolytic uremic syndrome due to a C3 gain-of-function mutation diagnosed in infancy. She was treated from the start with a constant dose of 300 mg eculizumab every second week from the onset and followed by routine complement analyses for six years. Her complement system was completely inhibited and the dose interval was prolonged from 2 to 3 weeks without alteration of the dose and the complement activity continued to be completely inhibited. Blood samples taken immediately before, immediately after, and between eculizumab doses were analyzed for eculizumab-C5 complexes and percentage of total complement activity, using the Wieslab® test, and compared to a pool of sera from 20 healthy controls. The patient exhibited complete complement inhibition at all three time-points and had no free circulating C5 suggesting there was complete binding to eculizumab. She has now been treated for six years with full complement blockade. We suggest therefore that analysis of complement activity using the Wieslab® test is useful for evaluating the effect of eculizumab when dose intervals are prolonged.
Collapse
|