1
|
Liu SX, Lv Y. MiR-99 Family of Exosomes Targets Myotubularin-related Protein 3 to Regulate Autophagy in Trophoblast Cells and Influence Insulin Resistance. JOURNAL OF PHYSIOLOGICAL INVESTIGATION 2025:02275668-990000000-00036. [PMID: 40358580 DOI: 10.4103/ejpi.ejpi-d-24-00111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/18/2025] [Indexed: 05/15/2025]
Abstract
ABSTRACT The global incidence of gestational diabetes mellitus (GDM) continues to rise and is associated with negative outcomes in pregnancy. This study aims to investigate how the miR-99 family of exosomes derived from the placenta targets myotubularin-related protein 3 (MTMR3) to trigger autophagy and alter insulin resistance (IR) in trophoblast cells. In this study, placenta-derived exosomes from plasma samples of patients with GDM and normal pregnant women were isolated to evaluate the expression levels of miR-99 family members (miR-99a, miR-99b, and miR-100) by quantitative real-time polymerase chain reaction. Furthermore, we used Targeted Scan prediction and dual luciferase reporter assays to identify a potential target of the miR-99 family. Finally, Western blotting, CCK8 assay, and glucose level measurement were used to confirm that the miR-99 family regulates autophagy in trophoblast cells through targeting potential targets, thereby affecting IR. Through comprehensive molecular biology techniques, our analysis revealed that, in contrast to normal pregnant women, the placenta-derived exosomes of women with GDM exhibited a significant downregulation of the miR-99 family. Moreover, MTMR3 emerged as a potential target of the miR-99 family, revealing a negative correlation with the levels of miR-99. An increase in MTMR3 expression impaired cellular autophagy and contributed to IR. Conversely, augmenting the miR-99 family can lead to a downregulation of MTMR3, promotion of cellular autophagy, and mitigation of IR. This research demonstrated that the expression of the miR-99 family was reduced in plasma exosomes of GDM. The miR-99 family can directly target MTMR3, leading to its downregulation. This process activated autophagy in trophoblast cells and enhances insulin sensitivity. Consequently, the miR-99 family holds potential as a therapeutic strategy for patients with GDM.
Collapse
Affiliation(s)
- Shao-Xiao Liu
- Department of Gynecology and Obstetrics, Affiliated Li Shui People's Hospital, Lishui, Zhejiang Province, China
| | | |
Collapse
|
2
|
Zhou Y, Xu QL. The mechanism of miR-155 targeting PIK3R1 in the pathogenesis of preeclampsia. Sci Rep 2025; 15:15861. [PMID: 40328815 PMCID: PMC12056229 DOI: 10.1038/s41598-025-00249-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 04/28/2025] [Indexed: 05/08/2025] Open
Abstract
To explore the molecular mechanism of miRNA-155-5p regulating placental trophoblast cell function and affecting preeclampsia. RNA was measured via RT-qPCR, and protein was detected with Western blot as well as Immunohistochemistry. Cell viability, proliferation, migration as well as invasion were detected via CCK8 assay, EDU stain as well as Transwell. Tunel assay measures cell apoptosis. Dual-Luciferase Reporter Assay affirms targeting relationships of miRNA-155-5p and PIK3R1. MiR-155-5p in PE patients' placental trophoblasts was markedly higher, while PIK3R1 was lower. Knockdown of miR-155-5p in trophoblast enhanced cell viability, proliferation, migration as well as invasion, while reducing apoptosis. The predicted target gene of miR-155-5p was PIK3R1, while PIK3R1 expression was inversely correlated to miR-155-5p in HTR-8/SVneo. In trophoblast overexpressing miR-155-5p, increased PIK3R1 expression could reverse the effect. We confirmed that miR-155-5p affects the function of placental trophoblast HTR-8/SVneo, and confirmed that miR-155-5p affects the development of PE by regulating PIK3R1, which provides a target for treatment as well as prevention of PE.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Obstetrics, Jinhua People's Hospital, 267 Danxi East Road, Jindong District, Jinhua, 321000, China
| | - Qiu Lian Xu
- Department of Obstetrics, Jinhua People's Hospital, 267 Danxi East Road, Jindong District, Jinhua, 321000, China.
| |
Collapse
|
3
|
Pan H, Ouyang B, Zhang H, Zhao C. Non-coding RNAs: the architects of placental development and pregnancy success. Mol Genet Genomics 2025; 300:39. [PMID: 40159439 DOI: 10.1007/s00438-025-02244-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025]
Abstract
Noncoding RNAs (ncRNAs) constitute a significant portion of the transcriptome that lacks evident protein-coding functions; however, they have been confirmed to be crucial in various biological processes, including placental development. Notwithstanding the existence of various ncRNAs, research on their role in placental development and pregnancy has been constrained. The predominant category of identified ncRNAs specific to placental tissue is microRNAs (miRNAs). Given their prevalence, the significantly larger cohort of other non-coding RNAs, such as circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs), is anticipated to exert a considerably greater influence than miRNAs. Syncytiotrophoblast, a fetal-derived cell, serves as a conduit between the fetus and mother by secreting extracellular vesicles that contain fetal proteins and RNA. Alterations in ncRNAs within placental tissue, especially in trophoblast cells and extracellular vesicles, may be linked to placental dysfunction that leads to pregnancy complications, serving either as a causative factor or a result. This review encapsulates the existing understanding of ncRNAs in placental development, pregnancy success, pregnancy-related complications, extracellular vesicle conveyance, and their capacity as innovative diagnostic instruments and therapeutic strategies.
Collapse
Affiliation(s)
- Hongjuan Pan
- Taikang Tongji (Wuhan) Hospital, Wuhan, 430050, Hubei, China
| | - Baisha Ouyang
- Taikang Tongji (Wuhan) Hospital, Wuhan, 430050, Hubei, China
| | - Hui Zhang
- Taikang Tongji (Wuhan) Hospital, Wuhan, 430050, Hubei, China
| | - Caizhen Zhao
- Taikang Tongji (Wuhan) Hospital, Wuhan, 430050, Hubei, China.
| |
Collapse
|
4
|
Selvakumar SC, Preethi KA, Ross K, Sekar D. The emerging role of microRNA-based therapeutics in the treatment of preeclampsia. Placenta 2024; 158:38-47. [PMID: 39361986 DOI: 10.1016/j.placenta.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/09/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024]
Abstract
Preeclampsia (PE) is a pregnancy complication that is often diagnosed due to elevated blood pressure and proteinuria. Though current research focuses on the identification of novel biomarkers and therapeutic targets, still, there is a lack of clinical validation for the use of biomarkers and therapeutic targets for early diagnosis and treatment of PE. Several molecules are being studied for their potential role in PE. Among them, microRNAs are studied vastly for their role in the diagnosis, prognosis, and treatment of PE. But only a few studies are focused on the therapeutic efficacy of miRNAs in PE. Thus, the relevant articles were identified and discussed in this review. These studies provide evidence that miRNAs are indeed important molecules in PE that have the role of both therapeutic targets and therapeutic molecules. However, the studies are limited to in vivo an in vitro models, hence further studies are required to validate the complete potential of miRNA therapeutics. Long non-coding RNA (lncRNA) sponges, miRNA mimics, miRNA inhibitors, exosome-associated miRNAs, and several other molecules have been studied as miRNA-based therapeutics in PE. Thus, miRNAs are postulated to be potential therapeutic targets and miRNA-based therapeutics might pave the way for novel therapeutic approaches for PE.
Collapse
Affiliation(s)
- Sushmaa Chandralekha Selvakumar
- RNA Biology Lab, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India
| | - K Auxzilia Preethi
- RNA Biology Lab, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India
| | - Kehinde Ross
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, United Kingdom
| | - Durairaj Sekar
- RNA Biology Lab, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India.
| |
Collapse
|
5
|
Xing Y, Kang L, Chen L, Li Y, Lu D. Research progress of exosomes in pathogenesis and treatment of preeclampsia. J Obstet Gynaecol Res 2024; 50:2183-2194. [PMID: 39434205 DOI: 10.1111/jog.16106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/16/2024] [Indexed: 10/23/2024]
Abstract
AIM Preeclampsia (PE) is a critical and severe disease in obstetrics, which seriously affects maternal and neonatal life safety and long-term prognosis. However, the etiology and pathogenesis of PE are complex, and no unified conclusion has been reached. The types and number of exosomes and their transport substances in PE patients changed. The study of exosomes in PE patients helps clarify the etiology, diagnosis, effective treatment, accurate monitoring, and prognosis. METHOD The published articles were reviewed. RESULTS Exosomes may affect endothelial and vascular production and function, participate in maternal-fetal immune regulation, and transport substances such as miRNAs, lncRNAs, and proteins involved in the development of PE. Detection of the contents of exosomes can help in the early diagnosis of PE, and can help to improve PE by inhibiting the action of exosomes or preventing their binding to target organs. CONCLUSION Exosomes may be involved in the development of PE, and exosomes can be used as markers for predicting the onset of PE and tracking the disease process and determining the prognosis, and exosomes have great potential in the treatment of PE.
Collapse
Affiliation(s)
- Yue Xing
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Luyao Kang
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Lu Chen
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Youyou Li
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Dan Lu
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| |
Collapse
|
6
|
Zhao Y, Zhang L, Yang J, Li C, Li P. CPEB2 inhibits preeclampsia progression by regulating SSTR3 translation through polyadenylation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167191. [PMID: 38648900 DOI: 10.1016/j.bbadis.2024.167191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
AIMS Trophoblast cell dysfunction is one of the important factors leading to preeclampsia (PE). Cytoplasmic polyadenylation element-binding 2 (CPEB2) has been found to be differentially expressed in PE patients, but whether it mediates PE process by regulating trophoblast cell function is unclear. METHODS The expression of CPEB2 and somatostatin receptor 3 (SSTR3) was detected by quantitative real-time PCR, Western blot (WB) and immunofluorescence staining. Cell functions were analyzed by CCK-8 assay, EdU assay, flow cytometry and transwell assay. Epithelial-mesenchymal transition (EMT)-related protein levels were detected by WB. The interaction of CPEB2 and SSTR3 was confirmed by RIP assay, dual-luciferase reporter assay and PCR poly(A) tail assay. Animal experiments were performed to explore the effect of CPEB2 on PE progression in vivo, and the placental tissues of rat were used for H&E staining, immunohistochemical staining and TUNEL staining. RESULTS CPEB2 was lowly expressed in PE patients. CPEB2 upregulation accelerated trophoblast cell proliferation, migration, invasion and EMT, while its knockdown had an opposite effect. CPEB2 bound to the CPE site in the 3'-UTR of SSTR3 mRNA to suppress SSTR3 translation through reducing poly(A) tails. Besides, SSTR3 overexpression suppressed trophoblast cell proliferation, migration, invasion and EMT, while its silencing accelerated trophoblast cell functions. However, these effects could be reversed by CPEB2 upregulation and knockdown, respectively. In vivo experiments, CPEB2 overexpression relieved histopathologic changes, inhibited apoptosis, promoted proliferation and enhanced EMT in the placenta of PE rat by decreasing SSTR3 expression. CONCLUSION CPEB2 inhibited PE progression, which promoted trophoblast cell functions by inhibiting SSTR3 translation through polyadenylation.
Collapse
Affiliation(s)
- Yanhua Zhao
- Department of Obstetrics, Xiangya Hospital of Central South University, Changsha City, Hunan Province 410008, PR China
| | - Liran Zhang
- Department of Obstetrics, Xiangya Hospital of Central South University, Changsha City, Hunan Province 410008, PR China
| | - Jingjing Yang
- Department of Obstetrics, Xiangya Hospital of Central South University, Changsha City, Hunan Province 410008, PR China
| | - Caiwen Li
- Department of Obstetrics, Xiangya Hospital of Central South University, Changsha City, Hunan Province 410008, PR China
| | - Ping Li
- Department of Obstetrics, Xiangya Hospital of Central South University, Changsha City, Hunan Province 410008, PR China; Hunan Engineering Research Center of Early Life Development and Disease Prevention, Changsha City, Hunan Province 410008, PR China.
| |
Collapse
|
7
|
Liu Y, Gu F, Gao J, Gu Y, Li Z, Lu D, Zhang Y. PPP2R2A inhibition contributes to preeclampsia by regulating the proliferation, apoptosis, and angiogenesis modulation potential of mesenchymal stem cells. Cell Div 2024; 19:18. [PMID: 38734666 PMCID: PMC11088123 DOI: 10.1186/s13008-024-00118-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/06/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND The precise mechanisms underlying preeclampsia (PE) pathogenesis remain unclear. Mesenchymal stem cells (MSCs) are involved in the pathology of PE. The aim of our study was to identify the effects of protein phosphatase 2 regulatory subunit B α (PPP2R2A) on MSCs and ascertain its latent role in the progression of PE. METHODS Reverse-transcription quantitative polymerase chain reaction and western blot analyses were performed to determine the expression of PPP2R2A in decidual tissue and decidual (d)MSCs from healthy pregnant women and patients with PE as well as the expression levels of Bax and Bcl-2 in dMSCs. The levels of p-PI3K, PI3K, p-AKT, and AKT were determined using western blotting. Cell growth, apoptosis, and migration were analyzed using MTT, flow cytometry, and Transwell assays, respectively. Human umbilical vein endothelial cell (HUVEC) tube formation ability was assayed using a HUVEC capillary-like tube formation assay. RESULTS PPP2R2A was downregulated in decidual tissues and dMSCs of patients with PE when compared with that in healthy pregnant women. Moreover, upregulation of PPP2R2A enhanced cell proliferation, reduced apoptotic dMSC, inhibited Bax expression, and increased Bcl-2 levels. Conditioned medium from PPP2R2A-overexpressing dMSCs promoted HTR-8/SVneo cell migration and angiogenesis of HUVEC. Furthermore, the PPP2R2A plasmid suppressed PI3K/AKT pathway activation in dMSCs. However, these effects were partially reversed by LY2940002 treatment. CONCLUSION PPP2R2A inhibition contributes to PE by regulating the proliferation, apoptosis, and angiogenesis of MSCs, providing a new therapeutic target for PE diagnosis and treatment.
Collapse
Affiliation(s)
- Yan Liu
- Department of Obstetrics and Gynecology, Clinical Medical College, Yangzhou University, No. 98 Nantong West Road, Yangzhou, 225001, China
| | - Fangle Gu
- Department of Obstetrics and Gynecology, Clinical Medical College, Yangzhou University, No. 98 Nantong West Road, Yangzhou, 225001, China
| | - Jun Gao
- Department of Obstetrics and Gynecology, Clinical Medical College, Yangzhou University, No. 98 Nantong West Road, Yangzhou, 225001, China
| | - Yingyan Gu
- Department of Obstetrics and Gynecology, Clinical Medical College, Yangzhou University, No. 98 Nantong West Road, Yangzhou, 225001, China
| | - Zhiyue Li
- Department of Obstetrics and Gynecology, Clinical Medical College, Yangzhou University, No. 98 Nantong West Road, Yangzhou, 225001, China
| | - Dan Lu
- Department of Obstetrics and Gynecology, Clinical Medical College, Yangzhou University, No. 98 Nantong West Road, Yangzhou, 225001, China.
| | - Yanxin Zhang
- Department of Obstetrics and Gynecology, Clinical Medical College, Yangzhou University, No. 98 Nantong West Road, Yangzhou, 225001, China.
| |
Collapse
|
8
|
Ma J, Liu M, Chen Z, Liu S, Yang H, Duan M. NANOG regulate the JAK/STAT3 pathway to promote trophoblast cell migration and epithelial-mesenchymal transition (EMT) in hypertensive disorders of pregnancy (HDP) through protein interaction with CDK1. Am J Reprod Immunol 2024; 91:e13863. [PMID: 38796740 DOI: 10.1111/aji.13863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/07/2024] [Accepted: 04/26/2024] [Indexed: 05/28/2024] Open
Abstract
PROBLEM Hypertensive disorders of pregnancy (HDP) are a common pregnancy disease. NANOG and Cyclin-dependent kinase 1 (CDK1) are essential for regulating the function of cell proliferation and apoptosis. However, the mechanism of action in HDP is yet unclear. METHOD The microarray dataset GSE6573 was downloaded from the GEO database. Emt-related gene set was downloaded from Epithelial-Mesenchymal Transition gene database 2.0 were screened differentially expressed genes by bioinformatics analysis. Pathway Commons and Scansite 4.0 databases were used to predict the interaction between proteins. Placental tissue samples were collected from HDP patients and patients with uneventful pregnancies. RT-qPCR, Western blot and immunohistochemistry were used to detect the expression of NANOG, CDK1, MMP-2, MMP-9, EMT markers and the JAK/STAT3 pathway proteins. Transfection NANOG overexpression/knockdown, and CDK1 knockdown into the human chorionic trophoblast cells (HTR-8/Svneo). CCK-8, Transwell and Wound-healing assay were used to evaluate cell proliferation, invasion and migration. CO-IP and GST pull-down assays were used to confirm the protein interaction. RESULTS A total obtained seven EMT-related differentially expressed genes, wherein NANOG, NODAL and LIN28A had protein interaction. In the HDP patients' tissue found that NANOG and CDK1 had lower expression. NANOG overexpression promoted HTR-8/Svneo proliferation, migration and EMT, while NANOG knockdown had the opposite effect. Further a protein interaction between STAT3 and CDK1 with NANOG. NANOG overexpression downregulated the JAK/STAT3 pathway to promote HTR-8/Svneo proliferation, migration and EMT, which was reversed by CDK1 knockdown. CONCLUSIONS NANOG downregulated the JAK/STAT3 pathway to promote trophoblast cell proliferation, migration and EMT through protein interaction with CDK1.
Collapse
Affiliation(s)
- Jing Ma
- Department of Reproduction and Genetics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Mingchang Liu
- Yunnan Maternal and Child Health Care Hospital, Kunming, Yunnan, China
- Kunming Medical University, Kunming, Yunnan, China
| | - Zhuo Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Shiyang Liu
- Kunming Medical University, Kunming, Yunnan, China
| | - Huijuan Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Mengjia Duan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
9
|
Shekarchi AA, Hosseini L, Kamrani A, Alipourfard I, Soltani-Zangbar MS, Akbari M, Roshangar L, Aghebati-Maleki L, Chakari-Khiavi F, Chakari-Khiavi A, Motlagh Asghari K, Danaii S, Pourlak T, Ahmadian Heris J, Yousefi M. Evaluation of changes in exhausted T lymphocytes and miRNAs expression in the different trimesters of pregnancy in pregnant women. Mol Biol Rep 2024; 51:442. [PMID: 38520563 DOI: 10.1007/s11033-024-09370-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/20/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Throughout the three trimesters of a typical pregnancy, we looked at changes in the expression of miRNAs and exhausted T lymphocytes for this study. METHODS AND RESULTS Fifty healthy subjects were included in this study. The frequency of exhausted T lymphocytes was measured in isolated PBMCs using flow cytometry. PD-1, TIM-3, and related miRNAs gene expression were assessed using qRT-PCR. The analyses revealed a significant decline in PD-1 and Tim-3 expression in PBMCs from RPL women (p = 0.0003 and p = 0.001, respectively). In addition, PD-1 and TIM-3 expression increased significantly in the 2nd trimester compared with the 1st trimester of healthy pregnant women (p < 0.0001 and p = 0.0002, respectively). PD-1 and TIM-3 expression was down-regulated in the 3rd trimester compared with the 1st and 2nd trimesters. In the present study, we demonstrated that TIM-3+/CD4+, TIM-3+/CD8+, PD-1+/CD4+, and PD-1+/CD8 + exhausted T lymphocytes increased in the circulation of women in the 2nd trimester compared to the 1st and 3rd trimester. In the 3rd trimester, the expression of miR-16-5p increased significantly (p < 0.0001). miR-125a-3p expression was down and upregulated in 2nd (p < 0.0001) and 3rd (p = 0.0007) trimesters compared to 1st trimester, respectively. This study showed a significant elevation of miR-15a-5p in 3rd trimester compared to 1st trimester of pregnant women (p = 0.0002). CONCLUSIONS Expression pattern of PD-1 and TIM3 in exhausted T lymphocytes is different not only between normal pregnant and RPL women but also in different trimesters of pregnancy. So, our results showed the role of these markers in the modulation lymphocytes activity in different stages of pregnancy.
Collapse
Affiliation(s)
- Ali Akbar Shekarchi
- Department of Pathology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Hosseini
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Kamrani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Iraj Alipourfard
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Mohammad Sadegh Soltani-Zangbar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Connective Tissue Diseases Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Aref Chakari-Khiavi
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Kimia Motlagh Asghari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahla Danaii
- Gynecology Department, Eastern Azerbaijan ACECR ART center, Eastern Azerbaijan branch of ACECR, Tabriz, Iran
| | - Tannaz Pourlak
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Ahmadian Heris
- Department of Allergy and Clinical Immunology, Pediatric Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Shan Y, Hou B, Wang J, Chen A, Liu S. Exploring the role of exosomal MicroRNAs as potential biomarkers in preeclampsia. Front Immunol 2024; 15:1385950. [PMID: 38566996 PMCID: PMC10985148 DOI: 10.3389/fimmu.2024.1385950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
The complex pathogenesis of preeclampsia (PE), a significant contributor to maternal and neonatal mortality globally, is poorly understood despite substantial research. This review explores the involvement of exosomal microRNAs (exomiRs) in PE, focusing on their impact on the protein kinase B (AKT)/hypoxia-inducible factor 1-α (HIF1α)/vascular endothelial growth factor (VEGF) signaling pathway as well as endothelial cell proliferation and migration. Specifically, this article amalgamates existing evidence to reveal the pivotal role of exomiRs in regulating mesenchymal stem cell and trophoblast function, placental angiogenesis, the renin-angiotensin system, and nitric oxide production, which may contribute to PE etiology. This review emphasizes the limited knowledge regarding the role of exomiRs in PE while underscoring the potential of exomiRs as non-invasive biomarkers for PE diagnosis, prediction, and treatment. Further, it provides valuable insights into the mechanisms of PE, highlighting exomiRs as key players with clinical implications, warranting further exploration to enhance the current understanding and the development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Yuping Shan
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bo Hou
- Department of Cardiovascular Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jingli Wang
- Department of Medical Genetics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Aiping Chen
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shiguo Liu
- Department of Medical Genetics, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
11
|
Sun J, Zhang W. Huc-MSC-derived exosomal miR-144 alleviates inflammation in LPS-induced preeclampsia-like pregnant rats via the FosB/Flt-1 pathway. Heliyon 2024; 10:e24575. [PMID: 38304844 PMCID: PMC10830578 DOI: 10.1016/j.heliyon.2024.e24575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 12/21/2023] [Accepted: 01/10/2024] [Indexed: 02/03/2024] Open
Abstract
Background Preeclampsia (PE) is a common and severe hypertensive disorder in pregnancy. Mesenchymal stem cell-derived exosomes (Exos-MSC) have been reported to mitigate the progression of inflammatory diseases. The study aimed to explore the effects of human umbilical cord-derived Exos-MSC (huc-Exos-MSC) on PE-like models. Methods Lipopolysaccharide (LPS) was used to construct in vitro and in vivo PE-like models. Exosomes were treated with LPS-induced PE-like cells and rats. Results PE-like inflammatory models of pregnant rats and cells were successfully constructed in vivo and in vitro. miR-144 was screened by bioinformatics analysis. Exosomes were successfully extracted. Silencing FosB, overexpressing miR-144 or treating with exosomes extracted from huc-MSC overexpressing miR-144 in (Exos-MSCmiR-144) reversed the LPS-induced decline in HTR-8/SVneo cell viability and migration. In addition, the above groups decreased LPS-induced increases in interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α), phosphorylated nuclear factor-kappaB (p-NF-κB)/NF-κB, soluble FMS-like tyrosine kinase 1 (sFlt-1), and Flt-1 levels. Simultaneously, transfection of miR-144 mimics and overexpressing FosB reversed those changes in the miR-144 mimics group. miR-144 might alleviate LPS-induced HTR-8/SVneo cell inflammation by targeting FosB. Injection of Exos-MSCmiR-144 in PE-like pregnant rats reversed LPS-induced increases in FosB expression, systolic and diastolic blood pressure (SBP and DBP), as well as mean arterial pressure (MAP), heart rate, urine albumin/creatine ratio, inflammatory factors, p-NF-κB/NF-κB, and sFlt-1 levels. Furthermore, compared with the model group, the proportion of live births was significantly higher in the model + Exos-MSCmiR-144 group, while the apoptosis rate of fetal rat brain tissue was significantly lower. Conclusions We found that huc-Exos-MSC-derived miR-144 alleviated gestational hypertension and inflammation in PE-like pregnant rats by regulating the FosB/Flt-1 pathway. In addition, huc-Exos-MSC-derived miR-144 could partially reverse the LPS-induced adverse pregnancy outcome and brain injury in fetal rats, laying the foundation for developing new treatments for PE.
Collapse
Affiliation(s)
- Jingchi Sun
- Department of Medical Administration, The Third People's Hospital of Chengdu, Chengdu, 610014, China
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Weishe Zhang
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Engineering Research Center of Early Life Development and Disease Prevention, Changsha, 410008, China
| |
Collapse
|
12
|
Giannubilo SR, Cecati M, Marzioni D, Ciavattini A. Circulating miRNAs and Preeclampsia: From Implantation to Epigenetics. Int J Mol Sci 2024; 25:1418. [PMID: 38338700 PMCID: PMC10855731 DOI: 10.3390/ijms25031418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
In this review, we comprehensively present the literature on circulating microRNAs (miRNAs) associated with preeclampsia, a pregnancy-specific disease considered the primary reason for maternal and fetal mortality and morbidity. miRNAs are single-stranded non-coding RNAs, 20-24 nt long, which control mRNA expression. Changes in miRNA expression can induce a variation in the relative mRNA level and influence cellular homeostasis, and the strong presence of miRNAs in all body fluids has made them useful biomarkers of several diseases. Preeclampsia is a multifactorial disease, but the etiopathogenesis remains unclear. The functions of trophoblasts, including differentiation, proliferation, migration, invasion and apoptosis, are essential for a successful pregnancy. During the early stages of placental development, trophoblasts are strictly regulated by several molecular pathways; however, an imbalance in these molecular pathways can lead to severe placental lesions and pregnancy complications. We then discuss the role of miRNAs in trophoblast invasion and in the pathogenesis, diagnosis and prediction of preeclampsia. We also discuss the potential role of miRNAs from an epigenetic perspective with possible future therapeutic implications.
Collapse
Affiliation(s)
| | - Monia Cecati
- Department of Clinical Sciences, Università Politecnica delle Marche, 60020 Ancona, Italy; (S.R.G.); (A.C.)
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy;
| | - Andrea Ciavattini
- Department of Clinical Sciences, Università Politecnica delle Marche, 60020 Ancona, Italy; (S.R.G.); (A.C.)
| |
Collapse
|
13
|
Barnes MVC, Pantazi P, Holder B. Circulating extracellular vesicles in healthy and pathological pregnancies: A scoping review of methodology, rigour and results. J Extracell Vesicles 2023; 12:e12377. [PMID: 37974377 PMCID: PMC10654380 DOI: 10.1002/jev2.12377] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/27/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023] Open
Abstract
Extracellular vesicles (EVs) play a crucial role in pregnancy, revealed by the presence of placental-derived EVs in maternal blood, their in vitro functionality, and their altered cargo in pregnancy pathologies. These EVs are thought to be involved in the development of pregnancy pathologies, such as pre-eclampsia, pre-term birth, and fetal growth restriction, and have been suggested as a source of biomarkers for gestational diseases. However, to accurately interpret their function and biomarker potential, it is necessary to critically evaluate the EV isolation and characterization methodologies used in pregnant cohorts. In this systematic scoping review, we collated the results from 152 studies that have investigated EVs in the blood of pregnant women, and provide a detailed analysis of the EV isolation and characterization methodologies used. Our findings indicate an overall increase in EV concentrations in pregnant compared to non-pregnant individuals, an increased EV count as gestation progresses, and an increased EV count in some pregnancy pathologies. We highlight the need for improved standardization of methodology, greater focus on gestational changes in EV concentrations, and further investigations into the functionality of EVs. Our review suggests that EVs hold great promise as diagnostic and translational tools for gestational diseases. However, to fully realize their potential, it is crucial to improve the standardization and reliability of EV isolation and characterization methodologies, and to gain a better understanding of their functional roles in pregnancy pathologies.
Collapse
Affiliation(s)
- Megan V. C. Barnes
- Institute of Reproductive and Developmental Biology, Department of MetabolismDigestion and Reproduction, Imperial College LondonLondonUK
| | - Paschalia Pantazi
- Institute of Reproductive and Developmental Biology, Department of MetabolismDigestion and Reproduction, Imperial College LondonLondonUK
| | - Beth Holder
- Institute of Reproductive and Developmental Biology, Department of MetabolismDigestion and Reproduction, Imperial College LondonLondonUK
| |
Collapse
|
14
|
Ning H, Tao H. Small RNA sequencing of exosomal microRNAs reveals differential expression of microRNAs in preeclampsia. Medicine (Baltimore) 2023; 102:e35597. [PMID: 37861520 PMCID: PMC10589583 DOI: 10.1097/md.0000000000035597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 09/20/2023] [Indexed: 10/21/2023] Open
Abstract
Preeclampsia (PE) is one of the most common hypertensive disorders of pregnancy. It is a dangerous condition with a high mortality rate in mothers and fetuses and is associated with a lack of early diagnosis and effective treatment. While the etiology of the disease is complex and obscure, it is now clear that the placenta is central to disease progression. Exosomal microRNAs (miRNAs) are possible mediators that regulate placenta-related physiological and pathological processes. Placental mesenchymal stem cells have considerable potential to help us understand the pathogenesis and treatment of pregnancy-related diseases. Here, we investigate the exosomal miRNA profiles of human placenta-derived mesenchymal stem cells between healthy pregnant women and those with PE. We performed small RNA sequencing to obtain miRNA profiles, and conducted enrichment analysis of the miRNA target genes to identify differentially expressed miRNAs associated with PE. Overall, we detected 1795 miRNAs; among them, 206 were differentially expressed in women with PE, including 35 upregulated and 171 downregulated miRNAs, when compared with healthy pregnant women. Moreover, we identified possible functions and pathways associated with PE, including angiogenesis, cell proliferation, migration and invasion, and the coagulation-fibrinolysis balance. Eventually, we proposed hsa-miR-675-5p, hsa-miR-3614-5p, and hsa-miR-615-5p as potential regulators of the pathogenesis of PE, and constructed a miRNA-target gene network. Our study identifies possible candidate biomarkers for the diagnosis of PE, and introduces a new direction for further understanding the pathogenesis of PE.
Collapse
Affiliation(s)
- Hui Ning
- Department of Obstetrics, Qingdao Municipal Hospital, Qingdao, China
| | - Hong Tao
- Department of Obstetrics, Qingdao Municipal Hospital, Qingdao, China
| |
Collapse
|
15
|
Nguyen CM, Sallam M, Islam MS, Clack K, Soda N, Nguyen NT, Shiddiky MJA. Placental Exosomes as Biomarkers for Maternal Diseases: Current Advances in Isolation, Characterization, and Detection. ACS Sens 2023. [PMID: 37449399 DOI: 10.1021/acssensors.3c00689] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Serving as the interface between fetal and maternal circulation, the placenta plays a critical role in fetal growth and development. Placental exosomes are small membrane-bound extracellular vesicles released by the placenta during pregnancy. They contain a variety of biomolecules, including lipids, proteins, and nucleic acids, which can potentially be biomarkers of maternal diseases. An increasing number of studies have demonstrated the utility of placental exosomes for the diagnosis and monitoring of pathological conditions such as pre-eclampsia and gestational diabetes. This suggests that placental exosomes may serve as new biomarkers in liquid biopsy analysis. This review provides an overview of the current understanding of the biological function of placental exosomes and their potential as biomarkers of maternal diseases. Additionally, this review highlights current barriers and the way forward for standardization and validation of known techniques for exosome isolation, characterization, and detection. Finally, microfluidic devices for exosome research are discussed.
Collapse
Affiliation(s)
- Cong Minh Nguyen
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
- School of Environment and Science (ESC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
| | - Mohamed Sallam
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
- School of Environment and Science (ESC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
| | - Md Sajedul Islam
- School of Medicine and Dentistry, Griffith University, Gold Coast Campus, Southport, QLD 4222, Australia
| | - Kimberley Clack
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
- School of Environment and Science (ESC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
| | - Narshone Soda
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
| | - Muhammad J A Shiddiky
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
- School of Environment and Science (ESC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
- Rural Health Research Institute, Charles Sturt University, Orange, NSW 2800, Australia
| |
Collapse
|
16
|
Zhu W, Chen X. miR‑424‑5p is downregulated in the placentas of patients with preeclampsia and affects trophoblast migration and invasion. Exp Ther Med 2023; 25:294. [PMID: 37229318 PMCID: PMC10203755 DOI: 10.3892/etm.2023.11993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/18/2022] [Indexed: 05/27/2023] Open
Abstract
Insufficient invasion of trophoblast cells has been reported to be closely associated with the pathogenesis of preeclampsia (PE). MicroRNAs (miRs) have essential roles in the trophoblasts invasion via targeting specific genes with diverse functions. However, the underlying mechanism remains largely unclear and requires further investigation. The present study aimed to identify and evaluate the potential functions of miRs in trophoblasts invasion and to reveal the underlying mechanisms. In the present study, differentially expressed miRs that were screened based on previously published microarray data (GSE96985) and a significantly downregulated miR-424-5p (miR-424) was chosen for further investigation. Subsequently, reverse transcription-quantitative PCR, CCK-8, apoptosis, wound healing and Transwell assays were performed to determine the cell viability, apoptotic rate, cell migration and invasion of trophoblast cells. The results showed that miR-424 was decreased in placenta specimens from patients with PE. Upregulation of miR-424 promoted cell viability, suppressed cell apoptosis and improved the invasion and migration of trophoblasts, whereas inhibition of miR-424 had opposite results. Adenomatous polyposis coli (APC), a key mediator of Wnt/β-catenin signaling pathway, was identified as a functional target of miR-424 and an inverse relationship was observed between APC and miR-424 in placenta specimens. Further investigations revealed that APC overexpression efficiently suppressed the effect of miR-424 in trophoblast cells. In addition, the miR-424-mediated effects on trophoblast cells were dependent on the promotion of Wnt/β-catenin signaling pathway. The present findings revealed that miR-424 regulates the trophoblast cell invasion by regulating Wnt/β-catenin pathway through targeting APC, indicating miR-424 as a potential candidate for the treatment of PE.
Collapse
Affiliation(s)
- Weimin Zhu
- Department of Gynecology and Obstetrics, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, P.R. China
| | - Xing Chen
- Department of Gynecology and Obstetrics, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, P.R. China
| |
Collapse
|
17
|
Wu S, Li Q, Liu X, Huang H, Wang G, Zhang C, Meng Y, Yang W. Placental exosomal miR-125b triggered endothelial barrier injury in preeclampsia. Placenta 2023; 137:31-37. [PMID: 37054628 DOI: 10.1016/j.placenta.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/12/2023] [Accepted: 04/07/2023] [Indexed: 04/15/2023]
Abstract
INTRODUCTION Preeclampsia (PE) is an elusive life-threatening complication of pregnancy, and maternal endothelial dysfunction induced by components from the impaired placenta is a key hallmark of PE. Placenta-derived exosomes in maternal circulation have been correlated with risk of PE, however, the role of exosomes in PE remains to be determined. We hypothesized that placenta-released exosomes link the placental abnormalities with maternal endothelial dysfunction in PE. METHODS Circulating exosomes were collected from plasma samples of preeclamptic patients and normal pregnancies. Endothelial barrier function was examined by transendothelial electrical resistance (TEER) and cell permeability to FITC-dextran assays in human umbilical vein endothelial cells (HUVECs). miR-125b and VE-cadherin gene expression in exosomes and endothelial cells were assessed by qPCR and Western, and the possible post-transcriptional regulation of miR-125b on VE-cadherin was detected by luciferase assay. RESULTS We isolated placenta-derived exosomes in the maternal circulation and found that placenta-derived exosomes from preeclamptic patients (PE-exo) leads to endothelial barrier dysfunction. We then identified decreased expression of VE-cadherin in endothelial cells contribute to the breakdown of the endothelial barrier. Further investigations revealed increased exosomal miR-125b in PE-exo directly inhibited VE-cadherin in HUVECs, thereby mediating the adverse effect of PE-exo on endothelial barrier function. DISCUSSION Placental exosomes link impaired placentation and endothelial dysfunction, thus providing new insight into the pathophysiology of preeclampsia. Exosomal miRNAs derived from placenta contribute to the endothelial dysfunction in PE and could be a promising therapeutic target for PE.
Collapse
Affiliation(s)
- Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China.
| | - Qinghua Li
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; School of Public Health, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Xinlu Liu
- School of Biosciences, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Haiqin Huang
- School of Biosciences, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Guohui Wang
- School of Biosciences, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Cuijuan Zhang
- Department of Obstetrics, Affiliated Hospital of Weifang Medical University, Weifang, 261031, Shandong, China
| | - Yuhan Meng
- Center for Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, 261042, Shandong, China
| | - Weiwei Yang
- School of Biosciences, Weifang Medical University, Weifang, 261053, Shandong, China.
| |
Collapse
|
18
|
Li N, Gu Y, Tang J, Li Y, Chen D, Xu Z. Circulating Non-coding RNAs and Exosomes: Liquid Biopsies for Monitoring Preeclampsia. Methods Mol Biol 2023; 2695:263-277. [PMID: 37450125 DOI: 10.1007/978-1-0716-3346-5_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Preeclampsia (PE) remains a leading cause of maternal and fetal mortality, due to ineffective treatment and diagnostic strategies, compounded by the lack of clarity on the etiology of the disorder. The early prediction or accurate diagnosis of PE is a concern of researchers. Liquid biopsy can be analyzed for cell-free nucleic acids and exosomes. Because circulating non-coding RNAs (ncRNAs) and peripheral blood exosomes can be detected in the peripheral blood of women in early pregnancy, these vesicles and their contents have become the focus of research on early predictive and diagnostic biomarkers for preeclampsia. In this review, we focus on recent studies addressing the roles of circulating ncRNAs and exosomes in PE, with particular attention paid to the potential application value of placenta-derived exosomes and circulating ncRNAs as PE-specific biomarkers.
Collapse
Affiliation(s)
- Na Li
- Lab of Perinatal Medicine, Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
| | - Ying Gu
- Lab of Perinatal Medicine, Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
| | - Jiaqi Tang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Yongmei Li
- Department of Obstetrics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Daozhen Chen
- Lab of Perinatal Medicine, Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
| | - Zhice Xu
- Lab of Perinatal Medicine, Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
| |
Collapse
|
19
|
Fatmous M, Rai A, Poh QH, Salamonsen LA, Greening DW. Endometrial small extracellular vesicles regulate human trophectodermal cell invasion by reprogramming the phosphoproteome landscape. Front Cell Dev Biol 2022; 10:1078096. [PMID: 36619864 PMCID: PMC9813391 DOI: 10.3389/fcell.2022.1078096] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
A series of cyclical events within the uterus are crucial for pregnancy establishment. These include endometrial regeneration following menses, under the influence of estrogen (proliferative phase), then endometrial differentiation driven by estrogen/progesterone (secretory phase), to provide a microenvironment enabling attachment of embryo (as a hatched blastocyst) to the endometrial epithelium. This is followed by invasion of trophectodermal cells (the outer layer of the blastocyst) into the endometrium tissue to facilitate intrauterine development. Small extracellular vesicles (sEVs) released by endometrial epithelial cells during the secretory phase have been shown to facilitate trophoblast invasion; however, the molecular mechanisms that underline this process remain poorly understood. Here, we show that density gradient purified sEVs (1.06-1.11 g/ml, Alix+ and TSG101+, ∼180 nm) from human endometrial epithelial cells (hormonally primed with estrogen and progesterone vs. estrogen alone) are readily internalized by a human trophectodermal stem cell line and promote their invasion into Matrigel matrix. Mass spectrometry-based proteome analysis revealed that sEVs reprogrammed trophectoderm cell proteome and their cell surface proteome (surfaceome) to support this invasive phenotype through upregulation of pro-invasive regulators associated with focal adhesions (NRP1, PTPRK, ROCK2, TEK), embryo implantation (FBLN1, NIBAN2, BSG), and kinase receptors (EPHB4/B2, ERBB2, STRAP). Kinase substrate prediction highlighted a central role of MAPK3 as an upstream kinase regulating target cell proteome reprogramming. Phosphoproteome analysis pinpointed upregulation of MAPK3 T204/T202 phosphosites in hTSCs following sEV delivery, and that their pharmacological inhibition significantly abrogated invasion. This study provides novel molecular insights into endometrial sEVs orchestrating trophoblast invasion, highlighting the microenvironmental regulation of hTSCs during embryo implantation.
Collapse
Affiliation(s)
- Monique Fatmous
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University (LTU), Melbourne, VIC, Australia
| | - Alin Rai
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Central Clinical School, Monash University, Melbourne, VIC, Australia,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia,Baker Department of Cardiovascular Research, Translation and Implementation, LTU, Melbourne, VIC, Australia
| | - Qi Hui Poh
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Baker Department of Cardiovascular Research, Translation and Implementation, LTU, Melbourne, VIC, Australia,Department of Biochemistry and Chemistry, LTU, Melbourne, VIC, Australia
| | - Lois A. Salamonsen
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia,Department of Molecular and Translational Medicine, Monash University, Clayton, VIC, Australia
| | - David W. Greening
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Central Clinical School, Monash University, Melbourne, VIC, Australia,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia,Baker Department of Cardiovascular Research, Translation and Implementation, LTU, Melbourne, VIC, Australia,Department of Biochemistry and Chemistry, LTU, Melbourne, VIC, Australia,*Correspondence: David W. Greening,
| |
Collapse
|
20
|
Chen Z, Wang X. The Role and Application of Exosomes and Their Cargos in Reproductive Diseases: A Systematic Review. Vet Sci 2022; 9:vetsci9120706. [PMID: 36548867 PMCID: PMC9785507 DOI: 10.3390/vetsci9120706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
In recent years, the incidence of the reproductive diseases is increasing year-by-year, leading to abortion or fetal arrest, which seriously affects the reproductive health of human beings and the reproductive efficiency of animals. Exosomes are phospholipid bilayer vesicles that are widely distributed in living organisms and released by the cells of various organs and tissues. Exosomes contain proteins, RNA, lipids, and other components and are important carriers of information transfer between cells, which play a variety of physiological and pathological regulatory functions. More and more studies have found that exosomes and their connotations play an important role in the diagnosis, prognosis and treatment of diseases. A systematic review was conducted in this manuscript and then highlights our knowledge about the diagnostic and therapeutic applications of exosomes to reproductive diseases, such as polycystic ovary syndrome (PCOS), endometriosis, premature ovarian failure (POF), preeclampsia, polycystic, endometrial cancer, cervical cancer, ovarian cancer, and prostate gland cancer.
Collapse
Affiliation(s)
- Zhi Chen
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Xiangguo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
- Correspondence:
| |
Collapse
|
21
|
Wu HY, liu K, Zhang JL. LINC00240/miR-155 axis regulates function of trophoblasts and M2 macrophage polarization via modulating oxidative stress-induced pyroptosis in preeclampsia. Mol Med 2022; 28:119. [PMID: 36153499 PMCID: PMC9509611 DOI: 10.1186/s10020-022-00531-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/15/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
This study aimed to investigate the effects of LINC00240/miR-155/Nrf2 axis on trophoblast function and macrophage polarization in the pathogenesis of preeclampsia.
Methods
Bindings between LINC00240, miR-155 and Nrf2 were validated by dual luciferase reporter assay or RNA-immunoprecipitation. Cell proliferation, migration, invasion, and pyroptosis were detected by CCK-8, clone formation, wound healing, Transwell system, and flow cytometry, respectively. Macrophage polarization was tested by flow cytometry. The expression levels of LINC00240, miR-155, Nrf2, and oxidative stress and pyroptosis-related markers in in vitro and in vivo preeclampsia models were analyzed by qPCR, western blot, or ELISA assays. Blood pressure, urine protein levels, liver and kidney damages, and trophoblast markers in placenta tissues were further studied in vivo.
Results
Placenta tissues from preeclampsia patients and animals showed decreased LINC00240 and Nrf2 and increased miR-155 expression levels, and the decreased M2 macrophage polarization. LINC00240 directly bound and inhibited expression of miR-155, which then inhibited oxidative stress-induced pyroptosis, promoting proliferation, migration and invasion abilities of trophoblasts, and M2 macrophage polarization. Inhibition of miR-155 led to increased Nrf2 expression and similar changes as LINC00240 overexpression in trophoblast function and macrophage polarization. Overexpression of LINC00240 in in vivo preeclampsia model decreased blood pressure, urine protein, liver and kidney damages, increased fetal weight and length, and induced trophoblast function and M2 macrophage polarization.
Conclusion
LINC00240 inhibited symptoms of preeclampsia through regulation on miR-155/Nrf2 axis, which suppressed oxidative stress-induced pyroptosis to improve trophoblast function and M2 macrophage polarization. LINC00240 could be a potential therapeutic target for preeclampsia.
Collapse
|
22
|
Hayder H, Shan Y, Chen Y, O’Brien JA, Peng C. Role of microRNAs in trophoblast invasion and spiral artery remodeling: Implications for preeclampsia. Front Cell Dev Biol 2022; 10:995462. [PMID: 36263015 PMCID: PMC9575991 DOI: 10.3389/fcell.2022.995462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
It is now well-established that microRNAs (miRNAs) are important regulators of gene expression. The role of miRNAs in placental development and trophoblast function is constantly expanding. Trophoblast invasion and their ability to remodel uterine spiral arteries are essential for proper placental development and successful pregnancy outcome. Many miRNAs are reported to be dysregulated in pregnancy complications, especially preeclampsia and they exert various regulatory effects on trophoblasts. In this review, we provide a brief overview of miRNA biogenesis and their mechanism of action, as well as of trophoblasts differentiation, invasion and spiral artery remodeling. We then discuss the role of miRNAs in trophoblasts invasion and spiral artery remodeling, focusing on miRNAs that have been thoroughly investigated, especially using multiple model systems. We also discuss the potential role of miRNAs in the pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Heyam Hayder
- Department of Biology, York University, Toronto, ON, Canada
| | - Yanan Shan
- Department of Biology, York University, Toronto, ON, Canada
| | - Yan Chen
- Department of Biology, York University, Toronto, ON, Canada
| | | | - Chun Peng
- Department of Biology, York University, Toronto, ON, Canada
- Centre for Research on Biomolecular Interactions, York University, Toronto, ON, Canada
- *Correspondence: Chun Peng,
| |
Collapse
|
23
|
Shi F, Li L. Hsa_circ_0088196 suppresses trophoblast migration and invasion by the miR-525-5p/ABL1 axis and the PI3K/AKT signaling pathway. J Biochem Mol Toxicol 2022; 36:e23150. [PMID: 35781906 DOI: 10.1002/jbt.23150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/28/2022] [Accepted: 06/06/2022] [Indexed: 11/06/2022]
Abstract
Our study aimed to explore the role of circ_0088196 (circular TNC [circTNC]) in trophoblast invasion and migration in preeclampsia (PE) both in vitro and in vivo. CircTNC, miR-525-5p, and ABL1 expression in trophoblast HTR8/SVneo cells were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). Cell viability, migration, and invasion were detected by Cell Counting Kit-8 (CCK-8), wound healing, and Transwell assays. The binding between circTNC (or ABL1) and miR-525-5p was validated by RNA pulldown and luciferase reporter assays. The mouse model of PE was injected with sh-circTNC and the effects of circTNC knockdown on the mean artery pressure, urine protein concentration, and fetal survival number of pregnant mice were examined. The expression of MMP-2, MMP-9, and PI3K/AKT pathway molecules in placental tissues was assessed by immunohistochemistry, qRT-PCR, and western blot analysis. CircTNC overexpression inhibited cell invasion and migration, but did not influence cell proliferation. CircTNC bound with miR-525-5p, whose knockdown repressed cell invasion and migration, while it exerted no effect on cell proliferation. ABL1, a target of miR-525-5p, attenuated cell migration and invasion, without influence on cell viability. Importantly, either miR-525-5p overexpression or ABL1 depletion antagonized the repression of upregulated circTNC on trophoblast cell migration and invasion, MMP-2 and MMP-9 expression, and the PI3K/AKT pathway. CircTNC knockdown alleviated PE symptoms in pregnant mice. CircTNC knockdown promoted the trophoblast invasiveness in mice placenta by upregulating MMP-2/9 expression and suppressing the PI3K/AKT pathway. Circ_0088196 represses trophoblast invasion and migration both in vitro and in vivo via regulating the miR-525-5p/ABL1 axis and activating the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Fenglian Shi
- Department of Gynaecology and Obstetrics, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Li Li
- Department of Gynaecology and Obstetrics, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
24
|
Circulating cell-free micro-RNA as biomarkers: from myocardial infarction to hypertension. Clin Sci (Lond) 2022; 136:1341-1346. [PMID: 36129059 DOI: 10.1042/cs20220056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022]
Abstract
MicroRNA (miRNA) are small, single strand non-coding RNA molecules involved in the post-transcriptional regulation of target genes. Since their discovery in 1993, over 2000 miRNAs have been identified in humans and there is growing interest in both the diagnostic and therapeutic potential of miRNA. The identification of biomarkers for human disease progression remains an active area of research, and there is a growing number of miRNA and miRNA combinations that have been linked to the development and progression of numerous cardiovascular diseases, including hypertension. In 2010, Chen et al. reported in Clinical Science that cell-free circulating miRNA could serve as novel biomarkers for acute myocardial infarction [1]. In this commentary, we expand on this topic to discuss the potential of using miRNA as biomarkers for hypertension and hypertension-related end-organ damage.
Collapse
|
25
|
Qi J, Wu B, Chen X, Wei W, Yao X. Diagnostic biomolecules and combination therapy for pre-eclampsia. Reprod Biol Endocrinol 2022; 20:136. [PMID: 36068569 PMCID: PMC9446775 DOI: 10.1186/s12958-022-01003-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/24/2022] [Indexed: 11/10/2022] Open
Abstract
Pre-eclampsia (PE), associated with placental malperfusion, is the primary reason for maternal and perinatal mortality and morbidity that can cause vascular endothelial injury and multi-organ injury. Despite considerable research efforts, no pharmaceutical has been shown to stop disease progression. If women precisely diagnosed with PE can achieve treatment at early gestation, the maternal and fetal outcomes can be maximally optimized by expectant management. Current diagnostic approaches applying maternal characteristics or biophysical markers, including blood test, urine analysis and biophysical profile, possess limitations in the precise diagnosis of PE. Biochemical factor research associated with PE development has generated ambitious diagnostic targets based on PE pathogenesis and dissecting molecular phenotypes. This review focuses on current developments in biochemical prediction of PE and the corresponding interventions to ameliorate disease progression, aiming to provide references for clinical diagnoses and treatments.
Collapse
Affiliation(s)
- Jingqi Qi
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, No. N1, Shangcheng Avenue, Yiwu, 322000, China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, 718 East Haizhou Road, Haining, 314400, China
| | - Bingbing Wu
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, No. N1, Shangcheng Avenue, Yiwu, 322000, China
| | - Xiuying Chen
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, No. N1, Shangcheng Avenue, Yiwu, 322000, China
| | - Wei Wei
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, No. N1, Shangcheng Avenue, Yiwu, 322000, China.
| | - Xudong Yao
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, No. N1, Shangcheng Avenue, Yiwu, 322000, China.
| |
Collapse
|
26
|
Rong W, Shukun W, Xiaoqing W, Wenxin H, Mengyuan D, Chenyang M, Zhang H. Regulatory roles of non-coding RNAs and m6A modification in trophoblast functions and the occurrence of its related adverse pregnancy outcomes. Crit Rev Toxicol 2022; 52:681-713. [PMID: 36794364 DOI: 10.1080/10408444.2022.2144711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Adverse pregnancy outcomes, such as preeclampsia, gestational diabetes mellitus, fetal growth restriction, and recurrent miscarriage, occur frequently in pregnant women and might further induce morbidity and mortality for both mother and fetus. Increasing studies have shown that dysfunctions of human trophoblast are related to these adverse pregnancy outcomes. Recent studies also showed that environmental toxicants could induce trophoblast dysfunctions. Moreover, non-coding RNAs (ncRNAs) have been reported to play important regulatory roles in various cellular processes. However, the roles of ncRNAs in the regulation of trophoblast dysfunctions and the occurrence of adverse pregnancy outcomes still need to be further investigated, especially with exposure to environmental toxicants. In this review, we analyzed the regulatory mechanisms of ncRNAs and m6A methylation modification in the dysfunctions of trophoblast cells and the occurrence of adverse pregnancy outcomes and also summarized the harmful effects of environmental toxicants. In addition to DNA replication, mRNA transcription, and protein translation, ncRNAs and m6A modification might be considered as the fourth and fifth elements that regulate the genetic central dogma, respectively. Environmental toxicants might also affect these processes. In this review, we expect to provide a deeper scientific understanding of the occurrence of adverse pregnancy outcomes and to discover potential biomarkers for the diagnosis and treatment of these outcomes.
Collapse
Affiliation(s)
- Wang Rong
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Department of Toxicology, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Wan Shukun
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Wang Xiaoqing
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Huang Wenxin
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Dai Mengyuan
- Department of Toxicology, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Mi Chenyang
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Huidong Zhang
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
27
|
Xu N, Zhou X, Shi W, Ye M, Cao X, Chen S, Xu C. Integrative analysis of circulating microRNAs and the placental transcriptome in recurrent pregnancy loss. Front Physiol 2022; 13:893744. [PMID: 35991164 PMCID: PMC9390878 DOI: 10.3389/fphys.2022.893744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Recurrent pregnancy loss (RPL) is a major type of pathological pregnancy that still lacks reliable early diagnosis and effective treatment. The placenta is critical to fetal development and pregnancy success because it participates in critical processes such as early embryo implantation, vascular remodeling, and immunological tolerance. RPL is associated with abnormalities in the biological behavior of placental villous trophoblasts, resulting in aberrant placental function. MicroRNAs (miRNAs) are increasingly being recognized as essential regulators of placental development, as well as potential biomarkers. In this study, plasma miRNAs and placental messenger RNAs (mRNAs) from RPL patients and normal pregnant (NP) controls were sequenced and analyzed. Compared to those in NP controls, 108 circulating miRNAs and 1199 placental mRNAs were differentially expressed in RPL samples. A total of 140 overlapping genes (overlapping between plasma miRNA target genes and actual placental disorder genes) were identified, and functional enrichment analysis showed that these genes were mainly related to cell proliferation, angiogenesis, and cell migration. The regulatory network among miRNAs, overlapping genes, and downstream biological processes was analyzed by protein–protein interactions and Cytoscape. Moreover, enriched mRNAs, which were predictive targets of the differentially expressed plasma miRNAs miR-766-5p, miR-1285-3p, and miR-520a-3p, were accordingly altered in the placenta. These results suggest that circulating miRNAs may be involved in the pathogenesis of RPL and are potential noninvasive biomarkers for RPL.
Collapse
Affiliation(s)
- Naixin Xu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Xuanyou Zhou
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Weihui Shi
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Mujin Ye
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Xianling Cao
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Songchang Chen
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- *Correspondence: Songchang Chen, ; Chenming Xu,
| | - Chenming Xu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- *Correspondence: Songchang Chen, ; Chenming Xu,
| |
Collapse
|
28
|
Wang Y, Chen A. Mast cell-derived exosomal miR-181a-5p modulated trophoblast cell viability, migration, and invasion via YY1/MMP-9 axis. J Clin Lab Anal 2022; 36:e24549. [PMID: 35698293 PMCID: PMC9280008 DOI: 10.1002/jcla.24549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/11/2022] [Accepted: 05/25/2022] [Indexed: 12/02/2022] Open
Abstract
Background Mast cells regulate the process of preeclampsia (PE). Since we previously identified mast cells specifically expressing miR‐181a‐5p in the placenta of PE patients, it is plausible to examine the effect and mechanism of mast cell‐derived exosomal miR‐181a‐5p on trophoblast cells. Methods The miR‐181a‐5p and YY1 levels were determined by quantitative real‐time reverse transcription‐polymerase chain reaction. Exosomes were identified by transmission electron microscopy, Western blot, and PKH‐26 labeling. Mast cells or trophoblast cell malignant phenotype were detected using 3‐(4,5‐dimethyl‐2‐thiazolyl)‐2,5‐diphenyl‐2‐H‐tetrazolium bromide, wound healing, and Transwell assays. Quantification of YY1 and metastasis‐related proteins was performed using Western blot. TargetScan, JASPAR, dual‐luciferase reporter genes, and chromatin immunoprecipitation were exploited to verify the relationship between miR‐181a‐5p, YY1, and MMP‐9. Results MiR‐181a‐5p was overexpressed in mast cells of PE patients. Overexpressed miR‐181a‐5p restrained mast cell viability. Mast cell exosomes were successfully isolated, containing high expressions of CD63 and HSP70 and low expression of Calnexin and could be transported to the cytoplasm of trophoblast cells. Mast cell exosomes attenuated the viability, migration, and invasion of HTR‐8/SVneo cells, inhibited YY1, N‐cadherin, Vimentin, and MMP‐9 protein expressions, and promoted E‐cadherin protein expression. The effect of exosomes was enhanced by miR‐181a‐5p mimic but was reversed by miR‐181a‐5p inhibitor. MiR‐181a‐5p targeted YY1 which bound to the MMP‐9 promoter. Overexpressed YY1 in HTR‐8/SVneo cells accelerated the malignant phenotype of the cells and reversed the regulatory effects of exosomal miR‐181a‐5p. Conclusion Mast cell‐derived exosomal miR‐181a‐5p modulates HTR‐8/SVneo cell viability, migration, and invasion via YY1/MMP‐9.
Collapse
Affiliation(s)
- Yinfen Wang
- Maternity Department, Ningbo Women & Children's Hospital, Ningbo City, Zhejiang Province, China
| | - Aner Chen
- Maternity Department, Ningbo Women & Children's Hospital, Ningbo City, Zhejiang Province, China
| |
Collapse
|
29
|
Barranco I, Salas-Huetos A, Berlanga A, Spinaci M, Yeste M, Ribas-Maynou J. Involvement of extracellular vesicle-encapsulated miRNAs in human reproductive disorders: a systematic review. Reprod Fertil Dev 2022; 34:751-775. [PMID: 35527383 DOI: 10.1071/rd21301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/18/2022] [Indexed: 11/23/2022] Open
Abstract
In recent years, extracellular vesicles (EVs) have emerged as essential players in cell-to-cell communication, particularly having an active regulating role in biological systems. Because reproductive-associated processes are not exempt of this communication, multiple studies have been devoted to this realm, focusing on gamete maturation, embryo implantation or fetal development. The aim of the present review was to comprehensively and systematically collect evidence about the function of the microRNA (miRNA) encapsulated in EVs isolated from different reproductive tissues or fluids in reproductive-related diseases. Following PRISMA guidelines, we conducted a systematic search of the literature published in MEDLINE-PubMed until the end of February 2021. After selection, 32 studies were included in the qualitative review comparing the miRNA expression profile in EVs between different pathological disorders. Most reports showed the potential of the miRNAs carried by EVs to be used as putative biomarkers of reproductive disorders, including pregnancy affections, disease progression and quality of preimplantation embryos. The most relevant miRNAs were found to be highly heterogeneous among studies, with some conflicting results. Further research is thus warranted to address whether cofounding factors, such as the methods to isolate EVs and miRNAs, the subset of EVs, the criteria of patient selection, the timing of sample retrieval, or any other factor, may explain the inconsistencies between studies.
Collapse
Affiliation(s)
- Isabel Barranco
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Albert Salas-Huetos
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain; and Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain; and Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Angel Berlanga
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain; and Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Marcella Spinaci
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain; and Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Jordi Ribas-Maynou
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain; and Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| |
Collapse
|
30
|
Žarković M, Hufsky F, Markert UR, Marz M. The Role of Non-Coding RNAs in the Human Placenta. Cells 2022; 11:1588. [PMID: 35563893 PMCID: PMC9104507 DOI: 10.3390/cells11091588] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 12/11/2022] Open
Abstract
Non-coding RNAs (ncRNAs) play a central and regulatory role in almost all cells, organs, and species, which has been broadly recognized since the human ENCODE project and several other genome projects. Nevertheless, a small fraction of ncRNAs have been identified, and in the placenta they have been investigated very marginally. To date, most examples of ncRNAs which have been identified to be specific for fetal tissues, including placenta, are members of the group of microRNAs (miRNAs). Due to their quantity, it can be expected that the fairly larger group of other ncRNAs exerts far stronger effects than miRNAs. The syncytiotrophoblast of fetal origin forms the interface between fetus and mother, and releases permanently extracellular vesicles (EVs) into the maternal circulation which contain fetal proteins and RNA, including ncRNA, for communication with neighboring and distant maternal cells. Disorders of ncRNA in placental tissue, especially in trophoblast cells, and in EVs seem to be involved in pregnancy disorders, potentially as a cause or consequence. This review summarizes the current knowledge on placental ncRNA, their transport in EVs, and their involvement and pregnancy pathologies, as well as their potential for novel diagnostic tools.
Collapse
Affiliation(s)
- Milena Žarković
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany; (M.Ž.); (F.H.)
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany;
| | - Franziska Hufsky
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany; (M.Ž.); (F.H.)
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
| | - Udo R. Markert
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany;
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany; (M.Ž.); (F.H.)
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
- FLI Leibniz Institute for Age Research, Beutenbergstraße 11, 07745 Jena, Germany
- Aging Research Center (ARC), 07745 Jena, Germany
| |
Collapse
|
31
|
Powell JS, Gandley RE, Lackner E, Dolinish A, Ouyang Y, Powers RW, Morelli AE, Hubel CA, Sadovsky Y. Small extracellular vesicles from plasma of women with preeclampsia increase myogenic tone and decrease endothelium-dependent relaxation of mouse mesenteric arteries. Pregnancy Hypertens 2022; 28:66-73. [DOI: 10.1016/j.preghy.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 10/19/2022]
|
32
|
Brown PA. Differential and targeted vesiculation: pathologic cellular responses to elevated arterial pressure. Mol Cell Biochem 2022; 477:1023-1040. [PMID: 34989921 DOI: 10.1007/s11010-021-04351-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/23/2021] [Indexed: 11/29/2022]
Abstract
Extracellular vesicles are small membrane-enclosed particles released during cell activation or injury. They have been investigated for several decades and found to be secreted in various diseases. Their pathogenic role is further supported by the presence of several important molecules among their cargo, including proteins, lipids, and nucleic acids. Many studies have reported enhanced and targeted extracellular vesicle biogenesis in diseases that involve chronic or transient elevation of arterial pressure resulting in endothelial dysfunction, within either the general circulatory system or specific local vascular beds. In addition, several associated pathologic processes have been studied and reported. However, the role of elevated pressure as a common pathogenic trigger across vascular domains and disease chronicity has not been previously described. This review will therefore summarize our current knowledge of the differential and targeted biogenesis of extracellular vesicles in major diseases that are characterized by elevated arterial pressure leading to endothelial dysfunction and propose a unified theory of pressure-induced extracellular vesicle-mediated pathogenesis.
Collapse
Affiliation(s)
- Paul A Brown
- Department of Basic Medical Sciences, Faculty of Medical Sciences Teaching and Research Complex, The University of the West Indies, Mona, Kingston 7, Jamaica.
| |
Collapse
|
33
|
Xu X, Lv S, Xiao Z. Analysis of a circRNA-, miRNA-, and mRNA-associated ceRNA network reveals potential biomarkers in preeclampsia a ceRNA network in preeclampsia. Ann Med 2021; 53:2354-2364. [PMID: 34894939 PMCID: PMC8741177 DOI: 10.1080/07853890.2021.2014554] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Preeclampsia (PE), one of hypertension-related disorders of pregnancy, is a common cause of maternal death worldwide. This study aimed to identify a circRNA-miRNA-mRNA-associated ceRNA network and related pathways in PE. MATERIAL AND METHODS We downloaded 3 microarray datasets from the Gene Expression Omnibus database, obtained 163 differentially expressed circRNAs (dif-circRNAs) (61 upregulated and 102 downregulated), 39 differentially expressed microRNAs (dif-miRNAs) (22 upregulated and 17 downregulated), and 271 differentially expressed mRNAs (dif-mRNAs) (168 upregulated and 103 downregulated) from placenta tissues of PE. Functional enrichment analysis and protein-protein interaction (PPI) network with module analysis of dif-mRNAs were performed. The regulatory relationship between dif-miRNAs and dif-mRNAs/circRNAs was predicted via related databases. A circRNA-miRNA-mRNA regulatory network was constructed. RESULTS A total of 53 pairs were obtained, including 13 circRNAs (10 upregulated and 3 downregulated), 9 miRNAs (3 upregulated and 6 downregulated) and 31 mRNAs (22 upregulated and 9 downregulated). GNB5 and IL2RB were obtained. KEGG enrichment analysis showed that both of them were closely related with the PI3K-Akt signalling pathway. Therefore, ceRNAs might affect the PI3K-Akt signalling pathway via the upregulation of GNB5 by binding to miR-1248 in PE. Meanwhile, hsa_circ_0052661 might upregulate IL2RB by binding miR-4303 to play a role in PE in the same way. CONCLUSION GNB5 and IL2RB might be key genes involved in the PI3K-Akt signalling pathway in PE, and hsa_circ_0087208, hsa_circ_0035443, hsa_circ_0067557 and hsa_circ_0052661 might regulate these key genes in PE by binding miR-1248 or miR-4303.Key messagesThere is still a lack of predictive and diagnostic factors for preeclampsia, which is a common cause of maternal death worldwide.This study identified a novel circRNA-associated ceRNA network and related pathways in preeclampsia.GNB5 and IL2RB might be key genes in their related circRNA-associated ceRNA network, and probably take an important role in preeclampsia via PI3K-Akt signalling pathway, which made them to be potential markers of preeclampsia.
Collapse
Affiliation(s)
- Xiaoxiao Xu
- Guizhou Medical University, Guiyang City, China
| | - Sha Lv
- Guizhou Medical University, Guiyang City, China
| | - Ziwen Xiao
- Guizhou Medical University, Guiyang City, China
| |
Collapse
|
34
|
Hu L, Ma J, Cao M, Lin Y, Long W, Shi Z, Wen J. Exosomal mRNA and lncRNA profiles in cord blood of preeclampsia patients. J Matern Fetal Neonatal Med 2021; 35:8199-8209. [PMID: 34470139 DOI: 10.1080/14767058.2021.1966413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Exosomes are endosome-derived membrane vesicles that contain numerous RNAs and allow intercellular communication. The roles of mRNAs and lncRNAs from umbilical cord blood exosomes in the development of preeclampsia (PE) remain unclear. METHODS In the study, microarray technology was used to construct the differential mRNA and lncRNA expression profiles in umbilical cord blood exosomes between PE patients and normal controls. RESULTS Totally, 120 differentially expressed mRNAs and 248 differentially expressed lncRNAs were identified. Pathway analysis showed that the differentially expressed mRNAs were related to glycolysis/gluconeogenesis, PI3K-Akt signaling pathway and JAK-STAT signaling pathway, which are critical in PE development. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted for the differential lncRNA-associated mRNAs. We found several significantly enriched pathways were closely associated with metabolic process, cell proliferation, differentiation, and apoptosis. Moreover, the constructed pathway network revealed key pathways in PE, including apoptosis and TGF-beta signaling pathway. Further analysis of lncRNA/miRNA interactions showed that most of the lncRNAs had miRNA binding sites, and some of them were associated with PE. CONCLUSIONS The study highlights the importance of exosomal mRNAs and lncRNAs in umbilical cord blood, and provides new insight into the development of PE.
Collapse
Affiliation(s)
- Lingmin Hu
- Department of Reproduction, The Affiliated Changzhou Maternity and Child Health Care Hospital of Nanjing Medical University, Changzhou, PR China
| | - Jinqi Ma
- Department of Gynaecology and Obstetrics, Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, PR China
| | - Minkai Cao
- Department of Obstetrics, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, PR China
| | - Yu Lin
- Department of Obstetrics, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, PR China
| | - Wei Long
- Department of Obstetrics, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, PR China
| | - Zhonghua Shi
- Department of Obstetrics, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, PR China
| | - Juan Wen
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, PR China
| |
Collapse
|
35
|
Shen P, Han L, Chen G, Cheng Z, Liu Q. Emodin Attenuates Acetaminophen-Induced Hepatotoxicity via the cGAS-STING Pathway. Inflammation 2021; 45:74-87. [PMID: 34409550 DOI: 10.1007/s10753-021-01529-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/27/2021] [Indexed: 01/24/2023]
Abstract
Emodin is a natural bioactive compound from traditional Chinese herbs that exerts anti-inflammatory, antioxidant, anticancer, hepatoprotective, and neuroprotective effects. However, the protective effects of emodin in acetaminophen (APAP)-induced hepatotoxicity are not clear. The present study examined the effects of emodin on APAP-induced hepatotoxicity and investigated the potential molecular mechanisms. C57BL/6 mice were pretreated with emodin (15 and 30 mg/kg) for 5 consecutive days and then given APAP (300 mg/kg) to establish an APAP-induced liver injury model. Mice were sacrificed to detect the serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and albumin (ALB) and the liver tissue levels of glutathione (GSH), malondialdehyde (MDA), and superoxide dismutase (SOD). Histological assessment, Western blotting, and ELISA were performed. Emodin pretreatment significantly reduced the levels of ALT, AST, and ALP; increased the levels of ALB; alleviated hepatocellular damage and apoptosis; attenuated the exhaustion of GSH and SOD and the accumulation of MDA; and increased the expression of antioxidative enzymes, including nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase 1 (HO-1), and NAD(P)H quinone dehydrogenase 1 (NQO1). Emodin also inhibited the expression of NLRP3 and reduced the levels of pro-inflammatory factors, including interleukin-1 beta (IL-1β), IL-6, and tumor necrosis factor-alpha (TNF-α). Emodin inhibited interferon (IFN)-α, cyclic GMP-AMP synthase (cGAS), and its downstream signaling effector stimulator of interferon genes (STING) expression to protect the liver against APAP-induced inflammatory responses and apoptosis. These results suggest that emodin protected hepatocytes from APAP-induced liver injury via the upregulation of the Nrf2-mediated antioxidative stress pathway, the inhibition of the NLRP3 inflammasome, and the downregulation of the cGAS-STING signaling pathway.
Collapse
Affiliation(s)
- Pan Shen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, China
| | - Liang Han
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, China
| | - Guang Chen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, China
| | - Zhe Cheng
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, China
| | - Qiong Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, China.
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
36
|
Overexpression of microRNA-100-5p attenuates the endothelial cell dysfunction by targeting HIPK2 under hypoxia and reoxygenation treatment. J Mol Histol 2021; 52:1115-1125. [PMID: 34213736 DOI: 10.1007/s10735-021-10002-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/22/2021] [Indexed: 01/21/2023]
Abstract
MicroRNAs (miRNAs) are important regulators of many cellular processes, and the dysregulation of miRNAs is associated with various diseases. MiR-100-5p is revealed to be downregulated in gestational hypertension, while its underlying regulatory mechanism remains unclear. The pathological condition of gestational hypertension was mimicked by the hypoxia and reoxygenation (H/R) treatment to human placental microvascular endothelial cells (HPMECs). RT-qPCR and western blotting were conducted to detect the mRNA and protein expression of RNAs. HPMEC viability was assessed by CCK-8 assay. HPMEC angiogenesis was examined using tube formation assay. The concentrations of ANG-1 and ANG-2 in HPMECs were detected by ELISA. The binding relationship between miR-100-5p and homeodomain interacting protein kinase 2 (HIPK2) was investigated using luciferase reporter assay. MiR-100-5p was downregulated in HPMECs after H/R treatment. MiR-100-5p overexpression reversed the H/R-induced decrease in viability, angiogenesis of HPMECs. HIPK2 was targeted by miR-100-5p in HPMECs, and miR-100-5p negatively modulated HIPK2 expression at the mRNA and protein levels. MiR-100-5p activated the PI3K/AKT pathway by downregulating HIPK2. Rescue assays demonstrated that miR-100-5p promoted the viability and angiogenesis of H/R treated HPMECs by targeting HIPK2 to activate the PI3K/AKT pathway. MiR-100-5p overexpression inhibits the dysfunction of HPMECs under hypoxia and reoxygenation by downregulating HIPK2 to activate the PI3K/AKT pathway.
Collapse
|
37
|
Extracellular vesicle-enriched miRNA profiles across pregnancy in the MADRES cohort. PLoS One 2021; 16:e0251259. [PMID: 33979365 PMCID: PMC8115775 DOI: 10.1371/journal.pone.0251259] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/22/2021] [Indexed: 12/31/2022] Open
Abstract
MicroRNA (miRNA) circulating in plasma have been proposed as biomarkers for a variety of conditions and diseases, including complications during pregnancy. During pregnancy, about 15-25% of maternal plasma exosomes, a small size-class of EVs, are hypothesized to originate in the placenta, and may play a role in communication between the fetus and mother. However, few studies have addressed changes in miRNA over the course of pregnancy with repeated measures, nor focused on diverse populations. We describe changes in miRNA in early and late pregnancy from the MADRES cohort of primarily low-income Hispanic women based in Los Angeles, CA. miRNA derived from extracellular-vesicles (EVs) were isolated from maternal blood plasma samples collected in early and late pregnancy. In this study, we identified 64 of 130 detectable miRNA which significantly increased with gestational age at the time of collection (GA), and 26 which decreased with GA. Possible fetal sex-specific associations were observed for 30 of these 90 significant miRNA. Predicted gene targets for miRNA significantly associated with GA were identified using MirDIP and were found to be enriched for Gene Ontology categories that included energetic and metabolic processes but were underrepresented in immune-related categories. Circulating EV-associated miRNA during pregnancy are likely important for maternal-fetal communication, and may play roles in supporting and maintaining a healthy pregnancy, given the changing needs of the fetus.
Collapse
|
38
|
Xu P, Ma Y, Wu H, Wang YL. Placenta-Derived MicroRNAs in the Pathophysiology of Human Pregnancy. Front Cell Dev Biol 2021; 9:646326. [PMID: 33777951 PMCID: PMC7991791 DOI: 10.3389/fcell.2021.646326] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
In placental mammals, reproductive success, and maternal-fetal health substantially depend on a well-being placenta, the interface between the fetus and the mother. Disorders in placental cells are tightly associated with adverse pregnancy outcomes including preeclampsia (PE), fetal growth restriction, etc. MicroRNAs (miRNAs) represent small non-coding RNAs that regulate post-transcriptional gene expression and are integral to a wide range of healthy or diseased cellular proceedings. Numerous miRNAs have been detected in human placenta and increasing evidence is revealing their important roles in regulating placental cell behaviors. Recent studies indicate that placenta-derived miRNAs can be released to the maternal circulation via encapsulating into the exosomes, and they potentially target various maternal cells to provide a hormone-like means of intercellular communication between the mother and the fetus. These placental exosome miRNAs are attracting more and more attention due to their differential expression in pregnant complications, which may provide novel biomarkers for prediction of the diseases. In this review, we briefly summarize the current knowledge and the perspectives of the placenta-derived miRNAs, especially the exosomal transfer of placental miRNAs and their pathophysiological relevance to PE. The possible exosomal-miRNA-targeted strategies for diagnosis, prognosis or therapy of PE are highlighted.
Collapse
Affiliation(s)
- Peng Xu
- School of Life Science, Shanxi University, Taiyuan, China
| | - Yeling Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Hongyu Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yan-Ling Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|