1
|
Ballerini C, Amoriello R, Maghrebi O, Bellucci G, Addazio I, Betti M, Aprea MG, Masciulli C, Caporali A, Penati V, Ballerini C, De Meo E, Portaccio E, Salvetti M, Amato MP. Exploring the role of EBV in multiple sclerosis pathogenesis through EBV interactome. Front Immunol 2025; 16:1557483. [PMID: 40242760 PMCID: PMC11999961 DOI: 10.3389/fimmu.2025.1557483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
Background Epstein-Barr virus (EBV) is a known risk factor for multiple sclerosis (MS), even though the underlying molecular mechanisms are unclear and engage multiple immune pathways. Furthermore, the ultimate role of EBV in MS pathogenesis is still elusive. In contrast, Cytomegalovirus (CMV) has been identified as a protective factor for MS. Objectives This study aims to identify MS-associated genes that overlap with EBV interactome and to examine their expression in immune and glial cell subtypes. Methods We used P-HIPSTer, GWAS, and the Human Protein Atlas (HPA) to derive data on the EBV interactome, MS-associated genes and single-cell gene expression in immune and glial cells. The geneOverlap and dplyr R packages identified overlapping genes. A similar analysis was done for CMV and Adenovirus as negative control. Metascape and GTEx analyzed biological pathways and brain-level gene expression; transcriptomic analysis was performed on glial cells and peripheral blood in MS and controls. All the analyses performed in this study were generated using publicly available data sets. Results We identified a "core" group of 21 genes shared across EBV interactome, MS genes, and immune and glial cells (p<0.001). Pathway analysis revealed expected associations, such as immune system activation, and unforeseen results, like the prolactin signaling pathway. BCL2 in astrocytes, MINK1 in microglia were significantly upregulated while AHI1 was downregulated in MS compared to controls. Conclusions Our findings offer novel insights into EBV and CMV interaction with immune and glial cells in MS, that may shed light on mechanisms involved in disease pathophysiology.
Collapse
Affiliation(s)
- Chiara Ballerini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Roberta Amoriello
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Olfa Maghrebi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Gianmarco Bellucci
- Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Ilaria Addazio
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Matteo Betti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Maria Grazia Aprea
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Camilla Masciulli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Arianna Caporali
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Valeria Penati
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Clara Ballerini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Ermelinda De Meo
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Emilio Portaccio
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Marco Salvetti
- Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
- Neuromed, IRCCS Istituto Neurologico Mediterraneo (INM), Pozzilli, Italy
| | - Maria Pia Amato
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Don Carlo Gnocchi, University of Florence, Florence, Italy
| |
Collapse
|
2
|
Hromić-Jahjefendić A, Sezer A, Mahmuljin I. The impact of COVID-19 on autoimmune diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2025; 213:315-345. [PMID: 40246348 DOI: 10.1016/bs.pmbts.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Various autoantibodies, such as antinuclear antibodies (ANA), anti-Ro/SSA, rheumatoid factor, lupus anticoagulant, and antibodies against interferon type I (IFN-I), have been frequently detected in COVID-19 patients, indicating a significant prevalence of autoimmune reactions following viral exposure. Additionally, the identification of human proteins with structural similarities to SARS-CoV-2 peptides as potential autoantigens underscores the complex interplay between the virus and the immune system in triggering autoimmunity. The chapter discusses probable pathways contributing to COVID-19-related autoimmunity, including bystander activation due to hyperinflammatory states, viral persistence, and the formation of neutrophil extracellular traps. These mechanisms illuminate a spectrum of autoimmune-related symptoms that can manifest, ranging from organ-specific to systemic autoimmune and inflammatory diseases. Importantly, there is emerging evidence of de novo autoimmunity arising after COVID-19 infection or vaccination, where new autoimmune conditions develop in previously healthy individuals. While various COVID-19 vaccines have received emergency use authorization, concerns regarding potential autoimmune side effects persist. Ongoing research is crucial to clarify these relationships and enhance our understanding of the risks associated with COVID-19 infections and vaccinations.
Collapse
Affiliation(s)
- Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina.
| | - Abas Sezer
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Irma Mahmuljin
- Association of Biologists in Bosnia and Herzegovina, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
3
|
Comabella M, Hegen H, Villar LM, Rejdak K, Sao-Avilés A, Behrens M, Sastre-Garriga J, Mongay N, Berek K, Martínez-Yelamos S, Pérez-Miralles F, Abdelhak A, Bachhuber F, Tumani H, Lycke J, Carbonell-Mirabent P, Valls-Carbó A, Rosenstein I, Alvarez-Lafuente R, Castillo-Triviño T, Otaegui D, Llufriu S, Blanco Y, Sánchez-López AJ, García-Merino A, Fissolo N, Gutiérrez L, Villacieros-Álvarez J, Monreal E, Wiendl H, Montalban X, Lünemann JD. Increased EBNA1-specific antibody response in primary-progressive multiple sclerosis. J Neurol 2024; 272:26. [PMID: 39666032 PMCID: PMC11638268 DOI: 10.1007/s00415-024-12763-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND AND OBJECTIVES The impact of viral infections on disease susceptibility and progression has predominantly been studied in patients with relapse-onset MS (RMS). Here, we determined immune responses to ubiquitous viruses in patients with primary progressive MS (PPMS). METHODS Antibody responses to Epstein-Barr virus (EBV), specifically to the latent EBV nuclear antigen 1 and the lytic viral capsid antigen VCA, human herpesvirus 6 (HHV-6), human cytomegalovirus (HCMV), and measles virus were determined in a cohort of 68 PPMS patients with a mean follow-up of 8 years and compared with 66 healthy controls matched for sex and age. RESULTS Compared with controls, PPMS patients showed increased humoral immune responses to the EBV-encoded nuclear antigen-1 (EBNA1), but not to the lytic EBV capsid antigen (VCA) or to other viral antigens. Seroprevalence rates for HCMV were significantly higher in PPMS. Antiviral immune responses at baseline did not correlate with disability progression over time. DISCUSSION Elevated immune responses toward EBNA1 are selectively increased in people with primary progressive disease, indicating a link between EBNA1-targeting immune responses and the development of both RMS and PPMS. Our data also suggest that chronic HCMV infection is associated with progressive MS.
Collapse
Affiliation(s)
- Manuel Comabella
- Servei de Neurologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED)-ISCIII, Madrid, Spain
| | - Harald Hegen
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Luisa M Villar
- Departments of Neurology and Immunology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria, Madrid, Spain
| | - Konrad Rejdak
- Department of Neurology, Medical University of Lublin, Lublin, Poland
| | - Augusto Sao-Avilés
- Servei de Neurologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Malina Behrens
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Jaume Sastre-Garriga
- Servei de Neurologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Neus Mongay
- Servei de Neurologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Klaus Berek
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | | | | - Ahmed Abdelhak
- Department of Neurology, Ulm University, Ulm, Germany
- Division of Neuroinflammation and Glial Biology, Department of Neurology, University of California San Francisco, San Francisco, USA
| | | | | | - Jan Lycke
- Fundación INCE (Iniciativa Para Las Neurociencias), Madrid, Spain
| | - Pere Carbonell-Mirabent
- Servei de Neurologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Igal Rosenstein
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Roberto Alvarez-Lafuente
- Environmental Factors in Degenerative Diseases Research Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Tamara Castillo-Triviño
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED)-ISCIII, Madrid, Spain
- Neurology Department, Hospital Universitario Donostia, San Sebastián, Spain
| | - David Otaegui
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED)-ISCIII, Madrid, Spain
- Multiple Sclerosis Unit, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Sara Llufriu
- Neuroimmunology and Multiple Sclerosis Unit, Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Yolanda Blanco
- Neuroimmunology and Multiple Sclerosis Unit, Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Antonio J Sánchez-López
- Neuroimmunology Unit, Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain
- Biobank, Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain
| | - Antonio García-Merino
- Neuroimmunology Unit, Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain
| | - Nicolás Fissolo
- Servei de Neurologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED)-ISCIII, Madrid, Spain
| | - Lucía Gutiérrez
- Servei de Neurologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Javier Villacieros-Álvarez
- Servei de Neurologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Enric Monreal
- Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá, Madrid, Spain
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Xavier Montalban
- Servei de Neurologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jan D Lünemann
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany.
| |
Collapse
|
4
|
Perri V, Zingaropoli MA, Pasculli P, Ciccone F, Tartaglia M, Baione V, Malimpensa L, Ferrazzano G, Mastroianni CM, Conte A, Ciardi MR. The Impact of Cytomegalovirus Infection on Natural Killer and CD8+ T Cell Phenotype in Multiple Sclerosis. BIOLOGY 2024; 13:154. [PMID: 38534424 DOI: 10.3390/biology13030154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/06/2024] [Accepted: 02/23/2024] [Indexed: 03/28/2024]
Abstract
Multiple sclerosis (MS) is a debilitating neurological disease that has been classified as an immune-mediated attack on myelin, the protective sheath of nerves. Some aspects of its pathogenesis are still unclear; nevertheless, it is generally established that viral infections influence the course of the disease. Cytomegalovirus (CMV) is a major pathogen involved in alterations of the immune system, including the expansion of highly differentiated cytotoxic CD8+ T cells and the accumulation of adaptive natural killer (NK) cells expressing high levels of the NKG2C receptor. In this study, we evaluated the impact of latent CMV infection on MS patients through the characterization of peripheral NK cells, CD8+ T cells, and NKT-like cells using flow cytometry. We evaluated the associations between immune cell profiles and clinical features such as MS duration and MS progression, evaluated using the Expanded Disability Status Scale (EDSS). We showed that NK cells, CD8+ T cells, and NKT-like cells had an altered phenotype in CMV-infected MS patients and displayed high levels of the NKG2C receptor. Moreover, in MS patients, increased NKG2C expression levels were found to be associated with higher EDSS scores. Overall, these results support the hypothesis that CMV infection imprints the immune system by modifying the phenotype and receptor repertoire of NK and CD8+ T cells, suggesting a detrimental role of CMV on MS progression.
Collapse
Affiliation(s)
- Valentina Perri
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Patrizia Pasculli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Federica Ciccone
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Matteo Tartaglia
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Viola Baione
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Gina Ferrazzano
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Antonella Conte
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Maria Rosa Ciardi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
5
|
De Francesco MA. Herpesviridae, Neurodegenerative Disorders and Autoimmune Diseases: What Is the Relationship between Them? Viruses 2024; 16:133. [PMID: 38257833 PMCID: PMC10818483 DOI: 10.3390/v16010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/06/2023] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Alzheimer's disease and Parkinson's disease represent the most common forms of cognitive impairment. Multiple sclerosis is a chronic inflammatory disease of the central nervous system responsible for severe disability. An aberrant immune response is the cause of myelin destruction that covers axons in the brain, spinal cord, and optic nerves. Systemic lupus erythematosus is an autoimmune disease characterized by alteration of B cell activation, while Sjögren's syndrome is a heterogeneous autoimmune disease characterized by altered immune responses. The etiology of all these diseases is very complex, including an interrelationship between genetic factors, principally immune associated genes, and environmental factors such as infectious agents. However, neurodegenerative and autoimmune diseases share proinflammatory signatures and a perturbation of adaptive immunity that might be influenced by herpesviruses. Therefore, they might play a critical role in the disease pathogenesis. The aim of this review was to summarize the principal findings that link herpesviruses to both neurodegenerative and autoimmune diseases; moreover, briefly underlining the potential therapeutic approach of virus vaccination and antivirals.
Collapse
Affiliation(s)
- Maria Antonia De Francesco
- Department of Molecular and Translational Medicine, Institute of Microbiology, University of Brescia-ASST Spedali Civili, 25123 Brescia, Italy
| |
Collapse
|
6
|
Bakhshi A, Eslami N, Norouzi N, Letafatkar N, Amini-Salehi E, Hassanipour S. The association between various viral infections and multiple sclerosis: An umbrella review on systematic review and meta-analysis. Rev Med Virol 2024; 34:e2494. [PMID: 38010852 DOI: 10.1002/rmv.2494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/05/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023]
Abstract
Multiple Sclerosis (MS) is one of the immune-mediated demyelinating disorders. Multiple components, including the environment and genetics, are possible factors in the pathogenesis of MS. Also, it can be said that infections are a key component of the host's response to MS development. Finally, we evaluated the relationship between different pathogens and MS disease in this umbrella research. We systematically collected and analysed multiple meta-analyses focused on one particular topic. We utilised the Scopus, PubMed, and Web of Science databases starting with inception until 30 May 2023. The methodological quality of the analysed meta-analysis has been determined based on Assessing the Methodological Quality of Systematic Reviews 2 and Grade, and graph construction and statistical analysis were conducted using Comprehensive Meta-Analysis. The Confidence Interval of effect size was 95% in meta-analyses, and p < 0.05 indicated a statistically meaningful relationship. The included studies evaluated the association between MS and 12 viruses containing SARS-CoV-2, Epstein-Barr virus (EBV), Hepatitis B virus, varicella-zoster virus (VZV), human herpesvirus 6 (HHV-6), HHV-7, HHV-8, HSV-1, HSV-2, Cytomegalovirus, Human Papillomavirus, and influenza. SARS-CoV-2, with a 3.74 odds ratio, has a significantly more potent negative effect on MS among viral infections. After that, EBV, HHV-6, HSV-2, and VZV, respectively, with 3.33, 2.81, 1.76, and 1.72 odds ratios, had a significantly negative relationship with MS (p < 0.05). Although the theoretical evidence mostly indicates that EBV has the greatest effect on MS, recent epidemiological studies have challenged this conclusion and put forward possibilities that SARS-CoV-2 is the culprit. Hence, it was necessary to investigate the effects of SARS-CoV-2 and EBV on MS.
Collapse
Affiliation(s)
- Arash Bakhshi
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Narges Eslami
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Naeim Norouzi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Negin Letafatkar
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Ehsan Amini-Salehi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Soheil Hassanipour
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
7
|
Vietzen H, Berger SM, Kühner LM, Furlano PL, Bsteh G, Berger T, Rommer P, Puchhammer-Stöckl E. Ineffective control of Epstein-Barr-virus-induced autoimmunity increases the risk for multiple sclerosis. Cell 2023; 186:5705-5718.e13. [PMID: 38091993 DOI: 10.1016/j.cell.2023.11.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/12/2023] [Accepted: 11/09/2023] [Indexed: 12/24/2023]
Abstract
Multiple sclerosis (MS) is a demyelinating disease of the CNS. Epstein-Barr virus (EBV) contributes to the MS pathogenesis because high levels of EBV EBNA386-405-specific antibodies cross react with the CNS-derived GlialCAM370-389. However, it is unclear why only some individuals with such high autoreactive antibody titers develop MS. Here, we show that autoreactive cells are eliminated by distinct immune responses, which are determined by genetic variations of the host, as well as of the infecting EBV and human cytomegalovirus (HCMV). We demonstrate that potent cytotoxic NKG2C+ and NKG2D+ natural killer (NK) cells and distinct EBV-specific T cell responses kill autoreactive GlialCAM370-389-specific cells. Furthermore, immune evasion of these autoreactive cells was induced by EBV-variant-specific upregulation of the immunomodulatory HLA-E. These defined virus and host genetic pre-dispositions are associated with an up to 260-fold increased risk of MS. Our findings thus allow the early identification of patients at risk for MS and suggest additional therapeutic options against MS.
Collapse
Affiliation(s)
- Hannes Vietzen
- Center for Virology, Medical University of Vienna, Vienna, Austria.
| | - Sarah M Berger
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Laura M Kühner
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | | | - Gabriel Bsteh
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Paulus Rommer
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
8
|
James LM, Georgopoulos AP. Negative association between multiple sclerosis immunogenetic profile and in silico immunogenicities of 12 viruses. Sci Rep 2023; 13:18654. [PMID: 37907711 PMCID: PMC10618254 DOI: 10.1038/s41598-023-45931-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023] Open
Abstract
Human Leukocyte Antigen (HLA) is involved in both multiple sclerosis (MS) and immune response to viruses. Here we investigated the virus-HLA immunogenicity (V-HLA) of 12 viruses implicated in MS with respect to 17 HLA Class I alleles positively associated to MS prevalence in 14 European countries. Overall, higher V-HLA immunogenicity was associated with smaller MS-HLA effect, with human herpes virus 3 (HHV3), JC human polyoma virus (JCV), HHV1, HHV4, HHV7, HHV5 showing the strongest association, followed by HHV8, HHV6A, and HHV6B (moderate association), and human endogenous retrovirus (HERV-W), HHV2, and human papilloma virus (HPV) (weakest association). These findings suggest that viruses with proteins of high HLA immunogenicity are eliminated more effectively and, consequently, less likely to be involved in MS.
Collapse
Affiliation(s)
- Lisa M James
- The HLA Research Group, Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN, 55417, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Apostolos P Georgopoulos
- The HLA Research Group, Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN, 55417, USA.
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, 55455, USA.
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, 55455, USA.
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA.
| |
Collapse
|
9
|
Landry RL, Embers ME. The Probable Infectious Origin of Multiple Sclerosis. NEUROSCI 2023; 4:211-234. [PMID: 39483197 PMCID: PMC11523707 DOI: 10.3390/neurosci4030019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 11/03/2024] Open
Abstract
Multiple sclerosis (MS) is an immune inflammatory disease that causes demyelination of the white matter of the central nervous system. It is generally accepted that the etiology of MS is multifactorial and believed to be a complex interplay between genetic susceptibility, environmental factors, and infectious agents. While the exact cause of MS is still unknown, increasing evidence suggests that disease development is the result of interactions between genetically susceptible individuals and the environment that lead to immune dysregulation and CNS inflammation. Genetic factors are not sufficient on their own to cause MS, and environmental factors such as viral infections, smoking, and vitamin D deficiency also play important roles in disease development. Several pathogens have been implicated in the etiology of MS, including Epstein-Barr virus, human herpesvirus 6, varicella-zoster virus, cytomegalovirus, Helicobacter pylori, Chlamydia pneumoniae, and Borrelia burgdorferi. Although vastly different, viruses and bacteria can manipulate host gene expression, causing immune dysregulation, myelin destruction, and neuroinflammation. This review emphasizes the pathogenic triggers that should be considered in MS progression.
Collapse
Affiliation(s)
- Remi L Landry
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA;
- Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA 70433, USA
| | - Monica E Embers
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA;
- Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA 70433, USA
| |
Collapse
|
10
|
Duarte LF, Gatica S, Castillo A, Kalergis AM, Bueno SM, Riedel CA, González PA. Is there a role for herpes simplex virus type 1 in multiple sclerosis? Microbes Infect 2022; 25:105084. [PMID: 36586461 DOI: 10.1016/j.micinf.2022.105084] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022]
Abstract
Numerous studies relate the onset and severity of multiple sclerosis (MS) with viral infections. Herpes simplex virus type 1 (HSV-1), which is neurotropic and highly prevalent in the brain of healthy individuals, has been proposed to relate to MS. Here, we review and discuss the reported connections between HSV-1 and MS.
Collapse
Affiliation(s)
- Luisa F Duarte
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de La Vida, Universidad Andres Bello, Santiago, Chile
| | - Sebastian Gatica
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de La Vida, Universidad Andres Bello, Santiago, Chile
| | - Almendra Castillo
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de La Vida, Universidad Andres Bello, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile; Departamento de Endocrinología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de La Vida, Universidad Andres Bello, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile.
| |
Collapse
|
11
|
von Niederhäusern V, Ruder J, Ghraichy M, Jelcic I, Müller AM, Schanz U, Martin R, Trück J. B-Cell Reconstitution After Autologous Hematopoietic Stem Cell Transplantation in Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 9:9/6/e200027. [PMID: 36229189 PMCID: PMC9562041 DOI: 10.1212/nxi.0000000000200027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND OBJECTIVES Autologous hematopoietic stem cell transplantation (aHSCT) is increasingly used to treat aggressive forms of multiple sclerosis (MS). This procedure is believed to result in an immune reset and restoration of a self-tolerant immune system. Immune reconstitution has been extensively studied for T cells, but only to a limited extent for B cells. As increasing evidence suggests an important role of B cells in MS pathogenesis, we sought here to better understand reconstitution and the extent of renewal of the B-cell system after aHSCT in MS. METHODS Using longitudinal multidimensional flow cytometry and immunoglobulin heavy chain (IgH) repertoire sequencing following aHSCT with BCNU + Etoposide + Ara-C + Melphalan anti-thymocyte globulin, we analyzed the B-cell compartment in a cohort of 20 patients with MS in defined intervals before and up to 1 year after aHSCT and compared these findings with data from healthy controls. RESULTS Total B-cell numbers recovered within 3 months and increased above normal levels 1 year after transplantation, successively shifting from a predominantly transitional to a naive immune phenotype. Memory subpopulations recovered slowly and remained below normal levels with reduced repertoire diversity 1 year after transplantation. Isotype subclass analysis revealed a proportional shift toward IgG1-expressing cells and a reduction in IgG2 cells. Mutation analysis of IgH sequences showed that highly mutated memory B cells and plasma cells may transiently survive conditioning while the analysis of sequence cluster overlap, variable (IGHV) and joining (IGHJ) gene usage and repertoire diversity suggested a renewal of the late posttransplant repertoire. In patients with early cytomegalovirus reactivation, reconstitution of naive and memory B cells was delayed. DISCUSSION Our detailed characterization of B-cell reconstitution after aHSCT in MS indicates a reduced reactivation potential of memory B cells up to 1 year after transplantation, which may leave patients susceptible to infection, but may also be an important aspect of its mechanism of action.
Collapse
Affiliation(s)
- Valentin von Niederhäusern
- From the Division of Immunology and Children's Research Center (V.N., M.G., J.T.), University Children's Hospital Zurich, University of Zurich; Neuroimmunology and MS Research Section (J.R., I.J., R.M.), Department of Neurology, University Hospital Zurich, University of Zurich; and Department of Medical Oncology and Hematology (A.M.M., U.S.), University Hospital Zurich
| | - Josefine Ruder
- From the Division of Immunology and Children's Research Center (V.N., M.G., J.T.), University Children's Hospital Zurich, University of Zurich; Neuroimmunology and MS Research Section (J.R., I.J., R.M.), Department of Neurology, University Hospital Zurich, University of Zurich; and Department of Medical Oncology and Hematology (A.M.M., U.S.), University Hospital Zurich
| | - Marie Ghraichy
- From the Division of Immunology and Children's Research Center (V.N., M.G., J.T.), University Children's Hospital Zurich, University of Zurich; Neuroimmunology and MS Research Section (J.R., I.J., R.M.), Department of Neurology, University Hospital Zurich, University of Zurich; and Department of Medical Oncology and Hematology (A.M.M., U.S.), University Hospital Zurich
| | - Ilijas Jelcic
- From the Division of Immunology and Children's Research Center (V.N., M.G., J.T.), University Children's Hospital Zurich, University of Zurich; Neuroimmunology and MS Research Section (J.R., I.J., R.M.), Department of Neurology, University Hospital Zurich, University of Zurich; and Department of Medical Oncology and Hematology (A.M.M., U.S.), University Hospital Zurich
| | - Antonia Maria Müller
- From the Division of Immunology and Children's Research Center (V.N., M.G., J.T.), University Children's Hospital Zurich, University of Zurich; Neuroimmunology and MS Research Section (J.R., I.J., R.M.), Department of Neurology, University Hospital Zurich, University of Zurich; and Department of Medical Oncology and Hematology (A.M.M., U.S.), University Hospital Zurich
| | - Urs Schanz
- From the Division of Immunology and Children's Research Center (V.N., M.G., J.T.), University Children's Hospital Zurich, University of Zurich; Neuroimmunology and MS Research Section (J.R., I.J., R.M.), Department of Neurology, University Hospital Zurich, University of Zurich; and Department of Medical Oncology and Hematology (A.M.M., U.S.), University Hospital Zurich
| | - Roland Martin
- From the Division of Immunology and Children's Research Center (V.N., M.G., J.T.), University Children's Hospital Zurich, University of Zurich; Neuroimmunology and MS Research Section (J.R., I.J., R.M.), Department of Neurology, University Hospital Zurich, University of Zurich; and Department of Medical Oncology and Hematology (A.M.M., U.S.), University Hospital Zurich
| | - Johannes Trück
- From the Division of Immunology and Children's Research Center (V.N., M.G., J.T.), University Children's Hospital Zurich, University of Zurich; Neuroimmunology and MS Research Section (J.R., I.J., R.M.), Department of Neurology, University Hospital Zurich, University of Zurich; and Department of Medical Oncology and Hematology (A.M.M., U.S.), University Hospital Zurich.
| |
Collapse
|
12
|
Zheng H, Savitz J. Effect of Cytomegalovirus Infection on the Central Nervous System: Implications for Psychiatric Disorders. Curr Top Behav Neurosci 2022; 61:215-241. [PMID: 35505056 DOI: 10.1007/7854_2022_361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytomegalovirus (CMV) is a common herpesvirus that establishes lifelong latent infections and interacts extensively with the host immune system, potentially contributing to immune activation and inflammation. Given its proclivity for infecting the brain and its reactivation by inflammatory stimuli, CMV is well known for causing central nervous system complications in the immune-naïve (e.g., in utero) and in the immunocompromised (e.g., in neonates, individuals receiving transplants or cancer chemotherapy, or people living with HIV). However, its potentially pathogenic role in diseases that are characterized by more subtle immune dysregulation and inflammation such as psychiatric disorders is still a matter of debate. In this chapter, we briefly summarize the pathogenic role of CMV in immune-naïve and immunocompromised populations and then review the evidence (i.e., epidemiological studies, serological studies, postmortem studies, and recent neuroimaging studies) for a link between CMV infection and psychiatric disorders with a focus on mood disorders and schizophrenia. Finally, we discuss the potential mechanisms through which CMV may cause CNS dysfunction in the context of mental disorders and conclude with a summary of the current state of play as well as potential future research directions in this area.
Collapse
Affiliation(s)
- Haixia Zheng
- Laureate Institute for Brain Research, Tulsa, OK, USA.
| | - Jonathan Savitz
- Laureate Institute for Brain Research, Tulsa, OK, USA.,Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK, USA
| |
Collapse
|
13
|
Salimi Z, Tazi R, Hazim A, Bouknani N, Aasfara J. A Unique Case of Radiologically Isolated Syndrome Diagnosed During a Follow-up of Cytomegalovirus Meningoencephalitis. Cureus 2022; 14:e22191. [PMID: 35308714 PMCID: PMC8924854 DOI: 10.7759/cureus.22191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2022] [Indexed: 11/05/2022] Open
Abstract
Radiologically isolated syndrome (RIS) refers to an entity in which an MRI of the brain, spine, or both demonstrates incidental white matter lesions that are characteristic of a demyelinating disease in morphology and location. High-risk RIS may require disease-modifying treatment (DMT). A complex interaction among genetic and environmental factors leads to self-reactive immune mechanisms, which are believed to have a pivotal role in the pathogenesis of demyelinating diseases. Viruses are possible triggers to this mechanism. Unlike Epstein-Barr virus (EBV) infection, which is a well-known risk factor for multiple sclerosis (MS), the association between cytomegalovirus (CMV) infection and MS remains uncertain, with some studies indicating a protective effect of CMV on autoimmune diseases. We report a unique case of RIS diagnosed during the follow-up of CMV meningoencephalitis in a patient who presented with generalized seizure onset.
Collapse
|
14
|
Veizades S, Tso A, Nguyen PK. Infection, inflammation and thrombosis: a review of potential mechanisms mediating arterial thrombosis associated with influenza and severe acute respiratory syndrome coronavirus 2. Biol Chem 2021; 403:231-241. [PMID: 34957734 DOI: 10.1515/hsz-2021-0348] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/07/2021] [Indexed: 12/30/2022]
Abstract
Thrombosis has long been reported as a potentially deadly complication of respiratory viral infections and has recently received much attention during the global coronavirus disease 2019 pandemic. Increased risk of myocardial infarction has been reported during active infections with respiratory viruses, including influenza and severe acute respiratory syndrome coronavirus 2, which persists even after the virus has cleared. These clinical observations suggest an ongoing interaction between these respiratory viruses with the host's coagulation and immune systems that is initiated at the time of infection but may continue long after the virus has been cleared. In this review, we discuss the epidemiology of viral-associated myocardial infarction, highlight recent clinical studies supporting a causal connection, and detail how the virus' interaction with the host's coagulation and immune systems can potentially mediate arterial thrombosis.
Collapse
Affiliation(s)
- Stefan Veizades
- Department of Medicine (Cardiovascular Medicine), Stanford University, Stanford, CA 94305, USA.,Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA.,Edinburgh Medical School, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Alexandria Tso
- Department of Medicine (Cardiovascular Medicine), Stanford University, Stanford, CA 94305, USA.,Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Patricia K Nguyen
- Department of Medicine (Cardiovascular Medicine), Stanford University, Stanford, CA 94305, USA.,Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
15
|
Onisiforou A, Spyrou GM. Identification of viral-mediated pathogenic mechanisms in neurodegenerative diseases using network-based approaches. Brief Bioinform 2021; 22:bbab141. [PMID: 34237135 PMCID: PMC8574625 DOI: 10.1093/bib/bbab141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/01/2021] [Accepted: 03/23/2021] [Indexed: 12/18/2022] Open
Abstract
During the course of a viral infection, virus-host protein-protein interactions (PPIs) play a critical role in allowing viruses to replicate and survive within the host. These interspecies molecular interactions can lead to viral-mediated perturbations of the human interactome causing the generation of various complex diseases. Evidences suggest that viral-mediated perturbations are a possible pathogenic etiology in several neurodegenerative diseases (NDs). These diseases are characterized by chronic progressive degeneration of neurons, and current therapeutic approaches provide only mild symptomatic relief; therefore, there is unmet need for the discovery of novel therapeutic interventions. In this paper, we initially review databases and tools that can be utilized to investigate viral-mediated perturbations in complex NDs using network-based analysis by examining the interaction between the ND-related PPI disease networks and the virus-host PPI network. Afterwards, we present our theoretical-driven integrative network-based bioinformatics approach that accounts for pathogen-genes-disease-related PPIs with the aim to identify viral-mediated pathogenic mechanisms focusing in multiple sclerosis (MS) disease. We identified seven high centrality nodes that can act as disease communicator nodes and exert systemic effects in the MS-enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways network. In addition, we identified 12 KEGG pathways, 5 Reactome pathways and 52 Gene Ontology Immune System Processes by which 80 viral proteins from eight viral species might exert viral-mediated pathogenic mechanisms in MS. Finally, our analysis highlighted the Th17 differentiation pathway, a disease communicator node and part of the 12 underlined KEGG pathways, as a key viral-mediated pathogenic mechanism and a possible therapeutic target for MS disease.
Collapse
Affiliation(s)
- Anna Onisiforou
- Department of Bioinformatics, Cyprus Institute of Neurology & Genetics, and the Cyprus School of Molecular Medicine, Cyprus
| | - George M Spyrou
- Department of Bioinformatics, Cyprus Institute of Neurology & Genetics, and professor at the Cyprus School of Molecular Medicine, Cyprus
| |
Collapse
|
16
|
Lee HL, Park JW, Seok JM, Jeon MY, Kim H, Lim YM, Shin HY, Kang SY, Kwon OH, Lee SS, Seok HY, Min JH, Lee SH, Kim BJ, Kim BJ. Serum Peptide Immunoglobulin G Autoantibody Response in Patients with Different Central Nervous System Inflammatory Demyelinating Disorders. Diagnostics (Basel) 2021; 11:diagnostics11081339. [PMID: 34441277 PMCID: PMC8392162 DOI: 10.3390/diagnostics11081339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022] Open
Abstract
Previous efforts to discover new surrogate markers for the central nervous system (CNS) inflammatory demyelinating disorders have shown inconsistent results; moreover, supporting evidence is scarce. The present study investigated the IgG autoantibody responses to various viral and autoantibodies-related peptides proposed to be related to CNS inflammatory demyelinating disorders using the peptide microarray method. We customized a peptide microarray containing more than 2440 immobilized peptides representing human and viral autoantigens. Using this, we tested the sera of patients with neuromyelitis optica spectrum disorders (NMOSD seropositive, n = 6; NMOSD seronegative, n = 5), multiple sclerosis (MS, n = 5), and myelin-oligodendrocyte glycoprotein antibody-associated disease (MOGAD, n = 6), as well as healthy controls (HC, n = 5) and compared various peptide immunoglobulin G (IgG) responses between the groups. Among the statistically significant peptides based on the pairwise comparisons of IgG responses in each disease group to HC, cytomegalovirus (CMV)-related peptides were most clearly distinguishable among the study groups. In particular, the most significant differences in IgG response were observed for HC vs. MS and HC vs. seronegative NMOSD (p = 0.064). Relatively higher IgG responses to CMV-related peptides were observed in patients with MS and NMOSD based on analysis of the customized peptide microarray.
Collapse
Affiliation(s)
- Hye Lim Lee
- Department of Neurology, Korea University College of Medicine, Seoul 02841, Korea; (H.L.L.); (J.-W.P.)
| | - Jin-Woo Park
- Department of Neurology, Korea University College of Medicine, Seoul 02841, Korea; (H.L.L.); (J.-W.P.)
| | - Jin Myoung Seok
- Department of Neurology, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Korea;
| | - Mi Young Jeon
- Samsung Research Institute of Future Medicine, Seoul 06351, Korea;
| | - Hojin Kim
- Department of Neurology, National Cancer Center, Goyang 10408, Korea;
| | - Young-Min Lim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Ha Young Shin
- Department of Neurology, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Sa-Yoon Kang
- Department of Neurology, College of Medicine, Cheju National University, Cheju 63241, Korea;
| | - Oh-Hyun Kwon
- Department of Neurology, Eulji University College of Medicine, Seoul 01830, Korea;
| | - Sang-Soo Lee
- Department of Neurology, Chungbuk National University College of Medicine, Cheongju 28644, Korea; (S.-S.L.); (S.-H.L.)
| | - Hung Youl Seok
- Department of Neurology, Keimyung University School of Medicine, Daegu 41931, Korea;
| | - Ju-Hong Min
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
- Neuroscience Center, Samsung Medical Center, Seoul 06351, Korea
| | - Sung-Hyun Lee
- Department of Neurology, Chungbuk National University College of Medicine, Cheongju 28644, Korea; (S.-S.L.); (S.-H.L.)
| | - Byung-Jo Kim
- Department of Neurology, Korea University College of Medicine, Seoul 02841, Korea; (H.L.L.); (J.-W.P.)
- BK21 FOUR Program in Learning Health Systems, Korea University, Seoul 02841, Korea
- Correspondence: (B.-J.K.); (B.J.K.)
| | - Byoung Joon Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
- Neuroscience Center, Samsung Medical Center, Seoul 06351, Korea
- Correspondence: (B.-J.K.); (B.J.K.)
| |
Collapse
|
17
|
't Hart BA, Luchicchi A, Schenk GJ, Stys PK, Geurts JJG. Mechanistic underpinning of an inside-out concept for autoimmunity in multiple sclerosis. Ann Clin Transl Neurol 2021; 8:1709-1719. [PMID: 34156169 PMCID: PMC8351380 DOI: 10.1002/acn3.51401] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/27/2021] [Accepted: 05/20/2021] [Indexed: 12/16/2022] Open
Abstract
The neuroinflammatory disease multiple sclerosis is driven by autoimmune pathology in the central nervous system. However, the trigger of the autoimmune pathogenic process is unknown. MS models in immunologically naïve, specific‐pathogen‐free bred rodents support an exogenous trigger, such as an infection. The validity of this outside–in pathogenic concept for MS has been frequently challenged by the difficulty to translate pathogenic concepts developed in these models into effective therapies for the MS patient. Studies in well‐validated non‐human primate multiple sclerosis models where, just like in humans, the autoimmune pathogenic process develops from an experienced immune system trained by prior infections, rather support an endogenous trigger. Data reviewed here corroborate the validity of this inside–out pathogenic concept for multiple sclerosis. They also provide a plausible sequence of events reminiscent of Wilkin’s primary lesion theory: (i) that autoimmunity is a physiological response of the immune system against excess antigen turnover in diseased tissue (the primary lesion) and (ii) that individuals developing autoimmune disease are (genetically predisposed) high responders against critical antigens. Data obtained in multiple sclerosis brains reveal the presence in normally appearing white matter of myelinated axons where myelin sheaths have locally dissociated from their enwrapped axon (i.e., blistering). The ensuing disintegration of axon–myelin units potentially causes the excess systemic release of post‐translationally modified myelin. Data obtained in a unique primate multiple sclerosis model revealed a core pathogenic role of T cells present in the normal repertoire, which hyper‐react to post‐translationally modified (citrullinated) myelin–oligodendrocyte glycoprotein and evoke clinical and pathological aspects of multiple sclerosis.
Collapse
Affiliation(s)
- Bert A 't Hart
- Department Anatomy and Neuroscience, University Medical Center Amsterdam, Amsterdam, The Netherlands.,Department Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Antonio Luchicchi
- Department Anatomy and Neuroscience, University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Geert J Schenk
- Department Anatomy and Neuroscience, University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Peter K Stys
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary Cumming School of Medicine, Calgary, Canada
| | - Jeroen J G Geurts
- Department Anatomy and Neuroscience, University Medical Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Jakhmola S, Upadhyay A, Jain K, Mishra A, Jha HC. Herpesviruses and the hidden links to Multiple Sclerosis neuropathology. J Neuroimmunol 2021; 358:577636. [PMID: 34174587 DOI: 10.1016/j.jneuroim.2021.577636] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/01/2021] [Accepted: 06/17/2021] [Indexed: 01/08/2023]
Abstract
Herpesviruses like Epstein-Barr virus, human herpesvirus (HHV)-6, HHV-1, VZV, and human endogenous retroviruses, have an age-old clinical association with multiple sclerosis (MS). MS is an autoimmune disease of the nervous system wherein the myelin sheath deteriorates. The most popular mode of virus mediated immune system manipulation is molecular mimicry. Numerous herpesvirus antigens are similar to myelin proteins. Other mechanisms described here include the activity of cytokines and autoantibodies produced by the autoreactive T and B cells, respectively, viral déjà vu, epitope spreading, CD46 receptor engagement, impaired remyelination etc. Overall, this review addresses the host-parasite association of viruses with MS.
Collapse
Affiliation(s)
- Shweta Jakhmola
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India
| | - Arun Upadhyay
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology, Jodhpur, India
| | - Khushboo Jain
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology, Jodhpur, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India.
| |
Collapse
|
19
|
Multiple sclerosis and drug discovery: A work of translation. EBioMedicine 2021; 68:103392. [PMID: 34044219 PMCID: PMC8245896 DOI: 10.1016/j.ebiom.2021.103392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/26/2021] [Accepted: 04/22/2021] [Indexed: 02/08/2023] Open
Abstract
Multiple sclerosis (MS) is after trauma the most important neurological disease in young adults, affecting 1 per 1000 individuals. With currently available medications, most of these targeting the immune system, satisfactory results have been obtained in patients with relapsing MS, but these can have serious adverse effects. Moreover, despite some promising developments, such as with B cell targeting therapies or sphingosine-1-phosphate modulating drugs, there still is a high unmet need of safe drugs with broad efficacy in patients with progressive MS. Despite substantial investments and intensive preclinical research, the proportion of promising lead compounds that reaches the approved drug status remains disappointingly low. One cause lies in the poor predictive validity of MS animal models used in the translation of pathogenic mechanisms into safe and effective treatments for the patient. This disturbing situation has raised criticism against the relevance of animal models used in preclinical research and calls for improvement of these models. This publication presents a potentially useful strategy to enhance the predictive validity of MS animal models, namely, to analyze the causes of failure in forward translation (lab to clinic) via reverse translation (clinic to lab). Through this strategy new insights can be gained that can help generate more valid MS models.
Collapse
|
20
|
Gugliesi F, Pasquero S, Griffante G, Scutera S, Albano C, Pacheco SFC, Riva G, Dell’Oste V, Biolatti M. Human Cytomegalovirus and Autoimmune Diseases: Where Are We? Viruses 2021; 13:260. [PMID: 33567734 PMCID: PMC7914970 DOI: 10.3390/v13020260] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/14/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous double-stranded DNA virus belonging to the β-subgroup of the herpesvirus family. After the initial infection, the virus establishes latency in poorly differentiated myeloid precursors from where it can reactivate at later times to cause recurrences. In immunocompetent subjects, primary HCMV infection is usually asymptomatic, while in immunocompromised patients, HCMV infection can lead to severe, life-threatening diseases, whose clinical severity parallels the degree of immunosuppression. The existence of a strict interplay between HCMV and the immune system has led many to hypothesize that HCMV could also be involved in autoimmune diseases (ADs). Indeed, signs of active viral infection were later found in a variety of different ADs, such as rheumatological, neurological, enteric disorders, and metabolic diseases. In addition, HCMV infection has been frequently linked to increased production of autoantibodies, which play a driving role in AD progression, as observed in systemic lupus erythematosus (SLE) patients. Documented mechanisms of HCMV-associated autoimmunity include molecular mimicry, inflammation, and nonspecific B-cell activation. In this review, we summarize the available literature on the various ADs arising from or exacerbating upon HCMV infection, focusing on the potential role of HCMV-mediated immune activation at disease onset.
Collapse
Affiliation(s)
- Francesca Gugliesi
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (F.G.); (S.P.); (S.S.); (C.A.); (S.F.C.P.); (V.D.)
| | - Selina Pasquero
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (F.G.); (S.P.); (S.S.); (C.A.); (S.F.C.P.); (V.D.)
| | - Gloria Griffante
- Department of Translational Medicine, Molecular Virology Unit, University of Piemonte Orientale Medical School, 28100 Novara, Italy;
| | - Sara Scutera
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (F.G.); (S.P.); (S.S.); (C.A.); (S.F.C.P.); (V.D.)
| | - Camilla Albano
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (F.G.); (S.P.); (S.S.); (C.A.); (S.F.C.P.); (V.D.)
| | - Sergio Fernando Castillo Pacheco
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (F.G.); (S.P.); (S.S.); (C.A.); (S.F.C.P.); (V.D.)
| | - Giuseppe Riva
- Otorhinolaryngology Division, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy;
| | - Valentina Dell’Oste
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (F.G.); (S.P.); (S.S.); (C.A.); (S.F.C.P.); (V.D.)
| | - Matteo Biolatti
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (F.G.); (S.P.); (S.S.); (C.A.); (S.F.C.P.); (V.D.)
| |
Collapse
|
21
|
Hecker M, Fitzner B, Jäger K, Bühring J, Schwartz M, Hartmann A, Walter M, Zettl UK. Leukocyte Telomere Length in Patients with Multiple Sclerosis and Its Association with Clinical Phenotypes. Mol Neurobiol 2021; 58:2886-2896. [PMID: 33547621 PMCID: PMC8128833 DOI: 10.1007/s12035-021-02315-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/26/2021] [Indexed: 12/16/2022]
Abstract
Aging is a significant factor influencing the course of multiple sclerosis (MS). Accelerated telomere attrition is an indicator of premature biological aging and a potential contributor to various chronic diseases, including neurological disorders. However, there is currently a lack of studies focusing on telomere lengths in patients with MS. We measured the average leukocyte telomere length (LTL) in biobanked DNA samples of 40 relapsing-remitting MS patients (RRMS), 20 primary progressive MS patients (PPMS), and 60 healthy controls using a multiplex quantitative polymerase chain reaction method. Changes in LTL over a period of >10 years were evaluated in a subset of 10 patients. Association analyses of baseline LTL with the long-term clinical profiles of the patients were performed using inferential statistical tests and regression models adjusted for age and sex. The cross-sectional analysis revealed that the RRMS group was characterized by a significantly shorter relative LTL, on average, as compared to the PPMS group and controls. Shorter telomeres at baseline were also associated with a higher conversion rate from RRMS to secondary progressive MS (SPMS) in the 10-year follow-up. The LTL decrease over time was similar in RRMS patients and PPMS patients in the longitudinal analysis. Our data suggest a possible contributory role of accelerated telomere shortening in the pathobiology of MS. The interplay between disease-related immune system alterations, immunosenescence, and telomere dynamics deserves further investigation. New insights into the mechanisms of disease might be obtained, e.g., by exploring the distribution of telomere lengths in specific blood cell populations.
Collapse
Affiliation(s)
- Michael Hecker
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany.
| | - Brit Fitzner
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Kathrin Jäger
- Institute for Clinical Chemistry and Laboratory Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Jan Bühring
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Margit Schwartz
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Alexander Hartmann
- Institute for Clinical Chemistry and Laboratory Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| | - Michael Walter
- Institute for Clinical Chemistry and Laboratory Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany.
| | - Uwe Klaus Zettl
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| |
Collapse
|
22
|
Hayashi F, Isobe N, Glanville J, Matsushita T, Maimaitijiang G, Fukumoto S, Watanabe M, Masaki K, Kira JI. A new clustering method identifies multiple sclerosis-specific T-cell receptors. Ann Clin Transl Neurol 2021; 8:163-176. [PMID: 33400858 PMCID: PMC7818280 DOI: 10.1002/acn3.51264] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE To characterize T-cell receptors (TCRs) and identify target epitopes in multiple sclerosis (MS). METHODS Peripheral blood mononuclear cells were obtained from 39 MS patients and 19 healthy controls (HCs). TCR repertoires for α/β/δ/γ chains, TCR diversity, and V/J usage were determined by next-generation sequencing. TCR β chain repertoires were compared with affectation status using a novel clustering method, Grouping of Lymphocyte Interactions by Paratope Hotspots (GLIPH). Cytomegalovirus (CMV)-IgG was measured in an additional 113 MS patients and 93 HCs. Regulatory T cells (Tregs) were measured by flow cytometry. RESULTS TCR diversity for all four chains decreased with age. TCRα and TCRβ diversity was higher in MS patients (P = 0.0015 and 0.024, respectively), even after age correction. TRAJ56 and TRBV4-3 were more prevalent in MS patients than in HCs (pcorr = 0.027 and 0.040, respectively). GLIPH consolidated 208,674 TCR clones from MS patients into 1,294 clusters, among which two candidate clusters were identified. The TRBV4-3 cluster was shared by HLA-DRB1*04:05-positive patients (87.5%) and predicted to recognize CMV peptides (CMV-TCR). MS Severity Score (MSSS) was lower in patients with CMV-TCR than in those without (P = 0.037). CMV-IgG-positivity was associated with lower MSSS in HLA-DRB1*04:05 carriers (P = 0.0053). HLA-DRB1*04:05-positive individuals demonstrated higher CMV-IgG titers than HLA-DRB1*04:05-negative individuals (P = 0.017). CMV-IgG-positive patients had more Tregs than CMV-IgG-negative patients (P = 0.054). INTERPRETATION High TCRα/TCRβ diversity, regardless of age, is characteristic of MS. Association of a CMV-recognizing TCR with mild disability indicates CMV's protective role in HLA-DRB1*04:05-positive MS.
Collapse
Affiliation(s)
- Fumie Hayashi
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noriko Isobe
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jacob Glanville
- Computational and Systems Immunology Program, Stanford University School of Medicine, Stanford, California, USA
| | - Takuya Matsushita
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Shoko Fukumoto
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mitsuru Watanabe
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsuhisa Masaki
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jun-Ichi Kira
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
23
|
Thakolwiboon S, Zhao-Fleming H, Karukote A, Pachariyanon P, Williams HG, Avila M. Regional differences in the association of cytomegalovirus seropositivity and multiple sclerosis: A systematic review and meta-analysis. Mult Scler Relat Disord 2020; 45:102393. [DOI: 10.1016/j.msard.2020.102393] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/08/2020] [Accepted: 07/11/2020] [Indexed: 11/25/2022]
|
24
|
Tarlinton RE, Martynova E, Rizvanov AA, Khaiboullina S, Verma S. Role of Viruses in the Pathogenesis of Multiple Sclerosis. Viruses 2020; 12:E643. [PMID: 32545816 PMCID: PMC7354629 DOI: 10.3390/v12060643] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 12/17/2022] Open
Abstract
Multiple sclerosis (MS) is an immune inflammatory disease, where the underlying etiological cause remains elusive. Multiple triggering factors have been suggested, including environmental, genetic and gender components. However, underlying infectious triggers to the disease are also suspected. There is an increasing abundance of evidence supporting a viral etiology to MS, including the efficacy of interferon therapy and over-detection of viral antibodies and nucleic acids when compared with healthy patients. Several viruses have been proposed as potential triggering agents, including Epstein-Barr virus, human herpesvirus 6, varicella-zoster virus, cytomegalovirus, John Cunningham virus and human endogenous retroviruses. These viruses are all near ubiquitous and have a high prevalence in adult populations (or in the case of the retroviruses are actually part of the genome). They can establish lifelong infections with periods of reactivation, which may be linked to the relapsing nature of MS. In this review, the evidence for a role for viral infection in MS will be discussed with an emphasis on immune system activation related to MS disease pathogenesis.
Collapse
Affiliation(s)
- Rachael E. Tarlinton
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough LE12 5RD, UK;
| | - Ekaterina Martynova
- Insititute of Fundamental Medicine and Biology Kazan Federal University, 420008 Kazan, Russia; (E.M.); (A.A.R.)
| | - Albert A. Rizvanov
- Insititute of Fundamental Medicine and Biology Kazan Federal University, 420008 Kazan, Russia; (E.M.); (A.A.R.)
| | | | - Subhash Verma
- School of Medicine, University of Nevada, Reno, NV 89557, USA;
| |
Collapse
|
25
|
Maple PA, Tanasescu R, Gran B, Constantinescu CS. A different response to cytomegalovirus (CMV) and Epstein–Barr virus (EBV) infection in UK people with multiple sclerosis (PwMS) compared to controls. J Infect 2020; 80:320-325. [DOI: 10.1016/j.jinf.2019.10.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/26/2019] [Accepted: 10/23/2019] [Indexed: 01/03/2023]
|
26
|
Moreira A, Alari-Pahissa E, Munteis E, Vera A, Zabalza A, Llop M, Villarrubia N, Costa-García M, Álvarez-Lafuente R, Villar LM, López-Botet M, Martínez-Rodríguez JE. Adaptive Features of Natural Killer Cells in Multiple Sclerosis. Front Immunol 2019; 10:2403. [PMID: 31681293 PMCID: PMC6803486 DOI: 10.3389/fimmu.2019.02403] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/25/2019] [Indexed: 12/21/2022] Open
Abstract
Human cytomegalovirus (HCMV) has been recently related with a lower susceptibility to multiple sclerosis (MS). HCMV promotes an adaptive development of NK cells bearing the CD94/NKG2C receptor with a characteristic phenotypic and functional profile. NK cells are proposed to play an immunoregulatory role in MS, and expansion of the NKG2C(+) subset was recently associated with reduced disability progression. To further explore this issue, additional adaptive NK cell markers, i.e., downregulation of FcεRIγ chain (FcRγ) and PLZF transcription factor, as well as antibody-dependent NK cell activation were assessed in controls and MS patients considering HCMV serology and clinical features. In line with previous reports, increased proportions of NKG2C(+), FcRγ(-), and PLZF(-) CD56dim NK cells were found in HCMV(+) cases. However, PLZF(-) NK cells were detected uncoupled from other adaptive markers within the CD56bright subset from HCMV(+) cases and among CD56dim NK cells from HCMV(-) MS patients, suggesting an additional effect of HCMV-independent factors in PLZF downregulation. Interferon-β therapy was associated with lower proportions of FcRγ(-) CD56dim NK cells in HCMV(+) and increased PLZF(-) CD56bright NK cells in HCMV(-) patients, pointing out to an influence of the cytokine on the expression of adaptive NK cell-associated markers. In addition, proportions of NKG2C(+) and FcRγ(-) NK cells differed in progressive MS patients as compared to controls and other clinical forms. Remarkably, an adaptive NK cell phenotype did not directly correlate with enhanced antibody-triggered degranulation and TNFα production in MS in contrast to controls. Altogether, our results provide novel insights into the putative influence of HCMV and adaptive NK cells in MS.
Collapse
Affiliation(s)
- Antía Moreira
- Neurology Department, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Neurology Department, Althaia, Xarxa Assistencial i Universitària de Manresa, Manresa, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Elvira Munteis
- Neurology Department, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Andrea Vera
- Neurology Department, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Ana Zabalza
- Neurology Department, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Mireia Llop
- Neurology Department, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Noelia Villarrubia
- Immunology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | | | - Roberto Álvarez-Lafuente
- Neurology Service, Instituto de Investigación Sanitaria del Hospital Clínico de San Carlos, Madrid, Spain
| | - Luisa María Villar
- Immunology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Miguel López-Botet
- University Pompeu Fabra, Barcelona, Spain.,Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | | |
Collapse
|
27
|
't Hart BA. Experimental autoimmune encephalomyelitis in the common marmoset: a translationally relevant model for the cause and course of multiple sclerosis. Primate Biol 2019; 6:17-58. [PMID: 32110715 PMCID: PMC7041540 DOI: 10.5194/pb-6-17-2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023] Open
Abstract
Aging Western societies are facing an increasing prevalence of chronic
autoimmune-mediated inflammatory disorders (AIMIDs) for which treatments that are safe and effective are scarce. One of the
main reasons for this situation is the lack of animal models, which accurately replicate
clinical and pathological aspects of the human diseases. One important AIMID is the
neuroinflammatory disease multiple sclerosis (MS), for which the mouse experimental
autoimmune encephalomyelitis (EAE) model has been frequently used in preclinical
research. Despite some successes, there is a long list of experimental treatments that
have failed to reproduce promising effects observed in murine EAE models when they were
tested in the clinic. This frustrating situation indicates a wide validity gap between
mouse EAE and MS. This monography describes the development of an EAE model in nonhuman
primates, which may help to bridge the gap.
Collapse
Affiliation(s)
- Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, the Netherlands.,Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, the Netherlands
| |
Collapse
|
28
|
Tarlinton RE, Khaibullin T, Granatov E, Martynova E, Rizvanov A, Khaiboullina S. The Interaction between Viral and Environmental Risk Factors in the Pathogenesis of Multiple Sclerosis. Int J Mol Sci 2019; 20:ijms20020303. [PMID: 30646507 PMCID: PMC6359439 DOI: 10.3390/ijms20020303] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 12/18/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic debilitating inflammatory disease of unknown ethology targeting the central nervous system (CNS). MS has a polysymptomatic onset and is usually first diagnosed between the ages of 20–40 years. The pathology of the disease is characterized by immune mediated demyelination in the CNS. Although there is no clinical finding unique to MS, characteristic symptoms include sensory symptoms visual and motor impairment. No definitive trigger for the development of MS has been identified but large-scale population studies have described several epidemiological risk factors for the disease. This list is a confusing one including latitude, vitamin D (vitD) levels, genetics, infection with Epstein Barr Virus (EBV) and endogenous retrovirus (ERV) reactivation. This review will look at the evidence for each of these and the potential links between these disparate risk factors and the known molecular disease pathogenesis to describe potential hypotheses for the triggering of MS pathology.
Collapse
Affiliation(s)
| | - Timur Khaibullin
- Republican Clinical Neurological Center, Republic of Tatarstan, Kazan 420021, Russia.
| | - Evgenii Granatov
- Republican Clinical Neurological Center, Republic of Tatarstan, Kazan 420021, Russia.
| | - Ekaterina Martynova
- Department of Gene and Cell Technology, Institute of Fundamental Medicine and Biology, Republic of Tatarstan, Kazan 420021, Russia.
| | - Albert Rizvanov
- Department of Gene and Cell Technology, Institute of Fundamental Medicine and Biology, Republic of Tatarstan, Kazan 420021, Russia.
| | - Svetlana Khaiboullina
- Department of Gene and Cell Technology, Institute of Fundamental Medicine and Biology, Republic of Tatarstan, Kazan 420021, Russia.
- Department of Microbiology and Immunology, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
29
|
Kap YS, Bus-Spoor C, van Driel N, Dubbelaar ML, Grit C, Kooistra SM, Fagrouch ZC, Verschoor EJ, Bauer J, Eggen BJL, Harmsen HJM, Laman JD, 't Hart BA. Targeted Diet Modification Reduces Multiple Sclerosis-like Disease in Adult Marmoset Monkeys from an Outbred Colony. THE JOURNAL OF IMMUNOLOGY 2018; 201:3229-3243. [PMID: 30341184 DOI: 10.4049/jimmunol.1800822] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/25/2018] [Indexed: 01/20/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE) in common marmosets is a translationally relevant model of the chronic neurologic disease multiple sclerosis. Following the introduction of a new dietary supplement in our purpose-bred marmoset colony, the percentage of marmosets in which clinically evident EAE could be induced by sensitization against recombinant human myelin oligodendrocyte glycoprotein in IFA decreased from 100 to 65%. The reduced EAE susceptibility after the dietary change coincided with reduced Callitrichine herpesvirus 3 expression in the colony, an EBV-related γ1-herpesvirus associated with EAE. We then investigated, in a controlled study in marmoset twins, which disease-relevant parameters were affected by the dietary change. The selected twins had been raised on the new diet for at least 12 mo prior to the study. In twin siblings reverted to the original diet 8 wk prior to EAE induction, 100% disease prevalence (eight out of eight) was restored, whereas in siblings remaining on the new diet the EAE prevalence was 75% (six out of eight). Spinal cord demyelination, a classical hallmark of the disease, was significantly lower in new-diet monkeys than in monkeys reverted to the original diet. In new-diet monkeys, the proinflammatory T cell response to recombinant human myelin oligodendrocyte glycoprotein was significantly reduced, and RNA-sequencing revealed reduced apoptosis and enhanced myelination in the brain. Systematic typing of the marmoset gut microbiota using 16S rRNA sequencing demonstrated a unique, Bifidobacteria-dominated composition, which changed after disease induction. In conclusion, targeted dietary intervention exerts positive effects on EAE-related parameters in multiple compartments of the marmoset's gut-immune-CNS axis.
Collapse
Affiliation(s)
- Yolanda S Kap
- Department of Immunobiology, Biomedical Primate Research Centre, 2280 GH Rijswijk, the Netherlands;
| | - Carien Bus-Spoor
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Nikki van Driel
- Department of Immunobiology, Biomedical Primate Research Centre, 2280 GH Rijswijk, the Netherlands
| | - Marissa L Dubbelaar
- Section Medical Physiology, Department of Neuroscience, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands
| | - Corien Grit
- Section Medical Physiology, Department of Neuroscience, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands
| | - Susanne M Kooistra
- Section Medical Physiology, Department of Neuroscience, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands.,MS Centrum Noord Nederland, 9722 NN Groningen, the Netherlands
| | - Zahra C Fagrouch
- Department of Virology, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands; and
| | - Ernst J Verschoor
- Department of Virology, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands; and
| | - Jan Bauer
- Department for Neuroimmunology, Center for Brain Research, Medical University of Vienna, A-1090 Vienna, Austria
| | - Bart J L Eggen
- Section Medical Physiology, Department of Neuroscience, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands.,MS Centrum Noord Nederland, 9722 NN Groningen, the Netherlands
| | - Hermie J M Harmsen
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Jon D Laman
- Section Medical Physiology, Department of Neuroscience, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands.,MS Centrum Noord Nederland, 9722 NN Groningen, the Netherlands
| | - Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Centre, 2280 GH Rijswijk, the Netherlands.,Section Medical Physiology, Department of Neuroscience, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands.,MS Centrum Noord Nederland, 9722 NN Groningen, the Netherlands
| |
Collapse
|
30
|
Hultin E, Mühr LSA, Bzhalava Z, Hortlund M, Lagheden C, Sundström P, Dillner J. Viremia preceding multiple sclerosis: Two nested case-control studies. Virology 2018; 520:21-29. [PMID: 29772404 DOI: 10.1016/j.virol.2018.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/26/2018] [Accepted: 04/10/2018] [Indexed: 11/28/2022]
Abstract
Infections have been suggested to be involved in Multiple Sclerosis (MS). We used metagenomic sequencing to detect both known and yet unknown microorganisms in 2 nested case control studies of MS. Two different cohorts were followed for MS using registry linkages. Serum samples taken before diagnosis as well as samples from matched control subjects were selected. In cohort1 with 75 cases and 75 controls, most viral reads were Anelloviridae-related and >95% detected among the cases. Among samples taken up to 2 years before MS diagnosis, Anellovirus species TTMV1, TTMV6 and TTV27 were significantly more common among cases. In cohort2, 93 cases and 93 controls were tested under the pre-specified hypothesis that the same association would be found. Although most viral reads were again related to Anelloviridae, no significant case-control differences were seen. We conclude that the Anelloviridae-MS association may be due to multiple hypothesis testing, but other explanations are possible.
Collapse
Affiliation(s)
- Emilie Hultin
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge SE-141 86, Sweden
| | | | - Zurab Bzhalava
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge SE-141 86, Sweden
| | - Maria Hortlund
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge SE-141 86, Sweden
| | - Camilla Lagheden
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge SE-141 86, Sweden
| | - Peter Sundström
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå SE-901 87, Sweden
| | - Joakim Dillner
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge SE-141 86, Sweden.
| |
Collapse
|
31
|
Alari-Pahissa E, Moreira A, Zabalza A, Alvarez-Lafuente R, Munteis E, Vera A, Arroyo R, Alvarez-Cermeño JC, Villar LM, López-Botet M, Martínez-Rodríguez JE. Low cytomegalovirus seroprevalence in early multiple sclerosis: a case for the 'hygiene hypothesis'? Eur J Neurol 2018. [PMID: 29528545 DOI: 10.1111/ene.13622] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND PURPOSE Cytomegalovirus (CMV) infection has recently been associated with a lower multiple sclerosis (MS) susceptibility, although it remains controversial whether it has a protective role or is merely an epiphenomenon related to westernization and early-life viral infections. We aimed to evaluate whether CMV serostatus may differ in patients with early MS as compared with patients with non-early MS, analyzing the putative association of this virus with MS clinical course and humoral immune responses against other herpesviruses. METHODS Multicentric analysis was undertaken of 310 patients with MS (early MS, disease duration ≤5 years, n = 127) and controls (n = 155), evaluating specific humoral responses to CMV, Epstein-Barr virus and human herpesvirus-6, as well as T-cell and natural killer (NK)-cell immunophenotypes. RESULTS Cytomegalovirus seroprevalence in early MS was lower than in non-early MS or controls (P < 0.01), being independently associated with disease duration (odds ratio, 1.04; 95% confidence interval, 1.01-1.08, P < 0.05). CMV+ patients with MS displayed increased proportions of differentiated T-cells (CD27-CD28-, CD57+, LILRB1+) and NKG2C+ NK-cells, which were associated with a lower disability in early MS (P < 0.05). CMV+ patients with early MS had an age-related decline in serum anti-EBNA-1 antibodies (P < 0.01), but no CMV-related differences in anti-human herpesvirus-6 humoral responses. CONCLUSIONS Low CMV seroprevalence was observed in patients with early MS. Modification of MS risk attributed to CMV might be related to the induction of differentiated T-cell and NK-cell subsets and/or modulation of Epstein-Barr virus-specific immune responses at early stages of the disease.
Collapse
Affiliation(s)
- E Alari-Pahissa
- Neurology Department, Hospital del Mar Medical Research Institute (IMIM), Barcelona
| | - A Moreira
- Neurology Department, Universitat Autònoma de Barcelona, Hospital del Mar Medical Research Institute (IMIM), Barcelona
| | - A Zabalza
- Neurology Department, Hospital del Mar Medical Research Institute (IMIM), Barcelona
| | - R Alvarez-Lafuente
- Neurology Service, Instituto de Investigación Sanitaria del Hospital Clínico de San Carlos, Madrid
| | - E Munteis
- Neurology Department, Hospital del Mar Medical Research Institute (IMIM), Barcelona
| | - A Vera
- Neurology Department, Hospital del Mar Medical Research Institute (IMIM), Barcelona
| | - R Arroyo
- Neurology Service, Hospital Universitario Quirónsaluld, Madrid
| | | | - L M Villar
- Immunology Department, Hospital Universitario Ramón y Cajal, Madrid
| | - M López-Botet
- Immunology Unit, University Pompeu Fabra, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | | |
Collapse
|
32
|
't Hart BA, Laman JD, Kap YS. Merits and complexities of modeling multiple sclerosis in non-human primates: implications for drug discovery. Expert Opin Drug Discov 2018; 13:387-397. [PMID: 29465302 DOI: 10.1080/17460441.2018.1443075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The translation of scientific discoveries made in animal models into effective treatments for patients often fails, indicating that currently used disease models in preclinical research are insufficiently predictive for clinical success. An often-used model in the preclinical research of autoimmune neurological diseases, multiple sclerosis in particular, is experimental autoimmune encephalomyelitis (EAE). Most EAE models are based on genetically susceptible inbred/SPF mouse strains used at adolescent age (10-12 weeks), which lack exposure to genetic and microbial factors which shape the human immune system. Areas covered: Herein, the authors ask whether an EAE model in adult non-human primates from an outbred conventionally-housed colony could help bridge the translational gap between rodent EAE models and MS patients. Particularly, the authors discuss a novel and translationally relevant EAE model in common marmosets (Callithrix jacchus) that shares remarkable pathological similarity with MS. Expert opinion: The MS-like pathology in this model is caused by the interaction of effector memory T cells with B cells infected with the γ1-herpesvirus (CalHV3), both present in the pathogen-educated marmoset immune repertoire. The authors postulate that depletion of only the small subset (<0.05%) of CalHV3-infected B cells may be sufficient to limit chronic inflammatory demyelination.
Collapse
Affiliation(s)
- Bert A 't Hart
- a Department of Immunobiology , Biomedical Primate Research Centre , Rijswijk , The Netherlands.,b Department of Neuroscience , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Jon D Laman
- b Department of Neuroscience , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Yolanda S Kap
- a Department of Immunobiology , Biomedical Primate Research Centre , Rijswijk , The Netherlands
| |
Collapse
|
33
|
Mentis AFA, Dardiotis E, Grigoriadis N, Petinaki E, Hadjigeorgiou GM. Viruses and endogenous retroviruses in multiple sclerosis: From correlation to causation. Acta Neurol Scand 2017; 136:606-616. [PMID: 28542724 PMCID: PMC7159535 DOI: 10.1111/ane.12775] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2017] [Indexed: 12/28/2022]
Abstract
Multiple sclerosis is an immune-mediated disease with an environmental component. According to a long-standing but unproven hypothesis dating to initial descriptions of multiple sclerosis (MS) at the end of the 19th century, viruses are either directly or indirectly implicated in MS pathogenesis. Whether viruses in MS are principally causal or simply contributory remains to be proven, but many viruses or viral elements-predominantly Epstein-Barr virus, human endogenous retroviruses (HERVs) and human herpesvirus 6 (HHV-6) but also less common viruses such as Saffold and measles viruses-are associated with MS. Here, we present an up-to-date and comprehensive review of the main candidate viruses implicated in MS pathogenesis and summarize how these viruses might cause or lead to the hallmark demyelinating and inflammatory lesions of MS. We review data from epidemiological, animal and in vitro studies and in doing so offer a transdisciplinary approach to the topic. We argue that it is crucially important not to interpret "absence of evidence" as "evidence of absence" and that future studies need to focus on distinguishing correlative from causative associations. Progress in the MS-virus field is expected to arise from an increasing body of knowledge on the interplay between viruses and HERVs in MS. Such interactions suggest common HERV-mediated pathways downstream of viral infection that cause both neuroinflammation and neurodegeneration. We also comment on the limitations of existing studies and provide future research directions for the field.
Collapse
Affiliation(s)
- A.-F. A. Mentis
- Department of Microbiology; University Hospital of Larissa; University of Thessaly; Larissa Greece
- The Johns Hopkins University, AAP; Baltimore MD USA
| | - E. Dardiotis
- Department of Neurology; University Hospital of Larissa; University of Thessaly; Larissa Greece
| | - N. Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology; B’ Department of Neurology; AHEPA University Hospital; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - E. Petinaki
- Department of Microbiology; University Hospital of Larissa; University of Thessaly; Larissa Greece
| | - G. M. Hadjigeorgiou
- Department of Neurology; University Hospital of Larissa; University of Thessaly; Larissa Greece
| |
Collapse
|
34
|
Stojić-Vukanić Z, Pilipović I, Djikić J, Vujnović I, Nacka-Aleksić M, Bufan B, Arsenović-Ranin N, Kosec D, Leposavić G. Strain specificities in age-related changes in mechanisms promoting and controlling rat spinal cord damage in experimental autoimmune encephalomyelitis. Exp Gerontol 2017; 101:37-53. [PMID: 29128575 DOI: 10.1016/j.exger.2017.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/02/2017] [Accepted: 11/06/2017] [Indexed: 11/20/2022]
Abstract
The study investigated strain specificities in age-related differences in CD8+ T cell- and microglial cell-mediated mechanisms implicated in induction/perpetuation and/or control of neuroinflammation in experimental autoimmune encephalomyelitis (EAE) in Albino Oxford (AO) and Dark Agouti (DA) rats exhibiting age-related changes in the susceptibility to EAE in the opposite direction (increase in relatively resistant AO rats vs decrease in DA rats). In the inductive phase of EAE, the greater number of fully differentiated effector CD8+ T lymphocytes was found in draining lymph nodes (dLNs) from aged rats of both strains than in strain-matched young rats, but this was particularly prominent in AO rats, which exhibited milder EAE of prolonged duration compared with their DA counterparts. Consistently, dLN IFN-γ+ and IL-17+ CD8+ T cell counts were greater in aged AO than in DA rats. Additionally, the magnitudes of myelin basic protein (MBP)-induced rise in the frequency of IFN-γ+ and IL-17+ CD8+ T cells (providing important help to neuroantigen-specific CD4+ T cells in EAE models characterized by clinically mild disease) were greater in dLN cell cultures from aged AO rats. Consistently, the magnitudes of MBP-induced rise in the frequency of both IFN-γ+ and IL-17+ CD8+ T cells were greater in spinal cord mononuclear cell cultures from aged AO rats compared with their DA counterparts. Besides, with aging CD4+CD25+Foxp3+/CD8+CD25+Foxp3+ regulatory T cell ratio changed in spinal cord in the opposite direction. Consequently, in aged AO rats it was shifted towards CD8+CD25+Foxp3+ regulatory T cells (exhibiting lower suppressive capacity) when compared with DA rats. Moreover, the frequency of CX3CR1+ cells among microglia changed with aging and the disease development. In aged rats, in the effector phase of EAE it was lower in AO than in DA rats. This was accompanied by higher frequency of cells expressing IL-1β (whose down-regulation is central for CX3CR1-mediated neuroprotection), but lower that of phagocyting cells among microglia from aged AO compared their DA counterparts. The study indicates the control points linked with strain differences in age-related changes in EAE pathogenesis.
Collapse
Affiliation(s)
- Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Ivan Pilipović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Jasmina Djikić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Ivana Vujnović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Mirjana Nacka-Aleksić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Biljana Bufan
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Nevena Arsenović-Ranin
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Duško Kosec
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Gordana Leposavić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia.
| |
Collapse
|
35
|
Lycke J. Trials of antivirals in the treatment of multiple sclerosis. Acta Neurol Scand 2017; 136 Suppl 201:45-48. [PMID: 29068492 DOI: 10.1111/ane.12839] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2017] [Indexed: 12/01/2022]
Abstract
There is increasing evidence that human herpes viruses and human endogenous retroviruses (HERV) are involved in the aetiology and pathogenesis of multiple sclerosis (MS). In order to acquire the ultimate evidence to confirm such a relationship, it is probably required to use specific antiviral drugs in clinical trials of MS. The results of published antiviral clinical trials in patients with MS are summarized in this review. None of them showed statistically significant effects on primary outcomes of disease activity or on disability development. However, given their small sample sizes, the strong trends and effects observed in subgroup analysis of antiherpes virus treatment in patients with MS warrant further studies. The possible involvement of HERV in MS is intriguing, and drugs have been developed that could reduce the impact of HERV in MS. However, larger studies are needed as the phase I and II trials were not designed to show clinical efficacy in MS.
Collapse
Affiliation(s)
- J. Lycke
- Department of Clinical Neuroscience; Institute of Neuroscience and Physiology at Sahlgrenska Academy; University of Gothenburg; Gothenburg Sweden
| |
Collapse
|
36
|
't Hart BA, Laman JD, Kap YS. Reverse Translation for Assessment of Confidence in Animal Models of Multiple Sclerosis for Drug Discovery. Clin Pharmacol Ther 2017; 103:262-270. [DOI: 10.1002/cpt.801] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/06/2017] [Accepted: 07/17/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Bert A. 't Hart
- Department Immunobiology; Biomedical Primate Research Centre; Rijswijk The Netherlands
- University of Groningen, University Medical Centre, Dept. Neuroscience; Groningen The Netherlands
- MS Center Noord-Nederland; Groningen The Netherlands
| | - Jon D. Laman
- University of Groningen, University Medical Centre, Dept. Neuroscience; Groningen The Netherlands
- MS Center Noord-Nederland; Groningen The Netherlands
| | - Yolanda S. Kap
- Department Immunobiology; Biomedical Primate Research Centre; Rijswijk The Netherlands
| |
Collapse
|
37
|
Hall CE, Koparde VN, Jameson-Lee M, Elnasseh AG, Scalora AF, Kobulnicky DJ, Serrano MG, Roberts CH, Buck GA, Neale MC, Nixon DE, Toor AA. Sequence homology between HLA-bound cytomegalovirus and human peptides: A potential trigger for alloreactivity. PLoS One 2017; 12:e0178763. [PMID: 28800601 PMCID: PMC5553991 DOI: 10.1371/journal.pone.0178763] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 05/18/2017] [Indexed: 11/18/2022] Open
Abstract
Human cytomegalovirus (hCMV) reactivation may often coincide with the development of graft-versus-host-disease (GVHD) in stem cell transplantation (SCT). Seventy seven SCT donor-recipient pairs (DRP) (HLA matched unrelated donor (MUD), n = 50; matched related donor (MRD), n = 27) underwent whole exome sequencing to identify single nucleotide polymorphisms (SNPs) generating alloreactive peptide libraries for each DRP (9-mer peptide-HLA complexes); Human CMV CROSS (Cross-Reactive Open Source Sequence) database was compiled from NCBI; HLA class I binding affinity for each DRPs HLA was calculated by NetMHCpan 2.8 and hCMV- derived 9-mers algorithmically compared to the alloreactive peptide-HLA complex libraries. Short consecutive (≥6) amino acid (AA) sequence homology matching hCMV to recipient peptides was considered for HLA-bound-peptide (IC50<500nM) cross reactivity. Of the 70,686 hCMV 9-mers contained within the hCMV CROSS database, an average of 29,658 matched the MRD DRP alloreactive peptides and 52,910 matched MUD DRP peptides (p<0.001). In silico analysis revealed multiple high affinity, immunogenic CMV-Human peptide matches (IC50<500 nM) expressed in GVHD-affected tissue-specific manner. hCMV+GVHD was found in 18 patients, 13 developing hCMV viremia before GVHD onset. Analysis of patients with GVHD identified potential cross reactive peptide expression within affected organs. We propose that hCMV peptide sequence homology with human alloreactive peptides may contribute to the pathophysiology of GVHD.
Collapse
Affiliation(s)
- Charles E. Hall
- Bone Marrow Transplant Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Vishal N. Koparde
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Maximilian Jameson-Lee
- Bone Marrow Transplant Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Abdelrhman G. Elnasseh
- Bone Marrow Transplant Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Allison F. Scalora
- Bone Marrow Transplant Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - David J. Kobulnicky
- Bone Marrow Transplant Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Myrna G. Serrano
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Catherine H. Roberts
- Bone Marrow Transplant Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Gregory A. Buck
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Michael C. Neale
- Departments of Psychiatry and Human & Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Daniel E. Nixon
- Division of Infectious Diseases, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Amir A. Toor
- Bone Marrow Transplant Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
38
|
't Hart BA, Dunham J, Faber BW, Laman JD, van Horssen J, Bauer J, Kap YS. A B Cell-Driven Autoimmune Pathway Leading to Pathological Hallmarks of Progressive Multiple Sclerosis in the Marmoset Experimental Autoimmune Encephalomyelitis Model. Front Immunol 2017; 8:804. [PMID: 28744286 PMCID: PMC5504154 DOI: 10.3389/fimmu.2017.00804] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/26/2017] [Indexed: 12/20/2022] Open
Abstract
The absence of pathological hallmarks of progressive multiple sclerosis (MS) in commonly used rodent models of experimental autoimmune encephalomyelitis (EAE) hinders the development of adequate treatments for progressive disease. Work reviewed here shows that such hallmarks are present in the EAE model in marmoset monkeys (Callithrix jacchus). The minimal requirement for induction of progressive MS pathology is immunization with a synthetic peptide representing residues 34–56 from human myelin oligodendrocyte glycoprotein (MOG) formulated with a mineral oil [incomplete Freund’s adjuvant (IFA)]. Pathological aspects include demyelination of cortical gray matter with microglia activation, oxidative stress, and redistribution of iron. When the peptide is formulated in complete Freund’s adjuvant, which contains mycobacteria that relay strong activation signals to myeloid cells, oxidative damage pathways are strongly boosted leading to more intensive pathology. The proven absence of immune potentiating danger signals in the MOG34–56/IFA formulation implies that a narrow population of antigen-experienced T cells present in the monkey’s immune repertoire is activated. This novel pathway involves the interplay of lymphocryptovirus-infected B cells with MHC class Ib/Caja-E restricted CD8+ CD56+ cytotoxic T lymphocytes.
Collapse
Affiliation(s)
- Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Center, Rijswijk, Netherlands.,Department of Neuroscience, University of Groningen, University Medical Center, Groningen, Netherlands
| | - Jordon Dunham
- Department of Immunobiology, Biomedical Primate Research Center, Rijswijk, Netherlands.,Department of Neuroscience, University of Groningen, University Medical Center, Groningen, Netherlands
| | - Bart W Faber
- Department of Parasitology, Biomedical Primate Research Center, Rijswijk, Netherlands
| | - Jon D Laman
- Department of Neuroscience, University of Groningen, University Medical Center, Groningen, Netherlands.,MS Center Noord-Nederland, Groningen, Netherlands
| | - Jack van Horssen
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, Netherlands
| | - Jan Bauer
- Department of Neuroimmunology, Brain Research Institute, Medical University Vienna, Vienna, Austria
| | - Yolanda S Kap
- Department of Immunobiology, Biomedical Primate Research Center, Rijswijk, Netherlands
| |
Collapse
|
39
|
Vanheusden M, Broux B, Welten SPM, Peeters LM, Panagioti E, Van Wijmeersch B, Somers V, Stinissen P, Arens R, Hellings N. Cytomegalovirus infection exacerbates autoimmune mediated neuroinflammation. Sci Rep 2017; 7:663. [PMID: 28386103 PMCID: PMC5428769 DOI: 10.1038/s41598-017-00645-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 03/07/2017] [Indexed: 12/28/2022] Open
Abstract
Cytomegalovirus (CMV) is a latent virus which causes chronic activation of the immune system. Here, we demonstrate that cytotoxic and pro-inflammatory CD4+CD28null T cells are only present in CMV seropositive donors and that CMV-specific Immunoglobulin (Ig) G titers correlate with the percentage of these cells. In vitro stimulation of peripheral blood mononuclear cells with CMVpp65 peptide resulted in the expansion of pre-existing CD4+CD28null T cells. In vivo, we observed de novo formation, as well as expansion of CD4+CD28null T cells in two different chronic inflammation models, namely the murine CMV (MCMV) model and the experimental autoimmune encephalomyelitis (EAE) model for multiple sclerosis (MS). In EAE, the percentage of peripheral CD4+CD28null T cells correlated with disease severity. Pre-exposure to MCMV further aggravated EAE symptoms, which was paralleled by peripheral expansion of CD4+CD28null T cells, increased splenocyte MOG reactivity and higher levels of spinal cord demyelination. Cytotoxic CD4+ T cells were identified in demyelinated spinal cord regions, suggesting that peripherally expanded CD4+CD28null T cells migrate towards the central nervous system to inflict damage. Taken together, we demonstrate that CMV drives the expansion of CD4+CD28null T cells, thereby boosting the activation of disease-specific CD4+ T cells and aggravating autoimmune mediated inflammation and demyelination.
Collapse
Affiliation(s)
- Marjan Vanheusden
- Hasselt University, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences, Diepenbeek, Belgium
| | - Bieke Broux
- Hasselt University, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences, Diepenbeek, Belgium
| | - Suzanne P M Welten
- Leiden University Medical Centre, Department of Immunohematology and Blood Transfusion, Leiden, The Netherlands
| | - Liesbet M Peeters
- Hasselt University, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences, Diepenbeek, Belgium
| | - Eleni Panagioti
- Leiden University Medical Centre, Department of Immunohematology and Blood Transfusion, Leiden, The Netherlands
| | - Bart Van Wijmeersch
- Hasselt University, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences, Diepenbeek, Belgium.,Rehabilitation and Multiple Sclerosis Centre, Overpelt, Belgium
| | - Veerle Somers
- Hasselt University, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences, Diepenbeek, Belgium
| | - Piet Stinissen
- Hasselt University, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences, Diepenbeek, Belgium
| | - Ramon Arens
- Leiden University Medical Centre, Department of Immunohematology and Blood Transfusion, Leiden, The Netherlands
| | - Niels Hellings
- Hasselt University, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences, Diepenbeek, Belgium.
| |
Collapse
|
40
|
Marou E, Liaskos C, Simopoulou T, Efthymiou G, Dardiotis E, Katsiari C, Scheper T, Meyer W, Hadjigeorgiou G, Bogdanos DP, Sakkas LI. Human cytomegalovirus (HCMV) UL44 and UL57 specific antibody responses in anti-HCMV-positive patients with systemic sclerosis. Clin Rheumatol 2017; 36:863-869. [PMID: 28124759 DOI: 10.1007/s10067-017-3553-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/17/2016] [Accepted: 01/17/2017] [Indexed: 02/06/2023]
Abstract
The role of human cytomegalovirus (HCMV) has been postulated as a trigger of systemic sclerosis (SSc). The aim of the study was to assess the prevalence of antibodies against HCMV UL44 and UL57 antigens not tested in the past. Sixty SSc patients, 40 multiple sclerosis and 17 normal controls (NCs), all anti-HCMV positive, were tested by immunoblotting. Reactivity to HCMV antigens, expressed as arbitrary units (AUs), was assessed for correlation with clinical and immunological parameters, including types of SSc-related autoantibodies. Anti-UL44 and anti-UL57 HCMV antibodies were present in 3/60 (5%) and 58/60 (96.7%) SSc patients, respectively (p < 0.001). Anti-UL57 antibodies were present in 35/40 (87.5%) MS patients and 16/17 (94.1%) NCs (SSc vs MS, MS vs NC, p = ns). Strong (50-75 AU) and very strong (75-100 AU) anti-UL57 immunoreactivity was found in 24 (41.4%) and 22 (37.9%) SSc patients, respectively (p = ns). Dilution experiments showed anti-UL57 antibody persistence in up to 1/5000. Overall, there was no difference in the frequency or the magnitude of anti-UL57 immunoreactivity between diffuse cutaneous systemic sclerosis and limited cutaneous systemic sclerosis patients (96.67 vs 96.67%; 65.45 ± 20.19 vs 64.31 ± 21.11 AU, p > 0.05) but strong anti-UL57 reactivity were more frequent in SSc compared to NCs (p = 0.007). Anti-UL57 reactivity was not inhibited by SSc-specific autoantigens. Anti-UL57 seropositivity did not correlate with demographic, clinical or immunological features of SSc. Anti-HCMV UL57 antibodies are universally present in anti-HCMV-positive patients with SSc, while those against UL44 are rarely seen. Because anti-UL57 lack disease specificity and are not involved in cross-reactive responses, their immunopathogenetic potential is to be questioned.
Collapse
Affiliation(s)
- Emmanouela Marou
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Viopolis, 40500, Larissa, Thessaly, Greece
- Cellular Immunotherapy and Molecular Immunodiagnostics, Biomedical Section, Centre for Research and Technology-Hellas (CERTH)-Institute for Research and Technology-Thessaly (IRETETH), 41222, Larissa, Greece
| | - Christos Liaskos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Viopolis, 40500, Larissa, Thessaly, Greece
- Cellular Immunotherapy and Molecular Immunodiagnostics, Biomedical Section, Centre for Research and Technology-Hellas (CERTH)-Institute for Research and Technology-Thessaly (IRETETH), 41222, Larissa, Greece
| | - Theodora Simopoulou
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Viopolis, 40500, Larissa, Thessaly, Greece
| | - Georgios Efthymiou
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Viopolis, 40500, Larissa, Thessaly, Greece
- Cellular Immunotherapy and Molecular Immunodiagnostics, Biomedical Section, Centre for Research and Technology-Hellas (CERTH)-Institute for Research and Technology-Thessaly (IRETETH), 41222, Larissa, Greece
| | - Efthymios Dardiotis
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University General Hospital of Larissa, University of Thessaly, 40500, Larissa, Greece
| | - Christina Katsiari
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Viopolis, 40500, Larissa, Thessaly, Greece
| | - Thomas Scheper
- Institute of Immunology, Euroimmun, 23560, Lübeck, Germany
| | - Wolfgang Meyer
- Institute of Immunology, Euroimmun, 23560, Lübeck, Germany
| | - Georgios Hadjigeorgiou
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University General Hospital of Larissa, University of Thessaly, 40500, Larissa, Greece
| | - Dimitrios P Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Viopolis, 40500, Larissa, Thessaly, Greece
- Cellular Immunotherapy and Molecular Immunodiagnostics, Biomedical Section, Centre for Research and Technology-Hellas (CERTH)-Institute for Research and Technology-Thessaly (IRETETH), 41222, Larissa, Greece
| | - Lazaros I Sakkas
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Viopolis, 40500, Larissa, Thessaly, Greece.
| |
Collapse
|
41
|
Milovanovic J, Popovic B, Milovanovic M, Kvestak D, Arsenijevic A, Stojanovic B, Tanaskovic I, Krmpotic A, Arsenijevic N, Jonjic S, Lukic ML. Murine Cytomegalovirus Infection Induces Susceptibility to EAE in Resistant BALB/c Mice. Front Immunol 2017; 8:192. [PMID: 28289417 PMCID: PMC5326788 DOI: 10.3389/fimmu.2017.00192] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 02/09/2017] [Indexed: 12/24/2022] Open
Abstract
In contrast to C57BL/6 mice, BALB/c mice are relatively resistant to the induction of experimental autoimmune encephalomyelitis (EAE) after challenge with MOG35–55 peptide. Here, we provide the first evidence that infection with murine cytomegalovirus (MCMV) in adulthood abrogates this resistance. Infected BALB/c mice developed clinical and histological signs similar to those seen in susceptible C57BL/6 mice. In addition to CD4+ cells, large proportion of cells in the infiltrate of diseased BALB/c mice was CD8+, similar with findings in multiple sclerosis. CD8+ cells that responded to ex vivo restimulation with MOG35–55 were not specific for viral epitopes pp89 and m164. MCMV infection favors proinflammatory type of dendritic cells (CD86+CD40+CD11c+) in the peripheral lymph organs, M1 type of microglia in central nervous system, and increases development of Th1/Th17 encephalitogenic cells. This study indicates that MCMV may enhance autoimmune neuropathology and abrogate inherent resistance to EAE in mouse strain by enhancing proinflammatory phenotype of antigen-presenting cells, Th1/Th17, and CD8 response to MOG35–55.
Collapse
Affiliation(s)
- Jelena Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia; Faculty of Medical Sciences, Institute of Histology, University of Kragujevac, Kragujevac, Serbia
| | - Branka Popovic
- Center for Proteomics, Faculty of Medicine, Department for Histology and Embryology, University of Rijeka , Rijeka , Croatia
| | - Marija Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac , Kragujevac , Serbia
| | - Daria Kvestak
- Center for Proteomics, Faculty of Medicine, Department for Histology and Embryology, University of Rijeka , Rijeka , Croatia
| | - Aleksandar Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac , Kragujevac , Serbia
| | - Bojana Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia; Faculty of Medical Sciences, Institute of Pathophysiology, University of Kragujevac, Kragujevac, Serbia
| | - Irena Tanaskovic
- Faculty of Medical Sciences, Institute of Histology, University of Kragujevac , Kragujevac , Serbia
| | - Astrid Krmpotic
- Center for Proteomics, Faculty of Medicine, Department for Histology and Embryology, University of Rijeka , Rijeka , Croatia
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac , Kragujevac , Serbia
| | - Stipan Jonjic
- Center for Proteomics, Faculty of Medicine, Department for Histology and Embryology, University of Rijeka , Rijeka , Croatia
| | - Miodrag L Lukic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac , Kragujevac , Serbia
| |
Collapse
|
42
|
Bermúdez-Morales VH, Castrejon-Salgado R, Torres-Poveda K, de Jesús Flores-Rivera J, Flores-Aldana M, Madrid-Marina V, Hernández-Girón C. Papel de las enfermedades infecciosas en el desarrollo de la esclerosis múltiple: evidencia científica. NEUROLOGÍA ARGENTINA 2017. [PMCID: PMC7154617 DOI: 10.1016/j.neuarg.2016.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Introducción La esclerosis múltiple (EM) es el trastorno inflamatorio más común del sistema nervioso central (SNC) y la causa principal de discapacidad neurológica en adultos jóvenes. Los factores ambientales e infecciosos han sido fuertemente asociados al incremento de la ocurrencia de la enfermedad, hasta más del doble, en los últimos 10 años. En este artículo de revisión se describen los principales hallazgos reportados sobre la relación entre ciertas infecciones virales y bacterianas con la aparición y progresión de la EM. Métodos Se realizó un plan metodológico de búsqueda de artículos científicos relacionados con infección y EM, mediante la búsqueda de artículos científicos, principalmente publicados en inglés, en las plataformas virtuales de Pubmed, Medline y Cochrane. Para la búsqueda se utilizaron como palabras claves (términos MeSH): «virus, bacteria, autoimmune disease of the nervous system, multiple sclerosis». Se eligieron artículos publicados en revistas indexadas durante los últimos 15 años. Resultados Estudios epidemiológicos sugieren que la EM tiene un componente etiológico infeccioso que origina un proceso inflamatorio que puede contribuir a la iniciación o exacerbación de la enfermedad. Particularmente, la infección viral y los eventos de desmielinización en el SNC puede deberse a la penetración de un virus como el virus Epstein-Barr (EBV), a través del torrente sanguíneo, específicamente hacia el SNC. Por otro lado, las infecciones bacterianas crónicas pueden causar procesos de desmielinización en el SNC que agravan la enfermedad de EM. Conclusiones Este estudio contribuye a aportar evidencia científica donde se demuestra la multicausalidad implicada en la ocurrencia de la EM. Aún falta desarrollar más estudios epidemiológicos que demuestren y comprueben la relación y la implicación de agentes virales y bacterianos en el origen, el desarrollo y la severidad de la enfermedad.
Collapse
Affiliation(s)
- Victor Hugo Bermúdez-Morales
- Centro de Investigación sobre enfermedades infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Ricardo Castrejon-Salgado
- Médico familiar, Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Xochitepec, Morelos, México
| | - Kirvis Torres-Poveda
- Centro de Investigación sobre enfermedades infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - José de Jesús Flores-Rivera
- Médico neurólogo, Departamento de enfermedades desmielinizantes, Instituto nacional de neurología y neurocirugía, Ciudad de México (CDMX), México
| | - Mario Flores-Aldana
- Profesor investigador, Centro de Investigación en Salud Poblacional, CISP, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Vicente Madrid-Marina
- Centro de Investigación sobre enfermedades infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Carlos Hernández-Girón
- Profesor investigador, Centro de Investigación en Salud Poblacional, CISP, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
- Autor para correspondencia.
| |
Collapse
|
43
|
Primate autoimmune disease models; lost for translation? Clin Transl Immunology 2016; 5:e122. [PMID: 28435673 PMCID: PMC5384286 DOI: 10.1038/cti.2016.82] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 01/06/2023] Open
Abstract
Replacement, reduction and refinement (the 3R's) are the leading principles in translational research with animals. To be useful a model should also be clinically Relevant (the 4th R). Work in a non-human primate model of multiple sclerosis, the experimental autoimmune encephalomyelitis model, reveals an inherent conflict among these 4R principles. The impossibility to harmonize all 4R's forms a major challenge when the model is applied in preclinical drug development.
Collapse
|
44
|
Gross CC, Schulte-Mecklenbeck A, Wiendl H, Marcenaro E, Kerlero de Rosbo N, Uccelli A, Laroni A. Regulatory Functions of Natural Killer Cells in Multiple Sclerosis. Front Immunol 2016; 7:606. [PMID: 28066417 PMCID: PMC5165263 DOI: 10.3389/fimmu.2016.00606] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/01/2016] [Indexed: 12/26/2022] Open
Abstract
There is increasing evidence that natural killer (NK) cells exhibit regulatory features. Among them, CD56bright NK cells have been suggested to play a major role in controlling T cell responses and maintaining homeostasis. Dysfunction in NK cell-mediated regulatory features has been recently described in untreated multiple sclerosis (MS), suggesting a contribution to MS pathogenesis. Moreover, biological disease-modifying treatments effective in MS apparently enhance the frequencies and/or regulatory function of NK cells, further pointing toward an immunoprotective role of NK cells in MS. Here, we summarize the current knowledge on the regulatory functions of NK cells, based on their interactions with other cells belonging to the innate compartment, as well as with adaptive effector cells. We review the more recent data reporting disruption of NK cell/T cell interactions in MS and discuss how disease-modifying treatments for MS affect NK cells.
Collapse
Affiliation(s)
- Catharina C Gross
- Department of Neurology, University Hospital Münster , Münster , Germany
| | | | - Heinz Wiendl
- Department of Neurology, University Hospital Münster , Münster , Germany
| | - Emanuela Marcenaro
- Centre of Excellence for Biomedical Research, University of Genova, Genova, Italy; Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Nicole Kerlero de Rosbo
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova , Genova , Italy
| | - Antonio Uccelli
- Centre of Excellence for Biomedical Research, University of Genova, Genova, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy; IRCCS San Martino-IST, Genova, Italy
| | - Alice Laroni
- Centre of Excellence for Biomedical Research, University of Genova, Genova, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy; IRCCS San Martino-IST, Genova, Italy
| |
Collapse
|
45
|
Auer M, Borena W, Holm-von Laer D, Deisenhammer F. Correlation between anti-JC-virus and anti-cytomegalovirus, -Epstein-Barr virus and -measles/-rubella/-varicella-zoster-virus antibodies. J Med Virol 2016; 89:3-9. [PMID: 27253624 DOI: 10.1002/jmv.24590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2016] [Indexed: 02/03/2023]
Abstract
Anti-JCV antibody status is used for PML-risk-stratification in MS patients before and during Natalizumab therapy. JCV antibodies can be detected in around 60% of MS patients, however, only a small proportion actually develop PML. As anti-viral antibodies tend to occur unspecifically, the aim of this study was to correlate JCV antibody status and index with other common anti-viral antibodies. A total of 123 samples of MS-patients were tested for anti-JCV antibodies by JCV-Stratify-ELISA at Unilabs, Denmark. The same samples were analyzed for measles, rubella, varicella zoster, EBV, and CMV IgG and IgM antibodies by ELISA, or chemiluminescence-microparticle immunoassay. For all antibody-titers correlations were calculated and group comparisons of JCV-positive and -negative patients were performed. Fifty-three patients (43.1%) were JCV negative and 70 (56.9%) positive. CMV-IgM antibodies were detected in six patients. Otherwise no IgM antibodies were detected. IgG antibodies against measles, rubella, varicella zoster, and EBV were detected in ≥97% of patients and 47 samples (38.2%) tested positive for CMV-IgG. There was no significant correlation between any of the antibody titers including JCV index, however, a significantly higher prevalence (P = 0.003) of CMV-IgG in JCV positive compared to JCV negative patients, whereas no difference was detected for measles, rubella, varicella zoster, and EBV IgG. In conclusion, the JCV antibody response in MS patients seems to be largely independent of any other anti-viral immunity. The only coincidence was found with CMV IgG antibodies which might point towards some immunological cross-reactivity in anti-viral immune response or other mechanisms leading to combined viral infections such as shared transmission. J. Med. Virol. 89:3-9, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Michael Auer
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria.
| | - Wegene Borena
- Department of Virology, Innsbruck Medical University, Innsbruck, Austria
| | | | | |
Collapse
|
46
|
Martínez-Rodríguez JE, Cobo-Calvo A, Villar LM, Munteis E, Blanco Y, Rasal R, Vera A, Muntasell A, Alvarez-Lafuente R, Saiz A, Alvarez-Cermeño JC, Martínez-Yélamos S, Roquer J, López-Botet M. Adaptive natural killer cell response to cytomegalovirus and disability progression in multiple sclerosis. Mult Scler 2015; 22:741-52. [PMID: 26362897 DOI: 10.1177/1352458515601215] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/26/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND Human cytomegalovirus (HCMV) causes a highly prevalent infection which may have a multifaceted impact on chronic inflammatory disorders. However, its potential influence in multiple sclerosis (MS) remains controversial. The HCMV-host interaction may induce an adaptive reconfiguration of the natural killer (NK) cell compartment, whose hallmark is a persistent expansion of peripheral NKG2C+ NK-cells. OBJECTIVE The purpose of this study was to evaluate whether the HCMV-driven NKG2C+ NK-cell expansion is related to the MS clinical course. METHODS Multicentre analysis of NKG2C expression and genotype according to HCMV serostatus and time of assignment of irreversible disability scores in 246 MS patients prospectively followed up in our institutions. RESULTS NKG2C expression was unrelated to disease-modifying drugs, remained stable under steady-state conditions, and was higher in HCMV(+) NKG2C(+/+) homozygous individuals. NKG2C+ NK-cell expansion in HCMV(+) patients, as compared to HCMV(+) or HCMV(-) patients with lower NKG2C+ NK-cells proportions, conferred a lower risk of progression in Cox regression analysis (Expanded Disability Status Scale (EDSS)>3.0, hazard ratio (HR)=0.33, 95% confidence interval (CI) 0.15-0.71, p=0.005; EDSS>5.5, HR=0.23, 95% CI 0.07-0.74, p=0.014). Neither HCMV serostatus nor NKG2C genotype appeared to be related to disability progression. CONCLUSIONS HCMV may exert a beneficial influence on MS, decreasing the risk of disability progression in those patients displaying a virus-driven NKG2C+ NK-cell expansion.
Collapse
Affiliation(s)
| | | | - Luisa M Villar
- Immunology Department, Hospital Universitario Ramón y Cajal, Spain
| | - Elvira Munteis
- Neurology Department, Hospital del Mar Medical Research Institute, Spain
| | - Yolanda Blanco
- Neurology Service, Hospital Clinic and Institut d'Investigació August Pi I Sunyer, Spain
| | - Raquel Rasal
- Neurology Department, Hospital del Mar Medical Research Institute, Spain
| | - Andrea Vera
- Immunology Unit, University Pompeu Fabra, Spain
| | | | | | - Albert Saiz
- Neurology Service, Hospital Clinic and Institut d'Investigació August Pi I Sunyer, Spain
| | | | | | - Jaume Roquer
- Neurology Department, Hospital del Mar Medical Research Institute, Spain
| | - Miguel López-Botet
- Immunology Unit, University Pompeu Fabra, Spain/ Hospital del Mar Medical Research Institute, Spain
| |
Collapse
|
47
|
't Hart BA. Why does multiple sclerosis only affect human primates? Mult Scler 2015; 22:559-63. [PMID: 26540733 DOI: 10.1177/1352458515591862] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/26/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) develops exclusively in humans. Non-human primates are resistant against MS, although they are highly susceptible to the MS animal model, experimental autoimmune encephalomyelitis (EAE). Unravelling of the cause(s) underlying this discrepancy is highly relevant as insights might be gained into the elusive event(s) that trigger(s) MS. A well-established difference between the human primate (Homo sapiens) and non-human primates is that humans are unable to synthesize the sialic acid N-glycolylneuraminic acid (Neu5Gc). VIEWPOINT We propose the concept that long-term ingestion by human primates of the foreign Neu5Gc, via red meat consumption, is an ignored environmental risk factor for MS. Conceptually, incorporation of dietary Neu5Gc into vital regions of the central nervous system, such as the blood-brain barrier (BBB) and the axon-myelin unit, creates targets for binding of de novo synthesized heterophilic anti-NeuGc antibodies. Binding of the antibodies can cause BBB leakage and destabilization of the axon-myelin coupling. The ensuing cytodegeneration and release of self-antigens could be a start of the characteristic pathological features of MS.
Collapse
Affiliation(s)
- Bert A 't Hart
- University of Groningen, University Medical Center, Department of Neuroscience, Groningen, The Netherlands
| |
Collapse
|