1
|
Asgari R, Caceres-Valdiviezo M, Wu S, Hamel L, Humber BE, Agarwal SM, Fletcher PJ, Fulton S, Hahn MK, Pereira S. Regulation of energy balance by leptin as an adiposity signal and modulator of the reward system. Mol Metab 2025; 91:102078. [PMID: 39615837 PMCID: PMC11696864 DOI: 10.1016/j.molmet.2024.102078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/02/2024] [Accepted: 11/26/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND Leptin is an adipose tissue-derived hormone that plays a crucial role in body weight, appetite, and behaviour regulation. Leptin controls energy balance as an indicator of adiposity levels and as a modulator of the reward system, which is associated with liking palatable foods. Obesity is characterized by expanded adipose tissue mass and consequently, elevated concentrations of leptin in blood. Leptin's therapeutic potential for most forms of obesity is hampered by leptin resistance and a narrow dose-response window. SCOPE OF REVIEW This review describes the current knowledge of the brain regions and intracellular pathways through which leptin promotes negative energy balance and restrains neural circuits affecting food reward. We also describe mechanisms that hinder these biological responses in obesity and highlight potential therapeutic interventions. MAJOR CONCLUSIONS Additional research is necessary to understand how pathways engaged by leptin in different brain regions are interconnected in the control of energy balance.
Collapse
Affiliation(s)
| | - Maria Caceres-Valdiviezo
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Laboratory of Omic Sciences, School of Medicine, Universidad de Especialidades Espíritu Santo, Samborondón, Ecuador
| | - Sally Wu
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Laurie Hamel
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | | - Sri Mahavir Agarwal
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Banting & Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| | - Paul J Fletcher
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Stephanie Fulton
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal Diabetes Research Center, Montréal, QC, Canada; Department of Nutrition, Université de Montréal, QC, Canada
| | - Margaret K Hahn
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Banting & Best Diabetes Centre, University of Toronto, Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada; Department of Pharmacology, University of Toronto, Toronto, ON, Canada.
| | - Sandra Pereira
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Quispe R, Sweeney T, Martin SS, Jones SR, Allison MA, Budoff MJ, Ndumele CE, Elshazly MB, Michos ED. Associations of Adipokine Levels With Levels of Remnant Cholesterol: The Multi-Ethnic Study of Atherosclerosis. J Am Heart Assoc 2024; 13:e030548. [PMID: 39248264 PMCID: PMC11935629 DOI: 10.1161/jaha.123.030548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 03/06/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND The metabolic syndrome phenotype of individuals with obesity is characterized by elevated levels of triglyceride-rich lipoproteins and remnant particles, which have been shown to be significantly atherogenic. Understanding the association between adipokines, endogenous hormones produced by adipose tissue, and remnant cholesterol (RC) would give insight into the link between obesity and atherosclerotic cardiovascular disease. METHODS AND RESULTS We studied 1791 MESA (Multi-Ethnic Study of Atherosclerosis) participants who took part in an ancillary study on body composition with adipokine levels measured (leptin, adiponectin, and resistin) at either visit 2 or visit 3. RC was calculated as non-high-density lipoprotein cholesterol minus low-density lipoprotein cholesterol, measured at the same visit as the adipokines, as well as subsequent visits 4 through 6. Multivariable-adjusted linear mixed-effects models were used to assess the cross-sectional and longitudinal associations between adipokines and log-transformed levels of RC. Mean±SD age was 64.5±9.6 years; mean±SD body mass index was 29.9±5.0 kg/m2; and 52.0% were women. In fully adjusted cross-sectional models that included body mass index, diabetes, low-density lipoprotein cholesterol, and lipid-lowering therapy, for each 1-unit increment in adiponectin, there was 14.6% (95% CI, 12.2-16.9) lower RC. With each 1-unit increment in leptin and resistin, there was 4.8% (95% CI, 2.7-7.0) and 4.0% (95% CI, 0.2-8.1) higher RC, respectively. Lower adiponectin and higher leptin were also associated with longitudinal increases in RC levels over median follow-up of 5 (interquartile range, 4-8) years. CONCLUSIONS Lower adiponectin and higher leptin levels were independently associated with higher levels of RC at baseline and longitudinal RC increase, even after accounting for body mass index and low-density lipoprotein cholesterol.
Collapse
Affiliation(s)
- Renato Quispe
- Ciccarone Center for the Prevention of Cardiovascular DiseaseJohns Hopkins University School of MedicineBaltimoreMD
| | - Ty Sweeney
- Ciccarone Center for the Prevention of Cardiovascular DiseaseJohns Hopkins University School of MedicineBaltimoreMD
| | - Seth S. Martin
- Ciccarone Center for the Prevention of Cardiovascular DiseaseJohns Hopkins University School of MedicineBaltimoreMD
| | - Steven R. Jones
- Ciccarone Center for the Prevention of Cardiovascular DiseaseJohns Hopkins University School of MedicineBaltimoreMD
| | - Matthew A. Allison
- Department of Family MedicineUniversity of California San DiegoSan DiegoCA
| | | | - Chiadi E. Ndumele
- Ciccarone Center for the Prevention of Cardiovascular DiseaseJohns Hopkins University School of MedicineBaltimoreMD
| | - Mohamed B. Elshazly
- Department of Cardiovascular MedicineHeart and Vascular Institute, Cleveland ClinicClevelandOH
| | - Erin D. Michos
- Ciccarone Center for the Prevention of Cardiovascular DiseaseJohns Hopkins University School of MedicineBaltimoreMD
| |
Collapse
|
3
|
Zhang J, Katada K, Mosleh E, Yuhas A, Peng G, Golson ML. The leptin receptor has no role in delta-cell control of beta-cell function in the mouse. Front Endocrinol (Lausanne) 2023; 14:1257671. [PMID: 37850099 PMCID: PMC10577419 DOI: 10.3389/fendo.2023.1257671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/05/2023] [Indexed: 10/19/2023] Open
Abstract
Introduction Leptin inhibits insulin secretion from isolated islets from multiple species, but the cell type that mediates this process remains elusive. Several mouse models have been used to explore this question. Ablation of the leptin receptor (Lepr) throughout the pancreatic epithelium results in altered glucose homeostasis and ex vivo insulin secretion and Ca2+ dynamics. However, Lepr removal from neither alpha nor beta cells mimics this result. Moreover, scRNAseq data has revealed an enrichment of LEPR in human islet delta cells. Methods We confirmed LEPR upregulation in human delta cells by performing RNAseq on fixed, sorted beta and delta cells. We then used a mouse model to test whether delta cells mediate the diminished glucose-stimulated insulin secretion in response to leptin. Results Ablation of Lepr within mouse delta cells did not change glucose homeostasis or insulin secretion, whether mice were fed a chow or high-fat diet. We further show, using a publicly available scRNAseq dataset, that islet cells expressing Lepr lie within endothelial cell clusters. Conclusions In mice, leptin does not influence beta-cell function through delta cells.
Collapse
Affiliation(s)
- Jia Zhang
- Department of Genetics, University of Pennsylvania, Philadephia, PA, United States
| | - Kay Katada
- School of Medicine, University of Pennsylvania, Philadephia, PA, United States
| | - Elham Mosleh
- Department of Genetics, University of Pennsylvania, Philadephia, PA, United States
- School of Medicine, University of Pennsylvania, Philadephia, PA, United States
| | - Andrew Yuhas
- Department of Genetics, University of Pennsylvania, Philadephia, PA, United States
- School of Medicine, University of Pennsylvania, Philadephia, PA, United States
| | - Guihong Peng
- Department of Medicine, Divison of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University, Baltimore, MD, United States
| | - Maria L. Golson
- Department of Genetics, University of Pennsylvania, Philadephia, PA, United States
- School of Medicine, University of Pennsylvania, Philadephia, PA, United States
- Department of Medicine, Divison of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
4
|
Quispe R, Sweeney T, Martin SS, Jones SR, Allison MA, Budoff MJ, Ndumele CE, Elshazly MB, Michos ED. Associations of Adipokine Levels with Levels of Remnant Cholesterol: the Multi-Ethnic Study of Atherosclerosis (MESA). MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.24.23289072. [PMID: 37162928 PMCID: PMC10168480 DOI: 10.1101/2023.04.24.23289072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Background The metabolic syndrome phenotype of individuals with obesity is characterized by elevated levels of triglyceride (TG)-rich lipoproteins and remnant particles, which have been shown to be significantly atherogenic. Understanding the association between adipokines, endogenous hormones produced by adipose tissue, and remnant cholesterol (RC) would give insight into the link between obesity and atherosclerotic cardiovascular disease. Methods We studied 1,791 MESA participants of an ancillary study on body composition who had adipokine levels measured (leptin, adiponectin, resistin) at either visit 2 or 3. RC was calculated as non-high density lipoprotein cholesterol minus low-density lipoprotein cholesterol (LDL-C), measured at the same visit as the adipokines, as well as subsequent visits 4 through 6. Multivariable-adjusted linear mixed effects models were used to assess the cross-sectional and longitudinal associations between adipokines and levels of RC. Results Mean (SD) age was 64.5±9.6 years and for body mass index (BMI) was 29.9±5.0 kg/m2; 52.0% were women. In fully adjusted models that included BMI, LDL-C and lipid-lowering therapy, for each 1-unit increment in adiponectin, there was 14.4% (12.0, 16.8) lower RC. With each 1-unit increment in leptin and resistin, there was 4.5% (2.3, 6.6) and 5.1% (1.2, 9.2) higher RC, respectively. Lower adiponectin and higher leptin were also associated with longitudinal increases in RC levels over median follow-up of 5(4-8) years. Conclusions Lower adiponectin and higher leptin levels were independently associated with higher levels of RC at baseline and longitudinal RC increase, even after accounting for BMI and LDL-C. CLINICAL PERSPECTIVE What is new?: - Among individuals without history of cardiovascular disease, adiponectin is inversely associated with cross-sectional levels of remnant cholesterol, whereas leptin and resistin are directly associated.- Adiponectin had an inverse association with progression of remnant cholesterol levels over time.What are the clinical implications?: - Adiponectin levels were not associated with LDL-C levels but with levels of triglyceride-rich lipoproteins, particularly remnant cholesterol.-Incrementing adiponectin via lifestyle modification and/or pharmacological therapies (i.e. GLP-1 agonists) could be a mechanism to reduce remnant cholesterol levels and ultimately cardiovascular risk.
Collapse
|
5
|
Lavoie O, Michael NJ, Caron A. A critical update on the leptin-melanocortin system. J Neurochem 2023; 165:467-486. [PMID: 36648204 DOI: 10.1111/jnc.15765] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/25/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023]
Abstract
The discovery of leptin in 1994 was an "eureka moment" in the field of neurometabolism that provided new opportunities to better understand the central control of energy balance and glucose metabolism. Rapidly, a prevalent model in the field emerged that pro-opiomelanocortin (POMC) neurons were key in promoting leptin's anorexigenic effects and that the arcuate nucleus of the hypothalamus (ARC) was a key region for the regulation of energy homeostasis. While this model inspired many important discoveries, a growing body of literature indicates that this model is now outdated. In this review, we re-evaluate the hypothalamic leptin-melanocortin model in light of recent advances that directly tackle previous assumptions, with a particular focus on the ARC. We discuss how segregated and heterogeneous these neurons are, and examine how the development of modern approaches allowing spatiotemporal, intersectional, and chemogenetic manipulations of melanocortin neurons has allowed a better definition of the complexity of the leptin-melanocortin system. We review the importance of leptin in regulating glucose homeostasis, but not food intake, through direct actions on ARC POMC neurons. We further highlight how non-POMC, GABAergic neurons mediate leptin's direct effects on energy balance and influence POMC neurons.
Collapse
Affiliation(s)
- Olivier Lavoie
- Faculty of Pharmacy, Université Laval, Quebec City, Quebec, Canada.,Quebec Heart and Lung Institute, Quebec City, Quebec, Canada
| | - Natalie Jane Michael
- Faculty of Pharmacy, Université Laval, Quebec City, Quebec, Canada.,Quebec Heart and Lung Institute, Quebec City, Quebec, Canada
| | - Alexandre Caron
- Faculty of Pharmacy, Université Laval, Quebec City, Quebec, Canada.,Quebec Heart and Lung Institute, Quebec City, Quebec, Canada.,Montreal Diabetes Research Center, Montreal, Quebec, Canada
| |
Collapse
|
6
|
Reiterer M, Gilani A, Lo JC. Pancreatic Islets as a Target of Adipokines. Compr Physiol 2022; 12:4039-4065. [PMID: 35950650 DOI: 10.1002/cphy.c210044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Rising rates of obesity are intricately tied to the type 2 diabetes epidemic. The adipose tissues can play a central role in protection against or triggering metabolic diseases through the secretion of adipokines. Many adipokines may improve peripheral insulin sensitivity through a variety of mechanisms, thereby indirectly reducing the strain on beta cells and thus improving their viability and functionality. Such effects will not be the focus of this article. Rather, we will focus on adipocyte-secreted molecules that have a direct effect on pancreatic islets. By their nature, adipokines represent potential druggable targets that can reach the islets and improve beta-cell function or preserve beta cells in the face of metabolic stress. © 2022 American Physiological Society. Compr Physiol 12:1-27, 2022.
Collapse
Affiliation(s)
- Moritz Reiterer
- Division of Cardiology, Department of Medicine, Weill Center for Metabolic Health, Cardiovascular Research Institute, Weill Cornell Medicine, New York, New York, USA
| | - Ankit Gilani
- Division of Cardiology, Department of Medicine, Weill Center for Metabolic Health, Cardiovascular Research Institute, Weill Cornell Medicine, New York, New York, USA
| | - James C Lo
- Division of Cardiology, Department of Medicine, Weill Center for Metabolic Health, Cardiovascular Research Institute, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
7
|
Lv C, Sun Y, Zhang ZY, Aboelela Z, Qiu X, Meng ZX. β-cell dynamics in type 2 diabetes and in dietary and exercise interventions. J Mol Cell Biol 2022; 14:6656373. [PMID: 35929791 PMCID: PMC9710517 DOI: 10.1093/jmcb/mjac046] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/07/2022] [Accepted: 08/03/2022] [Indexed: 01/14/2023] Open
Abstract
Pancreatic β-cell dysfunction and insulin resistance are two of the major causes of type 2 diabetes (T2D). Recent clinical and experimental studies have suggested that the functional capacity of β-cells, particularly in the first phase of insulin secretion, is a primary contributor to the progression of T2D and its associated complications. Pancreatic β-cells undergo dynamic compensation and decompensation processes during the development of T2D, in which metabolic stresses such as endoplasmic reticulum stress, oxidative stress, and inflammatory signals are key regulators of β-cell dynamics. Dietary and exercise interventions have been shown to be effective approaches for the treatment of obesity and T2D, especially in the early stages. Whilst the targeted tissues and underlying mechanisms of dietary and exercise interventions remain somewhat vague, accumulating evidence has implicated the improvement of β-cell functional capacity. In this review, we summarize recent advances in the understanding of the dynamic adaptations of β-cell function in T2D progression and clarify the effects and mechanisms of dietary and exercise interventions on β-cell dysfunction in T2D. This review provides molecular insights into the therapeutic effects of dietary and exercise interventions on T2D, and more importantly, it paves the way for future research on the related underlying mechanisms for developing precision prevention and treatment of T2D.
Collapse
Affiliation(s)
- Chengan Lv
- Department of Pathology and Pathophysiology and Metabolic Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China,Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yuchen Sun
- Department of Pathology and Pathophysiology and Metabolic Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China,Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China,Zhejiang University–University of Edinburgh Institute (ZJE), Zhejiang University, Haining 314400, China
| | - Zhe Yu Zhang
- Department of Pathology and Pathophysiology and Metabolic Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China,Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zeyad Aboelela
- Department of Pathology and Pathophysiology and Metabolic Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China,Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China,Bachelors of Surgery, Bachelors of Medicine (MBBS), Zhejiang University School of Medicine, Hangzhou 310003, China
| | | | | |
Collapse
|
8
|
Grasso P. Harnessing the Power of Leptin: The Biochemical Link Connecting Obesity, Diabetes, and Cognitive Decline. Front Aging Neurosci 2022; 14:861350. [PMID: 35527735 PMCID: PMC9072663 DOI: 10.3389/fnagi.2022.861350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/21/2022] [Indexed: 12/02/2022] Open
Abstract
In this review, the current understanding of leptin’s role in energy balance, glycemic regulation, and cognitive function is examined, and its involvement in maintaining the homeostatic “harmony” of these physiologies is explored. The effects of exercise on circulating leptin levels are summarized, and the results of clinical application of leptin to metabolic disease and neurologic dysfunction are reviewed. Finally, pre-clinical evidence is presented which suggests that synthetic peptide leptin mimetics may be useful in resolving not only the leptin resistance associated with common obesity and other elements of metabolic syndrome, but also the peripheral insulin resistance characterizing type 2 diabetes mellitus, and the central insulin resistance associated with certain neurologic deficits in humans.
Collapse
Affiliation(s)
- Patricia Grasso
- Department of Medicine, Albany Medical College, Albany, NY, United States
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
- *Correspondence: Patricia Grasso,
| |
Collapse
|
9
|
van Gurp L, Fodoulian L, Oropeza D, Furuyama K, Bru-Tari E, Vu AN, Kaddis JS, Rodríguez I, Thorel F, Herrera PL. Generation of human islet cell type-specific identity genesets. Nat Commun 2022; 13:2020. [PMID: 35440614 PMCID: PMC9019032 DOI: 10.1038/s41467-022-29588-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/23/2022] [Indexed: 12/23/2022] Open
Abstract
Generation of surrogate cells with stable functional identities is crucial for developing cell-based therapies. Efforts to produce insulin-secreting replacement cells to treat diabetes require reliable tools to assess islet cellular identity. Here, we conduct a thorough single-cell transcriptomics meta-analysis to identify robustly expressed markers used to build genesets describing the identity of human α-, β-, γ- and δ-cells. These genesets define islet cellular identities better than previously published genesets. We show their efficacy to outline cell identity changes and unravel some of their underlying genetic mechanisms, whether during embryonic pancreas development or in experimental setups aiming at developing glucose-responsive insulin-secreting cells, such as pluripotent stem-cell differentiation or in adult islet cell reprogramming protocols. These islet cell type-specific genesets represent valuable tools that accurately benchmark gain and loss in islet cell identity traits.
Collapse
Affiliation(s)
- Léon van Gurp
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Leon Fodoulian
- Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, Quai Ernest-Ansermet 30, 1211, Geneva, Switzerland
| | - Daniel Oropeza
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Kenichiro Furuyama
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, rue Michel-Servet 1, 1211, Geneva, Switzerland
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara, Sakyo, 606-8507, Kyoto, Japan
| | - Eva Bru-Tari
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Anh Nguyet Vu
- Department of Diabetes & Cancer Discovery Science, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, 1500 E Duarte Rd, Duarte, CA, 91010, USA
| | - John S Kaddis
- Department of Diabetes & Cancer Discovery Science, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, 1500 E Duarte Rd, Duarte, CA, 91010, USA
| | - Iván Rodríguez
- Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, Quai Ernest-Ansermet 30, 1211, Geneva, Switzerland
| | - Fabrizio Thorel
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Pedro L Herrera
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, rue Michel-Servet 1, 1211, Geneva, Switzerland.
| |
Collapse
|
10
|
Guérineau NC, Campos P, Le Tissier PR, Hodson DJ, Mollard P. Cell Networks in Endocrine/Neuroendocrine Gland Function. Compr Physiol 2022; 12:3371-3415. [PMID: 35578964 DOI: 10.1002/cphy.c210031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Reproduction, growth, stress, and metabolism are determined by endocrine/neuroendocrine systems that regulate circulating hormone concentrations. All these systems generate rhythms and changes in hormone pulsatility observed in a variety of pathophysiological states. Thus, the output of endocrine/neuroendocrine systems must be regulated within a narrow window of effective hormone concentrations but must also maintain a capacity for plasticity to respond to changing physiological demands. Remarkably most endocrinologists still have a "textbook" view of endocrine gland organization which has emanated from 20th century histological studies on thin 2D tissue sections. However, 21st -century technological advances, including in-depth 3D imaging of specific cell types have vastly changed our knowledge. We now know that various levels of multicellular organization can be found across different glands, that organizational motifs can vary between species and can be modified to enhance or decrease hormonal release. This article focuses on how the organization of cells regulates hormone output using three endocrine/neuroendocrine glands that present different levels of organization and complexity: the adrenal medulla, with a single neuroendocrine cell type; the anterior pituitary, with multiple intermingled cell types; and the pancreas with multiple intermingled cell types organized into distinct functional units. We give an overview of recent methodologies that allow the study of the different components within endocrine systems, particularly their temporal and spatial relationships. We believe the emerging findings about network organization, and its impact on hormone secretion, are crucial to understanding how homeostatic regulation of endocrine axes is carried out within endocrine organs themselves. © 2022 American Physiological Society. Compr Physiol 12:3371-3415, 2022.
Collapse
Affiliation(s)
| | - Pauline Campos
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Paul R Le Tissier
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Edgbaston, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK.,COMPARE University of Birmingham and University of Nottingham Midlands, UK.,Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Patrice Mollard
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
11
|
Shroff T, Aina K, Maass C, Cipriano M, Lambrecht J, Tacke F, Mosig A, Loskill P. Studying metabolism with multi-organ chips: new tools for disease modelling, pharmacokinetics and pharmacodynamics. Open Biol 2022; 12:210333. [PMID: 35232251 PMCID: PMC8889168 DOI: 10.1098/rsob.210333] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Non-clinical models to study metabolism including animal models and cell assays are often limited in terms of species translatability and predictability of human biology. This field urgently requires a push towards more physiologically accurate recapitulations of drug interactions and disease progression in the body. Organ-on-chip systems, specifically multi-organ chips (MOCs), are an emerging technology that is well suited to providing a species-specific platform to study the various types of metabolism (glucose, lipid, protein and drug) by recreating organ-level function. This review provides a resource for scientists aiming to study human metabolism by providing an overview of MOCs recapitulating aspects of metabolism, by addressing the technical aspects of MOC development and by providing guidelines for correlation with in silico models. The current state and challenges are presented for two application areas: (i) disease modelling and (ii) pharmacokinetics/pharmacodynamics. Additionally, the guidelines to integrate the MOC data into in silico models could strengthen the predictive power of the technology. Finally, the translational aspects of metabolizing MOCs are addressed, including adoption for personalized medicine and prospects for the clinic. Predictive MOCs could enable a significantly reduced dependence on animal models and open doors towards economical non-clinical testing and understanding of disease mechanisms.
Collapse
Affiliation(s)
- Tanvi Shroff
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany,Department for Microphysiological Systems, Institute for Biomedical Engineering, Faculty of Medicine, Eberhard Karls University Tübingen, Österbergstraße 3, 72074 Tübingen, Germany
| | - Kehinde Aina
- Institute of Biochemistry II, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | | | - Madalena Cipriano
- Department for Microphysiological Systems, Institute for Biomedical Engineering, Faculty of Medicine, Eberhard Karls University Tübingen, Österbergstraße 3, 72074 Tübingen, Germany
| | - Joeri Lambrecht
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Alexander Mosig
- Institute of Biochemistry II, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Peter Loskill
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany,Department for Microphysiological Systems, Institute for Biomedical Engineering, Faculty of Medicine, Eberhard Karls University Tübingen, Österbergstraße 3, 72074 Tübingen, Germany,3R-Center for In vitro Models and Alternatives to Animal Testing, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
12
|
Abstract
Leptin is a pluripotent peptide hormone produced mainly by adipocytes, as well as by other tissues such as the stomach. Leptin primarily acts on the central nervous system, particularly the hypothalamus, where this hormone regulates energy homeostasis and neuroendocrine function. Owing to this, disruption of leptin signaling has been linked with numerous pathological conditions. Recent studies have also highlighted the diverse roles of leptin in the digestive system including immune regulation, cell proliferation, tissue healing, and glucose metabolism. Of note, leptin acts differently under physiological and pathological conditions. Here, we review the current knowledge on the functions of leptin and its downstream signaling in the gastrointestinal tract and accessory digestive organs, with an emphasis on its physiological and pathological implications. We also discuss the current therapeutic uses of recombinant leptin, as well as its limitations.
Collapse
Affiliation(s)
- Min-Hyun Kim
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Hyeyoung Kim
- Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Korea
| |
Collapse
|
13
|
Fujikawa T. Central regulation of glucose metabolism in an insulin-dependent and -independent manner. J Neuroendocrinol 2021; 33:e12941. [PMID: 33599044 DOI: 10.1111/jne.12941] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/17/2022]
Abstract
The central nervous system (CNS) contributes significantly to glucose homeostasis. The available evidence indicates that insulin directly acts on the CNS, in particular the hypothalamus, to regulate hepatic glucose production, thereby controlling whole-body glucose metabolism. Additionally, insulin also acts on the brain to regulate food intake and fat metabolism, which may indirectly regulate glucose metabolism. Studies conducted over the last decade have found that the CNS can regulate glucose metabolism in an insulin-independent manner. Enhancement of central leptin signalling reverses hyperglycaemia in insulin-deficient rodents. Here, I review the mechanisms by which central insulin and leptin actions regulate glucose metabolism. Although clinical studies have shown that insulin treatment is currently indispensable for managing diabetes, unravelling the neuronal mechanisms underlying the central regulation of glucose metabolism will pave the way for the design of novel therapeutic drugs for diabetes.
Collapse
Affiliation(s)
- Teppei Fujikawa
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
14
|
Pereira S, Cline DL, Glavas MM, Covey SD, Kieffer TJ. Tissue-Specific Effects of Leptin on Glucose and Lipid Metabolism. Endocr Rev 2021; 42:1-28. [PMID: 33150398 PMCID: PMC7846142 DOI: 10.1210/endrev/bnaa027] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Indexed: 12/18/2022]
Abstract
The discovery of leptin was intrinsically associated with its ability to regulate body weight. However, the effects of leptin are more far-reaching and include profound glucose-lowering and anti-lipogenic effects, independent of leptin's regulation of body weight. Regulation of glucose metabolism by leptin is mediated both centrally and via peripheral tissues and is influenced by the activation status of insulin signaling pathways. Ectopic fat accumulation is diminished by both central and peripheral leptin, an effect that is beneficial in obesity-associated disorders. The magnitude of leptin action depends upon the tissue, sex, and context being examined. Peripheral tissues that are of particular relevance include the endocrine pancreas, liver, skeletal muscle, adipose tissues, immune cells, and the cardiovascular system. As a result of its potent metabolic activity, leptin is used to control hyperglycemia in patients with lipodystrophy and is being explored as an adjunct to insulin in patients with type 1 diabetes. To fully understand the role of leptin in physiology and to maximize its therapeutic potential, the mechanisms of leptin action in these tissues needs to be further explored.
Collapse
Affiliation(s)
- Sandra Pereira
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Daemon L Cline
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Maria M Glavas
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Scott D Covey
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Timothy J Kieffer
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada.,Department of Surgery, University of British Columbia, Vancouver, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| |
Collapse
|
15
|
Cochrane VA, Wu Y, Yang Z, ElSheikh A, Dunford J, Kievit P, Fortin DA, Shyng SL. Leptin modulates pancreatic β-cell membrane potential through Src kinase-mediated phosphorylation of NMDA receptors. J Biol Chem 2020; 295:17281-17297. [PMID: 33037073 PMCID: PMC7863909 DOI: 10.1074/jbc.ra120.015489] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/08/2020] [Indexed: 12/23/2022] Open
Abstract
The adipocyte-derived hormone leptin increases trafficking of KATP and Kv2.1 channels to the pancreatic β-cell surface, resulting in membrane hyperpolarization and suppression of insulin secretion. We have previously shown that this effect of leptin is mediated by the NMDA subtype of glutamate receptors (NMDARs). It does so by potentiating NMDAR activity, thus enhancing Ca2+ influx and the ensuing downstream signaling events that drive channel trafficking to the cell surface. However, the molecular mechanism by which leptin potentiates NMDARs in β-cells remains unknown. Here, we report that leptin augments NMDAR function via Src kinase-mediated phosphorylation of the GluN2A subunit. Leptin-induced membrane hyperpolarization diminished upon pharmacological inhibition of GluN2A but not GluN2B, indicating involvement of GluN2A-containing NMDARs. GluN2A harbors tyrosine residues that, when phosphorylated by Src family kinases, potentiate NMDAR activity. We found that leptin increases phosphorylation of Tyr-418 in Src, an indicator of kinase activation. Pharmacological inhibition of Src or overexpression of a kinase-dead Src mutant prevented the effect of leptin, whereas a Src kinase activator peptide mimicked it. Using mutant GluN2A overexpression, we show that Tyr-1292 and Tyr-1387 but not Tyr-1325 are responsible for the effect of leptin. Importantly, β-cells from db/db mice, a type 2 diabetes mouse model lacking functional leptin receptors, or from obese diabetic human donors failed to respond to leptin but hyperpolarized in response to NMDA. Our study reveals a signaling pathway wherein leptin modulates NMDARs via Src to regulate β-cell excitability and suggests NMDARs as a potential target to overcome leptin resistance.
Collapse
Affiliation(s)
- Veronica A Cochrane
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Yi Wu
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Zhongying Yang
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Assmaa ElSheikh
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, USA; Department of Medical Biochemistry, Tanta University, Tanta, Egypt
| | - Jeremy Dunford
- Department of Integrated Physiology and Neuroscience, College of Arts and Sciences, Washington State University, Vancouver, Washington, USA
| | - Paul Kievit
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Dale A Fortin
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, USA; Department of Integrated Physiology and Neuroscience, College of Arts and Sciences, Washington State University, Vancouver, Washington, USA.
| | - Show-Ling Shyng
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, USA.
| |
Collapse
|
16
|
Singha A, Palavicini JP, Pan M, Farmer S, Sandoval D, Han X, Fujikawa T. Leptin Receptors in RIP-Cre 25Mgn Neurons Mediate Anti-dyslipidemia Effects of Leptin in Insulin-Deficient Mice. Front Endocrinol (Lausanne) 2020; 11:588447. [PMID: 33071988 PMCID: PMC7538546 DOI: 10.3389/fendo.2020.588447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022] Open
Abstract
Leptin is a potent endocrine hormone produced by adipose tissue and regulates a broad range of whole-body metabolism such as glucose and lipid metabolism, even without insulin. Central leptin signaling can lower hyperglycemia in insulin-deficient rodents via multiple mechanisms, including improvements of dyslipidemia. However, the specific neurons that regulate anti-dyslipidemia effects of leptin remain unidentified. Here we report that leptin receptors (LEPRs) in neurons expressing Cre recombinase driven by a short fragment of a promoter region of Ins2 gene (RIP-Cre25Mgn neurons) are required for central leptin signaling to reverse dyslipidemia, thereby hyperglycemia in insulin-deficient mice. Ablation of LEPRs in RIP-Cre25Mgn neurons completely blocks glucose-lowering effects of leptin in insulin-deficient mice. Further investigations reveal that insulin-deficient mice lacking LEPRs in RIP-Cre25Mgn neurons (RIP-CreΔLEPR mice) exhibit greater lipid levels in blood and liver compared to wild-type controls, and that leptin injection into the brain does not suppress dyslipidemia in insulin-deficient RIP-CreΔLEPR mice. Leptin administration into the brain combined with acipimox, which lowers blood lipids by suppressing triglyceride lipase activity, can restore normal glycemia in insulin-deficient RIP-CreΔLEPR mice, suggesting that excess circulating lipids are a driving-force of hyperglycemia in these mice. Collectively, our data demonstrate that LEPRs in RIP-Cre25Mgn neurons significantly contribute to glucose-lowering effects of leptin in an insulin-independent manner by improving dyslipidemia.
Collapse
Affiliation(s)
- Ashish Singha
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Juan Pablo Palavicini
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Meixia Pan
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Scotlynn Farmer
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Darleen Sandoval
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Teppei Fujikawa
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX, United States
- Center for Biomedical Neuroscience, University of Texas Health San Antonio, San Antonio, TX, United States
- Division of Hypothalamic Research Center, Internal Medicine, UT Southwestern Medical Center at Dallas, Dallas, TX, United States
| |
Collapse
|
17
|
Adipokines as key players in β cell function and failure. Clin Sci (Lond) 2020; 133:2317-2327. [PMID: 31769478 DOI: 10.1042/cs20190523] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022]
Abstract
The growing prevalence of obesity and its related metabolic diseases, mainly Type 2 diabetes (T2D), has increased the interest in adipose tissue (AT) and its role as a principal metabolic orchestrator. Two decades of research have now shown that ATs act as an endocrine organ, secreting soluble factors termed adipocytokines or adipokines. These adipokines play crucial roles in whole-body metabolism with different mechanisms of action largely dependent on the tissue or cell type they are acting on. The pancreatic β cell, a key regulator of glucose metabolism due to its ability to produce and secrete insulin, has been identified as a target for several adipokines. This review will focus on how adipokines affect pancreatic β cell function and their impact on pancreatic β cell survival in disease contexts such as diabetes. Initially, the "classic" adipokines will be discussed, followed by novel secreted adipocyte-specific factors that show therapeutic promise in regulating the adipose-pancreatic β cell axis.
Collapse
|
18
|
Scheja L, Heeren J. The endocrine function of adipose tissues in health and cardiometabolic disease. Nat Rev Endocrinol 2019; 15:507-524. [PMID: 31296970 DOI: 10.1038/s41574-019-0230-6] [Citation(s) in RCA: 395] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/17/2019] [Indexed: 12/16/2022]
Abstract
In addition to their role in glucose and lipid metabolism, adipocytes respond differentially to physiological cues or metabolic stress by releasing endocrine factors that regulate diverse processes, such as energy expenditure, appetite control, glucose homeostasis, insulin sensitivity, inflammation and tissue repair. Both energy-storing white adipocytes and thermogenic brown and beige adipocytes secrete hormones, which can be peptides (adipokines), lipids (lipokines) and exosomal microRNAs. Some of these factors have defined targets; for example, adiponectin and leptin signal through their respective receptors that are expressed in multiple organs. For other adipocyte hormones, receptors are more promiscuous or remain to be identified. Furthermore, many of these hormones are also produced by other organs and tissues, which makes defining the endocrine contribution of adipose tissues a challenge. In this Review, we discuss the functional role of adipose tissue-derived endocrine hormones for metabolic adaptations to the environment and we highlight how these factors contribute to the development of cardiometabolic diseases. We also cover how this knowledge can be translated into human therapies. In addition, we discuss recent findings that emphasize the endocrine role of white versus thermogenic adipocytes in conditions of health and disease.
Collapse
Affiliation(s)
- Ludger Scheja
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
19
|
Korbut AI, Klimontov VV, Orlov NB, Khotskina AS, Zav'yalov EL. Relationships between Body Composition and Plasma Levels of Pancreatic, Gut, and Adipose Tissue Hormones in db/db Mice, a Model of Type 2 Diabetes Mellitus. Bull Exp Biol Med 2019; 167:325-328. [PMID: 31346871 DOI: 10.1007/s10517-019-04519-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Indexed: 12/25/2022]
Abstract
We studied the relationships between body composition parameters and plasma levels of pancreatic, gut, and adipose tissue hormones regulating energy balance and glucose metabolism in diabetic db/db mice (BKS.Cg-Dock7m+/+Leprdb/J). The body composition parameters in mice aged 8, 12, and 16 weeks were assessed by magnetic resonance imaging. The concentrations of insulin, glucagon, ghrelin, glucagon-like peptide-1, glucose-dependent immunotropic peptide, leptin, resistin, and plasminogen activator-1 were measured by multiplex analysis at the age of 8 and 16 weeks. In comparison with non-diabetic control (db/+), db/db mice demonstrated high fat mass and reduced lean body mass and water content. In 8- and 16-week-old db/db mice, the levels of leptin (p<0.001), insulin (p<0.01), and glucagon-like peptide-1 (p<0.05) were elevated and the concentration of ghrelin (p<0.05) was reduced. The body weight and fat mass positively correlated with the levels of leptin, insulin, plasminogen activator-1, and glucagon-like peptide-1 and negatively correlated with ghrelin concentration. The results provide further details for characteristics of db/db mice, a widely used model of obesity and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- A I Korbut
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of the Federal Research Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia.
| | - V V Klimontov
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of the Federal Research Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N B Orlov
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of the Federal Research Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A S Khotskina
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E L Zav'yalov
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
20
|
Leptin-induced Trafficking of K ATP Channels: A Mechanism to Regulate Pancreatic β-cell Excitability and Insulin Secretion. Int J Mol Sci 2019; 20:ijms20112660. [PMID: 31151172 PMCID: PMC6600549 DOI: 10.3390/ijms20112660] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 05/25/2019] [Accepted: 05/27/2019] [Indexed: 11/17/2022] Open
Abstract
The adipocyte hormone leptin was first recognized for its actions in the central nervous system to regulate energy homeostasis but has since been shown to have direct actions on peripheral tissues. In pancreatic β-cells leptin suppresses insulin secretion by increasing KATP channel conductance, which causes membrane hyperpolarization and renders β-cells electrically silent. However, the mechanism by which leptin increases KATP channel conductance had remained unresolved for many years following the initial observation. Recent studies have revealed that leptin increases surface abundance of KATP channels by promoting channel trafficking to the β-cell membrane. Thus, KATP channel trafficking regulation has emerged as a mechanism by which leptin increases KATP channel conductance to regulate β-cell electrical activity and insulin secretion. This review will discuss the leptin signaling pathway that underlies KATP channel trafficking regulation in β-cells.
Collapse
|
21
|
Grzelak T, Wedrychowicz A, Grupinska J, Pelczynska M, Sperling M, Mikulska AA, Naughton V, Czyzewska K. Neuropeptide B and neuropeptide W as new serum predictors of nutritional status and of clinical outcomes in pediatric patients with type 1 diabetes mellitus treated with the use of pens or insulin pumps. Arch Med Sci 2019; 15:619-631. [PMID: 31110527 PMCID: PMC6524189 DOI: 10.5114/aoms.2018.75818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/25/2018] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION The aim of our study was to determine the relationship between neuropeptide B (NPB), neuropeptide W (NPW), nutritional and antioxidant status and selected fat- and bone-derived factors in type 1 diabetes mellitus (T1DM) treated using pens (T1DM pen group) or insulin pumps (T1DM pump group) in order to investigate the potential role of NPB and NPW in the clinical outcomes of T1DM. MATERIAL AND METHODS Fifty-eight patients with T1DM and twenty-five healthy controls (CONTR) participated in the study. Assessments of NPB, NPW, total antioxidant status (TAS), leptin, adiponectin, osteocalcin, and free soluble receptor activator for nuclear factor κB (free sRANKL) were conducted. RESULTS NPB, NPW, leptin, and TAS were lower (by 33%, p < 0.013; 34%, p < 0.008; 290%, p < 0.00004; 21%, p < 0.05; respectively), while adiponectin was by 51% higher (p < 0.006) in T1DM vs. CONTR, while osteocalcin and free sRANKL levels were similar in both groups. NPW was lower in the T1DM pen group both vs. the T1DM pump group (36% lower, p < 0.0009) and vs. the CONTR group (35% lower, p < 0.002). In the T1DM pen group, but not in the T1DM pump group or the CONTR group, the Cole index and TAS levels explain (besides NPB) the variation in NPW values. ROC curves showed that serum levels of leptin, adiponectin, NPB and NPW (but not osteocalcin or free sRANKL) were predictive indicators for T1DM. CONCLUSIONS Measurements of NPB and NPW, besides leptin and adiponectin, are worth considering in the detailed prognosis of nutritional status in T1DM, primarily in the T1DM pen-treated population.
Collapse
Affiliation(s)
- Teresa Grzelak
- Department of Physiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Wedrychowicz
- Department of Pediatric and Adolescent Endocrinology, Pediatric Institute, Jagiellonian University Medical College, Krakow, Poland
| | - Joanna Grupinska
- Department of General Chemistry, Poznan University of Medical Sciences, Poznan, Poland
| | - Marta Pelczynska
- Division of Biology of Civilization-Linked Diseases, Department of Chemistry and Clinical Biochemistry, Poznan University of Medical Sciences, Poznan, Poland
| | - Marcelina Sperling
- Division of Biology of Civilization-Linked Diseases, Department of Chemistry and Clinical Biochemistry, Poznan University of Medical Sciences, Poznan, Poland
| | - Aniceta A. Mikulska
- Division of Biology of Civilization-Linked Diseases, Department of Chemistry and Clinical Biochemistry, Poznan University of Medical Sciences, Poznan, Poland
- Nutrigenomics Student Research Group, Poznan University of Medical Sciences, Poznan, Poland
| | - Violetta Naughton
- Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland
| | - Krystyna Czyzewska
- Division of Biology of Civilization-Linked Diseases, Department of Chemistry and Clinical Biochemistry, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
22
|
Douros JD, Niu J, Sdao S, Gregg T, Fisher-Wellman K, Bharadwaj M, Molina A, Arumugam R, Martin M, Petretto E, Merrins MJ, Herman MA, Tong J, Campbell J, D’Alessio D. Sleeve gastrectomy rapidly enhances islet function independently of body weight. JCI Insight 2019; 4:126688. [PMID: 30777938 PMCID: PMC6483064 DOI: 10.1172/jci.insight.126688] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/11/2019] [Indexed: 12/14/2022] Open
Abstract
Bariatric surgeries including vertical sleeve gastrectomy (VSG) ameliorate obesity and diabetes. Weight loss and accompanying increases to insulin sensitivity contribute to improved glycemia after surgery; however, studies in humans also suggest weight-independent actions of bariatric procedures to lower blood glucose, possibly by improving insulin secretion. To evaluate this hypothesis, we compared VSG-operated mice with pair-fed, sham-surgical controls (PF-Sham) 2 weeks after surgery. This paradigm yielded similar postoperative body weight and insulin sensitivity between VSG and calorically restricted PF-Sham animals. However, VSG improved glucose tolerance and markedly enhanced insulin secretion during oral nutrient and i.p. glucose challenges compared with controls. Islets from VSG mice displayed a unique transcriptional signature enriched for genes involved in Ca2+ signaling and insulin secretion pathways. This finding suggests that bariatric surgery leads to intrinsic changes within the islet that alter function. Indeed, islets isolated from VSG mice had increased glucose-stimulated insulin secretion and a left-shifted glucose sensitivity curve compared with islets from PF-Sham mice. Isolated islets from VSG animals showed corresponding increases in the pulse duration of glucose-stimulated Ca2+ oscillations. Together, these findings demonstrate a weight-independent improvement in glycemic control following VSG, which is, in part, driven by improved insulin secretion and associated with substantial changes in islet gene expression. These results support a model in which β cells play a key role in the adaptation to bariatric surgery and the improved glucose tolerance that is typical of these procedures.
Collapse
Affiliation(s)
- Jonathan D. Douros
- Division of Endocrinology, Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Jingjing Niu
- Division of Endocrinology, Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Sophia Sdao
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Trillian Gregg
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kelsey Fisher-Wellman
- Division of Endocrinology, Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Manish Bharadwaj
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Anthony Molina
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Ramamani Arumugam
- Division of Endocrinology, Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - MacKenzie Martin
- Division of Endocrinology, Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Enrico Petretto
- Centre for Computational Biology, Duke-NUS Medical School, Singapore
| | - Matthew J. Merrins
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mark A. Herman
- Division of Endocrinology, Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Jenny Tong
- Division of Endocrinology, Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Jonathan Campbell
- Division of Endocrinology, Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - David D’Alessio
- Division of Endocrinology, Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| |
Collapse
|
23
|
Desmoulins L, Chrétien C, Paccoud R, Collins S, Cruciani-Guglielmacci C, Galinier A, Liénard F, Quinault A, Grall S, Allard C, Fenech C, Carneiro L, Mouillot T, Fournel A, Knauf C, Magnan C, Fioramonti X, Pénicaud L, Leloup C. Mitochondrial Dynamin-Related Protein 1 (DRP1) translocation in response to cerebral glucose is impaired in a rat model of early alteration in hypothalamic glucose sensing. Mol Metab 2019; 20:166-177. [PMID: 30553770 PMCID: PMC6358535 DOI: 10.1016/j.molmet.2018.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 11/19/2018] [Accepted: 11/22/2018] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE Hypothalamic glucose sensing (HGS) initiates insulin secretion (IS) via a vagal control, participating in energy homeostasis. This requires mitochondrial reactive oxygen species (mROS) signaling, dependent on mitochondrial fission, as shown by invalidation of the hypothalamic DRP1 protein. Here, our objectives were to determine whether a model with a HGS defect induced by a short, high fat-high sucrose (HFHS) diet in rats affected the fission machinery and mROS signaling within the mediobasal hypothalamus (MBH). METHODS Rats fed a HFHS diet for 3 weeks were compared with animals fed a normal chow. Both in vitro (calcium imaging) and in vivo (vagal nerve activity recordings) experiments to measure the electrical activity of isolated MBH gluco-sensitive neurons in response to increased glucose level were performed. In parallel, insulin secretion to a direct glucose stimulus in isolated islets vs. insulin secretion resulting from brain glucose stimulation was evaluated. Intra-carotid glucose load-induced hypothalamic DRP1 translocation to mitochondria and mROS (H2O2) production were assessed in both groups. Finally, compound C was intracerebroventricularly injected to block the proposed AMPK-inhibited DRP1 translocation in the MBH to reverse the phenotype of HFHS fed animals. RESULTS Rats fed a HFHS diet displayed a decreased HGS-induced IS. Responses of MBH neurons to glucose exhibited an alteration of their electrical activity, whereas glucose-induced insulin secretion in isolated islets was not affected. These MBH defects correlated with a decreased ROS signaling and glucose-induced translocation of the fission protein DRP1, as the vagal activity was altered. AMPK-induced inhibition of DRP1 translocation increased in this model, but its reversal through the injection of the compound C, an AMPK inhibitor, failed to restore HGS-induced IS. CONCLUSIONS A hypothalamic alteration of DRP1-induced fission and mROS signaling in response to glucose was observed in HGS-induced IS of rats exposed to a 3 week HFHS diet. Early hypothalamic modifications of the neuronal activity could participate in a primary defect of the control of IS and ultimately, the development of diabetes.
Collapse
Affiliation(s)
- Lucie Desmoulins
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Chloé Chrétien
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Romain Paccoud
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Stephan Collins
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Céline Cruciani-Guglielmacci
- CNRS UMR 8251, Unit of Functional and Adaptive Biology, Paris, France; Department of Physiology, Université Paris Diderot, Paris, France.
| | - Anne Galinier
- STROMALab, UMR CNRS 5273, EFS Pyrénées-Méditerranée, Université Paul Sabatier, Toulouse, France.
| | - Fabienne Liénard
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Aurore Quinault
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Sylvie Grall
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Camille Allard
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Claire Fenech
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Lionel Carneiro
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Thomas Mouillot
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France; Service d'Hépato-Gastroentérologie, hôpital du Bocage, Dijon, France.
| | - Audren Fournel
- Institut de Recherche en Santé Digestive, INSERM U1220, Université Paul Sabatier, Toulouse, France.
| | - Claude Knauf
- Institut de Recherche en Santé Digestive, INSERM U1220, Université Paul Sabatier, Toulouse, France.
| | - Christophe Magnan
- CNRS UMR 8251, Unit of Functional and Adaptive Biology, Paris, France.
| | - Xavier Fioramonti
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France; UMR 1286, NutriNeuro, INRA, Université de Bordeaux, Bordeaux INP, Bordeaux, France.
| | - Luc Pénicaud
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Corinne Leloup
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| |
Collapse
|
24
|
Simpson S, Smith L, Bowe J. Placental peptides regulating islet adaptation to pregnancy: clinical potential in gestational diabetes mellitus. Curr Opin Pharmacol 2018; 43:59-65. [DOI: 10.1016/j.coph.2018.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/02/2018] [Accepted: 08/06/2018] [Indexed: 12/18/2022]
|
25
|
Abstract
Metabolic disease risk is driven by defects in the function of cells that regulate energy homeostasis, as well as altered communication between the different tissues or organs that these cells occupy. Thus, it is desirable to use model organisms to understand the contribution of different cells, tissues and organs to metabolism. Mice are widely used for metabolic research, since well-characterised mouse strains (in terms of their genotype and phenotype) allow comparative studies and human disease modelling. Such research involves strains containing spontaneous mutations that lead to obesity and diabetes, surgically- and chemically-induced models, those that are secondary to caloric excess, genetic mutants created by transgenesis and gene knockout technologies, and peripheral models generated by Cre-Lox or CRISPR/Cas9 approaches. Focussing on obesity and type 2 diabetes as relevant metabolic diseases, we systematically review each of these models, discussing their use, limitations, and future potential.
Collapse
Affiliation(s)
- Gabriela da Silva Xavier
- Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College London, London W12 0NN, UK; Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Edgbaston, B15 2TT, UK.
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Edgbaston, B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, B15 2TH, UK; COMPARE University of Birmingham and University of Nottingham Midlands, UK.
| |
Collapse
|
26
|
Shiota C, Prasadan K, Guo P, Fusco J, Xiao X, Gittes GK. Gcg CreERT2 knockin mice as a tool for genetic manipulation in pancreatic alpha cells. Diabetologia 2017; 60:2399-2408. [PMID: 28884202 PMCID: PMC5671347 DOI: 10.1007/s00125-017-4425-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/19/2017] [Indexed: 01/05/2023]
Abstract
AIMS/HYPOTHESIS The Cre/loxP system, which enables tissue-specific manipulation of genes, is widely used in mice for diabetes research. Our aim was to develop a new Cre-driver mouse line for the specific and efficient manipulation of genes in pancreatic alpha cells. METHODS A Gcg CreERT2 knockin mouse, which expresses a tamoxifen-inducible form of Cre from the endogenous preproglucagon (Gcg) gene locus, was generated by homologous recombination. The new Gcg CreERT2 mouse line was crossed to the Rosa26 tdTomato (R26 tdTomato ) Cre reporter mouse line in order to evaluate the tissue specificity, efficiency and tamoxifen dependency of Gcg CreERT2 -mediated recombination. Cell types of pancreatic islets were identified using immunohistochemistry. Biochemical and physiological data, including blood glucose levels, plasma glucagon and glucagon-like peptide (GLP)-1 levels, and pancreatic glucagon content, were collected and used to assess the overall effect of Gcg gene targeting on Gcg CreERT2/w heterozygous mice. RESULTS Tamoxifen-treated Gcg CreERT2/w ;R26 tdTomato/w mice displayed Cre reporter activity, i.e. expression of tdTomato red fluorescent protein (RFP) in all known cells that produce proglucagon-derived peptides. In the adult pancreas, RFP was detected in 94-97% of alpha cells, whereas it was detected in a negligible (~ 0.2%) proportion of beta cells. While more than 98% of cells labelled with tamoxifen-induced RFP were glucagon-positive cells, 14-25% of pancreatic polypeptide (PP)-positive cells were also positive for RFP, indicating the presence of glucagon/PP bihormonal cell population. Tamoxifen-independent expression of RFP occurred in approximately 6% of alpha cells. In contrast to alpha cells and GLP-1-producing neurons, in which RFP expression persisted for at least 5 months after tamoxifen administration (presumably due to rare neogenesis in these cell types in adulthood), nearly half of RFP-positive intestinal L cells were replaced with RFP-negative L cells over the first 2 weeks after tamoxifen administration. Heterozygous Gcg CreERT2/w mice showed reduced Gcg mRNA levels in islets, but maintained normal levels of pancreatic and plasma glucagon. The mice did not exhibit any detectable baseline physiological abnormalities, at least in young adulthood. CONCLUSIONS/INTERPRETATION The newly developed Gcg CreERT2 knockin mouse shows faithful expression of CreERT2 in pancreatic alpha cells, intestinal L cells and GLP-1-producing neurons. This mouse line will be particularly useful for manipulating genes in alpha cells, due to highly specific and efficient CreERT2-mediated recombination in this cell type in the pancreas.
Collapse
Affiliation(s)
- Chiyo Shiota
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, 4401 Penn Ave, Pittsburgh, PA, 15224, USA.
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA.
| | - Krishna Prasadan
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - Ping Guo
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - Joseph Fusco
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - Xiangwei Xiao
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - George K Gittes
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, 4401 Penn Ave, Pittsburgh, PA, 15224, USA.
| |
Collapse
|
27
|
Tritschler S, Theis FJ, Lickert H, Böttcher A. Systematic single-cell analysis provides new insights into heterogeneity and plasticity of the pancreas. Mol Metab 2017; 6:974-990. [PMID: 28951822 PMCID: PMC5605721 DOI: 10.1016/j.molmet.2017.06.021] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/13/2017] [Accepted: 06/19/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Diabetes mellitus is characterized by loss or dysfunction of insulin-producing β-cells in the pancreas, resulting in failure of blood glucose regulation and devastating secondary complications. Thus, β-cells are currently the prime target for cell-replacement and regenerative therapy. Triggering endogenous repair is a promising strategy to restore β-cell mass and normoglycemia in diabetic patients. Potential strategies include targeting specific β-cell subpopulations to increase proliferation or maturation. Alternatively, transdifferentiation of pancreatic islet cells (e.g. α- or δ-cells), extra-islet cells (acinar and ductal cells), hepatocytes, or intestinal cells into insulin-producing cells might improve glycemic control. To this end, it is crucial to systematically characterize and unravel the transcriptional program of all pancreatic cell types at the molecular level in homeostasis and disease. Furthermore, it is necessary to better determine the underlying mechanisms of β-cell maturation, maintenance, and dysfunction in diabetes, to identify and molecularly profile endocrine subpopulations with regenerative potential, and to translate the findings from mice to man. Recent approaches in single-cell biology started to illuminate heterogeneity and plasticity in the pancreas that might be targeted for β-cell regeneration in diabetic patients. SCOPE OF REVIEW This review discusses recent literature on single-cell analysis including single-cell RNA sequencing, single-cell mass cytometry, and flow cytometry of pancreatic cell types in the context of mechanisms of endogenous β-cell regeneration. We discuss new findings on the regulation of postnatal β-cell proliferation and maturation. We highlight how single-cell analysis recapitulates described principles of functional β-cell heterogeneity in animal models and adds new knowledge on the extent of β-cell heterogeneity in humans as well as its role in homeostasis and disease. Furthermore, we summarize the findings on cell subpopulations with regenerative potential that might enable the formation of new β-cells in diseased state. Finally, we review new data on the transcriptional program and function of rare pancreatic cell types and their implication in diabetes. MAJOR CONCLUSION Novel, single-cell technologies offer high molecular resolution of cellular heterogeneity within the pancreas and provide information on processes and factors that govern β-cell homeostasis, proliferation, and maturation. Eventually, these technologies might lead to the characterization of cells with regenerative potential and unravel disease-associated changes in gene expression to identify cellular and molecular targets for therapy.
Collapse
Affiliation(s)
- Sophie Tritschler
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Am Parkring 11, 85748 Garching-Hochbrück, Germany
- German Center for Diabetes Research, 85764 Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Fabian J. Theis
- Institute of Computational Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Am Parkring 11, 85748 Garching-Hochbrück, Germany
- German Center for Diabetes Research, 85764 Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Anika Böttcher
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Am Parkring 11, 85748 Garching-Hochbrück, Germany
- German Center for Diabetes Research, 85764 Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| |
Collapse
|
28
|
da Silva Xavier G, Mondragon A, Mourougavelou V, Cruciani-Guglielmacci C, Denom J, Herrera PL, Magnan C, Rutter GA. Pancreatic alpha cell-selective deletion of Tcf7l2 impairs glucagon secretion and counter-regulatory responses to hypoglycaemia in mice. Diabetologia 2017; 60:1043-1050. [PMID: 28343277 PMCID: PMC5423960 DOI: 10.1007/s00125-017-4242-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 02/15/2017] [Indexed: 01/19/2023]
Abstract
AIMS/HYPOTHESIS Transcription factor 7-like 2 (TCF7L2) is a high mobility group (HMG) box-containing transcription factor and downstream effector of the Wnt signalling pathway. SNPs in the TCF7L2 gene have previously been associated with an increased risk of type 2 diabetes in genome-wide association studies. In animal studies, loss of Tcf7l2 function is associated with defective islet beta cell function and survival. Here, we explore the role of TCF7L2 in the control of the counter-regulatory response to hypoglycaemia by generating mice with selective deletion of the Tcf7l2 gene in pancreatic alpha cells. METHODS Alpha cell-selective deletion of Tcf7l2 was achieved by crossing mice with floxed Tcf7l2 alleles to mice bearing a Cre recombinase transgene driven by the preproglucagon promoter (PPGCre), resulting in Tcf7l2AKO mice. Glucose homeostasis and hormone secretion in vivo and in vitro, and islet cell mass were measured using standard techniques. RESULTS While glucose tolerance was unaffected in Tcf7l2AKO mice, glucose infusion rates were increased (AUC for glucose during the first 60 min period of hyperinsulinaemic-hypoglycaemic clamp test was increased by 1.98 ± 0.26-fold [p < 0.05; n = 6] in Tcf7l2AKO mice vs wild-type mice) and glucagon secretion tended to be lower (plasma glucagon: 0.40 ± 0.03-fold vs wild-type littermate controls [p < 0.01; n = 6]). Tcf7l2AKO mice displayed reduced fasted plasma glucose concentration. Glucagon release at low glucose was impaired in islets isolated from Tcf7l2AKO mice (0.37 ± 0.02-fold vs islets from wild-type littermate control mice [p < 0.01; n = 6). Alpha cell mass was also reduced (72.3 ± 20.3% [p < 0.05; n = 7) in Tcf7l2AKO mice compared with wild-type mice. CONCLUSIONS/INTERPRETATION The present findings demonstrate an alpha cell-autonomous role for Tcf7l2 in the control of pancreatic glucagon secretion and the maintenance of alpha cell mass and function.
Collapse
Affiliation(s)
- Gabriela da Silva Xavier
- Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College London, London, W12 0NN, UK.
| | - Angeles Mondragon
- Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Vishnou Mourougavelou
- Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College London, London, W12 0NN, UK
| | | | - Jessica Denom
- Université Paris Diderot Paris 7 - CNRS UMR 8251, Paris, France
| | - Pedro Luis Herrera
- Department of Genetic Medicine & Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College London, London, W12 0NN, UK
| |
Collapse
|
29
|
D'souza AM, Neumann UH, Glavas MM, Kieffer TJ. The glucoregulatory actions of leptin. Mol Metab 2017; 6:1052-1065. [PMID: 28951828 PMCID: PMC5605734 DOI: 10.1016/j.molmet.2017.04.011] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/18/2017] [Accepted: 04/24/2017] [Indexed: 12/28/2022] Open
Abstract
Background The hormone leptin is an important regulator of metabolic homeostasis, able to inhibit food intake and increase energy expenditure. Leptin can also independently lower blood glucose levels, particularly in hyperglycemic models of leptin or insulin deficiency. Despite significant efforts and relevance to diabetes, the mechanisms by which leptin acts to regulate blood glucose levels are not fully understood. Scope of review Here we assess literature relevant to the glucose lowering effects of leptin. Leptin receptors are widely expressed in multiple cell types, and we describe both peripheral and central effects of leptin that may be involved in lowering blood glucose. In addition, we summarize the potential clinical application of leptin in regulating glucose homeostasis. Major conclusions Leptin exerts a plethora of metabolic effects on various tissues including suppressing production of glucagon and corticosterone, increasing glucose uptake, and inhibiting hepatic glucose output. A more in-depth understanding of the mechanisms of the glucose-lowering actions of leptin may reveal new strategies to treat metabolic disorders.
Collapse
Affiliation(s)
- Anna M D'souza
- Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Ursula H Neumann
- Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Maria M Glavas
- Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Timothy J Kieffer
- Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada.,Department of Surgery, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
30
|
Restoration of Lepr in β cells of Lepr null mice does not prevent hyperinsulinemia and hyperglycemia. Mol Metab 2017; 6:585-593. [PMID: 28580288 PMCID: PMC5444109 DOI: 10.1016/j.molmet.2017.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 04/02/2017] [Accepted: 04/04/2017] [Indexed: 11/22/2022] Open
Abstract
Objective The adipose-derived hormone leptin plays an important role in regulating body weight and glucose homeostasis. Leptin receptors are expressed in the central nervous system as well as peripheral tissues involved in regulating glucose homeostasis, including insulin-producing β cells of the pancreas. Previous studies assessing the role of leptin receptors in β cells used Cre-loxP to disrupt the leptin receptor gene (Lepr) in β cells, but variable results were obtained. Furthermore, recombination of Lepr was observed in the hypothalamus or exocrine pancreas, in addition to the β cells, and Lepr in non-β cells may have compensated for the loss of Lepr in β cells, thus making it difficult to assess the direct effects of Lepr in β cells. To determine the significance of Lepr exclusively in β cells, we chose to selectively restore Lepr in β cells of Lepr null mice (LeprloxTB/loxTB). Materials and methods We used a mouse model in which endogenous expression of Lepr was disrupted by a loxP-flanked transcription blocker (LeprloxTB/loxTB), but was restored by Cre recombinase knocked into the Ins1 gene, which is specifically expressed in β cells (Ins1Cre). We bred LeprloxTB/loxTB and Ins1Cre mice to generate LeprloxTB/loxTB and LeprloxTB/loxTBIns1Cre mice, as well as Leprwt/wt and Leprwt/wtIns1Cre littermate mice. Male and female mice were weighed weekly between 6 and 11 weeks of age and fasting blood glucose was measured during this time. Oral glucose was administered to mice aged 7–12 weeks to assess glucose tolerance and insulin secretion. Relative β and α cell area and islet size were also assessed by immunostaining and analysis of pancreas sections of 12–14 week old mice. Results Male and female LeprloxTB/loxTB mice, lacking whole-body expression of Lepr, had a phenotype similar to db/db mice characterized by obesity, hyperinsulinemia, glucose intolerance, and impaired glucose stimulated insulin secretion. Despite restoring Lepr in β cells of LeprloxTB/loxTB mice, fasting insulin levels, blood glucose levels and body weight were comparable between LeprloxTB/loxTBIns1Cre mice and LeprloxTB/loxTB littermates. Furthermore, glucose tolerance and insulin secretion in male and female LeprloxTB/loxTBIns1Cre mice were similar to that observed in LeprloxTB/loxTB mice. Analysis of pancreatic insulin positive area revealed that restoration of Lepr in β cells of LeprloxTB/loxTB mice did not prevent hyperplasia of insulin positive cells nor did it rescue Glut-2 expression. Conclusion Collectively, these data suggest that direct action of leptin on β cells is insufficient to restore normal insulin secretion and glucose tolerance in mice without leptin receptor signaling elsewhere. Restoration of Lepr in β cells of Lepr null mice does not prevent hyperinsulinemia. Leptin receptors in β cells do not inhibit islet hyperplasia. Hyperglycemia and glucose intolerance persist despite restoration of Lepr in β cells of Lepr null mice.
Collapse
|
31
|
Mitchell RK, Nguyen-Tu MS, Chabosseau P, Callingham RM, Pullen TJ, Cheung R, Leclerc I, Hodson DJ, Rutter GA. The transcription factor Pax6 is required for pancreatic β cell identity, glucose-regulated ATP synthesis, and Ca 2+ dynamics in adult mice. J Biol Chem 2017; 292:8892-8906. [PMID: 28377501 PMCID: PMC5448123 DOI: 10.1074/jbc.m117.784629] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/03/2017] [Indexed: 12/20/2022] Open
Abstract
Heterozygous mutations in the human paired box gene PAX6 lead to impaired glucose tolerance. Although embryonic deletion of the Pax6 gene in mice leads to loss of most pancreatic islet cell types, the functional consequences of Pax6 loss in adults are poorly defined. Here we developed a mouse line in which Pax6 was selectively inactivated in β cells by crossing animals with floxed Pax6 alleles to mice expressing the inducible Pdx1CreERT transgene. Pax6 deficiency, achieved by tamoxifen injection, caused progressive hyperglycemia. Although β cell mass was preserved 8 days post-injection, total insulin content and insulin:chromogranin A immunoreactivity were reduced by ∼60%, and glucose-stimulated insulin secretion was eliminated. RNA sequencing and quantitative real-time PCR analyses revealed that, although the expression of key β cell genes, including Ins2, Slc30a8, MafA, Slc2a2, G6pc2, and Glp1r, was reduced after Pax6 deletion, that of several genes that are usually selectively repressed (“disallowed”) in β cells, including Slc16a1, was increased. Assessed in intact islets, glucose-induced ATP:ADP increases were significantly reduced (p < 0.05) in βPax6KO versus control β cells, and the former displayed attenuated increases in cytosolic Ca2+. Unexpectedly, glucose-induced increases in intercellular connectivity were enhanced after Pax6 deletion, consistent with increases in the expression of the glucose sensor glucokinase, but decreases in that of two transcription factors usually expressed in fully differentiated β-cells, Pdx1 and Nkx6.1, were observed in islet “hub” cells. These results indicate that Pax6 is required for the functional identity of adult β cells. Furthermore, deficiencies in β cell glucose sensing are likely to contribute to defective insulin secretion in human carriers of PAX6 mutations.
Collapse
Affiliation(s)
- Ryan K Mitchell
- From the Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology, and Metabolism, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom
| | - Marie-Sophie Nguyen-Tu
- From the Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology, and Metabolism, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom
| | - Pauline Chabosseau
- From the Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology, and Metabolism, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom
| | - Rebecca M Callingham
- From the Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology, and Metabolism, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom
| | - Timothy J Pullen
- From the Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology, and Metabolism, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom
| | - Rebecca Cheung
- From the Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology, and Metabolism, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom
| | - Isabelle Leclerc
- From the Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology, and Metabolism, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom
| | - David J Hodson
- From the Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology, and Metabolism, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom, .,the Institute of Metabolism and Systems Research and Centre of Membrane Proteins and Receptors, University of Birmingham, Edgbaston B15 2TT, United Kingdom, and.,the Centre for Endocrinology, Diabetes, and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, United Kingdom
| | - Guy A Rutter
- From the Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology, and Metabolism, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom,
| |
Collapse
|
32
|
Tanabe K, Amo-Shiinoki K, Hatanaka M, Tanizawa Y. Interorgan Crosstalk Contributing to β-Cell Dysfunction. J Diabetes Res 2017; 2017:3605178. [PMID: 28168202 PMCID: PMC5266810 DOI: 10.1155/2017/3605178] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/23/2016] [Accepted: 12/21/2016] [Indexed: 01/08/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) results from pancreatic β-cell failure in the setting of insulin resistance. In the early stages of this disease, pancreatic β-cells meet increased insulin demand by both enhancing insulin-secretory capacity and increasing β-cell mass. As the disease progresses, β-cells fail to maintain these compensatory responses. This involves both extrinsic signals and mediators intrinsic to β-cells, which adversely affect β-cells by impairing insulin secretion, decreasing proliferative capacities, and ultimately causing apoptosis. In recent years, it has increasingly been recognized that changes in circulating levels of various factors from other organs play roles in β-cell dysfunction and cellular loss. In this review, we discuss current knowledge of interorgan communications underlying β-cell failure during the progression of T2DM.
Collapse
Affiliation(s)
- Katsuya Tanabe
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
- *Katsuya Tanabe:
| | - Kikuko Amo-Shiinoki
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Masayuki Hatanaka
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Yukio Tanizawa
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| |
Collapse
|
33
|
Stern JH, Rutkowski JM, Scherer PE. Adiponectin, Leptin, and Fatty Acids in the Maintenance of Metabolic Homeostasis through Adipose Tissue Crosstalk. Cell Metab 2016; 23:770-84. [PMID: 27166942 PMCID: PMC4864949 DOI: 10.1016/j.cmet.2016.04.011] [Citation(s) in RCA: 729] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metabolism research has made tremendous progress over the last several decades in establishing the adipocyte as a central rheostat in the regulation of systemic nutrient and energy homeostasis. Operating at multiple levels of control, the adipocyte communicates with organ systems to adjust gene expression, glucoregulatory hormone exocytosis, enzymatic reactions, and nutrient flux to equilibrate the metabolic demands of a positive or negative energy balance. The identification of these mechanisms has great potential to identify novel targets for the treatment of diabetes and related metabolic disorders. Herein, we review the central role of the adipocyte in the maintenance of metabolic homeostasis, highlighting three critical mediators: adiponectin, leptin, and fatty acids.
Collapse
Affiliation(s)
- Jennifer H Stern
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joseph M Rutkowski
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
34
|
DiSilvestro DJ, Melgar-Bermudez E, Yasmeen R, Fadda P, Lee LJ, Kalyanasundaram A, Gilor CL, Ziouzenkova O. Leptin Production by Encapsulated Adipocytes Increases Brown Fat, Decreases Resistin, and Improves Glucose Intolerance in Obese Mice. PLoS One 2016; 11:e0153198. [PMID: 27055280 PMCID: PMC4824514 DOI: 10.1371/journal.pone.0153198] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/24/2016] [Indexed: 12/03/2022] Open
Abstract
The neuroendocrine effects of leptin on metabolism hold promise to be translated into a complementary therapy to traditional insulin therapy for diabetes and obesity. However, injections of leptin can provoke inflammation. We tested the effects of leptin, produced in the physiological adipocyte location, on metabolism in mouse models of genetic and dietary obesity. We generated 3T3-L1 adipocytes constitutively secreting leptin and encapsulated them in a poly-L-lysine membrane, which protects the cells from immune rejection. Ob/ob mice (OB) were injected with capsules containing no cells (empty, OB[Emp]), adipocytes (OB[3T3]), or adipocytes overexpressing leptin (OB[Lep]) into both visceral fat depots. Leptin was found in the plasma of OB[Lep], but not OB[Emp] and OB[3T3] mice at the end of treatment (72 days). The OB[Lep] and OB[3T3] mice have transiently suppressed appetite and weight loss compared to OB[Emp]. Only OB[Lep] mice have greater brown fat mass, metabolic rate, and reduced resistin plasma levels compared to OB[Emp]. Glucose tolerance was markedly better in OB[Lep]vs. OB[Emp] and OB[3T3] mice as well as in wild type mice with high-fat diet-induced obesity and insulin resistance treated with encapsulated leptin-producing adipocytes. Our proof-of-principle study provides evidence of long-term improvement of glucose tolerance with encapsulated adipocytes producing leptin.
Collapse
Affiliation(s)
- David J. DiSilvestro
- Department of Human Sciences, The Ohio State University, Columbus, Ohio, 43210, United States of America
| | - Emiliano Melgar-Bermudez
- Department of Human Sciences, The Ohio State University, Columbus, Ohio, 43210, United States of America
| | - Rumana Yasmeen
- Department of Human Sciences, The Ohio State University, Columbus, Ohio, 43210, United States of America
| | - Paolo Fadda
- Genomics Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, 43210, United States of America
| | - L. James Lee
- NSF Nanoscale Science and Engineering Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, Columbus, Ohio, United States of America
| | - Anuradha Kalyanasundaram
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, 43210, United States of America
| | - Chen L. Gilor
- Veterinary Clinical Sciences, The Ohio State University, Columbus, Ohio, 43210, United States of America
| | - Ouliana Ziouzenkova
- Department of Human Sciences, The Ohio State University, Columbus, Ohio, 43210, United States of America
- * E-mail:
| |
Collapse
|
35
|
Hussain MA, Akalestou E, Song WJ. Inter-organ communication and regulation of beta cell function. Diabetologia 2016; 59:659-67. [PMID: 26791990 PMCID: PMC4801104 DOI: 10.1007/s00125-015-3862-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/07/2015] [Indexed: 01/18/2023]
Abstract
The physiologically predominant signal for pancreatic beta cells to secrete insulin is glucose. While circulating glucose levels and beta cell glucose metabolism regulate the amount of released insulin, additional signals emanating from other tissues and from neighbouring islet endocrine cells modulate beta cell function. To this end, each individual beta cell can be viewed as a sensor of a multitude of stimuli that are integrated to determine the extent of glucose-dependent insulin release. This review discusses recent advances in our understanding of inter-organ communications that regulate beta cell insulin release in response to elevated glucose levels.
Collapse
Affiliation(s)
- Mehboob A Hussain
- Department of Medicine, Johns Hopkins University, 600 N. Wolfe Street, CMSC 10-113, Baltimore, MD, 21287, USA.
- Department of Pediatrics, Johns Hopkins University, 600 N. Wolfe Street, CMSC 10-113, Baltimore, MD, 21287, USA.
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD, USA.
| | - Elina Akalestou
- Department of Pediatrics, Johns Hopkins University, 600 N. Wolfe Street, CMSC 10-113, Baltimore, MD, 21287, USA
| | - Woo-Jin Song
- Department of Pediatrics, Johns Hopkins University, 600 N. Wolfe Street, CMSC 10-113, Baltimore, MD, 21287, USA
| |
Collapse
|
36
|
Sayers SR, Reimann F, Gribble FM, Parker H, Zac-Varghese S, Bloom SR, Foretz M, Viollet B, Rutter GA. Proglucagon Promoter Cre-Mediated AMPK Deletion in Mice Increases Circulating GLP-1 Levels and Oral Glucose Tolerance. PLoS One 2016; 11:e0149549. [PMID: 27010458 PMCID: PMC4806996 DOI: 10.1371/journal.pone.0149549] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/02/2016] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Enteroendocrine L-cells synthesise and release the gut hormone glucagon-like peptide-1 (GLP-1) in response to food transit. Deletion of the tumour suppressor kinase LKB1 from proglucagon-expressing cells leads to the generation of intestinal polyps but no change in circulating GLP-1 levels. Here, we explore the role of the downstream kinase AMP-activated protein kinase (AMPK) in these cells. METHOD Loss of AMPK from proglucagon-expressing cells was achieved using a preproglucagon promoter-driven Cre (iGluCre) to catalyse recombination of floxed alleles of AMPKα1 and α2. Oral and intraperitoneal glucose tolerance were measured using standard protocols. L-cell mass was measured by immunocytochemistry. Hormone and peptide levels were measured by electrochemical-based luminescence detection or radioimmunoassay. RESULTS Recombination with iGluCre led to efficient deletion of AMPK from intestinal L- and pancreatic alpha-cells. In contrast to mice rendered null for LKB1 using the same strategy, mice deleted for AMPK displayed an increase (WT: 0.05 ± 0.01, KO: 0.09±0.02%, p<0.01) in L-cell mass and elevated plasma fasting (WT: 5.62 ± 0.800 pg/ml, KO: 14.5 ± 1.870, p<0.01) and fed (WT: 15.7 ± 1.48pg/ml, KO: 22.0 ± 6.62, p<0.01) GLP-1 levels. Oral, but not intraperitoneal, glucose tolerance was significantly improved by AMPK deletion, whilst insulin and glucagon levels were unchanged despite an increase in alpha to beta cell ratio (WT: 0.23 ± 0.02, KO: 0.33 ± 0.03, p<0.01). CONCLUSION AMPK restricts L-cell growth and GLP-1 secretion to suppress glucose tolerance. Targeted inhibition of AMPK in L-cells may thus provide a new therapeutic strategy in some forms of type 2 diabetes.
Collapse
Affiliation(s)
- Sophie R. Sayers
- Department of Cell Biology and Functional Genomics, Imperial College London, London, W12 ONN, United Kingdom
| | - Frank Reimann
- Wellcome Trust - MRC Institute of Metabolic Science, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, United Kingdom
| | - Fiona M. Gribble
- Wellcome Trust - MRC Institute of Metabolic Science, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, United Kingdom
| | - Helen Parker
- Wellcome Trust - MRC Institute of Metabolic Science, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, United Kingdom
| | - Sagen Zac-Varghese
- Department of Investigative Medicine, Imperial College London, London, W12 ONN, United Kingdom
| | - Stephen R. Bloom
- Department of Investigative Medicine, Imperial College London, London, W12 ONN, United Kingdom
| | - Marc Foretz
- INSERM, U1016, Institut Cochin, 75014 Paris, France
- CNRS, UMR8104, 75014 Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Benoit Viollet
- INSERM, U1016, Institut Cochin, 75014 Paris, France
- CNRS, UMR8104, 75014 Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Guy A. Rutter
- Department of Cell Biology and Functional Genomics, Imperial College London, London, W12 ONN, United Kingdom
- * E-mail:
| |
Collapse
|