1
|
Zhang S, Wang Z, Luo Q, Zhou L, Du X, Ren Y. Effects of Microbes on Insect Host Physiology and Behavior Mediated by the Host Immune System. INSECTS 2025; 16:82. [PMID: 39859663 PMCID: PMC11765777 DOI: 10.3390/insects16010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
Innate immunity is critical for insects to adjust to complicated environments. Studying the insect immune system can aid in identifying novel insecticide targets and provide insights for developing novel pest control strategies. Insects recognize environmental pathogens through pattern recognition receptors, thus activating the innate immune system to eliminate pathogens. The innate immune system of insects primarily comprises cellular immunity and humoral immunity. Toll, immune deficiency, and Janus kinase/signal transducers and activators of transcription are the main signaling pathways regulating insect humoral immunity. Nevertheless, increasing research has revealed that immune signaling activated by microbes also performs non-immune roles while exerting immune roles, and insulin signaling performs a key role in mediating the connection between the immune system and non-immune physiological activities. Therefore, this paper first briefly reviews the main innate immune signaling and insulin signaling of insects, then summarizes the relationship between immune signaling activated by microbes and insect growth and development, reproduction, pesticide resistance, chemical communication, cell turnover, lifespan, sleep, energy generation pathways and their possible underlying mechanisms. Future research directions and methodologies are also proposed, aiming to provide insights into further study on the physiological mechanism linking microbes and insect hosts.
Collapse
Affiliation(s)
- Shan Zhang
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China; (S.Z.); (Q.L.); (L.Z.)
| | - Zhengyan Wang
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China; (S.Z.); (Q.L.); (L.Z.)
- College of Environmental and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia; (X.D.); (Y.R.)
| | - Qiong Luo
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China; (S.Z.); (Q.L.); (L.Z.)
| | - Lizhen Zhou
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China; (S.Z.); (Q.L.); (L.Z.)
| | - Xin Du
- College of Environmental and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia; (X.D.); (Y.R.)
| | - Yonglin Ren
- College of Environmental and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia; (X.D.); (Y.R.)
| |
Collapse
|
2
|
Díaz-López EJ, Sánchez-Iglesias S, Castro AI, Cobelo-Gómez S, Prado-Moraña T, Araújo-Vilar D, Fernandez-Pombo A. Lipodystrophic Laminopathies: From Dunnigan Disease to Progeroid Syndromes. Int J Mol Sci 2024; 25:9324. [PMID: 39273270 PMCID: PMC11395136 DOI: 10.3390/ijms25179324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Lipodystrophic laminopathies are a group of ultra-rare disorders characterised by the presence of pathogenic variants in the same gene (LMNA) and other related genes, along with an impaired adipose tissue pattern and other features that are specific of each of these disorders. The most fascinating traits include their complex genotype-phenotype associations and clinical heterogeneity, ranging from Dunnigan disease, in which the most relevant feature is precisely adipose tissue dysfunction and lipodystrophy, to the other laminopathies affecting adipose tissue, which are also characterised by the presence of signs of premature ageing (Hutchinson Gilford-progeria syndrome, LMNA-atypical progeroid syndrome, mandibuloacral dysplasia types A and B, Nestor-Guillermo progeria syndrome, LMNA-associated cardiocutaneous progeria). This raises several questions when it comes to understanding how variants in the same gene can lead to similar adipose tissue disturbances and, at the same time, to such heterogeneous phenotypes and variable degrees of metabolic abnormalities. The present review aims to gather the molecular basis of adipose tissue impairment in lipodystrophic laminopathies, their main clinical aspects and recent therapeutic strategies. In addition, it also summarises the key aspects for their differential diagnosis.
Collapse
Affiliation(s)
- Everardo Josué Díaz-López
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Sofía Sánchez-Iglesias
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Ana I Castro
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), 28029 Madrid, Spain
| | - Silvia Cobelo-Gómez
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Teresa Prado-Moraña
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - David Araújo-Vilar
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Antia Fernandez-Pombo
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| |
Collapse
|
3
|
Zhou P, Kessinger CW, Gu F, Davenport A, King JS, Wang G, Negron SG, Deplancke B, Pu WT, Lin Z. Vestigial like 4 regulates the adipogenesis of classical brown adipose tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602788. [PMID: 39026854 PMCID: PMC11257599 DOI: 10.1101/2024.07.09.602788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Brown adipose tissue (BAT) is mammals' primary non-shivering thermogenesis organ, and the molecular mechanisms regulating BAT growth and adipogenesis are largely unknown. The Hippo-YAP pathway has been well-known for controlling organ size, and Vestigial like 4 (VGLL4) is a transcriptional regulator that modulates the Hippo-YAP pathway by competing against YAP for binding to TEAD proteins. In this study, we dissected the function of VGLL4 in regulating BAT development. We generated a conventional Vgll4 mutant mouse line, in which the two Tondu (TDU) domains of VGLL4 were disrupted. We found that deletion of the TDU domains of VGLL4 resulted in perinatal lethality and paucity of the interscapular BAT. Histological and magnetic resonance imaging studies confirmed that the adipogenesis of BAT was impaired in Vgll4 mutants. Adeno-associated virus (AAV) mediated, brown adipocyte-specific overexpression of VGLL4 increased BAT volume and protected the adult male mice from acute cold stress. Genomic studies suggest that VGLL4/TEAD1 complex directly regulates the myogenic and adipogenic gene expression programs of BAT. In conclusion, our data identify VGLL4 as a previously unrecognized adipogenesis factor that regulates classical BAT development.
Collapse
Affiliation(s)
- Pingzhu Zhou
- Boston Children’s Hospital, 300 Longwood Ave, Boston, MA, 02115
| | - Chase W. Kessinger
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY 13501
| | - Fei Gu
- Boston Children’s Hospital, 300 Longwood Ave, Boston, MA, 02115
| | - Amanda Davenport
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY 13501
| | - Justin S. King
- Boston Children’s Hospital, 300 Longwood Ave, Boston, MA, 02115
| | - Genyu Wang
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY 13501
| | - Steven G. Negron
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY 13501
| | - Bart Deplancke
- Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - William T. Pu
- Boston Children’s Hospital, 300 Longwood Ave, Boston, MA, 02115
| | - Zhiqiang Lin
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY 13501
| |
Collapse
|
4
|
Solinas G, Becattini B. An adipoincretin effect links adipostasis with insulin secretion. Trends Endocrinol Metab 2024; 35:466-477. [PMID: 38861922 DOI: 10.1016/j.tem.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 06/13/2024]
Abstract
The current paradigm for the insulin system focuses on the phenomenon of glucose-stimulated insulin secretion and insulin action on blood glucose control. This historical glucose-centric perspective may have introduced a conceptual bias in our understanding of insulin regulation. A body of evidence demonstrating that in vivo variations in blood glucose and insulin secretion can be largely dissociated motivated us to reconsider the fundamental design of the insulin system as a control system for metabolic homeostasis. Here, we propose that a minimal glucose-centric model does not accurately describe the physiological behavior of the insulin system and propose a new paradigm focusing on the effects of incretins, arguing that under fasting conditions, insulin is regulated by an adipoincretin effect.
Collapse
Affiliation(s)
- Giovanni Solinas
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Barbara Becattini
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
5
|
Becattini B, Molinaro A, Henricsson M, Borén J, Solinas G. Adipocyte PI3K links adipostasis with baseline insulin secretion at fasting through an adipoincretin effect. Cell Rep 2024; 43:114132. [PMID: 38656871 DOI: 10.1016/j.celrep.2024.114132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/06/2024] [Accepted: 04/04/2024] [Indexed: 04/26/2024] Open
Abstract
Insulin-PI3K signaling controls insulin secretion. Understanding this feedback mechanism is crucial for comprehending how insulin functions. However, the role of adipocyte insulin-PI3K signaling in controlling insulin secretion in vivo remains unclear. Using adipocyte-specific PI3Kα knockout mice (PI3KαAdQ) and a panel of isoform-selective PI3K inhibitors, we show that PI3Kα and PI3Kβ activities are functionally redundant in adipocyte insulin signaling. PI3Kβ-selective inhibitors have no effect on adipocyte AKT phosphorylation in control mice but blunt it in adipocytes of PI3KαAdQ mice, demonstrating adipocyte-selective pharmacological PI3K inhibition in the latter. Acute adipocyte-selective PI3K inhibition increases serum free fatty acid (FFA) and potently induces insulin secretion. We name this phenomenon the adipoincretin effect. The adipoincretin effect operates in fasted mice with increasing FFA and decreasing glycemia, indicating that it is not primarily a control system for blood glucose. This feedback control system defines the rates of adipose tissue lipolysis and chiefly controls basal insulin secretion during fasting.
Collapse
Affiliation(s)
- Barbara Becattini
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Angela Molinaro
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Marcus Henricsson
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Giovanni Solinas
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
6
|
Barathikannan K, Chelliah R, Vinothkanna A, Prathiviraj R, Tyagi A, Vijayalakshmi S, Lim MJ, Jia AQ, Oh DH. Untargeted metabolomics-based network pharmacology reveals fermented brown rice towards anti-obesity efficacy. NPJ Sci Food 2024; 8:20. [PMID: 38555366 PMCID: PMC10981755 DOI: 10.1038/s41538-024-00258-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/14/2024] [Indexed: 04/02/2024] Open
Abstract
There is a substantial rise in the global incidence of obesity. Brown rice contains metabolic substances that can help minimize the prevalence of obesity. This study evaluated nine brown rice varieties using probiotic fermentation using Pediococcus acidilacti MNL5 to enhance bioactive metabolites and their efficacy. Among the nine varieties, FBR-1741 had the highest pancreatic lipase inhibitory efficacy (87.6 ± 1.51%), DPPH assay (358.5 ± 2.80 mg Trolox equiv./100 g, DW), and ABTS assay (362.5 ± 2.32 mg Trolox equiv./100 g, DW). Compared to other fermented brown rice and FBR-1741 varieties, UHPLC-Q-TOF-MS/MS demonstrated significant untargeted metabolite alterations. The 17 most abundant polyphenolic metabolites in the FBR-1741 variety and 132 putative targets were assessed for obesity-related target proteins, and protein interaction networks were constructed using the Cystoscope software. Network pharmacology analysis validated FBR-1741 with active metabolites in the C. elegans obesity-induced model. Administration of FBR-1741 with ferulic acid improved lifespan decreased triglycerides, and suppressed the expression of fat-related genes. The enhanced anti-obesity properties of FBR-1741 suggest its implementation in obesity-functional food.
Collapse
Affiliation(s)
- Kaliyan Barathikannan
- Agricultural and Life Science Research Institute, Kangwon National University, Chuncheon, 24341, Korea
- Saveetha School of Engineering, Saveetha (SIMATS) University, Tamil Nadu, 600124, India
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 200-701, South Korea
- Kangwon Institute of Inclusive Technology (KIIT), Kangwon National University, Chuncheon, 24341, South Korea
| | - Annadurai Vinothkanna
- School of Life Sciences, Hainan University, 570228, Haikou, China
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, 570311, Haikou, China
| | | | - Akanksha Tyagi
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 200-701, South Korea
| | - Selvakumar Vijayalakshmi
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 200-701, South Korea
| | - Min-Jin Lim
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 200-701, South Korea
| | - Ai-Qun Jia
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, 570311, Haikou, China
| | - Deog- Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 200-701, South Korea.
| |
Collapse
|
7
|
Guilherme A, Rowland LA, Wang H, Czech MP. The adipocyte supersystem of insulin and cAMP signaling. Trends Cell Biol 2023; 33:340-354. [PMID: 35989245 PMCID: PMC10339226 DOI: 10.1016/j.tcb.2022.07.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 01/28/2023]
Abstract
Adipose tissue signals to brain, liver, and muscles to control whole body metabolism through secreted lipid and protein factors as well as neurotransmission, but the mechanisms involved are incompletely understood. Adipocytes sequester triglyceride (TG) in fed conditions stimulated by insulin, while in fasting catecholamines trigger TG hydrolysis, releasing glycerol and fatty acids (FAs). These antagonistic hormone actions result in part from insulin's ability to inhibit cAMP levels generated through such G-protein-coupled receptors as catecholamine-activated β-adrenergic receptors. Consistent with these antagonistic signaling modes, acute actions of catecholamines cause insulin resistance. Yet, paradoxically, chronically activating adipocytes by catecholamines cause increased glucose tolerance, as does insulin. Recent results have helped to unravel this conundrum by revealing enhanced complexities of these hormones' signaling networks, including identification of unexpected common signaling nodes between these canonically antagonistic hormones.
Collapse
Affiliation(s)
- Adilson Guilherme
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| | - Leslie A Rowland
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Hui Wang
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
8
|
Shimobayashi M, Thomas A, Shetty S, Frei IC, Wölnerhanssen BK, Weissenberger D, Vandekeere A, Planque M, Dietz N, Ritz D, Meyer-Gerspach AC, Maier T, Hay N, Peterli R, Fendt SM, Rohner N, Hall MN. Diet-induced loss of adipose hexokinase 2 correlates with hyperglycemia. eLife 2023; 12:85103. [PMID: 36920797 PMCID: PMC10017106 DOI: 10.7554/elife.85103] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/19/2023] [Indexed: 03/16/2023] Open
Abstract
Chronically high blood glucose (hyperglycemia) leads to diabetes and fatty liver disease. Obesity is a major risk factor for hyperglycemia, but the underlying mechanism is unknown. Here, we show that a high-fat diet (HFD) in mice causes early loss of expression of the glycolytic enzyme Hexokinase 2 (HK2) specifically in adipose tissue. Adipose-specific knockout of Hk2 reduced glucose disposal and lipogenesis and enhanced fatty acid release in adipose tissue. In a non-cell-autonomous manner, Hk2 knockout also promoted glucose production in liver. Furthermore, we observed reduced hexokinase activity in adipose tissue of obese and diabetic patients, and identified a loss-of-function mutation in the hk2 gene of naturally hyperglycemic Mexican cavefish. Mechanistically, HFD in mice led to loss of HK2 by inhibiting translation of Hk2 mRNA. Our findings identify adipose HK2 as a critical mediator of local and systemic glucose homeostasis, and suggest that obesity-induced loss of adipose HK2 is an evolutionarily conserved mechanism for the development of selective insulin resistance and thereby hyperglycemia.
Collapse
Affiliation(s)
- Mitsugu Shimobayashi
- Biozentrum, University of BaselBaselSwitzerland
- Department of Chronic Diseases and Metabolism, Laboratory of Clinical and Experimental Endocrinology, KU LeuvenLeuvenBelgium
| | | | | | | | | | | | - Anke Vandekeere
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer BiologyLeuvenBelgium
- Department of Oncology, Laboratory of Cellular Metabolism and Metabolic Regulation, KU Leuven and Leuven Cancer InstituteLeuvenBelgium
| | - Mélanie Planque
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer BiologyLeuvenBelgium
- Department of Oncology, Laboratory of Cellular Metabolism and Metabolic Regulation, KU Leuven and Leuven Cancer InstituteLeuvenBelgium
| | | | - Danilo Ritz
- Biozentrum, University of BaselBaselSwitzerland
| | | | - Timm Maier
- Biozentrum, University of BaselBaselSwitzerland
| | - Nissim Hay
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at ChicagoChicagoUnited States
| | - Ralph Peterli
- Clarunis, Department of Visceral Surgery, University Centre for Gastrointestinal and Liver DiseasesBaselSwitzerland
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer BiologyLeuvenBelgium
- Department of Oncology, Laboratory of Cellular Metabolism and Metabolic Regulation, KU Leuven and Leuven Cancer InstituteLeuvenBelgium
| | - Nicolas Rohner
- Stowers Institute for Medical ResearchKansas CityUnited States
- Department of Cell Biology and Physiology at the University of Kansas School of MedicineKansas CityUnited States
| | | |
Collapse
|
9
|
Liebscher G, Vujic N, Schreiber R, Heine M, Krebiehl C, Duta-Mare M, Lamberti G, de Smet CH, Hess MW, Eichmann TO, Hölzl S, Scheja L, Heeren J, Kratky D, Huber LA. The lysosomal LAMTOR / Ragulator complex is essential for nutrient homeostasis in brown adipose tissue. Mol Metab 2023; 71:101705. [PMID: 36907508 PMCID: PMC10074977 DOI: 10.1016/j.molmet.2023.101705] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023] Open
Abstract
OBJECTIVE In brown adipose tissue (iBAT), the balance between lipid/glucose uptake and lipolysis is tightly regulated by insulin signaling. Downstream of the insulin receptor, PDK1 and mTORC2 phosphorylate AKT, which activates glucose uptake and lysosomal mTORC1 signaling. The latter requires the late endosomal/lysosomal adaptor and MAPK and mTOR activator (LAMTOR/Ragulator) complex, which serves to translate the nutrient status of the cell to the respective kinase. However, the role of LAMTOR in metabolically active iBAT has been elusive. METHODS Using an AdipoqCRE-transgenic mouse line, we deleted LAMTOR2 (and thereby the entire LAMTOR complex) in adipose tissue (LT2 AKO). To examine the metabolic consequences, we performed metabolic and biochemical studies in iBAT isolated from mice housed at different temperatures (30 °C, room temperature and 5 °C), after insulin treatment, or in fasted and refed condition. For mechanistic studies, mouse embryonic fibroblasts (MEFs) lacking LAMTOR 2 were analyzed. RESULTS Deletion of the LAMTOR complex in mouse adipocytes resulted in insulin-independent AKT hyperphosphorylation in iBAT, causing increased glucose and fatty acid uptake, which led to massively enlarged lipid droplets. As LAMTOR2 was essential for the upregulation of de novo lipogenesis, LAMTOR2 deficiency triggered exogenous glucose storage as glycogen in iBAT. These effects are cell autonomous, since AKT hyperphosphorylation was abrogated by PI3K inhibition or by deletion of the mTORC2 component Rictor in LAMTOR2-deficient MEFs. CONCLUSIONS We identified a homeostatic circuit for the maintenance of iBAT metabolism that links the LAMTOR-mTORC1 pathway to PI3K-mTORC2-AKT signaling downstream of the insulin receptor.
Collapse
Affiliation(s)
- Gudrun Liebscher
- Division of Cell Biology, Biocenter, Medical University Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Nemanja Vujic
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstr. 6, 8010 Graz, Austria
| | - Renate Schreiber
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31, 8010 Graz, Austria
| | - Markus Heine
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Caroline Krebiehl
- Division of Cell Biology, Biocenter, Medical University Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Madalina Duta-Mare
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstr. 6, 8010 Graz, Austria
| | - Giorgia Lamberti
- Division of Cell Biology, Biocenter, Medical University Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Cedric H de Smet
- Division of Cell Biology, Biocenter, Medical University Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Michael W Hess
- Institute of Histology and Embryology, Medical University of Innsbruck, Müllerstrasse 59, 6020 Innsbruck, Austria
| | - Thomas O Eichmann
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31, 8010 Graz, Austria
| | - Sarah Hölzl
- Division of Cell Biology, Biocenter, Medical University Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Ludger Scheja
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Dagmar Kratky
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstr. 6, 8010 Graz, Austria; BioTechMed-Graz, Mozartgasse 12, 8010 Graz, Austria
| | - Lukas A Huber
- Division of Cell Biology, Biocenter, Medical University Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
10
|
Clinical Spectrum of LMNA-Associated Type 2 Familial Partial Lipodystrophy: A Systematic Review. Cells 2023; 12:cells12050725. [PMID: 36899861 PMCID: PMC10000975 DOI: 10.3390/cells12050725] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 03/03/2023] Open
Abstract
Type 2 familial partial lipodystrophy (FPLD2) is a laminopathic lipodystrophy due to pathogenic variants in the LMNA gene. Its rarity implies that it is not well-known. The aim of this review was to explore the published data regarding the clinical characterisation of this syndrome in order to better describe FPLD2. For this purpose, a systematic review through a search on PubMed until December 2022 was conducted and the references of the retrieved articles were also screened. A total of 113 articles were included. FPLD2 is characterised by the loss of fat starting around puberty in women, affecting limbs and trunk, and its accumulation in the face, neck and abdominal viscera. This adipose tissue dysfunction conditions the development of metabolic complications associated with insulin resistance, such as diabetes, dyslipidaemia, fatty liver disease, cardiovascular disease, and reproductive disorders. However, a great degree of phenotypical variability has been described. Therapeutic approaches are directed towards the associated comorbidities, and recent treatment modalities have been explored. A comprehensive comparison between FPLD2 and other FPLD subtypes can also be found in the present review. This review aimed to contribute towards augmenting knowledge of the natural history of FPLD2 by bringing together the main clinical research in this field.
Collapse
|
11
|
Pan J, Kothan S, Moe Moe AT, Huang K. Dysfunction of insulin-AKT-UCP1 signalling inhibits transdifferentiation of human and mouse white preadipocytes into brown-like adipocytes. Adipocyte 2022; 11:213-226. [PMID: 35416120 PMCID: PMC9009895 DOI: 10.1080/21623945.2022.2062852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 02/07/2023] Open
Abstract
The mechanism of insulin signaling on browning of white preadipocytes remains unclear. Human and mouse primary subcutaneous white preadipocytes (hsASCs and WT lean and obese msASCs, respectively) were induced to transdifferentiate into beige adipocytes under conditions of intact or blocked insulin signaling, respectively. Level of phosphoinositide-3-kinase (PI3K) after induction of beige adipocytes under conditions of normal insulin signaling, phosphorylated protein kinase B (pAKT), peroxisome proliferator-activated receptor γ coactivator-1 alpha (PGC-1α), zinc-fifinger transcriptional factor PRD1-BF1-RIZ1 homologous domain-containing protein 16 (PRDM16), uncoupling protein 1 (UCP1), peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer binding protein beta (C/EBPβ) were significantly increased. Conversely, when insulin signaling is incompletely inhibited, the expression of the thermogenic and adipogenic factors is significantly reduced, with obvious impairment of adipogenesis. However, phosphorylation level of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) and expression level of sirtuin type 1 (SIRT1) had increased. These white preadipocytes from different donors showed similar dynamic change in morphology and molecular levels during the browning. The present data indicate that insulin signaling plays a important role in regulation of browning of hsASCs and msASCs through PI3K-AKT-UCP1 signaling pathway. The insulin-AMPK-SIRT1 pathway was also involved in the adipocytes browning, while its effect is limited.
Collapse
Affiliation(s)
- Jie Pan
- Shandong Provincial Key Laboratory of Animal Resistant Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong Province, China
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Suchart Kothan
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Aye Thidar Moe Moe
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Kun Huang
- Shandong Provincial Key Laboratory of Animal Resistant Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong Province, China
| |
Collapse
|
12
|
PPARγ Gene as a Possible Link between Acquired and Congenital Lipodystrophy and its Modulation by Dietary Fatty Acids. Nutrients 2022; 14:nu14224742. [PMID: 36432429 PMCID: PMC9693235 DOI: 10.3390/nu14224742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Lipodystrophy syndromes are rare diseases that could be of genetic or acquired origin. The main complication of lipodystrophy is the dysfunction of adipose tissue, which leads to an ectopic accumulation of triglycerides in tissues such as the liver, pancreas and skeletal muscle. This abnormal fat distribution is associated with hypertriglyceridemia, insulin resistance, liver steatosis, cardiomyopathies and chronic inflammation. Although the origin of acquired lipodystrophies remains unclear, patients show alterations in genes related to genetic lipodystrophy, suggesting that this disease could be improved or aggravated by orchestrating gene activity, for example by diet. Nowadays, the main reason for adipose tissue dysfunction is an imbalance in metabolism, caused in other pathologies associated with adipose tissue dysfunction by high-fat diets. However, not all dietary fats have the same health implications. Therefore, this article aims to summarize the main genes involved in the pathophysiology of lipodystrophy, identify connections between them and provide a systematic review of studies published between January 2017 and January 2022 of the dietary fats that can modulate the development of lipodystrophy through transcriptional regulation or the regulation of protein expression in adipocytes.
Collapse
|
13
|
Sostre-Colón J, Gavin MJ, Santoleri D, Titchenell PM. Acute Deletion of the FOXO1-dependent Hepatokine FGF21 Does not Alter Basal Glucose Homeostasis or Lipolysis in Mice. Endocrinology 2022; 163:6550639. [PMID: 35303074 PMCID: PMC8995092 DOI: 10.1210/endocr/bqac035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 01/07/2023]
Abstract
The hepatic transcription factor forkhead box O1 (FOXO1) is a critical regulator of hepatic and systemic insulin sensitivity. Previous work by our group and others demonstrated that genetic inhibition of FOXO1 improves insulin sensitivity both in genetic and dietary mouse models of metabolic disease. Mechanistically, this is due in part to cell nonautonomous control of adipose tissue insulin sensitivity. However, the mechanisms mediating this liver-adipose tissue crosstalk remain ill defined. One candidate hepatokine controlled by hepatic FOXO1 is fibroblast growth factor 21 (FGF21). Preclinical and clinical studies have explored the potential of pharmacological FGF21 as an antiobesity and antidiabetic therapy. In this manuscript, we performed acute loss-of-function experiments to determine the role of hepatocyte-derived FGF21 in glucose homeostasis and insulin tolerance both in control and mice lacking hepatic insulin signaling. Surprisingly, acute deletion of FGF21 did not alter glucose tolerance, insulin tolerance, or adipocyte lipolysis in either liver-specific FGF21KO mice or mice lacking hepatic AKT-FOXO1-FGF21, suggesting a permissive role for endogenous FGF21 in the regulation of systemic glucose homeostasis and insulin tolerance in mice. In addition, these data indicate that liver FOXO1 controls glucose homeostasis independently of liver-derived FGF21.
Collapse
Affiliation(s)
- Jaimarie Sostre-Colón
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Matthew J Gavin
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Dominic Santoleri
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Paul M Titchenell
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Physiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Correspondence: Paul M. Titchenell, PhD, Perelman School of Medicine at the University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Blvd, Rm. 12-104, Philadelphia, PA 19104, USA.
| |
Collapse
|
14
|
Integrating adipocyte insulin signaling and metabolism in the multi-omics era. Trends Biochem Sci 2022; 47:531-546. [PMID: 35304047 DOI: 10.1016/j.tibs.2022.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/08/2022] [Accepted: 02/21/2022] [Indexed: 12/16/2022]
Abstract
Insulin stimulates glucose uptake into adipocytes via mTORC2/AKT signaling and GLUT4 translocation and directs glucose carbons into glycolysis, glycerol for TAG synthesis, and de novo lipogenesis. Adipocyte insulin resistance is an early indicator of type 2 diabetes in obesity, a worldwide health crisis. Thus, understanding the interplay between insulin signaling and central carbon metabolism pathways that maintains adipocyte function, blood glucose levels, and metabolic homeostasis is critical. While classically viewed through the lens of individual enzyme-substrate interactions, advances in mass spectrometry are beginning to illuminate adipocyte signaling and metabolic networks on an unprecedented scale, yet this is just the tip of the iceberg. Here, we review how 'omics approaches help to elucidate adipocyte insulin action in cellular time and space.
Collapse
|
15
|
Sakers A, De Siqueira MK, Seale P, Villanueva CJ. Adipose-tissue plasticity in health and disease. Cell 2022; 185:419-446. [PMID: 35120662 PMCID: PMC11152570 DOI: 10.1016/j.cell.2021.12.016] [Citation(s) in RCA: 439] [Impact Index Per Article: 146.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022]
Abstract
Adipose tissue, colloquially known as "fat," is an extraordinarily flexible and heterogeneous organ. While historically viewed as a passive site for energy storage, we now appreciate that adipose tissue regulates many aspects of whole-body physiology, including food intake, maintenance of energy levels, insulin sensitivity, body temperature, and immune responses. A crucial property of adipose tissue is its high degree of plasticity. Physiologic stimuli induce dramatic alterations in adipose-tissue metabolism, structure, and phenotype to meet the needs of the organism. Limitations to this plasticity cause diminished or aberrant responses to physiologic cues and drive the progression of cardiometabolic disease along with other pathological consequences of obesity.
Collapse
Affiliation(s)
- Alexander Sakers
- Institute for Diabetes, Obesity & Metabolism, Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Mirian Krystel De Siqueira
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, Los Angeles, CA 90095-7070 USA; Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095-7070 USA
| | - Patrick Seale
- Institute for Diabetes, Obesity & Metabolism, Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA.
| | - Claudio J Villanueva
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, Los Angeles, CA 90095-7070 USA; Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095-7070 USA.
| |
Collapse
|
16
|
Le Lay S, Magré J, Prieur X. Not Enough Fat: Mouse Models of Inherited Lipodystrophy. Front Endocrinol (Lausanne) 2022; 13:785819. [PMID: 35250856 PMCID: PMC8895270 DOI: 10.3389/fendo.2022.785819] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/17/2022] [Indexed: 12/19/2022] Open
Abstract
Lipodystrophies belong to the heterogenous group of syndromes in which the primary defect is a generalized or partial absence of adipose tissue, which may be congenital or acquired in origin. Lipodystrophy should be considered in patients manifesting the combination of insulin resistance (with or without overt diabetes), dyslipidemia and fatty liver. Lipodystrophies are classified according to the etiology of the disease (genetic or acquired) and to the anatomical distribution of adipose tissue (generalized or partial). The mechanism of adipose tissue loss is specific to each syndrome, depending on the biological function of the mutated gene. Mice models, together with cellular studies have permitted clarification of the mechanisms by which human mutations deeply compromise adipocyte homeostasis. In addition, rodent models have proven to be crucial in deciphering the cardiometabolic consequences of the lack of adipose tissue such as NAFLD, muscle insulin resistance and cardiomyopathy. More precisely, tissue-specific transgenic and knockout mice have brought new tools to distinguish phenotypic traits that are the consequences of lipodystrophy from those that are cell-autonomous. In this review, we discuss the mice models of lipodystrophy including those of inherited human syndromes of generalized and partial lipodystrophy. We present how these models have demonstrated the central role of white adipose tissue in energetic homeostasis in general, including insulin sensitivity and lipid handling in particular. We underscore the differences reported with the human phenotype and discuss the limit of rodent models in recapitulating adipose tissue primary default. Finally, we present how these mice models have highlighted the function of the causative-genes and brought new insights into the pathophysiology of the cardiometabolic complications associated with lipodystrophy.
Collapse
Affiliation(s)
- Soazig Le Lay
- Nantes Université, CNRS, INSERM, l’institut du thorax, Nantes, France
- Univ Angers, SFR ICAT, Angers, France
| | - Jocelyne Magré
- Nantes Université, CNRS, INSERM, l’institut du thorax, Nantes, France
| | - Xavier Prieur
- Nantes Université, CNRS, INSERM, l’institut du thorax, Nantes, France
- *Correspondence: Xavier Prieur,
| |
Collapse
|
17
|
PI3K and AKT at the Interface of Signaling and Metabolism. Curr Top Microbiol Immunol 2022; 436:311-336. [DOI: 10.1007/978-3-031-06566-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Gao J, Mizokami A, Takeuchi H, Li A, Huang F, Nagano H, Kanematsu T, Jimi E, Hirata M. Phospholipase C-related catalytically inactive protein acts as a positive regulator for insulin signalling in adipocytes. J Cell Sci 2021; 135:273924. [PMID: 34859819 DOI: 10.1242/jcs.258584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 11/15/2021] [Indexed: 11/20/2022] Open
Abstract
Insulin signalling is tightly controlled by various factors, but the exact molecular mechanism remains incompletely understood. We previously reported that phospholipase C-related but catalytically inactive protein (PRIP) interacts with Akt, the central molecule in insulin signalling. Here, we investigated whether PRIP is involved in the regulation of insulin signalling in adipocytes. We found that insulin signalling including insulin-stimulated phosphorylation of the insulin receptor (IR), insulin receptor substrate-1 (IRS-1), Akt, and glucose uptake, were impaired in adipocytes from PRIP-knockout (KO) mice compared with those from wild-type (WT) mice. The amount of IR expressed on the cell-surface was decreased in PRIP-KO adipocytes. Immunoprecipitation assay showed that PRIP interacted with IR. The reduced cell-surface IR in PRIP-KO adipocytes was comparable with that in WT cells when Rab5 expression was silenced using specific siRNA. In contrast, the dephosphorylation of IRS-1 at serine residues, some of which were reported to be involved in the internalisation of IR, was impaired in cells from PRIP-KO mice. These results suggest that PRIP facilitates insulin signalling by modulating the internalisation of IR in adipocytes.
Collapse
Affiliation(s)
- Jing Gao
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Akiko Mizokami
- Oral Health/Brain Health/Total Health Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hiroshi Takeuchi
- Division of Applied Pharmacology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan
| | - Aonan Li
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Fei Huang
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Haruki Nagano
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takashi Kanematsu
- Department of Cell Biology and Pharmacology, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Eijiro Jimi
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.,Oral Health/Brain Health/Total Health Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masato Hirata
- Oral Medicine Research Center, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| |
Collapse
|
19
|
Al-Sayegh M, Ali H, Jamal MH, ElGindi M, Chanyong T, Al-Awadi K, Abu-Farha M. Mouse Embryonic Fibroblast Adipogenic Potential: A Comprehensive Transcriptome Analysis. Adipocyte 2021; 10:1-20. [PMID: 33345692 PMCID: PMC7757854 DOI: 10.1080/21623945.2020.1859789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Our understanding of adipose tissue has progressed from an inert tissue for energy storage to be one of the largest endocrine organs regulating metabolic homoeostasis through its ability to synthesize and release various adipokines that regulate a myriad of pathways. The field of adipose tissue biology is growing due to this association with various chronic metabolic diseases. An important process in the regulation of adipose tissue biology is adipogenesis, which is the formation of new adipocytes. Investigating adipogenesis in vitro is currently a focus for identifying factors that might be utilized in clinically. A powerful tool for such work is high-throughput sequencing which can rapidly identify changes at gene expression level. Various cell models exist for studying adipogenesis and has been used in high-throughput studies, yet little is known about transcriptome profile that underlies adipogenesis in mouse embryonic fibroblasts. This study utilizes RNA-sequencing and computational analysis with DESeq2, gene ontology, protein–protein networks, and robust rank analysis to understand adipogenesis in mouse embryonic fibroblasts in-depth. Our analyses confirmed the requirement of mitotic clonal expansion prior to adipogenesis in this cell model and highlight the role of Cebpa and Cebpb in regulating adipogenesis through interactions of large numbers of genes.
Collapse
Affiliation(s)
- Mohamed Al-Sayegh
- New York University Abu Dhabi, Division of Biology, Abu Dhabi, United Arab Emirates
| | - Hamad Ali
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Health Sciences Center (HSC), Kuwait University, Kuwait City, State of Kuwait
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute (DDI), Kuwait City, State of Kuwait
| | - Mohammad H Jamal
- Department of Surgery, Faculty of Medicine, Health Sciences Center (HSC), Kuwait University, Kuwait City, State of Kuwait
| | - Mei ElGindi
- New York University Abu Dhabi, Division of Biology, Abu Dhabi, United Arab Emirates
| | - Tina Chanyong
- New York University Abu Dhabi, Division of Biology, Abu Dhabi, United Arab Emirates
| | - Khulood Al-Awadi
- New York University Abu Dhabi, Design Studio, Abu Dhabi, United Arab Emirates
| | - Mohamed Abu-Farha
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute (DDI), Kuwait City, State of Kuwait
| |
Collapse
|
20
|
Dai W, Choubey M, Patel S, Singer HA, Ozcan L. Adipocyte CAMK2 deficiency improves obesity-associated glucose intolerance. Mol Metab 2021; 53:101300. [PMID: 34303021 PMCID: PMC8365526 DOI: 10.1016/j.molmet.2021.101300] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/13/2021] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Obesity-related adipose tissue dysfunction has been linked to the development of insulin resistance, type 2 diabetes, and cardiovascular disease. Impaired calcium homeostasis is associated with altered adipose tissue metabolism; however, the molecular mechanisms that link disrupted calcium signaling to metabolic regulation are largely unknown. Here, we investigated the contribution of a calcium-sensing enzyme, calcium/calmodulin-dependent protein kinase II (CAMK2), to adipocyte function, obesity-associated insulin resistance, and glucose intolerance. METHODS To determine the impact of adipocyte CAMK2 deficiency on metabolic regulation, we generated a conditional knockout mouse model and acutely deleted CAMK2 in mature adipocytes. We further used in vitro differentiated adipocytes to dissect the mechanisms by which CAMK2 regulates adipocyte function. RESULTS CAMK2 activity was increased in obese adipose tissue, and depletion of adipocyte CAMK2 in adult mice improved glucose intolerance and insulin resistance without an effect on body weight. Mechanistically, we found that activation of CAMK2 disrupted adipocyte insulin signaling and lowered the amount of insulin receptor. Further, our results revealed that CAMK2 contributed to adipocyte lipolysis, tumor necrosis factor alpha (TNFα)-induced inflammation, and insulin resistance. CONCLUSIONS These results identify a new link between adipocyte CAMK2 activity, metabolic regulation, and whole-body glucose homeostasis.
Collapse
Affiliation(s)
- Wen Dai
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA; Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Mayank Choubey
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Sonal Patel
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Harold A Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Lale Ozcan
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
21
|
Fernández-Pombo A, Sánchez-Iglesias S, Cobelo-Gómez S, Hermida-Ameijeiras Á, Araújo-Vilar D. Familial partial lipodystrophy syndromes. Presse Med 2021; 50:104071. [PMID: 34610417 DOI: 10.1016/j.lpm.2021.104071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/18/2021] [Indexed: 12/14/2022] Open
Abstract
Lipodystrophies are a heterogeneous group of rare conditions characterised by the loss of adipose tissue. The most common forms are the familial partial lipodystrophy (FPLD) syndromes, which include a set of disorders, usually autosomal dominant, due to different pathogenetic mechanisms leading to improper fat distribution (loss of fat in the limbs and gluteal region and variable regional fat accumulation). Affected patients are prone to suffering serious morbidity via the development of metabolic complications associated to insulin resistance and an inability to properly store lipids. Although no well-defined diagnostic criteria have been established for lipodystrophy, there are certain clues related to medical history, physical examination and body composition evaluation that may suggest FPLD prior to confirmatory genetic analysis. Its treatment must be fundamentally oriented towards the control of the metabolic abnormalities. In this sense, metreleptin therapy, the newer classes of hypoglycaemic agents and other investigational drugs are showing promising results. This review aims to summarise the current knowledge of FPLD syndromes and to describe their clinical and molecular picture, diagnostic approaches and recent treatment modalities.
Collapse
Affiliation(s)
- Antía Fernández-Pombo
- UETeM-Molecular Pathology of Rare Diseases Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CiMUS, University of Santiago de Compostela, Santiago de Compostela 15782, Spain; Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706, Spain
| | - Sofía Sánchez-Iglesias
- UETeM-Molecular Pathology of Rare Diseases Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CiMUS, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Silvia Cobelo-Gómez
- UETeM-Molecular Pathology of Rare Diseases Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CiMUS, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Álvaro Hermida-Ameijeiras
- UETeM-Molecular Pathology of Rare Diseases Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CiMUS, University of Santiago de Compostela, Santiago de Compostela 15782, Spain; Division of Internal Medicine, University Clinical Hospital of Santiago de Compostela, 15706, Spain
| | - David Araújo-Vilar
- UETeM-Molecular Pathology of Rare Diseases Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CiMUS, University of Santiago de Compostela, Santiago de Compostela 15782, Spain; Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706, Spain.
| |
Collapse
|
22
|
Comas F, Latorre J, Ortega F, Arnoriaga Rodríguez M, Kern M, Lluch A, Ricart W, Blüher M, Gotor C, Romero LC, Fernández-Real JM, Moreno-Navarrete JM. Activation of Endogenous H 2S Biosynthesis or Supplementation with Exogenous H 2S Enhances Adipose Tissue Adipogenesis and Preserves Adipocyte Physiology in Humans. Antioxid Redox Signal 2021; 35:319-340. [PMID: 33554726 DOI: 10.1089/ars.2020.8206] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aims: To investigate the impact of exogenous hydrogen sulfide (H2S) and its endogenous biosynthesis on human adipocytes and adipose tissue in the context of obesity and insulin resistance. Results: Experiments in human adipose tissue explants and in isolated preadipocytes demonstrated that exogenous H2S or the activation of endogenous H2S biosynthesis resulted in increased adipogenesis, insulin action, sirtuin deacetylase, and PPARγ transcriptional activity, whereas chemical inhibition and gene knockdown of each enzyme generating H2S (CTH, CBS, MPST) led to altered adipocyte differentiation, cellular senescence, and increased inflammation. In agreement with these experimental data, visceral and subcutaneous adipose tissue expression of H2S-synthesising enzymes was significantly reduced in morbidly obese subjects in association with attenuated adipogenesis and increased markers of adipose tissue inflammation and senescence. Interestingly, weight-loss interventions (including bariatric surgery or diet/exercise) improved the expression of H2S biosynthesis-related genes. In human preadipocytes, the expression of CTH, CBS, and MPST genes and H2S production were dramatically increased during adipocyte differentiation. More importantly, the adipocyte proteome exhibiting persulfidation was characterized, disclosing that different proteins involved in fatty acid and lipid metabolism, the citrate cycle, insulin signaling, several adipokines, and PPAR, experienced the most dramatic persulfidation (85-98%). Innovation: No previous studies investigated the impact of H2S on human adipose tissue. This study suggests that the potentiation of adipose tissue H2S biosynthesis is a possible therapeutic approach to improve adipose tissue dysfunction in patients with obesity and insulin resistance. Conclusion: Altogether, these data supported the relevance of H2S biosynthesis in the modulation of human adipocyte physiology. Antioxid. Redox Signal. 35, 319-340.
Collapse
Affiliation(s)
- Ferran Comas
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| | - Jèssica Latorre
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| | - Francisco Ortega
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| | - María Arnoriaga Rodríguez
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| | - Matthias Kern
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Aina Lluch
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| | - Wifredo Ricart
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| | - Luis C Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain.,Department of Medical Sciences, Universitat de Girona, Girona, Spain
| | - José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain.,Department of Medical Sciences, Universitat de Girona, Girona, Spain
| |
Collapse
|
23
|
Van Nguyen TT, Vu VV, Pham PV. Transcriptional Factors of Thermogenic Adipocyte Development and Generation of Brown and Beige Adipocytes From Stem Cells. Stem Cell Rev Rep 2021; 16:876-892. [PMID: 32728995 DOI: 10.1007/s12015-020-10013-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Brown and beige adipocytes have been widely known for their potential to dissipate excessive energy into heat form, resulting in an alleviation of obesity and other overweight-related conditions. This review highlights the origins, characteristics, and functions of the various kinds of adipocytes, as well as their anatomic distribution inside the human body. This review mainly focuses on various essential transcriptional factors such as PRDM16, FGF21, PPARα, PPARγ and PGC-1α, which exert their effects on the development and activation of thermogenic adipocytes via important pathways such as JAK-STAT, cAMP-PKA and PI3K-AKT signaling pathways. Additionally, this review will underline promising strategies to generate an unexhausted source of thermogenic adipocytes differentiated from human stem cells. These exogenous thermogenic adipocytes offer therapeutic potential for improvement of metabolic disorders via application as single cell or whole tissue transplantation. Graphical abstract Caption is required. Please provide.
Collapse
Affiliation(s)
- Thi-Tuong Van Nguyen
- Stem Cell Institute, University of Science Ho Chi Minh City, Ho Chi Minh City, Viet Nam.,Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Vuong Van Vu
- Stem Cell Institute, University of Science Ho Chi Minh City, Ho Chi Minh City, Viet Nam.,Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Phuc Van Pham
- Stem Cell Institute, University of Science Ho Chi Minh City, Ho Chi Minh City, Viet Nam. .,Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Viet Nam. .,Laboratory of Stem Cell Research and Application, University of Science Ho Chi Minh City, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
24
|
Keogh K, Kelly AK, Kenny DA. Effect of plane of nutrition in early life on the transcriptome of visceral adipose tissue in Angus heifer calves. Sci Rep 2021; 11:9716. [PMID: 33958675 PMCID: PMC8102595 DOI: 10.1038/s41598-021-89252-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/15/2021] [Indexed: 02/03/2023] Open
Abstract
Adipose tissue represents not only an important energy storage tissue but also a major endocrine organ within the body, influencing many biochemical systems including metabolic status, immune function and energy homeostasis. The objective of this study was to evaluate the effect of an enhanced dietary intake during the early calfhood period on the transcriptome of visceral adipose tissue. Artificially reared Angus × Holstein-Friesian heifer calves were offered either a high (HI, n = 15) or moderate (MOD, n = 15) plane of nutrition from 3 to 21 weeks of life. At 21 weeks of age all calves were euthanized, visceral adipose harvested and samples subsequently subjected to mRNA sequencing. Plane of nutrition resulted in the differential expression of 1214 genes within visceral adipose tissue (adj. p < 0.05; fold change > 1.5). Differentially expressed genes were involved in processes related to metabolism and energy production. Biochemical pathways including Sirtuin signalling (adj. p < 0.0001) and the adipogenesis pathways (adj. p = 0.009) were also significantly enriched, indicating greater metabolic processing and adipogenesis in the calves on the high plane of nutrition. Results from this study identify novel genes regulating the molecular response of visceral adipose tissue to an improved plane of nutrition during early calfhood.
Collapse
Affiliation(s)
- Kate Keogh
- Teagasc Animal and Bioscience Research Department, Teagasc Grange, Dunsany, Co Meath, Ireland
| | - Alan K. Kelly
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - David A. Kenny
- Teagasc Animal and Bioscience Research Department, Teagasc Grange, Dunsany, Co Meath, Ireland ,School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
25
|
Sostre-Colón J, Uehara K, Garcia Whitlock AE, Gavin MJ, Ishibashi J, Potthoff MJ, Seale P, Titchenell PM. Hepatic AKT orchestrates adipose tissue thermogenesis via FGF21-dependent and -independent mechanisms. Cell Rep 2021; 35:109128. [PMID: 34010646 PMCID: PMC8167823 DOI: 10.1016/j.celrep.2021.109128] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 04/02/2021] [Accepted: 04/22/2021] [Indexed: 11/03/2022] Open
Abstract
Organismal stressors such as cold exposure require a systemic response to maintain body temperature. Brown adipose tissue (BAT) is a key thermogenic tissue in mammals that protects against hypothermia in response to cold exposure. Defining the complex interplay of multiple organ systems in this response is fundamental to our understanding of adipose tissue thermogenesis. In this study, we identify a role for hepatic insulin signaling via AKT in the adaptive response to cold stress and show that liver AKT is an essential cell-nonautonomous regulator of adipocyte lipolysis and BAT function. Mechanistically, inhibition of forkhead box O1 (FOXO1) by AKT controls BAT thermogenesis by enhancing catecholamine-induced lipolysis in the white adipose tissue (WAT) and increasing circulating fibroblast growth factor 21 (FGF21). Our data identify a role for hepatic insulin signaling via the AKT-FOXO1 axis in regulating WAT lipolysis, promoting BAT thermogenic capacity, and ensuring a proper thermogenic response to acute cold exposure.
Collapse
Affiliation(s)
- Jaimarie Sostre-Colón
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Kahealani Uehara
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Anna E Garcia Whitlock
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew J Gavin
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jeff Ishibashi
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew J Potthoff
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Patrick Seale
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Paul M Titchenell
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Physiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
26
|
Cox AR, Chernis N, Kim KH, Masschelin PM, Saha PK, Briley SM, Sharp R, Li X, Felix JB, Sun Z, Moore DD, Pangas SA, Hartig SM. Ube2i deletion in adipocytes causes lipoatrophy in mice. Mol Metab 2021; 48:101221. [PMID: 33771728 PMCID: PMC8080079 DOI: 10.1016/j.molmet.2021.101221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/11/2021] [Accepted: 03/22/2021] [Indexed: 12/18/2022] Open
Abstract
Objective White adipose tissue (WAT) expansion regulates energy balance and overall metabolic homeostasis. The absence or loss of WAT occurring through lipodystrophy and lipoatrophy contributes to the development of hepatic steatosis and insulin resistance. We previously demonstrated that sole small ubiquitin-like modifier (SUMO) E2-conjugating enzyme Ube2i represses human adipocyte differentiation. The role of Ube2i during WAT development remains unknown. Methods To determine how Ube2i impacts body composition and energy balance, we generated adipocyte-specific Ube2i knockout mice (Ube2ia-KO). CRISPR/Cas9 gene editing inserted loxP sites flanking exons 3 and 4 at the Ube2i locus. Subsequent genetic crosses to Adipoq-Cre transgenic mice allowed deletion of Ube2i in white and brown adipocytes. We measured multiple metabolic endpoints that describe energy balance and carbohydrate metabolism in Ube2ia-KO and littermate controls during postnatal growth. Results Surprisingly, Ube2ia-KO mice developed hyperinsulinemia and hepatic steatosis. Global energy balance defects emerged from dysfunctional WAT marked by pronounced local inflammation, loss of serum adipokines, hepatomegaly, and near absence of major adipose tissue depots. We observed progressive lipoatrophy that commences in the early adolescent period. Conclusions Our results demonstrate that Ube2i expression in mature adipocytes allows WAT expansion during postnatal growth. Deletion of Ube2i in fat cells compromises and diminishes adipocyte function that induces WAT inflammation and ectopic lipid accumulation in the liver. Our findings reveal an indispensable role for Ube2i during white adipocyte expansion and endocrine control of energy balance. A new mouse model reveals that Ube2i loss in fat cells impacts body composition. Ube2i fat-specific knockout (Ube2ia-KO) causes fatty liver and hyperinsulinemia. Ube2ia-KO mice develop metabolic inflexibility and cold intolerance. Inflammation and caspase activation of cell death occur in Ube2ia-KO adipocytes.
Collapse
Affiliation(s)
- Aaron R Cox
- Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, Houston, TX, USA; Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Natasha Chernis
- Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, Houston, TX, USA; Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Kang Ho Kim
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Peter M Masschelin
- Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, Houston, TX, USA; Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Pradip K Saha
- Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, Houston, TX, USA; Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Shawn M Briley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Robert Sharp
- Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, Houston, TX, USA; Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Xin Li
- Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, Houston, TX, USA; Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jessica B Felix
- Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, Houston, TX, USA; Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Zheng Sun
- Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, Houston, TX, USA; Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - David D Moore
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Stephanie A Pangas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Sean M Hartig
- Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, Houston, TX, USA; Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
27
|
Chen X, Raza SHA, Ma X, Wang J, Wang X, Liang C, Yang X, Mei C, Suhail SM, Zan L. Bovine Pre-adipocyte Adipogenesis Is Regulated by bta-miR-150 Through mTOR Signaling. Front Genet 2021; 12:636550. [PMID: 33633792 PMCID: PMC7901978 DOI: 10.3389/fgene.2021.636550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Micro RNA (miR) are recognized for their important roles in biological processes, particularly in regulatory componentization. Among the miR, miR-150 has been the focus of intense scrutiny, mostly due to its role in malignant tumors. A comparison between steer and bull adipose tissues identified bta-miR-150 as one of the nine downregulated miRNAs, although its function remains unknown (GEO:GSE75063). The present study aimed to further characterize the role of bta-miR-150 in cattle. bta-miR-150 has a negative regulatory effect on the differentiation of bovine adipocytes and promotes proliferation. Overexpression of bta-miR-150 can promote mRNA and protein expression of the marker genes CDK1, CDK2, and PCNA, increase the number of EdU-stained cells, promote adipocyte proliferation, inhibit adipocyte differentiation, and reduce lipid droplet formation. Results of RNA-seq and WGCNA analyses showed that the mammalian target of the rapamycin signaling pathway, which plays a major regulatory role, is dysregulated by the overexpression and inhibition of miR-150. We found that the target gene of bta-miR-150 is AKT1 and that bta-miR-150 affects AKT1 phosphorylation levels. These results showed that bta-miR-150 plays a role in adipogenic differentiation and might therefore have applications in the beef industry.
Collapse
Affiliation(s)
- Xingyi Chen
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | | | - Xinhao Ma
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Jiangfang Wang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Xiaohui Wang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Chengcheng Liang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Xinran Yang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Chugang Mei
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Syed Muhammad Suhail
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China.,National Beef Cattle Improvement Center, Northwest A&F University, Xianyang, China
| |
Collapse
|
28
|
Pan Y, Wang Q, Luan W, Shi Y, Liu J, Qi F. Kindlin-2 regulates the differentiation of 3T3-L1 preadipocytes: implications for wound healing. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:348. [PMID: 33708975 PMCID: PMC7944273 DOI: 10.21037/atm-21-176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background Adipose tissue has been proven to play a crucial role in wound healing, while kindlin-2, an integrin-associated protein, has been shown to regulate cell adhesion, migration, and differentiation. This study aimed to explore its involvement in the cell differentiation of 3T3-L1 preadipocytes and its role in wound healing. Methods Cell adhesion, Cell Counting Kit-8 (CCK-8), Transwell, and in vitro wound healing assays, along with adipogenic and osteogenic differentiation induction were performed in 3T3-L1 preadipocytes in which kindlin-2 was knocked down or overexpressed. In vivo, kindlin-2 (+/−) transgenic mice were constructed, and wound healing was analyzed by immunohistochemistry (IHC) in a mouse dorsal wound model. Real-time polymerase chain reaction (RT-PCR) and western blotting were performed to analyze the expression of adipokines and adipogenic markers in mouse wound tissues. Adipogenic differentiation induction of adipose tissue stromal vascular fraction (SVF) were performed, and the expression of adipogenic markers in SVF was detected by western blotting. The target signaling pathway highly related to adipogenic differentiation was explored by computational biology and verified by western blotting. Results Knockdown of kindlin-2 was found to inhibit the adhesion, migration, and adipogenic differentiation of 3T3-L1 preadipocytes while promoting their osteogenic differentiation. In contrast, kindlin-2 overexpression resulted in increased adhesion, migration, and adipogenic differentiation of 3T3-L1 preadipocytes while reducing osteogenic differentiation. In vivo, downregulation of kindlin-2 inhibited adipogenesis in kindlin-2 transgenic mice, resulting in delayed wound healing by inhibiting inflammation, angiogenesis, collagen remodeling, and wound contraction. Mechanistically, we found that kindlin-2 could regulate adipogenic differentiation through PI3K/AKT/mTOR signaling pathway. Conclusions Our study revealed the essential role that kindlin-2 has in the differentiation and wound healing of 3T3-L1 preadipocytes, which offers a theoretical basis for further research and a novel strategy for wound healing.
Collapse
Affiliation(s)
- Yuyan Pan
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiang Wang
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenjie Luan
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuedong Shi
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiaqi Liu
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Artificial Intelligence Center for Plastic Surgery and Cutaneous Soft Tissue Cancers, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fazhi Qi
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
29
|
Pin A, Tesser A, Pastore S, Moressa V, Valencic E, Arbo A, Maestro A, Tommasini A, Taddio A. Biological and Clinical Changes in a Pediatric Series Treated with Off-Label JAK Inhibitors. Int J Mol Sci 2020; 21:7767. [PMID: 33092242 PMCID: PMC7590237 DOI: 10.3390/ijms21207767] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Off-label use of medications is still a common practice in pediatric rheumatology. JAK inhibitors are authorized in adults in the treatment of rheumatoid arthritis, psoriatic arthritis and ulcerative colitis. Although their use is not authorized yet in children, JAK inhibitors, based on their mechanism of action and on clinical experiences in small series, have been suggested to be useful in the treatment of pediatric interferon-mediated inflammation. Accordingly, an increased interferon score may help to identify those patients who might benefit of JAK inhibitors. We describe the clinical experience with JAK inhibitors in seven children affected with severe inflammatory conditions and we discuss the correlation between clinical features and transcriptomic data. Clinical improvements were recorded in all cases. A reduction of interferon signaling was recorded in three out of seven subjects at last follow-up, irrespectively from clinical improvements. Other signal pathways with significant differences between patients and controls included upregulation of DNA repair pathway and downregulation of extracellular collagen homeostasis. Two patients developed drug-related adverse events, which were considered serious in one case. In conclusion, JAK inhibitors may offer a valuable option for children with severe interferon-mediated inflammatory disorders reducing the interferon score as well as influencing other signal pathways that deserve future studies.
Collapse
Affiliation(s)
- Alessia Pin
- Department of Pediatrics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (A.P.); (A.T.); (S.P.); (V.M.); (E.V.); (A.T.)
| | - Alessandra Tesser
- Department of Pediatrics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (A.P.); (A.T.); (S.P.); (V.M.); (E.V.); (A.T.)
| | - Serena Pastore
- Department of Pediatrics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (A.P.); (A.T.); (S.P.); (V.M.); (E.V.); (A.T.)
| | - Valentina Moressa
- Department of Pediatrics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (A.P.); (A.T.); (S.P.); (V.M.); (E.V.); (A.T.)
| | - Erica Valencic
- Department of Pediatrics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (A.P.); (A.T.); (S.P.); (V.M.); (E.V.); (A.T.)
| | - Anna Arbo
- Department of Pharmacy and Clinical Pharmacology, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (A.A.); (A.M.)
| | - Alessandra Maestro
- Department of Pharmacy and Clinical Pharmacology, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (A.A.); (A.M.)
| | - Alberto Tommasini
- Department of Pediatrics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (A.P.); (A.T.); (S.P.); (V.M.); (E.V.); (A.T.)
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Andrea Taddio
- Department of Pediatrics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (A.P.); (A.T.); (S.P.); (V.M.); (E.V.); (A.T.)
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
30
|
Yamamuro T, Kawabata T, Fukuhara A, Saita S, Nakamura S, Takeshita H, Fujiwara M, Enokidani Y, Yoshida G, Tabata K, Hamasaki M, Kuma A, Yamamoto K, Shimomura I, Yoshimori T. Age-dependent loss of adipose Rubicon promotes metabolic disorders via excess autophagy. Nat Commun 2020; 11:4150. [PMID: 32811819 PMCID: PMC7434891 DOI: 10.1038/s41467-020-17985-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 07/28/2020] [Indexed: 12/31/2022] Open
Abstract
The systemic decline in autophagic activity with age impairs homeostasis in several tissues, leading to age-related diseases. A mechanistic understanding of adipocyte dysfunction with age could help to prevent age-related metabolic disorders, but the role of autophagy in aged adipocytes remains unclear. Here we show that, in contrast to other tissues, aged adipocytes upregulate autophagy due to a decline in the levels of Rubicon, a negative regulator of autophagy. Rubicon knockout in adipocytes causes fat atrophy and hepatic lipid accumulation due to reductions in the expression of adipogenic genes, which can be recovered by activation of PPARγ. SRC-1 and TIF2, coactivators of PPARγ, are degraded by autophagy in a manner that depends on their binding to GABARAP family proteins, and are significantly downregulated in Rubicon-ablated or aged adipocytes. Hence, we propose that age-dependent decline in adipose Rubicon exacerbates metabolic disorders by promoting excess autophagic degradation of SRC-1 and TIF2.
Collapse
Affiliation(s)
- Tadashi Yamamuro
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tsuyoshi Kawabata
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Laboratory of Intracellular Membrane Dynamics, Graduate school of Frontier Biosciences, Osaka University, Osaka, Japan
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Atsunori Fukuhara
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Adipose Management, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shotaro Saita
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Laboratory of Intracellular Membrane Dynamics, Graduate school of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Shuhei Nakamura
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Laboratory of Intracellular Membrane Dynamics, Graduate school of Frontier Biosciences, Osaka University, Osaka, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Osaka, Japan
| | - Hikari Takeshita
- Department of Geriatric and General Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Mari Fujiwara
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yusuke Enokidani
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Gota Yoshida
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Keisuke Tabata
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Laboratory of Intracellular Membrane Dynamics, Graduate school of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Maho Hamasaki
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Laboratory of Intracellular Membrane Dynamics, Graduate school of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Akiko Kuma
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Laboratory of Intracellular Membrane Dynamics, Graduate school of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Koichi Yamamoto
- Department of Geriatric and General Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan.
- Laboratory of Intracellular Membrane Dynamics, Graduate school of Frontier Biosciences, Osaka University, Osaka, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan.
| |
Collapse
|
31
|
AKT1 Regulates Endoplasmic Reticulum Stress and Mediates the Adaptive Response of Pancreatic β Cells. Mol Cell Biol 2020; 40:MCB.00031-20. [PMID: 32179553 DOI: 10.1128/mcb.00031-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/12/2020] [Indexed: 12/31/2022] Open
Abstract
Isoforms of protein kinase B (also known as AKT) play important roles in mediating insulin and growth factor signals. Previous studies have suggested that the AKT2 isoform is critical for insulin-regulated glucose metabolism, while the role of the AKT1 isoform remains less clear. This study focuses on the effects of AKT1 on the adaptive response of pancreatic β cells. Using a mouse model with inducible β-cell-specific deletion of the Akt1 gene (βA1KO mice), we showed that AKT1 is involved in high-fat-diet (HFD)-induced growth and survival of β cells but is unnecessary for them to maintain a population in the absence of metabolic stress. When unchallenged, βA1KO mice presented the same metabolic profile and β-cell phenotype as the control mice with an intact Akt1 gene. When metabolic stress was induced by HFD, β cells in control mice with intact Akt1 proliferated as a compensatory mechanism for metabolic overload. Similar effects were not observed in βA1KO mice. We further demonstrated that AKT1 protein deficiency caused endoplasmic reticulum (ER) stress and potentiated β cells to undergo apoptosis. Our results revealed that AKT1 protein loss led to the induction of eukaryotic initiation factor 2 α subunit (eIF2α) signaling and ER stress markers under normal-chow-fed conditions, indicating chronic low-level ER stress. Together, these data established a role for AKT1 as a growth and survival factor for adaptive β-cell response and suggest that ER stress induction is responsible for this effect of AKT1.
Collapse
|
32
|
Czech MP. Mechanisms of insulin resistance related to white, beige, and brown adipocytes. Mol Metab 2020; 34:27-42. [PMID: 32180558 PMCID: PMC6997501 DOI: 10.1016/j.molmet.2019.12.014] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The diminished glucose lowering effect of insulin in obesity, called "insulin resistance," is associated with glucose intolerance, type 2 diabetes, and other serious maladies. Many publications on this topic have suggested numerous hypotheses on the molecular and cellular disruptions that contribute to the syndrome. However, significant uncertainty remains on the mechanisms of its initiation and long-term maintenance. SCOPE OF REVIEW To simplify insulin resistance analysis, this review focuses on the unifying concept that adipose tissue is a central regulator of systemic glucose homeostasis by controlling liver and skeletal muscle metabolism. Key aspects of adipose function related to insulin resistance reviewed are: 1) the modes by which specific adipose tissues control hepatic glucose output and systemic glucose disposal, 2) recently acquired understanding of the underlying mechanisms of these modes of regulation, and 3) the steps in these pathways adversely affected by obesity that cause insulin resistance. MAJOR CONCLUSIONS Adipocyte heterogeneity is required to mediate the multiple pathways that control systemic glucose tolerance. White adipocytes specialize in sequestering triglycerides away from the liver, muscle, and other tissues to limit toxicity. In contrast, brown/beige adipocytes are very active in directly taking up glucose in response to β adrenergic signaling and insulin and enhancing energy expenditure. Nonetheless, white, beige, and brown adipocytes all share the common feature of secreting factors and possibly exosomes that act on distant tissues to control glucose homeostasis. Obesity exerts deleterious effects on each of these adipocyte functions to cause insulin resistance.
Collapse
Affiliation(s)
- Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
33
|
Han Y, Wang W, Jia J, Sun X, Kuang D, Tong P, Li N, Lu C, Zhang H, Dai J. WGCNA analysis of the subcutaneous fat transcriptome in a novel tree shrew model. Exp Biol Med (Maywood) 2020; 245:945-955. [PMID: 32216464 DOI: 10.1177/1535370220915180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
IMPACT STATEMENT We constructed the transcriptomic network in adipose tissue in lean, moderate obesity and severe obesity groups of tree shrew for the first time. Compared to other laboratory animal models, the tree shrew is a prospective laboratory animal that has a closer genetic association with primates than with rodents. It is widely used in biomedical researches. Enrichment analyses revealed several molecular biological processes were involved in the ribosome, lysosome, and ubiquitin-mediated proteolysis process. These results provided insights into new targets for the prevention and therapy of obesity and a novel research model for obesity.
Collapse
Affiliation(s)
- Yuanyuan Han
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming 650118, China
| | - Wenguang Wang
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming 650118, China
| | | | - Xiaomei Sun
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming 650118, China
| | - Dexuan Kuang
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming 650118, China
| | - Pinfen Tong
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming 650118, China
| | - Na Li
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming 650118, China
| | - Caixia Lu
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming 650118, China
| | - Huatang Zhang
- Chongqing Research Center of Biomedicine and Medical Equipment, Chongqing Academy of Science and Technology, Chongqing 401123, China
| | - Jiejie Dai
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming 650118, China
| |
Collapse
|
34
|
Foss-Freitas MC, Akinci B, Luo Y, Stratton A, Oral EA. Diagnostic strategies and clinical management of lipodystrophy. Expert Rev Endocrinol Metab 2020; 15:95-114. [PMID: 32368944 DOI: 10.1080/17446651.2020.1735360] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/24/2020] [Indexed: 12/16/2022]
Abstract
Introduction: Lipodystrophy is a heterogeneous group of rare diseases characterized by various degrees of fat loss which leads to serious morbidity due to metabolic abnormalities associated with insulin resistance and subtype-specific clinical features associated with underlying molecular etiology.Areas covered: This article aims to help physicians address challenges in diagnosing and managing lipodystrophy. We systematically reviewed the literature on PubMed and Google Scholar databases to summarize the current knowledge in lipodystrophy management.Expert opinion: Adipose tissue is a highly active endocrine organ that regulates metabolic homeostasis in the human body through a comprehensive communication network with other organ systems such as the central nervous system, liver, digestive system, and the immune system. The adipose tissue is capable of producing and secreting numerous factors with important endocrine functions such as leptin that regulates energy homeostasis. Recent developments in the field have helped to solve some of the mysteries behind lipodystrophy that allowed us to get a better understanding of adipocyte function and differentiation. From a clinical standpoint, physicians who suspect lipodystrophy should distinguish the disease from several others that may present with similar clinical features. It is also important for physicians to carefully interpret clinical features, laboratory, and imaging results before moving to more sophisticated tests and making decisions about therapy.
Collapse
Affiliation(s)
- Maria C Foss-Freitas
- Division of Metabolism, Endocrinology and Diabetes (MEND), Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Ribeirao Preto Medical School, Sao Paulo University, Ribeirao Preto, Brazil
| | - Baris Akinci
- Division of Metabolism, Endocrinology and Diabetes (MEND), Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Yingying Luo
- Division of Metabolism, Endocrinology and Diabetes (MEND), Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | | | - Elif A Oral
- Division of Metabolism, Endocrinology and Diabetes (MEND), Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
35
|
Chen Z, Yu H, Shi X, Warren CR, Lotta LA, Friesen M, Meissner TB, Langenberg C, Wabitsch M, Wareham N, Benson MD, Gerszten RE, Cowan CA. Functional Screening of Candidate Causal Genes for Insulin Resistance in Human Preadipocytes and Adipocytes. Circ Res 2019; 126:330-346. [PMID: 31739742 DOI: 10.1161/circresaha.119.315246] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Rationale: Genome-wide association studies have identified genetic loci associated with insulin resistance (IR) but pinpointing the causal genes of a risk locus has been challenging. Objective: To identify candidate causal genes for IR, we screened regional and biologically plausible genes (16 in total) near the top 10 IR-loci in risk-relevant cell types, namely preadipocytes and adipocytes. Methods and Results: We generated 16 human Simpson-Golabi-Behmel syndrome preadipocyte knockout lines each with a single IR-gene knocked out by lentivirus-mediated CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 system. We evaluated each gene knockout by screening IR-relevant phenotypes in the 3 insulin-sensitizing mechanisms, including adipogenesis, lipid metabolism, and insulin signaling. We performed genetic analyses using data on the genotype-tissue expression portal expression quantitative trait loci database and accelerating medicines partnership type 2 diabetes mellitus Knowledge Portal to evaluate whether candidate genes prioritized by our in vitro studies were expression quantitative trait loci genes in human subcutaneous adipose tissue, and whether expression of these genes is associated with risk of IR, type 2 diabetes mellitus, and cardiovascular diseases. We further validated the functions of 3 new adipose IR genes by overexpression-based phenotypic rescue in the Simpson-Golabi-Behmel syndrome preadipocyte knockout lines. Twelve genes, PPARG, IRS-1, FST, PEPD, PDGFC, MAP3K1, GRB14, ARL15, ANKRD55, RSPO3, COBLL1, and LYPLAL1, showed diverse phenotypes in the 3 insulin-sensitizing mechanisms, and the first 7 of these genes could affect all the 3 mechanisms. Five out of 6 expression quantitative trait loci genes are among the top candidate causal genes and the abnormal expression levels of these genes (IRS-1, GRB14, FST, PEPD, and PDGFC) in human subcutaneous adipose tissue could be associated with increased risk of IR, type 2 diabetes mellitus, and cardiovascular disease. Phenotypic rescue by overexpression of the candidate causal genes (FST, PEPD, and PDGFC) in the Simpson-Golabi-Behmel syndrome preadipocyte knockout lines confirmed their function in adipose IR. Conclusions: Twelve genes showed diverse phenotypes indicating differential roles in insulin sensitization, suggesting mechanisms bridging the association of their genomic loci with IR. We prioritized PPARG, IRS-1, GRB14, MAP3K1, FST, PEPD, and PDGFC as top candidate genes. Our work points to novel roles for FST, PEPD, and PDGFC in adipose tissue, with consequences for cardiometabolic diseases.
Collapse
Affiliation(s)
- Zhifen Chen
- From the Beth Israel Deaconess Medical Center, Cardiovascular Institute, Harvard Medical School, Boston, MA (Z.C., H.Y., X.S., M.F., T.B.M., M.D.B., R.E.G, C.A.C.).,Harvard Stem Cell Institute, Harvard University, Cambridge, MA (Z.C., H.Y., M.F., C.R.W., T.B.M., C.A.C.)
| | - Haojie Yu
- From the Beth Israel Deaconess Medical Center, Cardiovascular Institute, Harvard Medical School, Boston, MA (Z.C., H.Y., X.S., M.F., T.B.M., M.D.B., R.E.G, C.A.C.).,Harvard Stem Cell Institute, Harvard University, Cambridge, MA (Z.C., H.Y., M.F., C.R.W., T.B.M., C.A.C.)
| | - Xu Shi
- From the Beth Israel Deaconess Medical Center, Cardiovascular Institute, Harvard Medical School, Boston, MA (Z.C., H.Y., X.S., M.F., T.B.M., M.D.B., R.E.G, C.A.C.)
| | - Curtis R Warren
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA (Z.C., H.Y., M.F., C.R.W., T.B.M., C.A.C.).,Cardiometabolic Disease Research, Boehringer-Ingelheim Pharmaceuticals, Inc, Ridgefield, CT (C.R.W.)
| | - Luca A Lotta
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom (L.A.L., C.L., N.W.)
| | - Max Friesen
- From the Beth Israel Deaconess Medical Center, Cardiovascular Institute, Harvard Medical School, Boston, MA (Z.C., H.Y., X.S., M.F., T.B.M., M.D.B., R.E.G, C.A.C.).,Harvard Stem Cell Institute, Harvard University, Cambridge, MA (Z.C., H.Y., M.F., C.R.W., T.B.M., C.A.C.)
| | - Torsten B Meissner
- From the Beth Israel Deaconess Medical Center, Cardiovascular Institute, Harvard Medical School, Boston, MA (Z.C., H.Y., X.S., M.F., T.B.M., M.D.B., R.E.G, C.A.C.).,Harvard Stem Cell Institute, Harvard University, Cambridge, MA (Z.C., H.Y., M.F., C.R.W., T.B.M., C.A.C.)
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom (L.A.L., C.L., N.W.)
| | - Martin Wabitsch
- Pediatrics and Adolescent Medicine, Ulm University Hospital, Germany (M.W.)
| | - Nick Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom (L.A.L., C.L., N.W.)
| | - Mark D Benson
- From the Beth Israel Deaconess Medical Center, Cardiovascular Institute, Harvard Medical School, Boston, MA (Z.C., H.Y., X.S., M.F., T.B.M., M.D.B., R.E.G, C.A.C.)
| | - Rob E Gerszten
- From the Beth Israel Deaconess Medical Center, Cardiovascular Institute, Harvard Medical School, Boston, MA (Z.C., H.Y., X.S., M.F., T.B.M., M.D.B., R.E.G, C.A.C.)
| | - Chad A Cowan
- From the Beth Israel Deaconess Medical Center, Cardiovascular Institute, Harvard Medical School, Boston, MA (Z.C., H.Y., X.S., M.F., T.B.M., M.D.B., R.E.G, C.A.C.).,Harvard Stem Cell Institute, Harvard University, Cambridge, MA (Z.C., H.Y., M.F., C.R.W., T.B.M., C.A.C.)
| |
Collapse
|
36
|
Gao H, Guo Y, Yan Q, Yang W, Li R, Lin S, Bai X, Liu C, Chen D, Cao H, Xiao G. Lipoatrophy and metabolic disturbance in mice with adipose-specific deletion of kindlin-2. JCI Insight 2019; 4:128405. [PMID: 31292295 DOI: 10.1172/jci.insight.128405] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/28/2019] [Indexed: 12/14/2022] Open
Abstract
Kindlin-2 regulates integrin-mediated cell adhesion to and migration on the extracellular matrix. Our recent studies demonstrate important roles of kindlin-2 in regulation of mesenchymal stem cell differentiation and skeletal development. In this study, we generated adipose tissue-specific conditional knockout of kindlin-2 in mice by using Adipoq-Cre BAC-transgenic mice. The results showed that deleting kindlin-2 expression in adipocytes in mice caused a severe lipodystrophy with drastically reduced adipose tissue mass. Kindlin-2 ablation elevated the blood levels of nonesterified fatty acids and triglycerides, resulting in massive fatty livers in the mutant mice fed with high-fat diet (HFD). Furthermore, HFD-fed mutant mice displayed type II diabetes-like phenotypes, including elevated levels of fasting blood glucose, glucose intolerance, and peripheral insulin resistance. Kindlin-2 loss dramatically reduced the expression levels of multiple key factors, including PPARγ, mTOR, AKT, and β-catenin proteins, and suppressed adipocyte gene expression and differentiation. Finally, kindlin-2 loss drastically reduced leptin production and caused a high bone mass phenotype. Collectively, these studies establish a critical role of kindlin-2 in control of adipogenesis and lipid metabolism as well as bone homeostasis.
Collapse
Affiliation(s)
- Huanqing Gao
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Yuxi Guo
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Qinnan Yan
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Wei Yang
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Ruxuan Li
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Simin Lin
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xiaochun Bai
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Chuanju Liu
- Department of Orthopedic Surgery and Department of Cell Biology, New York University School of Medicine, New York, New York, USA
| | - Di Chen
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Huiling Cao
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Guozhi Xiao
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, China.,Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
37
|
Polyzos SA, Perakakis N, Mantzoros CS. Fatty liver in lipodystrophy: A review with a focus on therapeutic perspectives of adiponectin and/or leptin replacement. Metabolism 2019; 96:66-82. [PMID: 31071311 DOI: 10.1016/j.metabol.2019.05.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/23/2019] [Accepted: 05/03/2019] [Indexed: 01/17/2023]
Abstract
Lipodystrophy is a group of clinically heterogeneous, inherited or acquired, disorders characterized by complete or partial absence of subcutaneous adipose tissue that may occur simultaneously with the pathological, ectopic, accumulation of fat in other regions of the body, including the liver. Fatty liver adds significantly to hepatic and extra-hepatic morbidity in patients with lipodystrophy. Lipodystrophy is strongly associated with severe insulin resistance and related comorbidities, such as hyperglycemia, hyperlipidemia and nonalcoholic fatty liver disease (NAFLD), but other hepatic diseases may co-exist in some types of lipodystrophy, including autoimmune hepatitis in acquired lipodystrophies, or viral hepatitis in human immunodeficiency virus (HIV)-associated lipodystrophy. The aim of this review is to summarize evidence linking lipodystrophy with hepatic disease and to provide a special focus on potential therapeutic perspectives of leptin replacement therapy and adiponectin upregulation in lipodystrophy.
Collapse
Affiliation(s)
- Stergios A Polyzos
- First Department of Pharmacology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Nikolaos Perakakis
- Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Christos S Mantzoros
- Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
38
|
Roth SW, Bitterman MD, Birnbaum MJ, Bland ML. Innate Immune Signaling in Drosophila Blocks Insulin Signaling by Uncoupling PI(3,4,5)P 3 Production and Akt Activation. Cell Rep 2019. [PMID: 29514084 PMCID: PMC5866056 DOI: 10.1016/j.celrep.2018.02.033] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In obese adipose tissue, Toll-like receptor signaling in macrophages leads to insulin resistance in adipocytes. Similarly, Toll signaling in the Drosophila larval fat body blocks insulin-dependent growth and nutrient storage. We find that Toll acts cell autonomously to block growth but not PI(3,4,5)P3 production in fat body cells expressing constitutively active PI3K. Fat body Toll signaling blocks whole-animal growth in rictor mutants lacking TORC2 activity, but not in larvae lacking Pdk1. Phosphorylation of Akt on the Pdk1 site, Thr342, is significantly reduced by Toll signaling, and expression of mutant AktT342D rescues cell and animal growth, nutrient storage, and viability in animals with active Toll signaling. Altogether, these data show that innate immune signaling blocks insulin signaling at a more distal level than previously appreciated, and they suggest that manipulations affecting the Pdk1 arm of the pathway may have profound effects on insulin sensitivity in inflamed tissues.
Collapse
Affiliation(s)
- Stephen W Roth
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Moshe D Bitterman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Morris J Birnbaum
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michelle L Bland
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
39
|
Sanchez-Gurmaches J, Martinez Calejman C, Jung SM, Li H, Guertin DA. Brown fat organogenesis and maintenance requires AKT1 and AKT2. Mol Metab 2019; 23:60-74. [PMID: 30833219 PMCID: PMC6480051 DOI: 10.1016/j.molmet.2019.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 12/12/2022] Open
Abstract
Objective Understanding the signaling mechanisms that control brown adipose tissue (BAT) development is relevant to understanding energy homeostasis and obesity. The AKT kinases are insulin effectors with critical in vivo functions in adipocytes; however, their role in adipocyte development remains poorly understood. The goal of this study was to investigate AKT function in BAT development. Methods We conditionally deleted Akt1 and Akt2 either individually or together with Myf5-Cre, which targets early mesenchymal precursors that give rise to brown adipocytes. Because Myf5-Cre also targets skeletal muscle and some white adipocyte lineages, comparisons were made between AKT function in BAT versus white adipose tissue (WAT) and muscle development. We also deleted both Akt1 and Akt2 in mature brown adipocytes with Ucp1-Cre or Ucp1-CreER to investigate AKT1/2 signaling in BAT maintenance. Results AKT1 and AKT2 are individually dispensable in Myf5-Cre lineages in vivo for establishing brown and white adipocyte precursor cell pools and for their ability to differentiate (i.e. induce PPARγ). AKT1 and AKT2 are also dispensable for skeletal muscle development, and AKT3 does not compensate in either the adipocyte or muscle lineages. In contrast, AKT2 is required for adipocyte lipid filling and efficient downstream AKT substrate phosphorylation. Mice in which both Akt1 and Akt2 are deleted with Myf5-Cre lack BAT but have normal muscle mass, and doubly deleting Akt1 and Akt2 in mature brown adipocytes, either congenitally (with Ucp1-Cre), or inducibly in older mice (with Ucp1-CreER), also ablates BAT. Mechanistically, AKT signaling promotes adipogenesis in part by stimulating ChREBP activity. Conclusions AKT signaling is required in vivo for BAT development but dispensable for skeletal muscle development. AKT1 and AKT2 have both overlapping and distinct functions in BAT development with AKT2 being the most critical individual isoform. AKT1 and AKT2 also have distinct and complementary functions in BAT maintenance. AKT1 is dispensable for the differentiation of Myf5-lineage adipocytes. AKT2 regulates adipocyte cell size and body fat distribution. AKT1 and AKT2 exhibit some compensatory functions in BAT development and maintenance. AKT1 and AKT2 are dispensable in the Myf5-lineage for muscle development. ChREBP may function downstream of Akt1/Akt2 in brown adipocyte differentiation.
Collapse
Affiliation(s)
- Joan Sanchez-Gurmaches
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Division of Endocrinology, Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA.
| | - Camila Martinez Calejman
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Su Myung Jung
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Huawei Li
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - David A Guertin
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Lei Weibo Institute for Rare Diseases, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
40
|
Morigny P, Houssier M, Mairal A, Ghilain C, Mouisel E, Benhamed F, Masri B, Recazens E, Denechaud PD, Tavernier G, Caspar-Bauguil S, Virtue S, Sramkova V, Monbrun L, Mazars A, Zanoun M, Guilmeau S, Barquissau V, Beuzelin D, Bonnel S, Marques M, Monge-Roffarello B, Lefort C, Fielding B, Sulpice T, Astrup A, Payrastre B, Bertrand-Michel J, Meugnier E, Ligat L, Lopez F, Guillou H, Ling C, Holm C, Rabasa-Lhoret R, Saris WHM, Stich V, Arner P, Rydén M, Moro C, Viguerie N, Harms M, Hallén S, Vidal-Puig A, Vidal H, Postic C, Langin D. Interaction between hormone-sensitive lipase and ChREBP in fat cells controls insulin sensitivity. Nat Metab 2019; 1:133-146. [PMID: 32694809 DOI: 10.1038/s42255-018-0007-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/24/2018] [Indexed: 02/08/2023]
Abstract
Impaired adipose tissue insulin signalling is a critical feature of insulin resistance. Here we identify a pathway linking the lipolytic enzyme hormone-sensitive lipase (HSL) to insulin action via the glucose-responsive transcription factor ChREBP and its target, the fatty acid elongase ELOVL6. Genetic inhibition of HSL in human adipocytes and mouse adipose tissue results in enhanced insulin sensitivity and induction of ELOVL6. ELOVL6 promotes an increase in phospholipid oleic acid, which modifies plasma membrane fluidity and enhances insulin signalling. HSL deficiency-mediated effects are suppressed by gene silencing of ChREBP and ELOVL6. Mechanistically, physical interaction between HSL, independent of lipase activity, and the isoform activated by glucose metabolism ChREBPα impairs ChREBPα translocation into the nucleus and induction of ChREBPβ, the isoform with high transcriptional activity that is strongly associated with whole-body insulin sensitivity. Targeting the HSL-ChREBP interaction may allow therapeutic strategies for the restoration of insulin sensitivity.
Collapse
Affiliation(s)
- Pauline Morigny
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Marianne Houssier
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Aline Mairal
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Claire Ghilain
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Etienne Mouisel
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Fadila Benhamed
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1016, Institut Cochin, Paris, France
- Centre National de la Recherche Scientifique (CNRS), UMR 8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Bernard Masri
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Emeline Recazens
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Pierre-Damien Denechaud
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Geneviève Tavernier
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Sylvie Caspar-Bauguil
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
- Toulouse University Hospitals, Laboratory of Clinical Biochemistry, Toulouse, France
| | - Sam Virtue
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Veronika Sramkova
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
- Department for the Study of Obesity and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague and Paul Sabatier University, Toulouse, France
| | - Laurent Monbrun
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Anne Mazars
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Madjid Zanoun
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Sandra Guilmeau
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1016, Institut Cochin, Paris, France
- Centre National de la Recherche Scientifique (CNRS), UMR 8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Valentin Barquissau
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Diane Beuzelin
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Sophie Bonnel
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague and Paul Sabatier University, Toulouse, France
| | - Marie Marques
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague and Paul Sabatier University, Toulouse, France
| | - Boris Monge-Roffarello
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Corinne Lefort
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Barbara Fielding
- Department of Nutritional Sciences, University of Surrey, Guildford, Surrey, UK
| | | | - Arne Astrup
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Bernard Payrastre
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Justine Bertrand-Michel
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Emmanuelle Meugnier
- CarMeN Laboratory, Inserm U1060, INRA U1397, Université Lyon 1, INSA Lyon, Oullins, France
| | - Laetitia Ligat
- Pôle Technologique, Cancer Research Center of Toulouse (CRCT), Plateau Interactions Moléculaires, INSERM-UMR1037, Toulouse, France
| | - Frédéric Lopez
- Pôle Technologique, Cancer Research Center of Toulouse (CRCT), Plateau Interactions Moléculaires, INSERM-UMR1037, Toulouse, France
| | - Hervé Guillou
- Institut National de la Recherche Agronomique (INRA), UMR1331, Integrative Toxicology and Metabolism, Toulouse, France
- University of Toulouse, UMR1331, Institut National Polytechnique (INP), Paul Sabatier University, Toulouse, France
| | - Charlotte Ling
- Department of Clinical Sciences, Epigenetics and Diabetes, Lund University Diabetes Centre, Clinical Research Centre, Malmö, Sweden
| | - Cecilia Holm
- Department of Experimental Medical Science, Lund University, Biomedical Centre, Lund, Sweden
| | - Remi Rabasa-Lhoret
- Institut de Recherches Cliniques de Montréal, Montreal, Canada
- Department of nutrition, Université de Montréal, Montreal, Canada
- Montreal Diabetes Research Center (MDRC), Montreal, Canada
| | - Wim H M Saris
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Vladimir Stich
- Department for the Study of Obesity and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague and Paul Sabatier University, Toulouse, France
| | - Peter Arner
- Department of Medicine, H7, Karolinska Institutet and Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Mikael Rydén
- Department of Medicine, H7, Karolinska Institutet and Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Cedric Moro
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague and Paul Sabatier University, Toulouse, France
| | - Nathalie Viguerie
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague and Paul Sabatier University, Toulouse, France
| | - Matthew Harms
- Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Stefan Hallén
- Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, UK
| | - Hubert Vidal
- CarMeN Laboratory, Inserm U1060, INRA U1397, Université Lyon 1, INSA Lyon, Oullins, France
| | - Catherine Postic
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1016, Institut Cochin, Paris, France
- Centre National de la Recherche Scientifique (CNRS), UMR 8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Dominique Langin
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France.
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France.
- Toulouse University Hospitals, Laboratory of Clinical Biochemistry, Toulouse, France.
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague and Paul Sabatier University, Toulouse, France.
| |
Collapse
|
41
|
R-Limonene Enhances Differentiation and 2-Deoxy-D-Glucose Uptake in 3T3-L1 Preadipocytes by Activating the Akt Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:4573254. [PMID: 30250490 PMCID: PMC6140011 DOI: 10.1155/2018/4573254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/13/2018] [Indexed: 12/18/2022]
Abstract
Adipocyte is an important place for lipid storage. Defects in lipid storage in adipocytes can lead to lipodystrophy and lipid accumulation in muscle, liver, and other organs. It is the condition of mixed dyslipidemia which may favor the development of insulin resistance via lipotoxic mechanisms. Our objective of the study was to investigate the potential role of R-limonene (LM) on differentiation, lipid storage, and 2-deoxy-D-glucose (2DG) uptake in 3T3-L1 preadipocytes. Genes and proteins associated with differentiation, lipid accumulation, 2DG uptake and its signaling pathways in the adipocytes were analyzed using qPCR and western blot methods. LM treatment increased differentiation, lipid accumulation, and the expression of adipogenic and lipogenic markers such as C/EBP-α, C/EBP-β, PPARγ, SREBP-1, RXR, FAS, and adiponectin. However, the LM concentration at 10μM decreased (p < 0.05) adipogenesis and lipogenesis via regulating key transcriptional factors. LM treatment increased activation of Akt by increasing its phosphorylation, but p44/42 activation was not altered. MK-2206, an Akt specific inhibitor, reduced the activation of Akt phosphorylation whereas LM treatment aborted the MK-2206 mediated inhibition of Akt activation. LM enhanced glucose uptake in differentiated adipocytes. Overall data suggested that LM treatment favored lipid storage and glucose uptake in adipocytes via activation of key transcriptional factors through activation of Akt phosphorylation in 3T3-L1 adipocytes.
Collapse
|
42
|
Tao R, Wang C, Stöhr O, Qiu W, Hu Y, Miao J, Dong XC, Leng S, Stefater M, Stylopoulos N, Lin L, Copps KD, White MF. Inactivating hepatic follistatin alleviates hyperglycemia. Nat Med 2018; 24:1058-1069. [PMID: 29867232 PMCID: PMC6039237 DOI: 10.1038/s41591-018-0048-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 04/10/2018] [Indexed: 12/16/2022]
Abstract
Unsuppressed hepatic glucose production (HGP) contributes substantially to glucose intolerance and diabetes, which can be modeled by the genetic inactivation of hepatic insulin receptor substrate 1 (Irs1) and Irs2 (LDKO mice). We previously showed that glucose intolerance in LDKO mice is resolved by hepatic inactivation of the transcription factor FoxO1 (that is, LTKO mice)-even though the liver remains insensitive to insulin. Here, we report that insulin sensitivity in the white adipose tissue of LDKO mice is also impaired but is restored in LTKO mice in conjunction with normal suppression of HGP by insulin. To establish the mechanism by which white adipose tissue insulin signaling and HGP was regulated by hepatic FoxO1, we identified putative hepatokines-including excess follistatin (Fst)-that were dysregulated in LDKO mice but normalized in LTKO mice. Knockdown of hepatic Fst in the LDKO mouse liver restored glucose tolerance, white adipose tissue insulin signaling and the suppression of HGP by insulin; however, the expression of Fst in the liver of healthy LTKO mice had the opposite effect. Of potential clinical significance, knockdown of Fst also improved glucose tolerance in high-fat-fed obese mice, and the level of serum Fst was reduced in parallel with glycated hemoglobin in obese individuals with diabetes who underwent therapeutic gastric bypass surgery. We conclude that Fst is a pathological hepatokine that might be targeted for diabetes therapy during hepatic insulin resistance.
Collapse
Affiliation(s)
- Rongya Tao
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Caixia Wang
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Oliver Stöhr
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wei Qiu
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yue Hu
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ji Miao
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - X Charlie Dong
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sining Leng
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Margaret Stefater
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicholas Stylopoulos
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lin Lin
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kyle D Copps
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Morris F White
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
43
|
Shimobayashi M, Albert V, Woelnerhanssen B, Frei IC, Weissenberger D, Meyer-Gerspach AC, Clement N, Moes S, Colombi M, Meier JA, Swierczynska MM, Jenö P, Beglinger C, Peterli R, Hall MN. Insulin resistance causes inflammation in adipose tissue. J Clin Invest 2018. [PMID: 29528335 DOI: 10.1172/jci96139] [Citation(s) in RCA: 317] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Obesity is a major risk factor for insulin resistance and type 2 diabetes. In adipose tissue, obesity-mediated insulin resistance correlates with the accumulation of proinflammatory macrophages and inflammation. However, the causal relationship of these events is unclear. Here, we report that obesity-induced insulin resistance in mice precedes macrophage accumulation and inflammation in adipose tissue. Using a mouse model that combines genetically induced, adipose-specific insulin resistance (mTORC2-knockout) and diet-induced obesity, we found that insulin resistance causes local accumulation of proinflammatory macrophages. Mechanistically, insulin resistance in adipocytes results in production of the chemokine monocyte chemoattractant protein 1 (MCP1), which recruits monocytes and activates proinflammatory macrophages. Finally, insulin resistance (high homeostatic model assessment of insulin resistance [HOMA-IR]) correlated with reduced insulin/mTORC2 signaling and elevated MCP1 production in visceral adipose tissue from obese human subjects. Our findings suggest that insulin resistance in adipose tissue leads to inflammation rather than vice versa.
Collapse
Affiliation(s)
| | | | | | - Irina C Frei
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | | | | - Suzette Moes
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | | | | - Paul Jenö
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - Ralph Peterli
- Department of Surgery, St. Claraspital, Basel, Switzerland
| | | |
Collapse
|
44
|
Latva-Rasku A, Honka MJ, Stančáková A, Koistinen HA, Kuusisto J, Guan L, Manning AK, Stringham H, Gloyn AL, Lindgren CM, Collins FS, Mohlke KL, Scott LJ, Karjalainen T, Nummenmaa L, Boehnke M, Nuutila P, Laakso M. A Partial Loss-of-Function Variant in AKT2 Is Associated With Reduced Insulin-Mediated Glucose Uptake in Multiple Insulin-Sensitive Tissues: A Genotype-Based Callback Positron Emission Tomography Study. Diabetes 2018; 67:334-342. [PMID: 29141982 PMCID: PMC5780065 DOI: 10.2337/db17-1142] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/07/2017] [Indexed: 12/30/2022]
Abstract
Rare fully penetrant mutations in AKT2 are an established cause of monogenic disorders of glucose metabolism. Recently, a novel partial loss-of-function AKT2 coding variant (p.Pro50Thr) was identified that is nearly specific to Finns (frequency 1.1%), with the low-frequency allele associated with an increase in fasting plasma insulin level and risk of type 2 diabetes. The effects of the p.Pro50Thr AKT2 variant (p.P50T/AKT2) on insulin-stimulated glucose uptake (GU) in the whole body and in different tissues have not previously been investigated. We identified carriers (N = 20) and matched noncarriers (N = 25) for this allele in the population-based Metabolic Syndrome in Men (METSIM)study and invited these individuals back for positron emission tomography study with [18F]-fluorodeoxyglucose during euglycemic hyperinsulinemia. When we compared p.P50T/AKT2 carriers to noncarriers, we found a 39.4% reduction in whole-body GU (P = 0.006) and a 55.6% increase in the rate of endogenous glucose production (P = 0.038). We found significant reductions in GU in multiple tissues-skeletal muscle (36.4%), liver (16.1%), brown adipose (29.7%), and bone marrow (32.9%)-and increases of 16.8-19.1% in seven tested brain regions. These data demonstrate that the p.P50T substitution of AKT2 influences insulin-mediated GU in multiple insulin-sensitive tissues and may explain, at least in part, the increased risk of type 2 diabetes in p.P50T/AKT2 carriers.
Collapse
Affiliation(s)
| | | | - Alena Stančáková
- Internal Medicine, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Heikki A Koistinen
- University of Helsinki and Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Johanna Kuusisto
- Internal Medicine, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Li Guan
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI
| | - Alisa K Manning
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Heather Stringham
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI
| | - Anna L Gloyn
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, U.K
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, U.K
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, U.K
| | - Cecilia M Lindgren
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, U.K
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, U.K
| | | | - Francis S Collins
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Laura J Scott
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI
| | | | - Lauri Nummenmaa
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Psychology, University of Turku, Finland
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Endocrinology, Turku University Hospital, Turku, Finland
| | - Markku Laakso
- Internal Medicine, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
45
|
Hyperglycemia Augments the Adipogenic Transdifferentiation Potential of Tenocytes and Is Alleviated by Cyclic Mechanical Stretch. Int J Mol Sci 2017; 19:ijms19010090. [PMID: 29283422 PMCID: PMC5796040 DOI: 10.3390/ijms19010090] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 12/25/2017] [Accepted: 12/26/2017] [Indexed: 12/19/2022] Open
Abstract
Diabetes mellitus is associated with damage to tendons, which may result from cellular dysfunction in response to a hyperglycemic environment. Tenocytes express diminished levels of tendon-associated genes under hyperglycemic conditions. In contrast, mechanical stretch enhances tenogenic differentiation. However, whether hyperglycemia increases the non-tenogenic differentiation potential of tenocytes and whether this can be mitigated by mechanical stretch remains elusive. We explored the in vitro effects of high glucose and mechanical stretch on rat primary tenocytes. Specifically, non-tenogenic gene expression, adipogenic potential, cell migration rate, filamentous actin expression, and the activation of signaling pathways were analyzed in tenocytes treated with high glucose, followed by the presence or absence of mechanical stretch. We analyzed tenocyte phenotype in vivo by immunohistochemistry using an STZ (streptozotocin)-induced long-term diabetic mouse model. High glucose-treated tenocytes expressed higher levels of the adipogenic transcription factors PPARγ and C/EBPs. PPARγ was also highly expressed in diabetic tendons. In addition, increased adipogenic differentiation and decreased cell migration induced by high glucose implicated a fibroblast-to-adipocyte phenotypic change. By applying mechanical stretch to tenocytes in high-glucose conditions, adipogenic differentiation was repressed, while cell motility was enhanced, and fibroblastic morphology and gene expression profiles were strengthened. In part, these effects resulted from a stretch-induced activation of ERK (extracellular signal-regulated kinases) and a concomitant inactivation of Akt. Our results show that mechanical stretch alleviates the augmented adipogenic transdifferentiation potential of high glucose-treated tenocytes and helps maintain their fibroblastic characteristics. The alterations induced by high glucose highlight possible pathological mechanisms for diabetic tendinopathy. Furthermore, the beneficial effects of mechanical stretch on tenocytes suggest that an appropriate physical load possesses therapeutic potential for diabetic tendinopathy.
Collapse
|
46
|
Ding L, Zhang L, Biswas S, Schugar RC, Brown JM, Byzova T, Podrez E. Akt3 inhibits adipogenesis and protects from diet-induced obesity via WNK1/SGK1 signaling. JCI Insight 2017; 2:95687. [PMID: 29202451 DOI: 10.1172/jci.insight.95687] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/17/2017] [Indexed: 01/22/2023] Open
Abstract
Three Akt isoforms, encoded by 3 separate genes, are expressed in mammals. While the roles of Akt1 and Akt2 in metabolism are well established, it is not yet known whether Akt3 plays a role in metabolic diseases. We now report that Akt3 protects mice from high-fat diet-induced obesity by suppressing an alternative pathway of adipogenesis via with no lysine protein kinase-1 (WNK1) and serum/glucocorticoid-inducible kinase 1 (SGK1). We demonstrate that Akt3 specifically phosphorylates WNK1 at T58 and promotes its degradation via the ubiquitin-proteasome pathway. A lack of Akt3 in adipocytes increases the WNK1 protein level, leading to activation of SGK1. SGK1, in turn, promotes adipogenesis by phosphorylating and inhibiting transcription factor FOXO1 and, subsequently, activating the transcription of PPARγ in adipocytes. Akt3-deficient mice have an increased number of adipocytes and, when fed a high-fat diet, display increased weight gain, white adipose tissue expansion, and impaired glucose homeostasis. Pharmacological blockade of SGK1 in high-fat diet-fed Akt3-deficient mice suppressed adipogenesis, prevented excessive weight gain and adiposity, and ameliorated metabolic parameters. Thus, Akt3/WNK1/SGK1 represents a potentially novel signaling pathway controlling the development of obesity.
Collapse
Affiliation(s)
| | | | | | - Rebecca C Schugar
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - J Mark Brown
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | |
Collapse
|
47
|
Fernández-Trasancos Á, Agra RM, García-Acuña JM, Fernández ÁL, González-Juanatey JR, Eiras S. Omentin treatment of epicardial fat improves its anti-inflammatory activity and paracrine benefit on smooth muscle cells. Obesity (Silver Spring) 2017; 25:1042-1049. [PMID: 28429889 DOI: 10.1002/oby.21832] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/08/2017] [Accepted: 02/28/2017] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Epicardial adipose tissue (EAT) in coronary artery disease is insulin resistant and has a proinflammatory profile. This study examined the regulation of EAT by exogenous omentin and its consequence on vascular cells. METHODS Stromal vascular cells (SC) of EAT and subcutaneous adipose tissue (SAT) from patients who underwent heart surgery were cultured and exposed to adipogenic factors with or without omentin. Proinflammatory cytokine regulation by omentin was analyzed in SC and mature adipocytes. Glucose uptake by EAT and SAT explants was determined after insulin, omentin, or combined treatment. Human vascular cells were exposed to secretomes of SC, with and without omentin treatment. Migration of smooth muscle cells and expression of adhesion molecules were determined by wound healing or real-time polymerase chain reaction, respectively. RESULTS Omentin treatment raised adipogenesis-induced adiponectin levels on SC of EAT and reduced TNF-α expression levels (0.58 ± 0.14-fold change; P = 0.034) in mature adipocytes. Omentin improved the insulin activity of EAT and SAT explants from cardiovascular disease patients. Finally, secretomes of SC under omentin treatment reduced the migration of smooth muscle cells. CONCLUSIONS Exogenous omentin might support a cardioprotective role through its effect on EAT regarding glucose uptake, anti-inflammatory response, and its paracrine role on smooth muscle cells.
Collapse
Affiliation(s)
- Ángel Fernández-Trasancos
- Cardiology Group, Health Research Institute, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - Rosa María Agra
- Cardiology Group, Health Research Institute, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
- CiberCV Madrid, Spain
- Department of Cardiology and Coronary Unit, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - Jose María García-Acuña
- Cardiology Group, Health Research Institute, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
- CiberCV Madrid, Spain
- Department of Cardiology and Coronary Unit, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ángel Luis Fernández
- CiberCV Madrid, Spain
- Department of Heart Surgery, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - José Ramón González-Juanatey
- Cardiology Group, Health Research Institute, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
- CiberCV Madrid, Spain
- Department of Cardiology and Coronary Unit, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - Sonia Eiras
- Cardiology Group, Health Research Institute, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
- CiberCV Madrid, Spain
| |
Collapse
|
48
|
Lee PL, Jung SM, Guertin DA. The Complex Roles of Mechanistic Target of Rapamycin in Adipocytes and Beyond. Trends Endocrinol Metab 2017; 28:319-339. [PMID: 28237819 PMCID: PMC5682923 DOI: 10.1016/j.tem.2017.01.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 01/01/2023]
Abstract
Having healthy adipose tissue is essential for metabolic fitness. This is clear from the obesity epidemic, which is unveiling a myriad of comorbidities associated with excess adipose tissue including type 2 diabetes, cardiovascular disease, and cancer. Lipodystrophy also causes insulin resistance, emphasizing the importance of having a balanced amount of fat. In cells, the mechanistic target of rapamycin (mTOR) complexes 1 and 2 (mTORC1 and mTORC2, respectively) link nutrient and hormonal signaling with metabolism, and recent studies are shedding new light on their in vivo roles in adipocytes. In this review, we discuss how recent advances in adipose tissue and mTOR biology are converging to reveal new mechanisms that maintain healthy adipose tissue, and discuss ongoing mysteries of mTOR signaling, particularly for the less understood complex mTORC2.
Collapse
Affiliation(s)
- Peter L Lee
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | - Su Myung Jung
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | - David A Guertin
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|