1
|
Chen L, Zhao L, Feng Z, Wei F, Zhang Y, Zhu H, Feng H, Zhou J. Casein kinase GhCKA1 positively regulates cotton resistance to Verticillium wilt. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 355:112471. [PMID: 40086737 DOI: 10.1016/j.plantsci.2025.112471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/26/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
Verticillium wilt is an important disease that seriously affects the quality and yield of cotton. Fungal vascular diseases caused by Verticillium dahliae hinders the sustainable development of cotton cultivation. The most effective strategy for managing Verticillium wilt in cotton involves identifying resistance genes, investigating resistance mechanisms, and developing resistant varieties. In the laboratory, in our previous work, V. dahliae strain Vd080 was inoculated into both disease-resistant and disease-susceptible cotton strains, followed by a comprehensive transcriptomic analysis. The findings confirms the correlation between the gene GhCKA1 and disease resistance. In this study, silencing GhCKA1 expression led to reduced levels of reactive oxygen species, callose, and xylem accumulation, thereby inhibiting various defense responses and reducing cotton resistance to V. dahliae. Furthermore, we observed increased resistance to pathogens in Arabidopsis thaliana overexpressing GhCKA1. Subcellular localization experiments in tobacco indicated that GhCKA1 is localized within the nucleus. GUS staining analysis showed that the expression of the GhCKA1 promoter was influenced by pathogenic microorganisms. Additionally, we found that GhCKA1 interacts with aspartic proteases, an important proteolytic enzymes that play significant roles in metabolism and biological regulation. In conclusion, GhCKA1 enhances the resistance of cotton to V. dahliae and interacted with GhAsp1. Therefore, GhCKA1 may be a suitable molecular target to improve the resistance of cotton to Verticillium wilt, and provide a new breeding method for cotton to resist Verticillium wilt.
Collapse
Affiliation(s)
- Luqi Chen
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, China; School of Agricultural Sciences, Zhengzhou University, China
| | - Lihong Zhao
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang 831100, China
| | - Zili Feng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang 831100, China
| | - Feng Wei
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, China; School of Agricultural Sciences, Zhengzhou University, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang 831100, China
| | - Yalin Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang 831100, China
| | - Heqin Zhu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, China; School of Agricultural Sciences, Zhengzhou University, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang 831100, China
| | - Hongjie Feng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, China; School of Agricultural Sciences, Zhengzhou University, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang 831100, China.
| | - Jinglong Zhou
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang 831100, China.
| |
Collapse
|
2
|
Huang H, Liu J, Wu W, Lu J. VvprePIP, the Precursor of a PAMP-Induced Secreted Peptide, Stimulates Defence Responses and Improves Resistance to Plasmopora viticola in Grapevine. PLANT, CELL & ENVIRONMENT 2025; 48:4385-4399. [PMID: 39981652 DOI: 10.1111/pce.15439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/22/2025]
Abstract
PRRs (Pattern-Recognition Receptors) distributed on plant cell membranes recognize not only PAMPs (Pathogen-Associated Molecular Patterns) released from the pathogens but also ligand peptides secreted from the plants, followed by eliciting defence responses. Here, we demonstrate that transcription of VvprePIP from grape (Vitis vinifera) encoding the precursor of a PIP (PAMP-Induced secreted Peptide) peptide is activated by Plasmopara viticola infection. Overexpression of VvprePIP increases the expression of defence-related genes and ROS (Reactive Oxygen Species) production, enhancing resistance to P. viticola in V. vinifera. A WRKY transcription factor VvWRKY8 interacts with VvprePIP promoter, upregulating its transcription directly. The immune reactions resulting from ectopic expression of VvprePIP are impaired in NbBAK1-silencing tobacco, implying BAK1 is necessary for the recognition between mature peptide VvPIP and its receptor. The conserved region at the C terminus of VvprePIP carries three typical SGPS-GH motifs, all of which contribute to provoke immune responses in plant. As synthetic VvPIP with a hydroxylated modification at the forth proline can mimic the functions of overexpression of the precursor, while synthetic unmodified VvPIP cannot, we reported that hydroxyproline is required for VvPIPs to serve as an active signal molecular. In conclusion, our studies reveal that VvprePIP plays a role in enhancing plant resistance to pathogens.
Collapse
Affiliation(s)
- Huimin Huang
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaqi Liu
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Wu
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Chongqing Research Institute, Shanghai Jiao Tong University, Chongqing, China
| | - Jiang Lu
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Lv H, Qin J, Gao J, Zhang F, Li M, Hao DC, Yin H. An endoglucanase from Erwinia amylovora induces broad-spectrum immune response in plants. Int J Biol Macromol 2025; 308:142550. [PMID: 40147644 DOI: 10.1016/j.ijbiomac.2025.142550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/31/2024] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
The phytopathogen endoglucanases play vital roles in pathogenesis, likely due to their capacity in deconstructing plant cell wall. While acting as virulence factors, some endoglucanases can also be recognized by the plant immune system and activate plant defense responses against possible pathogens. However, many of these enzymes and their roles in inducing plant defense responses are not characterized, especially those from Erwinia amylovora. In this study we cloned a putative glycoside hydrolase family 8 (GH8) endoglucanase (EaCel8) from E. amylovora. The enzymatic properties of EaCel8 and its induction of plant immune responses were comprehensively investigated. The biochemical characterization of the recombinant EaCel8 showed high activity towards barley β-glucan and lower activity on carboxymethyl cellulose. EaCel8 was active within a broad range of pH and temperature, and it hydrolyzed barley β-glucan mainly to mixed-linked glucan (MLG) oligosaccharides with a degree of polymerization ≥3. Interestingly, EaCel8 triggered immune responses in Arabidopsis thaliana, rice, soybean, and pepper, and pretreating tobacco and rice with the purified recombinant EaCel8 significantly enhanced the disease resistance of these plants against Rhizoctonia solani. These findings deepen our mechanistic understanding of plant pathogen derived cell wall degrading enzymes, and the novel GH8 endoglucanase EaCel8 has the potential to be developed as a plant immune inducer.
Collapse
Affiliation(s)
- Huaiyu Lv
- Liaoning Provincial Universities Key Laboratory of Environmental Science and Technology, Department of Environment Science and Engineering, Dalian Jiaotong University, Dalian 116028, China; Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jie Qin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Gao
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Fanxing Zhang
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Min Li
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Da-Cheng Hao
- Liaoning Provincial Universities Key Laboratory of Environmental Science and Technology, Department of Environment Science and Engineering, Dalian Jiaotong University, Dalian 116028, China.
| | - Heng Yin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
4
|
Wang J, Dai Y, Li X, Zhu L, Liu S, He Y, Zhang J, Song F, Li D. Tomato B-cell lymphoma2 (Bcl2)-associated athanogene 5 (SlBAG5) contributes negatively to immunity against necrotrophic fungus Botrytis cinerea through interacting with SlBAP1 and modulating catalase activity. Int J Biol Macromol 2025; 301:140466. [PMID: 39884610 DOI: 10.1016/j.ijbiomac.2025.140466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/11/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
The evolutionarily conserved and multifunctional B-cell lymphoma2 (Bcl2)-associated athanogene proteins (BAGs), serving as co-chaperone regulators, play a pivotal role in orchestrating plant stress responses. In this study, the possible involvement of tomato SlBAG genes in resistance to Botrytis cinerea was examined. The SlBAG genes respond with different expression change patterns to B. cinerea and defense signaling hormones. SlBAG proteins are individually differentially localized to the nucleus, mitochondria, cytoplasm, endoplasmic reticulum (ER), or vacuole. Silencing of SlBAG5 enhanced immunity to B. cinerea, while overexpression weakened it, affecting Botrytis-induced JA/ET defense gene expression and JA levels. Chitin-induced ROS burst and expression of PTI marker genes SlPTI5 and SlLRR22 were strengthened in SlBAG5-silenced plants but were weakened in SlBAG5-overexpressing plants (SlBAG5-OE) plants. SlBAG5 interacts with BON1 ASSOCIATED PROTEIN 1 (SlBAP1) through its BAG domain, and the stability of SlBAP1 depends on the presence of SlBAG5. Silencing of SlBAP1 conferred increased resistance to B. cinerea through increased expression of JA/ET signaling and defense genes. SlBAP1 functions by recruiting and boosting SlCAT3 activity to remove H2O2. The findings suggest that SlBAG5 suppresses tomato immunity to B. cinerea by stabilizing SlBAP1, which modulates ROS scavenging and acts as a negative regulator of immunity.
Collapse
Affiliation(s)
- Jiali Wang
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Yujie Dai
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Xiaodan Li
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Liya Zhu
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Shixia Liu
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Yeling He
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Jing Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310057, PR China.
| | - Fengming Song
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China.
| | - Dayong Li
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
5
|
Zhang X, Zhang D, Zhong C, Li W, Dinesh-Kumar SP, Zhang Y. Orchestrating ROS regulation: coordinated post-translational modification switches in NADPH oxidases. THE NEW PHYTOLOGIST 2025; 245:510-522. [PMID: 39468860 DOI: 10.1111/nph.20231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024]
Abstract
Reactive oxygen species (ROS) are among the most important signaling molecules, playing a significant role in plant growth, development, and responses to various environmental stresses. Respiratory burst oxidase homologs (RBOHs) are key enzymes in ROS production. Plants tightly regulate the activation and deactivation of RBOHs through various post-translational modifications (PTMs), including phosphorylation, ubiquitination, S-nitrosylation, and persulfidation. These PTMs fine-tune ROS production, ensuring normal plant growth and development while facilitating rapid responses to abiotic and biotic stresses. This review discusses the effects of different PTMs on RBOH function and their biological relevance. Additionally, we examine the evolutionary conservation of PTM sites and emphasize the complex interplay between multiple PTMs regulating RBOHs.
Collapse
Affiliation(s)
- Xinyu Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Dingliang Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Chenchen Zhong
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wenli Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA, 95616, USA
| | - Yongliang Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
6
|
Zhang D, Wang Y, Gu Q, Liu L, Wang Z, Zhang J, Meng C, Yang J, Zhang Z, Ma Z, Wang X, Zhang Y. Cotton RLP6 Interacts With NDR1/HIN6 to Enhance Verticillium Wilt Resistance via Altering ROS and SA. MOLECULAR PLANT PATHOLOGY 2025; 26:e70052. [PMID: 39841622 PMCID: PMC11753439 DOI: 10.1111/mpp.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/24/2025]
Abstract
Cotton Verticillium wilt (VW) is often a destructive disease that results in significant fibre yield and quality losses in Gossypium hirsutum. Transferring the resistance trait of Gossypium barbadense to G. hirsutum is optional but challenging in traditional breeding due to limited molecular dissections of resistance genes. Here, we discovered a species-diversified structural variation (SV) in the promoter of receptor-like protein 6 (RLP6) that caused distinctly higher expression level of RLP6 in G. barbadense with the SV than G. hirsutum without the SV. Functional experiments showed that RLP6 is an important regulator in mediating VW resistance. Overexpressing RLP6 significantly enhanced resistance and root growth, whereas the opposite phenotype appeared in RLP6-silenced cotton. A series of experiments indicated that RLP6 regulated reactive oxygen species (ROS) and salicylic acid (SA) signalling, which induced diversified defence-related gene expression with pathogenesis-related (PR) proteins and cell wall proteins enrichments for resistance improvement. These findings could be valuable for the transfer of the G. barbadense SV locus to improve G. hirsutum VW resistance in future crop disease resistance breeding.
Collapse
Affiliation(s)
- Dongmei Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Provincial Key Laboratory of Crop Germplasm ResourcesHebei Agricultural UniversityBaodingChina
| | - Yan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Provincial Key Laboratory of Crop Germplasm ResourcesHebei Agricultural UniversityBaodingChina
| | - Qishen Gu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Provincial Key Laboratory of Crop Germplasm ResourcesHebei Agricultural UniversityBaodingChina
| | - Lixia Liu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Provincial Key Laboratory of Crop Germplasm ResourcesHebei Agricultural UniversityBaodingChina
| | - Zhicheng Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Provincial Key Laboratory of Crop Germplasm ResourcesHebei Agricultural UniversityBaodingChina
| | - Jin Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Provincial Key Laboratory of Crop Germplasm ResourcesHebei Agricultural UniversityBaodingChina
| | - Chengsheng Meng
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Provincial Key Laboratory of Crop Germplasm ResourcesHebei Agricultural UniversityBaodingChina
| | - Jun Yang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Provincial Key Laboratory of Crop Germplasm ResourcesHebei Agricultural UniversityBaodingChina
| | - Zixu Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Provincial Key Laboratory of Crop Germplasm ResourcesHebei Agricultural UniversityBaodingChina
| | - Zhiying Ma
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Provincial Key Laboratory of Crop Germplasm ResourcesHebei Agricultural UniversityBaodingChina
| | - Xingfen Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Provincial Key Laboratory of Crop Germplasm ResourcesHebei Agricultural UniversityBaodingChina
| | - Yan Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Provincial Key Laboratory of Crop Germplasm ResourcesHebei Agricultural UniversityBaodingChina
| |
Collapse
|
7
|
Sun L, Li X, Zhong J, Wang Y, Li B, Ye Z, Zhang J. Recognition of a Fungal Effector Potentiates Pathogen-Associated Molecular Pattern-Triggered Immunity in Cotton. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407787. [PMID: 39488762 PMCID: PMC11714242 DOI: 10.1002/advs.202407787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Plants are equipped with multi-layered immune systems that recognize pathogen-derived elicitors to activate immunity. Verticillium dahliae is a soil-borne fungus that infects a broad range of plants and causes devastating wilt disease. The mechanisms underlying immune recognition between plants and V. dahliae remain elusive. Here, a V. dahliae secretory protein, elicitor of plant defense gene (VdEPD1), acts as an elicitor that triggers defense responses in both Nicotiana benthamiana and cotton plants is identified. Targeted gene deletion of VdEPD1 enhances V. dahliae virulence in plants. Expression of VdEPD1 triggers the accumulation of reactive oxygen species (ROS) and the activation of cell death in cotton plants. Gossypium barbadense EPD1-interacting receptor-like cytoplasmic kinase (GbEIR5A) and GbEIR5D interact with VdEPD1. Silencing of GbEIR5A/D significantly impairs VdEPD1-triggered cell death in cotton plants, indicating the contribution of GbEIR5A/D to VdEPD1-activated effector-triggered immunity (ETI). VdEPD1 stimulates the expression of GbEIR5A and GbEIR5D in cotton plants. Interestingly, cotton plants with silenced GbEIR5A/D genes exhibit compromised pathogen-associated molecular patterns (PAMPs)-triggered ROS accumulation, whereas overexpression of GbEIR5A or GbEIR5D enhances PAMP-induced ROS. These findings indicate that recognition of VdEPD1 potentiates GbEIRs to enhance cotton PAMP-triggered immunity (PTI), uncovering a cooperative interplay of PTI and ETI in cotton.
Collapse
Affiliation(s)
- Lifan Sun
- Institute of MicrobiologyChinese Academy of SciencesBeijing100101China
| | - Xiangguo Li
- Institute of MicrobiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jiajie Zhong
- Institute of MicrobiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yu Wang
- Institute of MicrobiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Baiyang Li
- Institute of MicrobiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Ziqin Ye
- Institute of MicrobiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jie Zhang
- Institute of MicrobiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
8
|
Han Y, Luo F, Liang A, Xu D, Zhang H, Liu T, Qi H. Aquaporin CmPIP2;3 links H2O2 signal and antioxidation to modulate trehalose-induced cold tolerance in melon seedlings. PLANT PHYSIOLOGY 2024; 197:kiae477. [PMID: 39250755 DOI: 10.1093/plphys/kiae477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 09/11/2024]
Abstract
Cold stress severely restricts the growth and development of cold-sensitive crops. Trehalose (Tre), known as the "sugar of life", plays key roles in regulating plant cold tolerance by triggering antioxidation. However, the relevant regulatory mechanism remains unclear. Here, we confirmed that Tre triggers apoplastic hydrogen peroxide (H2O2) production and thus plays key roles in improving the cold tolerance of melon (Cucumis melo var. makuwa Makino) seedlings. Moreover, Tre treatment can promote the transport of apoplastic H2O2 to the cytoplasm. This physiological process may depend on aquaporins. Further studies showed that a Tre-responsive plasma membrane intrinsic protein 2;3 (CmPIP2;3) had strong H2O2 transport function and that silencing CmPIP2;3 significantly weakened apoplastic H2O2 transport and reduced the cold tolerance of melon seedlings. Yeast library and protein-DNA interaction technology were then used to screen 2 Tre-responsive transcription factors, abscisic acid-responsive element (ABRE)-binding factor 2 (CmABF2) and ABRE-binding factor 3 (CmABF3), which can bind to the ABRE motif of the CmPIP2;3 promoter and activate its expression. Silencing of CmABF2 and CmABF3 further dramatically increased the ratio of apoplastic H2O2/cytoplasm H2O2 and reduced the cold tolerance of melon seedlings. This study uncovered that Tre treatment induces CmABF2/3 to positively regulate CmPIP2;3 expression. CmPIP2;3 subsequently enhances the cold tolerance of melon seedlings by promoting the transport of apoplastic H2O2 into the cytoplasm for conducting redox signals and stimulating downstream antioxidation.
Collapse
Affiliation(s)
- Yuqing Han
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Fei Luo
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Adan Liang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Dongdong Xu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Hongyi Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Tao Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Hongyan Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| |
Collapse
|
9
|
Foix L, Pla M, Martín-Mur B, Esteve-Codina A, Nadal A. The PpPep2-Triggered PTI-like Response in Peach Trees Is Mediated by miRNAs. Int J Mol Sci 2024; 25:13099. [PMID: 39684809 DOI: 10.3390/ijms252313099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Plant diseases diminish crop yields and put the world's food supply at risk. Plant elicitor peptides (Peps) are innate danger signals inducing defense responses both naturally and after external application onto plants. Pep-triggered defense networks are compatible with pattern-triggered immunity (PTI). Nevertheless, in complex regulatory pathways, there is crosstalk among different signaling pathways, involving noncoding RNAs in the natural response to pathogen attack. Here, we used Prunus persica, PpPep2 and a miRNA-Seq approach to show for the first time that Peps regulate, in parallel with a set of protein-coding genes, a set of plant miRNAs (~15%). Some PpPep2-regulated miRNAs have been described to participate in the response to pathogens in various plant-pathogen systems. In addition, numerous predicted target mRNAs of PpPep2-regulated miRNAs are themselves regulated by PpPep2 in peach trees. As an example, peach miRNA156 and miRNA390 probably have a role in plant development regulation under stress conditions, while others, such as miRNA482 and miRNA395, would be involved in the regulation of resistance (R) genes and sulfate-mediated protection against oxygen free radicals, respectively. This adds to the established role of Peps in triggering plant defense systems by incorporating the miRNA regulatory network and to the possible use of Peps as sustainable phytosanitary products.
Collapse
Affiliation(s)
- Laura Foix
- BETA Technological Center (TECNIO Network), University of Vic-Central University of Catalonia (UVic-UCC), Carretera de Roda 70, 08500 Vic, Spain
- Institute for Agricultural and Food Technology, Universitat de Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona, Spain
| | - Maria Pla
- Institute for Agricultural and Food Technology, Universitat de Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona, Spain
| | - Beatriz Martín-Mur
- Centre Nacional d'Anàlisi Genòmica (CNAG), C/ Baldiri Reixac 4, 08028 Barcelona, Spain
- Parc Científic de Barcelona, Universitat de Barcelona, C/ Baldiri Reixac, 4, 08028 Barcelona, Spain
| | - Anna Esteve-Codina
- Centre Nacional d'Anàlisi Genòmica (CNAG), C/ Baldiri Reixac 4, 08028 Barcelona, Spain
- Parc Científic de Barcelona, Universitat de Barcelona, C/ Baldiri Reixac, 4, 08028 Barcelona, Spain
| | - Anna Nadal
- Institute for Agricultural and Food Technology, Universitat de Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona, Spain
| |
Collapse
|
10
|
Wang X, Liu J, Wang M, Liu L, Liu X, Zhao C. FERONIA controls ABA-mediated seed germination via the regulation of CARK1 kinase activity. Cell Rep 2024; 43:114843. [PMID: 39412988 DOI: 10.1016/j.celrep.2024.114843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/31/2024] [Accepted: 09/22/2024] [Indexed: 10/18/2024] Open
Abstract
Seed germination is the initial step of the whole life cycle for an individual plant, and thus it needs to be tightly controlled to avoid plant growth under unfavorable conditions. Here, we report that FERONIA (FER), a receptor-like kinase, controls early seed germination under ABA conditions. FER interacts with and phosphorylates cytosolic ABA receptor kinase 1 (CARK1) protein, a receptor-like cytoplasmic kinase (RLCK) that modulates ABA signaling. In both the fer-4 and cark1 mutants, ABA-triggered SNF1-related protein kinase 2 (SnRK2) activation and ABI5 protein accumulation are attenuated. FER phosphorylates the Ser233 and Thr234 residues of CARK1, and the CARK1 protein with the substitutions of these two residues with Ala exhibits a reduced kinase activity and fails to rescue the increased seed germination rate of the cark1 mutant under ABA conditions. Collectively, our study not only uncovers an RLCK protein that functions downstream of FER but also provides a mechanistic insight into ABA-mediated early seed germination regulation by the FER-CARK1 module.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Key Laboratory of Plant Design, National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jianwei Liu
- Key Laboratory of Plant Design, National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Mingtao Wang
- Key Laboratory of Plant Design, National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100190, China
| | - Linlin Liu
- Key Laboratory of Plant Design, National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xin Liu
- Key Laboratory of Plant Design, National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chunzhao Zhao
- Key Laboratory of Plant Design, National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
11
|
Shang S, He Y, Hu Q, Fang Y, Cheng S, Zhang CJ. Fusarium graminearum effector FgEC1 targets wheat TaGF14b protein to suppress TaRBOHD-mediated ROS production and promote infection. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2288-2303. [PMID: 39109951 DOI: 10.1111/jipb.13752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/19/2024] [Accepted: 07/11/2024] [Indexed: 10/19/2024]
Abstract
Fusarium head blight (FHB), caused by Fusarium graminearum, is a devastating disease of wheat globally. However, the molecular mechanisms underlying the interactions between F. graminearum and wheat remain unclear. Here, we identified a secreted effector protein, FgEC1, that is induced during wheat infection and is required for F. graminearum virulence. FgEC1 suppressed flg22- and chitin-induced callose deposition and reactive oxygen species (ROS) burst in Nicotiana benthamiana. FgEC1 directly interacts with TaGF14b, which is upregulated in wheat heads during F. graminearum infection. Overexpression of TaGF14b increases FHB resistance in wheat without compromising yield. TaGF14b interacts with NADPH oxidase respiratory burst oxidase homolog D (TaRBOHD) and protects it against degradation by the 26S proteasome. FgEC1 inhibited the interaction of TaGF14b with TaRBOHD and promoted TaRBOHD degradation, thereby reducing TaRBOHD-mediated ROS production. Our findings reveal a novel pathogenic mechanism in which a fungal pathogen acts via an effector to reduce TaRBOHD-mediated ROS production.
Collapse
Affiliation(s)
- Shengping Shang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yuhan He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Qianyong Hu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Ying Fang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shifeng Cheng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Cui-Jun Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| |
Collapse
|
12
|
Wang R, Li J, Liang Y. Role of ROS signaling in the plant defense against vascular pathogens. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102617. [PMID: 39163783 DOI: 10.1016/j.pbi.2024.102617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/14/2024] [Accepted: 07/26/2024] [Indexed: 08/22/2024]
Abstract
Reactive oxygen species (ROS) is a collective term for highly reactive oxygen derivatives, including singlet oxygen, hydroxyl radicals, superoxide anions, and hydrogen peroxide. In plants, ROS are produced in apoplasts, chloroplasts, mitochondria, and peroxisomes. Although ROS are toxic when their levels exceed a certain threshold, low-concentration ROS can serve as essential signaling molecules for plant growth and development, as well as plant responses to abiotic and biotic stresses. Various aspects of the role of ROS in plants have been discussed in previous reviews. In this review, we first summarize recent progress in the regulatory mechanisms of apoplastic ROS signaling and then propose its potential roles in plant defense against vascular pathogens to provide new ideas for the prevention and control of vascular diseases.
Collapse
Affiliation(s)
- Ran Wang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory for Agricultural Microbiome of the Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jianwei Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory for Agricultural Microbiome of the Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yan Liang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory for Agricultural Microbiome of the Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
13
|
Eschrig S, Kahlon PS, Agius C, Holzer A, Hückelhoven R, Schwechheimer C, Ranf S. Cross-family transfer of the Arabidopsis cell-surface immune receptor LORE to tomato confers sensing of 3-hydroxylated fatty acids and enhanced disease resistance. MOLECULAR PLANT PATHOLOGY 2024; 25:e70005. [PMID: 39235143 PMCID: PMC11375736 DOI: 10.1111/mpp.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/14/2024] [Accepted: 08/18/2024] [Indexed: 09/06/2024]
Abstract
Plant pathogens pose a high risk of yield losses and threaten food security. Technological and scientific advances have improved our understanding of the molecular processes underlying host-pathogen interactions, which paves the way for new strategies in crop disease management beyond the limits of conventional breeding. Cross-family transfer of immune receptor genes is one such strategy that takes advantage of common plant immune signalling pathways to improve disease resistance in crops. Sensing of microbe- or host damage-associated molecular patterns (MAMPs/DAMPs) by plasma membrane-resident pattern recognition receptors (PRR) activates pattern-triggered immunity (PTI) and restricts the spread of a broad spectrum of pathogens in the host plant. In the model plant Arabidopsis thaliana, the S-domain receptor-like kinase LIPOOLIGOSACCHARIDE-SPECIFIC REDUCED ELICITATION (AtLORE, SD1-29) functions as a PRR, which senses medium-chain-length 3-hydroxylated fatty acids (mc-3-OH-FAs), such as 3-OH-C10:0, and 3-hydroxyalkanoates (HAAs) of microbial origin to activate PTI. In this study, we show that ectopic expression of the Brassicaceae-specific PRR AtLORE in the solanaceous crop species Solanum lycopersicum leads to the gain of 3-OH-C10:0 immune sensing without altering plant development. AtLORE-transgenic tomato shows enhanced resistance against Pseudomonas syringae pv. tomato DC3000 and Alternaria solani NL03003. Applying 3-OH-C10:0 to the soil before infection induces resistance against the oomycete pathogen Phytophthora infestans Pi100 and further enhances resistance to A. solani NL03003. Our study proposes a potential application of AtLORE-transgenic crop plants and mc-3-OH-FAs as resistance-inducing biostimulants in disease management.
Collapse
Affiliation(s)
- Sabine Eschrig
- TUM School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Parvinderdeep S Kahlon
- TUM School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Carlos Agius
- TUM School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Andrea Holzer
- TUM School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Ralph Hückelhoven
- TUM School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Claus Schwechheimer
- TUM School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Stefanie Ranf
- TUM School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
14
|
Li S, Zhao Y, Wu P, Grierson D, Gao L. Ripening and rot: How ripening processes influence disease susceptibility in fleshy fruits. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1831-1863. [PMID: 39016673 DOI: 10.1111/jipb.13739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/24/2024] [Indexed: 07/18/2024]
Abstract
Fleshy fruits become more susceptible to pathogen infection when they ripen; for example, changes in cell wall properties related to softening make it easier for pathogens to infect fruits. The need for high-quality fruit has driven extensive research on improving pathogen resistance in important fruit crops such as tomato (Solanum lycopersicum). In this review, we summarize current progress in understanding how changes in fruit properties during ripening affect infection by pathogens. These changes affect physical barriers that limit pathogen entry, such as the fruit epidermis and its cuticle, along with other defenses that limit pathogen growth, such as preformed and induced defense compounds. The plant immune system also protects ripening fruit by recognizing pathogens and initiating defense responses involving reactive oxygen species production, mitogen-activated protein kinase signaling cascades, and jasmonic acid, salicylic acid, ethylene, and abscisic acid signaling. These phytohormones regulate an intricate web of transcription factors (TFs) that activate resistance mechanisms, including the expression of pathogenesis-related genes. In tomato, ripening regulators, such as RIPENING INHIBITOR and NON_RIPENING, not only regulate ripening but also influence fruit defenses against pathogens. Moreover, members of the ETHYLENE RESPONSE FACTOR (ERF) family play pivotal and distinct roles in ripening and defense, with different members being regulated by different phytohormones. We also discuss the interaction of ripening-related and defense-related TFs with the Mediator transcription complex. As the ripening processes in climacteric and non-climacteric fruits share many similarities, these processes have broad applications across fruiting crops. Further research on the individual contributions of ERFs and other TFs will inform efforts to diminish disease susceptibility in ripe fruit, satisfy the growing demand for high-quality fruit and decrease food waste and related economic losses.
Collapse
Affiliation(s)
- Shan Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Yu Zhao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pan Wu
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Donald Grierson
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Lei Gao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
15
|
Shi Q, Fu J, Zhou Y, Ji Y, Zhao Z, Yang Y, Xiao Y, Qian X, Xu Y. Fluorinated plant activators induced dual-pathway signal transduction and long-lasting ROS burst in chloroplast. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106071. [PMID: 39277416 DOI: 10.1016/j.pestbp.2024.106071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/25/2024] [Accepted: 08/03/2024] [Indexed: 09/17/2024]
Abstract
Synthetic plant activators represent a promising novel class of green pesticides that can triggering endogenous plant immunity against pathogen invasion. In our previous study, we developed a series of fluorinated compounds capable of eliciting disease resistance in plants; however, the underlying regulatory mechanisms remained unclear. In this study, we systematically investigated the mechanism of plant immune activation using four synthetic plant activators in Arabidopsis thaliana (A. thaliana), including two fluorine-substituted and two non‑fluorine-substituted molecules. Our findings revealed that the fluorinated compounds exhibited superior disease resistance activity compared to the non-fluorinated molecules. Gene expression analysis in systemic acquired resistance (SAR)- and induced systemic resistance (ISR)-related pathways demonstrated that fluorine substitution effectively regulated both SAR- and ISR-pathway activation, highlighting the distinct roles of fluorine in modulating the plant immune system. Notably, the prolonged ROS burst was observed in chloroplasts following treatment with all four plant activators, contrasting with the transient ROS burst induced by natural elicitors. These results provide insights into the unique mechanisms underlying synthetic plant activator-induced plant immunity. Furthermore, comprehensive proteomic analysis revealed a robust immune response mediated by fluorine-substituted plant activators. These findings offer novel insights into the role of fluorine substitution in SAR- and ISR-associated immune signaling pathways and their distinct impact on ROS production within chloroplasts.
Collapse
Affiliation(s)
- Qinjie Shi
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jianmian Fu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yiqing Zhou
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuanyuan Ji
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhenjiang Zhao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yangyang Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Youli Xiao
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xuhong Qian
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yufang Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
16
|
Dou M, Li Y, Hao Y, Zhang K, Yin X, Feng Z, Xu X, Zhang Q, Bao W, Chen X, Liu G, Wang Y, Tian L, Xu Y. Histological and transcriptomic insights into the interaction between grapevine and Colletotrichum viniferum. FRONTIERS IN PLANT SCIENCE 2024; 15:1446288. [PMID: 39220012 PMCID: PMC11362058 DOI: 10.3389/fpls.2024.1446288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024]
Abstract
Introduction Grape is of high economic value. Colletotrichum viniferum, a pathogen causing grape ripe rot and leaf spot, threatens grape production and quality. Methods This study investigates the interplay between C. viniferum by Cytological study and transcriptome sequencing. Results Different grapevine germplasms, V. vinifera cv. Thompson Seedless (TS), V. labrusca accession Beaumont (B) and V. piasezkii Liuba-8 (LB-8) were classified as highly sensitive, moderate resistant and resistant to C. viniferum, respectively. Cytological study analysis reveals distinct differences between susceptible and resistant grapes post-inoculation, including faster pathogen development, longer germination tubes, normal appressoria of C. viniferum and absence of white secretions in the susceptible host grapevine. To understand the pathogenic mechanisms of C. viniferum, transcriptome sequencing was performed on the susceptible grapevine "TS" identifying 236 differentially expressed C. viniferum genes. These included 56 effectors, 36 carbohydrate genes, 5 P450 genes, and 10 genes involved in secondary metabolism. Fungal effectors are known as pivotal pathogenic factors that modulate plant immunity and affect disease development. Agrobacterium-mediated transient transformation in Nicotiana benthamiana screened 10 effectors (CvA13877, CvA01508, CvA05621, CvA00229, CvA07043, CvA05569, CvA12648, CvA02698, CvA14071 and CvA10999) that inhibited INF1 (infestans 1, P. infestans PAMP elicitor) induced cell death and 2 effectors (CvA02641 and CvA11478) that induced cell death. Additionally, transcriptome analysis of "TS" in response to C. viniferum identified differentially expressed grape genes related to plant hormone signaling (TGA, PR1, ETR, and ERF1/2), resveratrol biosynthesis genes (STS), phenylpropanoid biosynthesis genes (PAL and COMT), photosynthetic antenna proteins (Lhca and Lhcb), transcription factors (WRKY, NAC, MYB, ERF, GATA, bHLH and SBP), ROS (reactive oxygen species) clearance genes (CAT, GSH, POD and SOD), and disease-related genes (LRR, RPS2 and GST). Discussion This study highlights the potential functional diversity of C. viniferum effectors. Our findings lay a foundation for further research of infection mechanisms in Colletotrichum and identification of disease response targets in grape.
Collapse
Affiliation(s)
- Mengru Dou
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Yuhang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Yu Hao
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Kangzhuang Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Xiao Yin
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Zinuo Feng
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Xi Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Qi Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Wenwu Bao
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Xi Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Guotian Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Ling Tian
- School of Management, Shenzhen Polytechnic University, Shenzhen, Guangdong, China
| | - Yan Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| |
Collapse
|
17
|
Myers RJ, Peláez-Vico MÁ, Fichman Y. Functional analysis of reactive oxygen species-driven stress systemic signalling, interplay and acclimation. PLANT, CELL & ENVIRONMENT 2024; 47:2842-2851. [PMID: 38515255 DOI: 10.1111/pce.14894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/13/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
Reactive oxygen species (ROS) play a critical role in plant development and stress responses, acting as key components in rapid signalling pathways. The 'ROS wave' triggers essential acclimation processes, ultimately ensuring plant survival under diverse challenges. This review explores recent advances in understanding the composition and functionality of the ROS wave within plant cells. During their initiation and propagation, ROS waves interact with other rapid signalling pathways, hormones and various molecular compounds. Recent research sheds light on the intriguing lack of a rigid hierarchy governing these interactions, highlighting a complex interplay between diverse signals. Notably, ROS waves culminate in systemic acclimation, a crucial outcome for enhanced stress tolerance. This review emphasizes the versatility of ROS, which act as flexible players within a network of short- and long-term factors contributing to plant stress resilience. Unveiling the intricacies of these interactions between ROS and various signalling molecules holds immense potential for developing strategies to augment plant stress tolerance, contributing to improved agricultural practices and overall ecosystem well-being.
Collapse
Affiliation(s)
- Ronald J Myers
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - María Ángeles Peláez-Vico
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Yosef Fichman
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- School of Plant Sciences and Food Security, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
18
|
Yu X, Niu H, Liu C, Wang H, Yin W, Xia X. PTI-ETI synergistic signal mechanisms in plant immunity. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2113-2128. [PMID: 38470397 PMCID: PMC11258992 DOI: 10.1111/pbi.14332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 02/16/2024] [Accepted: 02/28/2024] [Indexed: 03/13/2024]
Abstract
Plants face a relentless onslaught from a diverse array of pathogens in their natural environment, to which they have evolved a myriad of strategies that unfold across various temporal scales. Cell surface pattern recognition receptors (PRRs) detect conserved elicitors from pathogens or endogenous molecules released during pathogen invasion, initiating the first line of defence in plants, known as pattern-triggered immunity (PTI), which imparts a baseline level of disease resistance. Inside host cells, pathogen effectors are sensed by the nucleotide-binding/leucine-rich repeat (NLR) receptors, which then activate the second line of defence: effector-triggered immunity (ETI), offering a more potent and enduring defence mechanism. Moreover, PTI and ETI collaborate synergistically to bolster disease resistance and collectively trigger a cascade of downstream defence responses. This article provides a comprehensive review of plant defence responses, offering an overview of the stepwise activation of plant immunity and the interactions between PTI-ETI synergistic signal transduction.
Collapse
Affiliation(s)
- Xiao‐Qian Yu
- State Key Laboratory of Tree Genetics and BreedingCollege of Biological Sciences and Technology, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijingChina
| | - Hao‐Qiang Niu
- State Key Laboratory of Tree Genetics and BreedingCollege of Biological Sciences and Technology, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijingChina
| | - Chao Liu
- State Key Laboratory of Tree Genetics and BreedingCollege of Biological Sciences and Technology, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijingChina
| | - Hou‐Ling Wang
- State Key Laboratory of Tree Genetics and BreedingCollege of Biological Sciences and Technology, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijingChina
| | - Weilun Yin
- State Key Laboratory of Tree Genetics and BreedingCollege of Biological Sciences and Technology, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijingChina
| | - Xinli Xia
- State Key Laboratory of Tree Genetics and BreedingCollege of Biological Sciences and Technology, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijingChina
| |
Collapse
|
19
|
Wang JY, Cai YY, Li L, Zhu XM, Shen ZF, Wang ZH, Liao J, Lu JP, Liu XH, Lin FC. Dihydroorotase MoPyr4 is required for development, pathogenicity, and autophagy in rice blast fungus. Cell Commun Signal 2024; 22:362. [PMID: 39010102 PMCID: PMC11247805 DOI: 10.1186/s12964-024-01741-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/06/2024] [Indexed: 07/17/2024] Open
Abstract
Dihydroorotase (DHOase) is the third enzyme in the six enzymatic reaction steps of the endogenous pyrimidine nucleotide de novo biosynthesis pathway, which is a metabolic pathway conserved in both bacteria and eukaryotes. However, research on the biological function of DHOase in plant pathogenic fungi is very limited. In this study, we identified and named MoPyr4, a homologous protein of Saccharomyces cerevisiae DHOase Ura4, in the rice blast fungus Magnaporthe oryzae and investigated its ability to regulate fungal growth, pathogenicity, and autophagy. Deletion of MoPYR4 led to defects in growth, conidiation, appressorium formation, the transfer and degradation of glycogen and lipid droplets, appressorium turgor accumulation, and invasive hypha expansion in M. oryzae, which eventually resulted in weakened fungal pathogenicity. Long-term replenishment of exogenous uridine-5'-phosphate (UMP) can effectively restore the phenotype and virulence of the ΔMopyr4 mutant. Further study revealed that MoPyr4 also participated in the regulation of the Pmk1-MAPK signaling pathway, co-localized with peroxisomes for the oxidative stress response, and was involved in the regulation of the Osm1-MAPK signaling pathway in response to hyperosmotic stress. In addition, MoPyr4 interacted with MoAtg5, the core protein involved in autophagy, and positively regulated autophagic degradation. Taken together, our results suggested that MoPyr4 for UMP biosynthesis was crucial for the development and pathogenicity of M. oryzae. We also revealed that MoPyr4 played an essential role in the external stress response and pathogenic mechanism through participation in the Pmk1-MAPK signaling pathway, peroxisome-related oxidative stress response mechanism, the Osm1-MAPK signaling pathway and the autophagy pathway.
Collapse
Affiliation(s)
- Jing-Yi Wang
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ying-Ying Cai
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Lin Li
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xue-Ming Zhu
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zi-Fang Shen
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zi-He Wang
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jian Liao
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jian-Ping Lu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Hong Liu
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fu-Cheng Lin
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
20
|
Zhang Y, Li J, Guo K, Wang T, Gao L, Sun Z, Ma C, Wang C, Tian Y, Zheng X. Strigolactones alleviate AlCl 3 stress by vacuolar compartmentalization and cell wall blocking in apple. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:197-217. [PMID: 38565306 DOI: 10.1111/tpj.16753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 02/22/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
Poor management and excess fertilization of apple (Malus domestica Borkh.) orchards are causing increasingly serious soil acidification, resulting in Al toxicity and direct poisoning of roots. Strigolactones (SLs) are reported to be involved in plant responses to abiotic stress, but their role and mechanism under AlCl3 stress remain unknown. Here, we found that applying 1 μm GR24 (an SL analoge) significantly alleviated AlCl3 stress of M26 apple rootstock, mainly by blocking the movement of Al through cell wall and by vacuolar compartmentalization of Al. RNA-seq analysis identified the core transcription factor gene MdWRKY53, and overexpressing MdWRKY53 enhanced AlCl3 tolerance in transgenic apple plants through the same mechanism as GR24. Subsequently, we identified MdPMEI45 (encoding pectin methylesterase inhibitor) and MdALS3 (encoding an Al transporter) as downstream target genes of MdWRKY53 using chromatin immunoprecipitation followed by sequencing (ChIP-seq). GR24 enhanced the interaction between MdWRKY53 and the transcription factor MdTCP15, further increasing the binding of MdWRKY53 to the MdPMEI45 promoter and inducing MdPMEI45 expression to prevent Al from crossing cell wall. MdWRKY53 also bound to the promoter of MdALS3 and enhanced its transcription to compartmentalize Al in vacuoles under AlCl3 stress. We therefore identified two modules involved in alleviating AlCl3 stress in woody plant apple: the SL-WRKY+TCP-PMEI module required for excluding external Al by blocking the entry of Al3+ into cells and the SL-WRKY-ALS module allowing internal detoxification of Al through vacuolar compartmentalization. These findings lay a foundation for the practical application of SLs in agriculture.
Collapse
Affiliation(s)
- Yong Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Jianyu Li
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Kexin Guo
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Tianchao Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Lijie Gao
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Zhijuan Sun
- College of Life Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Changqing Ma
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Caihong Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Yike Tian
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Xiaodong Zheng
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| |
Collapse
|
21
|
Wen Y, Wang F, Wang H, Bi Y, Yan Y, Noman M, Li D, Song F. Melon CmRLCK VII-8 kinase genes CmRLCK27, CmRLCK30 and CmRLCK34 modulate resistance against bacterial and fungal diseases in Arabidopsis. PHYSIOLOGIA PLANTARUM 2024; 176:e14456. [PMID: 39072778 DOI: 10.1111/ppl.14456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/28/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024]
Abstract
Receptor-like cytoplasmic kinases (RLCKs) represent a distinct class of receptor-like kinases crucial for various aspects of plant biology, including growth, development, and stress responses. This study delves into the characterization of RLCK VII-8 members within cucurbits, particularly in melon, examining both structural features and the phylogenetic relationships of these genes/proteins. The investigation extends to their potential involvement in disease resistance by employing ectopic overexpression in Arabidopsis. The promoters of CmRLCK VII-8 genes harbor multiple phytohormone- and stress-responsive cis-acting elements, with the majority (excluding CmRLCK39) displaying upregulated expression in response to defense hormones and fungal infection. Subcellular localization studies reveal that CmRLCK VII-8 proteins predominantly reside on the plasma membrane, with CmRLCK29 and CmRLCK30 exhibiting additional nuclear distribution. Notably, Arabidopsis plants overexpressing CmRLCK30 manifest dwarfing and delayed flowering phenotypes. Overexpression of CmRLCK27, CmRLCK30, and CmRLCK34 in Arabidopsis imparts enhanced resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000, concomitant with the strengthened expression of defense genes and reactive oxygen species accumulation. The CmRLCK VII-8 members actively participate in chitin- and flg22-triggered immune responses. Furthermore, CmRLCK30 interacts with CmMAPKKK1 and CmARFGAP, adding a layer of complexity to the regulatory network. In summary, this functional characterization underscores the regulatory roles of CmRLCK27, CmRLCK30, and CmRLCK34 in immune responses by influencing pathogen-induced defense gene expression and ROS accumulation.
Collapse
Affiliation(s)
- Ya Wen
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fahao Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hui Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yan Bi
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuqing Yan
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Muhammad Noman
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Dayong Li
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fengming Song
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
22
|
Song Y, Yu K, Zhang S, Li Y, Xu C, Qian H, Cui Y, Guo Y, Zhang X, Li R, Dixon RA, Lin J. Poplar glutathione S-transferase PtrGSTF8 contributes to reactive oxygen species scavenging and salt tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108766. [PMID: 38797011 DOI: 10.1016/j.plaphy.2024.108766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/08/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Glutathione S-transferases (GSTs) constitute a protein superfamily encoded by a large gene family and play a crucial role in plant growth and development. However, their precise functions in wood plant responses to abiotic stress are not fully understood. In this study, we isolated a Phi class glutathione S-transferase-encoding gene, PtrGSTF8, from poplar (Populus alba × P. glandulosa), which is significantly up-regulated under salt stress. Moreover, compared with wild-type (WT) plants, transgenic tobacco plants exhibited significant salt stress tolerance. Under salt stress, PtrGSTF8-overexpressing tobacco plants showed a significant increase in plant height and root length, and less accumulation of reactive oxygen species. In addition, these transgenic tobacco plants exhibited higher superoxide dismutase, peroxidase, and catalase activities and reduced malondialdehyde content compared with WT plants. Quantitative real-time PCR experiments showed that the overexpression of PtrGSTF8 increased the expression of numerous genes related to salt stress. Furthermore, PtrMYB108, a MYB transcription factor involved in salt resistance in poplar, was found to directly activate the promoter of PtrGSTF8, as demonstrated by yeast one-hybrid assays and luciferase complementation assays. Taken together, these findings suggest that poplar PtrGSTF8 contributes to enhanced salt tolerance and confers multiple growth advantages when overexpressed in tobacco.
Collapse
Affiliation(s)
- Yushuang Song
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, 100083, China
| | - Keji Yu
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, 100083, China
| | - Shuwen Zhang
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yi Li
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, 100083, China
| | - Changwen Xu
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, 100083, China
| | - Hongping Qian
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, 100083, China
| | - Yaning Cui
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, 100083, China
| | - Yayu Guo
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, 100083, China
| | - Xi Zhang
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, 100083, China
| | - Ruili Li
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, 100083, China
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
| | - Jinxing Lin
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
23
|
Zhang Y, Yuan Y, Xi H, Zhang Y, Gao C, Ma M, Huang Q, Li F, Yang Z. Promotion of apoplastic oxidative burst by artificially selected GhCBSX3A enhances Verticillium dahliae resistance in upland cotton. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:2154-2168. [PMID: 38558071 DOI: 10.1111/tpj.16736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/21/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
Verticillium wilt (VW) is a devasting disease affecting various plants, including upland cotton, a crucial fiber crop. Despite its impact, the genetic basis underlying cotton's susceptibility or defense against VW remains unclear. Here, we conducted a genome-wide association study on VW phenotyping in upland cotton and identified a locus on A13 that is significantly associated with VW resistance. We then identified a cystathionine β-synthase domain gene at A13 locus, GhCBSX3A, which was induced by Verticillium dahliae. Functional analysis, including expression silencing in cotton and overexpression in Arabidopsis thaliana, confirmed that GhCBSX3A is a causal gene at the A13 locus, enhancing SAR-RBOHs-mediated apoplastic oxidative burst. We found allelic variation on the TATA-box of GhCBSX3A promoter attenuated its expression in upland cotton, thereby weakening VW resistance. Interestingly, we discovered that altered artificial selection of GhCBSX3A_R (an elite allele for VW) under different VW pressures during domestication and other improved processes allows specific human needs to be met. Our findings underscore the importance of GhCBSX3A in response to VW, and we propose a model for defense-associated genes being selected depending on the pathogen's pressure. The identified locus and gene serve as promising targets for VW resistance enhancement in cotton through genetic engineering.
Collapse
Affiliation(s)
- Yihao Zhang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450001, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, National Wheat Innovation Center and Center for Crop Genome Engineering, Zhengzhou, 450001, Henan, China
| | - Yuan Yuan
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450001, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Hongfang Xi
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yaning Zhang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450001, China
| | - Chenxu Gao
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450001, China
| | - Meng Ma
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450001, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Qian Huang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Fuguang Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450001, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China
| | - Zhaoen Yang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450001, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China
| |
Collapse
|
24
|
Yang J, Chen L, Zhang J, Liu P, Chen M, Chen Z, Zhong K, Liu J, Chen J, Yang J. TaTHI2 interacts with Ca 2+-dependent protein kinase TaCPK5 to suppress virus infection by regulating ROS accumulation. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1335-1351. [PMID: 38100262 PMCID: PMC11022809 DOI: 10.1111/pbi.14270] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 11/09/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
Thiamine (vitamin B1) biosynthesis involves key enzymes known as thiazole moieties (THI1/THI2), which have been shown to participate in plant responses to abiotic stress. However, the role of THI1/THI2 in plant immunity remains unclear. In this study, we cloned TaTHI2 from wheat and investigated its function in Chinese wheat mosaic virus (CWMV) infection. Overexpression of TaTHI2 (TaTHI2-OE) inhibited CWMV infection, while TaTHI2 silencing enhanced viral infection in wheat. Interestingly, the membrane-localized TaTHI2 protein was increased during CWMV infection. TaTHI2 also interacted with the Ca2+-dependent protein kinase 5 (TaCPK5), which is localized in the plasma membrane, and promoted reactive oxygen species (ROS) production by repressing TaCPK5-mediated activity of the catalase protein TaCAT1. CWMV CP disrupted the interaction between TaTHI2 and TaCAT1, reducing ROS accumulation and facilitating viral infection. Additionally, transgenic plants overexpressing TaTHI2 showed increased seed number per ear and 1000-kernel weight compared to control plants. Our findings reveal a novel function of TaTHI2 in plant immunity and suggest its potential as a valuable gene for balancing disease resistance and wheat yield. Furthermore, the disruption of the TaTHI2-mediated plant immune pathway by CWMV CP provides further evidence for the evolutionary arms race between plants and viruses.
Collapse
Affiliation(s)
- Jin Yang
- State Key Laboratory for Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
- College of Plant ProtectionNorthwest Agriculture and Forestry UniversityYanglingChina
| | - Lu Chen
- State Key Laboratory for Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
- Institute of Crop Sciences, State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural SciencesBeijingChina
| | - Juan Zhang
- State Key Laboratory for Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Peng Liu
- State Key Laboratory for Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Ming Chen
- Institute of Crop Sciences, State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural SciencesBeijingChina
| | - Zhihui Chen
- School of Life SciencesUniversity of DundeeDundeeUK
| | - Kaili Zhong
- State Key Laboratory for Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Jiaqian Liu
- State Key Laboratory for Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Jianping Chen
- State Key Laboratory for Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Jian Yang
- State Key Laboratory for Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
| |
Collapse
|
25
|
Shen ZF, Li L, Wang JY, Liao J, Zhang YR, Zhu XM, Wang ZH, Lu JP, Liu XH, Lin FC. Csn5 inhibits autophagy by regulating the ubiquitination of Atg6 and Tor to mediate the pathogenicity of Magnaporthe oryzae. Cell Commun Signal 2024; 22:222. [PMID: 38594767 PMCID: PMC11003145 DOI: 10.1186/s12964-024-01598-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/26/2024] [Indexed: 04/11/2024] Open
Abstract
Csn5 is subunit 5 of the COP9 signalosome (CSN), but the mechanism by which it strictly controls the pathogenicity of pathogenic fungi through autophagy remains unclear. Here, we found that Csn5 deficiency attenuated pathogenicity and enhanced autophagy in Magnaporthe oryzae. MoCSN5 knockout led to overubiquitination and overdegradation of MoTor (the core protein of the TORC1 complex [target of rapamycin]) thereby promoted autophagy. In addition, we identified MoCsn5 as a new interactor of MoAtg6. Atg6 was found to be ubiquitinated through linkage with lysine 48 (K48) in cells, which is necessary for infection-associated autophagy in pathogenic fungi. K48-ubiquitination of Atg6 enhanced its degradation and thereby inhibited autophagic activity. Our experimental results indicated that MoCsn5 promoted K48-ubiquitination of MoAtg6, which reduced the MoAtg6 protein content and thus inhibited autophagy. Aberrant ubiquitination and autophagy in ΔMocsn5 led to pleiotropic defects in the growth, development, stress resistance, and pathogenicity of M. oryzae. In summary, our study revealed a novel mechanism by which Csn5 regulates autophagy and pathogenicity in rice blast fungus through ubiquitination.
Collapse
Affiliation(s)
- Zi-Fang Shen
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Lin Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jing-Yi Wang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jian Liao
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yun-Ran Zhang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xue-Ming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zi-He Wang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jian-Ping Lu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Hong Liu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fu-Cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
26
|
Wu Y, Fu Y, Zhu Z, Hu Q, Sheng F, Du X. The Mediator Subunit OsMED16 Interacts with the WRKY Transcription Factor OsWRKY45 to Enhance Rice Resistance Against Magnaporthe oryzae. RICE (NEW YORK, N.Y.) 2024; 17:23. [PMID: 38558163 PMCID: PMC10984912 DOI: 10.1186/s12284-024-00698-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/03/2024] [Indexed: 04/04/2024]
Abstract
Rice blast, caused by Magnaporthe oryzae (M. oryzae), is one of the most common and damaging diseases of rice that limits rice yield and quality. The mediator complex plays a vital role in promoting transcription by bridging specific transcription factors and RNA polymerase II. Here, we show that the rice mediator subunit OsMED16 is essential for full induction of the diterpenoid phytoalexin biosynthesis genes and resistance to the ascomycetous fungus M. oryzae. Mutants of Osmed16 show reduced expression of the DP biosynthesis genes and are markedly more susceptible to M. oryzae, while transgenic plants overexpressing OsMED16 increased the expression of the DP biosynthesis genes and significantly enhanced resistance to M. oryzae. Interestingly, OsMED16 is physically associated with the WRKY family transcription factor OsWRKY45, which interacts with the phytoalexin synthesis key regulator transcription factor OsWRKY62. Further, OsMED16-OsWRKY45-OsWRKY62 complex could bind to the promoter regions of phytoalexin synthesis-related genes and activate their gene expression. Our results show that OsMED16 may enhance rice tolerance to M. oryzae via directly manipulating phytoalexin de novo biosynthesis.
Collapse
Affiliation(s)
- Yanfei Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yuquan Fu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Zhonglin Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Qin Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China.
| | - Feng Sheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Xuezhu Du
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
27
|
Berlanga DJ, Molina A, Torres MÁ. Mitogen-activated protein kinase phosphatase 1 controls broad spectrum disease resistance in Arabidopsis thaliana through diverse mechanisms of immune activation. FRONTIERS IN PLANT SCIENCE 2024; 15:1374194. [PMID: 38576784 PMCID: PMC10993396 DOI: 10.3389/fpls.2024.1374194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024]
Abstract
Arabidopsis thaliana Mitogen-activated protein Kinase Phosphatase 1 (MKP1) negatively balances production of reactive oxygen species (ROS) triggered by Microbe-Associated Molecular Patterns (MAMPs) through uncharacterized mechanisms. Accordingly, ROS production is enhanced in mkp1 mutant after MAMP treatment. Moreover, mkp1 plants show a constitutive activation of immune responses and enhanced disease resistance to pathogens with distinct colonization styles, like the bacterium Pseudomonas syringae pv. tomato DC3000, the oomycete Hyaloperonospora arabidopsidis Noco2 and the necrotrophic fungus Plectosphaerella cucumerina BMM. The molecular basis of this ROS production and broad-spectrum disease resistance controlled by MKP1 have not been determined. Here, we show that the enhanced ROS production in mkp1 is not due to a direct interaction of MKP1 with the NADPH oxidase RBOHD, nor is it the result of the catalytic activity of MKP1 on RBHOD phosphorylation sites targeted by BOTRYTIS INDUCED KINASE 1 (BIK1) protein, a positive regulator of RBOHD-dependent ROS production. The analysis of bik1 mkp1 double mutant phenotypes suggested that MKP1 and BIK1 targets are different. Additionally, we showed that phosphorylation residues stabilizing MKP1 are essential for its functionality in immunity. To further decipher the molecular basis of disease resistance responses controlled by MKP1, we generated combinatory lines of mkp1-1 with plants impaired in defensive pathways required for disease resistance to pathogen: cyp79B2 cyp79B3 double mutant defective in synthesis of tryptophan-derived metabolites, NahG transgenic plant that does not accumulate salicylic acid, aba1-6 mutant impaired in abscisic acid (ABA) biosynthesis, and abi1 abi2 hab1 triple mutant impaired in proteins described as ROS sensors and that is hypersensitive to ABA. The analysis of these lines revealed that the enhanced resistance displayed by mkp1-1 is altered in distinct mutant combinations: mkp1-1 cyp79B2 cyp79B3 fully blocked mkp1-1 resistance to P. cucumerina, whereas mkp1-1 NahG displays partial susceptibility to H. arabidopsidis, and mkp1-1 NahG, mkp1-1 aba1-6 and mkp1-1 cyp79B2 cyp79B3 showed compromised resistance to P. syringae. These results suggest that MKP1 is a component of immune responses that does not directly interact with RBOHD but rather regulates the status of distinct defensive pathways required for disease resistance to pathogens with different lifestyles.
Collapse
Affiliation(s)
- Diego José Berlanga
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, Madrid, Spain
- Center of Excellence for Plant Environment Interactions (CEPEI), Madrid, Spain
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, Madrid, Spain
- Center of Excellence for Plant Environment Interactions (CEPEI), Madrid, Spain
| | - Miguel Ángel Torres
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, Madrid, Spain
- Center of Excellence for Plant Environment Interactions (CEPEI), Madrid, Spain
| |
Collapse
|
28
|
Qi F, Li J, Ai Y, Shangguan K, Li P, Lin F, Liang Y. DGK5β-derived phosphatidic acid regulates ROS production in plant immunity by stabilizing NADPH oxidase. Cell Host Microbe 2024; 32:425-440.e7. [PMID: 38309260 DOI: 10.1016/j.chom.2024.01.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/20/2023] [Accepted: 01/23/2024] [Indexed: 02/05/2024]
Abstract
In plant immunity, phosphatidic acid (PA) regulates reactive oxygen species (ROS) by binding to respiratory burst oxidase homolog D (RBOHD), an NADPH oxidase responsible for ROS production. Here, we analyze the influence of PA binding on RBOHD activity and the mechanism of RBOHD-bound PA generation. PA binding enhances RBOHD protein stability by inhibiting vacuolar degradation, thereby increasing chitin-induced ROS production. Mutations in diacylglycerol kinase 5 (DGK5), which phosphorylates diacylglycerol to produce PA, impair chitin-induced PA and ROS production. The DGK5 transcript DGK5β (but not DGK5α) complements reduced PA and ROS production in dgk5-1 mutants, as well as resistance to Botrytis cinerea. Phosphorylation of S506 residue in the C-terminal calmodulin-binding domain of DGK5β contributes to the activation of DGK5β to produce PA. These findings suggest that DGK5β-derived PA regulates ROS production by inhibiting RBOHD protein degradation, elucidating the role of PA-ROS interplay in immune response regulation.
Collapse
Affiliation(s)
- Fan Qi
- Zhejiang Xianghu Laboratory, Department of Plant Protection, Zhejiang University, Hangzhou 310058, China
| | - Jianwei Li
- Zhejiang Xianghu Laboratory, Department of Plant Protection, Zhejiang University, Hangzhou 310058, China
| | - Yingfei Ai
- Zhejiang Xianghu Laboratory, Department of Plant Protection, Zhejiang University, Hangzhou 310058, China
| | - Keke Shangguan
- Zhejiang Xianghu Laboratory, Department of Plant Protection, Zhejiang University, Hangzhou 310058, China
| | - Ping Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Hangzhou 311200, China
| | - Fucheng Lin
- Zhejiang Xianghu Laboratory, Department of Plant Protection, Zhejiang University, Hangzhou 310058, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Hangzhou 311200, China.
| | - Yan Liang
- Zhejiang Xianghu Laboratory, Department of Plant Protection, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
29
|
Torres MÁ. Unveiling what makes the reactive oxygen species burst transient: the role of PB1CP in plant immunity. THE NEW PHYTOLOGIST 2024; 241:1384-1386. [PMID: 38179607 DOI: 10.1111/nph.19502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
This article is a Commentary on Goto et al. (2024), 241: 1763–1779.
Collapse
Affiliation(s)
- Miguel-Ángel Torres
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, Madrid, 28040, Spain
| |
Collapse
|
30
|
Ponce de León I. Evolution of immunity networks across embryophytes. CURRENT OPINION IN PLANT BIOLOGY 2024; 77:102450. [PMID: 37704543 DOI: 10.1016/j.pbi.2023.102450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 09/15/2023]
Abstract
Land plants (embryophytes), including vascular (tracheophytes) and non-vascular plants (bryophytes), co-evolved with microorganisms since descendants of an algal ancestor colonized terrestrial habitats around 500 million years ago. To cope with microbial pathogen infections, embryophytes evolved a complex immune system for pathogen perception and activation of defenses. With the growing number of sequenced genomes and transcriptome datasets from algae, bryophytes, tracheophytes, and available plant models, comparative analyses are increasing our understanding of the evolution of molecular mechanisms underpinning immune responses in different plant lineages. In this review, recent progress on plant immunity networks is highlighted with emphasis on the identification of key components that shaped immunity against pathogens in bryophytes compared to angiosperms during plant evolution.
Collapse
Affiliation(s)
- Inés Ponce de León
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, 11600, Montevideo, Uruguay.
| |
Collapse
|
31
|
Liu Y, Gong T, Kong X, Sun J, Liu L. XYLEM CYSTEINE PEPTIDASE 1 and its inhibitor CYSTATIN 6 regulate pattern-triggered immunity by modulating the stability of the NADPH oxidase RESPIRATORY BURST OXIDASE HOMOLOG D. THE PLANT CELL 2024; 36:471-488. [PMID: 37820743 PMCID: PMC10827322 DOI: 10.1093/plcell/koad262] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023]
Abstract
Plants produce a burst of reactive oxygen species (ROS) after pathogen infection to successfully activate immune responses. During pattern-triggered immunity (PTI), ROS are primarily generated by the NADPH oxidase RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD). RBOHD is degraded in the resting state to avoid inappropriate ROS production; however, the enzyme mediating RBOHD degradation and how to prevent RBOHD degradation after pathogen infection is unclear. In this study, we identified an Arabidopsis (Arabidopsis thaliana) vacuole-localized papain-like cysteine protease, XYLEM CYSTEINE PEPTIDASE 1 (XCP1), and its inhibitor CYSTATIN 6 (CYS6). Pathogen-associated molecular pattern-induced ROS burst and resistance were enhanced in the xcp1 mutant but were compromised in the cys6 mutant, indicating that XCP1 and CYS6 oppositely regulate PTI responses. Genetic and biochemical analyses revealed that CYS6 interacts with XCP1 and depends on XCP1 to enhance PTI. Further experiments showed that XCP1 interacts with RBOHD and accelerates RBOHD degradation in a vacuole-mediated manner. CYS6 inhibited the protease activity of XCP1 toward RBOHD, which is critical for RBOHD accumulation upon pathogen infection. As CYS6, XCP1, and RBOHD are conserved in all plant species tested, our findings suggest the existence of a conserved strategy to precisely regulate ROS production under different conditions by modulating the stability of RBOHD.
Collapse
Affiliation(s)
- Yang Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Tingting Gong
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Xiangjiu Kong
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Jiaqi Sun
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Lijing Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| |
Collapse
|
32
|
Chi T, Sang T, Wang Y, Ye Z. Cleavage and Noncleavage Chemistry in Reactive Oxygen Species (ROS)-Responsive Materials for Smart Drug Delivery. Bioconjug Chem 2024; 35:1-21. [PMID: 38118277 DOI: 10.1021/acs.bioconjchem.3c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The design and development of advanced drug delivery systems targeting reactive oxygen species (ROS) have gained significant interest in recent years for treating various diseases, including cancer, psychiatric diseases, cardiovascular diseases, neurological diseases, metabolic diseases, and chronic inflammations. Integrating specific chemical bonds capable of effectively responding to ROS and triggering drug release into the delivery system is crucial. In this Review, we discuss commonly used conjugation linkers (chemical bonds) and categorize them into two groups: cleavable linkers and noncleavable linkers. Our goal is to clarify their unique drug release mechanisms from a chemical perspective and provide practical organic synthesis approaches for their efficient production. We showcase numerous significant examples to demonstrate their synthesis routes and diverse applications. Ultimately, we strive to present a comprehensive overview of cleavage and noncleavage chemistry, offering insights into the development of smart drug delivery systems that respond to ROS.
Collapse
Affiliation(s)
- Teng Chi
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ting Sang
- School of Stomatology of Nanchang University & Jiangxi Province Clinical Research Center for Oral Diseases & The Key Laboratory of Oral Biomedicine, Nanchang 330006, China
| | - Yanjing Wang
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Zhou Ye
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong S.A.R. 999077, China
| |
Collapse
|
33
|
Liu F, Cai S, Wu P, Dai L, Li X, Ai N, Feng G, Wang N, Zhou B. General Regulatory Factor7 regulates innate immune signalling to enhance Verticillium wilt resistance in cotton. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:468-482. [PMID: 37776224 DOI: 10.1093/jxb/erad385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/28/2023] [Indexed: 10/02/2023]
Abstract
Sessile growing plants are always vulnerable to microbial pathogen attacks throughout their lives. To fend off pathogen invasion, plants have evolved a sophisticated innate immune system that consists of cell surface receptors and intracellular receptors. Somatic embryogenesis receptor kinases (SERKs) belong to a small group of leucine-rich repeat receptor-like kinases (LRR-RLKs) that function as co-receptors regulating diverse physiological processes. GENRAL REGULATORY FACTOR (GRF) proteins play an important role in physiological signalling transduction. However, the function of GRF proteins in plant innate immune signalling remains elusive. Here, we identified a GRF gene, GauGRF7, that is expressed both constitutively and in response to fungal pathogen infection. Intriguingly, silencing of GRF7 compromised plant innate immunity, resulting in susceptibility to Verticillium dahliae infection. Both transgenic GauGRF7 cotton and transgenic GauGRF7 Arabidopsis lines enhanced the innate immune response to V. dahliae infection, leading to high expression of two helper NLRs (hNLR) genes (ADR1 and NRG1) and pathogenesis-related genes, and increased ROS production and salicylic acid level. Moreover, GauGRF7 interacted with GhSERK1, which positively regulated GRF7-mediated innate immune response in cotton and Arabidopsis. Our findings revealed the molecular mechanism of the GRF protein in plant immune signaling and offer potential opportunities for improving plant resistance to V. dahliae infection.
Collapse
Affiliation(s)
- Fujie Liu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, and Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Sheng Cai
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, and Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
- Nanjing Forestry University, 159 Longpan Road, Nanjing 210095, Jiangsu, People's Republic of China
| | - Peng Wu
- College of Plant Science, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China
| | - Lingjun Dai
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, and Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Xinyi Li
- College of Plant Science, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China
| | - Nijiang Ai
- Shihezi Agricultural Science Research Institute, Shihezi 832000, Xinjiang, People's Republic of China
| | - Guoli Feng
- Shihezi Agricultural Science Research Institute, Shihezi 832000, Xinjiang, People's Republic of China
| | - Ningshan Wang
- Shihezi Agricultural Science Research Institute, Shihezi 832000, Xinjiang, People's Republic of China
| | - Baoliang Zhou
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, and Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| |
Collapse
|
34
|
Wang R, Li C, Jia Z, Su Y, Ai Y, Li Q, Guo X, Tao Z, Lin F, Liang Y. Reversible phosphorylation of a lectin-receptor-like kinase controls xylem immunity. Cell Host Microbe 2023; 31:2051-2066.e7. [PMID: 37977141 DOI: 10.1016/j.chom.2023.10.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/23/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
Pattern-recognition receptors (PRRs) mediate basal resistance to most phytopathogens. However, plant responses can be cell type specific, and the mechanisms governing xylem immunity remain largely unknown. We show that the lectin-receptor-like kinase LORE contributes to xylem basal resistance in Arabidopsis upon infection with Ralstonia solanacearum, a destructive plant pathogen that colonizes the xylem to cause bacterial wilt. Following R. solanacearum infection, LORE is activated by phosphorylation at residue S761, initiating a phosphorelay that activates reactive oxygen species production and cell wall lignification. To prevent prolonged activation of immune signaling, LORE recruits and phosphorylates type 2C protein phosphatase LOPP, which dephosphorylates LORE and attenuates LORE-mediated xylem immunity to maintain immune homeostasis. A LOPP knockout confers resistance against bacterial wilt disease in Arabidopsis and tomatoes without impacting plant growth. Thus, our study reveals a regulatory mechanism in xylem immunity involving the reversible phosphorylation of receptor-like kinases.
Collapse
Affiliation(s)
- Ran Wang
- Zhejiang Xianghu Laboratory, Department of Plant Protection, Zhejiang University, Hangzhou 310058, China
| | - Chenying Li
- Zhejiang Xianghu Laboratory, Department of Plant Protection, Zhejiang University, Hangzhou 310058, China
| | - Zhiyi Jia
- Zhejiang Xianghu Laboratory, Department of Plant Protection, Zhejiang University, Hangzhou 310058, China
| | - Yaxing Su
- Zhejiang Xianghu Laboratory, Department of Plant Protection, Zhejiang University, Hangzhou 310058, China
| | - Yingfei Ai
- Zhejiang Xianghu Laboratory, Department of Plant Protection, Zhejiang University, Hangzhou 310058, China
| | - Qinghong Li
- Zhejiang Xianghu Laboratory, Department of Plant Protection, Zhejiang University, Hangzhou 310058, China
| | - Xijie Guo
- Zhejiang Xianghu Laboratory, Department of Plant Protection, Zhejiang University, Hangzhou 310058, China
| | - Zeng Tao
- Zhejiang Xianghu Laboratory, Department of Plant Protection, Zhejiang University, Hangzhou 310058, China
| | - Fucheng Lin
- Zhejiang Xianghu Laboratory, Department of Plant Protection, Zhejiang University, Hangzhou 310058, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Hangzhou 311200, China.
| | - Yan Liang
- Zhejiang Xianghu Laboratory, Department of Plant Protection, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
35
|
Dobrogojski J, Nguyen VH, Kowalska J, Borek S, Pietrowska-Borek M. The Plasma Membrane Purinoreceptor P2K1/DORN1 Is Essential in Stomatal Closure Evoked by Extracellular Diadenosine Tetraphosphate (Ap 4A) in Arabidopsis thaliana. Int J Mol Sci 2023; 24:16688. [PMID: 38069010 PMCID: PMC10706190 DOI: 10.3390/ijms242316688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Dinucleoside polyphosphates (NpnNs) are considered novel signalling molecules involved in the induction of plant defence mechanisms. However, NpnN signal recognition and transduction are still enigmatic. Therefore, the aim of our research was the identification of the NpnN receptor and signal transduction pathways evoked by these nucleotides. Earlier, we proved that purine and pyrimidine NpnNs differentially affect the phenylpropanoid pathway in Vitis vinifera suspension-cultured cells. Here, we report, for the first time, that both diadenosine tetraphosphate (Ap4A) and dicytidine tetraphosphate (Cp4C)-induced stomatal closure in Arabidopsis thaliana. Moreover, we showed that plasma membrane purinoreceptor P2K1/DORN1 (does not respond to nucleotide 1) is essential for Ap4A-induced stomata movements but not for Cp4C. Wild-type Col-0 and the dorn1-3 A. thaliana knockout mutant were used. Examination of the leaf epidermis dorn1-3 mutant provided evidence that P2K1/DORN1 is a part of the signal transduction pathway in stomatal closure evoked by extracellular Ap4A but not by Cp4C. Reactive oxygen species (ROS) are involved in signal transduction caused by Ap4A and Cp4C, leading to stomatal closure. Ap4A induced and Cp4C suppressed the transcriptional response in wild-type plants. Moreover, in dorn1-3 leaves, the effect of Ap4A on gene expression was impaired. The interaction between P2K1/DORN1 and Ap4A leads to changes in the transcription of signalling hubs in signal transduction pathways.
Collapse
Affiliation(s)
- Jędrzej Dobrogojski
- Department of Biochemistry and Biotechnology, Faculty of Agriculture, Horticulture and Bioengineering, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland;
| | - Van Hai Nguyen
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland; (V.H.N.); (J.K.)
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland; (V.H.N.); (J.K.)
| | - Sławomir Borek
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland;
| | - Małgorzata Pietrowska-Borek
- Department of Biochemistry and Biotechnology, Faculty of Agriculture, Horticulture and Bioengineering, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland;
| |
Collapse
|
36
|
Wang Z, Li X, Yao X, Ma J, Lu K, An Y, Sun Z, Wang Q, Zhou M, Qin L, Zhang L, Zou S, Chen L, Song C, Dong H, Zhang M, Chen X. MYB44 regulates PTI by promoting the expression of EIN2 and MPK3/6 in Arabidopsis. PLANT COMMUNICATIONS 2023; 4:100628. [PMID: 37221824 PMCID: PMC10721452 DOI: 10.1016/j.xplc.2023.100628] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/03/2023] [Accepted: 05/18/2023] [Indexed: 05/25/2023]
Abstract
The plant signaling pathway that regulates pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) involves mitogen-activated protein kinase (MAPK) cascades that comprise sequential activation of several protein kinases and the ensuing phosphorylation of MAPKs, which activate transcription factors (TFs) to promote downstream defense responses. To identify plant TFs that regulate MAPKs, we investigated TF-defective mutants of Arabidopsis thaliana and identified MYB44 as an essential constituent of the PTI pathway. MYB44 confers resistance against the bacterial pathogen Pseudomonas syringae by cooperating with MPK3 and MPK6. Under PAMP treatment, MYB44 binds to the promoters of MPK3 and MPK6 to activate their expression, leading to phosphorylation of MPK3 and MPK6 proteins. In turn, phosphorylated MPK3 and MPK6 phosphorylate MYB44 in a functionally redundant manner, thus enabling MYB44 to activate MPK3 and MPK6 expression and further activate downstream defense responses. Activation of defense responses has also been attributed to activation of EIN2 transcription by MYB44, which has previously been shown to affect PAMP recognition and PTI development. AtMYB44 thus functions as an integral component of the PTI pathway by connecting transcriptional and posttranscriptional regulation of the MPK3/6 cascade.
Collapse
Affiliation(s)
- Zuodong Wang
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Xiaoxu Li
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Xiaohui Yao
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China; Qilu College, Shandong Agricultural University, Taian 271018, China
| | - Jinbiao Ma
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Lu
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Yuyan An
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Zhimao Sun
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Qian Wang
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Miao Zhou
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Lina Qin
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Liyuan Zhang
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Shenshen Zou
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Lei Chen
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Congfeng Song
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Hansong Dong
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China; Qilu College, Shandong Agricultural University, Taian 271018, China.
| | - Meixiang Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| | - Xiaochen Chen
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
37
|
Hashimoto T, Hashimoto K, Shindo H, Tsuboyama S, Miyakawa T, Tanokura M, Kuchitsu K. Enhanced Ca 2+ binding to EF-hands through phosphorylation of conserved serine residues activates MpRBOHB and chitin-triggered ROS production. PHYSIOLOGIA PLANTARUM 2023; 175:e14101. [PMID: 38148249 DOI: 10.1111/ppl.14101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/14/2023] [Indexed: 12/28/2023]
Abstract
NADPH oxidases/RBOHs catalyze apoplastic ROS production and act as key signaling nodes, integrating multiple signal transduction pathways regulating plant development and stress responses. Although RBOHs have been suggested to be activated by Ca2+ binding and phosphorylation by various protein kinases, a mechanism linking Ca2+ binding and phosphorylation in the activity regulation remained elusive. Chitin-triggered ROS production required cytosolic Ca2+ elevation and Ca2+ binding to MpRBOHB in a liverwort Marchantia polymorpha. Heterologous expression analysis of truncated variants revealed that a segment of the N-terminal cytosolic region highly conserved among land plant RBOHs encompassing the two EF-hand motifs is essential for the activation of MpRBOHB. Within the conserved regulatory domain, we have identified two Ser residues whose phosphorylation is critical for the activation in planta. Isothermal titration calorimetry analyses revealed that phosphorylation of the two Ser residues increased the Ca2+ binding affinity of MpRBOHB, while Ca2+ binding is indispensable for the activation, even if the two Ser residues are phosphorylated. Our findings shed light on a mechanism through which phosphorylation potentiates the Ca2+ -dependent activation of MpRBOHB, emphasizing the pivotal role of Ca2+ binding in mediating the Ca2+ and phosphorylation-driven activation of MpRBOHB, which is likely to represent a fundamental mechanism conserved among land plant RBOHs.
Collapse
Affiliation(s)
- Takafumi Hashimoto
- Department of Applied Biological Science, Tokyo University of Science, Chiba, Japan
| | - Kenji Hashimoto
- Department of Applied Biological Science, Tokyo University of Science, Chiba, Japan
| | - Hiroki Shindo
- Department of Applied Biological Science, Tokyo University of Science, Chiba, Japan
| | - Shoko Tsuboyama
- Department of Applied Biological Science, Tokyo University of Science, Chiba, Japan
| | - Takuya Miyakawa
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuyuki Kuchitsu
- Department of Applied Biological Science, Tokyo University of Science, Chiba, Japan
| |
Collapse
|
38
|
Wu B, Qi F, Liang Y. Fuels for ROS signaling in plant immunity. TRENDS IN PLANT SCIENCE 2023; 28:1124-1131. [PMID: 37188557 DOI: 10.1016/j.tplants.2023.04.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023]
Abstract
Reactive oxygen species (ROS) signaling has an important role in plant innate immune responses and is primarily mediated by NADPH oxidase, also known as respiratory burst oxidase homologs (RBOHs) in plants. NADPH serves as a fuel for RBOHs and limits the rate or amount of ROS production. Molecular regulation of RBOHs has been extensively studied; however, the source of NADPH for RBOHs has received little attention. Here, we review ROS signaling and the regulation of RBOHs in the plant immune system with a focus on NADPH regulation to achieve ROS homeostasis. We propose an idea to regulate the levels of NADPH as part of a new strategy to control ROS signaling and the corresponding downstream defense responses.
Collapse
Affiliation(s)
- Binyan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fan Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yan Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
39
|
Zhou X, Chen Q, Chen L, Liao X, Wang Z, Zhu F. The effect of reactive oxygen species (ROS) in immunity and WSSV infection of Scylla paramamosain. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109075. [PMID: 37730076 DOI: 10.1016/j.fsi.2023.109075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/22/2023]
Abstract
Reactive oxygen species (ROS) are typically regarded as being generated by the cellular respiratory chain or by cells under pathological damage, which play a crucial role as signaling molecules in promoting hemocytes circulation and normal cellular physiological functions. In this study, the antioxidant N-acetylcysteine (NAC) was used to reduce ROS in vivo and in vitro, which to analyze the effect of ROS on innate immunity and viral infection of mud crab. The total hemocyte count (THC), phenoloxidase (PO), superoxide dismutase (SOD) activity, immune-relative genes were analyzed, respectively. Moreover, the effect of ROS on WSSV infection was analyzed by THC and hemocytes apoptosis. The data showed that NAC could effectively remove and inhibit intracellular ROS. The THC of NAC group was reduced at 12 h and 24 h compared with that of control. And the inhibition of ROS by NAC could increase the SOD activity with control group, while increased the PO activity caused by early WSSV infection. And NAC could up-regulate the expression of MCM7, JAK, TLR and proPO significantly, while down-regulate the expression of Astakine, proPO, caspase and p53. Similarly, NAC could inhibit WSSV-induced apoptosis of S. paramamosain hemocytes. The data illustrated that ROS participates in the interaction between hemocytes and virus infection by regulating innate immunity. Especially, after NAC inhibited ROS, the expression of hemocytes proliferation gene Astakine was also inhibited, which may indicate that ROS is related to the process of hemocytes proliferation. The data will show a preliminary exploration on the regulatory role of ROS in crustacean immune system.
Collapse
Affiliation(s)
- Xiujuan Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Qihui Chen
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Luna Chen
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Xinqi Liao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Zuoyuan Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Fei Zhu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China.
| |
Collapse
|
40
|
Yang X, Yan S, Li Y, Li G, Sun S, Li J, Cui Z, Huo J, Sun Y, Wang X, Liu F. Comparison of Transcriptome between Tolerant and Susceptible Rice Cultivar Reveals Positive and Negative Regulators of Response to Rhizoctonia solani in Rice. Int J Mol Sci 2023; 24:14310. [PMID: 37762614 PMCID: PMC10532033 DOI: 10.3390/ijms241814310] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Rice (Oryza sativa L.) is one of the world's most crucial food crops, as it currently supports more than half of the world's population. However, the presence of sheath blight (SB) caused by Rhizoctonia solani has become a significant issue for rice agriculture. This disease is responsible for causing severe yield losses each year and is a threat to global food security. The breeding of SB-resistant rice varieties requires a thorough understanding of the molecular mechanisms involved and the exploration of immune genes in rice. To this end, we conducted a screening of rice cultivars for resistance to SB and compared the transcriptome based on RNA-seq between the most tolerant and susceptible cultivars. Our study revealed significant transcriptomic differences between the tolerant cultivar ZhengDao 22 (ZD) and the most susceptible cultivar XinZhi No.1 (XZ) in response to R. solani invasion. Specifically, the tolerant cultivar showed 7066 differentially expressed genes (DEGs), while the susceptible cultivar showed only 60 DEGs. In further analysis, we observed clear differences in gene category between up- and down-regulated expression of genes (uDEGs and dDEGs) based on Gene Ontology (GO) classes in response to infection in the tolerant cultivar ZD, and then identified uDEGs related to cell surface pattern recognition receptors, the Ca2+ ion signaling pathway, and the Mitogen-Activated Protein Kinase (MAPK) cascade that play a positive role against R. solani. In addition, DEGs of the jasmonic acid and ethylene signaling pathways were mainly positively regulated, whereas DEGs of the auxin signaling pathway were mainly negatively regulated. Transcription factors were involved in the immune response as either positive or negative regulators of the response to this pathogen. Furthermore, our results showed that chloroplasts play a crucial role and that reduced photosynthetic capacity is a critical feature of this response. The results of this research have important implications for better characterization of the molecular mechanism of SB resistance and for the development of resistant cultivars through molecular breeding methods.
Collapse
Affiliation(s)
- Xiurong Yang
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Shuangyong Yan
- Institute of Crop Research, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Yuejiao Li
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Guangsheng Li
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Shuqin Sun
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Junling Li
- Institute of Crop Research, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Zhongqiu Cui
- Institute of Crop Research, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Jianfei Huo
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Yue Sun
- Institute of Crop Research, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Xiaojing Wang
- Institute of Crop Research, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Fangzhou Liu
- Institute of Crop Research, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| |
Collapse
|
41
|
Liu Y, Wu P, Li B, Wang W, Zhu B. Phosphoribosyltransferases and Their Roles in Plant Development and Abiotic Stress Response. Int J Mol Sci 2023; 24:11828. [PMID: 37511586 PMCID: PMC10380321 DOI: 10.3390/ijms241411828] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Glycosylation is a widespread glycosyl modification that regulates gene expression and metabolite bioactivity in all life processes of plants. Phosphoribosylation is a special glycosyl modification catalyzed by phosphoribosyltransferase (PRTase), which functions as a key step in the biosynthesis pathway of purine and pyrimidine nucleotides, histidine, tryptophan, and coenzyme NAD(P)+ to control the production of these essential metabolites. Studies in the past decades have reported that PRTases are indispensable for plant survival and thriving, whereas the complicated physiological role of PRTases in plant life and their crosstalk is not well understood. Here, we comprehensively overview and critically discuss the recent findings on PRTases, including their classification, as well as the function and crosstalk in regulating plant development, abiotic stress response, and the balance of growth and stress responses. This review aims to increase the understanding of the role of plant PRTase and also contribute to future research on the trade-off between plant growth and stress response.
Collapse
Affiliation(s)
- Ye Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Peiwen Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Bowen Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Weihao Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Benzhong Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
42
|
Leng J, Wei X, Jin X, Wang L, Fan K, Zou K, Zheng Z, Saridis G, Zhao N, Zhou D, Duanmu D, Wang E, Cui H, Bucher M, Xue L. ARBUSCULAR MYCORRHIZA-INDUCED KINASES AMK8 and AMK24 associate with the receptor-like kinase KINASE3 to regulate arbuscular mycorrhizal symbiosis in Lotus japonicus. THE PLANT CELL 2023; 35:2006-2026. [PMID: 36808553 DOI: 10.1093/plcell/koad050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 01/17/2023] [Accepted: 02/01/2023] [Indexed: 05/30/2023]
Abstract
Arbuscular mycorrhizal (AM) symbiosis is a widespread, ancient mutualistic association between plants and fungi, and facilitates nutrient uptake into plants. Cell surface receptor-like kinases (RLKs) and receptor-like cytoplasmic kinases (RLCKs) play pivotal roles in transmembrane signaling, while few RLCKs are known to function in AM symbiosis. Here, we show that 27 out of 40 AM-induced kinases (AMKs) are transcriptionally upregulated by key AM transcription factors in Lotus japonicus. Nine AMKs are only conserved in AM-host lineages, among which the SPARK-RLK-encoding gene KINASE3 (KIN3) and the RLCK paralogues AMK8 and AMK24 are required for AM symbiosis. KIN3 expression is directly regulated by the AP2 transcription factor CTTC MOTIF-BINDING TRANSCRIPTION FACTOR1 (CBX1), which regulates the reciprocal exchange of nutrients in AM symbiosis, via the AW-box motif in the KIN3 promoter. Loss of function mutations in KIN3, AMK8, or AMK24 result in reduced mycorrhizal colonization in L. japonicus. AMK8 and AMK24 physically interact with KIN3. KIN3 and AMK24 are active kinases and AMK24 directly phosphorylates KIN3 in vitro. Moreover, CRISPR-Cas9-mediated mutagenesis of OsRLCK171, the sole homolog of AMK8 and AMK24 in rice (Oryza sativa), leads to diminished mycorrhization with stunted arbuscules. Overall, our results reveal a crucial role of the CBX1-driven RLK/RLCK complex in the evolutionarily conserved signaling pathway enabling arbuscule formation.
Collapse
Affiliation(s)
- Junchen Leng
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaotong Wei
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xinyi Jin
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Longxiang Wang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Kai Fan
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ke Zou
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zichao Zheng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Georgios Saridis
- Institute for Plant Science, Cologne Biocenter, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Zuelpicher Str. 47b, Cologne D-50674, Germany
| | - Ningkang Zhao
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Dan Zhou
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Deqiang Duanmu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Haitao Cui
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Marcel Bucher
- Institute for Plant Science, Cologne Biocenter, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Zuelpicher Str. 47b, Cologne D-50674, Germany
| | - Li Xue
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
43
|
Yan J, Su P, Meng X, Liu P. Phylogeny of the plant receptor-like kinase (RLK) gene family and expression analysis of wheat RLK genes in response to biotic and abiotic stresses. BMC Genomics 2023; 24:224. [PMID: 37127571 PMCID: PMC10152718 DOI: 10.1186/s12864-023-09303-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/10/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND The receptor-like kinase (RLK) gene families in plants contains a large number of members. They are membrane proteins with an extracellular receptor domain and participate in biotic and abiotic stress responses. RESULTS In this study, we identified RLKs in 15 representative plant genomes, including wheat, and classified them into 64 subfamilies by using four types of phylogenetic trees and HMM models. Conserved exon‒intron structures with conserved exon phases in the kinase domain were found in many RLK subfamilies from Physcomitrella patens to Triticum aestivum. Domain distributions of RLKs were also diagrammed. Collinearity events and tandem gene clusters suggested that polyploidization and tandem duplication events contributed to the member expansions of T. aestivum RLKs. Global expression pattern analysis was performed by using public transcriptome data. These analyses were involved in T. aestivum, Aegilops tauschii and Brachypodium distachyon RLKs under biotic and abiotic stresses. We also selected 9 RLKs to validate the transcriptome prediction by using qRT‒PCR under drought treatment and with Fusarium graminearum infection. The expression trends of these 9 wheat RLKs from public transcriptome data were consistent with the results of qRT‒PCR, indicating that they might be stress response genes under drought or F. graminearum treatments. CONCLUSION In this study, we identified, classified, evolved, and expressed RLKs in wheat and related plants. Thus, our results will provide insights into the evolutionary history and molecular mechanisms of wheat RLKs.
Collapse
Affiliation(s)
- Jun Yan
- Key Laboratory of Huang-Huai-Hai Smart Agricultural Technology of the Ministry of Agriculture and Rural Affairs, College of Information Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China.
| | - Peisen Su
- College of Agronomy, Liaocheng University, Liaocheng, 252059, People's Republic of China.
| | - Xianyong Meng
- Key Laboratory of Huang-Huai-Hai Smart Agricultural Technology of the Ministry of Agriculture and Rural Affairs, College of Information Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Pingzeng Liu
- Key Laboratory of Huang-Huai-Hai Smart Agricultural Technology of the Ministry of Agriculture and Rural Affairs, College of Information Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China.
| |
Collapse
|
44
|
Zhang T, Hu H, Wang Z, Feng T, Yu L, Zhang J, Gao W, Zhou Y, Sun M, Liu P, Zhong K, Chen Z, Chen J, Li W, Yang J. Wheat yellow mosaic virus NIb targets TaVTC2 to elicit broad-spectrum pathogen resistance in wheat. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1073-1088. [PMID: 36715229 PMCID: PMC10106851 DOI: 10.1111/pbi.14019] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 12/20/2022] [Accepted: 01/23/2023] [Indexed: 05/03/2023]
Abstract
GDP-L-galactose phosphorylase (VTC2) catalyses the conversion of GDP-L-galactose to L-galactose-1-P, a vital step of ascorbic acid (AsA) biosynthesis in plants. AsA is well known for its function in the amelioration of oxidative stress caused by most pathogen infection, but its function against viral infection remains unclear. Here, we have identified a VTC2 gene in wheat named as TaVTC2 and investigated its function in association with the wheat yellow mosaic virus (WYMV) infection. Our results showed that overexpression of TaVTC2 significantly increased viral accumulation, whereas knocking down TaVTC2 inhibited the viral infection in wheat, suggesting a positive regulation on viral infection by TaVTC2. Moreover, less AsA was produced in TaVTC2 knocking down plants (TaVTC2-RNAi) which due to the reduction in TaVTC2 expression and subsequently in TaVTC2 activity, resulting in a reactive oxygen species (ROS) burst in leaves. Furthermore, the enhanced WYMV resistance in TaVTC2-RNAi plants was diminished by exogenously applied AsA. We further demonstrated that WYMV NIb directly bound to TaVTC2 and inhibited TaVTC2 enzymatic activity in vitro. The effect of TaVTC2 on ROS scavenge was suppressed by NIb in a dosage-dependent manner, indicating the ROS scavenging was highly regulated by the interaction of TaVTC2 with NIb. Furthermore, TaVTC2 RNAi plants conferred broad-spectrum disease resistance. Therefore, the data indicate that TaVTC2 recruits WYMV NIb to down-regulate its own enzymatic activity, reducing AsA accumulation to elicit a burst of ROS which confers the resistance to WYMV infection. Thus, a new mechanism of the formation of plant innate immunity was proposed.
Collapse
Affiliation(s)
- Tianye Zhang
- State Key Laboratory for Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Haichao Hu
- State Key Laboratory for Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Ziqiong Wang
- State Key Laboratory for Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
| | | | - Lu Yu
- Guizhou UniversityGuiyangGuizhouChina
| | - Jie Zhang
- State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Wenqing Gao
- State Key Laboratory for Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Yilin Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Meihao Sun
- College of Chemistry and Life ScienceZhejiang Normal UniversityJinhuaChina
| | - Peng Liu
- State Key Laboratory for Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Kaili Zhong
- State Key Laboratory for Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - ZhiHui Chen
- School of Life SciencesUniversity of DundeeDundeeUK
| | - Jianping Chen
- State Key Laboratory for Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Wei Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant ProtectionHunan Agricultural UniversityChangshaChina
| | - Jian Yang
- State Key Laboratory for Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
| |
Collapse
|
45
|
Wang Q, Shen T, Ni L, Chen C, Jiang J, Cui Z, Wang S, Xu F, Yan R, Jiang M. Phosphorylation of OsRbohB by the protein kinase OsDMI3 promotes H 2O 2 production to potentiate ABA responses in rice. MOLECULAR PLANT 2023; 16:882-902. [PMID: 37029489 DOI: 10.1016/j.molp.2023.04.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 02/02/2023] [Accepted: 04/02/2023] [Indexed: 05/04/2023]
Abstract
In rice, the Ca2+/calmodulin-dependent protein kinase OsDMI3 is an important positive regulator of abscisic acid (ABA) signaling. In ABA signaling, H2O2 is required for ABA-induced activation of OsDMI3, which in turn increase H2O2 production. However, how OsDMI3 regulates H2O2 production in ABA signaling remains unknown. Here we show that OsRbohB is the main NADPH oxidase involved in ABA-induced H2O2 production and ABA-mediated physiological responses. OsDMI3 directly interacts with and phosphorylates OsRbohB at Ser-191, which is OsDMI3-mediated site-specific phosphorylation in ABA signaling. Further analyses revealed that OsDMI3-mediated OsRbohB Ser-191 phosphorylation positively regulates the activity of NADPH oxidase and the production of H2O2 in ABA signaling, thereby enhancing the sensitivity of seed germination and root growth to ABA and plant tolerance to water stress and oxidative stress. Moreover, we discovered that the OsDMI3-mediated OsRbohB phosphorylation and H2O2 production is dependent on the sucrose non-fermenting 1-related protein kinases SAPK8/9/10, which phosphorylate OsRbohB at Ser-140 in ABA signaling. Taken together, these results not only reveal an important regulatory mechanism that directly activates Rboh for ABA-induced H2O2 production but also uncover the importance of this regulatory mechanism in ABA signaling.
Collapse
Affiliation(s)
- Qingwen Wang
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Tao Shen
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Lan Ni
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Chen
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingjing Jiang
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenzhen Cui
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuang Wang
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fengjuan Xu
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Runjiao Yan
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingyi Jiang
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
46
|
Jin H, Wang D, Wang X. A novel module regulating ROS in NLR-mediated immunity. TRENDS IN PLANT SCIENCE 2023; 28:512-514. [PMID: 36801196 DOI: 10.1016/j.tplants.2023.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 05/22/2023]
Abstract
The regulatory mechanisms of apoplastic reactive oxygen species (ROS) production during pattern-triggered immunity (PTI) are well known. However, how ROS levels are regulated during effector-triggered immunity (ETI) remains largely unknown. Recently, Zhang et al. discovered that MAPK-Alfin-like 7 module enhances nucleotide-binding, leucine-rich repeat receptor (NLR)-mediated immunity by negatively regulating genes encoding ROS scavenging enzymes, deepening our understanding of ROS control during ETI in plants.
Collapse
Affiliation(s)
- Huaibing Jin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, and College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
47
|
Zhang Y, Zhu M, Pan J, Qiu Q, Tong X, Hu X, Gong C. BmCPV replication is suppressed by the activation of the NF-κB/autophagy pathway through the interaction of vsp21 translated by vcircRNA_000048 with ubiquitin carboxyl-terminal hydrolase. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 156:103947. [PMID: 37086910 DOI: 10.1016/j.ibmb.2023.103947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/16/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
Bombyx mori cypovirus (BmCPV), a typical double-stranded RNA virus, was demonstrated to generate a viral circRNA, vcircRNA_000048, which encodes a vsp21 with 21 amino acid residues to suppress viral replication. However, the regulatory mechanism of vsp21 on virus infection remained unclear. This study discovered that vsp21 induces reactive oxygen species (ROS) generation, activates autophagy, and attenuates virus replication by inducing autophagy. Then we confirmed that the effect of vsp21-induced autophagy on viral replication was attributed to the activation of the NF-κB signaling pathway. Furthermore, we clarified that vsp21 interacted with ubiquitin carboxyl-terminal hydrolase (UCH) and that ubiquitination and degradation of phospho-IκB-α were enhanced by vsp21 via competitive binding to UCH. Finally, we validated that vsp21 activates the NF-κB/autophagy pathway to suppress viral replication by interacting with UCH. These findings provided new insights into regulating viral multiplication and reovirus-host interaction.
Collapse
Affiliation(s)
- Yunshan Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Min Zhu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Jun Pan
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Qunnan Qiu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Xinyu Tong
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Xiaolong Hu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; Institute of Agricultural Biotechnology and Ecological Research, Soochow University, Suzhou, 215123, China
| | - Chengliang Gong
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; Institute of Agricultural Biotechnology and Ecological Research, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
48
|
Hong X, Qi F, Wang R, Jia Z, Lin F, Yuan M, Xin XF, Liang Y. Ascorbate peroxidase 1 allows monitoring of cytosolic accumulation of effector-triggered reactive oxygen species using a luminol-based assay. PLANT PHYSIOLOGY 2023; 191:1416-1434. [PMID: 36461917 PMCID: PMC9922408 DOI: 10.1093/plphys/kiac551] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/04/2022] [Accepted: 12/02/2022] [Indexed: 05/06/2023]
Abstract
Biphasic production of reactive oxygen species (ROS) has been observed in plants treated with avirulent bacterial strains. The first transient peak corresponds to pattern-triggered immunity (PTI)-ROS, whereas the second long-lasting peak corresponds to effector-triggered immunity (ETI)-ROS. PTI-ROS are produced in the apoplast by plasma membrane-localized NADPH oxidases, and the recognition of an avirulent effector increases the PTI-ROS regulatory module, leading to ETI-ROS accumulation in the apoplast. However, how apoplastic ETI-ROS signaling is relayed to the cytosol is still unknown. Here, we found that in the absence of cytosolic ascorbate peroxidase 1 (APX1), the second phase of ETI-ROS accumulation was undetectable in Arabidopsis (Arabidopsis thaliana) using luminol-based assays. In addition to being a scavenger of cytosolic H2O2, we discovered that APX1 served as a catalyst in this chemiluminescence ROS assay by employing luminol as an electron donor. A horseradish peroxidase (HRP)-mimicking APX1 mutation (APX1W41F) further enhanced its catalytic activity toward luminol, whereas an HRP-dead APX1 mutation (APX1R38H) reduced its luminol oxidation activity. The cytosolic localization of APX1 implies that ETI-ROS might accumulate in the cytosol. When ROS were detected using a fluorescent dye, green fluorescence was observed in the cytosol 6 h after infiltration with an avirulent bacterial strain. Collectively, these results indicate that ETI-ROS eventually accumulate in the cytosol, and cytosolic APX1 catalyzes luminol oxidation and allows monitoring of the kinetics of ETI-ROS in the cytosol. Our study provides important insights into the spatial dynamics of ROS accumulation in plant immunity.
Collapse
Affiliation(s)
- Xiufang Hong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fan Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ran Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhiyi Jia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fucheng Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Minhang Yuan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiu-Fang Xin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yan Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
49
|
He J, Kong M, Qian Y, Gong M, Lv G, Song J. Cellobiose elicits immunity in lettuce conferring resistance to Botrytis cinerea. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:1022-1038. [PMID: 36385320 DOI: 10.1093/jxb/erac448] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Cellobiose is the primary product of cellulose hydrolysis and is expected to function as a type of pathogen/damage-associated molecular pattern in evoking plant innate immunity. In this study, cellobiose was demonstrated to be a positive regulator in the immune response of lettuce, but halted autoimmunity when lettuce was exposed to concentrations of cellobiose >60 mg l-1. When lettuce plants were infected by Botrytis cinerea, cellobiose endowed plants with enhanced pre-invasion resistance by activating high β-1,3-glucanase and antioxidative enzyme activities at the initial stage of pathogen infection. Cellobiose-activated core regulatory factors such as EDS1, PTI6, and WRKY70, as well as salicylic acid signaling, played an indispensable role in modulating plant growth-defense trade-offs. Transcriptomics data further suggested that the cellobiose-activated plant-pathogen pathways are involved in microbe/pathogen-associated molecular pattern-triggered immune responses. Genes encoding receptor-like kinases, transcription factors, and redox homeostasis, phytohormone signal transduction, and pathogenesis-related proteins were also up- or down-regulated by cellobiose. Taken together, the findings of this study demonstrated that cellobiose serves as an elicitor to directly activate disease-resistance-related cellular functions. In addition, multiple genes have been identified as potential modulators of the cellobiose-induced immune response, which could aid understanding of underlying molecular events.
Collapse
Affiliation(s)
- Jiuxing He
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Meng Kong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuanchao Qian
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Min Gong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guohua Lv
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiqing Song
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
50
|
Elicitation of Fruit Fungi Infection and Its Protective Response to Improve the Postharvest Quality of Fruits. STRESSES 2023. [DOI: 10.3390/stresses3010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Fruit diseases brought on by fungus infestation leads to postharvest losses of fresh fruit. Approximately 30% of harvested fruits do not reach consumers’ plates due to postharvest losses. Fungal pathogens play a substantial part in those losses, as they cause the majority of fruit rots and consumer complaints. Understanding fungal pathogenic processes and control measures is crucial for developing disease prevention and treatment strategies. In this review, we covered the presented pathogen entry, environmental conditions for pathogenesis, fruit’s response to pathogen attack, molecular mechanisms by which fungi infect fruits in the postharvest phase, production of mycotoxin, virulence factors, fungal genes involved in pathogenesis, and recent strategies for protecting fruit from fungal attack. Then, in order to investigate new avenues for ensuring fruit production, existing fungal management strategies were then assessed based on their mechanisms for altering the infection process. The goal of this review is to bridge the knowledge gap between the mechanisms of fungal disease progression and numerous disease control strategies being developed for fruit farming.
Collapse
|