1
|
Giri A, Mehan S, Khan Z, Das Gupta G, Narula AS, Kalfin R. Modulation of neural circuits by melatonin in neurodegenerative and neuropsychiatric disorders. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3867-3895. [PMID: 38225412 DOI: 10.1007/s00210-023-02939-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/30/2023] [Indexed: 01/17/2024]
Abstract
Neurodegenerative and neuropsychiatric disorders are two broad categories of neurological disorders characterized by progressive impairments in movement and cognitive functions within the central and peripheral nervous systems, and have emerged as a significant cause of mortality. Oxidative stress, neuroinflammation, and neurotransmitter imbalances are recognized as prominent pathogenic factors contributing to cognitive deficits and neurobehavioral anomalies. Consequently, preventing neurodegenerative and neuropsychiatric diseases has surfaced as a pivotal challenge in contemporary public health. This review explores the investigation of neurodegenerative and neuropsychiatric disorders using both synthetic and natural bioactive compounds. A central focus lies on melatonin, a neuroregulatory hormone secreted by the pineal gland in response to light-dark cycles. Melatonin, an amphiphilic molecule, assumes multifaceted roles, including scavenging free radicals, modulating energy metabolism, and synchronizing circadian rhythms. Noteworthy for its robust antioxidant and antiapoptotic properties, melatonin exhibits diverse neuroprotective effects. The inherent attributes of melatonin position it as a potential key player in the pathophysiology of neurological disorders. Preclinical and clinical studies have demonstrated melatonin's efficacy in alleviating neuropathological symptoms across neurodegenerative and neuropsychiatric conditions (depression, schizophrenia, bipolar disorder, and autism spectrum disorder). The documented neuroprotective prowess of melatonin introduces novel therapeutic avenues for addressing neurodegenerative and psychiatric disorders. This comprehensive review encompasses many of melatonin's applications in treating diverse brain disorders. Despite the strides made, realizing melatonin's full neuroprotective potential necessitates further rigorous clinical investigations. By unravelling the extended neuroprotective benefits of melatonin, future studies promise to deepen our understanding and augment the therapeutic implications against neurological deficits.
Collapse
Affiliation(s)
- Aditi Giri
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy Moga, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy Moga, Punjab, India.
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy Moga, Punjab, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | | | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC, 27516, USA
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, Sofia, 1113, Bulgaria
- Department of Healthcare, South-West University "NeofitRilski", Ivan Mihailov St. 66, Blagoevgrad, 2700, Bulgaria
| |
Collapse
|
2
|
Elkenawy NM, Ghaiad HR, Ibrahim SM, Aziz RK, Rashad E, Eraqi WA. Ubiquinol preserves immune cells in gamma-irradiated rats: Role of autophagy and apoptosis in splenic tissue. Int Immunopharmacol 2023; 123:110647. [PMID: 37499399 DOI: 10.1016/j.intimp.2023.110647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/02/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
Radiation has been applied in cancer treatment to eradicate tumors and displayed great therapeutic benefits for humans. However, it is associated with negative impacts on normal cells, not only cancer cells. Irradiation can trigger cell death through several mechanisms, such as apoptosis, necrosis, and autophagy. This study aimed to investigate the radioprotective efficacy of ubiquinol against radiation-induced splenic tissue injury in animals and the related involved mechanisms. Animals were classified into four groups: group 1 (normal untreated rats) received vehicle 5 % Tween 80; group 2 received 7 Gy γ-radiation; group 3 received 10 mg/Kg oral ubiquinol post-irradiation; and group 4 received 10 mg/Kg oral ubiquinol before and after (pre/post-) irradiation. Ubiquinol restored the spleen histoarchitecture, associated with improved immunohistochemical quantification of B and T lymphocyte markers and ameliorated hematological alterations induced by irradiation. Such effects may be due to an enhanced antioxidant pathway through stimulation of p62, Nrf2, and GSH, associated with reduced Keap1 and MDA. Moreover, ubiquinol decreased mTOR, thus enhanced autophagy markers viz. LC3-II. Furthermore, ubiquinol showed an antiapoptotic effect by enhancing Bcl-2 and reducing caspase-3 and Bax. Consequently, ubiquinol exerts a splenic-protective effect against irradiation via enhancing antioxidant, autophagic, and survival pathways.
Collapse
Affiliation(s)
- Nora Mohamed Elkenawy
- Drug Radiation Research Department, National Center of Radiation and Research Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt.
| | - Heba Ramadan Ghaiad
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Sherehan Mohamed Ibrahim
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Ramy Karam Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; Microbiology and Immunology Research Program, Children's Cancer Hospital (Egypt 57357), Cairo 11617, Egypt
| | - Eman Rashad
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Walaa Ahmed Eraqi
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
3
|
Xu G, Dong Y, Wang Z, Ding H, Wang J, Zhao J, Liu H, Lv W. Melatonin Attenuates Oxidative Stress-Induced Apoptosis of Bovine Ovarian Granulosa Cells by Promoting Mitophagy via SIRT1/FoxO1 Signaling Pathway. Int J Mol Sci 2023; 24:12854. [PMID: 37629033 PMCID: PMC10454225 DOI: 10.3390/ijms241612854] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Oxidative-stress-induced apoptosis of granulosa cells is considered to be a main driver of follicular atresia. Increasing evidence suggests a protective effect of melatonin against oxidative damage but the mechanism remains unclear. The aim of this study is to investigate the effects of melatonin on mitophagy and apoptosis of bovine ovarian granulosa cells under oxidative stress, and to clarify the mechanism. Our results indicate that melatonin inhibited H2O2-induced apoptosis and mitochondrial injury of bovine ovarian granulosa cells, as revealed by decreased apoptosis rate, reactive oxygen species (ROS) levels, Ca2+ concentration, and cytochrome C release and increased mitochondrial membrane potential (ΔΨm). Simultaneously, melatonin promoted mitophagy of bovine ovarian granulosa cells through increasing the expression of PTEN-induced putative kinase 1 (PINK1), PARKIN, BECLIN1, and LC3II/LC3I; decreasing the expression of sequestosome 1 (SQSMT1); and promoting mitophagosome and lysosome fusion. After treatment with a mitophagy inhibitor CsA, we found that melatonin alleviated apoptosis and mitochondrial injury through promoting mitophagy in bovine ovarian granulosa cells. Furthermore, melatonin promoted the expression of silent information regulator 1 (SIRT1) and decreased the expression level of forkhead transcription factors class O (type1) (FoxO1). By treatment with an SIRT1 inhibitor EX527 or FoxO1 overexpression, the promotion of melatonin on mitophagy as well as the inhibition on mitochondrial injury and apoptosis were reversed in bovine ovarian granulosa cells. In conclusion, our results suggest that melatonin could promote mitophagy to attenuate oxidative-stress-induced apoptosis and mitochondrial injury of bovine ovarian granulosa cells via the SIRT1/FoxO1 signaling pathway.
Collapse
Affiliation(s)
- Gaoqing Xu
- Jilin Provincial International Joint Research Center of Animal Breeding & Reproduction Technology, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yangyunyi Dong
- Jilin Provincial International Joint Research Center of Animal Breeding & Reproduction Technology, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Zhe Wang
- Jilin Provincial International Joint Research Center of Animal Breeding & Reproduction Technology, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - He Ding
- Jilin Provincial International Joint Research Center of Animal Breeding & Reproduction Technology, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jun Wang
- Jilin Provincial International Joint Research Center of Animal Breeding & Reproduction Technology, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jing Zhao
- Jilin Provincial International Joint Research Center of Animal Breeding & Reproduction Technology, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Hongyu Liu
- Jilin Provincial International Joint Research Center of Animal Breeding & Reproduction Technology, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Wenfa Lv
- Jilin Provincial International Joint Research Center of Animal Breeding & Reproduction Technology, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
4
|
Obrador E, Montoro A. Ionizing Radiation, Antioxidant Response and Oxidative Damage: Radiomodulators. Antioxidants (Basel) 2023; 12:1219. [PMID: 37371949 DOI: 10.3390/antiox12061219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Ionizing radiation (IR) is the energy released by atoms in the form of electromagnetic waves (e [...].
Collapse
Affiliation(s)
- Elena Obrador
- Elena Obrador Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
| | - Alegría Montoro
- Alegría Montoro, Radiation Protection Service, University and Polytechnic Hospital La Fe, 46021 Valencia, Spain
| |
Collapse
|
5
|
Motallebzadeh E, Aghighi F, Vakili Z, Talaei SA, Mohseni M. Neuroprotective effects of alpha-lipoic acid on radiation-induced brainstem injury in rats. Res Pharm Sci 2023; 18:202-209. [PMID: 36873276 PMCID: PMC9976052 DOI: 10.4103/1735-5362.367798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/08/2022] [Accepted: 09/11/2022] [Indexed: 01/20/2023] Open
Abstract
Background and purpose Alpha-lipoic acid (ALA) is an antioxidant with radioprotective properties. We designed the current work to assess the neuroprotective function of ALA in the presence of oxidative stress induced by radiation in the brainstem of rats. Experimental approach Whole-brain radiations (X-rays) was given at a single dose of 25 Gy with or without pretreatment with ALA (200 mg/kg BW). Eighty rats were categorized into four groups: vehicle control (VC), ALA, radiation-only (RAD), and radiation + ALA (RAL). The rats were given ALA intraperitoneally 1 h before radiation and killed following 6 h, thereafter superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and total antioxidant capacity (TAC) in the brainstem were measured. Furthermore, a pathological examination was carried out after 24 h, 72 h, and five days to determine tissue damage. Findings/Results The findings indicated that MDA levels in the brainstem were 46.29 ± 1.64 μM in the RAD group and decreased in the VC group (31.66 ± 1.72 μM). ALA pretreatment reduced MDA levels while simultaneously increasing SOD and CAT activity and TAC levels (60.26 ± 5.47 U/mL, 71.73 ± 2.88 U/mL, and 227.31 ± 9.40 mol/L, respectively). The greatest pathological changes in the rat's brainstems were seen in RAD animals compared to the VC group after 24 h, 72 h, and 5 days. As a result, karyorrhexis, pyknosis, vacuolization, and Rosenthal fibers vanished in the RAL group in three periods. Conclusion and implications ALA exhibited substantial neuroprotectivity following radiation-induced brainstem damage.
Collapse
Affiliation(s)
- Elham Motallebzadeh
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran.,Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Fatemeh Aghighi
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Zarichehr Vakili
- Department of Pathology, School of Medicine, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Sayyed Alireza Talaei
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Mehran Mohseni
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran.,Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| |
Collapse
|
6
|
Lalani AR, Fakhari F, Radgoudarzi S, Rastegar-Pouyani N, Moloudi K, Khodamoradi E, Taeb S, Najafi M. Immunoregulation by resveratrol; implications for normal tissue protection and tumour suppression. Clin Exp Pharmacol Physiol 2023; 50:353-368. [PMID: 36786378 DOI: 10.1111/1440-1681.13760] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/29/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023]
Abstract
Immune reactions are involved in both tumour and normal tissue in response to therapy. Elevated secretion of certain chemokines, exosomes and cytokines triggers inflammation, pain, fibrosis and ulceration among other normal tissue side effects. On the other hand, secretion of tumour-promoting molecules suppresses activity of anticancer immune cells and facilitates the proliferation of malignant cells. Novel anticancer drugs such as immune checkpoint inhibitors (ICIs) boost anticancer immunity via inducing the proliferation of anticancer cells such as natural killer (NK) cells and CD8+ T lymphocytes. Certain chemotherapy drugs and radiotherapy may induce anticancer immunity in the tumour, however, both have severe side effects for normal tissues through stimulation of several immune responses. Thus, administration of natural products with low side effects may be a promising approach to modulate the immune system in both tumour and normal organs. Resveratrol is a well-known phenol with diverse effects on normal tissues and tumours. To date, a large number of experiments have confirmed the potential of resveratrol as an anticancer adjuvant. This review focuses on ensuing stimulation or suppression of immune responses in both tumour and normal tissue after radiotherapy or anticancer drugs. Later on, the immunoregulatory effects of resveratrol in both tumour and normal tissue following exposure to anticancer agents will be discussed.
Collapse
Affiliation(s)
- Armineh Rezagholi Lalani
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Fatemeh Fakhari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Shakila Radgoudarzi
- I.M. Sechenov First Moscow State Medical University (Первый МГМУ им), Moscow, Russia
| | - Nima Rastegar-Pouyani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Kave Moloudi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Khodamoradi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahram Taeb
- Department of Radiology, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran.,Medical Biotechnology Research Center, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
7
|
Obrador E, Salvador-Palmer R, Villaescusa JI, Gallego E, Pellicer B, Estrela JM, Montoro A. Nuclear and Radiological Emergencies: Biological Effects, Countermeasures and Biodosimetry. Antioxidants (Basel) 2022; 11:1098. [PMID: 35739995 PMCID: PMC9219873 DOI: 10.3390/antiox11061098] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022] Open
Abstract
Atomic and radiological crises can be caused by accidents, military activities, terrorist assaults involving atomic installations, the explosion of nuclear devices, or the utilization of concealed radiation exposure devices. Direct damage is caused when radiation interacts directly with cellular components. Indirect effects are mainly caused by the generation of reactive oxygen species due to radiolysis of water molecules. Acute and persistent oxidative stress associates to radiation-induced biological damages. Biological impacts of atomic radiation exposure can be deterministic (in a period range a posteriori of the event and because of destructive tissue/organ harm) or stochastic (irregular, for example cell mutation related pathologies and heritable infections). Potential countermeasures according to a specific scenario require considering basic issues, e.g., the type of radiation, people directly affected and first responders, range of doses received and whether the exposure or contamination has affected the total body or is partial. This review focuses on available medical countermeasures (radioprotectors, radiomitigators, radionuclide scavengers), biodosimetry (biological and biophysical techniques that can be quantitatively correlated with the magnitude of the radiation dose received), and strategies to implement the response to an accidental radiation exposure. In the case of large-scale atomic or radiological events, the most ideal choice for triage, dose assessment and victim classification, is the utilization of global biodosimetry networks, in combination with the automation of strategies based on modular platforms.
Collapse
Affiliation(s)
- Elena Obrador
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - Rosario Salvador-Palmer
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - Juan I. Villaescusa
- Service of Radiological Protection, Clinical Area of Medical Image, La Fe University Hospital, 46026 Valencia, Spain; (J.I.V.); (A.M.)
- Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), La Fe University Hospital, 46026 Valencia, Spain
| | - Eduardo Gallego
- Energy Engineering Department, School of Industrial Engineering, Polytechnic University of Madrid, 28040 Madrid, Spain;
| | - Blanca Pellicer
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - José M. Estrela
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - Alegría Montoro
- Service of Radiological Protection, Clinical Area of Medical Image, La Fe University Hospital, 46026 Valencia, Spain; (J.I.V.); (A.M.)
- Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), La Fe University Hospital, 46026 Valencia, Spain
| |
Collapse
|
8
|
Moslehi M, Moazamiyanfar R, Dakkali MS, Rezaei S, Rastegar-Pouyani N, Jafarzadeh E, Mouludi K, Khodamoradi E, Taeb S, Najafi M. Modulation of the immune system by melatonin; implications for cancer therapy. Int Immunopharmacol 2022; 108:108890. [PMID: 35623297 DOI: 10.1016/j.intimp.2022.108890] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/07/2022] [Accepted: 05/19/2022] [Indexed: 12/12/2022]
Abstract
Immune system interactions within the tumour have a key role in the resistance or sensitization of cancer cells to anti-cancer agents. On the other hand, activation of the immune system in normal tissues following chemotherapy or radiotherapy is associated with acute and late effects such as inflammation and fibrosis. Some immune responses can reduce the efficiency of anti-cancer therapy and also promote normal tissue toxicity. Modulation of immune responses can boost the efficiency of anti-tumour therapy and alleviate normal tissue toxicity. Melatonin is a natural body agent that has shown promising results for modulating tumour response to therapy and also alleviating normal tissue toxicity. This review tries to focus on the immunomodulatory actions of melatonin in both tumour and normal tissues. We will explain how anti-cancer drugs may cause toxicity for normal tissues and how tumours can adapt themselves to ionizing radiation and anti-cancer drugs. Then, cellular and molecular mechanisms of immunoregulatory effects of melatonin alone or combined with other anti-cancer agents will be discussed.
Collapse
Affiliation(s)
- Masoud Moslehi
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Moazamiyanfar
- Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Sepideh Rezaei
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Fleming Bldg. Rm 112, Houston, TX 77204-5003, USA
| | - Nima Rastegar-Pouyani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Emad Jafarzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Kave Mouludi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Khodamoradi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Shahram Taeb
- Department of Radiology, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran; Medical Biotechnology Research Center, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran; Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
9
|
Ghorbani Z, Fardid R. Effects of Low-dose Gamma Radiation on Expression of Apoptotic Genes in Rat Peripheral Blood Lymphocyte. J Biomed Phys Eng 2021; 11:693-700. [PMID: 34904066 PMCID: PMC8649167 DOI: 10.31661/jbpe.v0i0.1166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 05/05/2019] [Indexed: 11/26/2022]
Abstract
Background: Exposure to high-dose ionizing radiation is known as a human carcinogen factor, but our information about the effects of low-dose ionizing radiation such as occupational exposures is limited.
The main concern of scientific community is biological consequences due to low-dose radiations. Objective: This study aims to evaluate the effects of low-dose γ-radiation on expression changes of apoptotic genes (bax and bcl-2) in the rat peripheral blood lymphocytes. Material and Methods: In this experimental study, 42 adult male rats were classified into 6 groups, which was exposed to various doses values ranged from 20 mGy to 1000 mGy by γ-rays from a Co-60 source.
Blood samples were provided for analysis of gene expression 24 h after gamma radiation by relative quantitative Reverse Transcription - Polymerase Chain Reaction (RT-PCR).
Radiation sensitivity of rat lymphocytes was measured by the bax/bcl-2 ratio as a predictive marker for radio-sensitivity. Results: The results of this study showed that low dose of gamma radiation can induce down-regulation of bax in rat peripheral blood lymphocytes. Despite other mechanisms of cellular radio-protection,
changes in expression of these apoptotic genes can be the primary pathway in responses of the lymphocytes radio-protection to the exposure. Our study revealed a significant decrease
in the bax/bcl-2 ratio at 50 mGy dose compare to control and the other irradiated groups (p < 0.05). Conclusion: These results suggest that changes in the bax/bcl-2 ratio especially in radiation workers, as a key factor in apoptosis, can be considered as a biological marker in low-dose gamma radiation.
Collapse
Affiliation(s)
- Zhila Ghorbani
- MSc, Radiobiology and Radiation Protection, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Fardid
- PhD, Associate Professor of Medical Physics, Department of radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- PhD, Associate Professor of Medical Physics, Ionizing and Non-Ionizing Radiation Protection Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
10
|
Guo Z, Chen W, Lv L, Liu D. Meta-analysis of melatonin treatment and porcine somatic cell nuclear transfer embryo development. Anim Reprod 2021; 18:e20210031. [PMID: 34840610 PMCID: PMC8607851 DOI: 10.1590/1984-3143-ar2021-0031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 09/24/2021] [Indexed: 12/24/2022] Open
Abstract
Porcine somatic cell nuclear transfer (SCNT) plays an important role in many areas of research. However, the low efficiency of SCNT in porcine embryos limits its applications. Porcine embryos contain high concentrations of lipid, which makes them vulnerable to oxidative stress. Some studies have used melatonin to reduce reactive oxygen species damage. At present there are many reports concerning the effect of exogenous melatonin on porcine SCNT. Some studies suggest that the addition of melatonin can increase the number of blastocyst cells, while others indicate that melatonin can reduce the number of blastocyst cells. Therefore, a meta-analysis was carried out to resolve the contradiction. In this study, a total of 63 articles from the past 30 years were analyzed, and six papers were finally selected. Through the analysis, it was found that the blastocyst rate was increased by adding exogenous melatonin. Melatonin had no effect on cleavage rate or the number of blastocyst cells, but did decrease the number of apoptotic cells. This result is crucial for future research on embryo implantation.
Collapse
Affiliation(s)
- Zhenhua Guo
- Key Laboratory of Combining Farming and Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Animal Husbandry Research Institute, Ministry of Agriculture and Rural Affairs, Harbin, P. R., China
| | - Wengui Chen
- Animal Science and Technology College, Northeast Agricultural University, Harbin, P. R., China
| | - Lei Lv
- Wood Science Research Institute of Heilongjiang Academy of Forestry, Harbin, P. R., China
| | - Di Liu
- Key Laboratory of Combining Farming and Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Animal Husbandry Research Institute, Ministry of Agriculture and Rural Affairs, Harbin, P. R., China
| |
Collapse
|
11
|
Alamdari AF, Rahnemayan S, Rajabi H, Vahed N, Kashani HRK, Rezabakhsh A, Sanaie S. Melatonin as a promising modulator of aging related neurodegenerative disorders: Role of microRNAs. Pharmacol Res 2021; 173:105839. [PMID: 34418564 DOI: 10.1016/j.phrs.2021.105839] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/02/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023]
Abstract
One of the host risk factors involved in aging-related diseases is coupled with the reduction of endogenous melatonin (MLT) synthesis in the pineal gland. MLT is considered a well-known pleiotropic regulatory hormone to modulate a multitude of biological processes such as the regulation of circadian rhythm attended by potent anti-oxidant, anti-inflammatory, and anti-cancer properties. It has also been established that the microRNAs family, as non-coding mRNAs regulating post-transcriptional processes, also serve a crucial role to promote MLT-related advantageous effects in both experimental and clinical settings. Moreover, the anti-aging impact of MLT and miRNAs participation jointly are of particular interest, recently. In this review, we aimed to scrutinize recent advances concerning the therapeutic implications of MLT, particularly in the brain tissue in the face of aging. We also assessed the possible interplay between microRNAs and MLT, which could be considered a therapeutic strategy to slow down the aging process in the nervous system.
Collapse
Affiliation(s)
- Arezoo Fathalizadeh Alamdari
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sama Rahnemayan
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Rajabi
- Research Center for Translational Medicine, School of Medicine, Koç University, Istanbul, Turkey
| | - Nafiseh Vahed
- Research Center for Evidence-Based Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Reza Khayat Kashani
- Department of Neurosurgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aysa Rezabakhsh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Emergency Medicine Research Team, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Sarvin Sanaie
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
El-Far AH, Elewa YHA, Abdelfattah EZA, Alsenosy AWA, Atta MS, Abou-Zeid KM, Al Jaouni SK, Mousa SA, Noreldin AE. RETRACTED: Thymoquinone and Curcumin Defeat Aging-Associated Oxidative Alterations Induced by D-Galactose in Rats' Brain and Heart. Int J Mol Sci 2021; 22:6839. [PMID: 34202112 PMCID: PMC8268720 DOI: 10.3390/ijms22136839] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/09/2021] [Accepted: 06/18/2021] [Indexed: 01/17/2023] Open
Abstract
D-galactose (D-gal) administration causes oxidative disorder and is widely utilized in aging animal models. Therefore, we subcutaneously injected D-gal at 200 mg/kg BW dose to assess the potential preventive effect of thymoquinone (TQ) and curcumin (Cur) against the oxidative alterations induced by D-gal. Other than the control, vehicle, and D-gal groups, the TQ and Cur treated groups were orally supplemented at 20 mg/kg BW of each alone or combined. TQ and Cur effectively suppressed the oxidative alterations induced by D-gal in brain and heart tissues. The TQ and Cur combination significantly decreased the elevated necrosis in the brain and heart by D-gal. It significantly reduced brain caspase 3, calbindin, and calcium-binding adapter molecule 1 (IBA1), heart caspase 3, and BCL2. Expression of mRNA of the brain and heart TP53, p21, Bax, and CASP-3 were significantly downregulated in the TQ and Cur combination group along with upregulation of BCL2 in comparison with the D-gal group. Data suggested that the TQ and Cur combination is a promising approach in aging prevention.
Collapse
Affiliation(s)
- Ali H. El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt;
| | - Yaser H. A. Elewa
- Department of Histology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
- Laboratory of Anatomy, Faculty of Veterinary Medicine, Basic Veterinary Sciences, Hokkaido University, Sapporo 060-0818, Japan
| | | | - Abdel-Wahab A. Alsenosy
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt;
| | - Mustafa S. Atta
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Khalid M. Abou-Zeid
- Animal Care Unit, Medical Research Institute, Alexandria University, Alexandria 21544, Egypt; (E.-Z.A.A.); (K.M.A.-Z.)
| | - Soad K. Al Jaouni
- Department of Hematology/Pediatric Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA;
| | - Ahmed E. Noreldin
- Histology and Cytology Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt;
| |
Collapse
|
13
|
Effect of Flattening Filter and Flattening Filter Free beams on radiotherapy-induced peripheral blood cell damage. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2021.109383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Furusawa Y, Yamamoto T, Hattori A, Suzuki N, Hirayama J, Sekiguchi T, Tabuchi Y. De novo transcriptome analysis and gene expression profiling of fish scales isolated from Carassius auratus during space flight: Impact of melatonin on gene expression in response to space radiation. Mol Med Rep 2020; 22:2627-2636. [PMID: 32945420 PMCID: PMC7466330 DOI: 10.3892/mmr.2020.11363] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
Astronauts are inevitably exposed to two major risks during space flight, microgravity and radiation. Exposure to microgravity has been discovered to lead to rapid and vigorous bone loss due to elevated osteoclastic activity. In addition, long‑term exposure to low‑dose‑rate space radiation was identified to promote DNA damage accumulation that triggered chronic inflammation, resulting in an increased risk for bone marrow suppression and carcinogenesis. In our previous study, melatonin, a hormone known to regulate the sleep‑wake cycle, upregulated calcitonin expression levels and downregulated receptor activator of nuclear factor‑κB ligand expression levels, leading to improved osteoclastic activity in a fish scale model. These results indicated that melatonin may represent a potential drug or lead compound for the prevention of bone loss under microgravity conditions. However, it is unclear whether melatonin affects the biological response induced by space radiation. The aim of the present study was to evaluate the effect of melatonin on the expression levels of genes responsive to space radiation. In the present study, to support the previous data regarding de novo transcriptome analysis of goldfish scales, a detailed and improved experimental method (e.g., PCR duplicate removal followed by de novo assembly, global normalization and calculation of statistical significance) was applied for the analysis. In addition, the transcriptome data were analyzed via global normalization, functional categorization and gene network construction to determine the impact of melatonin on gene expression levels in irradiated fish scales cultured in space. The results of the present study demonstrated that melatonin treatment counteracted microgravity‑ and radiation‑induced alterations in the expression levels of genes associated with DNA replication, DNA repair, proliferation, cell death and survival. Thus, it was concluded that melatonin may promote cell survival and ensure normal cell proliferation in cells exposed to space radiation.
Collapse
Affiliation(s)
- Yukihiro Furusawa
- Department of Liberal Arts and Sciences, Toyama Prefectural University, Toyama 939-0398, Japan
| | - Tatsuki Yamamoto
- Noto Marine Laboratory, Division of Marine Environmental Studies, Institute of Nature and Environmental Technology, Kanazawa University, Ishikawa 927-0553, Japan
| | - Atsuhiko Hattori
- College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Chiba 272-0827, Japan
| | - Nobuo Suzuki
- Noto Marine Laboratory, Division of Marine Environmental Studies, Institute of Nature and Environmental Technology, Kanazawa University, Ishikawa 927-0553, Japan
| | - Jun Hirayama
- Department of Clinical Engineering, Faculty of Health Sciences, Komatsu University, Ishikawa 923-0961, Japan
| | - Toshio Sekiguchi
- Noto Marine Laboratory, Division of Marine Environmental Studies, Institute of Nature and Environmental Technology, Kanazawa University, Ishikawa 927-0553, Japan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
15
|
H N, Gh H, M V J. The Effect of Vitamin C on Apoptosis and Bax/Bcl-2 Proteins Ratio in Peripheral Blood Lymphocytes of Patients during Cardiac Interventional Procedures. J Biomed Phys Eng 2020; 10:421-432. [PMID: 32802790 PMCID: PMC7416102 DOI: 10.31661/jbpe.v0i0.917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/10/2018] [Indexed: 11/17/2022]
Abstract
Background: There is a close relationship between the effects of free radicals and apoptosis, and vitamin C is known as a potent scavenger of free radicals. Objective: The aim of this study was to evaluate the effect of vitamin C against the radiation-induced apoptosis and the ratio of Bax/Bcl-2 proteins in peripheral blood lymphocytes in patients undergoing cardiac procedures in vivo condition. Material and Methods: In this clinical intervention study, blood samples from 6 patients in the first group were taken to assess the effect of radiation on the apoptosis and Bax/Bcl-2 proteins ratio, and 5 patients as the second group to evaluate the effect of vitamin C on the apoptosis and Bax/Bcl-2 proteins ratio before and 24 hours after the examination. Flow cytometry was used to analyze the apoptosis and ELISA method to assess Bax and Bcl-2 proteins amount. Results: In the second group receiving 25 mg/kg vitamin C and a mean skin dose of 1001 mGy in the chest area, there was no significant difference (P <0.05)
in the percentage of early apoptosis in 24 hours after the examination than before it. This significant increase in the percentage of apoptosis in the first group (385.6 mGy)
was associated with a significant increase in the Bax/Bcl-2 ratio (P <0.05), while in the second group, it was not associated with a significant decrease in the Bax/Bcl-2 ratio in 24 hours after the examination than before it. Conclusion: Our results suggest that vitamin C may modulate Bax and Bcl-2 proteins expression, in maintaining peripheral blood lymphocytes in patients undergoing cardiology in radiation-induced apoptosis.
Collapse
Affiliation(s)
- Nematollahi H
- MSc, Department of Radiology, Paramedical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Haddadi Gh
- PhD, Associate Professor, Department of Radiology, Paramedical School, Shiraz University of Medical Sciences, Shiraz, Iran
- PhD, Associate Professor, Ionizing and Non-ionizing Radiation Protection Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jorat M V
- MD, Associate Professor, Cardiovascular Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
16
|
Chen D, Zhang T, Lee TH. Cellular Mechanisms of Melatonin: Insight from Neurodegenerative Diseases. Biomolecules 2020; 10:biom10081158. [PMID: 32784556 PMCID: PMC7464852 DOI: 10.3390/biom10081158] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/23/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases are the second most common cause of death and characterized by progressive impairments in movement or mental functioning in the central or peripheral nervous system. The prevention of neurodegenerative disorders has become an emerging public health challenge for our society. Melatonin, a pineal hormone, has various physiological functions in the brain, including regulating circadian rhythms, clearing free radicals, inhibiting biomolecular oxidation, and suppressing neuroinflammation. Cumulative evidence indicates that melatonin has a wide range of neuroprotective roles by regulating pathophysiological mechanisms and signaling pathways. Moreover, melatonin levels are decreased in patients with neurodegenerative diseases. In this review, we summarize current knowledge on the regulation, molecular mechanisms and biological functions of melatonin in neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, vascular dementia and multiple sclerosis. We also discuss the clinical application of melatonin in neurodegenerative disorders. This information will lead to a better understanding of the regulation of melatonin in the brain and provide therapeutic options for the treatment of various neurodegenerative diseases.
Collapse
Affiliation(s)
- Dongmei Chen
- Correspondence: (D.C.); (T.H.L.); Tel.: +86-591-2286-2498 (D.C.); +86-591-2286-2498 (T.H.L.)
| | | | - Tae Ho Lee
- Correspondence: (D.C.); (T.H.L.); Tel.: +86-591-2286-2498 (D.C.); +86-591-2286-2498 (T.H.L.)
| |
Collapse
|
17
|
El-Far AH, Lebda MA, Noreldin AE, Atta MS, Elewa YHA, Elfeky M, Mousa SA. Quercetin Attenuates Pancreatic and Renal D-Galactose-Induced Aging-Related Oxidative Alterations in Rats. Int J Mol Sci 2020; 21:E4348. [PMID: 32570962 PMCID: PMC7352460 DOI: 10.3390/ijms21124348] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 02/07/2023] Open
Abstract
Aging is an oxidative stress-associated process that progresses with age. Our aim is to delay or attenuate these oxidative alterations and to keep individuals healthy as they age using natural compounds supplementation. Therefore, we conducted the present study to investigate the protective potentials of quercetin against D-galactose (D-gal)-associated oxidative alterations that were induced experimentally in male Wistar rats. Forty-five rats were randomly allocated into five groups of nine rats each. The groups were a control group that was reared on a basal diet and injected subcutaneously with 120 mg D-gal dissolved in physiological saline solution (0.9% NaCl) per kg body weight daily and quercetin-treated groups that received the same basal diet and subcutaneous daily D-gal injections were supplemented orally with 25, 50, and 100 mg of quercetin per kg body weight for 42 days. Pancreatic and renal samples were subjected to histopathological, immunohistochemical, and relative mRNA expression assessments. Aging (p53, p21, IL-6, and IL-8), apoptotic (Bax, CASP-3, and caspase-3 protein), proliferative (Ki67 protein), antiapoptotic (Bcl2 and Bcl2 protein), inflammatory (NF-κB, IL-1β, and TNF-α), antioxidant (SOD1), and functional markers (GCLC and GCLM genes and insulin, glucagon, and podocin proteins) were determined to evaluate the oxidative alterations induced by D-gal and the protective role of quercetin. D-gal caused oxidative alterations of the pancreas and kidneys observed via upregulations of aging, apoptotic, and inflammatory markers and downregulated the antiapoptotic, proliferative, antioxidant, and functional markers. Quercetin potentially attenuated these aging-related oxidative alterations in a dose-dependent manner. Finally, we can conclude that quercetin supplementation is considered as a promising natural protective compound that could be used to delay the aging process and to maintain human health.
Collapse
Affiliation(s)
- Ali H. El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Mohamed A. Lebda
- Biochemistry Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt; (M.A.L.); (M.E.)
| | - Ahmed E. Noreldin
- Histology and Cytology Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt;
| | - Mustafa S. Atta
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Yaser H. A. Elewa
- Histology and Cytology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
- Laboratory of Anatomy, Faculty of Veterinary Medicine, Basic Veterinary Sciences, Hokkaido University, Sapporo 060-0818, Japan
| | - Mohamed Elfeky
- Biochemistry Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt; (M.A.L.); (M.E.)
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA
| |
Collapse
|
18
|
Beneficial Effects of Melatonin in the Ovarian Transport Medium on In Vitro Embryo Production of Iberian Red Deer ( Cervus elaphus hispanicus). Animals (Basel) 2020; 10:ani10050763. [PMID: 32349425 PMCID: PMC7278470 DOI: 10.3390/ani10050763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 01/25/2023] Open
Abstract
Simple Summary The development of in vitro embryo production (IVP) in wild species, such as Iberian red deer, can become a daunting challenge since prolonged ovary transport times to the laboratory are often unavoidable. This may have detrimental effects on the quality and developmental capacity of oocytes. We evaluated the effect of supplementing the ovary transport medium with the antioxidant melatonin and observed an increased level of oocyte intracellular reduced glutathione content. Moreover, melatonin enhanced cleavage and blastocyst rates and had a positive effect on embryo quality in terms of the expression of essential embryo development-related genes. In conclusion, the addition of melatonin to the ovary storage medium could mitigate the negative impacts that long transport times may have on oocyte developmental competence and quality of the resulting blastocysts in Iberian red deer. Abstract A major limiting factor for the development of in vitro embryo production (IVP) in wild species, such as Iberian red deer, compared to livestock animals is the poor availability and limited access to biological material. Thus, the use of post-mortem ovaries from slaughtered animals represent a source of oocytes for the large scale production of embryos needed for research and to improve the efficiency of IVP. However, these oocytes are not as developmentally competent as their in vivo counterparts. Moreover, oocytes are usually obtained from ovaries that have been transported for long distances, which may also affect their quality. In order to overcome the issues associated with prolonged storage times of post-mortem material, in this study we examined the effect of melatonin supplementation to the ovary transport medium on oocyte quality, embryo yield, and blastocyst quality in Iberian red deer. When necessary, sheep was used as an experimental model due to the large number of samples required for analysis of oocyte quality parameters. Oocytes were in vitro matured and assessed for early apoptosis; DNA fragmentation; reactive oxygen species (ROS); reduced glutathione (GSH) content, mitochondrial membrane potential, and distribution; and relative abundance of mRNA transcript levels. After in vitro fertilization, embryo rates and blastocyst quality were also investigated. The results revealed that melatonin treatment significantly increased intracellular level of GSH in sheep oocytes. Moreover, the percentage of cleavage and blastocyst yield in red deer was greater compared to the Control group and there was lower abundance of oxidative stress- and apoptosis-related SHC1, TP53, and AKR1B1 mRNA transcripts in blastocysts for the Melatonin group. In conclusion, the supplementation of melatonin to the ovary storage medium had a positive effect on the developmental competence and quality of resulting blastocysts in Iberian red deer.
Collapse
|
19
|
Motallebzadeh E, Tameh AA, Zavareh SAT, Farhood B, Aliasgharzedeh A, Mohseni M. Neuroprotective effect of melatonin on radiation-induced oxidative stress and apoptosis in the brainstem of rats. J Cell Physiol 2020; 235:8791-8798. [PMID: 32324264 DOI: 10.1002/jcp.29722] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023]
Abstract
This study aimed to determine the effects of melatonin on irradiation-induced apoptosis and oxidative stress in the brainstem region of Wistar rats. Therefore, the animals underwent whole-brain X-radiation with a single dose of 25 Gy in the presence or absence of melatonin pretreatment at a concentration of 100 mg/kg BW. The rats were allocated into four groups (10 rats in each group): namely, vehicle control (VC), 100 mg/kg of melatonin alone (MLT), irradiation-only (RAD), and irradiation plus 100 mg/kg of melatonin (RAM). An hour before irradiation, the animals received intraperitoneal (IP) melatonin and then were killed after 6 hr, followed by measurement of nitric oxide (NO), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), and total antioxidant capacity (TAC) in the brainstem region. Furthermore, the western blot analysis technique was performed to assess the caspase-3 expression level. Results showed significantly higher MDA and NO levels in the brainstem tissues for the RAD group when compared with the VC group (p < .001). Moreover, the irradiated rats exhibited a significant decrease in the levels of CAT, SOD, GPx, and TAC (p < .01, p < .001, p < .001, and p < .001, respectively) in comparison to the VC group. The results of apoptosis assessment revealed that the expression level of caspase-3 significantly rose in the RAD group in comparison with the VC group (p < .001). Pretreatment with melatonin ameliorated the radiation-induced adverse effects by decreasing the MDA and NO levels (p < .001) and increasing the antioxidant enzyme activities (p < .001). Consequently, the caspase-3 protein expression level in the RAM group showed a significant reduction in comparison with the RAD group (p < .001). In conclusion, melatonin approximately showed a capacity for neuroprotective activity in managing irradiation-induced oxidative stress and apoptosis in the brainstem of rats; however, the use of melatonin as a neuroprotective agent in humans requires further study, particularly clinical trials.
Collapse
Affiliation(s)
- Elham Motallebzadeh
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.,Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Abolfazl Azami Tameh
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Akbar Aliasgharzedeh
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehran Mohseni
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
20
|
Bjørklund G, Rajib SA, Saffoon N, Pen JJ, Chirumbolo S. Insights on Melatonin as an Active Pharmacological Molecule in Cancer Prevention: What's New? Curr Med Chem 2019; 26:6304-6320. [PMID: 29714136 DOI: 10.2174/0929867325666180501094850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/10/2018] [Accepted: 04/18/2018] [Indexed: 12/12/2022]
Abstract
Along with playing an important role in circadian rhythm, melatonin is thought to play a significant role in preventing cells from damage, as well as in the inhibition of growth and in triggering apoptosis in malignant cells. Its relationship with circadian rhythms, energetic homeostasis, diet, and metabolism, is fundamental to achieve a better comprehension of how melatonin has been considered a chemopreventive molecule, though very few papers dealing with this issue. In this article, we tried to review the most recent evidence regarding the protective as well as the antitumoral mechanisms of melatonin, as related to diet and metabolic balance. From different studies, it was evident that an intracellular antioxidant defense mechanism is activated by upregulating an antioxidant gene battery in the presence of high-dose melatonin in malignant cells. Like other broad-spectrum antioxidant molecules, melatonin plays a vital role in killing tumor cells, preventing metastasis, and simultaneously keeping normal cells protected from oxidative stress and other types of tissue damage.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| | | | - Nadia Saffoon
- Department of Pharmacy and Forensic Science, Faculty of Life Science and Medicine, King's College London, London, United Kingdom
| | - Joeri J Pen
- Diabetes Clinic, Department of Internal Medicine, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Department of Nutrition, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
21
|
Liu J, Wang J, Ning Y, Chen F. The inhibition of miR‑101a‑3p alleviates H/R injury in H9C2 cells by regulating the JAK2/STAT3 pathway. Mol Med Rep 2019; 21:89-96. [PMID: 31746349 PMCID: PMC6896302 DOI: 10.3892/mmr.2019.10793] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 08/30/2019] [Indexed: 12/18/2022] Open
Abstract
Hypoxia/reoxygenation (H/R) is used as an in vivo model of ischemia/reperfusion injury, and myocardial ischemia can lead to heart disease. Therefore, it is necessary to prevent myocardial H/R injury to avoid the risk of heart disease. The aim of the present study was to investigate whether inhibiting microRNA (miR)-101a-3p attenuated H9C2 cell H/R injury, apoptosis mechanisms and key target proteins. Cell viability and apoptosis were determined by Cell Counting Kit-8 assays and flow cytometry using a cell apoptosis kit, respectively. The contents of creatine kinase (CK) and lactate dehydrogenase (LDH) were detected using colorimetric assays. Dual luciferase assays were carried out to determine if miR-101a-3p inhibited Janus kinase (JAK)2. Western blot analysis and reverse transcription-quantitative PCR were used to determine proteins levels and mRNAs expression. It was found that the inhibition of miR-101a-3p increased the growth of H9C2 cells and decreased H9C2 cell apoptosis during H/R injury. The inhibition of miR-101a-3p reduced the amounts of CK and LDH in H/R model H9C2 cells. The inhibition of miR-101a-3p lowered the levels of Bax, interleukin-6 and tumor necrosis factor-α, but raised the levels of phosphorylated (p)-STAT3 and p-JAK2 in H9C2 cells subjected to H/R injury treatment. miR-101a-3p mimic was found to inhibit H9C2 cell viability, raise p-JAK2 level and slightly increase p-STAT3 during H/R injury. AG490 induced H9C2 cell apoptosis, and decreased the levels of p-JAK2 and p-STAT3 during H/R injury. The data indicated that inhibiting miR-101a-3p reduced H/R damage in H9C2 cells and decreased apoptosis via Bax/Bcl-2 signaling during H/R injury. In addition, it was suggested that the inhibition of miR-101a-3p decreased H/R injury in H9C2 cell by regulating the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Jingying Liu
- Emergency Department, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Juanjuan Wang
- Emergency Department, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Yuzhen Ning
- Emergency Department, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Fengying Chen
- Emergency Department, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| |
Collapse
|
22
|
Alsenosy AWA, El-Far AH, Sadek KM, Ibrahim SA, Atta MS, Sayed-Ahmed A, Al Jaouni SK, Mousa SA. Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats. PLoS One 2019; 14:e0222410. [PMID: 31509596 PMCID: PMC6738607 DOI: 10.1371/journal.pone.0222410] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 08/28/2019] [Indexed: 02/07/2023] Open
Abstract
Oxidative stresses intensify the progression of diabetes-related behavioural changes and testicular injuries. Graviola (Annona muricata), a small tree of the Annonaceae family, has been investigated for its protective effects against diabetic complications, oxidative stress, and neuropathies. This study was planned to investigate the effects of graviola on behavioural alterations and testicular oxidative status of streptozotocin (STZ; 65 mg/kg)-induced diabetic rats. Forty adult male Wistar rats were equally allocated into four groups: control (received normal saline 8 ml/kg orally once daily), diabetic (received normal saline orally once daily), graviola (GR; received 100 mg/kg/day; orally once daily), and diabetic with graviola (Diabetic+GR; received 100 mg/kg/day; once daily). Behavioural functions were assessed using standard behavioural paradigms. Also, oxidative statuses of testis were evaluated. Results of behavioural observations showed that diabetes induced depression-like behaviours, reduction of exploratory and locomotor activities, decreased memory performance, and increased stress-linked behaviours. These variations in diabetic rats were happened due to oxidative stress. Interestingly, treatment of diabetic rats with graviola for four weeks alleviated all behavioural changes due to diabetes. Also, rats in graviola-treated groups had greater testicular testosterone and estradiol levels compared with diabetic rats due to significant rise in testicular acetyl-CoA acetyltransferase 2 expression. In the same context, graviola enhanced the antioxidant status of testicular tissues by significantly restoring the testicular glutathione and total superoxide dismutase that fell during diabetes. In addition, Graviola significantly decreased the expression of apoptotic (Bax) and inflammatory (interleukin-1β) testicular genes. In conclusion, these data propose that both the hypoglycemic and antioxidative potential of graviola are possible mechanisms that improve behavioural alterations and protect testis in diabetic animals. Concomitantly, further clinical studies in human are required to validate the current study.
Collapse
Affiliation(s)
- Abdel-wahab A. Alsenosy
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Ali H. El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
- * E-mail:
| | - Kadry M. Sadek
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Safinaz A. Ibrahim
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Mustafa S. Atta
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Ahmed Sayed-Ahmed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Menoufia University, Menoufia, Egypt
| | - Soad K. Al Jaouni
- Hematology/Pediatric Oncology, King Abdulaziz University Hospital and Scientific Chair of Yousef Abdullatif Jameel of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States of America
| |
Collapse
|
23
|
Evidence that melatonin downregulates Nedd4-1 E3 ligase and its role in cellular survival. Toxicol Appl Pharmacol 2019; 379:114686. [DOI: 10.1016/j.taap.2019.114686] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/14/2019] [Accepted: 07/16/2019] [Indexed: 01/06/2023]
|
24
|
Protection from ionizing radiation-induced genotoxicity and apoptosis in rat bone marrow cells by HESA-A: a new herbal-marine compound. J Bioenerg Biomembr 2019; 51:371-379. [PMID: 31388813 DOI: 10.1007/s10863-019-09808-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022]
Abstract
HESA-A is an herbal-marine compound which improves the quality of life of end-stage cancer patients. The aim of the present study was to evaluate the possible protective effect of HESA-A against IR-induced genotoxicity and apoptosis in rat bone marrow. Rats were given HESA-A orally at doses of 150 and 300 mg/kg body weight for seven consecutive days. On the seventh day, the rats were irradiated with 4 Gy X-rays at 1 h after the last oral administration. The micronucleus assay, reactive oxygen species (ROS) level analysis, hematological analysis and flow cytometry were used to assess radiation antagonistic potential of HESA-A. Administration of 150 and 300 mg/kg of HESA-A to irradiated rats significantly reduced the frequencies of micronucleated polychromatic erythrocytes (MnPCEs) and micronucleated normochromatic erythrocytes (MnNCEs), and also increased PCE/(PCE + NCE) ratio in bone marrow cells. Moreover, pretreatment of irradiated rats with HESA-A (150 and 300 mg/kg) significantly decreased ROS level and apoptosis in bone marrow cells, and also increased white blood cells count in peripheral blood. For the first time in this study, it was observed that HESA-A can have protective effects against radiation-induced genotoxicity and apoptosis in bone marrow cells. Therefore, HESA-A can be considered as a candidate for future studies to reduce the side effects induced by radiotherapy in cancer patients.
Collapse
|
25
|
Tan R, He Y, Zhang S, Pu D, Wu J. Effect of transcutaneous electrical acupoint stimulation on protecting against radiotherapy- induced ovarian damage in mice. J Ovarian Res 2019; 12:65. [PMID: 31324205 PMCID: PMC6642573 DOI: 10.1186/s13048-019-0541-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 07/09/2019] [Indexed: 02/06/2023] Open
Abstract
Background Premature ovarian insufficiency (POI) is characterized by early loss of ovarian function that affects women before the age of 40. We aim to explore the protective effects of transcutaneous electrical acupoint stimulation (TEAS) against irradiation-induced ovarian damage in mice. Methods C57BL6 mice were randomly divided into control and irradiation (IR) groups. Then, control group was divided into two treatment subgroups: mock TEAS treatment (control-) and TEAS treatment (control+). IR group was divided into four subgroups according to the time of treatment started: mock TEAS treatment initiated at 2 days after irradiation (IR 2D-), TEAS treatment initiated at 2 days after irradiation (IR 2D+), mock TEAS treatment initiated at 1 week after irradiation (IR 1 W-), and TEAS treatment initiated at 1 week after irradiation (IR 1 W+). The radiation model mice were exposed to single whole body X-ray irradiation (4 Gy), and the control mice received 0 Gy. TEAS stimulation (2 Hz, 1 mA, 30 min/day) was given once a day for six consecutive days per week for 2 weeks. Estrous cycle, ovarian weight, serum AMH level and follicle counts were evaluated. Then, proliferation markers, apoptotic markers and oxidative stress markers were examined. Results Compared with the control group, the estrous cycle was disordered, and the ovarian weight, serum AMH, and primordial, primary and secondary follicles counts decreased (all P < 0.01) in the IR 2D- and IR 1 W- groups. In the irradiation with early TEAS treatment group (IR 2D+), the estrous cycle improved, the AMH level and primordial follicular significantly increased compared to the irradiation with mock group (IR 2D-). However, there were no significant differences in the estrous cycle, AMH level and follicle counts between IR 1 W- and IR 1 W+ groups. Moreover, IR 2D+ mice reduced the expression of Bax protein and increased the levels of Bcl-2 and PCNA compared to the IR 2D- group. Furthermore, the early TEAS treated mice showed significantly lower levels of oxidative stress and number of TUNEL (+) granulosa cells than that in the IR 2D- group. Conclusion This study is first to evaluate TEAS as a potential therapy to attenuate irradiation-induced ovarian failure through inhibiting primordial follicles loss, increasing serum AMH secretion, inducing antioxidant, and anti-apoptotic systems.
Collapse
Affiliation(s)
- Rongrong Tan
- State Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Yuheng He
- State Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Suyun Zhang
- State Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Danhua Pu
- State Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Jie Wu
- State Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 210029, People's Republic of China.
| |
Collapse
|
26
|
Wang Y, Tan X, Li S, Yang S. The total flavonoid of Eucommia ulmoides sensitizes human glioblastoma cells to radiotherapy via HIF-α/MMP-2 pathway and activates intrinsic apoptosis pathway. Onco Targets Ther 2019; 12:5515-5524. [PMID: 31371989 PMCID: PMC6633463 DOI: 10.2147/ott.s210497] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/21/2019] [Indexed: 01/27/2023] Open
Abstract
Background: As one of the most common and lethal malignant primary brain tumors, glioblastomas (GBMs) are identified as grade IV neoplasms, the most severe grade, according to WHO classification systems. The outcome of surgery against GBMs is limited since its frequent relapse. Radiotherapy is a crucial and widely used treatment after surgery, while the strong radioresistance of GBM cells still becomes a severe problem of radiotherapy. Eucommia ulmoides Oliv. is used for the treatment of various diseases, such as lower blood pressure and inflammation. Purpose: To explore the anti-tumor effect of Eucommia ulmoides Oliv. against GBMs. Methods: Dose-viability assays were performed to examine the anti-tumor effect. Would-healing and transwell assays were carried out to evaluate the migration and invasion ability of GBMs. Cell apoptosis was detected by 33, 258 staining, and the expressions of key proteins were examined by western blot. Results: In this study, we confirmed that the inhibitory effect of the total flavonoid of Eucommia ulmoides on proliferation, migration and invasion of human GBM cells. Its favorable effects inspired us to explore the potential ability in enhancing radiosensitivity of GBM cells. The results demonstrated that it could further induce apoptosis during radiotherapy via intrinsic apoptosis pathway. Besides, it could significantly reduce the malondialdehyde level after radiotherapy, which suggested it inhibited tumor cell and protected normal neuronal cells. By examining the expression of important genes of radioresistant pathway, we found a significant decrease of HIF-α/MMP-2 when using the total flavonoid of Eucommia ulmoides during radiotherapy. Conclusion: This result suggests that the enhancement of radiotherapy may be mediated by modulating glucose metabolism of GBMs in HIF-α/MMP-2 pathway.
Collapse
Affiliation(s)
- Yongsheng Wang
- Department of Neurosurgery, Caoxian People's Hospital of Shandong Province, Heze, Shandong 274400, People's Republic of China
| | - Xiangru Tan
- Department of Neurology, Caoxian People's Hospital of Shandong Province, Heze, Shandong 274400, People's Republic of China
| | - Song Li
- Department of Neurosurgery, Caoxian People's Hospital of Shandong Province, Heze, Shandong 274400, People's Republic of China
| | - Shuilu Yang
- Department of Neurosurgery, Caoxian People's Hospital of Shandong Province, Heze, Shandong 274400, People's Republic of China
| |
Collapse
|
27
|
|
28
|
Amini P, Mirtavoos-Mahyari H, Motevaseli E, Shabeeb D, Musa AE, Cheki M, Farhood B, Yahyapour R, Shirazi A, Goushbolagh NA, Najafi M. Mechanisms for Radioprotection by Melatonin; Can it be Used as a Radiation Countermeasure? Curr Mol Pharmacol 2019; 12:2-11. [PMID: 30073934 DOI: 10.2174/1874467211666180802164449] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/06/2018] [Accepted: 06/28/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Melatonin is a natural body product that has shown potent antioxidant property against various toxic agents. For more than two decades, the abilities of melatonin as a potent radioprotector against toxic effects of ionizing radiation (IR) have been proved. However, in the recent years, several studies have been conducted to illustrate how melatonin protects normal cells against IR. Studies proposed that melatonin is able to directly neutralize free radicals produced by IR, leading to the production of some low toxic products. DISCUSSION Moreover, melatonin affects several signaling pathways, such as inflammatory responses, antioxidant defense, DNA repair response enzymes, pro-oxidant enzymes etc. Animal studies have confirmed that melatonin is able to alleviate radiation-induced cell death via inhibiting pro-apoptosis and upregulation of anti-apoptosis genes. These properties are very interesting for clinical radiotherapy applications, as well as mitigation of radiation injury in a possible radiation disaster. An interesting property of melatonin is mitochondrial ROS targeting that has been proposed as a strategy for mitigating effects in radiosensitive organs, such as bone marrow, gastrointestinal system and lungs. However, there is a need to prove the mitigatory effects of melatonin in experimental studies. CONCLUSION In this review, we aim to clarify the molecular mechanisms of radioprotective effects of melatonin, as well as possible applications as a radiation countermeasure in accidental exposure or nuclear/radiological disasters.
Collapse
Affiliation(s)
- Peyman Amini
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanifeh Mirtavoos-Mahyari
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Dheyauldeen Shabeeb
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran.,Department of Physiology, College of Medicine, University of Misan, Misan, Iraq
| | - Ahmed Eleojo Musa
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran.,Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Cheki
- Department of Radiologic Technology, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Rasoul Yahyapour
- Department of Medical School, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Alireza Shirazi
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran
| | - Nouraddin Abdi Goushbolagh
- Department of medical Physics, International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
29
|
Riaz H, Yousuf MR, Liang A, Hua GH, Yang L. Effect of melatonin on regulation of apoptosis and steroidogenesis in cultured buffalo granulosa cells. Anim Sci J 2019; 90:473-480. [PMID: 30793438 DOI: 10.1111/asj.13152] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/09/2018] [Accepted: 11/11/2018] [Indexed: 12/16/2022]
Abstract
This study was aimed to address melatonin receptor expression, mRNA level of hypothalamus and hypophysis hormone receptors (GnRHR, FSHR, and LHR), steroidogenesis, cell cycle, apoptosis, and their regulatory factors after addition of melatonin for 24 hr in cultured buffalo granulosa cells (GCs). The results revealed that direct addition of different concentrations of melatonin (100 pM, 1 nM, and 100 nM) resulted in significant upregulation (p < 0.05) of mRNA level of melatonin receptor 1a (MT1) without affecting melatonin receptor 1b (MT2). Melatonin treatment significantly downregulated (p < 0.05) mRNA level of FSH and GnRH receptors, whereas 100 nM dose of melatonin significantly increased mRNA level of LH receptor. Treatment with 100 nM of melatonin significantly decreased the basal progesterone production with significant decrease (p < 0.05) in mRNA levels of StAR and p450ssc, and lower mRNA level of genes (Insig1, Lipe, and Scrab1) that affect cholesterol availability. Melatonin supplementation suppressed apoptosis (100 nM, p < 0.05) and enhanced G2/M phase (1 nM, 100 nM, p < 0.05) of cell cycle progression which was further corroborated by decrease in protein expression of caspase-3, p21, and p27 and increase in bcl2. Our results demonstrate that melatonin regulates gonadotrophin receptors and ovarian steroidogenesis through MT1. Furthermore, the notion of its incorporation in apoptosis and proliferation of buffalo GCs extends its role in buffalo ovaries.
Collapse
Affiliation(s)
- Hasan Riaz
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Hubei Wuhan, China.,Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Punjab, Pakistan
| | - Muhammad Rizwan Yousuf
- Department of Theriogenology, University of Veterinary and Animal Sciences, Lahore, Punjab, Pakistan
| | - Aixin Liang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Hubei Wuhan, China
| | - Guo Hua Hua
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Hubei Wuhan, China
| | - Liguo Yang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Hubei Wuhan, China
| |
Collapse
|
30
|
Campos NA, da Cunha MSB, Arruda SF. Tucum-do-cerrado (Bactris setosa Mart.) modulates oxidative stress, inflammation, and apoptosis-related proteins in rats treated with azoxymethane. PLoS One 2018; 13:e0206670. [PMID: 30427888 PMCID: PMC6235309 DOI: 10.1371/journal.pone.0206670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/17/2018] [Indexed: 01/25/2023] Open
Abstract
Oxidative and inflammatory responses play an important role in the development and prevention of cancer, with both responses being modulated by phytochemical compounds. This study investigated the chemopreventive effect of tucum-do-cerrado fruit in rats treated with azoxymethane. Wistar rats were treated for 12 weeks with: a control diet (CT); a control diet + AOM (CT/DR); a control diet + 15% tucum-do-cerrado (TU); or a control diet + 15% tucum-do-cerrado + AOM (TU/DR). The association of tucum-do-cerrado and AOM (TU/DR) increased glutathione-S-transferase activity, decreased MDA levels, increased levels of COX2, TNFα and BAX, and decreased Bcl2/Bax ratio, compared to the CT/DR group. Carbonyl levels, IL-1β and IL-6 mRNA levels, and aberrant crypt foci showed no difference between the treatments. In conclusion, tucum-do-cerrado reduced lipid oxidative damage, induced a pro-inflammatory effect, and promoted a pro-apoptotic “environment” in rats treated with AOM; however no changes in aberrant crypts were observed.
Collapse
Affiliation(s)
- Natália A. Campos
- Postgraduate Program in Human Nutrition, Faculty of Health Sciences, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Brasília, Brazil
- * E-mail:
| | - Marcela S. B. da Cunha
- Postgraduate Program in Human Nutrition, Faculty of Health Sciences, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Brasília, Brazil
- Biological and Health Sciences Center, Campus Reitor Edgard Santos, Universidade Federal do Oeste da Bahia, Barreiras, Bahia, Brazil
| | - Sandra F. Arruda
- Postgraduate Program in Human Nutrition, Faculty of Health Sciences, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Brasília, Brazil
- Department of Nutrition, Faculty of Health Sciences; Campus Universitário Darcy Ribeiro, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| |
Collapse
|
31
|
Farhood B, Goradel NH, Mortezaee K, Khanlarkhani N, Najafi M, Sahebkar A. Melatonin and cancer: From the promotion of genomic stability to use in cancer treatment. J Cell Physiol 2018; 234:5613-5627. [PMID: 30238978 DOI: 10.1002/jcp.27391] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 08/17/2018] [Indexed: 12/31/2022]
Abstract
Cancer remains among the most challenging human diseases. Several lines of evidence suggest that carcinogenesis is a complex process that is initiated by DNA damage. Exposure to clastogenic agents such as heavy metals, ionizing radiation (IR), and chemotherapy drugs may cause chronic mutations in the genomic material, leading to a phenomenon named genomic instability. Evidence suggests that genomic instability is responsible for cancer incidence after exposure to carcinogenic agents, and increases the risk of secondary cancers following treatment with radiotherapy or chemotherapy. Melatonin as the main product of the pineal gland is a promising hormone for preventing cancer and improving cancer treatment. Melatonin can directly neutralize toxic free radicals more efficiently compared with other classical antioxidants. In addition, melatonin is able to regulate the reduction/oxidation (redox) system in stress conditions. Through regulation of mitochondrial nction and inhibition of pro-oxidant enzymes, melatonin suppresses chronic oxidative stress. Moreover, melatonin potently stimulates DNA damage responses that increase the tolerance of normal tissues to toxic effect of IR and may reduce the risk of genomic instability in patients who undergo radiotherapy. Through these mechanisms, melatonin attenuates several side effects of radiotherapy and chemotherapy. Interestingly, melatonin has shown some synergistic properties with IR and chemotherapy, which is distinct from classical antioxidants that are mainly used for the alleviation of adverse events of radiotherapy and chemotherapy. In this review, we describe the anticarcinogenic effects of melatonin and also its possible application in clinical oncology.
Collapse
Affiliation(s)
- Bagher Farhood
- Departments of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Neda Khanlarkhani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Najafi
- Departments of Radiology and Nuclear Medicine, School of Paramedical Sciences, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
32
|
From Implantation to Birth: Insight into Molecular Melatonin Functions. Int J Mol Sci 2018; 19:ijms19092802. [PMID: 30227688 PMCID: PMC6164374 DOI: 10.3390/ijms19092802] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 12/27/2022] Open
Abstract
Melatonin is a lipophilic hormone synthesized and secreted mainly in the pineal gland, acting as a neuroendocrine transducer of photoperiodic information during the night. In addition to this activity, melatonin has shown an antioxidant function and a key role as regulator of physiological processes related to human reproduction. Melatonin is involved in the normal outcome of pregnancy, beginning with the oocyte quality, continuing with embryo implantation, and finishing with fetal development and parturition. Melatonin has been shown to act directly on several reproductive events, including folliculogenesis, oocyte maturation, and corpus luteum (CL) formation. The molecular mechanism of action has been investigated through several studies which provide solid evidence on the connections between maternal melatonin secretion and embryonic and fetal development. Melatonin administration, reducing oxidative stress and directly acting on its membrane receptors, melatonin thyroid hormone receptors (MT1 and MT2), displays effects on the earliest phases of pregnancy and during the whole gestational period. In addition, considering the reported positive effects on the outcomes of compromised pregnancies, melatonin supplementation should be considered as an important tool for supporting fetal development, opening new opportunities for the management of several reproductive and gestational pathologies.
Collapse
|
33
|
Farhood B, Goradel NH, Mortezaee K, Khanlarkhani N, Salehi E, Nashtaei MS, Mirtavoos-Mahyari H, Motevaseli E, Shabeeb D, Musa AE, Najafi M. Melatonin as an adjuvant in radiotherapy for radioprotection and radiosensitization. Clin Transl Oncol 2018; 21:268-279. [PMID: 30136132 DOI: 10.1007/s12094-018-1934-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 08/02/2018] [Indexed: 12/11/2022]
Abstract
It is estimated that more than half of cancer patients undergo radiotherapy during the course of their treatment. Despite its beneficial therapeutic effects on tumor cells, exposure to high doses of ionizing radiation (IR) is associated with several side effects. Although improvements in radiotherapy techniques and instruments could reduce these side effects, there are still important concerns for cancer patients. For several years, scientists have been trying to modulate tumor and normal tissue responses to IR, leading to an increase in therapeutic ratio. So far, several types of radioprotectors and radiosensitizers have been investigated in experimental studies. However, high toxicity of chemical sensitizers or possible tumor protection by radioprotectors creates a doubt for their clinical applications. On the other hand, the protective effects of these radioprotectors or sensitizer effects of radiosensitizers may limit some type of cancers. Hence, the development of some radioprotectors without any protective effect on tumor cells or low toxic radiosensitizers can help improve therapeutic ratio with less side effects. Melatonin as a natural body hormone is a potent antioxidant and anti-inflammatory agent that shows some anti-cancer properties. It is able to neutralize different types of free radicals produced by IR or pro-oxidant enzymes which are activated following exposure to IR and plays a key role in the protection of normal tissues. In addition, melatonin has shown the ability to inhibit long-term changes in inflammatory responses at different levels, thereby ameliorating late side effects of radiotherapy. Fortunately, in contrast to classic antioxidants, some in vitro studies have revealed that melatonin has a potent anti-tumor activity when used alongside irradiation. However, the mechanisms of its radiosensitive effect remain to be elucidated. Studies suggested that the activation of pro-apoptosis gene, such as p53, changes in the metabolism of tumor cells, suppression of DNA repair responses as well as changes in biosynthesis of estrogen in breast cancer cells are involved in this process. In this review, we describe the molecular mechanisms for radioprotection and radiosensitizer effects of melatonin. Furthermore, some other proposed mechanisms that may be involved are presented.
Collapse
Affiliation(s)
- B Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - N H Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - K Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - N Khanlarkhani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - E Salehi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - M S Nashtaei
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Infertility Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - H Mirtavoos-Mahyari
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - E Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - D Shabeeb
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran.,Department of Physiology, College of Medicine, University of Misan, Amarah, Iraq
| | - A E Musa
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran.,Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - M Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
34
|
Karabulut-Bulan O, Us H, Bayrak BB, Sezen-Us A, Yanardag R. The role of melatonin and carnosine in prevention of oxidative intestinal injury induced by gamma irradiation in rats. Biologia (Bratisl) 2017. [DOI: 10.1515/biolog-2017-0092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
35
|
Wongprayoon P, Govitrapong P. Melatonin as a mitochondrial protector in neurodegenerative diseases. Cell Mol Life Sci 2017; 74:3999-4014. [PMID: 28791420 PMCID: PMC11107580 DOI: 10.1007/s00018-017-2614-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/03/2017] [Indexed: 12/19/2022]
Abstract
Mitochondria are crucial organelles as their role in cellular energy production of eukaryotes. Because the brain cells demand high energy for maintaining their normal activities, disturbances in mitochondrial physiology may lead to neuropathological events underlying neurodegenerative conditions such as Alzheimer's disease, Parkinson's disease and Huntington's disease. Melatonin is an endogenous compound with a variety of physiological roles. In addition, it possesses potent antioxidant properties which effectively play protective roles in several pathological conditions. Several lines of evidence also reveal roles of melatonin in mitochondrial protection, which could prevent development and progression of neurodegeneration. Since the mitochondrial dysfunction is a primary event in neurodegeneration, the neuroprotection afforded by melatonin is thereby more effective in early stages of the diseases. This article reviews mechanisms which melatonin exerts its protective roles on mitochondria as a potential therapeutic strategy against neurodegenerative disorders.
Collapse
Affiliation(s)
- Pawaris Wongprayoon
- Department of Biopharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Piyarat Govitrapong
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand.
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, 10210, Thailand.
| |
Collapse
|
36
|
Naseri S, Moghahi SMHN, Mokhtari T, Roghani M, Shirazi AR, Malek F, Rastegar T. Radio-Protective Effects of Melatonin on Subventricular Zone in Irradiated Rat: Decrease in Apoptosis and Upregulation of Nestin. J Mol Neurosci 2017; 63:198-205. [DOI: 10.1007/s12031-017-0970-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 08/24/2017] [Indexed: 12/12/2022]
|
37
|
|
38
|
Najafi M, Shirazi A, Motevaseli E, Rezaeyan AH, Salajegheh A, Rezapoor S. Melatonin as an anti-inflammatory agent in radiotherapy. Inflammopharmacology 2017; 25:403-413. [DOI: 10.1007/s10787-017-0332-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/19/2017] [Indexed: 02/07/2023]
|
39
|
Tian X, Wang F, Zhang L, Ji P, Wang J, Lv D, Li G, Chai M, Lian Z, Liu G. Melatonin Promotes the In Vitro Development of Microinjected Pronuclear Mouse Embryos via Its Anti-Oxidative and Anti-Apoptotic Effects. Int J Mol Sci 2017; 18:E988. [PMID: 28475125 PMCID: PMC5454901 DOI: 10.3390/ijms18050988] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 12/16/2022] Open
Abstract
CRISPR/Cas9 (Clustered regularly interspaced short palindromic repeats) combined with pronuclear microinjection has become the most effective method for producing transgenic animals. However, the relatively low embryo developmental rate limits its application. In the current study, it was observed that 10-7 M melatonin is considered an optimum concentration and significantly promoted the in vitro development of murine microinjected pronuclear embryos, as indicated by the increased blastocyst rate, hatching blastocyst rate and blastocyst cell number. When these blastocysts were implanted into recipient mice, the pregnancy rate and birth rate were significantly higher than those of the microinjected control, respectively. Mechanistic studies revealed that melatonin treatment reduced reactive oxygen species (ROS) production and cellular apoptosis during in vitro embryo development and improved the quality of the blastocysts. The implantation of quality-improved blastocysts led to elevated pregnancy and birth rates. In conclusion, the results revealed that the anti-oxidative and anti-apoptotic activities of melatonin improved the quality of microinjected pronuclear embryos and subsequently increased both the efficiency of embryo implantation and the birth rate of the pups. Therefore, the melatonin supplementation may provide a novel alternative method for generating large numbers of transgenic mice and this method can probably be used in human-assisted reproduction and genome editing.
Collapse
Affiliation(s)
- Xiuzhi Tian
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Feng Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Lu Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Pengyun Ji
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Jing Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Dongying Lv
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Guangdong Li
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Menglong Chai
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Zhengxing Lian
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Guoshi Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
40
|
Meng X, Li Y, Li S, Zhou Y, Gan RY, Xu DP, Li HB. Dietary Sources and Bioactivities of Melatonin. Nutrients 2017; 9:E367. [PMID: 28387721 PMCID: PMC5409706 DOI: 10.3390/nu9040367] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/14/2017] [Accepted: 03/31/2017] [Indexed: 12/14/2022] Open
Abstract
Insomnia is a serious worldwide health threat, affecting nearly one third of the general population. Melatonin has been reported to improve sleep efficiency and it was found that eating melatonin-rich foods could assist sleep. During the last decades, melatonin has been widely identified and qualified in various foods from fungi to animals and plants. Eggs and fish are higher melatonin-containing food groups in animal foods, whereas in plant foods, nuts are with the highest content of melatonin. Some kinds of mushrooms, cereals and germinated legumes or seeds are also good dietary sources of melatonin. It has been proved that the melatonin concentration in human serum could significantly increase after the consumption of melatonin containing food. Furthermore, studies show that melatonin exhibits many bioactivities, such as antioxidant activity, anti-inflammatory characteristics, boosting immunity, anticancer activity, cardiovascular protection, anti-diabetic, anti-obese, neuroprotective and anti-aging activity. This review summaries the dietary sources and bioactivities of melatonin, with special attention paid to the mechanisms of action.
Collapse
Affiliation(s)
- Xiao Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Ya Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China.
| | - Yue Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Ren-You Gan
- School of Biological Sciences, The University of Hong Kong, Hong Kong 999077, China.
| | - Dong-Ping Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
- South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
41
|
Valizadeh M, Shirazi A, Izadi P, Tavakkoly Bazzaz J, Rezaeejam H. Expression Levels of Two DNA Repair-related Genes under 8 Gy Ionizing Radiation and 100 Mg/Kg Melatonin Delivery In Rat Peripheral Blood. J Biomed Phys Eng 2017; 7:27-36. [PMID: 28451577 PMCID: PMC5401131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/20/2017] [Indexed: 10/26/2022]
Abstract
BACKGROUND After radiation therapy (RT), some health hazards including DNA damages may occur where melatonin can play a protective role due to free radical generation. On the other hand, serious accidental overexposures may occur during RT due to nuclear accidents which necessitate the need for study on exposure to high-dose radiations during treatments. OBJECTIVE The aim of this study was to study the expression level of two genes in non-homologous end joining (NHEJ) pathways named Xrcc4 and Xrcc6 (Ku70) in order to examine the effect of melatonin on repair of DNA double-strand breaks (BSBs) caused by 8Gy ionizing radiation. METHODS One hundred eight male Wistar rats were irradiated with a whole body gamma radiation dose of 8Gy with or without melatonin pretreatments. They were divided into six different groups of control, 100 mg/kg melatonin alone, 8Gy irradiation alone, vehicle alone, vehicle plus 8Gy irradiation and 100 mg/kg melatonin plus 8Gy irradiation. Peripheral blood samples were collected at 8, 24 and 48 h after irradiation. Ku70 and Xrcc4 gene expression were evaluated by real-time quantitative polymerase chain reaction (qPCR) technique and analyzed by one-way ANOVA test. RESULTS Expression of Ku70 and Xrcc4 genes normalized against Hprt gene showed significant difference in melatonin plus irradiation group at 8h compared to the control group (p<0.05). At 24h post irradiation, gene expression changes were significantly upregulated in irradiation-alone group as well as melatonin plus irradiation group (p<0.05). No significant change was found in any groups compared to control group at 48 h time point. CONCLUSION We concluded that, by increasing expression level of Ku70 and Xrcc4 genes, 100 mg/kg melatonin administration 8 and 24 h before 8 Gyionizing radiation can significantly affect the repair of DNA DSBs in NHEJ pathway.
Collapse
Affiliation(s)
- M. Valizadeh
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - A. Shirazi
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - P. Izadi
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| | - J. Tavakkoly Bazzaz
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| | - H. Rezaeejam
- Department of Radiology, Faculty of Allied Medical School, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
42
|
Kocic G, Tomovic K, Kocic H, Sokolovic D, Djordjevic B, Stojanovic S, Arsic I, Smelcerovic A. Antioxidative, membrane protective and antiapoptotic effects of melatonin, in silico study of physico-chemical profile and efficiency of nanoliposome delivery compared to betaine. RSC Adv 2017. [DOI: 10.1039/c6ra24741e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hepatoprotective effects of melatonin mediated by the inhibition of apoptotic and oxidative processes and activation of survival pathways, in comparison with betaine, were studied in mouse hepatocytes undergone Fas-ligand apoptosis.
Collapse
Affiliation(s)
- Gordana Kocic
- Institute of Biochemistry
- Faculty of Medicine
- University of Nis
- 18000 Nis
- Serbia
| | - Katarina Tomovic
- Department of Pharmacy
- Faculty of Medicine
- University of Nis
- 18000 Nis
- Serbia
| | - Hristina Kocic
- Faculty of Medicine
- University of Maribor
- Maribor 2000
- Slovenia
| | - Dusan Sokolovic
- Institute of Biochemistry
- Faculty of Medicine
- University of Nis
- 18000 Nis
- Serbia
| | - Branka Djordjevic
- Institute of Biochemistry
- Faculty of Medicine
- University of Nis
- 18000 Nis
- Serbia
| | - Svetlana Stojanovic
- Institute of Biochemistry
- Faculty of Medicine
- University of Nis
- 18000 Nis
- Serbia
| | - Ivana Arsic
- Department of Pharmacy
- Faculty of Medicine
- University of Nis
- 18000 Nis
- Serbia
| | | |
Collapse
|
43
|
Rezapoor S, Shirazi A, Abbasi S, Bazzaz JT, Izadi P, Rezaeejam H, Valizadeh M, Soleimani-Mohammadi F, Najafi M. Modulation of Radiation-induced Base Excision Repair Pathway Gene Expression by Melatonin. J Med Phys 2017; 42:245-250. [PMID: 29296039 PMCID: PMC5744453 DOI: 10.4103/jmp.jmp_9_17] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Objective: Approximately 70% of all cancer patients receive radiotherapy. Although radiotherapy is effective in killing cancer cells, it has adverse effects on normal cells as well. Melatonin (MLT) as a potent antioxidant and anti-inflammatory agent has been proposed to stimulate DNA repair capacity. We investigated the capability of MLT in the modification of radiation-induced DNA damage in rat peripheral blood cells. Materials and Methods: In this experimental study, male rats (n = 162) were divided into 27 groups (n = 6 in each group) including: irradiation only, vehicle only, vehicle with irradiation, 100 mg/kg MLT alone, 100 mg/kg MLT plus irradiation in 3 different time points, and control. Subsequently, they were irradiated with a single whole-body X-ray radiation dose of 2 and 8 Gy at a dose rate of 200 MU/min. Rats were given an intraperitoneal injection of MLT or the same volume of vehicle alone 1 h prior to irradiation. Blood samples were also taken 8, 24, and 48 h postirradiation, in order to measure the 8-oxoguanine glycosylase1 (Ogg1), Apex1, and Xrcc1 expression using quantitative real-time-polymerase chain reaction. Results: Exposing to the ionizing radiation resulted in downregulation of Ogg1, Apex1, and Xrcc1 gene expression. The most obvious suppression was observed in 8 h after exposure. Pretreatments with MLT were able to upregulate these genes when compared to the irradiation-only and vehicle plus irradiation groups (P < 0.05) in all time points. Conclusion: Our results suggested that MLT in mentioned dose may result in modulation of Ogg1, Apex1, and Xrcc1 gene expression in peripheral blood cells to reduce X-ray irradiation-induced DNA damage. Therefore, administration of MLT may increase the normal tissue tolerance to radiation through enhancing the cell DNA repair capacity. We believed that MLT could play a radiation toxicity reduction role in patients who have undergone radiation treatment as a part of cancer radiotherapy.
Collapse
Affiliation(s)
- Saeed Rezapoor
- Department of Radiology, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Shirazi
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sakineh Abbasi
- Medical Biotechnology, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Tavakkoly Bazzaz
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Pantea Izadi
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Rezaeejam
- Department of Radiology, Allied Medical School, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Majid Valizadeh
- Department of Medical Physics, Faculty of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Farid Soleimani-Mohammadi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Najafi
- Department of Radiology and Nuclear Medicine, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
44
|
Cheki M, Shirazi A, Mahmoudzadeh A, Bazzaz JT, Hosseinimehr SJ. The radioprotective effect of metformin against cytotoxicity and genotoxicity induced by ionizing radiation in cultured human blood lymphocytes. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 809:24-32. [PMID: 27692296 DOI: 10.1016/j.mrgentox.2016.09.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 08/23/2016] [Accepted: 09/01/2016] [Indexed: 12/31/2022]
Abstract
Metformin is a widely prescribed drug used in the treatment of patients with type 2 diabetes. In this study, the radioprotective effect of metformin was investigated against cytotoxicity and genotoxicity induced by ionizing radiation (IR) in human peripheral blood lymphocytes. Human lymphocytes were treated with metformin at concentrations 10 and 50μM for 2h and irradiated with 6MV X-rays. The radiation antagonistic potential of metformin was assessed by MTT [3-(4,5-dimethyl-2-thiaozolyl)-2,5-diphenyl-2H tetrazolium bromide] assay, chromosomal aberration (CA) analysis, cytokinesis blocked micronucleus (CBMN) assay, and flow cytometry. Observations demonstrated a radiation-dose-dependent decrease in the percentage of cell viability after 24h. It was found that pretreatment with metformin (10 and 50μM) increased the percentage of cell viability. A highly significant dose modifying factor (DMF) 1.35 and 1.42 was observed for 10 and 50μM metformin, respectively. Metformin (10 and 50μM) pretreatment significantly decreased the frequency of dicentrics (DCs), acentric fragments (AFs), rings (RIs), micronuclei (MN), and nucleoplasmic bridges (NPBs) in irradiated human peripheral blood lymphocytes. Also, treatment with metformin (10 and 50μM) without irradiation did not increase the number of MN, NPBs, DCs, AFs, RIs, and did not show a cytostatic effect in the human peripheral blood lymphocytes. On the other hand, metformin treatment (10 and 50μM) 2h prior to irradiation significantly reduced X-radiation-induced apoptotic incidence in human lymphocytes. The present study demonstrates metformin to be an effective radioprotector against DNA damage and apoptosis induced by IR in human lymphocytes. These data have an important application for the protection of lymphocytes from the genetic damage and side-effects induced by radiotherapy in cancer patients.
Collapse
Affiliation(s)
- Mohsen Cheki
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences and Health Services, Tehran, Iran
| | - Alireza Shirazi
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences and Health Services, Tehran, Iran.
| | - Aziz Mahmoudzadeh
- Department of Biosciences and Biotechnology, Malek-Ashtar University of Technology, Tehran, Iran
| | - Javad Tavakkoly Bazzaz
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences and Health Services, Tehran, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
45
|
Zhuang C, Huo H, Fu W, Huang W, Han L, Song M, Li Y. Aluminum chloride induced splenic lymphocytes apoptosis through NF-κB inhibition. Chem Biol Interact 2016; 257:94-100. [PMID: 27476752 DOI: 10.1016/j.cbi.2016.07.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/09/2016] [Accepted: 07/28/2016] [Indexed: 11/18/2022]
Abstract
This research investigated the relationship between lymphocytes apoptosis, hypothalamic-pituitary-adrenal (HPA) axis and NF-κB in AlCl3-treated rats. Eighty Wistar rats were orally exposed to 0 (control group, CG), 0.4 mg/mL (low-dose group, LG), 0.8 mg/mL (mid-dose group, MG) and 1.6 mg/mL (high-dose group, HG) AlCl3 for 90 days, respectively. A variety of measurements were taken including lymphocyte apoptosis index, serum corticotropin-releasing hormone (CRH), adrenocorticotrophic hormone (ACTH) and glucocorticoids (GCs) contents, GC receptors (GCR) and NF-κB mRNA and nuclear protein expressions, caspase 3 and 9 mRNA expressions and activities. The results showed that in the AlCl3-treated rats serum CRH, ACTH and GCs contents, lymphocyte GC receptors (GCR) mRNA and nuclear protein expressions, caspase 3 and 9 mRNA expressions and activities increased, while Bcl-2/Bax ratio and NF-κB mRNA and nuclear protein expressions decreased compared with the CG. Furthermore GCR and NF-κB nuclear protein expressions were negatively correlated. And NF-κB mRNA expression was positively correlated with that of Bcl-2, but negatively correlated with that of Bax in AlCl3-treated rats. These findings indicated that AlCl3 activated HPA axis, then induced splenic lymphocytes apoptosis through NF-κB inhibition.
Collapse
Affiliation(s)
- Cuicui Zhuang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Hui Huo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Wanfa Fu
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, China
| | - Wanyue Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Lulu Han
- ICareVet Pet Hospital, Shenyang 110014, China
| | - Miao Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yanfei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
46
|
Othman AI, Edrees GM, El-Missiry MA, Ali DA, Aboel-Nour M, Dabdoub BR. Melatonin controlled apoptosis and protected the testes and sperm quality against bisphenol A-induced oxidative toxicity. Toxicol Ind Health 2016; 32:1537-49. [DOI: 10.1177/0748233714561286] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epidemiological reports have indicated a correlation between the increasing bisphenol A (BPA) levels in the environment and the incidence of male infertility. In this study, the protective effects of melatonin on BPA-induced oxidative stress and apoptosis were investigated in the rat testes and epididymal sperm. Melatonin (10 mg/kg body weight (bw)) was injected concurrently with BPA (50 mg/kg bw) for 3 and 6 weeks. The administration of BPA significantly increased oxidative stress in the testes and epididymal sperm. This was associated with a decrease in the serum testosterone level as well as sperm quality, chromatin condensation/de-condensation level, and the percentage of haploid germ cells in the semen. BPA administration caused a significant increase in apoptosis accompanied by a decrease in the expression of the antiapoptotic proteins Bcl-2 in the testes and epididymal sperm. The concurrent administration of melatonin decreased oxidative stress by modulating the levels of glutathione, superoxide dismutase, and catalase as well as the malondialdehyde and hydrogen peroxide concentrations in the testes and sperm. Melatonin sustained Bcl-2 expression and controlled apoptosis. Furthermore, melatonin maintained the testosterone levels, ameliorated histopathological changes, increased the percentages of seminal haploid germ cells, and protected sperm chromatin condensation process, indicating appropriate spermatogenesis with production of functional sperm. In conclusion, melatonin protected against BPA-induced apoptosis by controlling Bcl-2 expression and ameliorating oxidative stress in the testes and sperm. Thus, melatonin is a promising pharmacological agent for preventing the potential reproductive toxicity of BPA following occupational or environmental exposures.
Collapse
Affiliation(s)
- Azza I Othman
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Gamal M Edrees
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt
| | | | - Doaa A Ali
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Mohamed Aboel-Nour
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Banan R Dabdoub
- Department of Biology, Faculty of Education, Mosul University, Mosul, Iraq
| |
Collapse
|
47
|
Rao G, Verma R, Mukherjee A, Haldar C, Agrawal NK. Melatonin alleviates hyperthyroidism induced oxidative stress and neuronal cell death in hippocampus of aged female golden hamster, Mesocricetus auratus. Exp Gerontol 2016; 82:125-30. [PMID: 27374868 DOI: 10.1016/j.exger.2016.06.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/11/2016] [Accepted: 06/29/2016] [Indexed: 11/18/2022]
Abstract
Oxidative stress is a well known phenomenon under hyperthyroid condition that induces various physiological and neural problems with a higher prevalence in females. We, therefore investigated the antioxidant potential of melatonin (Mel) on hyperthyroidism-induced oxidative stress and neuronal cell death in the hippocampus region of brain (cognition and memory centre) of aged female golden hamster, Mesocricetus auratus. Aged female hamsters were randomly divided into four experimental groups (n=7); group-I: control, group-II: Melatonin (5mgkg(-1)day(-1), i.p., for one week), group-III: Hyperthyroid (100μg kg(-1)day(-1), i.p., for two weeks) and group-IV- Hyper+Mel. Hormonal profiles (thyroid and melatonin), activity of antioxidant enzymes (SOD, CAT and GPX), lipid peroxidation level (TBARS) and the specific apoptotic markers (Bax/Bcl-2 ratio and Caspase-3) expression were evaluated. A significant increase in the profile of total thyroid hormone (tT3 and tT4) in hyperthyroidic group as compared to control while tT3 significantly decreased in melatonin treated hyperthyroidic group. However, Mel level significantly decreased in hyperthyroidic group but increased in melatonin treated hyperthyroidic group. Further, the number of immune-positive cells for thyroid hormone receptor-alpha (TR-α) decreased in the hippocampus of hyperthyroidic group and increased in melatonin treated hyperthyroidic group. Profiles of antioxidant enzymes showed a significant decrease in hyperthyroidic group with a simultaneous increase in lipid peroxidation (TBARS). Melatonin treatment to hyperthyroidic group lead to decreased TBARS level with a concomitant increase in antioxidant enzyme activity. Moreover, increased expression of Bax/Bcl-2 ratio and Caspase-3, in hyperthyroidic group had elevated neuronal cell death in hippocampal area and melatonin treatment reduced its expression in hyperthyroidic group. Our findings thus indicate that melatonin reduced the hyperthyroidism-induced oxidative stress and neuronal cell death in the hippocampus region of brain, suggesting a novel therapeutic approach of melatonin for management of cognition and memory function in females under hyperthyroid condition.
Collapse
Affiliation(s)
- Geeta Rao
- College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, United States of America
| | - Rakesh Verma
- Department of Zoology, Banaras Hindu University, Varanasi, UP 221005, India
| | - Arun Mukherjee
- Department of Zoology, Banaras Hindu University, Varanasi, UP 221005, India
| | - Chandana Haldar
- Department of Zoology, Banaras Hindu University, Varanasi, UP 221005, India.
| | - Neeraj Kumar Agrawal
- Department of Endocrinology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP 221005, India
| |
Collapse
|
48
|
Wang X, Luo Y, Sun H, Feng J, Ma S, Liu J, Huang B. Dynamic expression changes of Bcl-2, Caspase-3 and Hsp70 in middle cerebral artery occlusion rats. Brain Inj 2016; 29:93-7. [PMID: 25158066 DOI: 10.3109/02699052.2014.945958] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND This study aimed to study the dynamic changes of B cell lymphoma/leukaemia 2 (Bcl-2), caspase-3 and heat shock response protein 70 (Hsp70) in blood serum following acute middle cerebral artery occlusion (MCAO) in rats. METHODS Occlusion of the cerebral artery was accomplished via the intraluminal filament, followed by the TTC staining evaluation and neurological deficit score. Meanwhile, the blood serum was extracted at 0.5, 2, 3, 6, 12 and 24 hours and 3 and 7 days after surgery. The serum expression levels of caspase-3, Bcl-2 and Hsp70 were determined using ELISA kits according to the manufacturer's protocols. Expression correlations between Bcl-2 and Hsp70, Bcl-2 and caspase-3 were analysed using correl function. A rats model was successfully established. RESULTS The expression of all three indexes, including Bcl-2, caspase-3 and Hsp70, was significantly increased after surgery (p < 0.05) and peaked at 12, 24 and 24 hours, respectively. Up to 7 days after MCAO, the expression levels of these proteins recovered to the control levels. There were positive correlations between the expressions of Bcl-2 and Hsp70, Bcl-2 and caspase-3 (p < 0.05). CONCLUSIONS The altered expressions of these proteins in the blood serum may result in many symptoms in acute ischaemic stroke individuals.
Collapse
Affiliation(s)
- Xiaoping Wang
- a Department of Neurology , Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital , Chengdu, Sichuan , PR China , and
| | | | | | | | | | | | | |
Collapse
|
49
|
Mehaisen GMK, Saeed AM, Gad A, Abass AO, Arafa M, El-Sayed A. Antioxidant Capacity of Melatonin on Preimplantation Development of Fresh and Vitrified Rabbit Embryos: Morphological and Molecular Aspects. PLoS One 2015; 10:e0139814. [PMID: 26439391 PMCID: PMC4595475 DOI: 10.1371/journal.pone.0139814] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 09/16/2015] [Indexed: 02/06/2023] Open
Abstract
Embryo cryopreservation remains an important technique to enhance the reconstitution and distribution of animal populations with high genetic merit. One of the major detrimental factors to this technique is the damage caused by oxidative stress. Melatonin is widely known as an antioxidant with multi-faceted ways to counteract the oxidative stress. In this paper, we investigated the role of melatonin in protecting rabbit embryos during preimplantation development from the potential harmful effects of oxidative stress induced by in vitro culture or vitrification. Rabbit embryos at morula stages were cultured for 2 hr with 0 or 10−3 M melatonin (C or M groups). Embryos of each group were either transferred to fresh culture media (CF and MF groups) or vitrified/devitrified (CV and MV groups), then cultured in vitro for 48 hr until the blastocyst stage. The culture media were used to measure the activity of antioxidant enzymes: glutathione-s-transferase (GST) and superoxide dismutase (SOD), as well as the levels of two oxidative substrates: lipid peroxidation (LPO) and nitric oxide (NO). The blastocysts from each group were used to measure the expression of developmental-related genes (GJA1, POU5F1 and Nanog) and oxidative-stress-response-related genes (NFE2L2, SOD1 and GPX1). The data showed that melatonin promoted significantly (P<0.05) the blastocyst rate by 17% and 12% in MF and MV groups compared to their controls (CF and CV groups). The GST and SOD activity significantly increased by the treatment of melatonin in fresh or vitrified embryos, while the levels of LPO and NO decreased (P<0.05). Additionally, melatonin considerably stimulated the relative expression of GJA1, NFE2L2 and SOD1 genes in MF and MV embryos compared to CF group. Furthermore, melatonin significantly ameliorated the reduction of POU5F1 and GPX1 expression induced by vitrification. The results obtained from the current investigation provide new and clear molecular aspects regarding the mechanisms by which melatonin promotes development of both fresh and vitrified rabbit embryos.
Collapse
Affiliation(s)
- Gamal M. K. Mehaisen
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
- * E-mail:
| | - Ayman M. Saeed
- Department of Animal Biotechnology, Animal Production Research Institute, Dokki, Giza, Egypt
| | - Ahmed Gad
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
- Cairo University Research Park (CURP), Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Ahmed O. Abass
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Mahmoud Arafa
- Animal Health Research Institute, Dokki, Giza, Egypt
| | - Ashraf El-Sayed
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
- Cairo University Research Park (CURP), Faculty of Agriculture, Cairo University, Giza, Egypt
| |
Collapse
|
50
|
Ren L, Wang Z, An L, Zhang Z, Tan K, Miao K, Tao L, Cheng L, Zhang Z, Yang M, Wu Z, Tian J. Dynamic comparisons of high-resolution expression profiles highlighting mitochondria-related genes between in vivo and in vitro fertilized early mouse embryos. Hum Reprod 2015; 30:2892-911. [PMID: 26385791 DOI: 10.1093/humrep/dev228] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/24/2015] [Indexed: 12/11/2022] Open
Abstract
STUDY QUESTION Does in vitro fertilization (IVF) induce comprehensive and consistent changes in gene expression associated with mitochondrial biogenesis and function in mouse embryos from the pre- to post-implantation stage? SUMMARY ANSWER IVF-induced consistent mitochondrial dysfunction in early mouse embryos by altering the expression of a number of mitochondria-related genes. WHAT IS KNOWN ALREADY Although IVF is generally safe and successful for the treatment of human infertility, there is increasing evidence that those conceived by IVF suffer increased health risks. The mitochondrion is a multifunctional organelle that plays a crucial role in early development. We hypothesized that mitochondrial dysfunction is associated with increased IVF-induced embryonic defects and risks in offspring. STUDY DESIGN, SIZE, DURATION After either IVF and development (IVO groups as control) or IVF and culture (IVF groups), blastocysts were collected and transferred to pseudo-pregnant recipient mice. Both IVO and IVF embryos were sampled at E3.5, E7.5 and E10.5, and the expression profiles of mitochondria-related genes from the pre- to post-implantation stage were compared. PARTICIPANTS/MATERIALS, SETTING, METHODS ICR mice (5- to 6-week-old males and 8- to 9-week-old females) were used to generate IVO and IVF blastocysts. Embryo day (E) 3.5 blastocysts were transferred to pseudo-pregnant recipient mice. Both IVO and IVF embryos were sampled at E3.5, E7.5 and E10.5 for generating transcriptome data. Mitochondria-related genes were filtered for dynamic functional profiling. Mitochondrial dysfunctions indicated by bioinformatic analysis were further validated using cytological and molecular detection, morphometric and phenotypic analysis and integrated analysis with other high-throughput data. MAIN RESULTS AND THE ROLE OF CHANCE A total of 806, 795 and 753 mitochondria-related genes were significantly (P < 0.05) dysregulated in IVF embryos at E3.5, E7.5 and E10.5, respectively. Dynamic functional profiling, together with cytological and molecular investigations, indicated that IVF-induced mitochondrial dysfunctions mainly included: (i) inhibited mitochondrial biogenesis and impaired maintenance of DNA methylation of mitochondria-related genes during the post-implantation stage; (ii) dysregulated glutathione/glutathione peroxidase (GSH/Gpx) system and increased mitochondria-mediated apoptosis; (iii) disturbed mitochondrial β-oxidation, oxidative phosphorylation and amino acid metabolism; and (iv) disrupted mitochondrial transmembrane transport and membrane organization. We also demonstrated that some mitochondrial dysfunctions in IVF embryos, including impaired mitochondrial biogenesis, dysregulated GSH homeostasis and reactive oxygen species-induced apoptosis, can be rescued by treatment with melatonin, a mitochondria-targeted antioxidant, during in vitro culture. LIMITATIONS, REASONS FOR CAUTION Findings in mouse embryos and fetuses may not be fully transferable to humans. Further studies are needed to confirm these findings and to determine their clinical significance better. WIDER IMPLICATIONS OF THE FINDINGS The present study provides a new insight in understanding the mechanism of IVF-induced aberrations during embryonic development and the increased health risks in the offspring. In addition, we highlighted the possibility of improving existing IVF systems by modulating mitochondrial functions.
Collapse
Affiliation(s)
- Likun Ren
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Zhuqing Wang
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Lei An
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Zhennan Zhang
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Kun Tan
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Kai Miao
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Li Tao
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Linghua Cheng
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Zhenni Zhang
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Mingyao Yang
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Zhonghong Wu
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Jianhui Tian
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| |
Collapse
|