1
|
Zhang L, Zhong Y, Fan Q, Li S, Zhu J, Ma X, Zhu Y, Wu R, Zhang Z, Zhou F, Wu Y, Cai M, Ma Y. Coupled Physical-Biogeochemical Dynamics of Polycyclic Aromatic Compounds in the East China Sea. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4684-4698. [PMID: 39967058 DOI: 10.1021/acs.est.4c11906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Polycyclic aromatic compounds (PACs), including harmful polycyclic aromatic hydrocarbons (PAHs) and more toxic derivatives, are continuously released contaminants. Their provenance and dynamics in coastal oceans remain poorly understood. This study presents the first comprehensive assessment of PACs in coastal oceans by combining their presence with key hydrological and biogeochemical indicators, and potential microbial degradation. High concentrations of Σ92PACs (48-660 ng/L) were observed in the East China Sea, influenced vertically by upwelling and related sediment resuspension during winter. Spatial heterogeneity reveals distinct distribution patterns: PAHs and alkyl-PAHs were mainly influenced by riverine inputs, horizontal transport via coastal currents, and fronts acting as barriers, in contrast, oxygen-PAHs and nitro-PAHs were primarily shaped by secondary transformations within warm water masses rich in nutrients. The relationship between dissolved PACs and chlorophyll a underscores the dominance of biodegradation over the marginal biological pump effect during wintertime low primary productivity. Metagenomic analysis further highlights microbial degradation as a crucial PAC removal pathway, with enhanced microbial diversity driven by terrigenous advection and upwelling. The methodologies and findings of this research provide valuable insights into PAC cycling in coastal oceans.
Collapse
Affiliation(s)
- Lihong Zhang
- School of Oceanography, Shanghai Jiao Tong University, 200030 Shanghai, China
| | - Yisen Zhong
- School of Oceanography, Shanghai Jiao Tong University, 200030 Shanghai, China
| | - Qilian Fan
- Leibniz Institute for Natural Product Research and Infection Biology─Hans Knöll Institute, 07745 Jena, Germany
| | - Shuangzhao Li
- School of Oceanography, Shanghai Jiao Tong University, 200030 Shanghai, China
| | - Jincai Zhu
- School of Oceanography, Shanghai Jiao Tong University, 200030 Shanghai, China
| | - Xiao Ma
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, 310012 Hangzhou, China
| | - Yuanli Zhu
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, 310012 Hangzhou, China
| | - Ruiming Wu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 200241 Shanghai, China
| | - Zhiwei Zhang
- School of Oceanography, Shanghai Jiao Tong University, 200030 Shanghai, China
| | - Feng Zhou
- School of Oceanography, Shanghai Jiao Tong University, 200030 Shanghai, China
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, 310012 Hangzhou, China
| | - Yuehong Wu
- School of Oceanography, Shanghai Jiao Tong University, 200030 Shanghai, China
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, 310012 Hangzhou, China
| | - Minghong Cai
- School of Oceanography, Shanghai Jiao Tong University, 200030 Shanghai, China
- Key Laboratory of Polar Science, Ministry of Natural Resources, Polar Research Institute of China, 200136 Shanghai, China
| | - Yuxin Ma
- School of Oceanography, Shanghai Jiao Tong University, 200030 Shanghai, China
- Key Laboratory of Polar Science, Ministry of Natural Resources, Polar Research Institute of China, 200136 Shanghai, China
| |
Collapse
|
2
|
Ren Y, Wang Y, Wang Y, Ning X, Li G, Sang N. Exposure to oxygenated polycyclic aromatic hydrocarbons and endocrine dysfunction: Multi-level study based on hormone receptor responses. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136855. [PMID: 39700954 DOI: 10.1016/j.jhazmat.2024.136855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/30/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Oxygenated polycyclic aromatic hydrocarbons (OPAHs) are a class of emerging environmental contaminants that exhibit high toxicity compared to parent PAHs. In addition to carcinogenic, teratogenic and mutagenic effects, recent studies show their potential to cause endocrine disruption, but the reports are controversial. In this study, we employed hormone receptors (ERα/AR/GRα/TRβ)-mediated dual luciferase reporter gene assay and molecular docking, and found that five typical OPAHs exhibited agonistic activity towards hormone receptors, and hydrogen bonding and hydrophobic interactions were the primary binding forces involved in OPAHs-receptor interactions. Then, we developed a weighted scoring system coupled with computerized screening and clarified that 1,2-benzanthraquinone (BAQ) had the strongest hormonal effects, while anthraquinone (AQ) exhibited the weakest effects. Using the in vivo exposure model, we clarified that BAQ induced hormone receptor-coupled developmental toxicity in zebrafish larvae, evidenced by increased expression of androgen receptors and key genes involved in hormone synthesis, pericardial edema and reduced body length. Importantly, we successfully constructed androgen response element-enhanced green fluorescent protein (ARE-EGFP) transient transfection zebrafish embryos, and confirmed the androgenic potency of BAQ, but not AQ. These findings highlight the endocrine-disrupting effects in the risk management of OPAHs.
Collapse
Affiliation(s)
- Ying Ren
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Yue Wang
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, PR China; Department of Resources and Environmental Engineering, Shanxi Institute of Energy, Taiyuan, Shanxi 030600, PR China
| | - Yang Wang
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Xia Ning
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Guangke Li
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | - Nan Sang
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, PR China; Department of Resources and Environmental Engineering, Shanxi Institute of Energy, Taiyuan, Shanxi 030600, PR China
| |
Collapse
|
3
|
Goswami G, Bamola S, Agarwal M, Goyal I, Chopra A, Pandey A, Lakhani A. Chemical composition, mutagenicity, and cytotoxicity of urban submicron particulate matter (PM 1) in Agra, India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176505. [PMID: 39341250 DOI: 10.1016/j.scitotenv.2024.176505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Abstract
This study, conducted in Agra, India, examined the mass concentrations, chemical compositions, and seasonal variations of submicron particles (PM1). The concentrations of metals, water-soluble inorganic ions (WSIs) including anions (F-, Cl-, NO₃-, SO₄2-) and cations (Ca2+, K+, Mg2+, NH₄+, Na+), organic carbon (OC) and elemental carbon (EC) and polycyclic aromatic hydrocarbons (PAHs) in PM1 extract were determined using Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES), Ion Chromatography, Thermogravimetric Analysis and Gas Chromatography-Mass Spectrometry (GC-MS) respectively. For morphological observation of PM1 particles, Field Emission Scanning Electron Microscopy-Energy Dispersive X-ray spectrometry (FESEM-EDS) was used. The annual average concentration of PM1 was 82.9 ± 33.4 μg/m3, which exceeds the World Health Organisation's (WHO) safe limit for PM2.5 of 5 μg/m3 by a factor of 17. The PM1 mass composition included metals (31 %), WSIs (28 %), OC and EC (9.8 %), and PAHs (0.4 %). Winter recorded the highest PM1 concentration (96.1 ± 25.8 μg/m3), followed by post-monsoon, summer, and monsoon seasons. The average concentration of PAHs was 364.6 ± 226.6 ng/m3. Positive Matrix Factorization (PMF) identified traffic, emissions from biomass/coal and wood combustion, industrial/stationary sources, and secondary aerosols as potential contributors. The Ames test revealed the presence of frameshift mutations and base pair substitutions, especially in winter and post-monsoon. Additionally, PM1 exhibited cytotoxic effects on V-79 cells, with heightened toxicity during winter and prolonged exposure in other seasons. This study underscores the urgent need to address local emission sources and establish regulatory standards for PM1 in urban areas.
Collapse
Affiliation(s)
- Gunjan Goswami
- Department of Chemistry, Dayalbagh Educational Institute, Agra 282005, India
| | - Simran Bamola
- Department of Chemistry, Dayalbagh Educational Institute, Agra 282005, India
| | - Muskan Agarwal
- Department of Chemistry, Dayalbagh Educational Institute, Agra 282005, India
| | - Isha Goyal
- Department of Chemistry, Dayalbagh Educational Institute, Agra 282005, India
| | - Amla Chopra
- Department of Zoology, Dayalbagh Educational Institute, Agra 282005, India.
| | - Alok Pandey
- Indian Institute of Toxicology Research, Lucknow 226001, India.
| | - Anita Lakhani
- Department of Chemistry, Dayalbagh Educational Institute, Agra 282005, India.
| |
Collapse
|
4
|
He X, Huang XH, Ma Y, Huang C, Yu JZ. Unambiguous Analysis and Systematic Mapping of Oxygenated Aromatic Compounds in Atmospheric Aerosols Using Ultrahigh-Resolution Mass Spectrometry. Anal Chem 2024; 96:1880-1889. [PMID: 38253570 DOI: 10.1021/acs.analchem.3c03760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Compositional analysis of organic aerosols (OAs) at the molecular level has been a long-standing challenge in field and laboratory studies. In this work, we applied different extraction protocols to aerosol samples collected from the ambient atmosphere and biomass burning sources, followed by Orbitrap mass spectrometric analysis with a soft electrospray ionization source operating in both positive and negative ionization modes. To systematically map the distribution of mono- and dioxygenated aromatic compounds (referred to as aromatic CHO1 and CHO2 formulas) in OA, we developed a unique two-dimensional Kendrick mass defect (2D KMD) framework. Our analysis unveiled a total of (76, 64, 70) aromatic CHO1 formulas and (103, 110, 106) CHO2 formulas, corresponding to samples obtained from ambient air, rice straw burning, and sugarcane leaf burning, respectively. These results reveal a significant number of additional distinct formulas exclusively present in ambient samples, suggesting a significant chemical transformation of OAs in the atmosphere. The analytical approach can be further extended to incorporate multiple layers of 2D KMD, enabling systematic mapping of the unexplored chemical space for complex environmental samples.
Collapse
Affiliation(s)
- Xiao He
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Xiaohui Hilda Huang
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Yingge Ma
- State Environmental Protection Key Laboratory of the Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200000, China
| | - Cheng Huang
- State Environmental Protection Key Laboratory of the Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200000, China
| | - Jian Zhen Yu
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| |
Collapse
|
5
|
Peng B, Dong Q, Li F, Wang T, Qiu X, Zhu T. A Systematic Review of Polycyclic Aromatic Hydrocarbon Derivatives: Occurrences, Levels, Biotransformation, Exposure Biomarkers, and Toxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15314-15335. [PMID: 37703436 DOI: 10.1021/acs.est.3c03170] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Polycyclic aromatic hydrocarbon (PAH) derivatives constitute a significant class of emerging contaminants that have been ubiquitously detected in diverse environmental matrixes, with some even exhibiting higher toxicities than their corresponding parent PAHs. To date, compared with parent PAHs, fewer systematic summaries and reanalyses are available for PAH derivatives with great environmental concerns. This review summarizes the current knowledge on the chemical species, levels, biotransformation patterns, chemical analytical methods, internal exposure routes with representative biomarkers, and toxicity of PAH derivatives, primarily focusing on nitrated PAHs (NPAHs), oxygenated PAHs (OPAHs), halogenated PAHs (XPAHs), and alkylated PAHs (APAHs). A collection of 188 compounds from four categories, 44 NPAHs, 36 OPAHs, 56 APAHs, and 52 XPAHs, has been compiled from 114 studies that documented the environmental presence of PAH derivatives. These compounds exhibited weighted average air concentrations that varied from a lower limit of 0.019 pg/m3 to a higher threshold of 4060 pg/m3. Different analytical methods utilizing comprehensive two-dimensional gas chromatography coupled with high-resolution time-of-flight mass spectrometry (GC × GC-TOF-MS), gas chromatography coupled to time-of-flight mass spectrometry (GC-TOF-MS), comprehensive two-dimensional gas chromatography coupled to quadrupole mass spectrometry (GC × GC-QQQ-MS), and Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS), that adopted untargeted strategies for the identification of PAH derivatives are also reviewed here. Additionally, an in-depth analysis of biotransformation patterns for each category is provided, including the likelihood of specific biotransformation reaction types. For the toxicity, we primarily summarized key metabolic activation pathways, which could result in the formation of reactive metabolites capable of covalently bonding with DNA and tissue proteins, and potential health outcomes such as carcinogenicity and genotoxicity, oxidative stress, inflammation and immunotoxicity, and developmental toxicity that might be mediated by the aryl hydrocarbon receptor (AhR). Finally, we pinpoint research challenges and emphasize the need for further studies on identifying PAH derivatives, tracking external exposure levels, evaluating internal exposure levels and associated toxicity, clarifying exposure routes, and considering mixture exposure effects. This review aims to provide a broad understanding of PAH derivatives' identification, environmental occurrence, human exposure, biotransformation, and toxicity, offering a valuable reference for guiding future research in this underexplored area.
Collapse
Affiliation(s)
- Bo Peng
- SKL-ESPC and College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, China
| | - Qianli Dong
- SKL-ESPC and College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, China
| | - Fangzhou Li
- SKL-ESPC and College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, China
| | - Teng Wang
- SKL-ESPC and College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, China
| | - Xinghua Qiu
- SKL-ESPC and College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, China
| | - Tong Zhu
- SKL-ESPC and College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Zhu FJ, Zhang ZF, Liu LY, Yao H, Jia HL, Zhang Z, Cui S, Meng B, Cao G, Su PH, Mao XX, Li BL, Ma WL, Li YF. Influence on the levels of PAHs and methylated PAHs in surface soil from pollution control in China: Evidence in 2019 data compared with 2005 and 2012 data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162718. [PMID: 36914128 DOI: 10.1016/j.scitotenv.2023.162718] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 05/06/2023]
Abstract
To comprehensively clarify the pollution characteristics of persistent toxic substances, the Soil and Air Monitoring Program Phase III (SAMP-III) was conducted in 2019 in China. In total, 154 surface soil samples were collected across China, and 30 unsubstituted polycyclic aromatic hydrocarbons (U-PAHs) and 49 methylated PAHs (Me-PAHs) were analyzed in this study. The mean concentrations of total U-PAHs and Me-PAHs were 540 ± 778 and 82.0 ± 132 ng/g dw, respectively. Northeastern China and Eastern China are the two regions of concern with high PAH and BaP equivalency levels. Compared with SAMP-I (2005) and SAMP-II (2012), an obvious upward temporal trend followed by a downward trend of PAH levels was observed in the past 14 years for the first time. The mean concentrations of 16 U-PAHs were 377 ± 716, 780 ± 1010, and 419 ± 611 ng/g dw in surface soil across China for the three phases, respectively. Considering rapid economic growth and energy consumption, an increasing trend from 2005 to 2012 was expected. From 2012 to 2019, the PAH levels in soils across China decreased by 50 %, which was consistent with the decline in PAH emissions. The period of reduction of PAHs in surface soil coincided with the implementation of Air and Soil Pollution Control Actions in China after 2013 and 2016, respectively. Along with the pollution control actions in China, the pollution control of PAHs and the increase in soil quality can be expected in the near future.
Collapse
Affiliation(s)
- Fu-Jie Zhu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| | - Hong Yao
- IJRC-PTS, Beijing Jiaotong University, Beijing 100044, China
| | - Hong-Liang Jia
- IJRC-PTS, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Zhi Zhang
- School of Advanced Manufacturing, Guangdong University of Technology, Jieyang 515231, China
| | - Song Cui
- IJRC-PTS, School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Bo Meng
- IJRC-PTS, School of Geography and Tourism, Harbin University, Harbin 150086, China
| | - Gang Cao
- IJRC-PTS, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Peng-Hao Su
- IJRC-PTS, Shanghai Maritime University, Shanghai 201306, China
| | - Xiao-Xuan Mao
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Bao-Long Li
- MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Science, Beijing 100037, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China.
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| |
Collapse
|
7
|
Drventić I, Glumac M, Carev I, Kroflič A. Seasonality of Polyaromatic Hydrocarbons (PAHs) and Their Derivatives in PM 2.5 from Ljubljana, Combustion Aerosol Source Apportionment, and Cytotoxicity of Selected Nitrated Polyaromatic Hydrocarbons (NPAHs). TOXICS 2023; 11:518. [PMID: 37368618 DOI: 10.3390/toxics11060518] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023]
Abstract
Airborne particulate matter (PM) is a vector of many toxic pollutants, including polyaromatic hydrocarbons (PAHs) and their derivatives. Especially harmful is the fine fraction (PM2.5), which penetrates deep into the lungs during inhalation and causes various diseases. Amongst PM2.5 components with toxic potential are nitrated PAHs (NPAHs), knowledge of which is still rudimentary. Three of the measured NPAHs (1-nitropyrene (1-nP), 9-nitroanthracene (9-nA), and 6-nitrochrysene (6-nC)) were detected in ambient PM2.5 from Ljubljana, Slovenia, along with thirteen non-nitrated PAHs. The highest concentrations of pollutants, which are closely linked with incomplete combustion, were observed in the cold part of the year, whereas the concentrations of NPAHs were roughly an order of magnitude lower than those of PAHs throughout the year. Further on, we have evaluated the toxicity of four NPAHs, including 6-nitrobenzo[a]pyrene (6-nBaP), to the human kidney cell line, HEK293T. The most potent was 1-nP (IC50 = 28.7 µM), followed by the other three NPAHs, whose IC50 was above 400 or 800 µM. According to our cytotoxicity assessment, atmospheric 1-nP is the most harmful NPAH among the investigated ones. Despite low airborne concentrations of NPAHs in ambient air, they are generally considered harmful to human health. Therefore, systematic toxicological assessment of NPAHs at different trophic levels, starting with cytotoxicity testing, is necessary in order to accurately evaluate their threat and adopt appropriate abatement strategies.
Collapse
Affiliation(s)
- Ivana Drventić
- Department of Analytical Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Mateo Glumac
- Laboratory for Cancer Research, School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia
| | - Ivana Carev
- NAOS Institute of Life Science, 355 rue Pierre-Simon Laplace, 13290 Aix-en-Provence, France
- Mediterranean Institute for Life Science, Meštrovićevo šetalište 45, 21000 Split, Croatia
- Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia
| | - Ana Kroflič
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| |
Collapse
|
8
|
Zhao K, Peng G, Wang K, Li F. Distribution, sources, and health risk of polycyclic aromatic hydrocarbons and their derivatives in the watershed: the case of Yitong River, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:68536-68547. [PMID: 37126174 DOI: 10.1007/s11356-023-27042-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 04/11/2023] [Indexed: 05/27/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and substituted PAHs (SPAHs) are persistent organic pollutants prevalent globally, and SPAHs have received widespread attention in recent years due to their stronger toxicity and carcinogenicity compared to PAHs. There is a lack of systematic examination of PAHs and their derivatives in watersheds. Thus, to clarify the current status, possible sources, and potential risks of PAHs and their derivatives in watersheds, a study was conducted on Yitong River in China. The results showed that the concentrations of ∑PAHs, ∑OPAHs, and ∑NPAHs ranged from 297.9-1158.3 ng/L, 281.1-587.2 ng/L, and 65.7-269.1 ng/L, respectively. Diagnostic ratio analysis showed that the PAHs were mainly derived from petroleum sources, agricultural waste, and coal combustion. Nitrated PAHs (NPAHs) were mainly derived from liquid combustion sources, and oxygenated PAHs (OPAHs) were derived mainly from petroleum source emissions and atmospheric deposition. The exposure risk model of PAHs revealed that 86% of the studied sites would pose carcinogenic risks after dermal contact. The contaminant causing a major carcinogenic risk was DahA, and none of the sites produced non-carcinogenic risks. The lifetime carcinogenic risk of NPAHs was 8.85 × 10-10-1.44 × 10-4, and some surface waters presented with potential carcinogenic risks.
Collapse
Affiliation(s)
- Ke Zhao
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun, 130118, People's Republic of China
| | - Guosong Peng
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun, 130118, People's Republic of China
| | - Kaixuan Wang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun, 130118, People's Republic of China
| | - Fengxiang Li
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
9
|
Xu X, Liu X, Zhang J, Liang L, Wen C, Li Y, Shen M, Wu Y, He X, Liu G, Xu X. Formation, migration, derivation, and generation mechanism of polycyclic aromatic hydrocarbons during frying. Food Chem 2023; 425:136485. [PMID: 37276667 DOI: 10.1016/j.foodchem.2023.136485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 06/07/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic and lipophilic, which can be found in frying system. This review summarized the formation, migration and derivation for PAHs, hypothesized the possible mechanism for PAHs generation during frying and presented the research prospects. Some factors like high oil consumption, high temperature, long time and oil rich in unsaturated fatty acids promoted the formation of PAHs and the presence of antioxidants inhibited the PAHs formation. The effect of proteins and carbohydrates in foods on the formation of PAHs is inconclusive. The formed PAHs were migrated into food and air. Moreover, some PAHs transformed into more toxic PAHs-derivatives during frying. The generation of PAHs may be related to low-barrier free radical-mediated reaction and the unsaturated hydrocarbons may be precursors of PAHs during frying. In future, the isotope tracer technology and on-line detection may be applied to discover intermediates and provide clues for studying PAHs generation mechanisms.
Collapse
Affiliation(s)
- Xiangxin Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xiaofang Liu
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Li Liang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Youdong Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Mengyu Shen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Yinyin Wu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xudong He
- Yangzhou Center for Food and Drug Control, Yangzhou 225009, China
| | - Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| |
Collapse
|
10
|
Vargas VMF, da Silva Júnior FMR, Silva Pereira TD, Silva CSD, Coronas MV. A comprehensive overview of genotoxicity and mutagenicity associated with outdoor air pollution exposure in Brazil. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:172-199. [PMID: 36775848 DOI: 10.1080/10937404.2023.2175092] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
This review examined the mutagenicity and genotoxicity associated with exposure to outdoor air pollutants in Brazil. A search was performed on the Web of Science database using a combination of keywords that resulted in 134 articles. After applying exclusion criteria, a total of 75 articles were obtained. The articles were classified into three categories: (1) studies with plants and animals, (2) in vitro studies, and (3) human biomonitoring. The investigations were conducted in 11 of 27 Brazilian states with the highest prevalence in the southeast and south regions. Only 5 investigations focused on the effects of burning biomass on the quality of outdoor air. Plants, especially Tradescantia pallida, were the main air pollution biomonitoring tool. When available, a significant association between levels of air pollutants and genetic damage was described. Among the in vitro studies, Salmonella/microsome is the most used test to evaluate mutagenesis of outdoor air in Brazil (n = 26). Human biomonitoring studies were the least frequent category (n = 18). Most of the investigations utilized micronucleus bioassay, in oral mucosa cells (n = 15) and lymphocytes (n = 5), and the comet assay (n = 6). The analysis in this study points to the existence of gaps in genotoxicity studies and our findings indicate that future studies need to address the variety of potential sources of pollution existing in Brazil. In addition to extent of the impacts, consideration should be given to the enormous Brazilian biodiversity, as well as the determination of the role of socioeconomic inequality of the population in the observed outcomes.
Collapse
Affiliation(s)
- Vera Maria Ferrão Vargas
- Programa de Pós-graduação em Ecologia, Universidade Federal do Rio Grande do Sul (UFRGS). Av. Bento Gonçalves, Porto Alegre, RS, Brazil
| | | | - Tatiana da Silva Pereira
- Laboratório de Aquicultura de Peixes Ornamentais do Xingu, Universidade Federal do Pará (UFPA), Altamira, PA, Brazil
| | - Cristiane Silva da Silva
- Programa de Pós-graduação em Ecologia, Universidade Federal do Rio Grande do Sul (UFRGS). Av. Bento Gonçalves, Porto Alegre, RS, Brazil
- Instituto Federal de Educação, Ciênciae Tecnologia do Rio Grande do Sul (IFRS), Canoas, RS, Brazil
| | - Mariana Vieira Coronas
- Coordenaç'ão Acad"êmica, Universidade Federal de Santa Maria (UFSM), Cachoeira do Sul, RS, Brazil
| |
Collapse
|
11
|
Clergé A, Le Goff J, Brotin E, Abeillard E, Vaudorne I, Denoyelle C, Le Hegarat L, Delépée R. In vitro genotoxicity potential investigation of 7 oxy-PAHs. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2023; 64:176-186. [PMID: 36757094 DOI: 10.1002/em.22531] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 05/03/2023]
Abstract
Air pollutants include many compounds among them oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs). As they are suspected to generate DNA damage and mutagenicity, an understanding of their mode of action could highlight a carcinogenic potential risk in exposed population. In this article, a prospective study on seven oxy-PAHs selected in terms of occurrence in the environment was conducted on mutagenicity, genotoxicity, and cytotoxicity potentials using in vitro assays including Ames test on five strains, kinetic analysis of cytotoxicity and apoptosis, phosphorylation of histone H2AX, and p53 induction assays on human lung cell line BEAS-2B. Ames test demonstrated that mutagenicity pattern depended on the oxy-PAH tested. Except for BAQ, all oxy-PAHs tested gave mutagenic effect, in the absence and/or in the presence of metabolic activation (S9 fraction). At 24 h of exposure, the majority of oxy-PAHs induced γ-H2AX in BEAS-2B cells and/or phosphorylation of p53 at serine 15 and cell death at highest tested concentrations. Although 9,10-AQ and B[b]FO were mutagenic in bacteria, they failed to induce any of the other genotoxicity biomarkers. In comparison with the benzo[a]pyrene, all oxy-PAHs were less potent in terms of genotoxic potential at the same concentration. These results highlighted the genotoxic and mutagenic potential of these oxy-PAHs and provide preliminary information concerning their possible mechanism of action for toxicity, contributing to a better evaluation of the real associated health risks for human and environment.
Collapse
Affiliation(s)
| | - Jérémie Le Goff
- INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), Caen, France
| | - Emilie Brotin
- Normandie Univ, UNICAEN, PLATON Service Unit, ImpedanCELL, Caen, France
| | - Edwige Abeillard
- INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), Caen, France
- Normandie Univ, UNICAEN, PLATON Service Unit, ImpedanCELL, Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
| | - Isabelle Vaudorne
- Normandie Univ, UNICAEN, PRISMM Platform, PLATON Service Unit, Caen, France
| | - Christophe Denoyelle
- INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), Caen, France
- Normandie Univ, UNICAEN, PLATON Service Unit, ImpedanCELL, Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
| | - Ludovic Le Hegarat
- Anses, French Agency for Food, Environmental and Occupational Health and Safety, Fougeres Laboratory, Toxicology of Contaminant Unit, Fougères, France
| | - Raphaël Delépée
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
- Normandie Univ, UNICAEN, PRISMM Platform, PLATON Service Unit, Caen, France
| |
Collapse
|
12
|
Wang M, Li T, Hou Q, Hao Y, Wang Z. Facile one-step preparation of Co and Ce doped TiO 2 in visible light PMS activation for PAHs degradation. CHEMOSPHERE 2022; 308:136360. [PMID: 36115476 DOI: 10.1016/j.chemosphere.2022.136360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/18/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
In this work, Co and Ce doped TiO2 (CoCeTi) with low content of Co and Ce was successfully prepared by a facile one-step sol-gel solvothermal process for activating Peroxymonosulfate (PMS) to degrade Polycyclic aromatic hydrocarbons (PAHs). The phenanthrene degradation rate was 98.2% effectively in 15 min by CoCeTi (50.0 mg/L) activation PMS (0.50 mmol/L) under visible light. SO4•-, O2•-, h+ and 1O2 were verified as the dominant reactive species for PAHs degradation. The collective effect of CoCeTi, PMS and visible light irradiation has been discussed. The possible phenanthrene degradation pathway was proposed through intermediates analysis. CoCeTi composed of Co3O4, CeO2 and TiO2 was confirmed. Outstandingly, CoCeTi/PMS/visible light system has very low cobalt (0.036 mg/L) and cerium (0.27 mg/L) leaching. Due to CoCeTi having good activated PMS properties and other excellent characteristics, it has potential application for PAHs or other organic pollutants degradation.
Collapse
Affiliation(s)
- Mingyong Wang
- School of Chemical Sciences, University of the Chinese Academy of Sciences, 19(A) Yu Quan Road, Beijing, 100049, China
| | - Taiguang Li
- School of Chemical Sciences, University of the Chinese Academy of Sciences, 19(A) Yu Quan Road, Beijing, 100049, China
| | - Qingzheng Hou
- School of Chemical Sciences, University of the Chinese Academy of Sciences, 19(A) Yu Quan Road, Beijing, 100049, China
| | - Yongmei Hao
- School of Chemical Sciences, University of the Chinese Academy of Sciences, 19(A) Yu Quan Road, Beijing, 100049, China.
| | - Zhongming Wang
- Faculty of Science, Beijing University of Chemical Technology, No. 15 of North 3rd Ring East Road, Chaoyang District, 100029, Beijing, China.
| |
Collapse
|
13
|
Ma X, Wu S. Oxygenated polycyclic aromatic hydrocarbons in food: toxicity, occurrence and potential sources. Crit Rev Food Sci Nutr 2022; 64:4882-4903. [PMID: 36384378 DOI: 10.1080/10408398.2022.2146652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Oxygenated polycyclic aromatic hydrocarbons (OPAHs) are polycyclic aromatic hydrocarbons (PAHs) functionalized with at least one carbonyl group and are generally thought to be more toxic than PAHs. In this review, the physical-chemical properties, toxicity, occurrence, and potential sources of OPAHs in food were comprehensively discussed. The toxicities of 1,2-naphthoquinone, 1,4-naphthoquinone, 6H-benzo[cd]pyren-6-one, benzo[a]anthracene-7,12-quinone and 9,10-phenanthrenequinone were prominent among the OPAHs. Both 1,4-naphthoquinone and 1,2-naphthoquinone exhibited strong genotoxicity, cytotoxicity, and developmental toxicity. 6H-benzo[cd]pyren-6-one and benzo[a]anthracene-7,12-quinone showed high genotoxicity and cardiovascular toxicity. Although 9,10-phenanthrenequinone showed no genotoxicity, it exhibited almost the strongest cytotoxicity. For the majority of foods, the concentrations of OPAHs and PAHs were on the same order of magnitude. OPAHs tend to be positively correlated with the corresponding PAH concentrations in oil and fried food, while for barbequed food and seafood, no obvious correlation was found. In addition, 9-fluorenone, 9,10-anthraquinone, benzanthrone and 1,2-acenaphthenequinone had high abundance in food. Environmental pollution, food composition, storage conditions, heating methods, and other treatments influence the accumulation of OPAHs in food. Furthermore, oxygen and water played an important role in the transformation from PAHs to OPAHs. In short, this review guides the evaluation and further reduction of OPAH-related health risks in food.
Collapse
Affiliation(s)
- Xin Ma
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shimin Wu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
14
|
de Oliveira Galvão MF, Sadiktsis I, Marques Pedro T, Dreij K. Determination of whole mixture-based potency factors for cancer risk assessment of complex environmental mixtures by in vitro testing of standard reference materials. ENVIRONMENT INTERNATIONAL 2022; 166:107345. [PMID: 35717713 DOI: 10.1016/j.envint.2022.107345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/29/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Whole mixture-based testing using in vitro new approach methodologies (NAMs) has been suggested to facilitate the hazard and risk assessment of complex environmental mixtures. Previous studies have shown that phosphorylation of DNA damage signaling proteins checkpoint kinase 1 (pChk1) and histone 2AX (γH2AX) are sensitive markers that can be used for estimating carcinogenicity potencies in vitro. Here, and with the aim to better validate the applicability, in vitro-based Mixture Potency Factors (MPFs) of Standard Reference Materials (SRMs) from environmental polycyclic aromatic hydrocarbon (PAH)-containing mixtures were determined and compared to published mutagenicity and tumorigenicity data. Also, genotoxicity was assessed by a flow cytometry-based micronucleus (MN) assay which showed that only benzo[a]pyrene (B[a]P) and coal tar SRM (SRM1597a) caused dose-dependent increases of MN formation, while extracts of diesel particulate matter (SRM1650b), diesel particulate extract (SRM1975), and urban dust (SRM1649b) did not. However, a dose-dependent activation of DNA damage signaling was observed for all PAHs and SRMs. The results demonstrated that all SRMs were more potent than B[a]P, at B[a]P-equivalent concentrations, to induce pChk1 and γH2AX, and that western blot was more sensitive than the In-Cell Western assay in detecting their activation in response to these complex mixtures. Relative MPFs, based on dose-response modelling of pChk1 and γH2AX, ranged 113 - 5270 for the SRMs, indicating several orders of magnitude higher genotoxic potential than B[a]P. Moreover, these MPFs were in good agreement with potency values based on published data from Salmonella mutagenicity and in vivo carcinogenicity studies. In conclusion, these comparisons further validate the feasibility of applying in vitro NAMs, such as whole-mixture based MPFs, in cancer risk assessment of complex mixtures.
Collapse
Affiliation(s)
| | - Ioannis Sadiktsis
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Tiago Marques Pedro
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden
| | - Kristian Dreij
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
15
|
Adeola AO, Nsibande SA, Osano AM, Maghanga JK, Naudé Y, Forbes PBC. Analysis of gaseous polycyclic aromatic hydrocarbon emissions from cooking devices in selected rural and urban kitchens in Bomet and Narok counties of Kenya. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:435. [PMID: 35578125 DOI: 10.1007/s10661-022-10062-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Traditional combustion devices and fuels such as charcoal, wood and biomass, are widely utilised in rural and urban households in Africa. Incomplete combustion can generate air pollutants which are of human toxicological importance, including polycyclic aromatic hydrocarbons (PAHs). In this study, portable multi-channel polydimethylsiloxane rubber traps were used to sample gas phase emissions from cooking devices used in urban and rural households in Bomet and Narok counties of Kenya. A wide range of total PAH concentrations was found in samples collected (0.82 - 173.69 µg/m3), which could be attributed to the differences in fuel type, combustion device, climate, and nature of households. Wood combustion using the 3-stone device had the highest average total PAH concentration of ~71 µg/m3. Narok had higher indoor total gas phase PAH concentrations averaging 35.88 µg/m3 in urban and 70.84 µg/m3 in rural households, compared to Bomet county (2.91 µg/m3 in urban and 9.09 µg/m3 in rural households). Ambient total gas phase PAH concentrations were more similar (Narok: 1.26 - 6.28 µg/m3 and Bomet: 2.44 - 6.30 µg/m3). Although the 3-stone device and burning of wood accounted for higher PAH emissions, the charcoal burning jiko stove produced the highest toxic equivalence quotient. Monitoring of PAHs emitted by these cooking devices and fuels is critical to public health and sustainable pollution mitigation.
Collapse
Affiliation(s)
- A O Adeola
- Chemistry Department, University of Pretoria, Pretoria, South Africa
| | - S A Nsibande
- Chemistry Department, University of Pretoria, Pretoria, South Africa
| | - A M Osano
- Department of Mathematics and Physical Sciences, Maasai Mara University, Narok, Kenya
| | - J K Maghanga
- School of Science and Informatics, Taita Taveta University, Voi, Kenya
| | - Y Naudé
- Chemistry Department, University of Pretoria, Pretoria, South Africa
| | - P B C Forbes
- Chemistry Department, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
16
|
Lara S, Villanueva F, Martín P, Salgado S, Moreno A, Sánchez-Verdú P. Investigation of PAHs, nitrated PAHs and oxygenated PAHs in PM 10 urban aerosols. A comprehensive data analysis. CHEMOSPHERE 2022; 294:133745. [PMID: 35090855 DOI: 10.1016/j.chemosphere.2022.133745] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Polycyclic aromatic compounds (PACs) in particulate matter contribute considerably to the health risk of air pollution. As such, we have optimized a method to determine the levels of polycyclic aromatic hydrocarbons, especially nitrated and oxygenated polycyclic aromatic hydrocarbons, in samples of PM10 particulate matter using microwave-assisted extraction (MAE) and gas chromatography coupled to a triple quadrupole mass spectrometer (GC-MS/MS). The proposed method was applied to the analysis of real samples collected in the urban area of Ciudad Real (Spain) during one year. The median total concentrations of eighteen PAHs (∑PAHs) and seven OPAHs (∑OPAHs) were 0.54 and 0.23 ng m-3, respectively, with the corresponding value for NPAH (∑NPAHs) being 0.03 ng m-3 (only detected in 40% of samples). A clear seasonal trend was observed, with higher levels in the cold season and lower in the warm season for ∑PAHs. The same effect was observed for ∑OPAHs, which exhibited a median concentration of 0.72 ng m-3 in the cold season and 0.10 ng m-3 in the warm season, and for ∑NPAH, which exhibited a median of 0.04 ng m-3 in the cold season but were not detected in the warm season. Molecular diagnostic ratios and PCA (principal component analysis) showed a predominantly traffic origin for PACs. The sources of PAHs also depend on meteorological conditions and/or atmospheric reactions, as confirmed by means of statistical analysis. The ∑OPAH/∑PAH and ∑NPAH/∑PAH ratios were higher in the cold season than the warm season, thus suggesting that PAH derivatives originated from primary combustion emission sources together with their parent PAHs. The concentration range found for benzo(a)pyrene was 0.006-0.542 ng m-3, which is below the threshold value of 1 ng m-3 established in European legislation as the annual average value. The lifetime lung risk from inhalation of PM10-bound PACs was estimated to be six cancer cases per million people using the World Health Organization method.
Collapse
Affiliation(s)
- Sonia Lara
- Universidad de Castilla La Mancha. Instituto de Investigación en Combustión y Contaminación Atmosférica. Camino de Moledores s/n, 13071, Ciudad Real, Spain.
| | - Florentina Villanueva
- Universidad de Castilla La Mancha. Instituto de Investigación en Combustión y Contaminación Atmosférica. Camino de Moledores s/n, 13071, Ciudad Real, Spain; Parque Científico y Tecnológico de Castilla La Mancha, Paseo de la Innovación 1, 02006, Albacete, Spain.
| | - Pilar Martín
- Universidad de Castilla La Mancha, Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela s/n, 13071, Ciudad Real, Spain.
| | - Sagrario Salgado
- Universidad de Castilla La Mancha, Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela s/n, 13071, Ciudad Real, Spain.
| | - Andres Moreno
- Universidad de Castilla La Mancha, Departamento de Química Orgánica, Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela s/n, 13071, Ciudad Real, Spain.
| | - Prado Sánchez-Verdú
- Universidad de Castilla La Mancha, Departamento de Química Orgánica, Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela s/n, 13071, Ciudad Real, Spain.
| |
Collapse
|
17
|
Sleight TW, Sexton CN, Mpourmpakis G, Gilbertson LM, Ng CA. A Classification Model to Identify Direct-Acting Mutagenic Polycyclic Aromatic Hydrocarbon Transformation Products. Chem Res Toxicol 2021; 34:2273-2286. [PMID: 34662518 DOI: 10.1021/acs.chemrestox.1c00187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a complex group of environmental contaminants, many having long environmental half-lives. As these compounds degrade, the changes in their structure can result in a substantial increase in mutagenicity compared to the parent compound. Over time, each individual PAH can potentially degrade into several thousand unique transformation products, creating a complex, constantly evolving set of intermediates. Microbial degradation is the primary mechanism of their transformation and ultimate removal from the environment, and this process can result in mutagenic activation similar to the metabolic activation that can occur in multicellular organisms. The diversity of the potential intermediate structures in PAH-contaminated environments renders hazard assessment difficult for both remediation professionals and regulators. A mixture of structural and energetic descriptors has proven effective in existing studies for classifying which PAH transformation products will be mutagenic. However, most existing studies of environmental PAH mutagens primarily focus on nitrogenated derivatives, which are prevalent in the atmosphere and not as relevant in soil. Additionally, PAH products commonly found in the environment can range from as large as five rings to as small as a single ring, requiring a broadly inclusive methodology to comprehensively evaluate mutagenic potential. We developed a combination of supervised and unsupervised machine learning methods to predict environmentally induced PAH mutagenicity with improved performance over currently available tools. K-means clustering with principal component analysis allows us to identify molecular clusters that we hypothesize to have similar mechanisms of action. Recursive feature elimination identifies the most influential descriptors. The cluster-specific regression outperforms available classifiers in predicting direct-acting mutagens resulting from the microbial biodegradation of PAHs and provides direction for future studies evaluating the environmental hazards resulting from PAH biodegradation.
Collapse
Affiliation(s)
- Trevor W Sleight
- Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Caitlin N Sexton
- Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Giannis Mpourmpakis
- Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Leanne M Gilbertson
- Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.,Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Carla A Ng
- Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.,Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
18
|
Nieto Marín V, Echavarría Mazo LV, Londoño Berrio M, Orozco Jiménez LY, Estrada Vélez V, Isaza JP, Ortiz-Trujillo IC. Genotoxicity of organic material extracted from particulate matter of alternative fuels. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:17844-17852. [PMID: 33400118 DOI: 10.1007/s11356-020-10894-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 09/16/2020] [Indexed: 06/12/2023]
Abstract
Global demand for energy is rapidly increasing, and resources for the production of petroleum-based fuels are running out. For this, renewable fuels like biodiesel and hydrotreated vegetable oil biofuel are considered important alternatives to replace such fuels. In this study, we evaluated the in vitro genotoxicity effect on HepG2 cells of organic material extracted from particulate matter emissions of an engine fueled with conventional diesel or mixtures of diesel with 10% of biomass. The emissions were collected in two operational modes, 2410 rpm (slope simulation) and 1890 rpm (plane). Genotoxicity was evaluated through two methods, chromosomal aberration test and the alkaline comet assay. The former did not show any genotoxic effect, but the latter exhibited a statistically significant effect despite the operational mode of the engine and the concentration organic material extracted. In conclusion, regardless of the concentration of organic material extracted from particulate matter, the operational mode of the engine, or the fuel used, a significant damage of the DNA was found. In general, at the physicochemical level, a decrease in the amount of emissions of the used fuels is not directly related to a decrease in the genotoxicity potential.
Collapse
Affiliation(s)
- Valentina Nieto Marín
- Grupo de Investigación Biología de Sistemas, Facultad de Medicina, Universidad Pontificia Bolivariana, Circular 1ra 70-01, Campus Laureles, Medellin, Colombia
| | - Leidy Vanessa Echavarría Mazo
- Grupo de Investigación Biología de Sistemas, Facultad de Medicina, Universidad Pontificia Bolivariana, Circular 1ra 70-01, Campus Laureles, Medellin, Colombia
| | - Maritza Londoño Berrio
- Grupo de Investigación Biología de Sistemas, Facultad de Medicina, Universidad Pontificia Bolivariana, Circular 1ra 70-01, Campus Laureles, Medellin, Colombia
| | - Luz Yaneth Orozco Jiménez
- Grupo de Investigación Biología de Sistemas, Facultad de Medicina, Universidad Pontificia Bolivariana, Circular 1ra 70-01, Campus Laureles, Medellin, Colombia
| | - Verónica Estrada Vélez
- Grupo de Investigación Biología de Sistemas, Facultad de Medicina, Universidad Pontificia Bolivariana, Circular 1ra 70-01, Campus Laureles, Medellin, Colombia
| | - Juan Pablo Isaza
- Grupo de Investigación Biología de Sistemas, Facultad de Medicina, Universidad Pontificia Bolivariana, Circular 1ra 70-01, Campus Laureles, Medellin, Colombia
| | - Isabel Cristina Ortiz-Trujillo
- Grupo de Investigación Biología de Sistemas, Facultad de Medicina, Universidad Pontificia Bolivariana, Circular 1ra 70-01, Campus Laureles, Medellin, Colombia.
| |
Collapse
|
19
|
Wang C, Qu Y, Niu H, Pan Y, He Y, Liu J, Yao N, Wang H, Guo Y, Pan Y, Li B. The Effect of Residential Environment on Respiratory Diseases and Pulmonary Function in Children from a Community in Jilin Province of China. Risk Manag Healthc Policy 2021; 14:1287-1297. [PMID: 33790674 PMCID: PMC8007578 DOI: 10.2147/rmhp.s295553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/24/2021] [Indexed: 01/25/2023] Open
Abstract
Purpose Respiratory disease is a major and increasingly global epidemic that has a great impact on humans, especially children. The purpose of this study was to identify environmental risk factors for respiratory diseases and pulmonary function in children. Patients and Methods A population-based, cross-sectional survey of respiratory diseases and environmental risk factors was conducted in Jilin Province, China. Complete questionnaire information was available for 2419 children, while adequate pulmonary function data were available for a subgroup of 627 children. Results Our study found that environmental risk factors for respiratory health in children were mainly concentrated indoors. After adjusting for demographic factors, insecticide exposure and passive smoking were risk factors for respiratory disease and industrial pollutant sources, insecticide exposure and the use of a fume exhauster may be independent risk factors for recurrent respiratory infections. The main fuel for cooking in the winter and passive smoking were the main influencing factors of pulmonary function indicators. Conclusion The primary risk factors differ in different respiratory diseases. Passive smoking remains a critical adverse factor for respiratory illness and pulmonary function in children, and it is important to reduce children’s exposure to passive smoking to increase pulmonary health. Insecticide exposure may be a neglected environmental risk factor, and further investigations are still needed to explore the relationship and mechanisms between insecticide exposure and children’s respiratory health.
Collapse
Affiliation(s)
- Changcong Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Yangming Qu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Huikun Niu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Yingan Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Yinghua He
- Jilin Provincial Center for Disease Control and Prevention, Changchun, Jilin, 130062, People's Republic of China
| | - Jianwei Liu
- Jilin Provincial Center for Disease Control and Prevention, Changchun, Jilin, 130062, People's Republic of China
| | - Nan Yao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Han Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Yinpei Guo
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Yang Pan
- Jilin Provincial Center for Disease Control and Prevention, Changchun, Jilin, 130062, People's Republic of China.,Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, 130021, People's Republic of China
| | - Bo Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, 130021, People's Republic of China
| |
Collapse
|
20
|
Song T, Tian W, Qiao K, Zhao J, Chu M, Du Z, Wang L, Xie W. Adsorption Behaviors of Polycyclic Aromatic Hydrocarbons and Oxygen Derivatives in Wastewater on N-Doped Reduced Graphene Oxide. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117565] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Qu L, Yu H, Yin S, Li Y, Sun C. Solid-Phase Extraction Combined with Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry for the Determination of 5 Trace Nitro-Polycyclic Aromatic Hydrocarbons in Barbecued Foods. J AOAC Int 2020; 103:1512-1520. [PMID: 33247746 DOI: 10.1093/jaoacint/qsaa062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/27/2020] [Accepted: 04/25/2020] [Indexed: 11/13/2022]
Abstract
BACKGROUND Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) are the derivatives of polycyclic aromatic hydrocarbon which are direct mutagens and carcinogens to human. Nitro-PAHs can be produced in the process of food barbecuing/grilling. At present, there are few studies for the determination of nitro-PAHs in food. OBJECTIVE To assess the effect of barbecued food to human health, we have established a method for the determination of 5 nitro-PAHs in barbecued foods. METHODS The target nitro-PAHs were extracted with the mixture of methanol/acetone and then purified with an HLB SPE cartridge and finally analyzed by ultra-high-performance liquid chromatography-tandem mass spectrometry. Two pairs of target multiple reaction monitoring (MRM) ion pairs have been successfully identified for the target nitro-PAHs, and confirmed by high-resolution mass spectrometry to explore their formation mechanism. RESULTS The method had linear ranges of 2.0-500 µg/L (except 1-nitronaphthalene 20-5000 µg/L) with the correlation coefficients greater than 0.995. The extraction recoveries were between 70.1% and 85.6% with the relative standard deviations less than 10.0%. The limits of detection of the method were less than 0.60 µg/L (except 1-nitronaphthalene 6.0 µg/L). CONCLUSIONS The method has been successfully applied to the analysis of 5 nitro-PAHs in barbecued foods. 1-nitronaphthalene, 1,8-dinitropyrene , 1-nitropyrene were detected in some charcoal grilled samples with the contents of 1.35-12.9 µg/kg. 1,8-Dinitropyrene was detected in some oil-fried samples with the contents of 2.12-5.12 µg/kg. HIGHLIGHTS This work presents an ultra-high-performance liquid chromatography-tandem mass spectrometry method for the determination of 5 nitro-PAHs in barbecued foods for the first time. The method has been successfully applied to the analysis of 5 nitro-PAHs in various barbecued foods and the nitro-PAHs were detected in some barbecued food samples. The mechanism of mass spectrometric decomposition of nitro-PAHs was investigated as well.
Collapse
Affiliation(s)
- Lingli Qu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China.,Shanghai University of Medicine and Health Sciences, Shanghai, 201318 China
| | - Huan Yu
- Shanghai Ab, Sciex Analytical Instrument Trading Co. Ltd, Shanghai 200235, China
| | - Shuo Yin
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China.,Provincial Key Laboratory for Food Safety Monitoring and Risk Assessment of Sichuan, Chengdu, 610041, China
| | - Yongxin Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China.,Provincial Key Laboratory for Food Safety Monitoring and Risk Assessment of Sichuan, Chengdu, 610041, China
| | - Chengjun Sun
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China.,Provincial Key Laboratory for Food Safety Monitoring and Risk Assessment of Sichuan, Chengdu, 610041, China
| |
Collapse
|
22
|
Cunha V, Vogs C, Le Bihanic F, Dreij K. Mixture effects of oxygenated PAHs and benzo[a]pyrene on cardiovascular development and function in zebrafish embryos. ENVIRONMENT INTERNATIONAL 2020; 143:105913. [PMID: 32615350 DOI: 10.1016/j.envint.2020.105913] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Polycyclic aromatic compounds (PACs), including polycyclic aromatic hydrocarbons (PAHs) and oxygenated PAHs (oxy-PAHs), are common environmental pollutants known to cause health effects in humans and wild-life. In particular, vertebrate cardiovascular development and function are sensitive to PACs. However, the interactive effects of PAHs and oxy-PAHs on cardiovascular endpoints have not been well studied. In this study, we used zebrafish embryos (ZFEs) as a model to examine developmental and cardiovascular toxicities induced by the three environmental oxy-PAHs benzo[a]fluorenone (BFLO), 4H-cyclopenta[def]phenanthren-4-one (4H-CPO) and, 6H-benzo[cd]pyren-6-one (6H-BPO), and the PAH benzo[a]pyrene (BaP) either as single exposures or binary oxy-PAH + PAH mixtures. 6H-BPO induced developmental and cardiovascular toxicity, including reduced heartbeat rate and blood flow, at lower doses compared to the other compounds. Exposure to binary mixtures generally caused enhanced toxicity and induction of aryl hydrocarbon receptor (AhR)-regulated gene expression (ahr2 and cyp1a) compared to single compound exposure. This was associated with differential expression of genes involved in cardiovascular development and function including atp2a2, myh6, tbx5 and zerg. AhR-knock-down significantly reduced the cardiovascular toxicity of 6H-BPO and its binary mixture with BaP indicating a significant AhR-dependence of the effects. Measurements of internal concentrations showed that the toxicokinetics of BaP and 6H-BPO were altered in the binary mixture compared to the single compound exposure, and most likely due to CYP1 inhibition by 6H-BPO. Altogether, these data support that similar to interactions between PAHs, mixtures of PAHs and oxy-PAHs may cause increased developmental and cardiovascular toxicity in ZFEs through an AhR-dependent mechanism.
Collapse
Affiliation(s)
- Virgínia Cunha
- Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, 171 77 Stockholm, Sweden
| | - Carolina Vogs
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, 171 77 Stockholm, Sweden; Pharmacology and Toxicology Unit, Department of Biomedical Science and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, 750 07 Uppsala, Sweden
| | - Florane Le Bihanic
- Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, 171 77 Stockholm, Sweden
| | - Kristian Dreij
- Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, 171 77 Stockholm, Sweden.
| |
Collapse
|
23
|
Munyeza CF, Osano AM, Maghanga JK, Forbes PBC. Polycyclic Aromatic Hydrocarbon Gaseous Emissions from Household Cooking Devices: A Kenyan Case Study. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:538-547. [PMID: 31837036 DOI: 10.1002/etc.4648] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/21/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
In developing countries, household energy use is highly variable and complex, yet emissions arising from fuel combustion indoors are typically poorly quantified. Polycyclic aromatic hydrocarbons (PAHs) are emitted during the combustion of organic fuels such as charcoal and biomass. In the present study, multichannel polydimethylsiloxane rubber traps were used for gas-phase PAH sampling and extracted using a low-solvent volume plunger-assisted solvent extraction method. Sixteen US Environmental Protection Agency priority PAHs, primarily in the gas phase, were investigated in indoor air of rural and urban residential homes in coastal Kenya (Mombasa and Taita Taveta Counties) using typical combustion devices of each area. Average gaseous PAH concentrations per household were higher in rural (ranging 0.81-6.09 µg m-3 ) compared to urban (ranging 0-2.59 µg m-3 ) homes, although ambient PAH concentrations were higher in urban environments, likely attributable to traffic contributions. The impact of fuel choice and thereby combustion device on PAH emissions was very clear, with the highest concentrations of PAHs quantified from wood-burning emissions from 3-stone stoves (total PAH averages 46.23 ± 3.24 µg m-3 [n = 6]). Average benzo[a]pyrene equivalent total concentrations were evaluated for the priority PAHs and ranged from not detected to 43.31, 88.38, 309.61, and 453.88 ng m-3 for gas, kerosene, jiko, 3-stone, and improved 3-stone stoves, respectively. Environ Toxicol Chem 2020;39:538-547. © 2019 SETAC.
Collapse
Affiliation(s)
- Chiedza F Munyeza
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Aloys M Osano
- School of Science and Information Sciences, Maasai Mara University, Narok, Kenya
| | - Justin K Maghanga
- School of Science and Informatics, Taita Taveta University, Voi, Kenya
| | - Patricia B C Forbes
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
24
|
Zhou HH, Liu ZK, Chen ZQ, Sun M, Chen Q, Duan SW, Jiao C. Pure rotational spectrum of dibenzofuran in range of 2−6 GHz. CHINESE J CHEM PHYS 2020. [DOI: 10.1063/1674-0068/cjcp1912219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Hai-hua Zhou
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Zeng-kui Liu
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Zi-qiu Chen
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Ming Sun
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Qian Chen
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Sheng-wen Duan
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Chao Jiao
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
25
|
Kilymis D, Bartók AP, Pickard CJ, Forse AC, Merlet C. Efficient prediction of nucleus independent chemical shifts for polycyclic aromatic hydrocarbons. Phys Chem Chem Phys 2020; 22:13746-13755. [PMID: 32537616 DOI: 10.1039/d0cp01705a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Nuclear Magnetic Resonance (NMR) is one of the most powerful experimental techniques to characterize the structure of molecules and confined liquids. Nevertheless, the complexity of the systems under investigation usually requires complementary computational studies to interpret the NMR results. In this work we focus on polycyclic aromatic hydrocarbons (PAHs), an important class of organic molecules which have been commonly used as simple analogues for the spectroscopic properties of more complex systems, such as porous disordered carbons. We use Density Functional Theory (DFT) to calculate 13C chemical shifts and Nucleus Independent Chemical Shifts (NICS) for 34 PAHs. The results show a clear molecular size dependence of the two quantities, as well as the convergence of the 13C NMR shifts towards the values observed for graphene. We then present two computationally cheap models for the prediction of NICS in simple PAHs. We show that while a simple dipolar model fails to produce accurate values, a perturbative tight-binding approach can be successfully applied for the prediction of NICS in this series of molecules, including some non-planar ones containing 5- and 7-membered rings. This model, one to two orders of magnitude faster than DFT calculations, is very promising and can be further refined in order to study more complex systems.
Collapse
Affiliation(s)
- Dimitrios Kilymis
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse cedex 9, France. and Réseau sur le Stockage Électrochimique de l'Énergie (RS2E), Fédération de Recherche CNRS 3459, HUB de l'Énergie, Rue Baudelocque, 80039 Amiens, France
| | - Albert P Bartók
- Warwick Centre for Predictive Modelling, Department of Physics and School of Engineering, University of Warwick, Coventry, CV4 7AL, UK and Rutherford Appleton Laboratory, Scientific Computing Department, Science and Technology Facilities Council, Didcot, OX11 0QX, UK
| | - Chris J Pickard
- Department of Materials Science and Metallurgy, University of Cambridge, UK and Advanced Institute for Materials Research, Tohoku University, Aoba, Sendai 980-8577, Japan
| | - Alexander C Forse
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK and Department of Chemistry, Department of Chemical and Biomolecular Engineering, and Berkeley Energy and Climate Institute, University of California, Berkeley, CA94720, USA
| | - Céline Merlet
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse cedex 9, France. and Réseau sur le Stockage Électrochimique de l'Énergie (RS2E), Fédération de Recherche CNRS 3459, HUB de l'Énergie, Rue Baudelocque, 80039 Amiens, France
| |
Collapse
|
26
|
Mueller A, Ulrich N, Hollmann J, Zapata Sanchez CE, Rolle-Kampczyk UE, von Bergen M. Characterization of a multianalyte GC-MS/MS procedure for detecting and quantifying polycyclic aromatic hydrocarbons (PAHs) and PAH derivatives from air particulate matter for an improved risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:112967. [PMID: 31610516 DOI: 10.1016/j.envpol.2019.112967] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
A correct description of the concentration and distribution of particle bound polycyclic aromatic hydrocarbons is important for risk assessment of atmospheric particulate matter. A new targeted GC-MS/MS method was developed for analyzing 64 PAHs including compounds with a molecular weight >300, as well as nitro-, methyl-, oxy- and hydroxyl derivatives in a single analysis. The instrumental LOD ranged between 0.03 and 0.7 pg/μL for PAHs, 0.2-7.9 pg/μL for hydroxyl and oxy PAHs, 0.1-7.4 pg/μL for nitro PAHs and 0.06-0.3 pg/μL for methyl-PAHs. As an example for the relevance of this method samples of PM10 were collected at six sampling sites in Medellin, Colombia, extracted and the concentration of 64 compounds was determined. The 16 PAHs from the EPA priority list contributed only from 54% to 69% to the sum of all analyzed compounds, PAH with high molecular weight accounted for 8.8%-18.9%. Benzo(a)pyrene equivalents (BaPeq) were calculated for the estimation of the life time cancer (LCR). The LCR according to the samples ranged from 2.75 × 10-5 to 1.4 × 10-4 by a calculation with toxic equivalent factors (TEF) and 5.7 × 10-5 to 3.8 × 10-4 with potency equivalent factor (PEF). By using the new relative potency factors (RPF) recommended by US Environmental Protection Agency (U.S.EPA) the LCR ranged from 1.3 × 10-4 to 7.2 × 10-4. Hence, it was around six times higher than the well-known TEF. The novel method enables the reliable quantification of a more comprehensive set of PAHs bound on PM and thus will facilitate and improve the risk assessment of them.
Collapse
Affiliation(s)
- Andrea Mueller
- Helmholtz Centre for Environmental Research GmbH - UFZ, Dep. of Molecular Systems Biology, Permoserstr. 15, 04318 Leipzig, Germany.
| | - Nadin Ulrich
- Helmholtz Centre for Environmental Research GmbH - UFZ, Dep. of Analytical Environmental Chemistry, Permoserstr. 15, 04318 Leipzig, Germany
| | - Josef Hollmann
- Helmholtz Centre for Environmental Research GmbH - UFZ, Dep. of Molecular Systems Biology, Permoserstr. 15, 04318 Leipzig, Germany
| | - Carmen E Zapata Sanchez
- Universidad Nacional de Colombia, Sede Medellin, Facultad de Minas, Departamento de Geociencias y Medioambiente, Carrera 80 Nr 65-223, Bl M3, Calaire, 050041 Medellin, Colombia
| | - Ulrike E Rolle-Kampczyk
- Helmholtz Centre for Environmental Research GmbH - UFZ, Dep. of Molecular Systems Biology, Permoserstr. 15, 04318 Leipzig, Germany
| | - Martin von Bergen
- Helmholtz Centre for Environmental Research GmbH - UFZ, Dep. of Molecular Systems Biology, Permoserstr. 15, 04318 Leipzig, Germany; University of Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Talstr. 33, 04103 Leipzig, Germany
| |
Collapse
|
27
|
Gao CJ, Xia LL, Wu CC, Shen HM, Guo Y. Hydroxylated polycyclic aromatic hydrocarbons in surface soil in an emerging urban conurbation in South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:1250-1256. [PMID: 31539956 DOI: 10.1016/j.scitotenv.2019.07.334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/20/2019] [Accepted: 07/20/2019] [Indexed: 06/10/2023]
Abstract
To investigate the effects of human activity on contaminants in regional soil, hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) were measured in 187 surface soil samples of different land-use types collected from the Pearl River Delta (PRD), South China. The concentrations of Σ9OH-PAH (sum of nine target analytes) ranged from 0.36 to 252ng/g (median: 5.98ng/g), with phenanthrene derivatives as the dominant components, accounting for ~70%. Among different land-use types, residency soil contained the highest levels of Σ9OH-PAH (median: 11.3ng/g), followed by landfill soil (9.28ng/g), industry soil (7.51ng/g), agriculture soil (6.04ng/g), forestry soil (4.28ng/g) and drinking water source soil (4.20ng/g). A higher value was also observed in soil from the central PRD (6.94ng/g) than the surrounding areas (5.94ng/g), which indicated a significant impact of human activity on OH-PAH contamination in soil. Correlation and principal component analysis indicated that OH-PAHs in PRD soil are likely derived from the degradation of their parent PAHs in the atmosphere and/or soil and not directly from the same source as the parent PAHs. The ratios of OH-PAHs to their parent PAHs also varied among different land-use types, which may be partly attributed to the different populations of microorganisms in different soil types or the different chemical properties of PAHs and their metabolites.
Collapse
Affiliation(s)
- Chong-Jing Gao
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Lin-Lin Xia
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Chen-Chou Wu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Hui-Min Shen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
28
|
Clergé A, Le Goff J, Lopez C, Ledauphin J, Delépée R. Oxy-PAHs: occurrence in the environment and potential genotoxic/mutagenic risk assessment for human health. Crit Rev Toxicol 2019; 49:302-328. [DOI: 10.1080/10408444.2019.1605333] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Adeline Clergé
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, Caen Cedex, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen Cedex, France
| | | | - Claire Lopez
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, Caen Cedex, France
| | | | - Raphaël Delépée
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, Caen Cedex, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen Cedex, France
- Normandie Univ, UNICAEN, PRISMM core facility, SF4206 ICORE, CCC F. Baclesse, Caen, France
| |
Collapse
|
29
|
Maselli BS, Giron MCG, Lim H, Bergvall C, Westerholm R, Dreij K, Watanabe T, Cardoso AA, Umbuzeiro GA, Kummrow F. Comparative mutagenic activity of atmospheric particulate matter from limeira, stockholm, and kyoto. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:607-616. [PMID: 30968449 DOI: 10.1002/em.22293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/04/2019] [Accepted: 04/06/2019] [Indexed: 06/09/2023]
Abstract
Atmospheric particulate matter (PM) organic fractions from urban centers are frequently mutagenic for the Salmonella/microsome assay. This mutagenicity is related to both primary and secondary pollutants, and meteorological conditions have great influence on the secondary pollutant's formation. Our objective was to compare the mutagenicity of atmospheric total suspended particulates (TSP) from three cities with marked different meteorological conditions and TSP concentrations: Limeira (Brazil) with 99.0 μg/m3 , Stockholm (Sweden) with 6.2 μg/m3 , and Kyoto (Japan) with 28.0 μg/m3 . For comparison, we used the same batch of filters, sample extraction method, and Salmonella/microsome testing protocol with 11 strains of Salmonella with and without metabolic activation. Samples were collected during winter and pooled into one single extract representing each city. All samples were mutagenic for all tested strains, except for TA102. Based on the strain's selectivity, nitroarenes, polycyclic aromatic hydrocarbons, and aromatic amines play a predominant role in the mutagenicity of these samples. The mutagenic potencies expressed by mass of extracted organic material (EOM; revertants/μg EOM) were similar (~twofold difference) among the cities, despite differences in meteorological conditions and pollution sources. In contrast, the mutagenic potencies expressed by air volume (rev/m3 ) varied ~20-fold, with Limeira > Kyoto ≈ Stockholm. These results are the first systematic assessment of air mutagenicity from cities on three continents using the same protocols. The results confirm that the mutagenic potency expressed by EOM mass is similar regardless of continent of origin, whereas the mutagenic potency expressed by air volume can vary by orders of magnitude. Environ. Mol. Mutagen. 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bianca S Maselli
- Pharmaceutical Sciences Faculty, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Macelle C G Giron
- School of Technology, State University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Hwanmi Lim
- Unit of Analytical Chemistry, Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Christoffer Bergvall
- Unit of Analytical Chemistry, Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Roger Westerholm
- Unit of Analytical Chemistry, Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Kristian Dreij
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tetsushi Watanabe
- Department of Public Health, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Arnaldo A Cardoso
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Gisela A Umbuzeiro
- Pharmaceutical Sciences Faculty, University of São Paulo (USP), São Paulo, São Paulo, Brazil
- School of Technology, State University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Fábio Kummrow
- Pharmaceutical Sciences Faculty, University of São Paulo (USP), São Paulo, São Paulo, Brazil
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (UNIFESP), Diadema, SP, Brazil
| |
Collapse
|
30
|
Froger C, Ayrault S, Gasperi J, Caupos E, Monvoisin G, Evrard O, Quantin C. Innovative combination of tracing methods to differentiate between legacy and contemporary PAH sources in the atmosphere-soil-river continuum in an urban catchment (Orge River, France). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 669:448-458. [PMID: 30884267 DOI: 10.1016/j.scitotenv.2019.03.150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/07/2019] [Accepted: 03/10/2019] [Indexed: 06/09/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAH) have been released by human activities during more than a century, contaminating the entire atmosphere - soil - river continuum. Due to their ubiquity in the environment and their potential severe biological impacts, PAH became priority pollutants and were targeted by environmental public agencies. To better manage PAH pollution, it is necessary to identify unambiguously the sources and pathways of those compounds at the catchment scale, and to evaluate the persistence of historical PAH pollution in the environment especially in those urban contexts concentrating multiple PAH sources. Accordingly, the current research monitored the contamination in atmospheric fallout, soils and rivers of a 950-km2 catchment (Orge River) characterized by an increasing urban gradient in downstream direction, and located in the Seine River basin characterized by a high level of PAH legacy contamination. A combination of various approaches was used, including the widely used PAH diagnostic ratios, together with innovative methods such as PAH correlations and sediment fingerprinting using fallout radionuclides to clearly identify both the origin of PAH and their main PAH pathways to the river. The results demonstrated the persistence of legacy PAH contamination in the catchment, responsible for the signature of the suspended particulate matter currently transiting in the Orge River. They underlined the conservation of PAH through the soil - river continuum. Finally, urban runoff was demonstrated to provide the main PAH source to the river in the densely urbanized area by both PAH correlations and sediment fingerprinting. These results were used to model PAH concentrations in those particles supplied from urban areas to the river.
Collapse
Affiliation(s)
- Claire Froger
- Laboratoire des Sciences du Climat et de l'Environnement (LSCE/IPSL), CEA-CNRS-UVSQ, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; Géosciences Paris Sud (GEOPS), Université Paris-Sud - CNRS- Université Paris-Saclay, 91400 Orsay, France.
| | - Sophie Ayrault
- Laboratoire des Sciences du Climat et de l'Environnement (LSCE/IPSL), CEA-CNRS-UVSQ, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Johnny Gasperi
- Laboratoire Eau Environnement et Systèmes Urbains (LEESU), University Paris-Est Créteil, UMR MA 102- Agro ParisTech, 94010 Créteil, France
| | - Emilie Caupos
- Laboratoire Eau Environnement et Systèmes Urbains (LEESU), University Paris-Est Créteil, UMR MA 102- Agro ParisTech, 94010 Créteil, France
| | - Gaël Monvoisin
- Géosciences Paris Sud (GEOPS), Université Paris-Sud - CNRS- Université Paris-Saclay, 91400 Orsay, France
| | - Olivier Evrard
- Laboratoire des Sciences du Climat et de l'Environnement (LSCE/IPSL), CEA-CNRS-UVSQ, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Cécile Quantin
- Géosciences Paris Sud (GEOPS), Université Paris-Sud - CNRS- Université Paris-Saclay, 91400 Orsay, France
| |
Collapse
|
31
|
Han B, You Y, Liu Y, Xu J, Zhou J, Zhang J, Niu C, Zhang N, He F, Ding X, Bai Z. Inhalation cancer risk estimation of source-specific personal exposure for particulate matter-bound polycyclic aromatic hydrocarbons based on positive matrix factorization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:10230-10239. [PMID: 30756357 DOI: 10.1007/s11356-019-04198-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
In previous studies, inhalation cancer risk was estimated using conventional risk assessment method, which was normally based on compound-specific analysis, and cannot provide substantial data for source-specific particulate matter concentrations and pollution control. In the present study, we applied an integrated risk analysis method, which was a synthetic combination of source apportionment receptor model and risk assessment method, to estimate cancer risks associated to individual PAHs coming from specific sources. Personal exposure particulate matter samples referring to an elderly panel were collected in a community of Tianjin, Northern China, in 2009, and 12 PAH compounds were measured using GC-MS. Positive matrix factorization (PMF) was used to extract the potential sources and quantify the source contributions to the PAH mixture. Then, the lung cancer risk of each modeled source was estimated by summing up the cancer risks of all measured PAH species according to the extracted source profile. The final results indicated that the overall cancer risk was 1.12 × 10-5, with the largest contribution from gasoline vehicle emission (44.1%). Unlike other risk estimation studies, this study was successful in combining risk analysis and source apportionment approaches, which allow estimating the potential risk of all source types and provided suitable information to select prior control strategies and mitigate the main air pollution sources that contributing to health risks.
Collapse
Affiliation(s)
- Bin Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China.
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA.
| | - Yan You
- Research Center for Eco-Environmental Science, Chinese Academy of Science, Beijing, China
| | - Yating Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Jia Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Jian Zhou
- Energy Research Institute, Nanyang Technological University, Singapore, Singapore
| | - Jiefeng Zhang
- Division of Environmental and Water Resources, School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, Singapore
| | - Can Niu
- School of Public Health, Hebei University, Baoding, Hebei, China
| | - Nan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Fei He
- Hubei Provincial Meteorological Service Center, Wuhan, China
| | - Xiao Ding
- Department of Building, School of Design and Environment, National University of Singapore, Singapore, Singapore
| | - Zhipeng Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| |
Collapse
|
32
|
McCarrick S, Cunha V, Zapletal O, Vondráček J, Dreij K. In vitro and in vivo genotoxicity of oxygenated polycyclic aromatic hydrocarbons. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:678-687. [PMID: 30616058 DOI: 10.1016/j.envpol.2018.12.092] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/19/2018] [Accepted: 12/28/2018] [Indexed: 05/23/2023]
Abstract
Oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) are a group of environmental pollutants found in complex mixtures together with PAHs. In contrast to the extensively studied PAHs, which have been established to have mutagenic and carcinogenic properties, much less is known about the effects of oxy-PAHs. The present work aimed to investigate the genotoxic potency of a set of environmentally relevant oxy-PAHs along with environmental soil samples in human bronchial epithelial cells (HBEC). We found that all oxy-PAHs tested induced DNA strand breaks in a dose-dependent manner and some of the oxy-PAHs further induced micronuclei formation. Our results showed weak effects in response to the oxy-PAH containing subfraction of the soil sample. The genotoxic potency was confirmed in both HBEC and HepG2 cells following exposure to oxy-PAHs by an increased level of phospho-Chk1, a biomarker used to estimate the carcinogenic potency of PAHs in vitro. We further exposed zebrafish embryos to single oxy-PAHs or a binary mixture with PAH benzo[a]pyrene (B[a]P) and found the mixture to induce comparable or greater effects on the induction of DNA strand breaks compared to the sum of that induced by B[a]P and oxy-PAHs alone. In conclusion, oxy-PAHs were found to elicit genotoxic effects at similar or higher levels to that of B[a]P which indicates that oxy-PAHs may contribute significantly to the total carcinogenic potency of environmental PAH mixtures. This emphasizes further investigations of these compounds as well as the need to include oxy-PAHs in environmental monitoring programs in order to improve health risk assessment.
Collapse
Affiliation(s)
- Sarah McCarrick
- Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77, Stockholm, Sweden
| | - Virginia Cunha
- Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77, Stockholm, Sweden
| | - Ondřej Zapletal
- Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77, Stockholm, Sweden; Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, 61137, Brno, Czech Republic
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265, Brno, Czech Republic
| | - Kristian Dreij
- Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77, Stockholm, Sweden.
| |
Collapse
|
33
|
Wheelock K, Zhang JJ, McConnell R, Tang D, Volk HE, Wang Y, Herbstman JB, Wang S, Phillips DH, Camann D, Gong J, Perera F. A novel method for source-specific hemoglobin adducts of nitro-polycyclic aromatic hydrocarbons. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:10.1039/C7EM00522A. [PMID: 29561551 PMCID: PMC6150855 DOI: 10.1039/c7em00522a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAH) are ubiquitous air pollutants associated with negative impacts on growth, development and behavior in children. Source-specific biological markers of PAH exposure are needed for targeting interventions to protect children. Nitro-derivatives of PAH can act as markers of exposure to diesel exhaust, gasoline exhaust, or general combustion sources. Using a novel HPLC-APCI-MS/MS detection method, we examined four hemoglobin (Hb) adducts of nitro-PAH metabolites and the Hb adduct of a benzo[a]pyrene (BaP) metabolite in 22 umbilical cord blood samples. The samples were collected from a birth cohort with comprehensive data on prenatal PAH exposure, including prenatal personal air monitoring and DNA adducts in maternal and umbilical cord blood. Using non-parametric analyses, heat maps, and principal component analysis (PCA), we analyzed the relationship between the five Hb adducts and previous PAH measurements, with each measurement representing a different duration of exposure. We found that Hb adducts derived from several diesel-related nitro-PAHs (2-nitrofluorene and 1-nitropyrene) were significantly correlated (r = 0.77, p ≤ 0.0001) and grouped together in PCA. Nitro-PAH derived Hb adducts were largely unrelated to previously collected measures of exposure to a number of PAH parent compounds. These measures need to be validated in a larger sample.
Collapse
Affiliation(s)
- Kylie Wheelock
- Columbia Center for Children's Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 W. 168th St., 12th Floor, New York, NY 10032, USA.
| | - Junfeng Jim Zhang
- Nicholas School of the Environment, Duke Global Health Institute, Duke University, LSRC Room A309, 308 Research Drive, Durham, NC 27708, USA.
| | - Rob McConnell
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, USA
| | - Deliang Tang
- Columbia Center for Children's Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 W. 168th St., 12th Floor, New York, NY 10032, USA.
| | - Heather E Volk
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, USA
| | - Ya Wang
- Columbia Center for Children's Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 W. 168th St., 12th Floor, New York, NY 10032, USA. and Department of Biostatistics, Mailman School of Public Health, Columbia University, USA
| | - Julie B Herbstman
- Columbia Center for Children's Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 W. 168th St., 12th Floor, New York, NY 10032, USA.
| | - Shuang Wang
- Columbia Center for Children's Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 W. 168th St., 12th Floor, New York, NY 10032, USA. and Department of Biostatistics, Mailman School of Public Health, Columbia University, USA
| | - David H Phillips
- Department of Analytical, Environmental & Forensic Sciences, Environmental Toxicology Group, MRC-PHE Centre for Environment & Health, NIHR Health Protection Research Unit in Health Impact of Environmental Hazards, King's College London, UK
| | - David Camann
- Chemistry and Chemical Engineering Division, Southwest Research Institute, USA
| | - Jicheng Gong
- Nicholas School of the Environment, Duke Global Health Institute, Duke University, LSRC Room A309, 308 Research Drive, Durham, NC 27708, USA. and College of Environmental Sciences and Engineering & BIC-ESAT, Peking University, Beijing, China
| | - Frederica Perera
- Columbia Center for Children's Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 W. 168th St., 12th Floor, New York, NY 10032, USA.
| |
Collapse
|
34
|
de Oliveira Galvão MF, de Oliveira Alves N, Ferreira PA, Caumo S, de Castro Vasconcellos P, Artaxo P, de Souza Hacon S, Roubicek DA, Batistuzzo de Medeiros SR. Biomass burning particles in the Brazilian Amazon region: Mutagenic effects of nitro and oxy-PAHs and assessment of health risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:960-970. [PMID: 29031407 DOI: 10.1016/j.envpol.2017.09.068] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/31/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
Emissions from burning of biomass in the Amazon region have adverse effects on the environment and human health. Herein, particulate matter (PM) emitted from biomass burning in the Amazon region during two different periods, namely intense and moderate, was investigated. This study focused on: i) organic characterization of nitro- and oxy-polycyclic aromatic hydrocarbons (PAHs); ii) assessment of the excess lifetime cancer risk (LCR); and iii) assessment of the in vitro mutagenic effects of extractable organic matter (EOM). Further, we compared the sensitivity of two mutagenicity tests: Salmonella/microsome test and cytokinesis-block micronucleus (CBMN) with human lung cells. Among the nitro-PAHs, 2-nitrofluoranthene, 7-nitrobenz[a]anthracene, 1-nitropyrene, and 3-nitrofluoranthene showed the highest concentrations, while among oxy-PAHs, 2-metylanthraquinone, benz[a]anthracene-7,12-dione, and 9,10-anthraquinone were the most abundant. The LCR calculated for nitro-PAH exposure during intense biomass burning period showed a major contribution of 6-nitrochrysene to human carcinogenic risk. The EOM from intense period was more mutagenic than that from moderate period for both TA98 and YG1041 Salmonella strains. The number of revertants for YG1041 was 5-50% higher than that for TA98, and the most intense responses were obtained in the absence of metabolic activation, suggesting that nitroaromatic compounds with direct-acting frameshift mutagenic activity are contributing to the DNA damage. Treatment of cells with non-cytotoxic doses of EOM resulted in an increase in micronuclei frequencies. The minimal effective dose showed that Salmonella/microsome test was considerably more sensitive in comparison with CBMN mainly for the intense burning period samples. This was the first study to assess the mutagenicity of EOM associated with PM collected in the Amazon region using Salmonella/microsome test. The presence of compounds with mutagenic effects, particularly nitro- and oxy-PAHs, and LCR values in the range of 10-5 indicate that the population is potentially exposed to an increased risk of DNA damage, mutation, and cancer.
Collapse
Affiliation(s)
| | | | | | - Sofia Caumo
- Chemistry Institute, University of São Paulo, São Paulo, Brazil.
| | | | - Paulo Artaxo
- Physics Institute, University of São Paulo, São Paulo, Brazil.
| | - Sandra de Souza Hacon
- National School of Public Health at Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| | | | | |
Collapse
|
35
|
Tian M, Yang F, Chen S, Wang H, Chen Y, Zhang L, Zhang L, Xiang L, Qiao B. Atmospheric deposition of polycyclic aromatic compounds and associated sources in an urban and a rural area of Chongqing, China. CHEMOSPHERE 2017; 187:78-87. [PMID: 28841434 DOI: 10.1016/j.chemosphere.2017.08.077] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/01/2017] [Accepted: 08/16/2017] [Indexed: 06/07/2023]
Abstract
Monthly bulk (dry + wet) deposition samples were collected at an urban and a rural site in Chongqing, southwestern China during May 2014 to April 2015 for analyzing the contents of parent polycyclic aromatic hydrocarbons (PPAHs) and three types of substituted PAHs (SPAHs) including oxygenated PAHs (OPAHs), nitrated PAHs (NPAHs) and methyl PAHs (MPAHs). Annual average (±standard deviation) deposition fluxes of ΣPPAHs, ΣOPAHs, and ΣMPAHs were 536 ± 216; 221 ± 118, and 131 ± 41.9 ng/m2/d, respectively, in the urban area, and 347 ± 185, 160 ± 112, and 85.2 ± 32.0 ng/m2/d, respectively in the rural area. Deposition of ΣNPAHs (6.01 ± 3.93 and 3.91 ± 4.84 ng/m2/d) were about two orders of magnitude lower than those of ΣPPAHs. In the urban area, temporal variations of PPAHs and MPAHs fluxes were positively correlated with particle deposition, while the trends of OPAHs and NPAHs were probably controlled by secondary formation. In the rural area, SPAHs and PPAHs deposition fluxes had similar temporal trends but differed from particle deposition. High relative humidity in Chongqing likely played an important role in facilitating the partitioning of OPAHs to atmospheric aerosols and resulting in the relatively high OPAHs level in winter. Principle component analysis identified secondary formation (21.7%) and combustion emission (52.7%) as two important contributors to polycyclic aromatic compounds (PACs) deposition fluxes in urban area.
Collapse
Affiliation(s)
- Mi Tian
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - FuMo Yang
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Collaborative Innovation Center for Green Development in Wuling Mountain Areas, Yangtze Normal University, Chongqing, 408100, China.
| | - SheJun Chen
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - HuanBo Wang
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Yang Chen
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - LiuYi Zhang
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - LeiMing Zhang
- Air Quality Research Division, Science Technology Branch, Environment and Climate Change Canada, Toronto, M3H 5T4, Canada
| | - Li Xiang
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - BaoQing Qiao
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| |
Collapse
|
36
|
Ewa B, Danuta MŠ. Polycyclic aromatic hydrocarbons and PAH-related DNA adducts. J Appl Genet 2017; 58:321-330. [PMID: 27943120 PMCID: PMC5509823 DOI: 10.1007/s13353-016-0380-3] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 11/17/2016] [Accepted: 11/21/2016] [Indexed: 01/20/2023]
Abstract
Investigations on the impact of chemicals on the environment and human health have led to the development of an exposome concept. The exposome refers to the totality of exposures received by a person during life, including exposures to life-style factors, from the prenatal period to death. The exposure to genotoxic chemicals and their reactive metabolites can induce chemical modifications of DNA, such as, for example, DNA adducts, which have been extensively studied and which play a key role in chemically induced carcinogenesis. Development of different methods for the identification of DNA adducts has led to adopting DNA adductomic approaches. The ability to simultaneously detect multiple PAH-derived DNA adducts may allow for the improved assessment of exposure, and offer a mechanistic insight into the carcinogenic process following exposure to PAH mixtures. The major advantage of measuring chemical-specific DNA adducts is the assessment of a biologically effective dose. This review provides information about the occurrence of the polycyclic aromatic hydrocarbons (PAHs) and their influence on human exposure and biological effects, including PAH-derived DNA adduct formation and repair processes. Selected methods used for determination of DNA adducts have been presented.
Collapse
Affiliation(s)
- Błaszczyk Ewa
- Institute for Ecology of Industrial Areas, Environmental Toxicology Group, 6, Kossutha Street, 40-844, Katowice, Poland.
| | - Mielżyńska-Švach Danuta
- Witold Pilecki State School of Higher Education, 8, Maksymiliana Kolbego Street, 32-600, Oświęcim, Poland
| |
Collapse
|
37
|
Euvrard É, Druart C, Morin-Crini N, Crini G. Monitoring and Origin of Polycyclic Aromatic Hydrocarbons (PAHs) in Effluents from a Surface Treatment Industry. Polycycl Aromat Compd 2017. [DOI: 10.1080/10406638.2017.1342666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Élise Euvrard
- Université de Bourgogne-Franche-Comté, Chrono-environnement, UMR 6249 UFC/CNRS usc INRA, Besançon cedex, France
| | - Coline Druart
- Université de Bourgogne-Franche-Comté, Chrono-environnement, UMR 6249 UFC/CNRS usc INRA, Besançon cedex, France
| | - Nadia Morin-Crini
- Université de Bourgogne-Franche-Comté, Chrono-environnement, UMR 6249 UFC/CNRS usc INRA, Besançon cedex, France
| | - Grégorio Crini
- Université de Bourgogne-Franche-Comté, Chrono-environnement, UMR 6249 UFC/CNRS usc INRA, Besançon cedex, France
| |
Collapse
|
38
|
Martin N, Lombard M, Jensen KR, Kelley P, Pratt T, Traviss N. Effect of biodiesel fuel on "real-world", nonroad heavy duty diesel engine particulate matter emissions, composition and cytotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 586:409-418. [PMID: 28236480 PMCID: PMC7372720 DOI: 10.1016/j.scitotenv.2016.12.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/23/2016] [Accepted: 12/05/2016] [Indexed: 05/15/2023]
Abstract
Biodiesel is regarded by many as a "greener" alternative fuel to petroleum diesel with potentially lower health risk. However, recent studies examining biodiesel particulate matter (PM) characteristics and health effects are contradictive, and typically utilize PM generated by passenger car engines in laboratory settings. There is a critical need to analyze diesel and biodiesel PM generated in a "real-world" setting where heavy duty-diesel (HDD) engines and commercially purchased fuel are utilized. This study compares the mass concentrations, chemical composition and cytotoxicity of real-world PM from combustion of both petroleum diesel and a waste grease 20% biodiesel blend (B20) at a community recycling center operating HDD nonroad equipment. PM was analyzed for metals, elemental/organic carbon (EC/OC), polycyclic aromatic hydrocarbons (PAHs), and nitro-polycyclic aromatic hydrocarbons (N-PAHs). Cytotoxicity in a human lung epithelial cell line (BEAS-2B) following 24h exposure to the real-world particles was also evaluated. On average, higher concentrations for both EC and OC were measured in diesel PM. B20 PM contained significantly higher levels of Cu and Mo whereas diesel PM contained significantly higher concentrations of Pb. Principal component analysis determined Mo, Cu, and Ni were the metals with the greatest loading factor, suggesting a unique pattern related to the B20 fuel source. Total PAH concentration during diesel fuel use was 1.9 times higher than during B20 operations; however, total N-PAH concentration was 3.3 times higher during B20 use. Diesel PM cytotoxicity was 8.5 times higher than B20 PM (p<0.05) in a BEAS-2B cell line. This study contributes novel data on real-world, nonroad engine sources of metals, PAH and N-PAH species, comparing tailpipe PM vs. PM collected inside the equipment cabin. Results suggest PM generated from burning petroleum diesel in nonroad engines may be more harmful to human health, but the links between exposure, composition and toxicity are not straightforward.
Collapse
Affiliation(s)
- Nathan Martin
- Department of Environmental Studies, Keene State College, Keene, NH, 03431, United States
| | - Melissa Lombard
- Department of Earth Sciences, University of New Hampshire, Durham, NH 03824, United States
| | - Kirk R Jensen
- Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, CO, 80401, United States
| | - Patrick Kelley
- Department of Environmental Studies, Keene State College, Keene, NH, 03431, United States
| | - Tara Pratt
- Department of Environmental Studies, Keene State College, Keene, NH, 03431, United States
| | - Nora Traviss
- Department of Environmental Studies, Keene State College, Keene, NH, 03431, United States.
| |
Collapse
|
39
|
Ranc B, Faure P, Croze V, Lorgeoux C, Simonnot MO. Comparison of the effectiveness of soil heating prior or during in situ chemical oxidation (ISCO) of aged PAH-contaminated soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:11265-11278. [PMID: 28299567 DOI: 10.1007/s11356-017-8731-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 03/01/2017] [Indexed: 06/06/2023]
Abstract
Thermal treatments prior or during chemical oxidation of aged polycyclic aromatic hydrocarbon (PAH)-contaminated soils have already shown their ability to increase oxidation effectiveness. However, they were never compared on the same soil. Furthermore, oxygenated polycyclic aromatic hydrocarbons (O-PACs), by-products of PAH oxidation which may be more toxic and mobile than the parent PAHs, were very little monitored. In this study, two aged PAH-contaminated soils were heated prior (60 or 90 °C under Ar for 1 week) or during oxidation (60 °C for 1 week) with permanganate and persulfate, and 11 O-PACs were monitored in addition to the 16 US Environmental Protection Agency (US EPA) PAHs. Oxidant doses were based on the stoichiometric oxidant demand of the extractable organic fraction of soils by using organic solvents, which is more representative of the actual contamination than only the 16 US EPA PAHs. Higher temperatures actually resulted in more pollutant degradation. Two treatments were about three times more effective than the others: soil heating to 60 °C during persulfate oxidation and soil preheating to 90 °C followed by permanganate oxidation. The results of this study showed that persulfate effectiveness was largely due to its thermal activation, whereas permanganate was more sensitive to PAH availability than persulfate. The technical feasibility of these two treatments will soon be field-tested in the unsaturated zone of one of the studied aged PAH-contaminated soils.
Collapse
Affiliation(s)
- Bérénice Ranc
- Laboratoire Interdisciplinaire des Environnements Continentaux, Faculté des Sciences et Technologies, UMR 7360 CNRS-Université de Lorraine, Site Aiguillettes, 54506, Vandœuvre-lès-Nancy cedex, France
- Laboratoire Réactions et Génie des Procédés, UMR 7274 CNRS-Université de Lorraine, 1 rue Grandville, 54001, Nancy cedex, France
- ICF Environnement, 14 à 30 rue Alexandre, 92635, Gennevilliers, France
| | - Pierre Faure
- Laboratoire Interdisciplinaire des Environnements Continentaux, Faculté des Sciences et Technologies, UMR 7360 CNRS-Université de Lorraine, Site Aiguillettes, 54506, Vandœuvre-lès-Nancy cedex, France
| | - Véronique Croze
- ICF Environnement, 14 à 30 rue Alexandre, 92635, Gennevilliers, France
- Element Terre, 2 rue Charles Fourier, 95240, Cormeilles en Parisis, France
| | - Catherine Lorgeoux
- GeoRessources Laboratoire, Faculté des Sciences et Technologies, Université de Lorraine, CNRS, CREGU, 54506, Vandœuvre-lès-Nancy cedex, France
| | - Marie-Odile Simonnot
- Laboratoire Réactions et Génie des Procédés, UMR 7274 CNRS-Université de Lorraine, 1 rue Grandville, 54001, Nancy cedex, France.
| |
Collapse
|
40
|
Bandowe BAM, Meusel H. Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) in the environment - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 581-582:237-257. [PMID: 28069306 DOI: 10.1016/j.scitotenv.2016.12.115] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/16/2016] [Accepted: 12/16/2016] [Indexed: 05/07/2023]
Abstract
Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) are derivatives of PAHs with at least one nitro-functional group (-NO2) on the aromatic ring. The toxic effects of several nitro-PAHs are more pronounced than those of PAHs. Some nitro-PAHs are classified as possible or probable human carcinogens by the International Agency for Research on Cancer. Nitro-PAHs are released into the environment from combustion of carbonaceous materials (e.g. fossil fuels, biomass, waste) and post-emission transformation of PAHs. Most studies on nitro-PAHs are about air (gas-phase and particulate matter), therefore less is known about the occurrence, concentrations, transport and fate of nitro-PAHs in soils, aquatic environment and biota. Studies on partition and exchange of nitro-PAHs between adjacent environmental compartments are also sparse. The concentrations of nitro-PAHs cannot easily be predicted from the intensity of anthropogenic activity or easily related to those of PAHs. This is because anthropogenic source strengths of nitro-PAHs are different from those of PAHs, and also nitro-PAHs have additional sources (formed by photochemical conversion of PAHs). The fate and transport of nitro-PAHs could be considerably different from their related PAHs because of their higher molecular weights and considerably different sorption mechanisms. Hence, specific knowledge on nitro-PAHs is required. Regulations on nitro-PAHs are also lacking. We present an extensive review of published literature on the sources, formation, physico-chemical properties, methods of determination, occurrence, concentration, transport, fate, (eco)toxicological and adverse health effects of nitro-PAHs. We also make suggestions and recommendations about data needs, and future research directions on nitro-PAHs. It is expected that this review will stimulate scientific discussion and provide the basis for further research and regulations on nitro-PAHs.
Collapse
Affiliation(s)
- Benjamin A Musa Bandowe
- Institute of Geography, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland; Oeschger Centre for Climate Change Research, University of Bern, Falkenplatz 16, 3012 Bern, Switzerland.
| | - Hannah Meusel
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
| |
Collapse
|
41
|
Lui KH, Bandowe BAM, Tian L, Chan CS, Cao JJ, Ning Z, Lee SC, Ho KF. Cancer risk from polycyclic aromatic compounds in fine particulate matter generated from household coal combustion in Xuanwei, China. CHEMOSPHERE 2017; 169:660-668. [PMID: 27912191 DOI: 10.1016/j.chemosphere.2016.11.112] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/15/2016] [Accepted: 11/20/2016] [Indexed: 05/03/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and their polar derivatives (oxygenated PAHs: OPAHs and azaarenes: AZAs) were characterized in fine particulates (PM2.5) emitted from indoor coal combustion. Samples were collected in Xuanwei (Yunnan Province), a region in China with a high rate of lung cancer. A sample from the community with the highest mortality contained the highest total concentration of PAHs, OPAHs and AZAs and posed the highest excess cancer risk from a lifetime of inhaling fine particulates. Positive correlations between total carbonyl-OPAHs, total AZAs and total PAHs implied that the emissions were dependent on similar factors, regardless of sample location and type. The calculated cancer risk ranged from 5.23-10.7 × 10-3, which is higher than the national average. The risk in each sample was ∼1-2 orders of magnitude higher than that deemed high risk, suggesting that the safety of these households is in jeopardy. The lack of potency equivalency factors for the PAH derivatives could possibly have underestimated the overall cancer risk.
Collapse
Affiliation(s)
- K H Lui
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Benjamin A Musa Bandowe
- Institute of Geography, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland; Oeschger Centre for Climate Change Research, University of Bern, Falkenplatz 16, 3012 Bern, Switzerland
| | - Linwei Tian
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Chi-Sing Chan
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun-Ji Cao
- Key Laboratory of Aerosol Chemistry and Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, China; Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an, China
| | - Zhi Ning
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - S C Lee
- Department of Civil and Structural Engineering, Research Center of Urban Environmental Technology and Management, The Hong Kong Polytechnic University, Hong Kong, China
| | - K F Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China; Key Laboratory of Aerosol Chemistry and Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, China.
| |
Collapse
|
42
|
Landkocz Y, Ledoux F, André V, Cazier F, Genevray P, Dewaele D, Martin PJ, Lepers C, Verdin A, Courcot L, Boushina S, Sichel F, Gualtieri M, Shirali P, Courcot D, Billet S. Fine and ultrafine atmospheric particulate matter at a multi-influenced urban site: Physicochemical characterization, mutagenicity and cytotoxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 221:130-140. [PMID: 27914859 DOI: 10.1016/j.envpol.2016.11.054] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/18/2016] [Accepted: 11/19/2016] [Indexed: 06/06/2023]
Abstract
Particulate Matter (PM) air pollution is one of the major concerns for environment and health. Understanding the heterogeneity and complexity of fine and ultrafine PM is a fundamental issue notably for the assessment of PM toxicological effects. The aim of this study was to evaluate mutagenicity and cytotoxicity of a multi-influenced urban site PM, with or without the ultrafine fraction. For this purpose, PM2.5-0.3 (PM with aerodynamic diameter ranging from 0.3 to 2.5 μm) and PM2.5 were collected in Dunkerque, a French coastal industrial city and were extensively characterized for their physico-chemical properties, including inorganic and organic species. In order to identify the possible sources of atmospheric pollution, specific criteria like Carbon Preference Index (CPI) and PAH characteristic ratios were investigated. Mutagenicity assays using Ames test with TA98, TA102 and YG1041 Salmonella strains with or without S9 activation were performed on native PM sample and PM organic extracts and water-soluble fractions. BEAS-2B cell viability and cell proliferation were evaluated measuring lactate dehydrogenase release and mitochondrial dehydrogenase activity after exposure to PM and their extracts. Several contributing sources were identified in PM: soil resuspension, marine emissions including sea-salt or shipping, road traffic and industrial activities, mainly related to steelmaking or petro-chemistry. Mutagenicity of PM was evidenced, especially for PM2.5, including ultrafine fraction, in relation to PAHs content and possibly nitro-aromatics compounds. PM induced cytotoxic effects at relatively high doses, while alteration of proliferation with low PM doses could be related to underlying mechanisms such as genotoxicity.
Collapse
Affiliation(s)
- Yann Landkocz
- Univ. Littoral Côte d'Opale, EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, F-59140, Dunkerque, France
| | - Frédéric Ledoux
- Univ. Littoral Côte d'Opale, EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, F-59140, Dunkerque, France.
| | - Véronique André
- Univ. Caen-Normandie, Aliments, Bioprocédés, Toxicologie, Environnements, EA 4651, Centre François Baclesse, F-14032, Caen, France
| | - Fabrice Cazier
- Univ. Littoral Côte d'Opale, CCM - Centre Commun de Mesures, F-59140, Dunkerque, France
| | - Paul Genevray
- Univ. Littoral Côte d'Opale, CCM - Centre Commun de Mesures, F-59140, Dunkerque, France
| | - Dorothée Dewaele
- Univ. Littoral Côte d'Opale, CCM - Centre Commun de Mesures, F-59140, Dunkerque, France
| | - Perrine J Martin
- Univ. Littoral Côte d'Opale, EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, F-59140, Dunkerque, France
| | - Capucine Lepers
- Univ. Littoral Côte d'Opale, EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, F-59140, Dunkerque, France
| | - Anthony Verdin
- Univ. Littoral Côte d'Opale, EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, F-59140, Dunkerque, France
| | - Lucie Courcot
- Univ. Littoral Côte d'Opale, CNRS UMR8187 - LOG - Laboratoire d'Océanologie et de Géosciences, F-62930, Wimereux, France
| | - Saâd Boushina
- Univ. Littoral Côte d'Opale, EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, F-59140, Dunkerque, France
| | - François Sichel
- Univ. Caen-Normandie, Aliments, Bioprocédés, Toxicologie, Environnements, EA 4651, Centre François Baclesse, F-14032, Caen, France
| | - Maurizio Gualtieri
- Univ. Littoral Côte d'Opale, EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, F-59140, Dunkerque, France
| | - Pirouz Shirali
- Univ. Littoral Côte d'Opale, EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, F-59140, Dunkerque, France
| | - Dominique Courcot
- Univ. Littoral Côte d'Opale, EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, F-59140, Dunkerque, France
| | - Sylvain Billet
- Univ. Littoral Côte d'Opale, EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, F-59140, Dunkerque, France
| |
Collapse
|
43
|
Biruk LN, Moretton J, Fabrizio de Iorio A, Weigandt C, Etcheverry J, Filippetto J, Magdaleno A. Toxicity and genotoxicity assessment in sediments from the Matanza-Riachuelo river basin (Argentina) under the influence of heavy metals and organic contaminants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 135:302-311. [PMID: 27764694 DOI: 10.1016/j.ecoenv.2016.09.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 08/29/2016] [Accepted: 09/26/2016] [Indexed: 06/06/2023]
Abstract
The aim of this study was to investigate the parameters of chemical extraction associated with the detection of toxicity and genotoxicity in sediment sample extracts. Quantitative analysis of metals and polycyclic aromatic hydrocarbons (PAHs), together with a battery of four bioassays, was performed in order to evaluate the extraction efficiency of inorganic and organic toxicants. The extracts were carried out using two inorganic solvents, two organic solvents and two extraction methodologies, making a total of five extracts. Two toxicity tests, the algal growth inhibition of Pseudokirchneriella subcapitata and the root elongation inhibition of Lactuca sativa, and two genotoxicity tests, the analysis of revertants of Salmonella typhimurium and the analysis of micronuclei and chromosomal aberrations in Allium cepa, were performed. According to the chemical analysis, the acidic solution extracted more heavy metal concentrations than distilled water, and dichloromethane extracted more but fewer concentrations of PAH compounds than methanol. Shaker extracts with distilled water were non-toxic to P. subcapitata, but were toxic to L. sativa. The acidic extracts were more toxic to P. subcapitata than to L. sativa. The methanolic organic extracts were more toxic to the alga than those obtained with dichloromethane. None of these extracts resulted toxic to L. sativa. Mutagenic effects were only detected in the organic dichloromethane extracts in the presence of metabolic activation. All the inorganic and organic extracts were genotoxic to A. cepa. This study showed that the implementation of different extraction methods together with a battery of bioassays could be suitable tools for detecting toxicity and genotoxicity in sediment samples.
Collapse
Affiliation(s)
- Lucía N Biruk
- Cátedra de Salud Pública e Higiene Ambiental, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956 4° Piso (C1113AAC), Buenos Aires, Argentina
| | - Juan Moretton
- Cátedra de Salud Pública e Higiene Ambiental, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956 4° Piso (C1113AAC), Buenos Aires, Argentina
| | - Alicia Fabrizio de Iorio
- Cátedra de Química Analítica, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, Buenos Aires, Argentina
| | - Cristian Weigandt
- Cátedra de Química Analítica, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, Buenos Aires, Argentina
| | - Jimena Etcheverry
- Instituto Nacional de Tecnología Industrial, Av. General Paz 5445, (1650), San Martín, Buenos Aires, Argentina
| | - Javier Filippetto
- Instituto Nacional de Tecnología Industrial, Av. General Paz 5445, (1650), San Martín, Buenos Aires, Argentina
| | - Anahí Magdaleno
- Cátedra de Salud Pública e Higiene Ambiental, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956 4° Piso (C1113AAC), Buenos Aires, Argentina.
| |
Collapse
|
44
|
Palacio IC, Barros SB, Roubicek DA. Water-soluble and organic extracts of airborne particulate matter induce micronuclei in human lung epithelial A549 cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 812:1-11. [DOI: 10.1016/j.mrgentox.2016.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/31/2016] [Accepted: 11/07/2016] [Indexed: 10/20/2022]
|
45
|
Keyte IJ, Albinet A, Harrison RM. On-road traffic emissions of polycyclic aromatic hydrocarbons and their oxy- and nitro- derivative compounds measured in road tunnel environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 566-567:1131-1142. [PMID: 27312273 DOI: 10.1016/j.scitotenv.2016.05.152] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 05/20/2016] [Indexed: 05/22/2023]
Abstract
Vehicular emissions are a key source of polycyclic aromatic compounds (PACs), including polycyclic aromatic hydrocarbons (PAHs) and their oxygenated (OPAH) and nitrated (NPAH) derivatives, in the urban environment. Road tunnels are a useful environment for the characterisation of on-road vehicular emissions, providing a realistic traffic fleet and a lack of direct sunlight, chemical reactivity and non-traffic sources. In the present investigation the concentrations of selected PAHs, OPAHs and NPAHs have been measured in the Parc des Princes Tunnel in Paris (PdPT, France), and at the Queensway Road Tunnel and an urban background site in Birmingham (QT, U.K). A higher proportion of semi-volatile (3-4 ring) PAH, OPAH and NPAH compounds are associated with the particulate phase compared with samples from the ambient environment. A large (~85%) decline in total PAH concentrations is observed between 1992 and 2012 measurements in QT. This is attributed primarily to the introduction of catalytic converters in the U.K as well as increasingly stringent EU vehicle emissions legislation. In contrast, NPAH concentrations measured in 2012 are similar to those measured in 1996. This observation, in addition to an increased proportion of (Phe+Flt+Pyr) in the observed PAH burden in the tunnel, is attributed to the increased number of diesel passenger vehicles in the U.K during this period. Except for OPAHs, comparable PAH and NPAH concentrations are observed in both investigated tunnels (QT and PdP). Significant differences are shown for specific substances between PAC chemical profiles in relation with the national traffic fleet differences (33% diesel passenger cars in U.K. vs 69% in France and up to 80% taking into account all vehicle categories). The dominating and sole contribution of 1-Nitropyrene observed in the PdPT NPAH profile strengthens the promising use of this compound as a diesel exhaust marker for PM source apportionment studies.
Collapse
Affiliation(s)
- Ian J Keyte
- Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Alexandre Albinet
- INERIS (Institut National de l'Environnement industriel et des RISques), Parc technologique Alata, BP2, 60550 Verneuil en Halatte, France.
| | - Roy M Harrison
- Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| |
Collapse
|
46
|
Lemos AT, Lemos CTD, Flores AN, Pantoja EO, Rocha JAV, Vargas VMF. Genotoxicity biomarkers for airborne particulate matter (PM2.5) in an area under petrochemical influence. CHEMOSPHERE 2016; 159:610-618. [PMID: 27343868 DOI: 10.1016/j.chemosphere.2016.05.087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/22/2016] [Accepted: 05/30/2016] [Indexed: 06/06/2023]
Abstract
The effects of fine inhalable particles (PM2.5) were evaluated in an area under the influence of a petrochemical industry, investigating the sensitivity of different genotoxicity biomarkers. Organic extracts were obtained from PM2.5 samples at two sites, positioned in the first and second preferential wind direction in the area. The extracts were evaluated with Salmonella/microsome assay, microsuspension method, strains TA98, YG1021 and YG1024. The mammalian metabolization fraction (S9) was used to evaluate metabolite mutagenicity. The Comet Assay (CA) and Micronuclei Test were used in a Chinese hamster lung cell line (V79). All extracts showed mutagenicity in Salmonella, and nitrogenated compounds were strongly present. Genotoxicity were found in CA in almost all extracts and the micronuclei induction at the Site in the first (Autumn 1, Winter 1), and in the second (Spring 2) wind direction. V79 showed cytotoxicity in all samples. The three biomarkers were concordant in characterization Site NO with worse quality, compatible with the greater pollutants dispersion in the first wind direction. All PM2.5 concentrations were lower than those recommended by air quality standards but genotoxic effects were detected in all samples, corroborating that these standards are inadequate as quality indicators. The Salmonella/microsome assay proved sensitive to PM2.5 mutagenicity, with an outstanding influence of nitroarenes and aromatic amines. Analyses using CA and the micronucleus test broadened the levels of response that involve different damage induction mechanisms. Results show that the complex PM2.5 composition can provoke various genotoxic effects and the use of different bioassays is essential to understand its effects.
Collapse
Affiliation(s)
- Andréia Torres Lemos
- Departamento de Pesquisas e Análises Laboratoriais, Fundação Estadual de Proteção Ambiental Henrique Luís Roessler (FEPAM), Rua Aurélio Porto, 37, 90620-090 - Partenon, Porto Alegre, RS, Brazil; Programa de Pós-graduação em Ecologia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, CEP 91501-970, Porto Alegre, RS, Brazil
| | - Clarice Torres de Lemos
- Departamento de Pesquisas e Análises Laboratoriais, Fundação Estadual de Proteção Ambiental Henrique Luís Roessler (FEPAM), Rua Aurélio Porto, 37, 90620-090 - Partenon, Porto Alegre, RS, Brazil
| | - Andressa Negreiros Flores
- Departamento de Pesquisas e Análises Laboratoriais, Fundação Estadual de Proteção Ambiental Henrique Luís Roessler (FEPAM), Rua Aurélio Porto, 37, 90620-090 - Partenon, Porto Alegre, RS, Brazil
| | - Eduarda Ozório Pantoja
- Departamento de Pesquisas e Análises Laboratoriais, Fundação Estadual de Proteção Ambiental Henrique Luís Roessler (FEPAM), Rua Aurélio Porto, 37, 90620-090 - Partenon, Porto Alegre, RS, Brazil
| | - Jocelita Aparecida Vaz Rocha
- Departamento de Pesquisas e Análises Laboratoriais, Fundação Estadual de Proteção Ambiental Henrique Luís Roessler (FEPAM), Rua Aurélio Porto, 37, 90620-090 - Partenon, Porto Alegre, RS, Brazil
| | - Vera Maria Ferrão Vargas
- Departamento de Pesquisas e Análises Laboratoriais, Fundação Estadual de Proteção Ambiental Henrique Luís Roessler (FEPAM), Rua Aurélio Porto, 37, 90620-090 - Partenon, Porto Alegre, RS, Brazil; Programa de Pós-graduação em Ecologia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, CEP 91501-970, Porto Alegre, RS, Brazil.
| |
Collapse
|
47
|
Ranc B, Faure P, Croze V, Simonnot MO. Selection of oxidant doses for in situ chemical oxidation of soils contaminated by polycyclic aromatic hydrocarbons (PAHs): A review. JOURNAL OF HAZARDOUS MATERIALS 2016; 312:280-297. [PMID: 27043880 DOI: 10.1016/j.jhazmat.2016.03.068] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 03/23/2016] [Accepted: 03/25/2016] [Indexed: 06/05/2023]
Abstract
In situ chemical oxidation (ISCO) is a promising alternative to thermal desorption for the remediation of soils contaminated with organic compounds such as polycyclic aromatic hydrocarbons (PAHs). For field application, one major issue is the selection of the optimal doses of the oxidizing solution, i.e. the oxidant and appropriate catalysts and/or additives. Despite an extensive scientific literature on ISCO, this choice is very difficult because many parameters differ from one study to another. The present review identifies the critical factors that must be taken into account to enable comparison of these various contributions. For example, spiked soils and aged, polluted soils cannot be compared; PAHs freshly spiked into a soil are fully available for degradation unlike a complex mixture of pollutants trapped in a soil for many years. Another notable example is the high diversity of oxidation conditions employed during batch experiments, although these affect the representativeness of the system. Finally, in this review a methodology is also proposed based on a combination of the stoichiometric oxidant demand of the organic pollutants and the design of experiments (DOE) in order to allow a better comparison of the various studies so far reported.
Collapse
Affiliation(s)
- B Ranc
- Université de Lorraine, Laboratoire Interdisciplinaire des Environnements Continentaux, UMR 7360, Site Aiguillette, 54506 Vandœuvre-lès-Nancy cedex, France; CNRS, Laboratoire Interdisciplinaire des Environnements Continentaux, UMR 7360, Site Aiguillettes, 54506 Vandœuvre-lès-Nancy cedex, France; ICF Environnement, 14 à 30 rue Alexandre, 92635 Gennevilliers, France; Université de Lorraine, Laboratoire Réactions et Génie des Procédés, UMR 7274, 1 rue Grandville, 54001 Nancy cedex, France; CNRS, Laboratoire Réactions et Génie des Procédés, UMR 7274, 1 rue Grandville, 54001 Nancy cedex, France
| | - P Faure
- Université de Lorraine, Laboratoire Interdisciplinaire des Environnements Continentaux, UMR 7360, Site Aiguillette, 54506 Vandœuvre-lès-Nancy cedex, France; CNRS, Laboratoire Interdisciplinaire des Environnements Continentaux, UMR 7360, Site Aiguillettes, 54506 Vandœuvre-lès-Nancy cedex, France
| | - V Croze
- ICF Environnement, 14 à 30 rue Alexandre, 92635 Gennevilliers, France
| | - M O Simonnot
- Université de Lorraine, Laboratoire Réactions et Génie des Procédés, UMR 7274, 1 rue Grandville, 54001 Nancy cedex, France; CNRS, Laboratoire Réactions et Génie des Procédés, UMR 7274, 1 rue Grandville, 54001 Nancy cedex, France.
| |
Collapse
|
48
|
Bandowe BAM, Nkansah MA. Occurrence, distribution and health risk from polycyclic aromatic compounds (PAHs, oxygenated-PAHs and azaarenes) in street dust from a major West African Metropolis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 553:439-449. [PMID: 26930316 DOI: 10.1016/j.scitotenv.2016.02.142] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 02/19/2016] [Accepted: 02/19/2016] [Indexed: 05/09/2023]
Abstract
Scientific evidence suggests that the burden of disease on urban residents of sub-Saharan African Countries is increasing, partly as a result of exposure to elevated concentrations of toxic environmental chemicals. However, characterization of the levels, composition pattern and sources of polycyclic aromatic compounds (PACs) in environmental samples from African cities is still lacking. This study measured the PAHs, oxygenated-PAHs (OPAHs) and azaarene (AZAs) content of street dusts collected from Kumasi, Ghana (a major metropolis located in the tropical forest zone of West Africa). The ∑Alkyl+parent-PAHs, ∑OPAHs and ∑AZAs concentration in street dust averaged 2570 ng g(-1) (range: 181-7600 ng g(-1)), 833 ng g(-1) (57-4200 ng g(-1)) and 73 ng g(-1) (3.3-240 ng g(-1)), respectively. The concentrations of ∑Alkyl+parent-PAHs were strongly correlated (n=25) with ∑OPAHs (r=0.96, p<0.01) and ∑AZAs (r=0.94, p<0.01). The ∑OPAHs concentrations were also strongly correlated with ∑AZAs (r=0.91, p<0.01). Concentrations of individual PAHs in these street dusts were enriched at between 12 and 836 compared to their average concentrations in background soils from same city, demonstrating the high influence of traffic emissions. Several individual OPAHs and AZAs had higher concentrations than their related and often monitored parent-PAHs. The estimated incremental lifetime cancer risks due to the parent-PAHs in street dusts was >10(-6) indicating high risk of contracting cancer from exposure to street dust from Kumasi. The contribution of OPAHs, AZAs, and alkyl-PAHs in street dust to cancer risk could not be quantified because of lack of toxicity equivalency factors for these compounds; however this could be significant because of their high concentration and known higher toxicity of some polar PACs and alkyl-PAHs than their related parent-PAHs.
Collapse
Affiliation(s)
- Benjamin A Musa Bandowe
- Institute of Geography, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland; Oeschger Centre for Climate Change Research, University of Bern, Falkenplatz 16, 3012 Bern, Switzerland.
| | | |
Collapse
|
49
|
Wincent E, Le Bihanic F, Dreij K. Induction and inhibition of human cytochrome P4501 by oxygenated polycyclic aromatic hydrocarbons. Toxicol Res (Camb) 2016; 5:788-799. [PMID: 30090389 PMCID: PMC6062249 DOI: 10.1039/c6tx00004e] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/03/2016] [Indexed: 11/25/2022] Open
Abstract
Our data represent the first demonstration that oxy-PAHs can be potent inhibitors of CYP1 expression and function.
Oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) are found in the environment together with PAHs. However, less is known concerning their biological activity including their impact on aryl hydrocarbon receptor (AHR) signalling and the subsequent modulation of the cytochrome P450 monooxygenases (CYP). In this study, the effects of 15 environmentally relevant oxy-PAHs on the induction and activity of the CYP1 enzymes were determined in vitro by measuring gene expression levels and enzyme activity. We found that nine of the tested oxy-PAHs significantly induced CYP1A1 and CYP1B1 gene expression in human keratinocytes (HaCaT cells) while only five of these also were potent inducers of CYP1-dependent ethoxyresorufin-O-deethylase (EROD) activity suggesting that some of the oxy-PAHs are both activators of AHR signalling and inhibitors of CYP1 function. Using a recombinant human CYP1A1 enzyme we showed that eleven of the oxy-PAHs potently inhibited enzyme activity with benz[a]anthracene-7,12-quinone (7,12-BAQ) and benzo[a]fluorenone (BFLO) being the most potent inhibitors (IC50 = 0.037 and 0.061 μM, respectively). We further exposed HaCaT cells to binary mixtures of oxy-PAHs and the model AHR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) to investigate potential interaction effects. The results showed that oxy-PAHs can interfere with the TCDD-mediated effects leading to reduced CYP1A1 and 1B1 expression and EROD activity. These data represent the first demonstration that oxy-PAHs can be potent inhibitors of CYP1 expression and function and make important contributions towards understanding the mechanisms through which oxy-PAHs can contribute to the overall risk of polycyclic aromatic compounds.
Collapse
Affiliation(s)
- Emma Wincent
- Institute of Environmental Medicine , Karolinska Institutet , 171 77 Stockholm , Sweden . .,Swedish Toxicology Sciences Research Center (Swetox) , 151 36 Södertälje , Sweden
| | - Florane Le Bihanic
- Institute of Environmental Medicine , Karolinska Institutet , 171 77 Stockholm , Sweden .
| | - Kristian Dreij
- Institute of Environmental Medicine , Karolinska Institutet , 171 77 Stockholm , Sweden .
| |
Collapse
|
50
|
Alves DKM, Kummrow F, Cardoso AA, Morales DA, Umbuzeiro GA. Mutagenicity profile of atmospheric particulate matter in a small urban center subjected to airborne emission from vehicle traffic and sugar cane burning. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:41-50. [PMID: 26289646 DOI: 10.1002/em.21970] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 08/03/2015] [Indexed: 06/04/2023]
Abstract
Atmospheric particulate matter (PM) is genotoxic and recently was classified as carcinogenic to humans by the International Agency for Research on Cancer. PM chemical composition varies depending on source and atmospheric conditions. The Salmonella/microsome assay is the most used mutagenicity test and can identify the major chemical classes responsible for observed mutagenicity. The objective of this work was to characterize the mutagenicity of PM samples from a countryside city, Limeira, Brazil, which is influenced by heavy traffic and sugar cane biomass burning. Six samples of total PM were collected. Air mass backward trajectories were calculated. Organic extracts were assayed using the Salmonella/microsome microsuspension mutagenicity assay using TA98, YG1041, and TA1538, with and without metabolic activation (S9). YG1041 was the most sensitive strain and mutagenicity reached 9,700 revertants per m(3) without metabolic activation. Potency for TA1538 was higher than TA98, indicating that this strain should be considered in air mutagenicity studies. The increased response to YG1041 relative to TA98, and the decreased response with S9, suggests that nitroaromatics are the major contributors. Limeira is among the most mutagenic cities in the world. High mutagenicity in Limeira seems to occur when the air mass from the area of sugarcane production is mixed with air from the region impacted by anthropogenic activities such as traffic. An increase in the formation of nitro-polycyclic aromatic hydrocarbons may result from longer contact time between the aromatic compounds and the atmosphere with high NOx and ozone concentration, although more studies are required to confirm this hypothesis.
Collapse
Affiliation(s)
- Debora Kristina M Alves
- Pharmaceutical Sciences Faculty, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Fábio Kummrow
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (Unifesp), Diadema, São Paulo, Brazil
| | - Arnaldo A Cardoso
- Analytical Chemistry Department, Paulista State University (UNESP), Araraquara, São Paulo, Brazil
| | - Daniel A Morales
- School of Technology, State University of Campinas (Unicamp), Limeira, São Paulo, Brazil
| | - Gisela A Umbuzeiro
- Pharmaceutical Sciences Faculty, University of São Paulo (USP), São Paulo, São Paulo, Brazil
- School of Technology, State University of Campinas (Unicamp), Limeira, São Paulo, Brazil
| |
Collapse
|