1
|
Cano-Pérez E, Gómez-Camargo D, Malambo-García D. Genotoxic effects in island populations of Cartagena de Indias, Colombia due to environmental exposure to mercury and cadmium. F1000Res 2025; 13:946. [PMID: 39839730 PMCID: PMC11747300 DOI: 10.12688/f1000research.154617.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/09/2025] [Indexed: 01/23/2025] Open
Abstract
Background Contamination of Cartagena Bay, Colombia with heavy metals such as mercury (Hg) and cadmium (Cd) presents a major environmental and public health concern, particularly for human communities residing on nearby islands and coastal areas. These populations face enhanced exposure risks owing to their traditional fishing practices and continuous interactions with polluted marine environments. This study aimed to evaluate the genotoxic effects of environmental exposure to Hg and Cd in populations from the island zone of the Cartagena district, Bolívar. Methods Ninety-four individuals from the four island communities (study group) and 30 individuals from the urban area of Cartagena (control group) participated in this study. The blood samples were collected to measure total mercury (T-Hg) and Cd concentrations, and a Buccal Micronucleus Cytome (BMCyt) assay was used to evaluate exposure effects. Results Cadmiun levels in the blood of the study group were within the normal range and comparable to those of the control group (p > 0.05). However, the study group exhibited significantly higher T-Hg levels (7.34 μg/L) compared to the control group (2.01 μg/L), surpassing the accepted limit. Moreover, the study group showed a higher incidence of DNA damage and cell death biomarkers (p < 0.05). Additionally, significant correlations were observed between total blood Hg levels and the frequencies of micronuclei, karyorrhexis, and karyolysis. Conclusion These results suggest that island populations of Cartagena are exposed to high levels of Hg and exhibit genotoxic damage, indicating a problem that must be addressed.
Collapse
Affiliation(s)
- Eder Cano-Pérez
- Doctorado en Medicina Tropical, Faculty of Medicine, Universidad de Cartagena, Cartagena, Bolívar, Colombia
- Grupo de Investigación UNIMOL, Faculty of Medicine, Universidad de Cartagena, Cartagena, Bolívar, 13001, Colombia
| | - Doris Gómez-Camargo
- Doctorado en Medicina Tropical, Faculty of Medicine, Universidad de Cartagena, Cartagena, Bolívar, Colombia
- Grupo de Investigación UNIMOL, Faculty of Medicine, Universidad de Cartagena, Cartagena, Bolívar, 13001, Colombia
| | - Dacia Malambo-García
- Doctorado en Medicina Tropical, Faculty of Medicine, Universidad de Cartagena, Cartagena, Bolívar, Colombia
- Grupo de Investigación UNIMOL, Faculty of Medicine, Universidad de Cartagena, Cartagena, Bolívar, 13001, Colombia
| |
Collapse
|
2
|
Caponio VCA, Silva FFVE, Popolo F, Giugliano S, Spizzirri F, Lorenzo-Pouso AI, Padín-Iruegas ME, Zhurakivska K, Muzio LL, López-Pintor RM. State of art of micronuclei assay in exfoliative cytology as a clinical biomarker of genetic damage in oral carcinogenesis: A systematic review and meta-analysis. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 794:108508. [PMID: 38964629 DOI: 10.1016/j.mrrev.2024.108508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 04/11/2024] [Accepted: 06/22/2024] [Indexed: 07/06/2024]
Abstract
Oral squamous cell carcinoma (OSCC) is the most common oral malignancy, often preceded by oral potentially malignant disorders (OPMDs). Currently, no clinical biomarker exists to predict malignancy, necessitating OPMD follow-up. Habits and environmental factors, such as smoking, and alcohol consumption, influence OSCC onset. Increased micronuclei (MNs) formation has been observed in the development of OSCC. Non-invasive diagnostic tests like exfoliative cytology offer painless and regular monitoring options. This study evaluates the impact of tobacco, alcohol, and pesticide exposure on MNs occurrence in exfoliative cytology-collected oral mucosal cells, assessing their potential as non-invasive biomarker for OSCC development prediction and monitoring in high-risk patients. Despite results from this meta-analysis supporting the existence of a stepwise increase from controls to patients with OPMD to OSCC, the translation of these findings into clinical practice is limited due to intra- and inter-individual heterogeneity, as well as methodological variability in MNs quantification. Various factors contribute to this heterogeneity, including demographic variables, methodological variability of different laboratories, staining techniques, sample collection location, and patient characteristics. All these points were discussed to provide further insights and improve standardization for future studies.
Collapse
Affiliation(s)
- Vito Carlo Alberto Caponio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia 71122, Italy; ORALMED Research Group, Department of Dental Clinical Specialties, School of Dentistry, Complutense University, Madrid 28040, Spain
| | - Fábio França-Vieira E Silva
- Oral Medicine, Oral Surgery and Implantology Unit (MedOralRes), Faculty of Medicine and Dentistry, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain; ORALRES Group, Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela 15782, Spain.
| | - Francesco Popolo
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia 71122, Italy
| | - Sara Giugliano
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia 71122, Italy
| | - Francesca Spizzirri
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia 71122, Italy
| | - Alejandro I Lorenzo-Pouso
- Oral Medicine, Oral Surgery and Implantology Unit (MedOralRes), Faculty of Medicine and Dentistry, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - María Elena Padín-Iruegas
- Human Anatomy and Embryology Area, Department of Functional Biology and Health Sciences, University of Vigo, Vigo 36310, Spain
| | - Khrystyna Zhurakivska
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia 71122, Italy
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia 71122, Italy
| | - Rosa María López-Pintor
- ORALMED Research Group, Department of Dental Clinical Specialties, School of Dentistry, Complutense University, Madrid 28040, Spain
| |
Collapse
|
3
|
Ladeira C, Møller P, Giovannelli L, Gajski G, Haveric A, Bankoglu EE, Azqueta A, Gerić M, Stopper H, Cabêda J, Tonin FS, Collins A. The Comet Assay as a Tool in Human Biomonitoring Studies of Environmental and Occupational Exposure to Chemicals-A Systematic Scoping Review. TOXICS 2024; 12:270. [PMID: 38668493 PMCID: PMC11054096 DOI: 10.3390/toxics12040270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/29/2024]
Abstract
Biomonitoring of human populations exposed to chemical substances that can act as potential mutagens or carcinogens, may enable the detection of damage and early disease prevention. In recent years, the comet assay has become an important tool for assessing DNA damage, both in environmental and occupational exposure contexts. To evidence the role of the comet assay in human biomonitoring, we have analysed original research studies of environmental or occupational exposure that used the comet assay in their assessments, following the PRISMA-ScR method (preferred reporting items for systematic reviews and meta-analyses extension for scoping reviews). Groups of chemicals were designated according to a broad classification, and the results obtained from over 300 original studies (n = 123 on air pollutants, n = 14 on anaesthetics, n = 18 on antineoplastic drugs, n = 57 on heavy metals, n = 59 on pesticides, and n = 49 on solvents) showed overall higher values of DNA strand breaks in the exposed subjects in comparison with the unexposed. In summary, our systematic scoping review strengthens the relevance of the use of the comet assay in assessing DNA damage in human biomonitoring studies.
Collapse
Affiliation(s)
- Carina Ladeira
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, 1172 Copenhagen, Denmark;
| | - Lisa Giovannelli
- Department NEUROFARBA, Section Pharmacology and Toxicology, University of Florence, 50121 Florence, Italy;
| | - Goran Gajski
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia; (G.G.); (M.G.)
| | - Anja Haveric
- Institute for Genetic Engineering and Biotechnology, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Ezgi Eyluel Bankoglu
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany; (E.E.B.); (H.S.)
| | - Amaya Azqueta
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, 31009 Pamplona, Spain;
| | - Marko Gerić
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia; (G.G.); (M.G.)
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany; (E.E.B.); (H.S.)
| | - José Cabêda
- Guarda Nacional Republicana, Destacamento Territorial de Vila Franca de Xira, Núcleo de Proteção Ambiental, 1500-124 Lisbon, Portugal;
| | - Fernanda S. Tonin
- Pharmaceutical Care Research Group, Universidad de Granada, 18012 Granada, Spain;
| | - Andrew Collins
- Department of Nutrition, University of Oslo, 0316 Oslo, Norway;
| |
Collapse
|
4
|
Ali MF, Mohamed WH. Hematological, biochemical, genotoxic, and histopathological changes induced by pyridaben. ENVIRONMENTAL TOXICOLOGY 2023; 38:2391-2399. [PMID: 37357870 DOI: 10.1002/tox.23875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/20/2023] [Accepted: 06/11/2023] [Indexed: 06/27/2023]
Abstract
The current work examined the genotoxic effects of pyridaben (PDB) in male Sprague Dawley rats. Twenty Sprague Dawley rats were divided into four equal groups; the first group was used as a control group; the other three groups were exposed to 19, 28.5, and 57 mg/kg b.w PDB by oral gavage for 4 weeks. Blood samples were collected for hematological and biochemical parameters; femoral bone marrow was flushed for chromosomal aberrations (CA) assay and liver samples were used for the analysis of gene expression of IL-6 and Casp-3 as well as histopathological and immunhistochemical investigation for Casp-3. The results showed that PDB exposure lead to non-significant changes in hematological parameters in all PDB administrated groups while malondialdehyde, glutathione peroxidase, aspartate aminotransferase, and alkaline phosphatase were significantly increased in 19 and 57 mg/kg PDB doses groups Also, gene expression of IL-6 and Casp-3 revealed a significant increase in 28.5 and 57 mg/kg PDB doses groups as compared with the control. However, there was no significant change in the percentage of CAs in bone marrow cells in all PDB-exposed groups. The histopathological and immunhistochemical examination showed focal areas of inflammatory cellular infiltration with fibrosis in 57 mg/kg b.w PDB dose group accompanied by the severe positive reaction of caspase3 in the liver.
Collapse
Affiliation(s)
- Marwa F Ali
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Wafaa H Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| |
Collapse
|
5
|
Costa LF, Marciano LPA, Feltrim F, Freire JO, Silva GB, Silvério ACP, Martins I. Assessment of cellular damage with cytome assay among environmental/occupational triazole. Chem Biol Interact 2023; 383:110689. [PMID: 37648053 DOI: 10.1016/j.cbi.2023.110689] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/09/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
The use of triazole fungicides is common in Minas Gerais, Brazil. However, the risk arising from excessive and often unprotected exposure can be harmful to farmers. Therefore, we evaluated volunteers, exposed to triazole fungicides for cellular damage caused by this pesticide. In the buccal micronucleus cytome assay (BMCyt), cells were analyzed. Urinary triazoles were analyzed by the Liquid-Liquid Extraction coupled with Gas-chromatography/mass-spectrometry (LLE-GC/MS). Statistical differences were found for all cell types evaluated in residents of rural areas (n = 145). Analysis of variance showed statistical difference in kariolytic and pyknotic cells, between the groups of men and women living in rural areas, with higher incidence in the male group. Likewise, higher concentrations triazoles in urine samples in the male group were observed. Greater cellular damage suggests increases in DNA damage, chromossomal instability and cell deaths. The results showed the urgency of the public management with the implementation of measures to minimize the pesticides exposure.
Collapse
Affiliation(s)
- Luiz F Costa
- Laboratory of Toxicants and Drugs Analysis- LATF, Faculty of Pharmaceutical Sciences, Federal University of Alfenas - Unifal-MG, Brazil
| | - Luiz P A Marciano
- Laboratory of Toxicants and Drugs Analysis- LATF, Faculty of Pharmaceutical Sciences, Federal University of Alfenas - Unifal-MG, Brazil
| | - Fernando Feltrim
- Federal University of Alfenas - Unifal-MG, Graduation in Pharmaceutical Sciences, Brazil
| | - Josiane O Freire
- Federal University of Alfenas - Unifal-MG, Graduation in Pharmaceutical Sciences, Brazil
| | - Gislaine B Silva
- Federal University of Alfenas - Unifal-MG, Graduation in Pharmaceutical Sciences, Brazil
| | | | - Isarita Martins
- Laboratory of Toxicants and Drugs Analysis- LATF, Faculty of Pharmaceutical Sciences, Federal University of Alfenas - Unifal-MG, Brazil.
| |
Collapse
|
6
|
Nunes EA, Silva HCD, Duarte NDAA, de Lima LE, Maraslis FT, Araújo MLD, Pedron T, Lange C, Freire BM, Matias AC, Batista BL, Barcelos GRM. Impact of DNA repair polymorphisms on DNA instability biomarkers induced by lead (Pb) in workers exposed to the metal. CHEMOSPHERE 2023:138897. [PMID: 37182709 DOI: 10.1016/j.chemosphere.2023.138897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/16/2023]
Abstract
Although the mechanisms of Pb-induced genotoxicity are well established, a wide individual's variation response is seen in biomarkers related to Pb toxicity, despite similar levels of metal exposure. This may be related to intrinsic variations, such as genetic polymorphisms; moreover, very little is known about the impact of genetic variations related to DNA repair system on DNA instability induced by Pb. In this context, the present study aimed to assess the impact of SNPs in enzymes related to DNA repair system on biomarkers related to acute toxicity and DNA damage induced by Pb exposure, in individuals occupationally exposed to the metal. A cross-sectional study was run with 154 adults (males, >18 years) from an automotive batteries' factory, in Brazil. Blood lead levels (BLL) were determined by ICP-MS; biomarkers related to acute toxicity and DNA instability were monitored by the buccal micronucleus cytome (BMNCyt) assay and genotyping of polymorphisms of MLH1 (rs1799977), OGG1 (rs1052133), PARP1 (rs1136410), XPA (rs1800975), XPC (rs2228000) and XRCC1 (rs25487) were performed by TaqMan assays. BLL ranged from 2.0 to 51 μg dL-1 (mean 20 ± 12 μg dL-1) and significant associations between BLL and BMNCyt biomarkers related to cellular proliferation and cytokinetic, cell death and DNA damage were observed. Furthermore, SNPs from the OGG1, XPA and XPC genes were able to modulate interactions in nuclear bud formation (NBUDs) and micronucleus (MNi) events. Taken together, our data provide further evidence that polymorphisms related to DNA repair pathways may modulate Pb-induced DNA damage; studies that investigate the association between injuries to genetic material and susceptibilities in the workplace can provide additional information on the etiology of diseases and the determination of environmentally responsive genes.
Collapse
Affiliation(s)
- Emilene Arusievicz Nunes
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, Rua XV de Novembro 195, CEP 11.060-001, Santos, Brazil.
| | - Heliton Camargo da Silva
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, Rua XV de Novembro 195, CEP 11.060-001, Santos, Brazil.
| | - Nathália de Assis Aguilar Duarte
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, Rua XV de Novembro 195, CEP 11.060-001, Santos, Brazil.
| | - Lindiane Eloisa de Lima
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, Rua XV de Novembro 195, CEP 11.060-001, Santos, Brazil.
| | - Flora Troina Maraslis
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, Rua XV de Novembro 195, CEP 11.060-001, Santos, Brazil.
| | - Marília Ladeira de Araújo
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, Rua XV de Novembro 195, CEP 11.060-001, Santos, Brazil.
| | - Tatiana Pedron
- Center of Natural and Human Sciences, Federal University of ABC, Avenida Dos Estados, 5001, CEP 09210-580, Santo André, Brazil.
| | - Camila Lange
- Center of Natural and Human Sciences, Federal University of ABC, Avenida Dos Estados, 5001, CEP 09210-580, Santo André, Brazil.
| | - Bruna Moreira Freire
- Center of Natural and Human Sciences, Federal University of ABC, Avenida Dos Estados, 5001, CEP 09210-580, Santo André, Brazil.
| | - Andreza Cândido Matias
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 1524, CEP 05508-000, São Paulo, Brazil.
| | - Bruno Lemos Batista
- Center of Natural and Human Sciences, Federal University of ABC, Avenida Dos Estados, 5001, CEP 09210-580, Santo André, Brazil.
| | - Gustavo Rafael Mazzaron Barcelos
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, Rua XV de Novembro 195, CEP 11.060-001, Santos, Brazil.
| |
Collapse
|
7
|
Lucio FT, Almeida IV, Buzo MG, Vicentini VEP. Genetic instability in farmers using pesticides: A study in Brazil with analysis combining alkaline comet and micronucleus assays. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 886:503587. [PMID: 36868698 DOI: 10.1016/j.mrgentox.2023.503587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/29/2022] [Accepted: 01/13/2023] [Indexed: 01/18/2023]
Abstract
The use of pesticides to prevent and control pests also increases food production. Pesticides are widely used by contemporary farmers, especially in Brazil, where the economy is based on agriculture. The objective of this study was to evaluate the genotoxic potential of pesticide use in rural workers in Maringá, Paraná, Brazil. DNA damage in whole blood cells was measured by the comet assay, while the frequency of cell types, abnormalities, and nuclear damage was estimated using the buccal micronucleus cytome assay. Samples of buccal mucosa were collected from 50 male volunteers (27 not exposed to pesticides and 23 occupationally exposed to pesticides). Among them, 44 volunteered for blood sampling (24 unexposed and 20 exposed). In the comet assay, the exposed farmers had a higher damage index than non-exposed ones. There were also statistically significant differences between the groups in the buccal micronucleus cytome assay. Farmers exhibited an increase in basal cell numbers, and cytogenetic alterations, represented by condensed chromatin and karyolitic cells. Comparisons between cell morphologies and epidemiological factors indicated an increased number of condensed chromatin and karyolitic cells in individuals who were responsible for preparation and transportation of pesticides to agricultural machines. Thus, the participants in this study who were exposed to pesticides were more sensitive to genetic damage, and thereby, more susceptible to diseases resulting from such damage. These results demonstrated that health policies should be developed for pesticide-exposed farmers to better mitigate risks and damage to their health.
Collapse
Affiliation(s)
- Fabiola Terra Lucio
- Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Av. Colombo, 5790, Jardim Universitário, 87020-900 Maringá, Paraná, Brazil
| | - Igor Vivian Almeida
- Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Av. Colombo, 5790, Jardim Universitário, 87020-900 Maringá, Paraná, Brazil; Environmental Toxicogenomics Research Group, Federal Rural University of Amazonia, Capitão Poço, Pará, Brazil.
| | - Matheus Gimenez Buzo
- Department of Biology, State University of Maringá, Av. Colombo, 5790, Jardim Universitário, 87020-900 Maringá, Paraná, Brazil
| | - Veronica Elisa Pimenta Vicentini
- Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Av. Colombo, 5790, Jardim Universitário, 87020-900 Maringá, Paraná, Brazil
| |
Collapse
|
8
|
Valencia-Quintana R, Milić M, Bonassi S, Ochoa-Ocaña MA, Campos-Peña V, Tenorio-Arvide MG, Pérez-Flores GA, Sánchez-Alarcón J. Effect of Pesticide Exposure over DNA Damage in Farmers from Los Reyes, Michoacan in Mexico. TOXICS 2023; 11:toxics11020122. [PMID: 36850997 PMCID: PMC9966867 DOI: 10.3390/toxics11020122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 05/23/2023]
Abstract
In the municipality of Los Reyes, Michoacán, in Mexico, several economic activities coexist; however, the most relevant is agriculture. It stands out as an agro-industrial center and commercial enclave in the region, suitable for the cultivation of sugar cane; however, currently fruit growing takes first place with blackberry, raspberry and blueberry, followed by avocado, peach, strawberry and other crops. A large quantity and variety of pesticides are applied to crops, consequently the population is at constant risk. This study aimed to evaluate whether pesticides are a factor in genetic damage to agricultural workers from Los Reyes, Michoacán, using alkaline comet assay. Fifty-nine residents participated (41 workers and 18 controls). Results included confounding factors (alcohol consumption, smoking habit, gender, age, BMI, etc.) indicated a non-significant statistical difference between two groups, with higher DNA damage values in workers that was higher than the values expected in a normal healthy unexposed population. It seems that the control measures, safe handling of pesticides and quality standards, required by the producers so that their products can be exported, have resulted in less damage, despite workers' activity, but higher damage than the reference values still requires regular surveillance of those exposed. The use of protective equipment or measures can reduce the risk of damage, so it is also necessary to promote their service and comply with labor regulations for agricultural workers.
Collapse
Affiliation(s)
- Rafael Valencia-Quintana
- Laboratorio “Rafael Villalobos-Pietrini” de Toxicología Genómica y Química Ambiental, Facultad de Agrobiología, Universidad Autónoma de Tlaxcala, CA Genética y Ambiente UATLX-CA 223, Red Temática de Toxicología de Plaguicidas, Tlaxcala 90120, Mexico
| | - Mirta Milić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10000 Zagreb, Croatia
| | - Stefano Bonassi
- Department of Human Sciences and Quality of Life Promotion, San Rafaele University, 00166 Rome, Italy
- Unit of Clinical and Molecular Epidemiology, IRCCS San Rafaele Pisana, 00166 Rome, Italy
| | | | - Victoria Campos-Peña
- Experimental Laboratory of Neurodegenerative Diseases, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City 14269, Mexico
| | | | - Guillermo Alejandro Pérez-Flores
- Laboratorio “Rafael Villalobos-Pietrini” de Toxicología Genómica y Química Ambiental, Facultad de Agrobiología, Universidad Autónoma de Tlaxcala, CA Genética y Ambiente UATLX-CA 223, Red Temática de Toxicología de Plaguicidas, Tlaxcala 90120, Mexico
| | - Juana Sánchez-Alarcón
- Laboratorio “Rafael Villalobos-Pietrini” de Toxicología Genómica y Química Ambiental, Facultad de Agrobiología, Universidad Autónoma de Tlaxcala, CA Genética y Ambiente UATLX-CA 223, Red Temática de Toxicología de Plaguicidas, Tlaxcala 90120, Mexico
| |
Collapse
|
9
|
Veronesi M, Rodriguez M, Marinho G, Bomfeti CA, Rocha BA, Barbosa F, Souza MCO, da Silva Faria MC, Rodrigues JL. Degradation of Praguicide Disulfoton Using Nanocompost and Evaluation of Toxicological Effects. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:786. [PMID: 36613108 PMCID: PMC9820053 DOI: 10.3390/ijerph20010786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Organophosphates (OPPs) are an important element of modern agriculture; however, because they are being used excessively, their residues are leaching and accumulating in the soil and groundwater, contaminating aquatic and terrestrial food chains. An important OPP called disulfoton is frequently used to eradicate pests from a wide range of crops, including Brazil's coffee crops. Additionally, it does not easily degrade in the environment, and as such, this compound can slowly build up in living organisms such as humans. Moreover, this compound has been classified as "extremely hazardous" by the World Health Organization. This study evaluated the degradation efficiency of disulfoton using a Fenton-like reaction catalyzed by magnetite nanoparticles and determined the toxicity of the by-products of the degradation process using the bioindicator Allium cepa. Further, the removal efficiency of disulfoton was determined to be 94% under optimal conditions. On the other hand, the Allium cepa bioassay showed different toxic, cytotoxic, genotoxic, and mutagenic outcomes even after the remediation process. In conclusion, the Fenton process catalyzed by magnetite nanoparticles presents great efficiency for the oxidation of disulfoton. However, it is important to highlight that the high degradation efficiency of the Fenton-based process was not sufficient to achieve detoxification of the samples.
Collapse
Affiliation(s)
- Mayne Veronesi
- Instituto de Ciência, Engenharia e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Campus Mucuri, Teófilo Otoni 39803-371, MG, Brazil
| | - Mariandry Rodriguez
- Instituto de Ciência, Engenharia e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Campus Mucuri, Teófilo Otoni 39803-371, MG, Brazil
| | - Grazielle Marinho
- Instituto de Ciência, Engenharia e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Campus Mucuri, Teófilo Otoni 39803-371, MG, Brazil
| | - Cleide Aparecida Bomfeti
- Instituto de Ciência, Engenharia e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Campus Mucuri, Teófilo Otoni 39803-371, MG, Brazil
| | - Bruno Alves Rocha
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Cafe s/no, Ribeirao Preto 14040-903, SP, Brazil
| | - Fernando Barbosa
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Cafe s/no, Ribeirao Preto 14040-903, SP, Brazil
| | - Marília Cristina Oliveira Souza
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Cafe s/no, Ribeirao Preto 14040-903, SP, Brazil
| | - Márcia Cristina da Silva Faria
- Instituto de Ciência, Engenharia e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Campus Mucuri, Teófilo Otoni 39803-371, MG, Brazil
| | - Jairo Lisboa Rodrigues
- Instituto de Ciência, Engenharia e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Campus Mucuri, Teófilo Otoni 39803-371, MG, Brazil
| |
Collapse
|
10
|
Bressiani PA, Alves GL, de Marco IG, Biffi MT, Ishikawa S, Manosso FC, Gomes EMV, Pokrywiecki TS, Schmitz APDO, Düsman E. Evaluation of genotoxicity and cytotoxicity of inhabitants of Vila Rural Água Viva, Brazil, exposed to agrochemicals using the micronucleus buccal cytome assay. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 96:104002. [PMID: 36273709 DOI: 10.1016/j.etap.2022.104002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
The aim of this study was to carry out a pilot investigation, using a buccal micronucleus cytome assay, with the population of Vila Rural Água Viva (Francisco Beltrão, Paraná, Brazil), environmentally exposed to agrochemicals. The data shows statistically differences between the control group (not exposed) and the population of Vila Rural regarding the cytotoxicity and mutagenicity. There was no significant change between the average relative frequencies of these data whether divided between smokers and non-smokers, or practitioners of physical activities or not. It was also observed that age or time of exposure to agrochemicals did not show a linear relationship with the average relative frequencies of cytotoxicity and mutagenicity data. The work shows the presence of 2,4-D herbicide in water sample of community, then it is hoped that the results will assist in guiding the dangers to health and the environment from exposure to agrochemicals.
Collapse
Affiliation(s)
- Patricia Aline Bressiani
- Academic of Chemical Engineering, Universidade Tecnológica Federal do Paraná (UTFPR), Campus Francisco Beltrão, Paraná, Brazil.
| | - Geiciane Locatelli Alves
- Academic of Chemical Engineering, Universidade Tecnológica Federal do Paraná (UTFPR), Campus Francisco Beltrão, Paraná, Brazil.
| | - Inara Giacobbo de Marco
- Academic of Chemical Engineering, Universidade Tecnológica Federal do Paraná (UTFPR), Campus Francisco Beltrão, Paraná, Brazil.
| | - Mariana Tonello Biffi
- Academic of Chemical Engineering, Universidade Tecnológica Federal do Paraná (UTFPR), Campus Francisco Beltrão, Paraná, Brazil.
| | - Sabrina Ishikawa
- Academic of Chemical Engineering, Universidade Tecnológica Federal do Paraná (UTFPR), Campus Francisco Beltrão, Paraná, Brazil.
| | - Fernando César Manosso
- Academic Department of Agricultural Sciences, Universidade Tecnológica Federal do Paraná (UTFPR), Campus Francisco Beltrão, Francisco Beltrão, Paraná, Brazil.
| | - Eduardo Michel Vieira Gomes
- Academic Department of Physics, Statistics and Mathematics, Universidade Tecnológica Federal do Paraná (UTFPR), Francisco Beltrão, Paraná, Brazil.
| | - Ticiane Sauer Pokrywiecki
- Academic Department of Engineering, Universidade Tecnológica Federal do Paraná (UTFPR), Campus Francisco Beltrão, Francisco Beltrão, Paraná, Brazil.
| | - Ana Paula de Oliveira Schmitz
- Academic Department of Engineering, Universidade Tecnológica Federal do Paraná (UTFPR), Campus Francisco Beltrão, Francisco Beltrão, Paraná, Brazil.
| | - Elisângela Düsman
- Academic Department of Chemistry and Biology, Universidade Tecnológica Federal do Paraná (UTFPR), Campus Francisco Beltrão, Paraná, Brazil.
| |
Collapse
|
11
|
Malacarne IT, Takeshita WM, de Souza DV, Dos Anjos Rosario B, de Barros Viana M, Renno ACM, Salvadori DMF, Ribeiro DA. Is micronucleus assay in oral exfoliated cells a useful biomarker for biomonitoring populations exposed to pesticides? A systematic review with meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:64392-64403. [PMID: 35854069 DOI: 10.1007/s11356-022-22015-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
The systematic review (SR) with meta-analysis aimed to infer if micronucleus assay using oral mucosal cells a useful biomarker for biomonitoring populations continuously exposed to pesticides (EP). The SR has been made in accordance with the PRISMA-P guidelines. The PICOS strategy has focused to answer the following question: "Does exposure to pesticides cause genetic damage in oral cells?" The literature search was made in the following scientific databases: Web of Science, PubMed/Medline, and Scopus. The approach was defined as follows: standardized mean difference (SMD) and 95% confidence intervals (CI). The quality assessment of manuscripts was obtained by the EPHPP (Effective Public Health Practice Project). The GRADE tool was chosen for assessing the quality of evidence. A total of 108 articles were selected in this setting. After screening abstracts and titles, 23 manuscripts were evaluated for eligibility. After reviewing the studies, two were considered weak and 22 were classified as moderate or strong. The meta-analysis data pointed out statistically significant differences in volunteers exposed to EP (SMD = 1.23, 95% CI, 0.69 to 1.77, p < 0.001), with a Tau2 = 1.44; Chi2 = 566.38, and p < 0.001, so that the selected manuscripts were considered heterogeneous and the I2 of 97% indicated high heterogeneity. Taken together, this review was able to validate the micronucleus assay in oral exfoliated cells as a useful biomarker in individuals continuously exposed to EP because the studies categorized as moderate and strong have demonstrated positive response related to mutagenesis.
Collapse
Affiliation(s)
- Ingra Tais Malacarne
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil
| | | | - Daniel Vitor de Souza
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil
| | - Barbara Dos Anjos Rosario
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil
| | - Milena de Barros Viana
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil
| | - Ana Claudia Muniz Renno
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil
| | | | - Daniel Araki Ribeiro
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil.
| |
Collapse
|
12
|
Zúñiga-Venegas LA, Hyland C, Muñoz-Quezada MT, Quirós-Alcalá L, Butinof M, Buralli R, Cardenas A, Fernandez RA, Foerster C, Gouveia N, Gutiérrez Jara JP, Lucero BA, Muñoz MP, Ramírez-Santana M, Smith AR, Tirado N, van Wendel de Joode B, Calaf GM, Handal AJ, Soares da Silva A, Cortés S, Mora AM. Health Effects of Pesticide Exposure in Latin American and the Caribbean Populations: A Scoping Review. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:96002. [PMID: 36173136 PMCID: PMC9521041 DOI: 10.1289/ehp9934] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 05/23/2023]
Abstract
BACKGROUND Multiple epidemiological studies have shown that exposure to pesticides is associated with adverse health outcomes. However, the literature on pesticide-related health effects in the Latin American and the Caribbean (LAC) region, an area of intensive agricultural and residential pesticide use, is sparse. We conducted a scoping review to describe the current state of research on the health effects of pesticide exposure in LAC populations with the goal of identifying knowledge gaps and research capacity building needs. METHODS We searched PubMed and SciELO for epidemiological studies on pesticide exposure and human health in LAC populations published between January 2007 and December 2021. We identified 233 publications from 16 countries that met our inclusion criteria and grouped them by health outcome (genotoxicity, neurobehavioral outcomes, placental outcomes and teratogenicity, cancer, thyroid function, reproductive outcomes, birth outcomes and child growth, and others). RESULTS Most published studies were conducted in Brazil (37%, n = 88 ) and Mexico (20%, n = 46 ), were cross-sectional in design (72%, n = 167 ), and focused on farmworkers (45%, n = 105 ) or children (21%, n = 48 ). The most frequently studied health effects included genotoxicity (24%, n = 62 ) and neurobehavioral outcomes (21%, n = 54 ), and organophosphate (OP) pesticides were the most frequently examined (26%, n = 81 ). Forty-seven percent (n = 112 ) of the studies relied only on indirect pesticide exposure assessment methods. Exposure to OP pesticides, carbamates, or to multiple pesticide classes was consistently associated with markers of genotoxicity and adverse neurobehavioral outcomes, particularly among children and farmworkers. DISCUSSION Our scoping review provides some evidence that exposure to pesticides may adversely impact the health of LAC populations, but methodological limitations and inconsistencies undermine the strength of the conclusions. It is critical to increase capacity building, integrate research initiatives, and conduct more rigorous epidemiological studies in the region to address these limitations, better inform public health surveillance systems, and maximize the impact of research on public policies. https://doi.org/10.1289/EHP9934.
Collapse
Affiliation(s)
- Liliana A. Zúñiga-Venegas
- Centro de Investigaciones de Estudios Avanzados del Maule, Universidad Católica del Maule, Talca, Chile
| | - Carly Hyland
- Center for Environmental Research and Community Health, School of Public Health, University of California, Berkeley, Berkeley, California, USA
- School of Public Health and Population Science, Boise State University, Boise, Idaho, USA
| | - María Teresa Muñoz-Quezada
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Facultad de Ciencias de la Salud, Universidad Católica del Maule, Talca, Chile
| | - Lesliam Quirós-Alcalá
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, John Hopkins University, Baltimore, Maryland, USA
- Maryland Institute of Applied Environmental Health, School of Public Health, University of Maryland, College Park, Maryland, USA
| | - Mariana Butinof
- Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Rafael Buralli
- Departamento de Saúde Ambiental, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, Brasil
| | - Andres Cardenas
- Center for Environmental Research and Community Health, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Ricardo A. Fernandez
- Facultad de Ciencias de la Salud, Universidad Católica de Córdoba, Córdoba, Argentina
| | - Claudia Foerster
- Instituto de Ciencias de la Agroalimentarias, Animales y Ambientales, Universidad de O’Higgins, San Fernando, Chile
| | - Nelson Gouveia
- Departamento de Medicina Preventiva, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | - Juan P. Gutiérrez Jara
- Centro de Investigaciones de Estudios Avanzados del Maule, Universidad Católica del Maule, Talca, Chile
| | - Boris A. Lucero
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Facultad de Ciencias de la Salud, Universidad Católica del Maule, Talca, Chile
| | - María Pía Muñoz
- Escuela de Salud Pública, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Muriel Ramírez-Santana
- Departamento de Salud Pública, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Anna R. Smith
- Center for Environmental Research and Community Health, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Noemi Tirado
- Instituto de Genética, Facultad de Medicina, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Berna van Wendel de Joode
- Infants’ Environmental Health Study, Central American Institute for Studies on Toxic Substances, Universidad Nacional, Heredia, Costa Rica
| | - Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile
- Columbia University Medical Center, New York, New York, USA
| | - Alexis J. Handal
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | | | - Sandra Cortés
- Centro Avanzado de Enfermedades Crónicas (ACCDiS), Centro de Desarrollo Urbano Sustentable, Departamento de Salud Pública, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ana M. Mora
- Center for Environmental Research and Community Health, School of Public Health, University of California, Berkeley, Berkeley, California, USA
- Infants’ Environmental Health Study, Central American Institute for Studies on Toxic Substances, Universidad Nacional, Heredia, Costa Rica
| |
Collapse
|
13
|
Arbo MD, Garcia SC, Sarpa M, Da Silva Junior FM, Nascimento SN, Garcia ALH, Da Silva J. Brazilian workers occupationally exposed to different toxic agents: A systematic review on DNA damage. MUTATION RESEARCH/GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 879-880:503519. [PMID: 35914865 DOI: 10.1016/j.mrgentox.2022.503519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/23/2022] [Accepted: 06/21/2022] [Indexed: 10/17/2022]
Abstract
The evaluation of genotoxicity in workers exposed to different toxic agents is very important, especially considering the association between these exposures in a chronic context and DNA damage. Assessing biomarkers of exposure and, when possible, early biomarkers of effect, contributes to elucidating the potential toxic mechanisms involved in genotoxicity and its contribution to chronic non-communicable diseases. In Brazil, the biggest country in South America, workers are exposed to hazardous physical and chemical agents. Considering that these exposures occur, in most cases, throughout the worker's whole life, this is an important public health concern in Brazil. Therefore, this systematic review aims to analyze occupational exposure to chemical and physical agents and the association with DNA damage in studies carried out in Brazil from 1980 to 2021. A systematic and comprehensive literature search was performed in different databases based on occupational exposure to chemical and physical agents and DNA damage. Only full articles on studies that investigated experimental evidence on occupational exposure in Brazil and assessed DNA damage were included, amounting to 89 articles. Five main occupational exposure groups were identified: pesticides (36%), organic solvents (20%), dust and particles (16%), metals (11%), and ionizing radiation (6%). Another group called "others" included studies (11%) that did not fall into these main groups. It was found that comet assay and micronucleus tests are the most adopted methods to detect DNA damage. Occupational exposures were most associated with DNA damage. However, further improvements in study design would be needed to better characterize the association between biomonitoring and DNA damage, particularly to account for confounding factors.
Collapse
|
14
|
Dalberto D, Alves J, Garcia ALH, de Souza MR, Abella AP, Thiesen FV, Salvador M, Santos Branco CD, Marroni N, Bona S, Schemitt E, Da Silva FR, Da Silva J. Exposure in the tobacco fields: Genetic damage and oxidative stress in tobacco farmers occupationally exposed during harvest and grading seasons. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 878:503485. [PMID: 35649679 DOI: 10.1016/j.mrgentox.2022.503485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 06/15/2023]
Abstract
Agricultural workers engaged in tobacco cultivation are constantly exposed to large amounts of harmful agents, such as pesticides and nicotine. Furthermore, most of the flue-cured tobacco leaves are manually graded exposing workers to agents such as tobacco-specific nitrosamines. This study aimed to evaluate genetic damage and oxidative stress in tobacco farmers occupationally exposed during the harvest and grading seasons. We obtained data on DNA damage detected in Comet assay in blood cells and micronucleus experiment with buccal cells from 241 individuals. The serum cotinine levels and nitrates were also evaluated. The Comet Assay results showed a showed an increased visual score for males and females during harvest time and tobacco grading. An increase of micronucleated and binucleated cells was observed in the grading group compared to the control and harvest groups. The oxidative stress measurements showed a clear increase of thiobarbituric acid reactive substances (TBARS) in tobacco farmers during harvest time, and trolox equivalent antioxidant capacity (TEAC) in individuals during harvest and grading time compared to the controls. Significant increases of the cotinine levels were observed during the harvest and grading period (harvest>grading), and nitrates for the grading period compared to the control. In this study, tobacco farmers presented compromised DNA integrity associated with enhanced oxidative stress levels.
Collapse
Affiliation(s)
- Daiana Dalberto
- Laboratory of Genetic Toxicology, PPGBioSaúde, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Jodel Alves
- Laboratory of Genetic Toxicology, PPGBioSaúde, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Ana Letícia Hilário Garcia
- Laboratory of Genetic Toxicology, PPGBioSaúde, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil; Laboratory of Genetic Toxicology, PPGSDH, La Salle University (UniLaSalle), Canoas, RS, Brazil
| | - Melissa Rosa de Souza
- Laboratory of Genetic Toxicology, PPGBioSaúde, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Angélica Pich Abella
- Laboratory of Genetic Toxicology, PPGBioSaúde, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Flávia V Thiesen
- Toxicology Institute, Catholic Pontificial University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Mirian Salvador
- Biotechnology Institute, University of Caxias do Sul, Caxias do Sul (UCS), RS, Brazil
| | | | - Norma Marroni
- PPG Biological Sciences - Physiology and PPG Medicine - Medical Sciences at UFRGS, Porto Alegre, RS, Brazil; Laboratory of Pneumological Sciences and Inflammation - Hospital de Clínicas de Porto Alegre, RS, Brazil
| | - Silvia Bona
- PPG Biological Sciences - Physiology and PPG Medicine - Medical Sciences at UFRGS, Porto Alegre, RS, Brazil
| | - Elizangela Schemitt
- PPG Biological Sciences - Physiology and PPG Medicine - Medical Sciences at UFRGS, Porto Alegre, RS, Brazil
| | | | - Juliana Da Silva
- Laboratory of Genetic Toxicology, PPGBioSaúde, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil; Laboratory of Genetic Toxicology, PPGSDH, La Salle University (UniLaSalle), Canoas, RS, Brazil.
| |
Collapse
|
15
|
Nascimento FDA, Silva DDME, Pedroso TMA, Ramos JSA, Parise MR. Farmers exposed to pesticides have almost five times more DNA damage: a meta-analysis study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:805-816. [PMID: 34342827 DOI: 10.1007/s11356-021-15573-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
We carried out a meta-analytical review of possible DNA damage resulting from occupational exposure to pesticides in farmers in the scientific literature. After the search, screening, and eligibility criteria steps, we included 42 studies to analyze random effect calculation. DNA damage in farmers occupationally exposed to pesticides represents an effect of SMD 4.63 [CI 95% 3.94-5.32; p <0.001]. We observed a high heterogeneity rate between the studies and an asymmetry of the bias analysis results. We performed a meta-regression on the parameters. The Olive Tail Moment (OTM) was the most effective comet assay parameter in the evaluated studies. The Damage Index (DI) was more conservative and highlighted the variability between studies caused by distinct methodologies that showed more significant effects and greater deviations. An analysis of confounding factors demonstrated a slight DNA damage in smokers who were occupationally exposed to pesticides compared to nonsmokers, indicating genotoxicity but smaller than the pesticide effect. The present study shows the greater risk that occupationally exposed rural workers have of developing related diseases due to pesticides' genotoxic effect.
Collapse
Affiliation(s)
- Felipe de Araújo Nascimento
- Mutagenesis Laboratory, Department of Genetics, Institute of Biological Sciences, Postgraduate Program in Genetics and Molecular Biology, Federal University of Goiás, ICB I-Room 218/228, Campus Universitário, CEP, Goiânia, GO, 74690-900, Brazil.
| | - Daniela de Melo E Silva
- Mutagenesis Laboratory, Department of Genetics, Institute of Biological Sciences, Postgraduate Program in Genetics and Molecular Biology, Federal University of Goiás, ICB I-Room 218/228, Campus Universitário, CEP, Goiânia, GO, 74690-900, Brazil
| | - Thays Millena Alves Pedroso
- Mutagenesis Laboratory, Department of Genetics, Institute of Biological Sciences, Postgraduate Program in Genetics and Molecular Biology, Federal University of Goiás, ICB I-Room 218/228, Campus Universitário, CEP, Goiânia, GO, 74690-900, Brazil
| | - Jheneffer Sonara Aguiar Ramos
- Mutagenesis Laboratory, Department of Genetics, Institute of Biological Sciences, Postgraduate Program in Genetics and Molecular Biology, Federal University of Goiás, ICB I-Room 218/228, Campus Universitário, CEP, Goiânia, GO, 74690-900, Brazil
| | - Michelle Rocha Parise
- Mutagenesis Laboratory, Department of Genetics, Institute of Biological Sciences, Postgraduate Program in Genetics and Molecular Biology, Federal University of Goiás, ICB I-Room 218/228, Campus Universitário, CEP, Goiânia, GO, 74690-900, Brazil
- Department of Pharmacology, Graduate Program in Genetics and Molecular Biology, Federal University of Jataí, Jataí, GO, Brazil
| |
Collapse
|
16
|
Kapeleka JA, Sauli E, Ndakidemi PA. Pesticide exposure and genotoxic effects as measured by DNA damage and human monitoring biomarkers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2021; 31:805-822. [PMID: 31736325 DOI: 10.1080/09603123.2019.1690132] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Occupational pesticides exposure rises health concern due to genotoxicity and accumulation of pesticides in human biological matrices. Continuous and sublethal exposure to pesticides had been associated with oxidative stress, mutagenic and cell death. Exposure to pesticides exhibits increased level of DNA damage even if no detectable amounts of pesticides are seen in biological matrices by binding specific areas in the DNA. This interferes normal body systems and mutation in gene encoding specific activities which may lead to a wide range of cancer. Presence of pesticides compounds in human biological matrices had been evident from various studies. However, detection methods are complex and inconsistent, making it difficult to compare and generalize findings. This article provides insight into genotoxic effects, presence of pesticides and their metabolites in human biological matrices and the resultant health effects as measured by DNA damage, acetylcholinesterase (AChE) activity inhibition and other biomarkers of pesticides exposure.
Collapse
Affiliation(s)
- Jones A Kapeleka
- The Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
- Tropical Pesticides Research Institute (TPRI)
| | - Elingarami Sauli
- The Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | - Patrick A Ndakidemi
- The Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| |
Collapse
|
17
|
Petrashova DA, Kolomeichuk SN. Effect of Angiotensin-I Converting Enzyme Gene Insertion/Deletion Polymorphism on genome instability in children living in Russian Arctic. Klin Lab Diagn 2021; 66:635-640. [PMID: 34665951 DOI: 10.51620/0869-2084-2021-66-10-635-640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Main risks of arterial hypertension manifest in childhood. Children living in the Far North are especially susceptible to this. There is a need for an inexpensive, non-invasive and simple diagnosis of the risk of childhood pathologies. It was previously found that the genotype DD of the in/del polymorphic marker of the ACE gene is found in people at risk of developing cardiovascular pathologies. Buccal micronucleus cytome assay and genetic analysis were used in the work. In total, 77 schoolchildren from the city of Apatity, aged 15-17 years old, were examined. We have shown that carriers of the D allele have a tendency to an increase in the frequency of cells with micronuclei. In the case of homozygous I/I variant, the frequency of occurrence of cells with karyopycnosis is significantly higher than in carriers of allele D. Polymorphic marker in/del of the ACE gene is associated with apoptotic changes in the cells of the studied children. The in/del polymorphic marker of the ACE gene can be used as a prognostic marker of the processes of genome destabilization at the early stages of development of the human body.
Collapse
Affiliation(s)
| | - S N Kolomeichuk
- Karelian Science Center, Russian Academy of Sciences
- Nothern State Medical University
| |
Collapse
|
18
|
Weisenburger DD. A Review and Update with Perspective of Evidence that the Herbicide Glyphosate (Roundup) is a Cause of Non-Hodgkin Lymphoma. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2021; 21:621-630. [PMID: 34052177 DOI: 10.1016/j.clml.2021.04.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 01/26/2023]
Abstract
Glyphosate-based formulations (GBFs), such as Roundup, are the most heavily used herbicides in the world. In 2015, the International Agency for Research on Cancer (IARC) concluded that glyphosate and GBFs are probably carcinogenic to humans (group 2A), mainly for non-Hodgkin lymphoma (NHL). However, this finding has been controversial, and most pesticide regulatory agencies have not followed their lead. The purpose of this review was to examine the scientific literature linking exposure to glyphosate and GBFs to the development of NHL, with emphasis on new findings since publication of the IARC report. The epidemiologic studies provide ample evidence for an association between exposure to GBFs and an increased risk of NHL. Animal studies have shown that glyphosate is carcinogenic in rodents and causes NHL in mice. Mechanistic studies have demonstrated that glyphosate and GBFs are genotoxic to human lymphocytes, the normal cell of origin of NHL, both in vitro and in vivo. Genotoxic and other biological effects have also been shown in various animal and cell models with these agents even at low doses. A novel mechanism underlying the specificity of glyphosate for NHL, that is upregulation of the B-cell genome mutator enzyme activation-induced cytidine deaminase, has recently been demonstrated. These findings were evaluated holistically using the guidelines for evaluation of general causation set forth by Bradford Hill. This evaluation provides coherent and compelling evidence that glyphosate and GBFs are a cause of NHL in humans exposed to these agents. These findings should prompt new reviews by pesticide regulatory agencies around the world.
Collapse
|
19
|
Valencia-Quintana R, López-Durán RM, Milić M, Bonassi S, Ochoa-Ocaña MA, Uriostegui-Acosta MO, Pérez-Flores GA, Gómez-Olivares JL, Sánchez-Alarcón J. Assessment of Cytogenetic Damage and Cholinesterases' Activity in Workers Occupationally Exposed to Pesticides in Zamora-Jacona, Michoacan, Mexico. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18126269. [PMID: 34200547 PMCID: PMC8296030 DOI: 10.3390/ijerph18126269] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022]
Abstract
Pesticides have been considered as potential chemical mutagens; however, little is known about toxic and genotoxic effects during pesticide application in Zamora-Jacona, Michoacan State in Mexico. This study sought to determine DNA damage and cholinesterase activities inhibitions in 54 agricultural workers exposed to complex mixtures of pesticides vs. control group (26 individuals) using Comet assay in peripheral whole blood, micronucleus (MN) test in oral mucosa cells, Cytokinesis-blocked MN assay in lymphocytes (L-CBMNcyt) and measuring AChE and BChE activities in whole blood and plasma samples, respectively. Exposed subjects demonstrated significantly elevated levels of primary (Comet assay: tail intensity, tail length, tail moment, Olive tail moment) and permanent DNA damage (MN assay: in blood/buccal cells; frequencies of nuclear buds, binucleated cells, cells with condensed chromatin, karyorrhexis, pyknosis, and karyolysis). However, inhibition of cholinesterase activities (AChE and BChE) was not observed in the workers. Confounding factors including sex, age, BMI, working exposure period, protection level, smoking habit (cigarettes per day units), alcohol consumption (weekly), medication, were considered in the analysis. These combined techniques demonstrated usefulness in the health hazards risks pesticide exposure assessment and suggested the need for periodic monitoring together with the education and the training of occupational workers for the safe application of potentially harmful pesticides.
Collapse
Affiliation(s)
- Rafael Valencia-Quintana
- Laboratorio “Rafael Villalobos-Pietrini” de Toxicología Genómica y Química Ambiental, Facultad de Agrobiología, Universidad Autónoma de Tlaxcala, CA Genética y Ambiente UATLX-CA 223, Red Temática de Toxicología de Plaguicidas, Tlaxcala 90120, Mexico; (R.V.-Q.); (G.A.P.-F.)
| | - Rosa María López-Durán
- Laboratorio de Biomembranas, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México 09340, Mexico;
- Correspondence: (R.M.L.-D.); (J.S.-A.)
| | - Mirta Milić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10000 Zagreb, Croatia;
| | - Stefano Bonassi
- Department of Human Sciences and Quality of Life Promotion, San Rafaele University, 00166 Rome, Italy;
- Unit of Clinical and Molecular Epidemiology, IRCCS San Rafaele Pisana, 00166 Rome, Italy
| | - Ma. Antonieta Ochoa-Ocaña
- Unidad Académica de Estudios Regionales, Coordinación de Humanidades, UNAM, Jiquilpan 59510, Mexico;
| | | | - Guillermo Alejandro Pérez-Flores
- Laboratorio “Rafael Villalobos-Pietrini” de Toxicología Genómica y Química Ambiental, Facultad de Agrobiología, Universidad Autónoma de Tlaxcala, CA Genética y Ambiente UATLX-CA 223, Red Temática de Toxicología de Plaguicidas, Tlaxcala 90120, Mexico; (R.V.-Q.); (G.A.P.-F.)
| | - José Luis Gómez-Olivares
- Laboratorio de Biomembranas, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México 09340, Mexico;
| | - Juana Sánchez-Alarcón
- Laboratorio “Rafael Villalobos-Pietrini” de Toxicología Genómica y Química Ambiental, Facultad de Agrobiología, Universidad Autónoma de Tlaxcala, CA Genética y Ambiente UATLX-CA 223, Red Temática de Toxicología de Plaguicidas, Tlaxcala 90120, Mexico; (R.V.-Q.); (G.A.P.-F.)
- Correspondence: (R.M.L.-D.); (J.S.-A.)
| |
Collapse
|
20
|
Sharma N, Thakur P, Chaskar MG. Determination of eight endocrine disruptor pesticides in bovine milk at trace levels by dispersive liquid-liquid microextraction followed by GC-MS determination. J Sep Sci 2021; 44:2982-2995. [PMID: 34085766 DOI: 10.1002/jssc.202100183] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/10/2021] [Accepted: 05/31/2021] [Indexed: 01/02/2023]
Abstract
Endocrine disrupting chemicals are chemicals that interfere with any aspect of the endocrine system. Several natural and synthetic chemicals, including pesticides, have been identified as endocrine disruptors, which potentially inhibit the reproductive activity of the hormonal system. The pervasive occurrence with trace level concentrations and extensive variety are the reported characteristics of these chemicals. In this study, a dispersive liquid-liquid microextraction method coupled with gas chromatography and mass spectrometry for the determination of eight potential endocrine disruptor pesticides (Lindane, Diazinon, Fenitrothion, Malathion, Aldrin, α-Endosulfan, β-Endosulfan, Methoxychlor) in bovine milk samples was developed. Several parameters that can influence the extraction efficiency were studied. Under optimized conditions, the calibration curves of all eight analytes presented coefficient of determination higher than 0.998 (range level of 2.0-1000 ng/mL). The limits of detection and quantification ranged from 0.90 to 5.00 ng/mL and 2.50 to 15.0 ng/mL, respectively.
Collapse
Affiliation(s)
- Nisha Sharma
- Department of Chemistry, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Pragati Thakur
- Department of Chemistry, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Manohar G Chaskar
- Department of Chemistry, Savitribai Phule Pune University, Pune, Maharashtra, India
| |
Collapse
|
21
|
Bernieri T, Rodrigues D, Randon Barbosa I, Perassolo MS, Grolli Ardenghi P, Basso da Silva L. Effect of pesticide exposure on total antioxidant capacity and biochemical parameters in Brazilian soybean farmers. Drug Chem Toxicol 2021; 44:170-176. [PMID: 30950301 DOI: 10.1080/01480545.2019.1566353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 10/27/2022]
Abstract
Farmers represent a population highly vulnerable to the toxic effects of pesticide exposure. Antioxidant capacity and biochemical parameters have been used as biomarkers of occupational exposure to pesticides. The aim of this study was to evaluate hepatic and renal parameters as well as butyrylcholinesterase (BChE) activity and ferric-reducing ability of plasma (FRAP) considering high and low exposure periods in soybean farmers in southern Brazil. The exposed group consisted of 50 soybean farmers. Two control groups were used, composed by 35 (Novo Hamburgo control group) and 28 (Sertão control group) subjects not exposed to pesticides. Farmers blood samples were collected during the high and low pesticide exposure periods. BChE, aspartate aminotransferase (AST), alanine aminotransferase (ALT), gamma-glutamyltransferase (GGT), urea, and creatinine levels were determined. The FRAP assay was carried out to evaluate the antioxidant potential in the exposed group. Considering the exposed group, significantly lower BChE and increased AST activity were observed during high pesticide exposure period as well as higher FRAP, urea and creatinine levels; however, ALT and GGT did not differ between the two periods. When compared with the control groups, only urea and creatinine were higher in the exposed group. The present results indicate that occupational exposure to mixtures of pesticides might elicit adverse effects at the biochemical level. In addition, the study highlights the importance in considering periods of a same crop season with different degree of pesticide exposure during biologic monitoring of these biochemical parameters.
Collapse
Affiliation(s)
- Tanandra Bernieri
- Health Sciences Institute, Feevale University, Novo Hamburgo, Brazil
| | - Dabiana Rodrigues
- Health Sciences Institute, Feevale University, Novo Hamburgo, Brazil
| | | | | | | | | |
Collapse
|
22
|
Bagri P, Kumar V. Assessment of anilofos-induced mutagenicity in bone marrow and germ cells of Swiss albino mice. Toxicol Ind Health 2021; 36:110-118. [PMID: 32279653 DOI: 10.1177/0748233720913757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Anilofos is an organophosphate compound and is used extensively as a preemergence and early postemergence herbicide for the management of sedges, annual grasses, and some broad-leaved weeds in rice fields. The present study was aimed to assess the mutagenic potential of anilofos after sub-chronic exposure in Swiss albino mice. For this, a combined approach employing micronucleus (MN), chromosomal aberration (CA) studies and sperm-head abnormalities (SHAs) was used. Three dose levels of 1%, 2%, and 4% of maximum tolerated dose (MTD) (235 mg/kg b.wt.), that is, 2.35, 4.7 and 9.4 mg/kg b.wt., respectively, were administered orally daily for 90 days. A higher incidence of micronucleated erythrocytes (polychromatic erythrocytes + normochromatic erythrocytes), significant increase in CA frequency, and significant decrease in the ratio of polychromatic/normochromatic erythrocytes (P/N) ratio were observed at the 4.7 and 9.4 mg/kg b.wt. dose levels. A significant increase in SHA was observed in all treatment groups (2.35, 4.7, and 9.4 mg/kg b.wt.) from the control group. In conclusion, anilofos exposure of 2% and 4% of MTD caused a higher rate of micronucleated erythrocytes, increased frequency of CA, increase in SHA, and lower P/N ratio, and pesticide exposure of 1% of MTD only resulted in higher SHAs. Thus, anilofos was found to have mutagenic potential in mice when administered daily orally at dose rate of 4.7 and 9.4 mg/kg b.wt. for 90 days.
Collapse
Affiliation(s)
- Preeti Bagri
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Vinod Kumar
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| |
Collapse
|
23
|
Kaur K, Kaur R. Modulation of DNA damage by XPF, XPG and ERCC1 gene polymorphisms in pesticide-exposed agricultural workers of Punjab, North-West India. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2021; 861-862:503302. [PMID: 33551103 DOI: 10.1016/j.mrgentox.2020.503302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/04/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022]
Abstract
Inter-individual variations in DNA repair capacity (DRC) for repairing pesticide-induced DNA oxidation damage may influence adverse health outcomes. We aimed to evaluate whether polymorphisms in genes involved in nucleotide excision repair (NER) pathway could modulate DNA damage in pesticide-exposed agricultural workers. Xeroderma pigmentosum group F (XPF) (Arg415Gln, G1244A, rs1800067), xeroderma pigmentosum group G (XPG) (Asp1104His, G3507C, rs17655), excision repair cross complementation group 1 (ERCC1) (3'UTR, C8092A, rs3212986) and ERCC1 (Asn118Asn, C19007T, rs11615) polymorphisms were analyzed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique in 225 pesticide-exposed agricultural workers and 225 controls from Punjab, North-West India. The assessment of DNA damage was carried out by alkaline comet assay. Kruskal-Wallis test was used to evaluate the association of gene polymorphisms in NER pathway with DNA damage. Pesticide-exposed agricultural workers carrying variant XPF Gln/Gln (AA) genotype showed higher comet tail length (p < 0.01) than wild type Arg/Arg (GG) genotype. The comet tail length (p < 0.01) was found to be significantly increased in exposed agricultural workers carrying XPG His/His (CC) genotype than wild-type Asp/Asp (GG) genotype. In relation to the individuals carrying wild type ERCC1 3'UTR CC genotype, exposed individuals with variant ERCC1 3'UTR CA genotype showed elevation in the comet tail length (p = 0.029). However, we found no association of ERCC1 Asn118Asn (C19007T) genotype with DNA damage. These results indicate that XPF, XPG and ERCC1 genes of NER pathway may modulate the efficacy of the DNA repair system against pesticide exposure in our population.
Collapse
Affiliation(s)
- Karashdeep Kaur
- Department of Biotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, 140406 Punjab, India.
| | - Rupinder Kaur
- Department of Biotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, 140406 Punjab, India.
| |
Collapse
|
24
|
Silva Pinto BG, Marques Soares TK, Azevedo Linhares M, Castilhos Ghisi N. Occupational exposure to pesticides: Genetic danger to farmworkers and manufacturing workers - A meta-analytical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:141382. [PMID: 32818891 DOI: 10.1016/j.scitotenv.2020.141382] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
In the last decades, the use of pesticides has grown worldwide. However, there is great worry about the impact of pesticides on human health, due to their wide distribution and possible long-term effects. Complex mixtures with different formulations are often used, including a variety of genotoxic compounds. Thus, genotoxicity tests form an important part of cancer research and risk assessment of potential carcinogens. This study aimed to conduct a meta-analytical review of possible genetic damage resulting from occupational exposure in farmworkers and workers employed in pesticide production, both ever in comparison to non-exposed people, using comet assay (CA), micronucleus test (MN) and telomere length (TL) data available in the scientific literature. A total of 145 datasets were evaluated. The results showed that the occupationally exposed workers had more DNA damage in CA and MN than non-exposed workers. The TL result did not show difference between groups. When the data were categorized by gender (male, female or both), crop (general, tobacco, fruits, soybeans, cotton) and occupation (manufacturing or farmworkers), the study found that the exposed group always presented higher damage than the non-exposed individuals, in CA and MN. More studies with TL are needed to obtain a more precise response, and to segregate the effect of tobacco farming from pesticide exposure. When TL was segregated by gender, women and men presented difference between exposed and non-exposed groups. In general, the publication bias impact was modest. If all relevant studies were included, the key finding (i.e. the effect of pesticide exposure increases the genotoxicity and mutation rate) would probably remain unchanged. Lastly, it is important to highlight the importance of the use of personal protective equipment (PPE), and offer safer options to farmworkers (e.g. organic farming or less toxic alternatives).
Collapse
Affiliation(s)
- Bruna Gabriele Silva Pinto
- Universidade Tecnológica Federal do Paraná (UTFPR), Estrada para Boa Esperança, s/n, km 04, P.O. Box 157, CEP: 85660-000 Dois Vizinhos, PR, Brazil.
| | - Tábatta Kim Marques Soares
- Universidade Tecnológica Federal do Paraná (UTFPR), Estrada para Boa Esperança, s/n, km 04, P.O. Box 157, CEP: 85660-000 Dois Vizinhos, PR, Brazil.
| | - Maristela Azevedo Linhares
- Centro de Tecnologia em Saúde e Meio Ambiente, Instituto de Tecnologia do Paraná (Tecpar), Rua Professor Algacyr Munhoz Mader, 3775, CEP: 81350-10 Curitiba, PR, Brazil.
| | - Nédia Castilhos Ghisi
- Programa de Pós-Graduação em Biotecnologia, Universidade Tecnológica Federal do Paraná (UTFPR), Estrada para Boa Esperança, s/n, km 04, P.O. Box 157, CEP: 85660-000 Dois Vizinhos, PR, Brazil.
| |
Collapse
|
25
|
Rohr P, da Silva GF, Vicentini VEP, Almeida IVD, Dos Santos RA, Takahashi CS, Goulart MO, da Silva GN, de Oliveira LB, Grisolia CK, Piau TB, Bassi Branco CL, Reis ÉDM, de Oliveira Galvão MF, de Medeiros SRB, Monteiro MS, de Vasconcelos Lopes RA, Brandão SFI, Batista NJC, Paz MFCJ, da Silva J. Buccal micronucleus cytome assay: Inter-laboratory scoring exercise and micronucleus and nuclear abnormalities frequencies in different populations from Brazil. Toxicol Lett 2020; 333:242-250. [PMID: 32841739 DOI: 10.1016/j.toxlet.2020.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/14/2020] [Accepted: 08/20/2020] [Indexed: 11/25/2022]
Abstract
The Buccal Micronucleus Cytome Assay (BMCyt) has become an important biomonitoring tool for assessing cytogenetic damage in many studied populations. Each laboratory applies protocols that vary according to the method of collecting and preparing samples. Besides, Brazil is a country of great territorial extensions that received immigrants from various parts of the world with different genetic backgrounds. Therefore, the present study aimed to evaluate the inter-laboratory variation in scoring the same set of slides using the more comprehensive scoring criteria, to standardize the BMCyt protocol, to observe the basal alterations in populations of different Brazilian regions and to compare it with other places around the world. Our results showed that a valuable number of laboratories participated, ten laboratories from different regions of the country, for the validation of the BMCyt in human biomonitoring studies, resulting in the 804 healthy individuals. This was possible because we observed: a range of measures needs to be considered, such as the baseline frequency of DNA damage and cell death in non-exposed individuals; age when grouped showed an influence on DNA damage, although when evaluated by group we did not see an influence; association between smoking habit and all endpoints of the BMCyt (except karyolytic cells) was evident; the basal MN frequency, in the majority of groups, follows those around the world; and the BMCyt was confirmed as a good health status biomarker. We emphasize the need for constant discussions on the parameters of cell death due to greater difficulty among the analyzers.
Collapse
Affiliation(s)
- Paula Rohr
- Laboratório de Genética Toxicológica, Programa de Pós- Graduação em Biologia Celular e Molecular Aplicada à Saúde (PPGBioSaúde), Universidade Luterana do Brasil, ULBRA, Canoas, RS, Brazil.
| | - Gabrieli Flesch da Silva
- Laboratório de Genética Toxicológica, Programa de Pós- Graduação em Biologia Celular e Molecular Aplicada à Saúde (PPGBioSaúde), Universidade Luterana do Brasil, ULBRA, Canoas, RS, Brazil
| | | | - Igor Vivian de Almeida
- Laboratório de Mutagênese e Monitoramento Ambiental, Universidade Estadual de Maringá, UEM, Maringá, PR, Brazil
| | - Raquel Alves Dos Santos
- Laboratório de Genética e Biologia Molecular, Universidade de Franca, UNIFRAN, Franca, SP, Brazil
| | - Catarina Satie Takahashi
- Departmento de Genética, Escola de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil; Departmento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Mirian Oliveira Goulart
- Laboratório de Genética e Biologia Molecular, Universidade de Franca, UNIFRAN, Franca, SP, Brazil
| | - Glenda Nicioli da Silva
- Laboratório de Pesquisas Clínicas, Universidade Federal de Ouro Preto, UFOP, Ouro Preto, MG, Brazil
| | | | - Cesar K Grisolia
- Laboratório de Genética Toxicológica Instituto de Biologia, Universidade de Brasilia, UnB, Brasília, DF, Brazil
| | - Tathyana B Piau
- Laboratório de Genética Toxicológica Instituto de Biologia, Universidade de Brasilia, UnB, Brasília, DF, Brazil
| | | | - Érica de Melo Reis
- Laboratório de Mutagênese, Universidade Federal de Mato Grosso, UFMT, Cuiabá, MT, Brazil
| | | | | | - Magaly Sales Monteiro
- Núcleo Bioprospecção e Experimentação Molecular-NUBEM, Centro Universitário INTA-UNINTA, Sobral, CE, Brazil
| | | | | | | | | | - Juliana da Silva
- Laboratório de Genética Toxicológica, Programa de Pós- Graduação em Biologia Celular e Molecular Aplicada à Saúde (PPGBioSaúde), Universidade Luterana do Brasil, ULBRA, Canoas, RS, Brazil; Laboratório de Genética Toxicológica, Programa de Pós- Graduação Profissional em Saúde e Desenvolvimento Humano (PPGSDH), Universidade La Salle, UniLaSalle, Canoas, RS, Brazil.
| |
Collapse
|
26
|
Camporez D, Belcavello L, Almeida JFF, Silva-Sena GG, Pimassoni LHS, Morelato RL, do Carmo Pimentel Batitucci M, de Paula F. Positive association of a Sirt1 variant and parameters of oxidative stress on Alzheimer’s disease. Neurol Sci 2020; 42:1843-1851. [DOI: 10.1007/s10072-020-04704-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 08/29/2020] [Indexed: 12/13/2022]
|
27
|
Cestonaro LV, Garcia SC, Nascimento S, Gauer B, Sauer E, Göethel G, Peruzzi C, Nardi J, Fão N, Piton Y, Braga W, Rocha R, Saint'Pierre T, Gioda A, Arbo MD. Biochemical, hematological and immunological parameters and relationship with occupational exposure to pesticides and metals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:29291-29302. [PMID: 32436094 DOI: 10.1007/s11356-020-09203-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to evaluate biomarkers of exposure to cholinesterase inhibitors insecticides (AChE and BuChE activities) and metals (As, Cd, Cr, Mn, Ni, and Pb blood levels) and their associations with biochemical, hematological, and immunological parameters in farmers from Southern Brazil. One hundred and sixteen individuals were divided into two groups: 62 farmers (exposed group) and 54 subjects non-occupationally exposed (NOE) to agrochemicals. Erythrocyte (AChE) and serum (BuChE) cholinesterases activities were significantly reduced as well as blood Cd and Pb levels were increased in farmers when compared to NOE group (p < 0.05). Farmers presented increased glucose and urea levels compared to NOE group, which were inversely associated with AChE and positively correlated with Cd (p < 0.05), respectively. In addition, Cd was inversely associated with the hematological cells counts, which were significantly reduced in farmers (p < 0.05). C3 complement was higher in farmers and was positively associated with blood Pb (p < 0.05). Surface protein expression analysis revealed a downregulation of LFA-1 and ICAM-1 in farmers. Inverse associations were found between LFA-1 and blood As, Cr, and Ni levels (p < 0.05). Taken together, our results pointed to a relationship between agrochemicals and metals exposure and biochemical, hematological, and immunological disorders that can lead to several chronic conditions.
Collapse
Affiliation(s)
- Larissa V Cestonaro
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Rua São Luís, 150 - Anexo II, Porto Alegre, RS, CEP: 90620-170, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Solange Cristina Garcia
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Rua São Luís, 150 - Anexo II, Porto Alegre, RS, CEP: 90620-170, Brazil.
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Sabrina Nascimento
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Rua São Luís, 150 - Anexo II, Porto Alegre, RS, CEP: 90620-170, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Bruna Gauer
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Rua São Luís, 150 - Anexo II, Porto Alegre, RS, CEP: 90620-170, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Elisa Sauer
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Rua São Luís, 150 - Anexo II, Porto Alegre, RS, CEP: 90620-170, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Gabriela Göethel
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Rua São Luís, 150 - Anexo II, Porto Alegre, RS, CEP: 90620-170, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Caroline Peruzzi
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Rua São Luís, 150 - Anexo II, Porto Alegre, RS, CEP: 90620-170, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Jessica Nardi
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Rua São Luís, 150 - Anexo II, Porto Alegre, RS, CEP: 90620-170, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Nuryan Fão
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Rua São Luís, 150 - Anexo II, Porto Alegre, RS, CEP: 90620-170, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Yasmin Piton
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Rua São Luís, 150 - Anexo II, Porto Alegre, RS, CEP: 90620-170, Brazil
| | - Wesley Braga
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Rua São Luís, 150 - Anexo II, Porto Alegre, RS, CEP: 90620-170, Brazil
| | - Rafael Rocha
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil
| | - Tatiana Saint'Pierre
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil
| | - Adriana Gioda
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil
| | - Marcelo Dutra Arbo
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Rua São Luís, 150 - Anexo II, Porto Alegre, RS, CEP: 90620-170, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
28
|
Kaur K, Kaur R. Impact of single nucleotide polymorphisms in the OGG1 and XRCC1 genes on modulation of DNA damage in pesticide-exposed agricultural workers in Punjab, North-West India. Biomarkers 2020; 25:498-505. [PMID: 32643432 DOI: 10.1080/1354750x.2020.1794040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Pesticide-induced DNA damage is primarily repaired by base excision repair (BER) pathway. However, polymorphism in DNA repair genes may modulate individual's DNA repair capacity (DRC) leading to increased genotoxicity and adverse health effects. Our first study in North-West Indian population aimed to evaluate the impact of OGG1 rs1052133 (Ser326Cys; C1245G), XRCC1 rs1799782 (Arg194Trp; C26304T) and XRCC1 rs25487 (Arg399Gln; G28152A) polymorphisms on the modulation of pesticide-induced DNA damage in a total of 450 subjects (225 pesticide-exposed agricultural workers and 225 age- and sex-matched controls). DNA damage was estimated by alkaline comet assay using silver-staining method. Genotyping was carried out by PCR-RFLP using site-specific restriction enzymes. Mann-Whitney U-test revealed elevation in DNA damage parameters (p < 0.01) in pesticide-exposed agricultural workers than controls. Chi-square test showed significant (p < 0.05) differences in the XRCC1 Arg194Trp (C26304T) and Arg399Gln (G28152A) genotypes among two groups. Multivariate logistic-regression analysis revealed that heterozygous genotypes of OGG1 rs1052133 (326Ser/Cys; 1245CA), XRCC1 rs1799782 (194Arg/Trp; 26304CT) and XRCC1 rs25487 (399Arg/Gln; 2815GA) were positively associated (p < 0.05) with elevated DNA damage parameters in pesticide-exposed agricultural workers. Our results strongly indicate significant positive association of variant OGG1 and XRCC1 genotypes with reduced DRC and higher pesticide-induced DNA damage in North-West Indian agricultural workers.
Collapse
Affiliation(s)
- Karashdeep Kaur
- Department of Biotechnology, Sri Guru Granth Sahib World University, Punjab, India.,Department of Medical Lab Sciences, Gulzar Group of Institutes, Punjab, India
| | - Rupinder Kaur
- Department of Biotechnology, Sri Guru Granth Sahib World University, Punjab, India
| |
Collapse
|
29
|
Sapbamrer R, Thammachai A. Factors affecting use of personal protective equipment and pesticide safety practices: A systematic review. ENVIRONMENTAL RESEARCH 2020; 185:109444. [PMID: 32247154 DOI: 10.1016/j.envres.2020.109444] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 05/21/2023]
Abstract
An evidence-based understanding of factors influencing PPE use and pesticide safety practices has the benefit of facilitating the design of interventions to minimize exposure to pesticides and the promotion of the utilization of PPE and safety practices among agricultural pesticide handlers. The aim of this study, therefore, is to review the available literature on the use of PPE in agricultural pesticide handlers in world regions, and also the factors associated with the use of PPE and pesticide safety practices in farmers and farm workers. Full-text articles published on PubMed, Scopus, and ISI databases between 1999 and 2019 were reviewed and the scientific evidence was evaluated. One hundred and twenty-one articles were eligible for inclusion in this quantitative synthesis: 110 evaluated PPE use in agricultural pesticide handlers, and 23 focused on factors affecting PPE use and pesticide safety practices. Considerable evidence was found to show that the most basic PPE worn among pesticide handlers in all world regions was a long sleeve shirt (66.1%), long sleeve trousers (71.1%), and a hat (47.3%). The lowest basic PPE worn was an apron (8.6%), goggles (24.3%), gloves (40.5%), boots (42.3%), and mask (43.2%). The PPE worn (except for an apron) was proportionally higher in farmers than in farm workers. There is considerable evidence to suggest that the significant determinants associated with PPE use and pesticide safety practices are as follows: (1) demographic factors (i.e. education/literacy level, experience of illness, income); (2) farm structure factors (i.e. farm size); (3) behavioral and psychosocial factors (i.e. contact with pesticides, perceptions, attitudes, awareness, norms and beliefs); and (4) environmental factors (i.e. information about pesticides, access to extension services, training program, and farm organization). Therefore, there is a recognizable need for a life-long education program with training to change the perception and behavior of pesticide handlers sustainably.
Collapse
Affiliation(s)
- Ratana Sapbamrer
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, 110 Inthavaroros Road, Sri Phum Subdistrict, Muang District, Chiang Mai Province, 50200, Thailand.
| | - Ajchamon Thammachai
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, 110 Inthavaroros Road, Sri Phum Subdistrict, Muang District, Chiang Mai Province, 50200, Thailand; Department of Physical Therapy, School of Allied Health Sciences, University of Phayao, 19 Mae Ka Subdistrcit, Muang District, Phayao Province, 56000, Thailand
| |
Collapse
|
30
|
Leite SB, Franco de Diana DM, Segovia Abreu JA, Avalos DS, Denis MA, Ovelar CC, Samaniego Royg MJ, Thielmann Arbo BA, Corvalan R. DNA damage induced by exposure to pesticides in children of rural areas in Paraguay. Indian J Med Res 2020; 150:290-296. [PMID: 31719300 PMCID: PMC6886144 DOI: 10.4103/ijmr.ijmr_1497_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Background & objectives: Chronic exposure to pesticides can damage DNA and lead to cancer, diabetes, respiratory diseases and neurodegenerative and neurodevelopment disorders. The objective of this study was to determine the frequency of DNA damage through the comet assay and micronucleus (MN) test in two groups of children, under 10 yr of age living in rural Paraguay and in relation to pesticide exposure. Methods: Two groups of 5 to 10 yr old children were formed; the exposed group (group A, n=43), born and currently living in a community dedicated to family agriculture and surrounded by transgenic soybean crops, and the control group (group B, n=41), born and living in a community dedicated to family agriculture with biological control of pests. For each child, 2000 cells were studied for the MN test and 200 cells for the comet assay. Results: The comparison between exposed and control children revealed significant differences in biomarkers studied for the measurement of genetic damage (cell death and DNA damage). The median of MN was higher in the exposed group (6 vs. 1) (P<0.001). Binucleated cells (2.9 vs. 0.5, P<0.001); broken eggs (5.5 vs. 1.0, P<0.001); karyorrhexis (6.7 vs. 0.5, P<0.001); kariolysis (14.0 vs. 1.0, P<0.001); pyknosis (7.4 vs. 1.2, P<0.001) and condensed chromatin (25.5 vs. 7.0, P<0.001) were significantly higher in the exposed group. The values of tail length (59.1 vs 37.2 μm); tail moment (TM) (32.8 vs. 14.4 μm); TM olive (15.5 vs. 6); % DNA tail (45.2 vs. 27.6) and % DNA head (54.8 vs. 72.4), were significantly different between the two groups. Interpretations & conclusions: In children exposed to pesticides, a greater genotoxic and cytotoxic effect was observed compared to non-exposed children. Our findings suggest that monitoring of genetic toxicity in population exposed to pesticides and agrochemicals should be done.
Collapse
Affiliation(s)
- Stela Benitez Leite
- Department of Community Medicine, Faculty of Health Sciences of Catholic University 'Nuestra Señora de la Asunción', Asuncion, Paraguay
| | - Deidamia Mercedes Franco de Diana
- Toxicological Genetics Laboratory of Faculty of Health Sciences of Catholic University 'Nuestra Señora de la Asunción', Asuncion, Paraguay
| | - Jaime Alfredo Segovia Abreu
- Toxicological Genetics Laboratory of Faculty of Health Sciences of Catholic University 'Nuestra Señora de la Asunción', Asuncion, Paraguay
| | - Domingo Santiago Avalos
- Educational and Research Area of the General Directorate of Primary Health Care, Ministry of Public Health & Social Welfare, Asuncion, Paraguay
| | | | | | - María José Samaniego Royg
- Toxicological Genetics Laboratory of Faculty of Health Sciences of Catholic University 'Nuestra Señora de la Asunción', Asuncion, Paraguay
| | - Boris Alexei Thielmann Arbo
- Toxicological Genetics Laboratory of Faculty of Health Sciences of Catholic University 'Nuestra Señora de la Asunción', Asuncion, Paraguay
| | | |
Collapse
|
31
|
Mohamed WH, Amein KA, Yahia D, Sharkawy AA, Mahmoud AS. Mutagenic effect of imidacloprid insecticide: The ameliorative effect of pre and post exposure to olive oil. J Food Biochem 2020; 44:e13221. [PMID: 32242959 DOI: 10.1111/jfbc.13221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 11/26/2022]
Abstract
Imidacloprid, a systemic chloro-nicotinyl insecticide belong to neonicotinoid insecticides. In this study 120 rats were divided into four groups, the first group used as a control group, the second group was administered imidacloprid at a dose of 22.5 mg/kg b.w. for 4, 8, and 12 weeks. The third group was treated with olive oil (OLO) in a dose of 10 ml/kg body weight for 2 weeks before the oral dose of imidacloprid for 4, 8, and 12 weeks. The fourth group was given OLO in a dose of 10 ml/kg b.w. for 2 weeks after exposure to imidacloprid for 4, 8, and 12 weeks. Bone marrow was collected for micronucleus and chromosomal aberrations assays. The results revealed that imidacloprid induced a mutagenic effect in the 8th and 12th weeks of exposure and OLO decreased the mutagenic effect of imidacloprid in albino rats but not completely revert them to normal. PRACTICAL APPLICATIONS: Using OLO as a protective or therapeutic agent due to it has an ameliorative effect on mutagenicity induced by IMI.
Collapse
Affiliation(s)
- Wafaa H Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Karam A Amein
- Department of Genetics, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Doha Yahia
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Ahmed A Sharkawy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Adel S Mahmoud
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
32
|
Bernieri T, Moraes MF, Ardenghi PG, Basso da Silva L. Assessment of DNA damage and cholinesterase activity in soybean farmers in southern Brazil: High versus low pesticide exposure. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 55:355-360. [PMID: 31868080 DOI: 10.1080/03601234.2019.1704608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The aim of this study was to evaluate the DNA damage in soybean growers during two agricultural periods of a crop season (high and low exposure) and a control group, as well as butyrylcholinesterase (BChE) activity during these exposure periods in order to estimate the degree of BChE inhibition for the exposed group. DNA damage in peripheral whole blood was evaluated by the comet assay and plasma BChE activity was accessed as a measure of exposure to cholinesterase inhibitors. None of the soybean growers reported using full Personal Protective Equipment (PPE). BChE was lower in high exposure period than in low exposure period and DNA damage index was significantly increased in the high exposure period than in the low exposure period. In addition, DNA damage in both exposure periods was higher than control group. No correlation was found between exposure time and DNA damage and BChE activity. However, negative correlation was observed between DNA damage in high and low exposure periods. The results indicate that soybean growers are exposed to cholinesterase inhibitors and to pesticides mixtures with genotoxic potential.
Collapse
Affiliation(s)
- Tanandra Bernieri
- Health Sciences Institute, Feevale University, Novo Hamburgo, Rio Grande do Sul, Brazil
| | | | | | | |
Collapse
|
33
|
Santos AN, Oliveira RJ, Pessatto LR, Gomes RDS, Freitas CAFD. Biomonitoring of pharmacists and nurses at occupational risk from handling antineoplastic agents. INTERNATIONAL JOURNAL OF PHARMACY PRACTICE 2019; 28:506-511. [PMID: 31663186 DOI: 10.1111/ijpp.12590] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 10/08/2019] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The objective of this study was to evaluate the frequency of genetic lesions in pharmacists and nurses who prepare and/or handle antineoplastic agents and to evaluate whether there are traces of contaminants in the urine of these professionals. METHODS A total of 59 professionals participated in the study, of which 10 were non-exposed professionals (controls), 25 were pharmacists, and 24 were nurses. KEY FINDINGS There was a significant increase in genetic damage in lymphocytes and cells of the oral mucosa in both pharmacists and nurses. The levels of cyclophosphamide and ifosfamide were also increased in the urine samples from those individuals. CONCLUSIONS These results demonstrate the growing need for genetic biomonitoring and biomonitoring of trace antineoplastic agents in the urine of health professionals who prepare and/or handle antineoplastic agents.
Collapse
Affiliation(s)
- Andreza Negreli Santos
- Center for Stem Cell Research, Cell Therapy and Toxicological Genetics, Maria Aparecida Pedrossian University Hospital, Brazilian Company of Hospital Services, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil.,Master's Program in Pharmaceutics, School of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Rodrigo Juliano Oliveira
- Center for Stem Cell Research, Cell Therapy and Toxicological Genetics, Maria Aparecida Pedrossian University Hospital, Brazilian Company of Hospital Services, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil.,Master's Program in Pharmaceutics, School of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil.,Dr. Hélio Mandetta School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil.,Graduate Program in Genetics and Molecular Biology, Biological Sciences Center, Londrina State University, Londrina, Paraná, Brazil
| | - Lucas Roberto Pessatto
- Center for Stem Cell Research, Cell Therapy and Toxicological Genetics, Maria Aparecida Pedrossian University Hospital, Brazilian Company of Hospital Services, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil.,Graduate Program in Genetics and Molecular Biology, Biological Sciences Center, Londrina State University, Londrina, Paraná, Brazil
| | - Roberto da Silva Gomes
- Laboratory of Molecular Synthesis and Modification, School of Exact Sciences and Technology, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil.,Chemistry Graduate Program, Institute of Chemistry, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Carlos Alberto Ferreira de Freitas
- Center for Stem Cell Research, Cell Therapy and Toxicological Genetics, Maria Aparecida Pedrossian University Hospital, Brazilian Company of Hospital Services, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil.,Dr. Hélio Mandetta School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| |
Collapse
|
34
|
de Oliveira AFB, de Souza MR, Benedetti D, Scotti AS, Piazza LS, Garcia ALH, Dias JF, Niekraszewicz LAB, Duarte A, Bauer D, Amaral L, Bassi Branco CL, de Melo Reis É, da Silva FR, da Silva J. Investigation of pesticide exposure by genotoxicological, biochemical, genetic polymorphic and in silico analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 179:135-142. [PMID: 31035247 DOI: 10.1016/j.ecoenv.2019.04.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 03/22/2019] [Accepted: 04/08/2019] [Indexed: 05/07/2023]
Abstract
Soybean farmers are exposed to various types of pesticides that contain in their formulations a combination of chemicals with genotoxic and mutagenic potential. Therefore, the objective of this paper was to evaluate the genetic damages caused by this pesticide exposure to soybean producers in the state of Mato Grosso (Brazil), regarding biochemical, genetic polymorphic and in silico analyses. A total of 148 individuals were evaluated, 76 of which were occupationally exposed and 72 were not exposed at all. The buccal micronucleus cytome assay (BMCyt) detected in the exposed group an increase on DNA damage and cell death. No inhibition of butyrylcholinesterase (BchE) was observed within the exposed group. The detection of inorganic elements was made through the particle-induced X-ray emission technique (PIXE), which revealed higher concentrations of Bromine (Br), Rubidium (Rb) and Lead (Pb) in rural workers. A molecular model using in silico analysis suggests how metal ions can cause both DNA damage and apoptosis in the exposed cells. Analysis of the compared effect of X-ray Repair Cross-complement Protein 1 (XRCC1) and Paraoxonase 1 (PON1) genotypes in the groups demonstrated an increase of binucleated cells (exposed group) and nuclear bud (non-exposed group) in individuals with the XRCC1 Trip/- and PON1 Arg/- genes. There was no significant difference in the telomere (TL) mean value in the exposed group in contrast to the non-exposed group. Our results showed that soybean producers showed genotoxic effect and cell death, which may have been induced by exposure to complex mixtures of agrochemicals and fertilizers. In addition, XRCC1 Arg/Arg could, in some respects, provide protection to individuals.
Collapse
Affiliation(s)
- Arielly F B de Oliveira
- Laboratory of Genetic Toxicology, PPGBioSaúde, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Melissa Rosa de Souza
- Laboratory of Genetic Toxicology, PPGBioSaúde, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Danieli Benedetti
- Laboratory of Genetic Toxicology, PPGBioSaúde, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Amanda Souza Scotti
- Laboratory of Genetic Toxicology, PPGBioSaúde, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Luma Smidt Piazza
- Laboratory of Genetic Toxicology, PPGBioSaúde, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Ana Letícia Hilario Garcia
- Laboratory of Genetic Toxicology, PPGBioSaúde, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil; Laboratory of Ecotoxicology, Postgraduate Program in Environmental Quality, University Feevale, Novo Hamburgo, RS, Brazil
| | - Johnny Ferraz Dias
- Ion Implantation Laboratory, Institute of Physics, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | | | - Anaí Duarte
- Ion Implantation Laboratory, Institute of Physics, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Dêiverti Bauer
- Ion Implantation Laboratory, Institute of Physics, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Livio Amaral
- Ion Implantation Laboratory, Institute of Physics, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Carmen Lucia Bassi Branco
- Postgraduate in Health Science, Faculty of Medicine, Federal University of Mato Grosso, Cuiabá, MT, Brazil
| | - Érica de Melo Reis
- Postgraduate in Health Science, Faculty of Medicine, Federal University of Mato Grosso, Cuiabá, MT, Brazil
| | | | - Juliana da Silva
- Laboratory of Genetic Toxicology, PPGBioSaúde, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil.
| |
Collapse
|
35
|
Godoy FR, Nunes HF, Alves AA, Carvalho WF, Franco FC, Pereira RR, da Cruz AS, da Silva CC, Bastos RP, de Melo E Silva D. Increased DNA damage is not associated to polymorphisms in OGGI DNA repair gene, CYP2E1 detoxification gene, and biochemical and hematological findings in soybeans farmers from Central Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:26553-26562. [PMID: 31292876 DOI: 10.1007/s11356-019-05882-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 07/01/2019] [Indexed: 06/09/2023]
Abstract
Our study evaluated 163 individuals, being 74 soybean farmers, occupationally exposed to pesticides, and 89 individuals from Goias municipalities, Central Brazil, with similar conditions to the exposed group, comprising the control group. Of the 74 soybean farmers, 43 exposed directly to pesticides and 31 exposed indirectly. The exposed group consisted of individuals aged 19 to 63 years, 21 women and 53 men, and the control group had ages ranging from 18 to 64 years, being 36 women and 53 men. 18.9% of the exposed group were poisoned by pesticides, and the most common symptoms were headache and gastrointestinal problems. The genotype frequencies of the rs2031920 (T>C) polymorphism in the CYP2E1 gene present significant differences between the exposed and control groups (p = 0.02), showing that 24.3% of the exposed group were heterozygotes against 6.7% in the control group. For the OGG1 gene, two SNPs, rs1052133 (G>C) and rs293795 (T>C), were evaluated and the genotype frequencies were not statistically different between the exposed and control groups. The DNA damage was distinct (p < 0.05) in the three analyzed comet parameters (tail length, Olive tail moment, %DNA) between groups. However, there was no influence of age and alcohol consumption between the groups associated with the polymorphisms in the CYP2E1 and OGG1 genes and DNA damage. We also did not find altered hematological and biochemical parameters in the exposed group. Thus, this pioneering study at Goias State carried out an overview of the health of soybean farmers. We evaluated classic laboratory exams, associated with exposure markers (comet assay) and susceptibility markers (genetic polymorphisms), emphasizing the need to expand the Brazilian health assessment protocol. We found, in soybean farmers, increased DNA damage and a higher number of heterozygotes in CYP2E1 gene, compared with the control group, despite the lack of association with age, educational level, smoking, drinking habits, and genetic polymorphisms.
Collapse
Affiliation(s)
- Fernanda Ribeiro Godoy
- Laboratório de Mutagênese, Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Hugo Freire Nunes
- Laboratório de Mutagênese, Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Alessandro Arruda Alves
- Laboratório de Mutagênese, Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Wanessa Fernandes Carvalho
- Laboratório de Mutagênese, Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Fernanda Craveiro Franco
- Laboratório de Virologia Animal, Instituto de Patologia Tropical, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Rodrigo Roncato Pereira
- Laboratório de Mutagênese, Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Alex Silva da Cruz
- Escola de Ciências Biológicas e Agrárias, Campus II, Núcleo de Pesquisas Replicon, Pontifícia Universidade Católica de Goiás, Goiânia, Goiás, Brazil
| | - Cláudio Carlos da Silva
- Escola de Ciências Biológicas e Agrárias, Campus II, Núcleo de Pesquisas Replicon, Pontifícia Universidade Católica de Goiás, Goiânia, Goiás, Brazil
| | - Rogério Pereira Bastos
- Laboratório de Herpetologia e Comportamento Animal, Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Daniela de Melo E Silva
- Laboratório de Mutagênese, Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
- Depto. de Genética, Instituto de Ciências Biológicas, ICB I, Universidade Federal de Goiás, Bairro: Campus Universitário, Goiânia, GO, CEP: 74690-900, Brazil.
| |
Collapse
|
36
|
Cobanoglu H, Coskun M, Coskun M, Çayir A. Results of buccal micronucleus cytome assay in pesticide-exposed and non-exposed group. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:19676-19683. [PMID: 31079294 DOI: 10.1007/s11356-019-05249-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
Since many different pesticides have been used occupationally, there have been inconsistent results regarding DNA damages among greenhouse workers. Thus, the aim of the study is to evaluate DNA damages, cell death, and chromosomal instability by using the buccal micronucleus cytome (BMcyt) assay in greenhouse workers and to compare those with a non-exposed group. The BMcyt assay was applied to the exfoliated buccal cell samples collected from 66 pesticide-exposed and 50 non-exposed individuals. We evaluated the frequency of micronucleus (MN), nuclear bud (NBUD), binucleated (BN) cells, and karyolitic (KL), pyknotic (PY), and karyorrhectic (KH) cells. The results showed that the MN, BN, PY, and KH frequencies of the pesticide-exposed group were significantly higher than those of the controls (P ˂ 0.05, P ˂ 0.05, P ˂ 0.01, and P ˂ 0.05, respectively). We observed that the MN, BN, PY, and KH frequencies in the autumn were statistically different compared with those in the control group (P = 0.037 for MN, P = 0.001 for BN, P = 0.016 for PY, and P = 0.033 for KH). The same comparison was done in the spring for the control, and there was a statistically significant difference for MN (P = 0.046) and PY (P = 0.014). We can conclude that pesticide exposure in greenhouse workers was one of the factors that altered DNA damages, cell death, and chromosomal instability in oral mucosa cells.
Collapse
Affiliation(s)
- Hayal Cobanoglu
- Health Services Vocational College, Çanakkale Onsekiz Mart University, 17100, Çanakkale, Turkey
| | - Munevver Coskun
- Health Services Vocational College, Çanakkale Onsekiz Mart University, 17100, Çanakkale, Turkey
| | - Mahmut Coskun
- Faculty of Medicine, Department of Medical Biology, Çanakkale Onsekiz Mart University, Terzioglu Campus, 17100, Çanakkale, Turkey
| | - Akin Çayir
- Health Services Vocational College, Çanakkale Onsekiz Mart University, 17100, Çanakkale, Turkey.
| |
Collapse
|
37
|
Hopf NB, Bolognesi C, Danuser B, Wild P. Biological monitoring of workers exposed to carcinogens using the buccal micronucleus approach: A systematic review and meta-analysis. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 781:11-29. [DOI: 10.1016/j.mrrev.2019.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 02/12/2019] [Accepted: 02/28/2019] [Indexed: 01/22/2023]
|
38
|
Cayir A, Coskun M, Coskun M, Cobanoglu H. Comet assay for assessment of DNA damage in greenhouse workers exposed to pesticides. Biomarkers 2019; 24:592-599. [PMID: 31020853 DOI: 10.1080/1354750x.2019.1610498] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Purpose: The main goal of the present study was to determine DNA damage in pesticide-exposed greenhouse workers and pesticides non-exposed controls. Materials and methods: The DNA damage was measured by alkaline comet assay method (pH > 13) in 41 greenhouse workers and 45 non-exposed individuals as the control. Pesticide exposure was assessed by duration of working in the greenhouse and pesticide application in the greenhouse time. DNA damage was estimated by arbitrary unit and damage frequency. Results: Arbitrary unit and damage frequency were consistently significantly higher in greenhouse workers than those of the controls (p = 0.001). In terms of gender in greenhouse, DNA damage of female workers was significantly higher than those in male workers (p < 0.05). We found significant correlation between DNA damage and working hours spent. Multiple linear regression analysis showed that working hours in the greenhouse as an indication of pesticide exposure were significantly associated with the DNA damage, which can be attributed to the genotoxic potential of the pesticide mixture. Conclusions: The comet assay is sensitive to detect the damage exposed to chronic effect of pesticides in greenhouse workers. Significant DNA damage was obtained for the exposed group, which was associated with the pesticide exposure.
Collapse
Affiliation(s)
- Akin Cayir
- a Health Services Vocational College, Çanakkale Onsekiz Mart University , Çanakkale , Turkey
| | - Mahmut Coskun
- b Department of Medical Biology, Faculty of Medicine, Çanakkale Onsekiz Mart University , Çanakkale , Turkey
| | - Munevver Coskun
- a Health Services Vocational College, Çanakkale Onsekiz Mart University , Çanakkale , Turkey
| | - Hayal Cobanoglu
- a Health Services Vocational College, Çanakkale Onsekiz Mart University , Çanakkale , Turkey
| |
Collapse
|
39
|
Assessment of genotoxicity and cholinesterase activity among women workers occupationally exposed to pesticides in tea garden. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 841:1-7. [DOI: 10.1016/j.mrgentox.2019.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 02/26/2019] [Accepted: 03/04/2019] [Indexed: 11/18/2022]
|
40
|
Tomiazzi JS, Pereira DR, Judai MA, Antunes PA, Favareto APA. Performance of machine-learning algorithms to pattern recognition and classification of hearing impairment in Brazilian farmers exposed to pesticide and/or cigarette smoke. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:6481-6491. [PMID: 30623325 DOI: 10.1007/s11356-018-04106-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 12/27/2018] [Indexed: 06/09/2023]
Abstract
The use of pesticides has been increasing in agriculture, leading to a public health problem. The aim of this study was to evaluate ototoxic effects in farmers who were exposed to cigarette smoke and/or pesticides and to identify possible classification patterns in the exposure groups. The sample included 127 participants of both sexes aged between 18 and 39, who were divided into the following four groups: control group (CG), smoking group (SG), pesticide group (PG), and smoking + pesticide group (SPG). Meatoscopy, pure tone audiometry, logoaudiometry, high-frequency thresholds, and immittance testing were performed. Data were evaluated by artificial neural network (ANN), K-nearest neighbors (K-NN), and support vector machine (SVM). There was symmetry between the right and left ears, an increase in the incidence of hearing loss at high frequency and of downward sloping audiometric curve configuration, and alteration of stapedial reflex in the three exposed groups. The machine-learning classifiers achieved good classification performance (control and exposed). The best classification results occur in high type (I and II) datasets (about 90% accuracy) in k-NN test. It is concluded that both xenobiotic substances have ototoxic potential; however, their combined use does not present additive or potentiating effects recognizable by the algorithms.
Collapse
Affiliation(s)
- Jamile Silveira Tomiazzi
- Graduate Program in Environment and Regional Development, University of Western São Paulo - UNOESTE, Presidente Prudente, SP, Brazil
| | - Danillo Roberto Pereira
- Graduate Program in Environment and Regional Development, University of Western São Paulo - UNOESTE, Presidente Prudente, SP, Brazil
| | - Meire Aparecida Judai
- Faculty of Health Sciences, University of Western São Paulo - UNOESTE, Presidente Prudente, SP, Brazil
| | - Patrícia Alexandra Antunes
- Graduate Program in Environment and Regional Development, University of Western São Paulo - UNOESTE, Presidente Prudente, SP, Brazil
| | - Ana Paula Alves Favareto
- Graduate Program in Environment and Regional Development, University of Western São Paulo - UNOESTE, Presidente Prudente, SP, Brazil.
| |
Collapse
|
41
|
Bernieri T, Rodrigues D, Barbosa IR, Ardenghi PG, Basso da Silva L. Occupational exposure to pesticides and thyroid function in Brazilian soybean farmers. CHEMOSPHERE 2019; 218:425-429. [PMID: 30476775 DOI: 10.1016/j.chemosphere.2018.11.124] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 11/12/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
INTRODUCTION Agriculture production has been supported especially by the use of pesticides for crop protection and pest control. Although the agricultural production has been increased by pesticides use, these substances also reach non-target organisms and may become a risk to the health of farmers. Several epidemiological studies in human have investigated the association between exposure to pesticides and altered serum levels of thyroid hormones, reporting both positive and negative results. Overall, the impact of pesticides on human thyroid function is still limited. OBJECTIVE The aim of this study was to access serum levels of free thyroxin (FT4), total triiodothyronine (TT3), thyroid-stimulating hormone (TSH), and butyrylcholinesterase (BChE) in soybean farmers in southern Brazil. METHODS The exposed group was composed by 46 rural workers and 27 subjects not exposed to pesticides composed the control group. All subjects had blood samples collected by venipuncture in order to analyze the serum levels of FT4, TT3, TSH and BChE. RESULTS The results showed a significant decreasing in TSH and increasing in TT3 and FT4 in rural workers, compared to control group. BChE levels were lower in exposed group than in control group. The results suggest that farmers are exposed to mixtures of pesticides with endocrine disruptor properties.
Collapse
Affiliation(s)
- Tanandra Bernieri
- Department of Health Sciences, Feevale University, ERS-239, 2755, Zip Code: 93525-075, Novo Hamburgo, Rio Grande do Sul, Brazil
| | - Dabiana Rodrigues
- Department of Health Sciences, Feevale University, ERS-239, 2755, Zip Code: 93525-075, Novo Hamburgo, Rio Grande do Sul, Brazil
| | - Isadora Randon Barbosa
- Department of Health Sciences, Feevale University, ERS-239, 2755, Zip Code: 93525-075, Novo Hamburgo, Rio Grande do Sul, Brazil
| | - Patrícia Grolli Ardenghi
- Department of Health Sciences, Feevale University, ERS-239, 2755, Zip Code: 93525-075, Novo Hamburgo, Rio Grande do Sul, Brazil
| | - Luciano Basso da Silva
- Department of Health Sciences, Feevale University, ERS-239, 2755, Zip Code: 93525-075, Novo Hamburgo, Rio Grande do Sul, Brazil.
| |
Collapse
|
42
|
Benvindo-Souza M, Borges RE, Pacheco SM, Santos LRDS. Genotoxicological analyses of insectivorous bats (Mammalia: Chiroptera) in central Brazil: The oral epithelium as an indicator of environmental quality. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 245:504-509. [PMID: 30458380 DOI: 10.1016/j.envpol.2018.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 10/26/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
The micronucleus (MN) test of the human buccal mucosa was developed more than 30 years ago, although this technique has only recently been applied to wild mammals. This paper presents a pioneering study in the genotoxicological evaluation of the exfoliated cells of the buccal mucosa of bats. The assay was applied to two insectivorous bat species (Noctilio albiventris and Pteronotus parnellii) sampled in riparian corridors located in the city of Palmas (capital of the Brazilian state of Tocantins), with the results being compared with those obtained for a third insectivorous species (Nyctinomops laticaudatus), which has established a colony under a road bridge in the same region. This colony represents one of the largest molossidae populations ever recorded in Brazil. A significantly higher frequency of micronuclei was recorded in this colony, as well as a number of other nuclear abnormalities, including binucleated cells, cells with condensed chromatin and karyolysis, in comparison with the bats from the riparian corridors, indicating that the bats from the bridge colony are more susceptible to genotoxic damage. Thus, it is demonstrated the importance of the biomarker (MN) for use in wild animals and allows to conclude that colony bats are more susceptible to genotoxic damages.
Collapse
Affiliation(s)
| | | | - Susi Missel Pacheco
- Research Department, Institute Sauver and PCMBrazil, Porto Alegre, RS, Brazil
| | | |
Collapse
|
43
|
Marcelino AF, Wachtel CC, Ghisi NDC. Are Our Farm Workers in Danger? Genetic Damage in Farmers Exposed to Pesticides. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E358. [PMID: 30691246 PMCID: PMC6388205 DOI: 10.3390/ijerph16030358] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/12/2019] [Accepted: 01/19/2019] [Indexed: 11/17/2022]
Abstract
Modern agriculture, practiced after the "green revolution" worldwide, aims to maximize production in order to provide food for the growing world population. Thus, farmers are required to modernize their practices through the mechanization of land use and, above all, the use of chemical pesticides to control agricultural pests. However, in addition to combating the target pest, chemical pesticides indirectly affect a wide range of species, including humans, leading to health damage. Among the main problems caused by the use of pesticides is the genotoxicity caused by chronic exposure. The present study aims to verify the occurrence of genetic damage in farmers who are occupationally exposed to agrochemicals compared to people of other professions that do not use toxic substances (control group). The research was conducted with 36 male participants (18 farmers and 18 control group, ages 24⁻71 for the farmer group and 22⁻61 for the control group). The comet assay and micronucleus test results revealed a higher rate of genetic damage in the group of farmers than in the control group. A questionnaire answered by the farmers showed that the Personal Protect Equipment (PPE) is used incorrectly or not used. In summary, our results indicate that farmers are exposed to occupational hazards. To mitigate this risk, we conducted awareness campaigns to notify the farmers of the risks and highlight the importance of using PPE correctly. Intensive efforts and training are thus required to build an awareness of safety practices and change the attitudes of farm workers in the hope of preventing harmful environmental and anthropogenic effects.
Collapse
Affiliation(s)
- Ana Flavia Marcelino
- Programa de Pós-Graduação em Agroecossistemas, Universidade Tecnológica Federal do Paraná (UTFPR), Dois Vizinhos, 85660-000, Brazil.
| | - Catia Cappelli Wachtel
- Programa de Pós-Graduação em Agroecossistemas, Universidade Tecnológica Federal do Paraná (UTFPR), Dois Vizinhos, 85660-000, Brazil.
| | - Nédia de Castilhos Ghisi
- Diretoria de Pesquisa e Pós-Graduação da Universidade Tecnológica Federal do Paraná (UTFPR), Dois Vizinhos, 85660-000, Brazil.
| |
Collapse
|
44
|
Franco de Diana D, Segovia Abreu J, Castiglioni Serafini D, Ortíz JF, Samaniego MJ, Aranda AC, Zamorano-Ponce E. Increased genetic damage found in waste picker women in a landfill in Paraguay measured by comet assay and the micronucleus test. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 836:19-23. [DOI: 10.1016/j.mrgentox.2018.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/20/2018] [Accepted: 06/01/2018] [Indexed: 11/15/2022]
|
45
|
Espitia-Pérez L, da Silva J, Brango H, Espitia-Pérez P, Pastor-Sierra K, Salcedo-Arteaga S, de Souza CT, Dias JF, Hoyos-Giraldo LS, Gómez-Pérez M, Salcedo-Restrepo D, Henriques JA. Genetic damage in environmentally exposed populations to open-pit coal mining residues: Analysis of buccal micronucleus cytome (BMN-cyt) assay and alkaline, Endo III and FPG high-throughput comet assay. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 836:24-35. [DOI: 10.1016/j.mrgentox.2018.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 04/25/2018] [Accepted: 06/01/2018] [Indexed: 12/22/2022]
|
46
|
Xotlanihua-Gervacio MDC, Guerrero-Flores MC, Herrera-Moreno JF, Medina-Díaz IM, Bernal-Hernández YY, Barrón-Vivanco BS, Sordo M, Rojas-García AE. Micronucleus frequency is correlated with antioxidant enzyme levels in workers occupationally exposed to pesticides. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:31558-31568. [PMID: 30206828 DOI: 10.1007/s11356-018-3130-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/03/2018] [Indexed: 06/08/2023]
Abstract
Oxidative stress can cause DNA damage leading to nuclear anomalies such as micronuclei (MN). Antioxidant enzymes involved in protection against intracellular oxidative stress include glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD), and catalase (CAT). Pesticide exposure induces oxidative stress and alters antioxidant defense mechanisms, including detoxification and scavenger enzymes. The aim of this study was to evaluate MN frequency in workers occupationally exposed to pesticides and their relationship with antioxidant enzyme activities. A cross-sectional study was conducted in 201 individuals, some of whom were dedicated to the spraying of pesticides. The cytokinesis-block micronucleus (CBMN) assay was conducted, and the activities of GPx, GR, SOD, and CAT were determined. The geometric mean (GM) of MN was 5.4 (1-26 MN). The GM for the antioxidant enzymes was 198.68 U/mL for GPx, 38.96 U/g Hb for GR, 94.78 U/mL for SOD, and 69.77 U/g Hb for CAT. There was a lower MN frequency in males than that in females, and a higher nuclear index. In addition, age affected MN frequency. There was a negative correlation between MN frequency and GPx activity, but a positive one between MN frequency and GR activity. These findings suggest the involvement of GPx in MN frequency.
Collapse
Affiliation(s)
- Maria Del Carmen Xotlanihua-Gervacio
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, 63155. Ciudad de la Cultura s/n. Col. Centro, C.P. 63000, Tepic, Nayarit, Mexico
- Posgrado en Ciencias Biológico Agropecuarias|, Unidad Académica de Agricultura, Km. 9 Carretera Tepic, Compostela, Xalisco, Nayarit, Mexico
| | - Mirna Citlali Guerrero-Flores
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, 63155. Ciudad de la Cultura s/n. Col. Centro, C.P. 63000, Tepic, Nayarit, Mexico
| | - José Francisco Herrera-Moreno
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, 63155. Ciudad de la Cultura s/n. Col. Centro, C.P. 63000, Tepic, Nayarit, Mexico
- Posgrado en Ciencias Biológico Agropecuarias|, Unidad Académica de Agricultura, Km. 9 Carretera Tepic, Compostela, Xalisco, Nayarit, Mexico
| | - Irma Martha Medina-Díaz
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, 63155. Ciudad de la Cultura s/n. Col. Centro, C.P. 63000, Tepic, Nayarit, Mexico
| | - Yael Yvette Bernal-Hernández
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, 63155. Ciudad de la Cultura s/n. Col. Centro, C.P. 63000, Tepic, Nayarit, Mexico
| | - Briscia Socorro Barrón-Vivanco
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, 63155. Ciudad de la Cultura s/n. Col. Centro, C.P. 63000, Tepic, Nayarit, Mexico
| | - Monserrat Sordo
- Instituto de Investigaciones Biomédicas, UNAM, P.O. Box 70228, Ciudad Universitaria, 04510, México DF, Mexico
| | - Aurora Elizabeth Rojas-García
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, 63155. Ciudad de la Cultura s/n. Col. Centro, C.P. 63000, Tepic, Nayarit, Mexico.
| |
Collapse
|
47
|
Machado SC, Martins I. Risk assessment of occupational pesticide exposure: Use of endpoints and surrogates. Regul Toxicol Pharmacol 2018; 98:276-283. [DOI: 10.1016/j.yrtph.2018.08.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/20/2018] [Accepted: 08/16/2018] [Indexed: 10/28/2022]
|
48
|
Biotoxicological Analyses of Trimeroside from Baccharis trimera Using a Battery of In Vitro Test Systems. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7804135. [PMID: 30210656 PMCID: PMC6120265 DOI: 10.1155/2018/7804135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/24/2018] [Accepted: 07/11/2018] [Indexed: 11/24/2022]
Abstract
The use in folk medicine of Baccharis trimera and recent studies on DNA damage by oxidative stress mechanisms have motivated this study. We investigated the biotoxicological effects of trimeroside from this plant. Aqueous extract from aerial parts of B. trimera was fractioned by flash chromatography for further isolation by thin-layer chromatography. The novel nor-monoterpene glycoside, trimeroside, and three flavonoids, cirsimaritin, luteolin and quercetin, were isolated. The genotoxic and mutagenic potential of trimeroside was determined by Salmonella/microsome (TA98 and TA100), comet assay, and cytokinesis-block micronucleus cytome assay (CBMN-cyt) in HepG2 cells. We also screened trimeroside into different human tumoral cell lines by sulforhodamine B (SRB) assay. Mutagenicity was detected in TA100 strain with metabolic activation. Genotoxic effects were not observed in HepG2 by comet assay. However, a decrease in the nuclear index division in the 2.0 mg·mL−1 concentration and an increase of nucleoplasmic bridges in the 1.5 mg·mL−1 concentration were detected by CBMN-cyt assay indicating cytotoxic and mutagenic effects. In SRB assay, trimeroside showed weak antiproliferative activity against the cell lines.
Collapse
|
49
|
Cytotoxic and Genotoxic Effects of Pesticide Exposure in Male Coffee Farmworkers of the Jarabacoa Region, Dominican Republic. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15081641. [PMID: 30081446 PMCID: PMC6121533 DOI: 10.3390/ijerph15081641] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 12/16/2022]
Abstract
Intensive agrochemical use in coffee production in the Global South has been documented. The aim of this study was to investigate cytotoxic and genotoxic effects of pesticide exposure in male farmworkers in the Dominican Republic comparing conventional farming using pesticides to organic farming. Furthermore, feasibility of the buccal micronucleus cytome assay (BMCA) for field studies under difficult local conditions was tested. In a cross-sectional field study, pesticide exposed (sprayers) and non-exposed male workers on coffee plantations were interviewed about exposure history, and pesticide application practices. Buccal cells were sampled, and BMCA was applied to assess potential effects on cell integrity. In total, 38 pesticide-exposed and 33 non-exposed workers participated. Eighty-four and 87%, respectively, of the pesticide-exposed respondents did not use masks or gloves at all. All biomarkers from the BMCA were significantly more frequent among exposed workers—odds ratio for micronucleated cells: 3.1 (95% confidence interval: 1.3–7.4) or karyolysis: 1.3 (1.1–1.5). Buccal cells as sensitive markers of toxic oral or respiratory exposures proved feasible for challenging field studies. Our findings indicate that the impact of pesticide use is not restricted to acute effects on health and wellbeing, but also points to long-term health risks. Therefore, occupational safety measures including training and protective clothing are needed, as well as encouragement towards minimal application of pesticides and more widespread use of organic farming.
Collapse
|
50
|
Paz MFCJ, Sobral ALP, Picada JN, Grivicich I, Júnior ALG, da Mata AMOF, de Alencar MVOB, de Carvalho RM, da Conceição Machado K, Islam MT, de Carvalho Melo Cavalcante AA, da Silva J. Persistent Increased Frequency of Genomic Instability in Women Diagnosed with Breast Cancer: Before, during, and after Treatments. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2846819. [PMID: 30013718 PMCID: PMC6022262 DOI: 10.1155/2018/2846819] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/13/2018] [Indexed: 12/12/2022]
Abstract
This study aimed to evaluate DNA damage in patients with breast cancer before treatment (background) and after chemotherapy (QT) and radiotherapy (RT) treatment using the Comet assay in peripheral blood and the micronucleus test in buccal cells. We also evaluated repair of DNA damage after the end of RT, as well as the response of patient's cells before treatment with an oxidizing agent (H2O2; challenge assay). Fifty women with a mammographic diagnosis negative for cancer (control group) and 100 women with a diagnosis of breast cancer (followed up during the treatment) were involved in this study. The significant DNA damage was observed by increasing in the index and frequency of damage along with the increasing of the frequency of micronuclei in peripheral blood and cells of the buccal mucosa, respectively. Despite the variability of the responses of breast cancer patients, the individuals presented lesions on the DNA, detected by the Comet assay and micronucleus Test, from the diagnosis until the end of the oncological treatment and were more susceptible to oxidative stress. We can conclude that the damages were due to clastogenic and/or aneugenic effects related to the neoplasia itself and that they increased, especially after RT.
Collapse
Affiliation(s)
- Márcia Fernanda Correia Jardim Paz
- Laboratory of Genetic Toxicology, PPGBioSaúde and PPGGTA, Lutheran University of Brazil (ULBRA), Av. Farroupilha 8001, Prédio 22, Sala 22 (4° Andar), 92425-900 Canoas, RS, Brazil
- Laboratory of Genetic Toxicology, PPGCF, Federal University of Piauí, Av. Universitária S/N, Ininga, 64049-550 Teresina, PI, Brazil
- Post-Graduation Program in Biotechnology, RENORBIO, Federal University of Piauí, Av. Universitária, S/N, Ininga, 64049-550 Teresina, PI, Brazil
| | - André Luiz Pinho Sobral
- University Hospital of Piauí, Av. Universitária, S/N, Ininga, 64049-550 Teresina, PI, Brazil
| | - Jaqueline Nascimento Picada
- Laboratory of Genetic Toxicology, PPGBioSaúde and PPGGTA, Lutheran University of Brazil (ULBRA), Av. Farroupilha 8001, Prédio 22, Sala 22 (4° Andar), 92425-900 Canoas, RS, Brazil
| | - Ivana Grivicich
- Laboratory of Cancer Biology, PPGBioSaúde and PPGGTA, Lutheran University of Brazil (ULBRA), Av. Farroupilha 8001, Prédio 22, Sala 22 (4° Andar), 92425-900 Canoas, RS, Brazil
| | - Antonio Luiz Gomes Júnior
- Laboratory of Genetic Toxicology, PPGCF, Federal University of Piauí, Av. Universitária S/N, Ininga, 64049-550 Teresina, PI, Brazil
- Post-Graduation Program in Biotechnology, RENORBIO, Federal University of Piauí, Av. Universitária, S/N, Ininga, 64049-550 Teresina, PI, Brazil
- Biomedicine Department, UNINOVAFAPI University, Teresina, Brazil
| | - Ana Maria Oliveira Ferreira da Mata
- Laboratory of Genetic Toxicology, PPGCF, Federal University of Piauí, Av. Universitária S/N, Ininga, 64049-550 Teresina, PI, Brazil
- Post-Graduation Program in Biotechnology, RENORBIO, Federal University of Piauí, Av. Universitária, S/N, Ininga, 64049-550 Teresina, PI, Brazil
| | - Marcus Vinícius Oliveira Barros de Alencar
- Laboratory of Genetic Toxicology, PPGCF, Federal University of Piauí, Av. Universitária S/N, Ininga, 64049-550 Teresina, PI, Brazil
- Department of Biochemistry and Pharmacology, Federal University of Piauí, Av. Universitária, S/N, Ininga, 64049-550 Teresina, PI, Brazil
| | - Rodrigo Mendes de Carvalho
- Central Laboratory of Public Health of Piauí, Rua Dezenove de Novembro 1945, Bairro Primavera, 64002-570 Teresina, PI, Brazil
| | - Kátia da Conceição Machado
- Laboratory of Genetic Toxicology, PPGCF, Federal University of Piauí, Av. Universitária S/N, Ininga, 64049-550 Teresina, PI, Brazil
- Post-Graduation Program in Biotechnology, RENORBIO, Federal University of Piauí, Av. Universitária, S/N, Ininga, 64049-550 Teresina, PI, Brazil
| | - Muhammad Torequl Islam
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | - Ana Amélia de Carvalho Melo Cavalcante
- Laboratory of Genetic Toxicology, PPGCF, Federal University of Piauí, Av. Universitária S/N, Ininga, 64049-550 Teresina, PI, Brazil
- Post-Graduation Program in Biotechnology, RENORBIO, Federal University of Piauí, Av. Universitária, S/N, Ininga, 64049-550 Teresina, PI, Brazil
| | - Juliana da Silva
- Laboratory of Genetic Toxicology, PPGBioSaúde and PPGGTA, Lutheran University of Brazil (ULBRA), Av. Farroupilha 8001, Prédio 22, Sala 22 (4° Andar), 92425-900 Canoas, RS, Brazil
| |
Collapse
|